
JSS Journal of Statistical Software
September 2010, Volume 36, Issue 10. http://www.jstatsoft.org/

spam: A Sparse Matrix R Package with Emphasis

on MCMC Methods for Gaussian Markov Random

Fields

Reinhard Furrer
University of Zurich

Stephan R. Sain
National Center for Atmospheric Research

Abstract

spam is an R package for sparse matrix algebra with emphasis on a Cholesky factor-
ization of sparse positive definite matrices. The implemantation of spam is based on the
competing philosophical maxims to be competitively fast compared to existing tools and
to be easy to use, modify and extend. The first is addressed by using fast Fortran routines
and the second by assuring S3 and S4 compatibility. One of the features of spam is to
exploit the algorithmic steps of the Cholesky factorization and hence to perform only a
fraction of the workload when factorizing matrices with the same sparsity structure. Sim-
ulations show that exploiting this break-down of the factorization results in a speed-up of
about a factor 5 and memory savings of about a factor 10 for large matrices and slightly
smaller factors for huge matrices. The article is motivated with Markov chain Monte Carlo
methods for Gaussian Markov random fields, but many other statistical applications are
mentioned that profit from an efficient Cholesky factorization as well.

Keywords: Cholesky factorization, compactly supported covariance function, compressed sparse
row format, symmetric positive-definite matrix, stochastic modeling, S3/S4.

1. Introduction

In many areas of scientific study, there is great interest in the analysis of datasets of ever
increasing size and complexity. In the geosciences, for example, weather prediction and climate
model experiments utilize datasets that are measured on the scale of terabytes. New statistical
modeling and computational approaches are necessary to analyze such data, and approaches
that can incorporate efficient storage and manipulation of both data and model constructs
can greatly aid even the most simple of statistical computations. The focus of this work is
on statistical models for spatial data that can utilize regression and correlation matrices that
are sparse, i.e., matrices that have many zeros.

http://www.jstatsoft.org/

2 spam: MCMC Methods for Gaussian Markov Random Fields in R

Sparse matrix algebra has seen a resurrection since much of the development in the late
1970s and 1980s. To exploit sparse structure, a matrix is not stored as a two-dimensional
array. Rather it is stored using only its non-zero values and an index scheme linking those
values to their location in the matrix (see Section 3). This storage scheme is memory efficient
but implies that for all operations involving the scheme, such as matrix multiplication and
addition, new functions need to be implemented. spam is a software package based on and
inspired by existing and publicly available Fortran routines for handling sparse matrices and
Cholesky factorization, and provides a large functionality for sparse matrix algebra.

More specifically, the spam package implements and overloads sparse matrix algebra methods
that are based on Fortran routines. Typically, a user creates sparse precision matrices (ideally
directly using provided routines or by transforming regular R matrices into sparse matrices)
and proceeds as if handling regular matrices. Naturally, additional visible functionality for
sparse matrices is implemented, e.g., visualizing the sparsity structure. Some important fea-
tures of spam are: (1) it supports (essentially) a single sparse matrix format; (2) it is based on
transparent and simple structure(s); (3) it is tailored for Markov chain Monte Carlo (MCMC)
calculations within Gaussian Markov random fields (GMRFs); (4) it is methods-based while
providing functions using S3 syntax. These aspects imply a very steep learning curve and
make spam very user friendly. The functionality of spam can be extended and modified in a
very straightforward manner. While this paper focuses on sparse precision matrices of GM-
RFs, sparse covariance matrices in a Gaussian random fields setting are another natural field
of application.

1.1. Motivation

A class of spatial models in which a sparse matrix structure arises naturally involves data
that is laid out on some sort of spatial lattice. These lattices may be regular, such as the grids
associated with images, remote sensing data, climate models, etc., or irregular, such as US
census divisions (counties, tracts, or block-groups) or other administrative units. A powerful
modeling tool for this type of data is the framework of GMRFs, introduced by the pioneering
work of Besag (1974), see Rue and Held (2005) for an excellent exposition of the theory
and application of GMRFs. In short, a GMRF can be specified by a multivariate Gaussian
distribution with mean µ and a precision matrix Q, where the (i, j)th element of Q is zero
if the process at location i is conditionally independent of the process at j given the process
at all locations except {i, j}. The pattern of zero and non-zero elements in such matrices is
typically due to the assumption of some sort of Markov property in space and/or time and
is called the sparsity structure. Whereas the total number of non-zero elements divided by
the total number of elements is called the density of the matrix; Q, for example, usually has
a very low density. Commonly, the conditional dependence structure in a GMRF is modeled
using a parameter θ and MCMC methods can be used to probe the posterior distribution of
θ (and potentially other parameters of interest) as well as the predictive distribution. In each
MCMC iteration the Cholesky factor of the precision matrix Q needs to be calculated and it
is indispensable to exploit its sparsity to be able to analyze the large datasets arising from
the applications mentioned above.

1.2. The spam R package

Although used here as motivation and illustration, obtaining posterior distributions of pa-

Journal of Statistical Software 3

rameters in the context of a GMRF is not the only application where efficient Cholesky
factorizations are needed. To mention just a few: drawing multivariate random variables,
calculating log-likelihoods, maximizing log-likelihoods, calculating determinants of covariance
matrices, linear discriminant analysis, etc. Statistical calculations, which require solving a
linear system or calculating determinants, usually also require pre- and post-processing of the
data, visualization, etc. A successful integration of an efficient factorization algorithm not
only calls for subroutines for the factorization and back- and forwardsolvers, but also is user
friendly and easy to work with. As we show below, it is also important to provide access to
the computational steps involved in the sparse factorization, and which are compatible with
the sparse matrix storage scheme. R, often called GNU S, is the perfect environment for
implementing such algorithms and functionalities in view of statistical applications, see Ihaka
and Gentleman (1996); R Development Core Team (2010a). Therefore, spam has been con-
ceived as a publicly available R package available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=spam. For reasons of efficiency many functions of
spam are programmed in Fortran with the additional advantage of abundantly available good
code. On the other hand, Fortran does not feature dynamic memory allocation. While there
are several remedies, these could lead to a minor decrease in memory efficiency.

To be more specific about one of spam’s main features, assume we need to calculate A−1b
with A a symmetric positive-definite matrix featuring some sparsity structure, which is usually
accomplished by solving Ax = b. We proceed by factorizing A into R>R, where R is an
upper triangular matrix, called the Cholesky factor or Cholesky triangle of A, followed by
solving R>y = b and Rx = y, called forwardsolve and backsolve, respectively. To reduce the
fill-in of the Cholesky factor R, we permute the columns and rows of A according to a (cleverly
chosen) permutation P, i.e., U>U = P>AP, with U an upper triangular matrix. There exist
many different algorithms to find permutations which are optimal for specific matrices or
at least close to optimal with respect to different criteria. Note that R and U cannot be
linked through P alone. Figure 1 illustrates the factorization with and without permutation.
For solving a linear system the two triangular solves are performed after the factorization.
The determinant of A is the squared product of the diagonal elements of its Cholesky factor
R. Hence the same factorization can be used to calculate determinants (a necessary and
computational bottleneck in the computation of the log-likelihood of a Gaussian model),
illustrating that it is very important to have a very efficient integration (with respect to
calculation time and storage capacity) of the Cholesky factorization. In the case of GMRF, the
off-diagonal non-zero elements correspond to the conditional dependence structure. However,
for the calculation of the Cholesky factor, the values themselves are less important than
the sparsity structure, which is often represented using a graph with edges representing the
non-zero elements, see Figure 1.

A typical Cholesky factorization of a sparse matrix consists of the steps illustrated in the
following pseudo-code algorithm.

[1] Determine permutation and permute the input matrix A to obtain P>AP

[2] Symbolic factorization, where the sparsity structure of U is constructed

[3] Numeric factorization, where the elements of U are computed

When factorizing matrices with the same sparsity structure Steps 1 and 2 do not need to be
repeated. In MCMC algorithms, this is commonly the case, and exploiting this shortcut leads

http://CRAN.R-project.org/package=spam

4 spam: MCMC Methods for Gaussian Markov Random Fields in R

A =


1 0.5 0 0.5 0.5

0.5 1 0 0.5 0
0 0.5 1 0.5 0.5

0.5 0.5 0 1 0
0.5 0 0.5 0 1


1

2

3

3

4

1

2

4
5

5

column

1 2 3 4 5

5
4

3
2

1

1 2 3 4 5

5
4

3
2

1 column

ro
w

1 2 3 4 5

5
4

3
2

1

ro
w

1 2 3 4 5

5
4

3
2

1

Figure 1: The symmetric positive-definite n = 5 matrix A and the sparsity structure of A
and P>AP (top row). The graph associated to the matrix A and the Cholesky factors R
and U of A and P>AP respectively are given in the bottom row. The nodes of the graph
are labeled according to A (upright) and P>AP (italics). The dashed lines in U indicate the
supernode partition, see Section 2 and 3.2.

to very considerable gains in computational efficiency (also noticed by Rue and Held 2005,
page 51). However, none of the existing sparse matrix packages in R (SparseM, Koenker and
Ng 2010, and Matrix, Bates and Maechler 2010) provide the possibility to carry out Step 3
separately and spam fills this gap.

