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Abstract

In this article the MCPMod package for the R programming environment will be
introduced. It implements a recently developed methodology for the design and analysis
of dose-response studies that combines aspects of multiple comparison procedures and
modeling approaches (Bretz et al. 2005). The MCPMod package provides tools for the
analysis of dose finding trials, as well as a variety of tools necessary to plan an experiment
to be analyzed using the MCP-Mod methodology.
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1. Introduction

In pharmaceutical drug development, dose-response studies typically have two main goals.
The first goal is to establish that changes in dose lead to desirable changes in the (efficacy
and/or safety) endpoint(s) of interest, the so-called proof-of-concept (PoC) step. Once such
a dose-response signal has been shown, the second goal is then to select one or more “good”
dose level(s) for the confirmatory Phase III studies, the so-called dose-finding step.

Traditionally these goals have been addressed either by using a multiple comparison procedure
(MCP), or by using a modeling (Mod) approach. The MCP approach regards the dose as
a qualitative factor and generally makes few, if any, assumptions about the underlying dose-
response relationship. However, inferences about the target dose are restricted to the discrete,
possibly small, set of doses used in the trial. Within the modeling approach, a parametric
(typically non-linear) functional relationship is assumed between dose and response. The dose
is taken to be a quantitative factor, allowing greater flexibility for target dose estimation. The
validity of the modeling approach, however, strongly depends on an appropriate dose-response
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Figure 1: Schematic overview of the MCP-Mod procedure.

model being pre-specified for the analysis.

In this paper we present the MCPMod package written in the R system for statistical comput-
ing (R Development Core Team 2008) and available from the Comprehensive R Archive Net-
work at http://CRAN.R-project.org/package=MCPMod. The package implements a hybrid
methodology, combining multiple comparison procedures with modeling techniques (called
MCP-Mod procedure, Bretz et al. 2005). This approach provides the flexibility of model-
ing for dose estimation, while preserving the robustness to model misspecification associated
with MCP. Figure 1 gives an overview of the MCP-Mod procedure. It starts by defining a set
of candidate models M covering a suitable range of dose-response shapes. Each of the dose-
response shapes in the candidate set is tested using appropriate contrasts and employing MCP
techniques that preserve the family-wise error rate (FWER). PoC is established when at least
one of the model tests is significant. Once PoC is verified, either a “best” model or a weighted
average of the set of significant models M* C M is used to estimate the dose-response profile
and the target doses of interest.

As outlined above, the MCP-Mod procedure is performed in several steps: (1) calculation
of contrast coefficients, representing the candidate model shapes, (2) conduct of a multiple
contrast test, and, depending on the result, (3) a model selection step to fit (typically non-
linear) dose-response models and to estimate the target doses. Each individual step above can
be implemented with the R statistical language, possibly using add-on packages available at
http://CRAN.R-project.org/. However, it is desirable to have one package, which performs
these steps automatically and also allows to design a trial for the MCP-Mod procedure. The
MCPMod package provides these functionalities and the aim of this paper is to give a detailed
description of the package.

For self containment of the paper we will first review the key features and statistical methods
of the MCP-Mod procedure in Section 2, while the MCPMod package will be introduced and
illustrated with examples in Section 3.

2. MCP-Mod: Combining multiple comparisons and modeling

2.1. Notation

Assume that we observe a response Y for a given set of parallel groups of patients correspond-
ing to doses do,ds, ..., d; plus placebo di, for a total of k arms. For the purpose of testing
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PoC and estimating target doses, we consider the one-way layout

Yij = pa; + €, € ~ N(0,0%), i=1,...kj=1,...,n, (1)

where pg, = f(d;,0) denotes the mean response at dose d; for some dose-response model
f(d,0), n; denotes the number of patients allocated to dose d;, N = Zle n; is the total
sample size, and ¢;; denotes the error term for patient j within dose group 4. Following Bretz
et al. (2005), we note that most parametric dose-response models f(d, @) used in practice can
be written as

f(d,0) =6y +6,f°(d, 6%, (2)

where f°(d, 8*) denotes the standardized model function, parameterized by the vector 8*. In
this parameterization, g is a location and 6; a scale parameter such that only the parameter-
vector 0* determines the shape of the model function. As seen later, it is sufficient to consider
the standardized model f instead of the full model f for the derivation of the optimal model
contrasts.

2.2. MCP-Mod methodology

In this section we review the core elements of the MCP-Mod methodology. We start by
considering the basic MCP-Mod procedure for the analysis of a dose-response trial and then
focus on design issues. For more information on the basic methodology see Bretz et al. (2005),
for recommendations regarding the practical implementation and design aspects see Pinheiro
et al. (2006a).

Analysis considerations

The motivation for MCP-Mod is based on the work by Tukey et al. (1985), who recognized
that the power of standard dose-response trend tests depends on the (unknown) dose-response
relationship. They proposed to simultaneously use several trend tests and subsequently to
adjust the resulting p—values for multiplicity. Bretz et al. (2005) formalized this approach
and extended it in several ways.

