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Abstract

GAMLSS is a general framework for fitting regression type models where the distribu-
tion of the response variable does not have to belong to the exponential family and includes
highly skew and kurtotic continuous and discrete distribution. GAMLSS allows all the
parameters of the distribution of the response variable to be modelled as linear/non-linear
or smooth functions of the explanatory variables. This paper starts by defining the sta-
tistical framework of GAMLSS, then describes the current implementation of GAMLSS
in R and finally gives four different data examples to demonstrate how GAMLSS can be
used for statistical modelling.
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1. What is GAMLSS?

1.1. Introduction

Generalized additive models for location, scale and shape (GAMLSS) are semi-parametric
regression type models. They are parametric, in that they require a parametric distribu-
tion assumption for the response variable, and “semi” in the sense that the modelling of
the parameters of the distribution, as functions of explanatory variables, may involve using
non-parametric smoothing functions. GAMLSS were introduced by Rigby and Stasinopoulos
(2001, 2005) and Akantziliotou, Rigby, and Stasinopoulos (2002) as a way of overcoming some
of the limitations associated with the popular generalized linear models, GLM, and general-
ized additive models, GAM (see Nelder and Wedderburn 1972; Hastie and Tibshirani 1990,
respectively).

http://www.jstatsoft.org/
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In GAMLSS the exponential family distribution assumption for the response variable (y) is
relaxed and replaced by a general distribution family, including highly skew and/or kurtotic
continuous and discrete distributions. The systematic part of the model is expanded to
allow modelling not only of the mean (or location) but other parameters of the distribution
of y as, linear and/or non-linear, parametric and/or additive non-parametric functions of
explanatory variables and/or random effects. Hence GAMLSS is especially suited to modelling
a response variable which does not follow an exponential family distribution, (e.g., leptokurtic
or platykurtic and/or positive or negative skew response data, or overdispersed counts) or
which exhibit heterogeneity, (e.g., where the scale or shape of the distribution of the response
variable changes with explanatory variables(s)).

There are several R-packages that can be seen as related to the gamlss packages and to its R
implementation. The original gam package (Hastie 2006), the recommenced R package mgcv
(Wood 2001), the general smoothing splines package gss (Gu 2007) and the vector GAM
package, VGAM (Yee 2007). The first three deal mainly with models for the mean from an
exponential family distribution. The VGAM package allows the modelling from a variety
of different distributions (usually up to three parameter ones) and also allows multivariate
responses.

The remainder of Section 1 defines the GAMLSS model, available distributions, available
additive terms and model fitting. Section 2 describes the R gamlss package for fitting the
GAMLSS model. Section 3 gives four data examples to illustrate GAMLSS modelling.

1.2. The GAMLSS model

A GAMLSS model assumes independent observations yi for i = 1, 2, . . . , n with probability
(density) function f(yi|θi) conditional on θi = (θ1i, θ2i, θ3i, θ4i) = (µi, σi, νi, τi) a vector of four
distribution parameters, each of which can be a function to the explanatory variables. We
shall refer to (µi, σi, νi, τi) as the distribution parameters. The first two population distribution
parameters µi and σi are usually characterized as location and scale parameters, while the
remaining parameter(s), if any, are characterized as shape parameters, e.g., skewness and
kurtosis parameters, although the model may be applied more generally to the parameters of
any population distribution, and can be generalized to more than four distribution parameters.

Rigby and Stasinopoulos (2005) define the original formulation of a GAMLSS model as follows.
Let y> = (y1, y2, . . . , yn) be the n length vector of the response variable. Also for k =
1, 2, 3, 4, let gk(.) be known monotonic link functions relating the distribution parameters to
explanatory variables by

gk(θk) = ηk = Xkβk +
Jk∑
j=1

Zjkγjk, (1)

i.e.

g1(µ) = η1 = X1β1 +
J1∑
j=1

Zj1γj1

g2(σ) = η2 = X2β2 +
J2∑
j=1

Zj2γj2
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g3(ν) = η3 = X3β3 +
J3∑
j=1