1.3. Outline

This article is structured as follows. The next section outlines in more detail the integration of
the Cholesky factorization. Section 3 discusses the sparse matrix implementation in spam. In
Section 4 we illustrate the performance of spam with simulation results for GMRFs. Section 5
illustrates spam two specific real data examples. Discussion and the positioning of spam and
the Cholesky factorization in a larger framework are given in Section 6.

2. The integration of the Cholesky factorization

In this section we discuss the individual steps and the actual integration of the Cholesky
factorization in more details. The scope of this article prohibits a very detailed discussion,
and we refer to George and Liu (1981) or Duff, Erisman, and Reid (1986) as general texts
and to the more specific references cited below. spam uses a Fortran supernodal left-looking
(constructing the lower triangular factor R> column-wise) Cholesky factorization originally
developed by E. Ng and B. Peyton at Oak Ridge National Laboratory in the early 1990s, see
Ng and Peyton (1993a). The algorithm groups columns (via elimination trees, see Liu 1992,
for a definition) that share the same sparsity structure into supernodes, see Figure 1 and,
e.g., Liu, Ng, and Peyton (1993). The factorization cycles over the supernodes, performing
block factorization within each supernode with appropriate updates derived from previous
supernodes. The algorithm has been enhanced since its first implementation by exploiting

Journal of Statistical Software 5

Figure 2: Sparsity structure of the Cholesky factor with MMD, RCM and no permutation
of a precision matrix induced by a second order neighbor structure of the US counties. The
values z, w are the sizes of the sparsity structure and of the vector containing the column
indices of the sparsity structure and s is the number of supernodes.

the memory hierarchy: it splits supernodes into sub-blocks that fit into the available cache;
and it unrolls the outer loop of matrix-vector products in order to reduce overhead processor
instructions. Within spam the algorithm is used to construct the upper triangular factur R
and, strictly speaking, becomes a supernodal “top-down” algorithm.

A more detailed pseudo algorithm of the Cholesky factorization of a symmetric positive-
definite matrix and explanations of some of the steps are given below.

[0] Create the adjacency matrix data structure

[1] Determine permutation and permute the matrix

[2] Symbolic factorization

[2a] Construct a supernodal elimination tree

[2b] Reorder according the supernodal elimination tree

[2c] Perform supernodal symbolic factorization

[3] Numeric factorization

[3a] Initialization

[3b] Perform numeric factorization

As for Step 1, there are many different algorithms to find a permutation, two are implemented
in spam, namely, the multiple minimum degree (MMD) algorithm, (Liu 1985), and the reverse
Cuthill-McKee (RCM) algorithm, (George 1971). Additionally, the user has the possibility
to manually specify a permutation to be used for the Cholesky factorization. The resulting
sparsity structure in the permuted matrix determines the sparsity structure of the Cholesky
factor. As an illustration, Figure 2 shows the sparsity structure of the Cholesky factor resulting
from an MMD, an RCM, and no permutation of a precision matrix induced by a second order
neighbor structure of the US counties. The values z, w are the sizes of the sparsity structure

6 spam: MCMC Methods for Gaussian Markov Random Fields in R

and of the vector containing the column indices of the sparsity structure and s is the number
of supernodes. Note that the actual number of non-zero elements of the Cholesky factor may
be smaller than what the constructed sparsity structure indicates. How much fill-in with zeros
is present depends on the permutation algorithm, in the example of Figure 2 there are 14111,
97565 and 398353 zero elements in the Cholesky factors resulting from the MMD, RCM, and
no permutation, respectively.

Step 2a constructs the elimination tree and supernode elimination tree. From this tree a
maximal supernode partition (i.e., the one with the fewest possible supernodes) is calculated.
In Step 2b, the children of each parent in the supernodal elimination tree is reordered to
minimize the storage requirement (i.e., the last child has the maximum number of non-zeros
in its column of the factor). Hence, the matrix is ordered a second time, and if passing
the identity permutation to Step 1, the matrix may nevertheless be reordered in Step 2b.
Step 2c constructs the sparsity structure of the factor using the results of Gilbert, Ng, and
Peyton (1994), which allow storage requirements to be determined in advance, regardless of
the ordering strategy used. Note that the symbolic factorization subroutines are independent
of any ordering algorithms.

The integration of the Cholesky factorization in spam preserves the computational order of
the permutation and of the factorization of the underlying Fortran code. Further, the resulting
precision in R is equivalent to the precision of the Fortran code. We refer to George and Liu
(1981); Liu (1992), Ng and Peyton (1993a) and to Gould, Hu, and Scott (2005b,a) for a
detailed discussion about the precision and efficiency of the algorithms by themselves and
within the framework of a comparison of different solvers.

3. The sparse matrix implementation of spam

The implementation of spam is designed as a trade-off between the following competing philo-
sophical maxims. It should be competitively fast compared to existing tools or approaches in
R and it should be easy to use, modify and extend. The former is imposed to assure that the
package will be useful and used in practice. The latter is necessary since statistical methods
and approaches are often very specific and no single package could cover all potential tools.
Hence, the user needs to understand quickly the underlying structure of the implementation of
spam and to be able to extend it without getting desperate. (When faced with huge amounts
of data, sub-sampling is one possibility; using spam is another.) This philosophical approach
also suggests trying to assure S3 and S4 compatibility, (Chambers 1998; see also Lumley
2004). S4 has higher priority but there are only a handful of cases of S3 discrepancies, which
do however not affect normal usage.

To store the non-zero elements, spam uses the “old Yale sparse format”. In this format, a
(sparse) matrix is stored with four elements (vectors), which are (1) the nonzero values row
by row, (2) the ordered column indices of nonzero values, (3) the position in the previous two
vectors corresponding to new rows, given as pointers, and (4) the column dimension of the
matrix. We refer to this format as compressed sparse row (CSR) format. Hence, to store a
matrix with z nonzero elements we thus need z reals and z+n+2 integers compared to n×n
reals. Section 3.2 describes the format in more details.

Much of the algebraic calculations in spam are programmed in Fortran. Some of the Fortran
code is based directly on SPARSKIT, a basic tool-kit for sparse matrix computations (Saad

Journal of Statistical Software 7

1994). Some subroutines are optimized and tailored functions from SPARSKIT and a last,
large set consists of new functions.

The package spam provides two classes, first, spam representing sparse matrices and, second,
spam.chol.NgPeyton representing Cholesky factors. A class definition specifies the objects
belonging to the class, these objects are called slots in R and accessed with the @ operator, see
Chambers (1998) for a more thorough discussion. The four vectors of the CSR representation
are implemented as slots. In spam, all operations can be performed without a detailed knowl-
edge about the slots. However, advanced users may want to work on the slots of the class spam
directly because of computational savings (e.g., changing only the contents of a matrix while
maintaining its sparsity structure, see Section 6.2). The Cholesky factor requires additional
information (e.g., the used permutation) hence the class spam.chol.NgPeyton contains more
slots, which are less intuitive. There are only very few, specific cases, where the user has
to access these slots directly. Therefore, user-visibility has been disregarded for the sake of
speed. The two classes are discussed in the more technical Section 3.2.

3.1. Methods for the sparse classes of spam

For both sparse classes of spam, standard methods like plot, dim, backsolve/forwardsolve,
determinant (based on a Cholesky factor) are implemented and behave as in the case of full
matrices. Print methods display the sparse matrix as a full matrix for small matrices and
display only the non-zero values otherwise. The corresponding cutoff value, as well as other
parameters, can be set and read via spam.options.

For the spam class additional methods are defined, such as rbind/cbind, dim<-, etc. The
group generic functions from Math, Math2 and Summary are treated particularly since they
operate only on the nonzero entries of the spam class. For example, for the matrix A presented
in the introduction, range(A) is the vector c(0.5, 1); that is, the zeros are omitted from the
calculation. The help files list further available methods and highlight the (dis-)similarities
compared to regular matrices or arrays.

Besides the two sparse classes mentioned above, spam does not maintain different classes for
different types of sparse matrices, such as symmetric or diagonal matrices. Doing so would
result in some storage and computational gain for some matrix operations, at the cost of
user visibility. Instead of creating more classes we consider additional specific operators. As
an illustration, consider multiplying a diagonal matrix with a sparse matrix. The operator
%d*% uses standard matrix multiplication if both sides are matrices or multiplies each column
according the diagonal entry if the left hand side is a diagonal matrix represented by vector.