Assume that a set M of M parameterized candidate models is given, with corresponding
model functions f,,(d,0,,),m = 1,..., M, and parameters 87, of the standardized models f9,
(determining the model shapes). For each of the dose-response models in the candidate set we
would like to test the hypothesis Hj": c,Tnu, = 0, where ¢, = (Cm1,-..,Cmk) | is the optimal
contrast vector representing model m, subject to Zle cmi = 0. Each of the dose-response
models in the candidate set is hence tested using a single contrast test,

_ Zle cmiYi
k 2 ’
S \/ iz Comi/ M

where S? = Zle Z;“:l(YZJ —Y;)?/(N — k) is the pooled variance estimate. Every single
contrast test thus translates into a decision procedure to determine whether the given dose-
response shape is statistically significant, based on the observed data.

Tm mzl,...,M,
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The contrast coefficients ¢;1, - - . , ¢ for the m-th model are chosen such that they maximize
the power to detect the underlying model. It can be shown that these optimal contrast coef-
ficients do not depend on the full parameter vector 8,, of the model, but only the parameters
in its standardized model function @), which determine the model shape (see Bretz et al.

2005) and the group sample sizes. Letting (19, . .. ,,u?nk)T = (f9(dy,0%),. .., (dp, @27,
the ith entry of the optimal contrast c,, for detecting the shape m is proportional to

n,-(,u?m—ﬂ), 1=1,...,k, (3)

where i = N1'S°F 40 n; (Bornkamp 2006, p. 88, Casella and Berger 1990, p. 519). A
unique representation of the optimal contrast can be obtained by imposing the regularity
condition % 2 =1.

The final detection of a significant dose-response signal (i.e., demonstrating PoC), is based
on the maximum contrast test statistic

Tmax = max{Tl, e ,TM}.

Under the null hypothesis of no dose-response effect p4, = ... = pg, and under the distri-
butional assumptions stated in Equation 1, T7,...,T)s jointly follow a central multivariate ¢
distribution with N — k degrees of freedom and correlation matrix R = (p;;), where

SO0y cacit/m

pPij = PR PR .
\/El:l i/ o= G/

Multiplicity adjusted critical values and p—values can be calculated using the identity of the
sets [Tmax < q] = [T1 < ¢q,..., Ty < q], where g is a real number. As the joint distribution of
(T1,...,Tar)" is multivariate ¢, numerical integration routines for evaluation of multivariate
t integrals, such as the randomized quasi-Monte Carlo methods of Genz and Bretz (2002)
implemented in the R package mvtnorm (Genz et al. 2009), can be used to compute the
desired equicoordinate quantiles of the multivariate ¢ distribution. PoC is hence established
if Tmax > q1—a, Where q1_o is the multiplicity adjusted critical value at level 1 — « (i.e.,
the equicoordinate 1 — v quantile of the corresponding central multivariate t distribution).
Furthermore, all dose-response shapes with contrast test statistics larger than ¢;_, can be
declared statistically significant at level 1 — a under strong control of the FWER. These
models then form a reference set M* = {My,...,Mp} C M of L significant models. If no
candidate model is statistically significant, the procedure stops indicating that a dose-response
relationship can not be established from the observed data (i.e., no PoC).

(4)

If PoC has been established, the next step is to estimate the dose-response curve and the
target doses of interest. This can be achieved either by selecting a single model out of M*
or by applying model averaging techniques to M*. There are different possibilities to select
a single dose-response model out of M* for target dose estimation. One can base the choice,
for example, on the contrast test statistics, i.e., selecting the model corresponding to the
maximum contrast test statistic. Standard information criteria like the AIC or BIC might
also be used. The estimate of the model function is then obtained by calculating the least
squares estimates for . For non-linear models iterative optimization techniques need to be
used, such as those implemented in the nls function in R. As the non-linear models described
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here are partially linear (see Equation 2), this can be exploited in the nls function by using
the Golub-Pereyra algorithm (see Golub and Pereyra 2003, for a review of these methods). So
we only need to derive starting values for the standardized model parameters 8*. Although
we use automatic methods for finding good data-based starting values for 8*, convergence
problems can occur, especially when the number of dose levels used in the trial is small
compared to the parameters in the model function. In the case of non-convergence the ‘best’
of the remaining significant, converging models can be used for dose estimation, if any. An
approach to partially overcome these convergence issues is to use box constraints on 8*. This
will be implemented as an alternative in future versions of the package.

Once a dose-response model has been selected, one can proceed to estimate the target dose(s)
of interest. One possible choice is the minimum effective dose (M ED), which is defined as
the smallest dose ensuring a clinically relevant and statistically significant improvement over
placebo (Ruberg 1995). Formally,

MED = min{d € (dy,dy] : f(d) > f(d1) + A},

where A is the clinical relevance threshold. A common estimate for the M ED is

MED = min{d € (dy,dg] : f(d) > f(d1) + A, L(d) > f(dy)}

where f(d) is the predicted mean response at dose d, and L(d) is the corresponding lower
bound of the pointwise confidence intervals of level 1 — 2. Note that MED corresponds
to the MED, estimator in Bretz et al. (2005), who found this estimator to be least biased
compared to two other alternative estimates in a simulation study. A different target dose
is the EDp which is defined as the smallest dose that gives a certain percentage p of the
maximum effect dpmax observed in (dy, dy]. Formally,

EDp =min{d € (d1,dg] : f(d) > f(d1) + pomax}, (5)

where dmax = fmae — f(d1), and frax = . I&a)é ]f(d). An estimate @p is obtained by
€(d1,ag

plugging the empirical estimates into the definition (5).

