
JSS Journal of Statistical Software
September 2008, Volume 28, Issue 1. http://www.jstatsoft.org/

Computing and Displaying Isosurfaces in R

Dai Feng
University of Iowa

Luke Tierney
University of Iowa

Abstract

This paper presents R utilities for computing and displaying isosurfaces, or three-
dimensional contour surfaces, from a three-dimensional array of function values. A version
of the marching cubes algorithm that takes into account face and internal ambiguities is
used to compute the isosurfaces. Vectorization is used to ensure adequate performance
using only R code. Examples are presented showing contours of theoretical densities, den-
sity estimates, and medical imaging data. Rendering can use the rgl package or standard
or grid graphics, and a set of tools for representing and rendering surfaces using standard
or grid graphics is presented.

Keywords: marching cubes algorithm, density estimation, medical imaging, surface illumina-
tion, shading.

1. Introduction

Isosurfaces, or three-dimensional contours, are a very useful tool for visualizing volume data,
such as data in medical imaging, meteorology, and geoscience. They are also useful for
visualizing functions of three variables, such as fitted response surfaces, density estimates, or
other density functions. The function contour3d, available in the R (R Development Core
Team 2008) package misc3d (Feng and Tierney 2008), uses the marching cubes algorithm
(Lorensen and Cline 1987) to compute a triangular mesh approximating the contour surface
and renders this mesh using either the rgl (Adler and Murdoch 2008) package or standard
or grid graphics. Several approaches are available for rendering multiple contours, including
alpha blending for partial transparency and cutaway views.

The next section presents several examples illustrating the use of contour3d. The third
section describes the particular version of the marching cubes algorithm used, and some
computational issues. The fourth section presents utilities for representing surfaces and for
rendering surfaces using standard or grid graphics. The final section presents some discussion

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Statistical Software

https://core.ac.uk/display/478954775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Computing and Displaying Isosurfaces in R

(a) Epicenter locations (b) Locations with density contour

Figure 1: Locations of earthquake epicenters rendered using rgl.

and directions for future work.

2. Examples

The data set quakes included in the standard R distribution includes locations of epicenters
of 1000 earthquakes recorded in a period since 1964 in a region near Fiji. Figure 1a shows a
scatterplot of the locations. Figure 1b adds a contour of a 3D kernel density estimate, which
helps to reveal the geometrical structure of the data. The scatterplot is created using

R> library("rgl")
R> points3d(quakes$long/22, quakes$lat/28, -quakes$depth/640, size = 2)
R> box3d(col = "gray")
R> title3d(xlab = "long", ylab = "lat", zlab = "depth")

The kernel density estimate is computed using the function kde3d in package misc3d and
rendered using contour3d and the default rgl rendering engine:

R> de <- kde3d(quakes$long, quakes$lat, -quakes$depth, n = 40)
R> contour3d(de$d, level = exp(-12), x = de$x/22, y = de$y/28, z = de$z/640,
+ color = "green", color2 = "gray", add = TRUE)

The d component of the result returned by kde3d is a three-dimensional array of estimated
density values. The argument color is the color used for the side of the surface facing lower
function values; color2 specifies the color for the side facing higher values, and defaults to
the value of color.
The color arguments can be an R color specification or a function of three arguments, the x,
y, and z coordinates of the midpoints of the triangles. This can be used to color the triangles

Journal of Statistical Software 3

Figure 2: Density contour surface for variables Sepal.Length, Sepal.Width, and
Petal.Length from the iris data set, with false color showing the levels of the fourth vari-
able, Petal.Width, predicted by a loess fit.

individually, for example to use false color to encode additional information. Figure 2 shows
a contour of a kernel density estimate of the marginal density of the variables Sepal.Length,
Sepal.Width, and Petal.Length from the iris data (Anderson 1935). Color is used to
encode the level of a loess fit of the fourth variable, Petal.Width, to the first three variables.
This shows the positive correlation between Petal.Length and Petal.Width. The plot is
created by evaluating the expressions

R> de <- kde3d(iris[,1], iris[,2], iris[,3], n = 40)
R> fit <- loess(Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length,
+ data = iris, control = loess.control(surface = "direct"))
R> fitCols <- function(x, y, z) {
+ d <- data.frame(Sepal.Length = x, Sepal.Width = y, Petal.Length = z)
+ p <- predict(fit, d)
+ k <- 32
+ terrain.colors(k)[cut(p, k,levels = FALSE)]
+ }
R> contour3d(de$d, 0.1, de$x, dey, dez, color = fitCols)
R> box3d(col = "gray")
R> title3d(xlab = "Sepal Length", ylab = "Sepal Width",
+ zlab = "Petal Length")

4 Computing and Displaying Isosurfaces in R

(a) Rendered with rgl (b) Rendered with grid graphics

Figure 3: Multiple isosurfaces of the density of a mixture of three tri-variate normal distribu-
tions rendered with partial transparency.

The faceting visible in Figure 2 can be reduced by using the argument smooth. For the
rgl engine specifying smooth = TRUE results in computation of surface normal vectors at the
vertices as renormalized averages of the surface normal vectors of the triangles that share the
vertex; these are then passed on to the underlying rgl rendering function triangles3d for use
in shading the triangles. Shading is described in more detail in Section 4.2. Shading is not
used by default as it increases both computing time and memory usage and is not necessarily
appropriate in all situations.