3.2. Slots of the sparse classes

This section describes the slots of the sparse classes in spam in more detail. The slots of the
class spam consist of one z-vector of reals, and three vectors of integers of length z, n + 1
and 2, that correspond to the four elements of the CSR format. These are named:

R> slotNames(A)

[1] "entries" "colindices" "rowpointers" "dimension"

Notice that the row-dimension of A, i.e., A@dimension[1], is also determined by the length
of A@rowpointers, i.e., length(A@rowpointers) - 1.

8 spam: MCMC Methods for Gaussian Markov Random Fields in R

The slots of the Cholesky factor spam.chol.NgPeyton can be separated into different groups.
The first is linked to storing the factor (i.e., entries and indices), the second group contains
the permutation and its inverse, and the third and forth group contain relevant information
relating to the factorization algorithm and auxiliary information:

R> slotNames(U)

[1] "entries" "colindices" "colpointers" "rowpointers" "dimension"

[6] "pivot" "invpivot" "supernodes" "snmember" "memory"

[11] "nnzA"

The slot U@dimension is again redundant. Similarly, only U@pivot or U@invpivot would be
required. U@memory allows speed-up in the update process and U@nnzA contains the number
of non-zero elements of the original matrix, which is used for calculating fill-in statistics of
the factor.

For the Cholesky factor we use a slightly more complicated storage system which is a mod-
ification of the CSR format and is due to Sherman (1975). The rows of a supernode have
a dense diagonal block and have identical remaining row structure, i.e., for each row of a
supernode the column indices are obtained by leaving out the leftmost column index of the
preceding row. This is not only exploited computationally (Ng and Peyton 1993b) but also
by storing only the column indices of the first row of a supernode. For our example presented
in the introduction, we have three supernodes (indicated by the horizontal lines in Figure 1)
and the indices are coded as follows:

R> U@colindices

[1] 1 2 2 3 3 4 5

R> U@colpointers

[1] 1 3 5 8

R> U@rowpointers

[1] 1 3 5 8 10 11

George and Liu (1981, Section 5.4.2) discuss the gain of this storage system for large matrices.
With w and s from Figure 2, the difference between z and w + s + 1 is the gain when using
the modified scheme. However, a more important gain is a much faster access to individual
elements of the matrix, because U@rowpointers allows a very efficient line access compared
to a triplet based (i, j, uij) format.

Notice that the class spam.chol.NgPeyton does not extent the class spam.chol. However,
by considering only supernodes of size one, U@colpointers and U@rowpointers are identical,
and U@colindices corresponds to the format of the spam class. In view of this, it would
be straightforward to implement other factorization routines (not considering supernodes)
leading to different classes for the Cholesky factor. Another possibility would be to define a

Journal of Statistical Software 9

virtual class spam.chol (also called superclass) and extending classes spam.chol.NgPeyton

and spam.chol.someothermethod.

4. Simulation results for GMRF

In this simulation study, we illustrate Cholesky factorizations in the framework of GMRF.
We use a lattice on a regular grid of different sizes and different neighbor structures as well
as an irregular lattice, namely the counties of the contiguous USA. The county boundaries
we use are from the maps package (Becker, Wilks, Brownrigg, and Minka 2010) providing
3082 counties. We consider that two counties are neighbors if they share at least one edge of
their polygon description in maps. In spam adjacency matrices can be constructed using the
function nearest.dist for regular grids or the function spam if the neighbors are available
as indices pairs {i, j}.
For timing and memory usage, we use the R functions system.time and Rprof as in the
following construct:

R> Rprof(memory.profiling = TRUE, interval = 0.0001)

R> ressystime <- system.time(expression)

R> Rprof(NULL)

R> resRprof <- summaryRprof(memory = "both")$by.total

where expression is the R expression under investigation (e.g., to construct Figure 3 we use
the expression { for(i in 1:100) ch1 <- chol(Qspam) } for different precision matri-
ces Qspam). From ressystime, we retain the component user.self and, from resRprof, we
use mem.total of "system.time". The small time interval argument of Rprof (here set to
0.0001) helps (at least partially) to circumvent the issues in precisely measuring the memory
amount with Rprof; see also R Development Core Team (2010b). However, our simulations
show that the measurement of timing and memory usage varies and repeating the same sim-
ulation indicates a coefficient of variation of about 2% and 0.8%, respectively.

5 10 20 50 100 200

L (log scale)

se
co

nd
s

(lo
g

sc
al

e)

.0
1

.1
1

10
10

0

5 10 20 50 100 200

L (log scale)

M
by

te
s

(lo
g

sc
al

e)

1
10

10
0

10
00

Figure 3: Total time (left) and memory usage (right) for 101 Cholesky factorizations (solid)
and one factorization and 100 updates (dashed) of a precision matrix from different sizes L
of regular L × L grids with a second order neighbor structure. The dotted line is the ratio
between both curves. The precision matrix from L = 200 has L4 = 1.6 · 109 elements.

10 spam: MCMC Methods for Gaussian Markov Random Fields in R

Regular grid US counties
Options or arguments time memory time memory
Using the specific call chol.spam 0.971 0.942 1.001 1.047
Option safemode = c(FALSE, FALSE, FALSE) 0.958 0.959 1.008 1.009
Option cholsymmetrycheck = FALSE 0.759 0.760 0.883 0.811
Passing memory = list(nnzR = ..., nnzcolindices = ...) 0.938 1.030 0.963 1.178
All of the above 0.748 0.700 0.863 0.905
All of the above and passing pivot = ... to chol.spam 0.769 0.682 0.772 0.917
All of the above and option cholpivotcheck = FALSE 0.701 0.672 0.766 0.911
Numeric update only using update 0.177 0.196 0.200 0.142

Table 1: Relative (to a generic chol call) gain of time and memory usage with different
options and arguments in the case of a second order neighbor structure of a regular 50 × 50
grid and of the US counties. The time and memory usage for the generic call chol are 2.1
seconds, 53.7 Megabytes and 5.2 seconds, 145.4 Megabytes, respectively.

The simulations are done with spam 0.22-0 and R 2.9.2 on an i686-pc-linux-gnu computer
with a 2.66 GHz Intel Core2 Duo processor and 2 Gigabyte of RAM.

We first compare the total time and the memory required for Cholesky factorizations for
different sizes of regular grids. In our MCMC framework, the sparsity structure of the precision
matrix does not change and we can compare the time and memory requirements with one
Cholesky factorization followed by numerical updates of the factor (Step 3). Figure 3 shows
the total time (left) and memory usage (right) for 101 Cholesky factorization (solid) and one
factorizations and 100 updates (dashed) of a precision matrix from different sizes L of regular
L×L grids with a second order neighbor structure. We have chosen fixed but arbitrary values
for the conditional dependence of the first and second order neighbors. The precision matrix
from L = 200 has L4 = 1.6 · 109 elements. The update is performed with the function update

that takes as arguments a Cholesky factor and a symmetric positive-definite matrix with the
same sparsity structure. The gain in using the update only decreases slightly as the size of
the matrices increases. For matrices up to 50000 elements the update is about 10 times faster
and uses less than 15 times the memory.

The package spam offers several options that can be used to increase speed and decrease
memory allocation compared to the default values. Most of the options are linked to reduced
input testing and validation, which can often be eliminated after preliminary testing or within
an MCMC framework. Table 1 gives the relative speed-up of different options in the case of
the two neighbor structure of a regular 50 × 50 grid and of the US counties. If the user
knows that the matrix is symmetric, a test can be avoided with the flag cholsymmetrycheck

= FALSE. Minor additional improvements consist in setting safemode = c(FALSE, FALSE,

FALSE), specifying, for example, if elements of a sparse matrix should be tested for storage
mode double or for the presence of NAs. The size of the Cholesky factor is determined during
the symbolic factorization (Step 2c) but we need to allocate vectors in R of appropriate sizes
for the Fortran call. There is a trade-off in reserving enough space to hold the factor and
its structure versus computational efficiency. spam addresses this issue as follows. We have
simple formulas that try to estimate the necessary sizes. If the estimated size is too small the
Fortran routine returns an error to R, which allocates more space and calls the Fortran routine
again. However, to save time and memory the user can also pass better estimates of the
allocation sizes to chol with the argument memory = list(nnzR = ..., nnzcolindices =

Journal of Statistical Software 11

1 2 3 4 5 6

distance (log scale)

se
co

nd
s

(lo
g

sc
al

e)

.5
5

50
1

10

1 2 3 4 5 6

distance (log scale)

M
by

te
s

(lo
g

sc
al

e)

2
5

50
0

20
10

0

Figure 4: Total time (left) and memory usage (right) for 101 Cholesky factorizations (solid)
and one factorization and 100 updates (dashed) of a precision matrix resulting from a regular
50 × 50 grid as a function of the distance for which grid points are considered as neighbors.
The dotted line is the ratio between both curves. For distance 6 each grid point has up to
112 neighbors and the dependence structure requires at least 18 parameters.