An alternative to selecting a single dose-response model is to apply model averaging techniques
and produce weighted estimates across all models in M* for a given quantity 1 of interest.
In the context of dose-response analysis, the parameter 1 could for example be a target dose
(MED, EDp,...) or the mean responses at a specific dose d € [dy, di]. Buckland et al. (1997)
proposed to use the weighted estimate

17J = Z wﬂZz,
¢

where 'l,Abg is the estimate of 9 under model ¢ for given weights wy. The idea is thus to use
estimates for the final data analysis which rely on the averaged estimates across all L models.
Buckland et al. (1997) proposed the use of the weights

_1G

wp=—>2C * __ y_1....L (6)
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which are defined in dependence of a common information criterion IC, such as AIC or BIC
applied to each of the L models, and prior model weights p,. If each model is given the same
prior model weight, the p, cancel out in Equation 6.

Design considerations I: Power and sample size calculations

An important step at the planning phase of any clinical trial is to properly design the study
in order to achieve the study objectives. Because dose finding studies have two major goals,
PoC testing and dose estimation, different criteria can be used to design a study. Dette et al.
(2008) derived optimal designs, which minimize the (asymptotic) variance of the M ED esti-
mate. Using their approach, asymptotic confidence intervals for the M ED can be calculated,
conditional on a selected model. At the planning stage one would then specify the maximum
width of the confidence interval and calculate the sample size necessary to ensure a certain
precision of the M ED estimate.

An alternative approach is to focus on calculating the sample size necessary to achieve a
pre-specified power to detect PoC (Pinheiro et al. 2006a). We thus start by introducing the
power calculation under a given specific model m from the candidate set M, generalize it
afterwards to multiple models and finally focus on sample size calculation.

The power of the MCP procedure is determined by the distribution of Ty, under the al-
ternative hypothesis that the m-th dose-response model is true. Under this assumption, the
mean responses at the doses di,...,dy are p,, = (frm(d1,0m), ..., fm(dk,8n))". The power
to detect a dose-response signal (i.e., PoC) under model m for sample sizes n = (n1,...,n) "
is then

P(maxT) 2 qi-alp = pp) =1 = P(T1 < qi-qs- -, Tt < @1-alpe = p). (7)

It follows from the properties of the multivariate ¢ distribution and the assumptions in Equa-
tion 1, that, under the m-th model, the contrast test statistics 711,...,Ty are jointly dis-
tributed as non-central multivariate ¢ with N — k degrees of freedom and correlation matrix
R = (p;j). The non-centrality parameter vector is 8, = (1, - - - ,Omar) |, where

k
Zi:l Clitmi
)
k
04/ > e C%i/”i

Again, the mvtnorm package can be used to calculate the necessary probabilities.

- l=1,...,M.

So far we have only considered the power calculation under a single model m. In practice we
would rather account for the inherent model uncertainty. To this end, we would calculate the
power for each of the M models from the candidate set M and aggregate the resulting values
into a single combined measure of power, such as the (weighted) average, the minimum or a
quantile. The sample size is then calculated as the smallest sample size ensuring a minimum
combined power value, say 7*, to detect PoC under the assumed set of dose-response mean
vectors. We restrict ourselves to the case that either the allocation weights r; > 0, subject
to > ,r; = 1 or the allocation ratios p; relative to the dose group with the fewest patients,
i.e., p; = r;/min(r;) are prespecified. The group sample sizes n = (ni,...,n;) can then
be obtained from n; = Nr; for allocation weights or from n; = pinmin, where np;, is the
smallest group sample size. Since the combined power is a monotone increasing function of
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N (or nyn, if allocation ratios are specified) a unique smallest integer giving a power larger
than 7* exists (see also Pinheiro et al. 2006a). The bisection search method can be used to
obtain the sample size ensuring a pre-specified combined power 7*. In practice, rounding
techniques need to be applied to obtain integer sample sizes.

Design considerations II: Sensitivity analysis

In the derivations above we conditioned on the mean vectors p,, in Equation 7 and hence on
the parameters 8,, = (0,0, 0m1,05%,) . Since the sample size is calculated under this condition,
it is critical that the model parameters are reliably determined. For the determination of
location and scale parameters 6,0 and 0,,1, prior knowledge about the expected placebo
response ¢y and the maximum response dnax can be used at the design stage. It is typically
straightforward to plug in these quantities into the model equations, assuming that 8, is
known and then solving for 6,,0 and 6,1, see Pinheiro et al. (2006a) for a more detailed

description of this approach.