Zj3γj3

g4(τ ) = η4 = X4β4 +
J4∑
j=1

Zj4γj4.

where µ, σ, ν τ and ηk are vectors of length n, β>k = (β1k, β2k, . . . , βJ ′
k
k) is a parameter

vector of length J ′k, Xk is a fixed known design matrix of order n× J ′k, Zjk is a fixed known
n × qjk design matrix and γjk is a qjk dimensional random variable which is assumed to
be distributed as γjk ∼ Nqjk(0,G−1

jk ), where G−1
jk is the (generalized) inverse of a qjk × qjk

symmetric matrix Gjk = Gjk(λjk) which may depend on a vector of hyperparameters λjk,
and where if Gjk is singular then γjk is understood to have an improper prior density function

proportional to exp
(
−1

2γ
>
jkGjkγjk

)
.

The model in (1) allows the user to model each distribution parameter as a linear function of
explanatory variables and/or as linear functions of stochastic variables (random effects). Note
that seldom will all distribution parameters need to be modelled using explanatory variables.

There are several important sub-models of GAMLSS. For example for readers familiar with
smoothing, the following GAMLSS sub-model formulation may be more familiar. Let Zjk =
In, where In is an n× n identity matrix, and γjk = hjk = hjk(xjk) for all combinations of j
and k in (1), then we have the semi-parametric additive formulation of GAMLSS given by

gk(θk) = ηk = Xkβk +
Jk∑
j=1

hjk(xjk) (2)

where to abbreviate the notation use θk for k = 1, 2, 3, 4 to represent the distribution param-
eter vectors µ, σ, ν and τ , and where xjk for j = 1, 2, . . . , Jk are also vectors of length n.
The function hjk is an unknown function of the explanatory variable Xjk and hjk = hjk(xjk)
is the vector which evaluates the function hjk at xjk. If there are no additive terms in any of
the distribution parameters we have the simple parametric linear GAMLSS model,

g1(θk) = ηk = Xkβk (3)

Model (2) can be extended to allow non-linear parametric terms to be included in the model
for µ, σ, ν and τ , as follows (see Rigby and Stasinopoulos 2006)

gk(θk) = ηk = hk(Xk,βk) +
Jk∑
j=1

hjk(xjk) (4)

where hk for k = 1, 2, 3, 4 are non-linear functions and Xk is a known design matrix of order
n×J ′′

k . We shall refer to the model in (4) as the non-linear semi-parametric additive GAMLSS
model. If, for k = 1, 2, 3, 4, Jk = 0, that is, if for all distribution parameters we do not have
additive terms, then model (4) is reduced to a non-linear parametric GAMLSS model.

gk(θk) = ηk = hk(Xk,βk). (5)

If, in addition, hk(Xk,βk) = X>k βk for i = 1, 2, . . . , n and k = 1, 2, 3, 4 then (5) reduces to the
linear parametric model (3). Note that some of the terms in each hk(Xk,βk) may be linear,
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in which case the GAMLSS model is a combination of linear and non-linear parametric terms.
We shall refer to any combination of models (3) or (5) as a parametric GAMLSS model.

The parametric vectors βk and the random effects parameters γjk, for j = 1, 2, . . . , Jk and
k = 1, 2, 3, 4 are estimated within the GAMLSS framework (for fixed values of the smoothing
hyper-parameters λjk’s) by maximising a penalized likelihood function `p given by

`p = `− 1
2

p∑
k=1

Jk∑
j=1

λjkγ
′
jkGjkγjk (6)

where ` =
∑n
i=1 log f(yi|θi) is the log likelihood function. More details on how the penalized

log likelihood `p is maximized are given in Section 1.5. For parametric GAMLSS model
(3) or (5), `p reduces to `, and the βk for k = 1, 2, 3, 4 are estimated by maximizing the
likelihood function `. The available distributions and the different additive terms in the
current GAMLSS implementation in R are given in Sections 1.3 and 1.4 respectively. The R
function to fit a GAMLSS model is gamlss() in the package gamlss which will be described
in more detail in Section 2.