...). The minimal sizes for a fixed sparsity structure can be obtained from a summary call. If
the user specifies the permutation to be used in chol with pivot = ... the argument memory
= list(nnzR = ..., nnzcolindices = ...) should be given to fully exploit the time gain
of doing so. Further, the flag cholpivotcheck = FALSE improves the computational savings
of manually specifying the permutation additionally.

As an illustration for the last two rows of Table 1, consider a precision matrix Qspam of class
spam and perform a first decomposition Qfact <- chol(Qspam). Successive factorizations of
a new precision matrix Qspamnew can be performed as follows.

R> tmp <- summary(Qfact)

R> pivot <- ordering(ch1)

R> spam.options(cholsymmetrycheck = FALSE, safemode = c(FALSE, FALSE, FALSE),

+ cholpivotcheck = FALSE)

R> Qfactnew <- chol.spam(Qspamnew, pivot = pivot,

+ memory = list(nnzR = tmp$nnzR, nnzcolindices = tmp$nnzc))

Of course, all of the above could be also be done by the following single command.

R> Qfactnew <- update(Qfact, Qspamnew)

When approximating isotropic second order stationary Gaussian fields by GMRF (cf, Rue
and Held 2005, Section 5.1), many neighbors need to be considered in the dependence struc-
ture. Figure 4 shows the total time and memory for 101 Cholesky factorizations and one
factorization and 100 updates for a precision matrix resulting from a regular 50× 50 grid as
a function of the distance for which grid points are considered as neighbors. For distance 6
each grid point has up to 112 neighbors and the dependence structure requires at least 18
parameters. We refer to Rue and Held (2005) for a detailed discussion and issues arising from
the approximation.

The results of this section are based on 101 Cholesky factorizations and computation time
scales virtually linearly for multiples thereof. However, in a practical MCMC setting the

12 spam: MCMC Methods for Gaussian Markov Random Fields in R

Figure 5: Valid parameter space for the second order neighbor model of the US counties.

factorization is only one part of each iteration and, additionally, the set of the valid parameters
is often unknown. The first issue is addressed with competitive algorithms in spam but also
needs to be considered when writing R code, see Section 6.2. A typical procedure for the second
issue is to sample from a hypothetical parameter space and to use a trial-and-error approach
by calling the update function and verifying if the resulting matrix is positive definite. (For
simple examples, it may be possible to give bounds on the parameter space that can be used
when sampling, see also Rue and Held (2005), Section 2.7.) In the cases of a non-admissible
value, the functions hand back an error, a warning or the value NULL, depending on the value
of a specific flag. Figure 5 illustrates the valid parameter space for the second order neighbor
model of the US counties. The ‘brute force’ code used for Figure 5 is as follows.

R> spam.options("cholupdatesingular" = "null")

R> In <- diag.spam(nrow(UScounties.storder))

R> struct <- chol(In + 0.2 * UScounties.storder + 0.1 * UScounties.ndorder)

R> len.1 <- 180

R> len.2 <- 100

R> theta.1 <- seq(-.225, to = 0.515, len = len.1)

R> theta.2 <- seq(-.09, to = 0.235, len = len.2)

R> grid <- array(NA, c(len.1, len.2))

R> for(i in 1:len.1)

+ for(j in 1:len.2)

+ grid[i, j] <- is.null(update(struct, In + theta.1[i] *

+ UScounties.storder + theta.2[j] * UScounties.ndorder))

On the aforementioned computer, about 50 tests are evaluated per second. Hence, it takes
about 6 minutes to execute the above code. The bounds for theta.1 and theta.2 were
empirically determined.

Journal of Statistical Software 13

5. Data examples

In this section we illustrate the spam package by analyzing two datasets which are modeled
using latent GMRF. Both examples are also discussed (without documenting code) in Rue
and Held (2005), Sections 4.2.1 and 4.4.2, to which we refer for technical details. Rue and
Held (2005) use in both cases a slightly different approach for the MCMC steps, here we
illustrate spam with a conceptually simpler but computationally tougher version of the Gibbs
sampler.

We assume that the observations y are conditionally independent given latent parameters η
and additional parameters θy

π(y | η,θy) =
n∏
i=1

π(yi | ηi,θy),

where π(· | ·) denotes the conditional density of the first argument given the second argument.
The latent parameters η are part of a larger latent random field x, which is modeled as a
GMRF with mean µ and precision matrix Q, both depending on parameters θx; that is,

π(x | θx) ∝ exp
(
− 1

2
(x− µ)>Q(x− µ)

)
.

5.1. Normal response model

Consider the R dataset "UKDriverDeaths", a time series giving the monthly totals of car
drivers in Great Britain killed or seriously injured from January 1969 to December 1984
(n = 192). The series yi exhibits a strong seasonal component (denoted by si) and a (possibly)
smooth trend (denoted by ti). Here, we want to predict the pattern ηi = si + ti for the next
m = 12 months. We assume that the square root responses are normal and conditionally
independent:

π(y | η, θy) = π(y | s, t, κy) ∝ κ
n
2
y exp

(
− κy

2

n∑
i=1

(yi − ti − si)2
)
.

We assume further that
∑11

j=0 si+j , i = 1, . . . , n+ 1, are independent normals with mean zero
and precision κs (an intrinsic GMRF model for seasonal variation, e.g., Rue and Held 2005,
page 122) and ti− 2ti+1− ti+2, i = 1, . . . , n+m− 2, are independent normals with mean zero
and precision κt (an intrinsic second order random walk model). Hence,

π(s | κs) ∝ κ
n+1
2

s exp
(
− 1

2
s>Qss

)
,

π(t | κt) ∝ κ
n+m−2

2
t exp

(
− 1

2
t>Qtt

)
,

where Qs and Qt are given by analogues of equations (3.59) and (3.40) of Rue and Held (2005).
Using independent Gamma priors for the three precisions, e.g., π(κs) ∝ καs−1

s exp
(
− κsβs),

14 spam: MCMC Methods for Gaussian Markov Random Fields in R

the full joint density is

π(y, s, t,κ) = π(y | s, t, κy) π(s | κs) π(t | κt) π(κ)

∝ καs+
n+1
2
−1

s κ
αt+

n+m−2
2
−1

t κ
αy+

n
2
−1

y exp
(
− κsβs − κyβt − κyβy

)
× exp

(
− 1

2
(s>, t>,y>)

(Qss Qst Qsy

Qts Qtt Qty

Qys Qyt Qyy

)(s
t
y

))
.

The individual block precisions are, for example, Qss = Qs + κyD
>D, Qss = Qs + κyD

>D,
Qyy = In, Qst = In+m, Qsy = Qty = D> with D = (In,0). It is now straightforward to
implement a Gibbs sampler based on the full conditionals π(s, t | κ,y) and π(κ | s, t,y). The
R code to implement is as follows. We first load the data, calculate the square root counts
and specify the hyperparameters of the prior for κ = (κy, κs, κt)

> as in Rue and Held (2005).

R> data("UKDriverDeaths")

R> y <- sqrt(c(UKDriverDeaths))

R> n <- length(y)

R> m <- 12

R> nm <- n + m

R> priorshape <- c(4, 1, 1)

R> priorinvscale <- c(4, 0.1, 0.0005)

Note that m denotes the length of one season, the duration of our prediction. The individual
block precisions are now constructed (based on unit precisions).

R> Qsy <- diag.spam(n)

R> dim(Qsy) <- c(n + m, n)

R> Qty <- Qsy

R> Qst <- spam(0, nm, nm)

R> Qst[cbind(1:n, 1:n)] <- rep(1, n)

R> Qss <- spam(0, nm, nm)

R> for(i in 0:(nm - m))

+ Qss[i + 1:m, i + 1:m] <- Qss[i + 1:m,i + 1:m] + 1

R> Qtt <- spam(0, nm, nm)

R> Qtt[cbind(1:(nm - 1), 2:nm)] <- -c(2, rep(4, nm - 3), 2)

R> Qtt[cbind(1:(nm - 2), 3:nm)] <- rep(1, nm - 2)

R> Qtt <- Qtt + t(Qtt)

R> diag(Qtt) <- c(1, 5, rep(6, nm - 4), 5, 1)

We construct now a “template” precision matrix of the GMRF characterized by π(s, t | κ,y)
to obtain the structure of the Cholesky factor. The sparsity structure of the precision matrix
and of its Cholesky factor are shown in Figure 6.