Based on prior knowledge about the shape of the model function, Pinheiro et al. (2006b)
discussed strategies to obtain guesstimates for the standardized model parameters 6;,. The
elicitation of prior information for ), may impact both the design and the analysis of a dose
finding study using the MCP-Mod methodology, as the guesstimates are used to obtain the
optimal model contrasts at the MCP step, which in turn determine the effective power to
detect PoC. Therefore, it is of importance to investigate the sensitivity of the procedure to
misspecification of the parameters in the standardized models and, in particular, the impact it
has on the effective power to detect PoC. Pinheiro et al. (2006a) considered different measures
of loss in power associated with a misspecification of the standardized model parameters. One
possibility, subsequently denoted as LPy, is to calculate the difference between the nominal
power (the power obtained, when the guesstimate is correct) and the actual power (the power
obtained, when the used guesstimate does not coincide with the true parameter), i.e.,

LP; = nominal power — actual power. (8)

Thus, LP; can be interpreted as the difference between the power that was intended for
the study and the power one actually obtains. Alternatively, one could also calculate the
difference between the power that could be achieved if the true parameter values were known
at the design stage (potential power) and the actual power. This is denoted by LP» and hence

L P, = potential power — actual power.

Graphical methods can be used to display the loss in power for a range of true standardized
model parameters. From our experience the loss in power associated with misspecification of
the parameters in the standardized model function is often negligible for reasonable candidate
sets, because dose-response models with parameter vectors 8,,, deviating from the guesstimate
07, are often detected from some other model in the candidate set. In cases where the loss
in power is not acceptable, the inclusion of an additional model in the candidate set could be
considered.
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3. The MCPMod package

In this section we describe the R package MCPMaod for implementing the MCP-Mod method-
ology. The package consists of two main parts (see also Figure 2). The first part contains
several functions that are useful for planning a trial: calculation of the optimal contrasts and
the critical value (planMM), the sample size (sampSize) or functions that support the selection
of a ‘good’ candidate set and sensitivity analysis (guesst, plotModels, powerMM, LP). The
second part consists of one main function named MCPMod that implements the full MCP-Mod
approach for analysis of a given dose-response data set.

3.1. Preliminaries

Before illustrating the different functions in more detail we first describe how to specify
the candidate set of models M for these functions. Table 1 gives an overview of the dose-
response models that are implemented (note that user-defined non-linear models can also be
specified, see the package documentation for details). The candidate set of models needs to
be specified as a list, where the list elements should be named according to the underlying
dose-response model function (see Table 1) and the individual list entries should correspond
to the required guesstimates or NULL if no guesstimates are needed. Suppose, for example, we
want to include in our candidate set a linear model, an E,,,x model and a logistic model. From
the standardized model functions in Table 1 we see that we need to specify one guesstimate
for the Epax model (EDjo parameter), two guesstimates for the logistic model (E D5y and 0)
and none for the linear model (since its standardized model function does not contain any
unknown parameters). Suppose our guesstimate for the EDjy parameter of the Ep,x model
is 0.2, while the guesstimate for (EDs,8)" for the logistic model is (0.25,0.09)T. We then
specify the list

R> modsl <- list(linear = NULL, emax = 0.2, logistic = ¢(0.25, 0.09))

In some cases one might want to include several model shapes per model class. For example,
if the candidate model set includes two E.,.x model shapes, two logistic model shapes, a beta

MCPMod

Planning code | | Analysis code

guesst — Derivation of guesstimates
fullMod — Full models specification
plotModels — Model plots
planMM — Calculation of contrasts
and critical value
powerMM — Power calculations
sampSize — Sample size calcualtion
LP — Sensitivity analysis

MCPMod
Multiple contrast test
Model selection/model averaging
Dose-response estimation
Target dose estimation

Figure 2: Overview of main functions in the MCPMod package.
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Name f(d, 0) £°(d,07) ™) (®)
linear Eo +d6d d

linlog Eo + dlog(d+c) log(d + c) c
quadratic Fo + f1d + ﬂng d+ 6d?if B2 <0 )

emax Eo + Emaxd/(EDso + d) d/(EDso + d) EDs5o

logistic Eo + Emax/ {1 +exp[(EDso — d) /0]} 1/{1 +exp[(EDso —d) /8§]} (EDso,8)"
exponential FEo + Ei(exp(d/d) —1) exp(d/é) —1 0

sigEmax Eo + Emaxd" /(ED2y + d") d"/(EDZy + d") (EDso,h)"
betaMod Eo 4+ EmaxB(61,082)(d/D)° (1 — d/D)*2  B(61,62)(d/D)° (1 —d/D)%  (61,82)" D

Table 1: Dose-response models implemented in the MCPMod package. Column (*) lists for
each model the parameters for which guesstimates are required and the order in which they
need to be specified in the models list, while column (f) lists the parameters, which fixed and
not estimated. For the beta model B(d1,02) = (61 + (52)51”2/(5151 5262) and for the quadratic
model § = % For the quadratic model the standardized model function is given for the

concave-shaped form.

model shape and a linear model shape the model list would look like

R> mods2 <- list(linear = NULL, emax = c(0.05, 0.2), betaMod = c(0.5, 1),
+ logistic = matrix(c(0.25, 0.7, 0.09, 0.06), byrow = FALSE, nrow = 2))

Thus, if multiple model shapes from the same model class are to be used, the parameters
are handed over as a matrix, for models having two parameters in the standardized model
function, and as a vector for one-parameter standardized models. This general structure
applies to all built-in models. Note that the linear-in-log and the beta models also contain a
parameter (¢ and D, respectively, see Table 1) that is not estimated from the data but needs
to be pre-specified. These parameters are not handed over via the candidate model list but
via seperate arguments scal (corresponding to D) and off (corresponding to c¢) respectively
to the top-level functions.