It is often useful to show multiple contour surfaces in a single plot. When surfaces are nested
some means of revealing inner surfaces is needed. Two possible options are the use of partial
transparency and cutaways. Figure 3 shows five nested contours of the mixture of three
tri-variate normal densities defined by

R> nmix3 <- function(x, y, z) {
+ m <- 0.5
+ s <- 0.5
+ 0.4 * dnorm(x, m, s) * dnorm(y, m, s) * dnorm(z, m, s) +
+ 0.3 * dnorm(x, -m, s) * dnorm(y, -m, s) * dnorm(z, -m, s) +
+ 0.3 * dnorm(x, m, s) * dnorm(y, -1.5 * m, s) * dnorm(z, m, s)
+ }

Multiple contours can be requested by providing a vector of more than one element as the
levels argument to contour3d. Other arguments, such as color, are recycled as appropriate.
Different levels of transparency, specified by the alpha argument, are used to produce the
plot in 3a:

Journal of Statistical Software 5

R> n <- 40
R> k <- 5
R> alo <- 0.1
R> ahi <- 0.5
R> cmap = heat.colors
R> lev <- seq(0.05, 0.2, length.out = k)
R> col <- rev(cmap(length(lev)))
R> al <- seq(alo, ahi, length.out = length(lev))
R> x <- seq(-2, 2, length.out = n)
R> contour3d(nmix3, lev, x = x, y = x, z = x, color = col, alpha = al)

In this case the first argument to contour3d is a vectorized function of three arguments,
and the arguments x, y, and z that define the grid where the function is to be evaluated are
required.
The plots shown so far have been rendered using rgl, with the views shown in the paper created
with snapshot3d. contour3d also supports rendering in standard and grid graphics. This
can be useful for incorporating contour surface plots in multiple plot displays or for adding
a contour surface to a persp or wireframe plot. The rendering engine to use is specified by
the engine argument; currently supported engines are "rgl", the default, "standard", and
"grid". Figure 3b is rendered using the "grid" engine in a PDF device that supports partial
transparency by the code

R> alo <- 0.05
R> ahi <- 0.3
R> al <- seq(alo, ahi, length.out = length(lev))
R> pdf("normal-grid.pdf", version = "1.4", width = 4, height = 4)
R> contour3d(nmix3, lev, x = x, y = x, z = x, color = col,
+ alpha = al, engine = "grid")
R> dev.off()

Rendering in standard and grid graphics is done by filling polygons, and there currently does
not appear to be a reliable way to avoid having polygon borders slightly visible when partial
transparency is used. The border effect varies with the device and anti-alias settings.
Cutaways are another alternative for making inner contour surfaces visible. contour3d sup-
ports a mask argument for specifying which cells are to contribute to the contour surface.
The argument can be a logical array with dimensions matching the data array argument, or a
vectorized function returning logical values. Only cells for which the mask value is true at all
eight vertices contribute to the contour surface. The mask argument can also specify separate
masks for each level as a list of logical arrays or functions. Figure 4 shows the result obtained
by the code

R> cmap <- rainbow
R> col <- rev(cmap(length(lev)))
R> m <- function(x,y,z) x > .25 | y < -.3
R> contour3d(nmix3, lev, x = x, y = x, z = x,
+ color = col, color2 = "lightgray",
+ mask = m, engine = "standard",
+ scale = FALSE, screen=list(z = 130, x = -80))

6 Computing and Displaying Isosurfaces in R

Figure 4: Isosurfaces of a normal mixture density rendered by standard graphics using a
cutaway strategy to show the nested contours.

A rainbow color scale is used for the outside of the contours, with a neutral light gray color
for the inside. The scale = FALSE argument specifies that the aspect ratio of the data should
be retained. The viewpoint is adjusted using the screen argument, which specifies rotations
in degrees around screen x, y, and z axes; this interface is based on the interface for viewpoint
specification used in the lattice functions cloud and wireframe (Sarkar 2008).

Volume data consisting of measurements on a regular three-dimensional grid arise in many
areas, including engineering, geoscience, meteorology, and medical imaging. Isosurfaces of
raw or smoothed data can be very useful for visualizing volume data. Figure 5 shows two
contours of a CT scan of an engine block,1 a standard example in the scientific visualization
literature. After reading the three-dimensional data array into a variable Engine, the plot is
produced by

R> contour3d(Engine, c(120, 200), color = c("lightblue", "red"),
+ alpha=c(0.1, 1))

The isosurface levels 120 and 200 were chosen by trial and error after examining a histogram
of the intensity levels produced by hist(Engine).

Figure 6 presents contours from two related data volumes from a study carried out at the
Iowa Mental Health Clinical Research Center at the University of Iowa. The small red and
yellow contours represent contours of mean differences in standardized blood flow between
PET images for an active and rest period in a finger tapping experiment. These contours
indicate areas of the brain that are activated in the finger tapping activity. To provide a
spatial reference these contours are placed within a contour surface of a reference image of
the brain constructed from normalized MR images of the subjects in the experiment. The

1The data set used was obtained from http://www.sph.sc.edu/comd/rorden/engine.zip.

http://www.sph.sc.edu/comd/rorden/engine.zip

Journal of Statistical Software 7

Figure 5: Two isosurfaces of a CT scan of an engine block.