R> Qst_yk <- rbind(cbind(Qss + diag.spam(nm), Qst),

+ cbind(Qst, Qtt + diag.spam(nm)))

R> struct <- chol(Qst_yk)

Journal of Statistical Software 15

Figure 6: The sparsity structure of the precision matrix of π(s, t | κ,y) and of its Cholesky
factor.

The code from now on does not differ for sparse and non-sparse input matrices. We need to
specify some parameters for the Gibbs sampler, initialize the arrays containing the posterior
samples and starting values for κ.

R> burnin <- 10

R> ngibbs <- 500

R> totalg <- ngibbs + burnin

R> set.seed(14)

R> spost <- tpost <- array(0, c(totalg, nm))

R> kpost <- array(0, c(totalg, 3))

R> kpost[1,] <- c(0.5, 28, 500)

R> postshape <- priorshape + c(n / 2, (n + 1) / 2, (n + m - 2) / 2)

The Gibbs loop is now as follows:

R> for(i in 2:totalg) {

+ Q <- rbind(cbind(kpost[i - 1, 2] * Qss + kpost[i - 1, 1] * Qst,

+ kpost[i - 1, 1] * Qst), cbind(kpost[i - 1, 1] * Qst,

+ kpost[i - 1, 3] * Qtt + kpost[i - 1, 1] * Qst))

+ b <- c(kpost[i - 1, 1] * Qsy %*% y, kpost[i - 1, 1] * Qsy %*% y)

+

+ tmp <- rmvnorm.canonical(1, b, Q, Lstruct = struct)

+ spost[i,] <- tmp[1:nm]

+ tpost[i,] <- tmp[1:nm + nm]

+

+ tmp <- y - spost[i, 1:n]-tpost[i, 1:n]

+ postinvscale <- priorinvscale +

+ c(sum(tmp^2)/2, t(spost[i,]) %*% (Qss %*% spost[i,]) / 2,

+ t(tpost[i,]) %*% (Qtt %*% tpost[i,]) / 2)

+ kpost[i,] <- rgamma(3, postshape, postinvscale)

+ }

The loop takes a few seconds to run. After eliminating the burn-in, summary statistics can
be calculated. For example, for the precisions we have:

16 spam: MCMC Methods for Gaussian Markov Random Fields in R

●

●●

●

●

●
●
●
●
●

●●

●●●

●●●

●●
●

●

●

●

●

●●●

●
●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●●
●

●
●●

●

●
●●

●
●
●●●

●

●

●

●

●
●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●
●

●

●

●

●

●

●
●
●●

●●●●
●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●
●
●
●
●●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●●●
●

●
●
●

●
●

●

●
●

●

●

●
●
●

●
●●

●
●●●

●

●
●

●

●
●●

●

●

●

●●

0 50 100 150 200

10
00

15
00

20
00

25
00

C
ou

nt
s

Posterior median
Quantiles of posterior sample
Quantiles of predictive distribution

●

●●

●

●

●
●
●
●
●

●●

●●●

●●●

●●
●

●

●

●

●

●●●

●
●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●●
●

●
●●

●

●
●●

●
●
●●●

●

●

●

●

●
●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●
●

●

●

●

●

●

●
●
●●

●●●●
●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●
●
●
●
●●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●●●
●

●
●
●

●
●

●

●
●

●

●

●
●
●

●
●●

●
●●●

●

●
●

●

●
●●

●

●

●

●●

0 100 200 300 400 500

0
2

4
6

8

Index

lo
g(

kp
os

t)

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

κ t

●
●

●

●●

●

●

●

●●●● ●
●●●●●● ●●
● ●

●●●●
●●
●

●
●

●●
●

●

●●

●

●
● ●

●
●

●
● ●

●
●
●

●

● ●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●
●●●

●●
●

●

●

●
●

●

●

●

●
●

●●
●● ●

●

●

●

●
●

●
●

●
●
●●

●

●

●●●

●
● ● ●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

● ●●

● ●●

●●
●

● ●

●

●●
●

●
●● ●
●

●
●

●●

●

●

●
●●

● ●●
●●

●
●●

●●

●
●

●
●
●●

●

● ●●●●
●

●●●●●●

●

●●●● ●●
●
●●

●●●●
●●●

●

●● ●●●
● ●●

● ●
●●

●●

●

●
●●

●●
●●

● ● ●

●
● ● ● ●

●
●

●
● ●

●
●

●

●

●
●

●●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●● ●
●

●
●

● ● ●
●●●● ●

●
●

● ●

●
●

●
●

●●
●

●

●●

●
●●

● ● ●●

●

●
●●●

●
●

●●●
●

●
●

●

●
●

●
●

●
●●

● ●

●

●

●

●
●

●
●
●

● ●●● ● ●●
●●

● ●

●
●

●●●
●
●

●

●
●●●

●
●

●

●●

●●●

●
●

●
●
●

● ●

●
●●●
●●
● ●

●●● ●

●
● ●

●

●
●●● ●

●
● ●

●

●
●● ●●

●
●

●●

●●●

●●

●
●

●

●

● ●
●

●
●

●
●●
● ●

●● ●●

●●

●

●●●

●

●● ●
●

●
●

●
●
●●●●

●
●●●●

●

●●●

●●●

●
●

●
●
●●
●

●
●

●
●

● ●
●
●●

●
●

10 20 30 40 50 60 70 80

50
0

10
00

15
00

20
00

κs

κ t

Figure 7: Observed counts, the posterior median, its quantiles and the quantiles of the pre-
dictive distribution (top panel). Trace plots of the log precisions, autocorrelation plot of κt
and scatter plot of κt against κs (lower row). Solid lines indicate posterior medians.

R> summary(kpost)

V1 V2 V3

Min. :0.3406 Min. : 9.21 Min. : 151.8

1st Qu.:0.4509 1st Qu.:22.55 1st Qu.: 527.7

Median :0.4843 Median :29.10 Median : 726.0

Mean :0.4859 Mean :31.44 Mean : 827.5

3rd Qu.:0.5204 3rd Qu.:37.31 3rd Qu.:1057.4

Max. :0.6800 Max. :78.54 Max. :2355.1

The predictive distribution of y is obtained by adding a mean zero normal random variable
with precision kpost[i, 1] to spost[i,] + tpost[i,]. Figure 7 gives the posterior median,
the posterior quantiles and the quantiles of the predictive distribution. The trace plots of the
log precisions do not indicate evidence against bad mixing.

The source code of this example is given in demo("article-jss-example1"). For this ex-
ample Knorr-Held and Rue (2002) suggest to use a Metropolis–Hastings step and to update
the precisions with a scaling factor δ having density π(δ) ∝ 1 + 1/δ, for δ ∈ [1/D,D], where
D > 1 is a tuning parameter, see also Rue and Held (2005).

Journal of Statistical Software 17

5.2. Besag-York-Mollié model

In this second example, we consider the number of cases of oral cavity cancer for a 5 year
period (1986–1990) in the n = 544 districts (Landkreise) of Germany (Knorr-Held and Raßer
2000; Held, Natario, Fenton, Rue, and Becker 2005) and explore the spatial distribution of the
relative risk. The common approach is to assume that the data are conditionally independent
Poisson counts

π(yi | ηi) ∝ exp
(
yiηi − ei exp(ηi)

)
, i = 1, . . . , n,

where ei is the expected number of cases in region i. The raw counts yi and the standardized
mortality ratios (SMRs) yi/ei are displayed in Figure 8, left and middle panel. For the log-
relative risk, we use η = u + v, where v is a zero mean white noise with precision κv and
u is a spatially structured component (Besag, York, and Mollié 1991; Mollié 1996). More
precisely, u is a first order intrinsic GMRF with density (Rue and Held 2005, Section 3.3.2)

π(u | κu) ∝ κ
n−1
2

u exp
(
− κu

2

∑
i∼j

(ui − uj)2
)
, (1)

where i ∼ j denotes the set of all unordered pairs of neighbors, i.e., regions sharing a common
border. As suggested by Rue and Held (2005), we reparameterize by setting

π(η | u, κv) ∝ κ
n
2
v exp

(
−κv

2
(η − u)>(η − u)

)
and x =

(u
η

)
.

With Gamma priors for the precision parameters, the posterior density is

π(x,κ | y) ∝ καv+
n
2
−1

v κ
αu+

n−1
2
−1

u

× exp

(
− κvβv − κuβu +

n∑
i=1

(
yiηi − ei exp(ηi)

)
− 1

2
x>
(
κuR + κvI −κvI
−κvI κvI

)
x

)
where R is the “structure” matrix imposed by (1). While π(x | κ) is a GMRF, π(x | κ,y) is
not. We use a second order Taylor approximation of

∑n
i=1 yiηi−ei exp(ηi) (as a function of η)

around η0 = (η01, . . . , η0n)> to construct an appropriate GMRF that we use as a proposal in
a Metropolis–Hastings step. More specifically, we use the proposal q(x | x(i),κ) with density
proportional to

exp

(
− 1

2
x>
(
κuR + κvI −κvI
−κvI κvI

)
x− 1

2
η>diag(c)η + b>η

)
, (2)

where ci = ei exp(η0i) and bi = yi+(η0i−1)ci. Hence, one possible choice of η0 is the current
state of η; for other choices see, e.g., Rue and Held (2005).