3.2. Planning code

In this section we provide a brief overview of the functions guesst, plotModels, fullMod,
planMM, powerMM, sampSize and LP. These functions are useful for designing a trial using
MCP-Mod. For a detailed description of the arguments to the functions we refer to the
documentation of the package.

Function guesst

The selection of suitable guesstimates and model shapes is a major aspect of the MCP-Mod
methodology. Incorporating contrasts/models that are likely to be true (and excluding those
that are very unlikely) can greatly improve the power of the methodology. The guesst
function supports the translation of clinical knowledge available prior to the start of a study
into the required guesstimates. The function calculates the guesstimates according to the
percentage p* of the maximum effect that is achieved at a certain dose d*. Suppose, for
example, we want to calculate a guesstimate for the £ D5y parameter from the E .« model.
If we expect a response of 90% at dose 0.2, the E D5y guesstimate can be calculated by calling
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R> guesst(d = 0.2, p = 0.9, model = "emax")

edb50
0.02222222

With this guesstimate, the standardized model for the Epax model is given by f° (d, EDso) =
d/(0.022222+d), and the optimal contrast can be calculated from Equation 3. For models with
two standardized model parameter one (d*, p*) pair is not sufficient to obtain guesstimates for
the standardized model parameters. For example, for the logistic model we need to specify
two pairs to obtain a guesstimate

R> guesst(d = c(0.05, 0.2), p = c(0.2, 0.9), model = "logistic")

ed50 delta
0.1080279 0.0418583

In this example the standardized model function for the logistic model is given by f°(d, EDsg,8) =
1/{1 + exp[(0.1080279 — d)/0.0418583]}, from which the corresponding optimal contrast can

be obtained. In a similar way one can obtain guesstimates with the guesst function for all
built-in models.

Function plotModels

Before deciding for any particular candidate set of model shapes it is useful to display them
graphically. This can be done with the plotModels function. Since the model shapes, specified
in the models list, do not depend on the location (defined through the baseline effect) and
scale (defined through the maximum effect) of the model, one additionally needs to specify
those via the base and maxEff arguments. Using the candidate set mods2 defined above (and
setting the scal parameter of the beta model equal to 1.2), a graphical representation can be
obtained as follows (see Figure 3 for the output)

R> doses <- ¢(0, 0.05, 0.2, 0.6, 1)
R> plotModels(mods2, doses, base = 0, maxEff = 0.4, scal = 1.2)

Function fullMod

Similar to the plotModels function above, also other functions (powerMM, sampSize, LP) re-
quire information about the doses, the full model functions, i.e., the candidate model shapes,
the baseline effect, the maximum effect and possible other additional parameters like off or
scal. The fullMod function derives the full model functions (i.e., the location and scale pa-
rameters) for each model from the stated information (see Section 2.2) and packages this with
the used dose levels into a fullMod object, which can then be used as an input parameter for
the four above mentioned functions. When assuming the baseline effect 0 and the maximum
effect 0.4 and using the candidate set mods2 (and setting the scal parameter of the beta
model equal to 1.2) one can package this information via

R> doses <- ¢c(0, 0.05, 0.2, 0.6, 1)
R> fmods2 <- fullMod(mods2, doses, base = 0, maxEff = 0.4, scal = 1.2)
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Model means

Dose

Figure 3: Model shapes for the selected candidate model set, produced with plotModels
function.

Function planMM

The planMM function calculates the quantities necessary to conduct the multiple contrast
test: The optimal model contrasts and their correlations (see Equations 3 and 4) and the
critical value using the mvtnorm package. This information is returned in a planMM object.
The arguments alpha and twoSide determine the significance level and sidedness of the test.
By default one-sided testing at level a = 0.025 is performed. The sample size allocations
are handed over as a vector via the n argument (for balanced allocations a single number is
sufficient). Assuming a balanced allocation of 20 patients per dose group, the candidate set
mods2 and the doses from above, the planMM function can be called as follows

R> pM <- planMM(mods2, doses, n = 20, alpha = 0.05, twoSide = FALSE,
+ scal = 1.2)
R> pM

MCPMod planMM
Optimal Contrasts:

linear emaxl emax2 betaMod logisticl logistic2
0 -0.437 -0.799 -0.643 -0.714 -0.478 -0.267
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0.05 -0.378 -0.170 -0.361 -0.043 -0.435 -0.267
0.2 -0.201 0.207 0.061 0.452 -0.147 -0.267
0.6 0.271 0.362 0.413 0.498 0.519 -0.083
1 0.743 0.399 0.530 -0.192 0.540 0.883