1.3. Available distributions in GAMLSS

The form of the distribution assumed for the response variable y, f(yi|µi, σi, νi, τi), can be very
general. The only restriction that the R implementation of GAMLSS has is that the function
log f(yi|µi, σi, νi, τi) and its first (and optionally expected second and cross) derivatives with
respect to each of the parameters of θ must be computable. Explicit derivatives are preferable
but numerical derivatives can be used.

Table 1 shows a variety of one, two, three and four parameter families of continuous distribu-
tions implemented in our current software version. Table 2 shows the discrete distributions.
We shall refer to the distributions in Tables 1 and 2 as the gamlss.family distributions,
a name to coincide with the R object created by the package gamlss. Johnson, Kotz, and
Balakrishnan (1994, 1995); Johnson, Kotz, and Kemp (2005) are the classical reference books
for most of the distributions in Tables 1 and 2. The BCCG distribution in Table 1 is the Box-
Cox transformation model used by Cole and Green (1992) (also known as the LMS method of
centile estimation). The BCPE and BCT distributions, described in Rigby and Stasinopou-
los (2004, 2006) respectively, generalize the BCCG distribution to allow modelling of both
skewness and kurtosis. For some of the distributions shown in Tables 1 and 2 more that one
parameterization has been implemented. For example, the two parameter Weibull distribu-
tion can be parameterized as f(y|µ, σ) =

(
σyσ−1/µσ

)
exp {−(y/µ)σ}, denoted as WEI, or as

f(y|µ, σ) = σµyσ−1e−µy
σ
, denoted as WEI2, or as f(y|µ, σ) = (σ/β) (y/β)σ−1 exp {− (y/β)σ}

denoted as WEI3, for β = µ/ [Γ(1/σ) + 1]. Note that the second parameterization WEI2 is
suited to proportional hazard (PH) models. In the WEI3 parameterization, parameter µ is
equal to the mean of y. The choice of parameterization depends upon the particular prob-
lem, but some parameterizations are computationally preferable to others in the sense that
maximization of the likelihood function is easier. This usually happens when the parameters
µ, σ, ν and τ are orthogonal or almost orthogonal. For interpretation purposes we favour pa-
rameterizations where the parameter µ is a location parameter (mean, median or mode). The
specific parameterizations used in the gamlss.family distributions are given in the appendix
of Stasinopoulos, Rigby, and Akantziliotou (2006).
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Distributions R Name µ σ ν τ

beta BE() logit logit - -
beta inflated (at 0) BEOI() logit log logit -
beta inflated (at 1) BEZI() logit log logit -
beta inflated (at 0 and 1 ) BEINF() logit logit log log
Box-Cox Cole and Green BCCG() identity log identity -
Box-Cox power exponential BCPE() identity log identity log
Box-Cox-t BCT() identity log identity log
exponential EXP() log - - -
exponential Gaussian exGAUS() identity log log -
exponential gen. beta type 2 EGB2() identity identity log log
gamma GA() log log - -
generalized beta type 1 GB1() logit logit log log
generalized beta type 2 GB2() log identity log log
generalized gamma GG() log log identity -
generalized inverse Gaussian GIG() log log identity -
generalized y GT() identity log log log
Gumbel GU() identity log - -
inverse Gaussian IG() log log - -
Johnson’s SU (µ the mean) JSU() identity log identity log
Johnson’s original SU JSUo() identity log identity log
logistic LO() identity log - -
log normal LOGNO() log log - -
log normal (Box-Cox) LNO() log log fixed -
NET NET() identity log fixed fixed
normal NO() identity log - -
normal family NOF() identity log identity -
power exponential PE() identity log log -
reverse Gumbel RG() identity log - -
skew power exponential type 1 SEP1() identity log identity log
skew power exponential type 2 SEP2() identity log identity log
skew power exponential type 3 SEP3() identity log log log
skew power exponential type 4 SEP4() identity log log log
shash SHASH() identity log log log
skew t type 1 ST1() identity log identity log
skew t type 2 ST2() identity log identity log
skew t type 3 ST3() identity log log log
skew t type 4 ST4() identity log log log
skew t type 5 ST5() identity log identity log
t Family TF() identity log log -
Weibull WEI() log log - -
Weibull (PH) WEI2() log log - -
Weibull (µ the mean) WEI3() log log - -
zero adjusted IG ZAIG() log log logit -