We use a block update (see, e.g., Knorr-Held and Rue 2002) by sampling first κ? from
π(κ? | x,y) and then sampling x? from q(x? | κ?,x,y). The joint proposal (κ?,x?) is
then accepted/rejected jointly with probability

α = min

{
1,
π(κ?,x? | y)

π(κ,x | y)

q(κ,x | κ?,x?,y)

q(κ?,x? | κ,x,y)

}
, (3)

18 spam: MCMC Methods for Gaussian Markov Random Fields in R

where q(κ?,x? | κ,x,y) = q(x? | κ?,x,y) π(κ? | x,y).

We guide the reader through the R code of the Gibbs sampler, also given in demo("article-

jss-example2"). First we need to setup data and adjacency structure, provided in the spam
package for convenience and also available from http://www.r-inla.org/, or from http:

//www.math.ntnu.no/~hrue/GMRF-book/germany.graph and http://www.math.ntnu.no/

~hrue/GMRF-book/oral.txt.

R> data("oral")

R> attach(oral)

R> A <- adjacency.landkreis("../germany.graph")

R> n <- dim(A)[1]

Next, we set the hyperparameters, define the parameters for the Gibbs sampler and allocate
variables for the posterior, containing the starting values.

R> ahyper <- c(1, 1)

R> bhyper <- c(0.5, 0.01)

R> burnin <- 500

R> ngibbs <- 1500

R> totalg <- burnin + ngibbs

R> set.seed(14)

R> upost <- npost <- array(0, c(totalg, n))

R> kpost <- array(0, c(totalg, 2))

R> kpost[1,] <- c(40, 500)

R> upost[1,] <- npost[1,] <- rep(0, n)

R> accept <- numeric(totalg)

The next few commands construct templates of the individual block precision matrices as
given in (2), and pre-calculate quantities, notably of (3) for i = 1.

R> Q1 <- R <- diag.spam(diff(A@rowpointers)) - A

R> dim(Q1) <- c(2 * n, 2 * n)

R> Q2 <- rbind(cbind(diag.spam(n), -diag.spam(n)),

+ cbind(-diag.spam(n), diag.spam(n)))

R> diagC <- as.spam(diag.spam(c(rep(0, n), rep(1, n))))

R> struct <- chol(Q1 + Q2 + diag.spam(2 * n),

+ memory = list(nnzcolindices = 5500))

R> u <- upost[1,]

R> eta <- npost[1,]

R> uRu <- t(u) %*% (R %*% u) / 2

R> etauetau <- t(eta - u) %*% (eta - u) / 2

R> postshape <- ahyper + c(n - 1, n) / 2

The Gibbs sampler proceeds now with sampling κ? and x? and then calculating the acceptance
probability (3) on a log scale. Note that some quantities only need to be recalculated if we
accept the proposal, i.e., if (logU < logalpha) is true.

http://www.r-inla.org/
http://www.math.ntnu.no/~hrue/GMRF-book/germany.graph
http://www.math.ntnu.no/~hrue/GMRF-book/germany.graph
http://www.math.ntnu.no/~hrue/GMRF-book/oral.txt
http://www.math.ntnu.no/~hrue/GMRF-book/oral.txt

Journal of Statistical Software 19

R> for (i in 2:totalg) {

+ kstar <- rgamma(2, postshape, bhyper + c(uRu, etauetau))

+ expeta0E <- exp(eta) * E

+ expeta0Eeta01 <- expeta0E * (eta - 1)

+ diagC@entries <- expeta0E

+ Q <- kstar[1] * Q1 + kstar[2] * Q2 + diagC

+ b <- c(rep(0, n), Y + expeta0Eeta01)

+

+ xstar <- rmvnorm.canonical(1, b, Q, Lstruct = struct)

+ ustar <- xstar[1:n]

+ nstar <- xstar[1:n + n]

+

+ uRustar <- t(ustar) %*% (R %*% ustar) / 2

+ etauetaustar <- t(nstar - ustar) %*% (nstar - ustar) / 2

+

+ exptmp <- sum(expeta0Eeta01 * (eta - nstar) -

+ E * (exp(eta) - exp(nstar))) -

+ sum(nstar^2 * expeta0E) / 2 + sum(eta^2 * expeta0E) / 2 -

+ kstar[1] * uRu + kpost[i - 1, 1] * uRustar -

+ kstar[2] * etauetau + kpost[i - 1, 2] * etauetaustar

+ factmp <- (postshape - 1) * (log(kstar) - log(kpost[i - 1, 1]))

+

+ logalpha <- min(0, exptmp + sum(factmp))

+ logU <- log(runif(1))

+

+ if (logU < logalpha) {

+ upost[i,] <- u <- ustar

+ npost[i,] <- eta <- nstar

+ kpost[i,] <- kstar

+ uRu <- uRustar

+ etauetau <- etauetaustar

+ accept[i] <- 1

+ } else {

+ upost[i,] <- upost[i - 1,]

+ npost[i,] <- npost[i - 1,]

+ kpost[i,] <- kpost[i - 1,]

+ }

+ }

After the loop, we eliminate the burn-in from the samples and proceed with the usual evalu-
ation of the posterior sample. The right panel of Figure 8 shows the posterior median of the
estimated relative risks, i.e., exp(u). Figure 9 gives several diagnostics plots for the samples
of the posterior precisions κu and κv. Note that κv exhibits a somewhat slow mixing. The
proposal q(κ?,x? | κ,x,y) depends on the precision priors and when choosing substantially
different priors, the acceptance rate may be much lower.

The Gibbs sampler as illustrated above takes about 5.9 seconds per 1000 iterations. Not
passing the struct object to rmvnorm.canonical increases the total computation time by

20 spam: MCMC Methods for Gaussian Markov Random Fields in R

Figure 8: Observed counts (log scale, left), standardized mortality rates (middle) and posterior
median of the estimated relative risk (exp(u), right) of the oral cavity cancer data. Note the
different scales.

κu

D
en

si
ty

10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

κy

D
en

si
ty

200 400 600 800

0.
00

0
0.

00
2

0.
00

4

0 500 1000 1500

10
15

20

Index

κ u

0 500 1000 1500

10
0

30
0

50
0

70
0

Index

κ y

0 5 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

κ u

0 5 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

κ y

Series kpost[, 2]