Figure 6: Isosurfaces of a brain and two intensity differences between two tasks in a PET
experiment

8 Computing and Displaying Isosurfaces in R

data are stored in Analyze format, a common format used for medical imaging data, and can
be read using functions provided by the AnalyzeFMRI package (Marchini and de Micheaux
2007). To construct this image we need to compute the two sets of contour surfaces separately
and then render them as a single scene. For the rgl engine joint rendering is needed to ensure
that transparency is handled correctly. Joint rendering is essential for the standard and grid
engines since these draw the triangles making up a scene in back to front order.

The code for reading in the brain template and constructing the contours is given by

R> library("AnalyzeFMRI")
R> template <- f.read.analyze.volume("template.img")
R> template <- aperm(template,c(1,3,2,4))[,,95:1,1]
R> brain <- contour3d(template, level = 10000, alpha = 0.3, draw = FALSE)

The argument draw = FALSE asks contour3d to compute and return the contour surface as
a triangle mesh object without drawing it. The third line in the code is used to adjust the
orientation of the image array and remove a fourth dimension that is not needed. The contour
surfaces for the mean activation level are computed by

R> tm <- f.read.analyze.volume("tmap1-8.img")[,,95:1]
R> brainmask <- template > 10000
R> activ <- contour3d(ifelse(brainmask, tm, 0),level = 4:5,
+ color = c("red", "yellow"), alpha = c(0.3, 1),
+ draw = FALSE)

The result in this case is a list of two triangle mesh structures representing the two contour
surfaces requested. The basic rendering functions drawScene for standard and grid graphics
and drawScene.rgl for rgl graphics accept either a single triangle mesh structure or a triangle
mesh scene represented by a list of triangle mesh structures as argument. The three contour
surfaces can therefore be rendered using the rgl engine with

R> drawScene.rgl(c(list(brain), activ))

The function drawScene with an appropriate engine argument can be used for rendering
with standard or grid graphics.

3. Computing isosurfaces

This section presents the marching cubes algorithm and some computational considerations.

3.1. The marching cubes algorithm

The marching cubes algorithm produces a triangular mesh approximation to the isosurface
defined by F (x, y, z) = α over a rectangular domain by a divide and conquer method starting
from a set of values of the function F on a regular grid in the domain. The basic idea is that
the grid divides the domain into cubes, and that how the surface intersects the cubes can
be determined independently for each cube. For each cube, the first question is whether the
cube intersects the isosurface or not. If function values at one or more of the vertices of a

Journal of Statistical Software 9

Case 0 Case 1 Case 2 Case 3 Case 4

Case 5 Case 6 Case 7 Case 8 Case 9

Case 10 Case 11 Case 12 Case 13 Case 14

Figure 7: The original lookup table of the marching cubes algorithm

cube are above the target value α and one or more function values are below, then the cube
must contribute to the isosurface (for simplicity this discussion assumes all function values
are strictly above or strictly below the target value α). After determining which edges of the
cube are intersected by the isosurface, a triangular topological representation of the surface
can be constructed.

Since there are eight vertices for each cube and the value of F (x, y, z)− α at each vertex can
be either negative or positive, there are 28 = 256 cases for each cube. Due to topological
equivalence by rotation and switching between the positive and negative values, however,
there are in total 15 distinct configurations that need to be considered; these configurations
are shown in Figure 7, which was generated based on lookup tables used in contour3d.
There are no triangles in configuration 0, since values of F (x, y, z) − α at the vertices are
either all positive or all negative. For configuration 1, all vertices, except the one at the
front lower left corner, have the same signs while the front lower left corner has the opposite
sign. Therefore, the isosurface separates the unique vertex from the others. The topological
representation of the isosurface within a cube consists of a triangle or several triangles; the
vertices of these triangles are the points at which the isosurface intersects the cube edges,
and are determined by linear interpolation. The isosurface representation is accumulated by
iterating, or marching, through all the cubes.

There has been extensive research on improving the quality of the topological representation
produced by the marching cubes algorithm. Nielson and Hamann (1991) pointed out that
there could be an ambiguity in the face of a cube when all four edges of the face are intersected

10 Computing and Displaying Isosurfaces in R

and the vertices on diagonal corners have the same signs, but the signs on the right diagonal
are different than on the left. Face ambiguity is illustrated in Figure 8. From this figure, the

Figure 8: Illustration of face ambiguity

vertices on the right diagonal corners could be either separated (in case (a)) or non-separated
(in case (b)). In this case, further calculation is needed to decide which pairs of intersections
to connect. A remedy for face ambiguity can be based on the assumption that F is a bilinear
function over a face,

F (s, t) = (1− s, s)
(
A B
D C

)(
1− t
t

)
with A, B, C, and D the function values at the vertices. It is easy to verify that the contour
{(s, t);F (s, t) = α} is a hyperbola. The asymptotes are {(s, t); s = sα} and {(s, t); t = tα},
where

sα =
A−B

A+ C −B −D

tα =
A−D

A+ C −B −D

So,

F (sα, tα) =
AC −BD

A+ C −B −D
The face ambiguity can be addressed by comparing the value at (sα, tα) with those at the
vertices of the face. In Figure 8 for example, suppose the values of A − α and C − α are
positive, and B − α and D − α are negative. If F (sα, tα) < α, A and C are separated as in
Figure 9a; otherwise, A and C are connected as in Figure 9b.