Table 1: Continuous distributions implemented within the gamlss packages (with default link
functions).
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Distributions R Name µ σ ν

beta binomial BB() logit log -
binomial BI() logit - -
Delaporte DEL() log log logit
Negative Binomial type I NBI() log log -
Negative Binomial type II NBII() log log -
Poisson PO() log - -
Poisson inverse Gaussian PIG() log log -
Sichel SI() log log identity
Sichel (µ the mean) SICHEL() log log identity
zero inflated poisson ZIP() log logit -
zero inflated poisson (µ the mean) ZIP2() log logit -

Table 2: Discrete distributions implemented within the gamlss packages (with default link
functions).

All of the distributions in Tables 1 and 2 have d, p, q and r functions corresponding respec-
tively to the probability density function (pdf), the cumulative distribution function (cdf),
the quantiles (i.e., inverse cdf) and random value generating functions. For example, the
gamma distribution has the functions dGA, pGA, qGA and rGA. In addition each distribution
has a fitting function which helps the fitting procedure by providing link functions, first and
(exact of approximate) expected second derivatives, starting values etc. All fitting functions
have as arguments the link functions for the distribution parameters. For example, the fitting
function for the gamma distribution is called GA with arguments mu.link and sigma.link.
The default link functions for all gamlss.family distributions are shown in columns 3–6 of
Tables 1 and 2. The function show.link() can be used to identify which are the available
links for the distribution parameter within each of the gamlss.family. Available link func-
tions can be the usual glm() link functions plus logshifted, logitshifted and own. The
own option allows the user to define his/her own link function, for an example see the help
file on the function make.link.gamlss().

There are several ways to extend the gamlss.family distributions. This can be achieved by

• creating a new gamlss.family distribution

• truncating an existing gamlss.family

• using a censored version of an existing gamlss.family

• mixing different gamlss.family distributions to create a new finite mixture distribution.

To create a new gamlss.family distribution is relatively simple, if the pdf function of the
distribution can be evaluated easily. To do that, find a file of a current gamlss.family
distribution, (having the same number of distribution parameters) and amend accordingly.
For more details, on how this can be done, see Stasinopoulos et al. (2006, Section 4.2).

Truncating existing gamlss.family distributions can be achieved by using the add-on package
gamlss.tr. The function gen.trun(), within the gamlss.tr package, can take any gamlss.family
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distribution and generate the d, p, q, r and fitting R functions for the specified truncated dis-
tribution. The truncation can be left, right or in both tails of the range of the response y
variable.

The package gamlss.cens is designed for the situation where the response variable is censored
or, more generally, it has been observed in an interval form, e.g., (3, 10] an interval from
3 to 10 (including only the right end point 10). The function gen.cens() will take any
gamlss.family distribution and create a new function which can fit a response of “interval”
type. Note that for “interval” response variables the usual likelihood function for independent
response variables defined as

L(θ) =
n∏
i=1

f(yi|θ) (7)

changes to

L(θ) =
n∏
i=1

[F (y2i|θ)− F (y1i|θ)] (8)

where F (y) is the cumulative distribution function and (y1i, y2i) is the observed interval.