Critical Value (alpha = 0.05, one-sided): 2.139

Contrast Correlation Matrix:
linear emaxl emax2 betaMod logisticl logistic2

linear 1.000 0.766 0.912  0.229 0.945 0.905
emax1 0.766 1.000 0.949 0.774 0.828 0.525
emax?2 0.912 0.949 1.000 0.606 0.956 0.686
betaMod 0.229 0.774 0.606 1.000 0.448 -0.130
logisticl 0.945 0.828 0.956  0.448 1.000 0.717
logistic2 0.905 0.525 0.686 -0.130 0.717 1.000

The first part of the output shows the optimal contrast coefficients for the different models.
The representation of the optimal contrast is unique as we imposed the condition of unit
Euclidean length. In the output we then obtain the multiplicity adjusted critical value for the
maximum contrast and finally the correlations of the contrasts. In this example some contrasts
are quite highly correlated. For example, the correlation between emax2 and logisticl is
0.956, indicating that both describe similar dose-response shapes, as can also be seen in

—— linear —  emax2 logisticl
— emaxl —— betaMod logistic2
1 1 1 1 1 1
0.5 P— L
AN
2]
c
Q@
L
b=
4]
8
— 0.0 1 -
0
g
€
o
N 2
_05 — / —
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Dose

Figure 4: Graphical display of optimal contrasts.
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Figure 3. The beta model contrast however, seems to be relatively different from the others.
This is due to the fact that the beta model shape is, contrary to the other model shapes, not
monotone. The contrasts can also be graphically displayed using the plot method for planMM
objects, e.g., plot (pM) (see Figure 4).

Function powerMM

The powerMM function is designed to calculate the power to detect the model shapes in the
candidate set for different sample sizes. We need to hand over either an object of class
fullMod or the doses, the baseline and the maximum effect via doses, base and maxEff and
the standard deviation of the response via sigma. One can calculate the power for sample
sizes ranging from lower to upper in stepsizes step. Summary functions can be used to
combine the different power values for the different model shapes into one value, as described
in Section 2.2. By default the minimum, the mean and the maximum power are calculated.
The resulting power values are returned as an object of class powerMM in a matrix. There
exists also a plot method to display the results graphically. Using the information packaged
in the fmods2 object from above one obtains the following result

R> pM <- powerMM(fmods2, sigma = 1, alpha = 0.05, lower = 10,
+ upper = 110, step = 10)
R> plot(pM, line.at = 0.9, models = "none")

——  min —— mean —— max

Power

T T T T T
20 40 60 80 100

Sample size per dose (balanced)

Figure 5: Power to detect PoC under the assumed candidate set for different summary func-
tions.
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In Figure 5 it can be seen that a mean power of 90 % is achieved with approximately 90 patients
per dose. Note that the power can also be calculated for unbalanced but fixed allocations.
The allocation ratios (or allocation weights, depending on the value of the typeN argument)
then need to be supplied via the alRatio argument. In the plot above only the summary
power values are displayed, although the plot method for powerMM allows the display of the
power values for the individual candidate models as well.

Function sampSize

The sampSize function calculates the necessary sample size to achieve a pre-specified combined
power value. As input parameters we need a fullMod object (or manually doses, base,
maxEff) and sigma. Together with the candidate set, these parameters form the ‘alternatives’
for which the power is calculated. A summary function (via sumFct) to combine the individual
power values into one value and the power level we want to achieve (via power) need to be
provided as well. For the bisection search algorithm an upper bound for the target sample
size (via upperN) needs to be provided as a starting value. The starting value for the lower
bound needed for the bisection is derived internally as upperN/2, but can also be handed
over manually via lowerN. When the starting values for the upper and lower bound do not
bracket a solution the bounds are extended automatically. For the information packaged in
the fmods2 object the result is as follows

R> sampSize(fmods2, sigma = 1, sumFct = mean, power = 0.9, alpha = 0.05,
+ twoSide = FALSE, upperN = 100)

MCPMod sampSize

Input parameters:

Summary Function: mean

Desired combined power value: 0.9
Level of significance: 0.05 (one-sided)
Allocations: balanced

Sample size per group: 92

Associated mean power: 0.9013

Power under models:
linear emaxl emax2  betaMod logisticl logistic2
0.9106 0.8997 0.9163 0.8110 0.9647 0.9058

As seen from the output, the sampSize function returns the desired group sample size and
the associated combined power. In our example we thus need 92 patients per group to
guarantee a mean power of 90%. The sampSize function also returns the individual power
values under the different models in the candidate set. Note that in the example above we
assumed a balanced sample size allocation. Fixed allocation proportions can be specified via
the alRatio argument. If typeN = "arm", the code assumes that allocation ratios are passed
to alRatio, which means that the bisection search algorithm varies the sample size n,;, in
the dose group with the fewest number of patients, and returns the smallest n,,;, such that
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the combined power is larger than power. If typeN = "total" allocation weights are assumed
and the overall sample size N is iterated.