In addition to face ambiguities, Chernyaev (1995) recognized that there are internal ambigui-
ties, in terms of the representation of the trilinear interpolant in the interior of the cube. For
example, in Figure 10, case 4 has two sub-cases. Two marked vertices could either be sepa-
rated (case 4.1.1) or connected inside the cube (case 4.1.2). Furthermore, in order to make the
triangular representation of the isosurface more conformable to the truth, an additional vertex
might be needed (see case 7.3 in Figure 10 for example). The contour3d function mainly
uses the algorithm suggested in Chernyaev (1995). The enlarged lookup table in Chernyaev
(1995) is shown in Figure 10; this figure was generated based on lookup tables in contour3d.
Note that there are still some sub-subcases which are not exhibited in the enlarged table. For
example, for case 13.2 there are 6 sub-subcases, and only the one with positive vertices on
the top face connected is shown.

Journal of Statistical Software 11

(a) Connected F (sα, tα) < α (b) Separated F (sα, tα) > α

Figure 9: Resolving face ambiguity

3.2. Computational considerations

The core of the marching cubes algorithm is table-lookup. There are several tables in
contour3d used to determine how an isosurface intersects each cube. For example, hav-
ing 256 entries (each corresponding to one case), table Faces specifies which faces need to
be checked to make further judgment on sub-cases. Table Edges shows, for each case, which
edges are intersected by the isosurface. These tables are generated automatically based on
basic configurations, their rotations, and switching of the positive and negative values.

In order to match each cube with a table entry, the execution flow could be serial, using a loop
to iterate through the cubes one-by-one. This approach, however, is not very efficient in pure R
code, although a compiler might be able to improve this. Besides, R facilitates vectorization
very well by functions such as ifelse, which and so on. One important prerequisite for
vectorization is that there is no dependency between successive inputs and outputs. In order
to vectorize the marching cubes algorithm, each operation is executed on all cubes (or cubes
with the same properties) simultaneously on the condition that there is no dependency among
cubes. For example, the determination on cases of each cube and vertices of triangles (the
bilinear interpolation) can be vectorized under careful coding. Computation of the table
lookup index values can also be vectorized if care is taken. For example, for basic case 6 there
are face and internal ambiguities. Two logical variables, index1 and index2, are assigned for
each ambiguity and a combined index is computed as index = index1 + 2 * index2.

4. Rendering surfaces in standard and grid graphics

Surfaces, such as three dimensional contour surfaces or surfaces representing functions of two
variables, can be rendered by approximating the surfaces by a triangular mesh and passing
the mesh on to a rendering function. The facilities provided by the rgl package are very well
suited for interactive rendering and exploration, and can be used to generate snapshots as
PNG images for inclusion in documents. At times it can also be useful to render triangle mesh
surfaces using R’s standard or grid graphics systems (Murrell 2005). Rendering in standard
and grid graphics can be done by drawing the triangles in back to front order. The three-

12 Computing and Displaying Isosurfaces in R

Case 0 Case 1 Case 2 Case 3.1 Case 3.2

Case 4.1.1 Case 4.1.2 Case 5 Case 6.1.1 Case 6.1.2

Case 6.2 Case 7.1 Case 7.2 Case 7.3 Case 7.4.1

Case 7.4.2 Case 8 Case 9 Case 10 Case 10.1.2

Case 10.2 Case 11 Case 12.1.1 Case 12.1.2 Case 12.2

Case 12.3 Case 13.1 Case 13.2 Case 13.3 Case 13.4

Case 13.5.1 Case 13.5.2 Case 14

Figure 10: The lookup table of the marching cubes 33 algorithm

dimensional structure is brought out by adjusting the colors of the triangles according to a
simple lighting model based on the direction of the triangle’s surface normal vector relative
to the position of the viewer and a lighting source. This section briefly describes the triangle
data structure used in package misc3d and presents the some details of the rendering method
along with some illustrative examples.

Journal of Statistical Software 13

4.1. Triangular mesh surfaces

The triangle mesh data structure contains information representing the triangles, along with
characteristics of the individual triangles and the surface as a whole that are used in rendering.
The current representation is as a list object with the S3 class Triangles3D. For a mesh
consisting of n triangles this structure currently includes components v1, v2, and v3, which
are n×3 matrices containing the coordinates of the vertices of the triangles. A more compact
representation that takes into account the sharing of vertices is possible but not currently
used.

Properties specified in the structure include color and color2 for the color of the two sides
of the triangles, alpha for the transparency level, fill indicating whether the triangles are
to be filled, and col.mesh for the color of triangle edges. A final property, smooth, indicates
whether shading is to be used to give the surface a smoother appearance. The color fields
can contain a single color specification, a vector containing a separate color for each triangle,
or a vectorized function used to compute the colors based on the coordinates of the triangle
centers. color represents the color for the side for which the vertices in v1, v2, and v3 appear
in clockwise order. The smooth property is a non-negative integer value. For the standard
and grid engines it specifies the level of shading to be used as described below in Section 4.2.
For the rgl engine a positive value indicates that vertex normal vectors should be computed
and passed to the trinangles3d rendering function.

Several functions are available for creating and manipulating triangle mesh objects. The
functions contour3d and parametric3d create and optionally render contour surfaces and
surfaces in three dimensions represented by a function of two parameters, respectively. The
function surfaceTriangles creates a triangle mesh representation of a surface described by
values over a rectangular grid. The constructor function makeTriangles creates a triangle
mesh data structure from vertex specifications and property arguments. updateTriangles
can be used to modify triangle properties, and scaleTriangles and translateTriangles to
adjust the mesh itself.