Finite mixtures of gamlss.family distributions can be fitted using the package gamlss.mx.
A finite mixture of gamlss.family distributions will have the form

fY (y|ψ) =
K∑
k=1

πkfk(y|θk) (9)

where fk(y|θk) is the probability (density) function of y for component k, and 0 ≤ πk ≤ 1
is the prior (or mixing) probability of component k, for k = 1, 2, . . . ,K. Also

∑K
k=1 πk = 1

and ψ = (θ,π) where θ = (θ1,θ2, . . . ,θk) and π = (π1, π2, . . . , πK). Any combination
of (continuous or discrete) gamlss.family distributions can be used. The model in this
case is fitted using the EM algorithm. The component probability (density) functions may
have different parameters (fitted using the function gamlssMX()) or may have parameters in
common (fitted using the function gamlssNP()). In the former case, the mixing probabilities
may also be modelled using explanatory variables and the finite mixture may have a zero
component (e.g., zero inflated negative binomial etc.). Both functions gamlssMX()) and
gamlssNP() are in the add on package gamlss.mx.

1.4. Available additive terms in GAMLSS

Equation (1) allows the user to model all the distribution parameters µ, σ, ν and τ as
linear parametric and/or non-linear parametric and/or non-parametric (smooth) function of
the explanatory variables and/or random effects terms. For modelling linear functions the
Wilkinson and Rogers (1973) notation as applied for model formulae in the S language by
Chambers and Hastie (1992) can be used. It is the model formulae notation used in the
fit of linear models, lm(), and generalized lineal models, glm(), see for example Venables
and Ripley (2002, Section 6.2). For fitting non-linear or non-parametric (smooth) functions
or random effects terms, an additive term function has to be fitted. Parametric non-linear
models can be also fitted using the function nlgamlss() of the add-on package gamlss.nl.
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Additive terms R Name
Cubic splines cs()
Varying coefficient vc()
Penalized splines ps()
loess lo()
Fractional polynomials fp()
Power polynomials pp()
non-linear fit nl()
Random effects random()
Random effects ra()
Random coefficient rc()

Table 3: Additive terms implemented within the gamlss packages.

Table 3 shows the additive term functions implemented in the current R implementation of
GAMLSS. Note that all available additive terms names are stored in the list .gamlss.sm.list.

The cubic spline function cs() is based on the smooth.spline() function of R and can be
used for univariate smoothing. Cubic splines are covered extensively in the literature (Reinsch
1967; Green and Silverman 1994; Hastie and Tibshirani 1990, Chapter 2). They assume in
model (2) that the functions h(t) are arbitrary twice continuously differentiable functions
and we maximize a penalized log likelihood, given by ` subject to penalty terms of the form

λ
∫∞
−∞

[
h

′′
(t)
]2
dt. The solution for the maximizing functions h(t) are all natural cubic splines,

and hence can be expressed as linear combinations of their natural cubic spline basis functions
(de Boor 1978). In cs() each distinct x-value is a knot.

The varying coefficient terms were introduced by Hastie and Tibshirani (1993) to accommo-
date a special type of interaction between explanatory variables. This interaction takes the
form of β(r)x, that is the linear coefficient of the explanatory variable x is changing smoothly
according to another explanatory variable r. In some applications r will be time. In general
r should be a continuous variable, while x can be either continuous or categorical. In the
current GAMLSS implementation x has to be continuous or a two level factor with levels 0
and 1.

Penalized splines were introduced by Eilers and Marx (1996). Penalized Splines (or P-splines)
are piecewise polynomials defined by B-spline basis functions in the explanatory variable,
where the coefficients of the basis functions are penalized to guarantee sufficient smoothness
(see Eilers and Marx 1996). More precisely consider the model θ = Z(x)γ where θ can be
any distributional parameter in a GAMLSS model, Z(x) is n× q basis design matrix for the
explanatory variable x defined at q-different knots mostly within the range of x and γ is a
q × 1 vector of coefficients which have some stochastic restrictions imposed by the fact that
Dγ ∼ N(0, λ−1I) or equivalently by γ ∼ N(0, λ−1K−) where K = D>D. The matrix D is a
(q−r)×q matrix giving rth differences of the q-dimensional vector γ. So to define a penalized
spline we need: i) q the number of knots in the x-axis defined by argument ps.intervals
(and of course where to put them; ps() uses equal spaces in the x-axis), ii) the degree of
the piecewise polynomial used in the B-spline basis so we can define X, defined by argument
degree iii) r the order of differences in the D matrix indicating the type of the penalty
imposed in the the coefficients of the B-spline basis functions, defined by argument order
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and iv) the amount of smoothing required defined either by the desired equivalent degrees
of freedom defined by argument df (or alternative by the smoothing parameter defined by
argument lambda). The ps() function in gamlss is based on an S-PLUS function of Marx
(2003).