Function LP

The LP function is designed to calculate the loss in power associated with misspecification
of the guesstimates for one model in the candidate set. To illustrate the function we use
a very simple candidate set consisting of only a linear and an E,, shape and illustrate
the calculation of LP; (see Equation 8). We select 0.15 as the guesstimate for the EDsg
parameter, and want to investigate the loss in power in the interval [0.03,0.8] (specified via
paramRange). Hence we calculate how much power we loose, if an alternative EDj value is
true, but we selected 0.15 as our guesstimate. As before doses, base, maxEff (or an object
of class fullMod) and sigma need to be specified together with the sample size. After calling
the LP function we display the results using the associated plot method. The optional spldf
argument determines the degrees of freedom for the spline that is used to smooth the power
values in the plot.

R> mods3 <- list(linear = NULL, emax = 0.15)

R> Lfit <- LP(mods3, model = "emax", type = "LP1",

+ paramRange = c(0.03, 0.8), len = 30, doses = doses, n = 92,

+ base = 0, maxEff = 0.4, sigma = 1, alpha = 0.05, twoSide = FALSE)
R> plot(Lfit, spldf = 25)

Model: emax , Used value: 0.15

0.04 —

LP1

0.02 +

0.00 —

0.0 0.2 0.4 0.6 0.8
ED50

Figure 6: Difference of actual and nominal power for Emax model.
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As seen from Figure 6 the loss in power is relatively large if a small FD5q value is true. If the
true F D5 is equal to the guesstimate then the actual power and nominal power coincide. For
FE D5 larger than the specified guesstimate we actually gain power, because the E,, model
becomes almost linear and is captured by the linear model included in the candidate set.

3.3. Analysis code

The analysis functionalities are incorporated in one main function MCPMod, which implements
the full MCP-Mod approach. According to the methodology described in Section 2, it consists
of two main steps: (1) MCP-step (calculation of optimal contrasts, critical value, contrast test
statistics and possibly p—values and selection of the set of significant models) and (2) modeling
step (model fitting, model selection/model averaging and dose estimation).

We now describe some of the more important arguments for the MCPMod function. For a
complete description of the MCPMod function we refer to the online documentation. The dose-
response data set is handed over to the MCPMod function via the data argument. It should
be handed over as a data frame containing two columns corresponding to the dose levels
and the response values. The selModel argument determines how to select a dose estimation
model out of the set of significant models (if there are any significant models). One can choose
between the maximum contrast test statistic (the default option), the AIC, the BIC or model
averaging based on either the AIC or the BIC (see Section 2.2). Another important argument
is doseEst, which determines the dose estimator to be used. Three slightly different estimators
for the MED are currently implemented (see Bretz et al. (2005) for a detailed description
of those three estimators, option "MED2" is the default value, corresponding to the estimator
described in Section 2.2) as well as an estimator of the FDp. Additional parameters for
the dose estimators (such as v for M ED estimators (default: v = 0.1) and p for the ED
estimator (default: p = 0.5)) are handed over via the dePar argument. The clinical relevance
threshold A is handed over via the clinRel argument. The pVal argument determines,
whether multiplicity adjusted p—values for the multiple contrast test should be calculated or
not (per default p-values are not calculated).

To illustrate the MCPMod function we use the dose-response data set biom used by Bretz et al.
(2005) to illustrate the MCP-Mod methodology. The data result from a randomized double-
blind parallel group trial with a total of 100 patients being allocated to either placebo or one
of four active doses coded as 0.05, 0.20, 0.60, and 1, with 20 patients per group. Here, we use
the MED2 estimator with v = 0.05 to estimate the M E D, the clinical threshold A is set to 0.4
and the dose estimation model is selected according to the maximum contrast test statistic.
Employing the candidate model set mods2 the results can be obtained by calling

R> data("biom")
R> dfe <- MCPMod(biom, mods2, alpha = 0.05, dePar
+ selModel = "maxT", doseEst = "MED2", clinRel

0.05, pVal = TRUE,
0.4, scal = 1.2)

A brief summary of the results is available via the print method for MCPMod objects
R> dfe

MCPMod
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PoC (alpha = 0.05, one-sided): yes
Model with highest t-statistic: emax2
Model used for dose estimation: emax
Dose estimate:
MED2, 90%

0.17

From the output we conclude that the maximum contrast is significant at one-sided level
0.05. Thus a significant dose-response relationship can be established, i.e., positive PoC.
Furthermore we conclude that emax2 has the largest test statistic among all contrasts and
consequently the E,,x model was used for the dose-estimation step. The M FED estimate
is 0.17. The 90% in the M ED estimate refers to the confidence level of L(d) used in the
dose estimator (see Section 2.2). A more detailed summary of the results is available via the
summary method.