4.2. Rendering triangular mesh surfaces

Triangle mesh scenes are rendered by the function drawScene. This function performs the
specified viewing transformation, computes colors based on a lighting model, possibly adding
shading, performs a perspective transformation if requested, and passes the resulting modified
scene on to the internal renderScene function. renderScene in turn merges the triangles into
a single triangle mesh structure, optionally adds depth cuing, determines the z order of the
triangles based on the triangle centers, and draws the triangles from back to front using the
appropriate routine for drawing filled polygons using standard or grid graphics. The following
subsections describe the lighting, shading, and depth cuing steps in more detail.

Illumination

Local illumination models (also called lighting or reflection models) provide a means of show-
ing three dimensional structure in a two dimensional view by modeling the way in which light
is reflected towards the viewer from a particular point on a surface. Simple models used in
computer graphics usually consider two forms of light, ambient light with intensity Ia and
light from one or more point light sources with intensity Ii, and two forms of reflection, diffuse

14 Computing and Displaying Isosurfaces in R

N
L R

θθ θθ

V

H

Figure 11: Vectors used in the reflection model. L is the direction to the light source, V is
the direction to the viewer, and N is the surface normal. R is the reflection vector and H is
the half-way vector proportional to (L+ V)/2.

and specular. The light intensity seen by the viewer IV is the sum of the intensities of an
ambient component IV a, a diffuse component IV d, and a specular component IV s. Separate
intensities are used for the red, green, and blue channels but this is suppressed in the following
discussion. The description given here is based mainly on Foley, van Dam, Feiner, and Hughes
(1990, Section 16.1).

Ambient light represents a diffuse, non-directional source of light that illuminates all surfaces
equally. The ambient component seen by the viewer is usually represented as

IV a = IakaOa

where ka is an ambient reflection coefficient associated with the object being rendered and
Oa represents the object’s ambient color.

Diffuse or Lambertian reflection reflects light from a point source equally in all directions
away from the surface. The intensity of light from source i reflected towards the viewer is
determined by the angle between the unit vector Li in the direction of the light source and
the unit normal vector N at the point of interest on the surface. The intensity of light from
a single light source is

IikdOd cos(θLi,N) = IikdOd(Li ·N)

where kd is the diffuse reflection coefficient associated with the object and Od is the object’s
diffuse color. The intensity of diffuse light seen by the viewer is thus

IV d =
∑
i

IikdOd(Li ·N)

Specular reflection is the reflection of light off a shiny object. An ideal reflector reflects this
light only in the direction of the reflection unit vector R, shown in Figure 11, and the color of

Journal of Statistical Software 15

ambient ambient reflection coefficient ka
diffuse diffuse reflection coefficient kd
specular specular reflection coefficient ks
exponent specular exponent n
sr contribution of object color to specular color

Table 1: Components of a material structure

metal shiny dull default
ambient 0.45 0.36 0.3 0.3
diffuse 0.45 0.72 0.8 0.7
specular 1.50 1.08 0 0.1
exponent 25 20 10 10
sr 0.50 0 0 0

Table 2: Some pre-defined materials.

the reflected light matches the color of the light source. The Phong model (Bui-Tuong 1975)
is a commonly used model for imperfect reflectors that represents the intensity of specularly
reflected light seen by the viewer as a smooth function of the angle between the reflection
vector R and a unit vector V in the direction of the viewer. This angle is twice the angle
between the surface normal and the half-way vector Hi proportional to (Li + V)/2, which is
easier to compute. The specific version we have used represents the intensity of light from a
single source specularly reflected towards the viewer as

IiksOs cosn(θHi,N) = IiksOs(Hi ·N)n

where ks is the specular reflection coefficient of the object, Os is the object’s specular color,
and n is called the specular reflection exponent. For a perfect reflector the specular color is
identical to the light color and the exponent is infinite. The total specular contribution is∑

i

IiksOs(Hi ·N)n

We use a simplified version of the model just described: Only a single white point light
source is supported, and ambient light is white with the same intensity as the point light
source. The ambient and diffuse object colors are assumed to the identical, and the specular
object color is assumed to be a convex combination of the diffuse object color and white.
The material characteristics are collected into a material structure with components listed in
Table 1. Several materials are pre-defined, with characteristics based loosely on those found
in MATLAB (The MathWorks, Inc. 2007); these are shown in Table 2. Rendering functions
take a material argument that can be a character string naming a pre-defined material type
or a list of the required components. Figure 12 shows a contour surface of a kernel density
estimate from three variables of the iris data set rendered using the four pre-defined materials.
The figure is created by

16 Computing and Displaying Isosurfaces in R

Figure 12: Contour surface of kernel density estimate for the first three variables in the iris
data set rendered using the four standard material settings.

R> xlim <- c(4, 8)
R> ylim <- c(1, 5)
R> zlim <- c(0, 7)
R> de <- kde3d(iris[,1], iris[,2], iris[,3], n = 40,
+ lims = c(xlim, ylim, zlim))
R> opar <- par(mar = c(1, 1, 4, 1), mfrow = c(2, 2))
R> for (m in c("default", "dull", "metal", "shiny")) {
+ contour3d(de$d, 0.1, de$x, dey, dez,color = "lightblue",
+ engine = "standard", material = m)
+ title(paste('material = "', m, '"', sep = ""))
+ }
par(opar)

Journal of Statistical Software 17

(a) no shading (b) shading with smooth = 2

Figure 13: Contour surface of kernel density estimate for the first three variables in the iris
data set rendered using no additional shading and using two iterations of shading.