The function lo() allows the user to use a loess fit in a GAMLSS formula. A loess fit is
a polynomial (surface) curve determined by one or more explanatory (continuous) variables,
which are fitted locally (see Cleveland, Grosse, and Shyu 1993). The implementation of the
lo() function is very similar to the function with the same name in the S-PLUS implemen-
tation of gam. However gamlss lo() function uses the R loess() function as its engine and
this creates some minor differences between the two lo() even when the same model is fitted.
lo() is the only function currently available in gamlss which allows smoothing in more than
one explanatory (continuous) variables.

The fp() function is an implementation of the fractional polynomials introduced by Royston
and Altman (1994). The functions involved in fp() and bfp() are loosely based on the
fractional polynomials function fracpoly() for S-PLUS given by Ambler (1999). The function
bfp generates the correct design matrix for fitting a power polynomial of the type b0 +b1x

p1 +
b2x

p2 + ... + bkx
pk . For given powers p1, p2, ..., pk, given as the argument powers in bfp(),

the function can be used to fit power polynomials in the same way as the functions poly() or
bs() of the package splines are used to fit orthogonal or piecewise polynomials respectively.
The function fp() (which uses bfp()) works as an additive smoother term in gamlss. It is
used to fit the best fractional polynomials among a specific set of power values. Its argument
npoly determines whether one, two or three fractional polynomials should used in the fitting.
For a fixed number npoly the algorithm looks for the best fitting fractional polynomials in
the list c(-2, -1, -0.5, 0, 0.5, 1, 2, 3). Note that npoly=3 is rather slow since it fits
all possible 3-way combinations at each backfitting iteration.

The power polynomial function pp() is an experimental function and is designed for the
situation in which the model is in the form b0 + b1x

p1 + b2x
p2 with powers p1, p2 to be

estimated non-linearly by the data. Initial values for the non-linear parameters p1, p2 have to
be supplied.

The function nl() exists in the add-on package gamlss.nl designed for fitting non-linear para-
metric models within GAMLSS. It provides a way of fitting non-linear terms together with
linear or smoothing terns in the same model. The function takes a non-linear object, (cre-
ated by the function nl.obs), and uses the R nlm() function within the backfitting cycle of
gamlss(). The success of this procedure depends on the starting values of the non-linear
parameters (which must be provided by the user). No starting values are required for the
other, e.g., linear terms, of the model.

The function random() allows the fitted values for a factor (categorical) predictor to be shrunk
towards the overall mean, where the amount of shrinking depends either on the parameter
λ, or on the equivalent degrees of freedom (df). This function is similar to the random()
function in the gam package of Hastie (2006) documented in Chambers and Hastie (1992).
The function ra() is similar to the function random() but its fitting procedure is based on
augmented least squares, a fact that makes ra() more general, but also slower to fit, than
random(). The random coefficient function rc() is experimental. Note that the “random
effects” functions, random(), ra() and rc() are used to estimate the random effect γ’s given
the hyperparameters λ’s. In order to obtain estimates for the hyperparameters, methods
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discussed in Rigby and Stasinopoulos (2005, Appendix A) can be used. Alternatively, for
models only requiring a single random effect in one distribution parameter only, the function
gamlssNP() of the package gamlss.mx, which uses Gaussian quadrature, can be used.

The gamlss() function uses the same type of additive backfitting algorithm implemented
in the gam() function of the R package gam (Hastie 2006). Note that the function gam()
implementation in the R recommended package mgcv (Wood 2001) does not use backfitting.
The reason that we use backfitting here that it is easier to extend the algorithm so new
additive terms can be included.