●●●●●●●●●
●●●●● ● ●●●

●●●●●
● ●
●
●●

● ●
●

●
●
●

●●● ●●●●●●
●● ●●

● ● ●●●●
●●

●●●● ●● ●
●●
●

●●●
● ●
●●●

●●●
●●

●●●●
●●●●● ●●

●
●

●● ●●● ●●● ●●●●
● ●●●● ●● ●●

●● ●●●
●● ●● ● ●●●

● ●●● ●●●●

●●

●
●

●
●

●
●

● ● ●
●● ●●

●●●
●●●

● ●
●●●●●●●●●●●●

●
●●● ●● ●

●●●● ●●●● ●●●

●● ●
●

●
●
●●
●●

● ●●
●

●
●

●
● ●●

●●●
●

● ●

● ●
●●●●

●●
●

●

●●
●

● ●
●

●●●●●
●

●
●● ●●●

● ●

●
●●

●●●
● ●●●

●●
●●●●

● ●●

●
●● ●●

● ●
●

●●
●

●●

●
●

●
●

● ● ●
●

●
● ●● ●●
●

● ● ●

●
●
●●

●
●

●●●●
●●

●●● ●
●

●
●●

● ●

●

●●●●

●●
●

● ●
●

● ●●

●●

●
●
●

●

●●
●

●
● ●

●

●

●
●●●●

●

●●● ●
●
●

●
●●
●●●●●●

● ●●●●

●●●●●
●●

●
●●●

●
●●

●●
● ●●●

● ●

●

● ●
●

●●
●
●

●

● ●
●●●

●

●
●

●

●●●●

● ●
●

●●●

●

●●
●

●
●● ● ●

● ●

●
●

●
●

●●●●
● ●●

●
●●●● ● ●

●
●●

●●
●●

●

●

●

●●●●●

●
●●●● ●

●●
●

●●

●●●●
●●●

●
●●
●

●
●

●
●

●

●

●

●●

●
●

●

●●

●●
●

●

●
●●

●●●

●

●

●

●

●

●●
●

●
●●
●

●

●

●

●●

●

●
●

●
●●

● ●

●

●●

●
●

●

●●
●●

●

●● ●
●

● ● ●
●

●● ●
●

●

●
●

● ●
●●●●
●

● ●
●●
●

●
● ●●
●●

●
●

●
●●

●●
● ●●

● ●

●

●

●
●

●
●
●●●●

●●
●
●

●
●

● ●●
●

●

●
●●

●●
●
●
●

●●

●
●
●

●
●

●●

●●

●
●

●

● ●
●
●

●●

●
● ●

●
●

●
●

●●

●

●

●

●
●

●
●●

●
●

●●●

●●●
●●

●
● ●

●
●

●●

●

●
●

●
●●

●

●●

●●
●●

●
●

● ●

●

●
●
●●●●

●
●

● ●

●
●●

●
●

●●●
●

●

●

● ●

●

●
●

●
●

●

● ●
●

●●
●●

●
●

●●●●
●●
●

● ● ●
● ●

●●
●●●

●
●●●

●●

● ●

●● ●

●●
● ● ●● ● ●

●●●●
●●

●

● ●●
●
●●

●●
●

●●●●●● ●●●●● ●
●● ●●

●
●

●
●●
●

●●●●●●●
●●● ●●●●● ●● ●●●●●●●

●● ●●●● ●
●

●
●●●
● ●●

●●
●●●●

●
●

●● ●
●● ●

●●●

●●
●●●● ●

● ●
●●● ●
●●

●●
●●●●
●●● ●●●●● ●● ●●● ● ● ●

●●●
●●●● ●

● ●
●● ●

●●●
●●●

●●● ●
●●●●

●
●●
●

●

●
●

●●●
● ●
●
●

●
● ●●●● ●●●●
●

●
●●

●●●

●
● ●●

●
●

● ●●●

●●●●

●●
●

●
● ●●●●●●● ● ●●

●

●●
●●

●●
●●

●●

●
●●

●
●●

●
● ●

●
● ●●

●
●●●

●
●●

●
●●●

●

●

●
●●

●●
●

●
●

●● ●
●●●●●

●●

●●

●
●

●
●

●

● ●
●●●

●

●
●

●

●
●●●

●
●

●

●●
●

●
●●

●
●

● ●
●●

●●

●●

●
●

●

●●

●
● ●

●
●

●● ●

● ●

●

●●●
●

●
● ●●

●
● ●●●

●●

●
●●

●

●

●● ●
●

●

●

●
●

●
●●
● ● ●

●
●●●

●
●

●● ●●
●●

●
●

●
●●

●

●

● ●●●
●

●●●● ●
●

●
●

●

●
●●

●
●●●

●●

● ●
●●

● ●
●

●

●●
●

● ●

●

●● ●
●

●

●●●
● ●●
● ●

●
●

●

●
●●
●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●
●●

●

●

●
●

●

●
●
●●●

● ●● ●
●

●● ●
●●●

● ●
●

●
●

●
●

●
●

●

●
●●

●●●
●● ●

●
●●

●

●
● ●

●
●●●

● ●
●

●●●●● ●● ● ●●●
●●● ● ●●

●●●●●
●●● ● ●

●
●

●
●

●●●●● ●
●●●●●

●

●
●●●
●●● ●

● ●●●
●●

● ●●●
●●

●●
●

●
●●
● ●

●
●●●
● ●●

●
●●●

●●●●●● ● ●
●

●●
● ●● ●●●

●●
●

●
●●●

●●
●

●●
● ●

●●●
●

●●
●●● ●
●●●

●●● ●● ●●

●●●●●● ●●
●●●●

●●

●

●●●
● ●

●●●
●●●●●

●●●
●●
●

● ● ●
●

●●●
●

●●
●●●●●●

●●● ●
● ● ●

●●●●● ● ●●●●●●●● ●●●●● ●● ●●● ● ●●●●
●●● ● ●

●●●

10 15 20

10
0

30
0

50
0

70
0

κu

κ y

0 500 1000 1500

Index

Acceptance rate: 0.984

R
ej

ec
t

A
cc

ep
t

Figure 9: Posterior density (density smooth in solid red, prior in dotted blue), trace plots,
autocorrelation function (no thinning) and scatter plots of the precision parameters for κu
(top) and κy (bottom). The thick green lines represent the posterior median. Lower right
most panel: history of accepting the joint proposal (jittered).

Journal of Statistical Software 21

roughly a factor of 1.7 and when working with full matrices, by a factor 40. The code can be
improved for slight gains in time but loosing somewhat its readability.

6. Discussion

This paper highlights some of the functionalities of the R package spam. However, for details
we refer to the enclosed help pages. The package is based on stable and well tested code
but unlikely to be entirely free of minor bugs. Also, as time evolves, we intend to enhance
the package with more functionalities and more efficient algorithms or more efficient imple-
mentations thereof. The function todo() of spam sheds some insights into intended future
directions.

We have motivated the need for spam and illustrated this paper with MCMC methods for
GMRF. However, there are many other statistical tools that profit from the functionalities of
spam, as outlined in the motivation, and many of them involve covariance matrices. Naturally,
any sparse covariance matrix calls for the use of spam. Sparse covariance matrices arise
from compactly supported covariance functions or from tapering (direct multiplication of a
covariance function with a compactly supported one), cf. Furrer, Genton, and Nychka (2006).
The R package fields (Furrer, Nychka, and Sain 2009), providing tools for spatial data, uses
spam as a required package.

In contrast to the precision matrix of GMRF, the range parameter of the covariance function,
which is directly related to the support, is often of interest and within an MCMC framework
would be sampled as well. Changing the range changes the sparsity structure of the corre-
sponding matrix and reusing the first steps in the factorization is not possible. However, often
an upper bound of the range is known and a sparsity structure using this upper bound can
be constructed. During individual factorizations, the covariance matrix is filled according to
this structure and not according to the actual support of the covariance matrix.

The illustration of this paper have been done with spam 0.22-0 available from http://www.

math.uzh.ch/furrer/software/spam/, where the R code is distributed under the GNU Pub-
lic License and the file LICENCE contains the details of the license agreement for the Fortran
code. Sources, binaries and documentation of spam are also available for download from the
Comprehensive R Archive Network http://CRAN.R-project.org/package=spam. Once in-
stalled, the figures and tables of this article can be reproduced using demo("article-jss"),
demo("article-jss-example1") and demo("article-jss-example2").

6.1. spam and other sparse matrix R packages

spam is not the only R package for sparse matrix algebra. The packages SparseM (Koenker and
Ng 2010) and Matrix (Bates and Maechler 2010) contain similar functionalities for handling
sparse matrices, however, recall that both packages do not provide the possibility to split up
the Cholesky factorization as discussed in this paper. We briefly discuss the major differences
with respect to spam; for a detailed description see their manual.

SparseM is also based on the Fortran Cholesky factorization of Ng and Peyton (1993a) using
the MMD permutation and almost exclusively on SPARSKIT. It was originally designed for
large least squares problems and later also ported to S4 but is in a few cases inconsistent with
existing R methods. It supports different sparse storage systems. Hence, besides wrapping
issues and minor Fortran optimization its computational performance is comparable to spam.

http://www.math.uzh.ch/furrer/software/spam/
http://www.math.uzh.ch/furrer/software/spam/
http://CRAN.R-project.org/package=spam

22 spam: MCMC Methods for Gaussian Markov Random Fields in R

Matrix incorporates many classes for sparse and full matrices and is based on C. For sparse
matrices, it uses different storage formats, defines classes for different types of matrices and
uses a Cholesky factorization based on UMFPACK (Davis 2004).

It would also be interesting to compare spam and the sparse matrix routines of MATLAB,
The MathWorks, Inc. (2007) (see Figure 6 of Furrer et al. 2006 for a comparison between
SparseM and MATLAB).

6.2. More hints for efficient computation

In many settings, having a fast Cholesky factorization routine is essential but not sufficient.
Compared with other sparse matrix packages, spam is very competitive with respect to sparse
matrix operations. However, given the row-oriented storage scheme, some operations are
inherently slow and should be used carefully. Of course, a storage format based on a column
oriented scheme does not solve the problem and there is no clear advantage of one over the
other (Saad 1994). In this section we give a few examples of slow operations and mention a
few tips for more efficient computation.

The mentioned inefficiency is often a result of not being able to access individual elements of a
matrix directly. For example, if A is a sparse matrix in spam, we do not have direct memory
access to an arbitrary element aij , but we need to search within the individual elements of the
ith line, until we have reached the jth element or the position where it should be (because of
the ordered column indices).

Similarly, it is much more efficient to access entire rows instead of columns. Hence, one
should never subset a column of a symmetric matrix but using rows instead. Likewise, an
inner product should always be calculated with x>(Ax>) instead of (x>A)x>, the latter
being equivalent to omitting the parentheses.