R> summary (dfe)
MCPMod

Input parameters:

alpha = 0.05 (one-sided)

model selection: maxT

clinical relevance = 0.4

dose estimator: MED2 (gamma = 0.05)

Optimal Contrasts:
linear emaxl emax2 betaMod logisticl logistic2

0 -0.437 -0.799 -0.643 -0.714 -0.478 -0.267
0.05 -0.378 -0.170 -0.361 -0.043 -0.435 -0.267
0.2 -0.201 0.207 0.061 0.452 -0.147 -0.267
0.6 0.271 0.362 0.413 0.498 0.519 -0.083
1 0.743 0.399 0.530 -0.192 0.540 0.883

Contrast Correlation:
linear emaxl emax2 betaMod logisticl logistic2

linear 1.000 0.766 0.912  0.229 0.945 0.905
emax1 0.766 1.000 0.949 0.774 0.828 0.525
emax?2 0.912 0.949 1.000 0.606 0.956 0.686
betaMod 0.229 0.774 0.606 1.000 0.448 -0.130
logisticl 0.945 0.828 0.956  0.448 1.000 0.717
logistic2 0.905 0.525 0.686 -0.130 0.717 1.000

Multiple Contrast Test:

Tvalue pValue
emax?2 3.464 0.001
emaxl 3.339 0.002
logisticl 3.235 0.002
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linear 2.972 0.007
betaMod 2.402 0.028
logistic2 2.074 0.057

Critical value: 2.138

Selected for dose estimation:
emax

Parameter estimates:
emax model:

e0 eMax ed50
0.322 0.746 0.142

Dose estimate
MED2,90%
0.17

The summary output includes some information about important input parameters that were
used when calling MCPMod. Then the output includes also the optimal contrasts and the con-
trast correlations together with the contrast test statistics, the multiplicity adjusted p—values
and the critical value. Finally, information about the fitted dose-response model, its param-
eter estimates and the target dose estimate are displayed.

A graphical display of the dose-response model used for dose estimation can be obtained via
the plot method for MCPMod objects (see Figure 7). When complData = TRUE, the full dose-
response data set is plotted instead of only the group means. The clinRel option determines
whether the clinical relevance threshold should be displayed.

R> plot(dfe, complData = TRUE, clinRel = TRUE)

To illustrate the different options available for the MCPMod function we will now re-analyze
the biom data set with different input parameters. Specifically, we will now apply model
averaging techniques. The target dose is hence estimated as the weighted average of the dose
estimates under the different significant models. The weights are determined via the AIC
criterion (see Equation 6) with uniform prior weights (which is the default). The target dose
we are now interested in is the ED95, which is the dose that achieves 95 % percent of the
maximum effect.

R> dfe2 <- MCPMod(biom, mods2, alpha = 0.05, dePar = 0.95,
+ selModel = "aveAIC", doseEst = "ED", scal = 1.2)
R> dfe2

MCPMod

PoC (alpha = 0.05, one-sided): yes
Model with highest t-statistic: emax2
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Figure 7: Fitted model with data set.

Models used for dose estimation: emax logistic linear betaMod
Dose estimate:

ED95%

0.669

The output of the print method now contains the four models selected for dose-response
estimation as well as the model averaged FD95 estimate. We edited the output of the
summary method here as there is some overlap with the previous call to the summary function.

R> summary(dfe2)
MCPMod

Input parameters:
alpha = 0.05 (one-sided)
model selection: aveAIC
prior model weights:
emax logistic  linear betaMod
0.25 0.25 0.25 0.25
dose estimator: ED (p = 0.95)
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AIC criterion:
emax logistic  linear betaMod
219.14  220.83 220.50 221.32

Selected for dose estimation:
emax logistic linear betaMod

Model weights:
emax logistic linear betaMod
0.440 0.189 0.223 0.148

Parameter estimates:
emax model:
e0 eMax edb0
0.322 0.746 0.142
logistic model:
e0 eMax edb0 delta
0.169 0.773 0.087 0.071
linear model:
(Intercept) dose
0.492 0.559
betaMod model:
e0 eMax deltal delta?2
0.329 0.669 0.573 0.321

Dose estimate
Estimates for models
emax logistic linear betaMod

ED95% 0.71 0.32 0.95 0.57
Model averaged dose estimate

ED95Y

0.669

In addition to the results already described in the summary(dfe) call, the output now also
contains information about the AIC of the different models and the model weights. All model
fits are given and the E D95 estimate obtained for all models, as well as the model weighted
average of the dose estimates.

A graphical display of the fitted model functions can be obtained via the plot method, here
we just plot the model means but also include the estimated ED95 in the plot (see Figure 8).

R> plot(dfe2, doseEst = TRUE)
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In this paper we have reviewed the MCP-Mod methodology including its most recent devel-
opments and introduced the MCPMod package. The paper is based on version 1.0-1 of the
package, but the package will stay under development. Future versions will, among other fea-
tures, include bootstrap methods for calculating confidence intervals on target dose estimates
and the fitted model function, inclusions of covariates as well as a version of the Golub-Pereyra
algorithm, which allows for box constraints. Updated versions of this document, reflecting
potential changes in the package can be found as a vignette enclosed in the MCPMod package.
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4. Summary and outlook
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