Shading

A triangular mesh is usually used as an approximation to a smooth surface. Rendering
with an illumination model renders the approximate surface and clearly shows the facets
of the approximation. Shading uses color variations within a facet to create a smoother
representation. These color variations are computed based on surface normals. Suppose we
have surface normals at each of the vertices of a facet. These may be available analytically
or can be approximated by averaging the normals of the facets that share the vertex. One
approach, known as Gouraud shading or intensity interpolation shading, computes colors for
each vertex based on a lighting model and the vertex normals, and linearly interpolates colors
across the facet. A second approach, Phong shading or normal vector interpolation shading,
computes an interpolated normal vector for points within a facet and uses the interpolated
normal vector to determine an appropriate color for the point.

Shading models are usually used at the pixel level, and often implemented in hardware. rgl
uses this approach via the underlying OpenGL library. As a simple, though computationally
costly, alternative for standard and grid graphics we can divide each triangle into four sub-
triangles by splitting each edge in the middle, and apply either shading algorithm to the
sub-triangles. This process can in principle be iterated several times. The smooth argument
to drawScene specifies one plus the number of times to divide the triangles and uses the Phong
shading model to compute appropriate colors. For smooth = 1 there is no sub-division: the
vertex normals are computed by averaging the triangle normals for triangles sharing the
vertex, and a new surface normal for each triangle is then computed by interpolation of its
vertex normals.

Figure 13 shows the density estimate contour surface for the iris data rendered with no shading
and with smooth = 2 corresponding to one level of subdivision. The figure is created with

18 Computing and Displaying Isosurfaces in R

R> opar <- par(mar = c(1, 1, 4, 1))
R> contour3d(de$d, 0.1, de$x, dey, dez, color = "lightblue",
+ engine = "standard", smooth = 0)
R> contour3d(de$d, 0.1, de$x, dey, dez, color = "lightblue",
+ engine = "standard", smooth = 2)
par(opar)

Aside from the higher cost in computing time and memory usage, using too high a level
of smooth can cause the rendering quality to deteriorate as a result of artifacts due to the
use of polygon filling for rendering the result. This may be exacerbated on devices that use
anti-aliasing.

Atmospheric attenuation

Simulated atmospheric attenuation can be used as a form of depth cuing to help indicate
which parts of a scene are closer to the viewer and which are farther away. This approach
blends the colors of more distant objects with the background color. The argument depth to
the function drawScene specifies whether this form of depth cuing is to be used; if depth is
non-zero then the rendering code computes the z values and maximal z value zmax for the
scene and sets

s =
1 + depth× z

1 + zmax

Then the color intensities I are modified to sI + (1− s)Ibg where Ibg represents the intensity
of the background color.
Figure 14 illustrates depth cuing by simulated atmospheric attenuation using the elevation
data for the Maunga Whau volcano included in the R distribution. Figure 14a uses no depth
cuing and Figure 14b uses depth=0.3. The code to create the figures is

(a) no depth cuing (b) with depth cuing

Figure 14: Surface plot of the Maunga Whau volcano with and without depth cuing and using
smooth = 3 level shading.

Journal of Statistical Software 19

R> z <- 2 * volcano
R> x <- 10 * (1:nrow(z))
R> y <- 10 * (1:ncol(z))
R> vtri <- surfaceTriangles(x, y, z, color =
+ function(x, y, z) {
+ cols <- terrain.colors(diff(range(z)))
+ cols[z - min(z) + 1]
+ })
R> opar <- par(mar = rep(0, 4))
R> drawScene(updateTriangles(vtri, material = "default", smooth = 3),
+ screen = list(x = 40, y = -40, z = -135), scale = FALSE)
R> drawScene(updateTriangles(vtri, material = "default", smooth = 3),
+ screen = list(x = 40, y = -40, z = -135), scale = FALSE,
+ depth = 0.3)
R> par(opar)

4.3. Triangular mesh scenes and adding data points

The drawScene function can render a single triangular mesh or a scene consisting of a list
of triangular mesh objects. This is useful for rendering multiple contour surfaces of a single
function or for displaying contour surfaces of related functions or data sets in a single plot;
this was used in constructing Figure 6. A somewhat frivolous example is shown in Figure 15.

Intersecting surfaces will be handled properly by the rgl engines but will appear ragged in
the standard and grid engines due to the back to front drawing of triangles.

Rendering is restricted to triangular mesh objects in order to allow the use of vectorized
computations at the R level. Quadrilaterals and other polynomial surfaces can be handled by

Figure 15: A scene combining several triangular mesh objects.