Each new additive term in the gamlss() requires two new functions. The first one, (the one
that is seen by the user) is the one which defines the additive term and sets the additional
required design matrices for the linear part of the model. The names of the existing additive
functions are shown in the second column of Table 3. For example cs(x) defines a cubic
smoothing spline function for the continuous explanatory variable x. It is used during the
definition of the design matrix for the appropriate distribution parameter and it adds a linear
term for x in the design matrix. The second function is the one that actually performs the
additive backfitting algorithm. This function is called gamlss.name() where the name is one
of the names in column two of Table 3. For example the function gamlss.cs() performs the
backfitting for cubic splines. New additive terms can be implemented by defining those two
functions and adding the new names in the .gamlss.sm.list list.

The general policy when backfitting is used in gamlss() is to include the linear part of
an additive term in the appropriate linear term design matrix. For example, in the cubic
spline function cs() the explanatory variable say x is put in the linear design matrix of the
appropriate distribution parameter and the smoothing function is fitted as a deviation from
this linear part. This is equivalent of fitting a modified backfitting algorithm, see Hastie
and Tibshirani (1990). In other additive functions where the linear part is not needed (or
defined) a column on zeros is put in the design matrix. For example, this is the case when
the fractional polynomials additive term fp() is used.

If the user wishes to create a new additive term, care should be taken on how the degrees of
freedom of the model are defined. The degrees of freedom for the (smoothing) additive terms
are usually taken to be the extra degrees of freedom on top of the linear fit. For example to
fit a single smoothing cubic spline term for say x with 5 total degrees of freedom, cs(x,df=3)
should be used since already 2 degrees of freedom have been used for the fitting of the constant
and the linear part of the explanatory variable x. This is different from the s() function of
the gam package which uses s(x,df=4), assuming that only the constant term has been fitted
separately. After a GAMLSS model containing additive (smoothing) terms is used to fit a
specific distribution parameter the following components are (usually) saved for further use.
In the output below replace mu with sigma, nu or "tau" if a distribution parameter other
that mu is involved.

mu.s: a matrix, each column containing the fitted values of the smoothers used to model the
specific parameter. For example given a fitted model say mod1, then mod1$mu.s would
access the additive terms fitted for mu.

mu.var: a matrix containing the estimated variances of the smoothers.

mu.df: a vector containing the extra degrees of freedom used to fit the smoothers.
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mu.lambda: a vector containing the smoothing parameters (or random effects hyperparame-
ters).

mu.coefSmo: a list containing coefficients or other components from the additive smooth
fitting.

1.5. The GAMLSS algorithms

There are two basic algorithms used for maximizing the penalized likelihood given in (6).
The first, the CG algorithm, is a generalization of the Cole and Green (1992) algorithm—and
uses the first and (expected or approximated) second and cross derivatives of the likelihood
function with respect to the distribution parameters θ = (µ, σ, ν, τ) for a four parameter
distribution. Note that we have dropped the subscripts here to simplify the notation. However
for many population probability (density) functions, f(y|θ), the parameters θ are information
orthogonal (since the expected values of the cross derivatives of the likelihood function are
zero), e.g., location and scale models and dispersion family models, or approximately so. In
this case the simpler RS algorithm, which is a generalization of the algorithm used by Rigby
and Stasinopoulos (1996a,b) for fitting mean and dispersion additive models (MADAM), and
does not use the cross derivatives, is more suited. The parameters θ = (µ, σ) are fully
information orthogonal for distributions NBI, GA, IG, LO and NO only in Table 1. Nevertheless,
the RS algorithm has been successfully used for fitting all distributions in Tables 1 and 2,
although occasionally it can be slow to converge. Note also that the RS algorithm is not a
special case of the CG algorithm.