Finally, if A is a square matrix and D is a diagonal matrix of the same dimension, A <- D %*%

(A %*% D) is be optimized as follows.

R> A@entries <- A@entries * D@entries[A@colindices] *

+ D@entries[rep_int(1:n, diff(A@rowpointers))]

If all R code optimization is still insufficient to enable the envisioned statistical analysis, as a
last resort, there is always the possibility to implement larger blocks in Fortran or C directly.

Acknowledgements

The idea of writing a new sparse package for R was initiated by the many discussions with
Steve Sain and Doug Nychka while the first author was a Postdoctoral visitor at the National
Center for Atmospheric Research. The research of the first author was supported in part
by National Science Foundation grant DMS-0621118. The research of the second author was
supported by National Science Foundation grants ATM-0534173 and DMS-0707069. The
National Center for Atmospheric Research is managed by the University Corporation for
Atmospheric Research under the sponsorship of the National Science Foundation.

Journal of Statistical Software 23

References

Bates D, Maechler M (2010). Matrix: Sparse and Dense Matrix Classes and Methods.
R package version 0.999375-42, URL http://CRAN.R-project.org/package=Matrix.

Becker RA, Wilks AR, Brownrigg R, Minka TP (2010). maps: Draw Geographical Maps.
R package version 2.1-4, URL http://CRAN.R-project.org/package=maps.

Besag J (1974). “Spatial Interaction and the Statistical Analysis of Lattice Systems.” Journal
of the Royal Statistical Society B, 36(2), 192–225.

Besag J, York J, Mollié A (1991). “Bayesian Image Restoration, with Two Applications in
Spatial Statistics.” Annals of the Institute of Statistical Mathematics, 43, 1–59.

Chambers JM (1998). Programming with Data: A Guide to the S Language. Springer-Verlag,
Secaucus, NJ, USA.

Davis TA (2004). “Algorithm 832: UMFPACK V4.3—An Unsymmetric-Pattern Mul-
tifrontal Method.” ACM Transactions on Mathematical Software, 30(2), 196–199.
doi:10.1145/992200.992206.

Duff IS, Erisman AM, Reid JK (1986). Direct Methods for Sparse Matrices. Oxford University
Press, New York, NY, USA.

Furrer R, Genton MG, Nychka D (2006). “Covariance Tapering for Interpolation of Large
Spatial Datasets.” Journal of Computational and Graphical Statistics, 15(3), 502–523.

Furrer R, Nychka D, Sain S (2009). fields: Tools for Spatial Data. R package version 6.01,
URL http://CRAN.R-project.org/package=fields.

George A, Liu JWH (1981). Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall Inc., Englewood Cliffs, N. J. Prentice-Hall Series in Computational Mathe-
matics.

George JA (1971). Computer Implementation of the Finite Element Method. Ph.D. thesis,
Stanford University, Stanford, CA, USA.

Gilbert JR, Ng EG, Peyton BW (1994). “An Efficient Algorithm to Compute Row and
Column Counts for Sparse Cholesky Factorization.” SIAM Journal on Matrix Analysis and
Applications, 15(4), 1075–1091. doi:10.1137/S0895479892236921.

Gould NIM, Hu Y, Scott JA (2005a). Complete Results for a Numerical Evaluation of Sparse
Direct Solvers for the Solution of Large, Sparse, Symmetric Linear Systems of Equations.
Numerical Analysis Internal Report 2005-1 (revision 2). Rutherford Appleton Laboratory.
Available from http://www.numerical.rl.ac.uk/reports/reports.shtml.

Gould NIM, Hu Y, Scott JA (2005b). “A Numerical Evaluation of Sparse Direct Symmetric
Solvers for the Solution of Large Sparse, Symmetric Linear Systems of Equations.” Technical
report, RAL-TR-2005-005. Rutherford Appleton Laboratory. Available from http://www.

numerical.rl.ac.uk/reports/reports.shtml.

http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=maps
http://dx.doi.org/10.1145/992200.992206
http://CRAN.R-project.org/package=fields
http://dx.doi.org/10.1137/S0895479892236921
http://www.numerical.rl.ac.uk/reports/reports.shtml
http://www.numerical.rl.ac.uk/reports/reports.shtml
http://www.numerical.rl.ac.uk/reports/reports.shtml

24 spam: MCMC Methods for Gaussian Markov Random Fields in R

Held L, Natario I, Fenton S, Rue H, Becker N (2005). “Towards Joint Disease Mapping.”
Statistical Methods in Medical Research, 14(1), 61–82.

Ihaka R, Gentleman R (1996). “R: A Language for Data Analysis and Graphics.” Journal of
Computational and Graphical Statistics, 5(3), 299–314.

Knorr-Held L, Raßer G (2000). “Bayesian Detection of Clusters and Discontinuities in Disease
Maps.” Biometrics, 56(1), 13–21.

Knorr-Held L, Rue H (2002). “On Block Updating in Markov Random Models for Disease
Mapping.” Scandinavian Journal of Statistics, 29(4), 597–614.

Koenker R, Ng P (2010). SparseM: Sparse Linear Algebra. R package version 0.85, URL
http://CRAN.R-project.org/package=SparseM.

Liu JWH (1985). “Modification of the Minimum-Degree Algorithm by Multi-
ple Elimination.” ACM Transactions on Mathematical Software, 11(2), 141–153.
doi:10.1145/214392.214398.

Liu JWH (1992). “The Multifrontal Method for Sparse Matrix Solution: Theory and Practice.”
SIAM Review, 34(1), 82–109. doi:10.1137/1034004.

Liu JWH, Ng EG, Peyton BW (1993). “On Finding Supernodes for Sparse Matrix
Computations.” SIAM Journal on Matrix Analysis and Applications, 14(1), 242–252.
doi:10.1137/0614019.

Lumley T (2004). “Programmers’ Niche: A Simple Class, in S3 and S4.” R News, 4(1), 33–36.
URL http://CRAN.R-project.org/doc/Rnews/.

Mollié A (1996). “Bayesian Mapping of Disease.” In WR Gilks, S Richardson, DJ Spiegelhalter
(eds.), Markov Chain Monte Carlo in Practice, pp. 359–379. Chapman & Hall, London.

Ng EG, Peyton BW (1993a). “Block Sparse Cholesky Algorithms on Advanced
Uniprocessor Computers.” SIAM Journal on Scientific Computing, 14(5), 1034–1056.
doi:10.1137/0914063.

Ng EG, Peyton BW (1993b). “A Supernodal Cholesky Factorization Algorithm for Shared-
Memory Multiprocessors.” SIAM Journal on Scientific Computing, 14(4), 761–769.
doi:10.1137/0914048.

R Development Core Team (2010a). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

R Development Core Team (2010b). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://www.R-project.org/.

Rue H, Held L (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman
& Hall, London.

Saad Y (1994). SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations. Available
at http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html.

http://CRAN.R-project.org/package=SparseM
http://dx.doi.org/10.1145/214392.214398
http://dx.doi.org/10.1137/1034004
http://dx.doi.org/10.1137/0614019
http://CRAN.R-project.org/doc/Rnews/
http://dx.doi.org/10.1137/0914063
http://dx.doi.org/10.1137/0914048
http://www.R-project.org/
http://www.R-project.org/
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

Journal of Statistical Software 25

Sherman AH (1975). On the Efficient Solution of Sparse Systems of Linear and Nonlinear
Equations. Ph.D. thesis, Yale University, New Haven, CT, USA.

The MathWorks, Inc (2007). MATLAB – The Language of Technical Computing, Ver-
sion 7.5. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.

com/products/matlab/.

Affiliation:

Reinhard Furrer
Institute of Mathematics
University of Zurich
CH-8057 Zurich, Switzerland
Email: reinhard.furrer@math.uzh.ch
URL: http://www.math.uzh.ch/furrer/

Stephan R. Sain
Geophysical Statistics Project
National Center for Atmospheric Research
Boulder, CO 80307-3000, United States of America
Email: ssain@ucar.edu
URL: http://www.image.ucar.edu/~ssain/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 36, Issue 10 Submitted: 2008-07-04
September 2010 Accepted: 2010-05-31

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
mailto:reinhard.furrer@math.uzh.ch
http://www.math.uzh.ch/furrer/
mailto:ssain@ucar.edu
http://www.image.ucar.edu/~ssain/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Motivation
	The spam R package
	Outline

	The integration of the Cholesky factorization
	The sparse matrix implementation of spam
	Methods for the sparse classes of spam
	Slots of the sparse classes

	Simulation results for GMRF
	Data examples
	Normal response model
	Besag-York-Mollié model

	Discussion
	spam and other sparse matrix R packages
	More hints for efficient computation