20 Computing and Displaying Isosurfaces in R

Figure 16: Earthquake epicenters and contour surface of kernel density estimate with points
represented by small tetrahedra and smooth = 2 shading of the contour surface.

decomposing them into triangles; this is the approach taken in surfaceTriangles. Adding
data points to a plot, for example to a plot of a contour surface of a kernel density estimate
as in Figure 1b, can be useful but does not fit directly into the triangular mesh framework.
One possible solution is to represent each data point by a small tetrahedron. This can be
done by the pointsTetrahedra function. An example is shown in Figure 16 and is created
by the code

R> de <- kde3d(quakes$long, quakes$lat, -quakes$depth, n = 40)
R> v <- contour3d(de$d, exp(-12),de$x/22, de$y/28, de$z/640,
+ color = "green", color2 = "gray", draw = FALSE,
+ smooth = 2)
R> p <- pointsTetrahedra(quakes$long/22, quakes$lat/28, -quakes$depth/640,
+ size = 0.005)
R> drawScene(list(v, p))

The size argument specifies the size of the point tetrahedra relative to the data ranges.

4.4. Integrating with persp and wireframe plots

It can be useful to incorporate contour surfaces or other surfaces rendered by the methods
described here within plots created by persp or the lattice wireframe function. As a simple
illustration, these functions can be used to add axes to a contour surface plot. Figure 17
shows the results. These examples use a contour surface for three variables from the iris data
computed by

Journal of Statistical Software 21

(a) wireframe (b) persp

Figure 17: Using wireframe or persp to provide axes and labels for a contour surface of a
kernel density estimate for the iris data.

R> xlim <- c(4, 8)
R> ylim <- c(1, 5)
R> zlim <- c(0, 7)
R> de <- kde3d(iris[,1], iris[,2], iris[,3], n = 40,
+ lims = c(xlim, ylim, zlim))
R> v <- contour3d(de$d, 0.1, de$x, dey, dez, color = "lightblue",
+ draw = FALSE)

Incorporating a contour surface in a wireframe plot is fairly straightforward and involves
defining a custom panel.3d.wireframe function:

R> library("lattice")
R> w <- wireframe(matrix(zlim[1], 2, 2) ~ rep(xlim, 2) * rep(ylim, each = 2),
+ xlim = xlim, ylim = ylim, zlim = zlim,
+ aspect = c(diff(ylim) / diff(xlim), diff(zlim) / diff(xlim)),
+ xlab = "Sepal Length", ylab = "Sepal Width",
+ zlab = "Petal Width", scales = list(arrows = FALSE),
+ panel.3d.wireframe = function(x, y, z, rot.mat, distance,
+ xlim.scaled, ylim.scaled,
+ zlim.scaled, ...) {
+ scale <- c(diff(xlim.scaled) / diff(xlim),
+ diff(ylim.scaled) / diff(ylim),
+ diff(zlim.scaled) / diff(zlim))
+ shift <- c(mean(xlim.scaled) - mean(xlim) * scale[1],
+ mean(ylim.scaled) - mean(ylim) * scale[2],
+ mean(zlim.scaled) - mean(zlim) * scale[3])
+ P <- rbind(cbind(diag(scale), shift), c(0, 0, 0, 1))

22 Computing and Displaying Isosurfaces in R

+ rot.mat <- rot.mat %*% P
+ drawScene(v, screen = NULL, R.mat = rot.mat,
+ distance = distance, add = TRUE, scale = FALSE,
+ light = c(.5, 0, 1), engine = "grid")
+ })
R> print(w)

The panel function needs to compute the shifting and scaling that is done by lattice and
incorporate these into the transformation matrix that is applied to the pre-computed contour.
The call to drawScene with add = TRUE is then used to draw in the graphics viewport set up
by lattice prior to calling the panel function.
Integration with persp is more involved because of the need to re-draw the bounding box.
An initial plotting region can be set up with

R> M <- persp(xlim, ylim, matrix(zlim[1], 2, 2), theta = 30, phi = 30,
+ col = "lightgray", zlim = zlim, ticktype = "detailed",
+ scale = FALSE, d = 4, xlab = "Sepal Length",
+ ylab = "Sepal Width", zlab = "Petal Width")

This draws a light gray surface on the bottom of the region, along with axes and a bounding
box. Evaluating

R> drawScene(v, screen = NULL, R.mat = t(M), add = TRUE, scale = FALSE,
+ light = c(.5, 0, 1))

adds the contour surface, but covers part of the front of the bounding box. The homogeneous
coordinates transformation matrix used by lattice is the transpose of the matrix used by
persp; we follow the lattice approach.
To reconstruct the bounding box we need a version of the R function trans3d that includes
the z values of the transformed coordinates,

R> trans3dz <- function (x, y, z, pmat) {
+ tr <- cbind(x, y, z, 1) %*% pmat
+ list(x = tr[, 1]/tr[, 4], y = tr[, 2]/tr[, 4], z = tr[, 3]/tr[, 4])
+ }

and we use this to compute the transformed bounding box,

R> g <- as.matrix(expand.grid(x = 1:2, y = 1:2, z = 1:2))
R> b <- trans3dz(xlim[g[,1]], ylim[g[,2]], zlim[g[,3]], M)

and identify the front-most corner and its three neighbors:

R> fci <- which.max(b$z)
R> fc <- g[fci,]
R> coord2index <- function(coord)
+ as.integer((coord - 1) %*% c(1, 2, 4) + 1)
R> v1i <- coord2index(c(if (fc[1] == 1) 2 else 1, fc[2], fc[3]))
R> v2i <- coord2index(c(fc[1], if (fc[2] == 1) 2 else 1, fc[3]))
R> v3i <- coord2index(c(fc[1], fc[2], if (fc[3] == 1) 2 else 1))

Journal of Statistical Software 23

Finally, the damaged bounding box is redrawn by

R> segments(b$x[fci], b$y[fci], b$x[v1i], b$y[v1i], lty = 3)
R> segments(b$x[fci], b$y[fci], b$x[v2i], b$y[v2i], lty = 3)
R> segments(b$x[fci], b$y[fci], b$x[v3i], b$y[v3i], lty = 3)

Perhaps in the future a simpler approach might become available.

5. Discussion

The contour surface computation and rendering functions presented in this paper could be
enhanced in a number of ways. Adding support for bounding boxes and axes to contour3d
might be useful; the rgl facilities used in some of the examples and the approach of to integrat-
ing with persp or wireframe shown in Section 4.4 could serve as a starting point. Another
useful addition might be a formula-based interface.

Several improvements in performance and memory use are also worth exploring. In cases
where a function is provided, rather than a volume data array, it is possible to evaluate the
function on the three-dimensional grid a small number of slices at a time and accumulate the
contours. This can reduce memory use in some situations. Another option is to use triangle
decimation (Schroeder, Zarge, and Lorensen 1992) to reduce the number of triangles needed
to adequately represent a surface. It may also be useful to provide a limit on the number
of triangles or the number of cells intersecting the surface to avoid high memory usage and
paging in interactive settings when a user inadvertently requests a computation that would
produce a contour surface consisting of an excessive number of triangles.

As shown by the examples in Section 2, isosurfaces or contour surfaces can be very useful in
visualizing volume data and functions of three variables. The misc3d package also supports
several other visualizations, includes an interactive tool for visualizing three axis-parallel slices
of a data array provided by slices3d, and a visualization image3d based on rendering points
or sprites with color and transparency determined by the data value. Other approaches,
including cut planes, carpet plots, and ray casting methods may be added in the future.

Acknowledgments

This work was supported in part by National Science Foundation grant DMS 06-04593. Some
of the computations for this paper were performed on equipment funded by National Science
Foundation grant DMS 06-18883. The authors would like to thank Ronald Pierson for making
available the brain imaging data used in one of the examples.

References

Adler D, Murdoch D (2008). rgl: 3D Visualization Device System (OpenGL). R package
version 0.77, URL http://CRAN.R-project.org/package=rgl.

Anderson E (1935). “The Irises of the Gaspe Peninsula.” Bulletin of the American Iris Society,
59, 2–5.

http://CRAN.R-project.org/package=rgl

24 Computing and Displaying Isosurfaces in R

Bui-Tuong P (1975). “Illumination for Computer Generated Pictures.” Communications of
the ACM, 18(6), 311–317.

Chernyaev EV (1995). “Marching Cubes 33: Construction of Topologically Correct Isosur-
faces.” Technical Report CN/95-17, CERN, Institute for High Energy Physics.

Feng D, Tierney L (2008). misc3d: Miscellaneous 3D Plots. R package version 0.6-2, URL
http://CRAN.R-project.org/package=misc3d.

Foley JD, van Dam A, Feiner SK, Hughes JF (1990). Computer Graphics: Principles and
Practice. 2nd edition. Addison-Wesley, Reading, MA.

Lorensen WE, Cline HE (1987). “Marching Cubes: A High Resolution 3D Surface Recon-
struction Algorithm.” Computer Graphics, 21(4), 163–169.

Marchini JL, de Micheaux PL (2007). AnalyzeFMRI: Functions for Analysis of fMRI
Datasets Stored in the ANALYZE Format. R package version 1.1-7, URL http://CRAN.
R-project.org/package=AnalyzeFMRI.

Murrell P (2005). R Graphics. Chapman & Hall/CRC, Boca Raton, FL. ISBN 1-584-88486-X.

Nielson GM, Hamann B (1991). “The Asymptotic Decider: Resolving the Ambiguity in
Marching Cubes.” In “VIS ’91: Proceedings of the 2nd conference on Visualization ’91,”
pp. 83–91. IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-2245-8.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
ISBN 978-0-387-75968-5.

Schroeder WJ, Zarge JA, Lorensen WE (1992). “Decimation of Triangle Meshes.” Computer
Graphics, 26(2), 65–70.

The MathWorks, Inc (2007). MATLAB – The Language of Technical Computing, Ver-
sion 7.5. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.
com/products/matlab/.

Affiliation:

Dai Feng, Luke Tierney
Department of Statistics & Actuarial Science
University of Iowa
Iowa City, IA 52242, United States of America
E-mail: dafeng@stat.uiowa.edu, luke@stat.uiowa.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 28, Issue 1 Submitted: 2008-05-28
September 2008 Accepted: 2008-09-04

http://CRAN.R-project.org/package=misc3d
http://CRAN.R-project.org/package=AnalyzeFMRI
http://CRAN.R-project.org/package=AnalyzeFMRI
http://www.R-project.org/
http://www.R-project.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
mailto:dafeng@stat.uiowa.edu
mailto:luke@stat.uiowa.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Examples
	Computing isosurfaces
	The marching cubes algorithm
	Computational considerations

	Rendering surfaces in standard and grid graphics
	Triangular mesh surfaces
	Rendering triangular mesh surfaces
	Illumination
	Shading
	Atmospheric attenuation

	Triangular mesh scenes and adding data points
	Integrating with persp and wireframe plots

	Discussion