The object of the algorithms is to maximize the penalized likelihood function `p, given by (6),
for fixed hyperparameters λ. For fully parametric models, (3) or (5), the algorithms maximize
the likelihood function `. The algorithms are implemented in the option method in the function
gamlss() where a combination of both algorithms is also allowed. The major advantages of
the algorithms are i) the modular fitting procedure (allowing different model diagnostics
for each distribution parameter); ii) easy addition of extra distributions; iii) easy addition
of extra additive terms; and iv) easily found starting values, requiring initial values for the
θ = (µ, σ, ν, τ) rather than for the β parameters. The algorithms have generally been found to
be stable and fast using very simple starting values (e.g., constants) for the θ parameters. The
function nlgamlss() in the package gamlss.nl provides a third algorithm for fitting parametric
linear or non-linear GAMLSS models as in equations (3) or (5) respectively. However the
algorithm needs starting values for all the β parameters, rather than θ = (µ, σ, ν, τ), which
can be difficult for the user to choose.

Clearly, for a specific data set and model, the (penalized) likelihood can potentially have
multiple local maxima. This is investigated using different starting values and has generally
not been found to be a problem in the data sets analyzed, possibly due to the relatively large
sample sizes used.

Singularities in the likelihood function similar to the ones reported by Crisp and Burridge
(1994) can potentially occur in specific cases within the GAMLSS framework, especially when
the sample size is small. The problem can be alleviated by appropriate restrictions on the
scale parameter (penalizing it for going close to zero).
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2. The R packages

2.1. The different packages

The GAMLSS software is implemented in a series of packages in the R language (R Devel-
opment Core Team 2007) and it is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/. The GAMLSS software currently comprises six different
packages:

1. the original gamlss package for fitting GAMLSS

2. the gamlss.cens package for fitting censored (interval) response variables.

3. the gamlss.dist package for additional new distributions

4. the gamlss.mx package for fitting finite mixture distributions.

5. the gamlss.nl package for fitting non-linear models

6. the gamlss.tr package for fitting truncated distributions.

Many gamlss.family distributions are implemented in the add on package gamlss.dist. In this
article we concentrate in the original gamlss package, and gamlss.dist. The add-on packages
will be dealt with separately.

2.2. The different functions

The main function of the original gamlss package is gamlss(). This function is used to fit
a GAMLSS model and consequently to create a gamlss object in R. Examples of how the
gamlss() function can be used will be given in Section 3. Here we list all the available
functions within the gamlss package by putting them in different groups depending on their
functionality. More information about the arguments of any function can be found using ?,
e.g., ?gamlss.

The following functions are used for fitting or updating a model: gamlss(), refit(),update(),
and histDist(). Note that the histDist() is designed for fitting a parametric distribution
to data where no explanatory variables exist.

The functions which extract information from the fitted model are: AIC(), GAIC(), coef(),
deviance(), extractAIC(), fitted(), formula(), fv(), logLik(), lp(), lpred(),
model.frame(), model.matrix(), predict(), print(), summary(), terms(), residuals()
and vcov(). Note that saved residuals are the normalized (randomized) quantile residuals
from a fitted GAMLSS model, (see Dunn and Smyth 1996, for a definition).

Note that some of the functions above are distribution parameter dependent. That is, these
functions have an extra argument what, which can be used to specify which of the distribution
parameters values are required, i.e., "mu", "sigma", "nu" or tau. For example fitted(m1,
what="sigma") would give the fitted values for the σ parameter from model m1.

Functions which can be used for selecting a model are: addterm(), dropterm(), find.hyper(),
gamlss.scope(), stepGAIC(), stepGAIC.CH(), stepGAIC.VR() and VGD().

http://CRAN.R-project.org/
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Functions used for plotting or diagnostics are: plot(), par.plot(), pdf.plot(), Q.stats(),
prof.dev(), prof.term(), rqres.plot(), show.link(), term.plot() and wp().

Functions created specially for centile estimation which can be applied if only one explanatory
variable is involved are: centiles(), centiles.com(), centiles.split(), centiles.pred(),
fitted.plot().

The following two functions are used in the definition of a new gamlss.family distribution
so the casual user does not need them: make.link.gamlss(), checklink().

More documentation of the above functions can be found in the gamlss R help files by typing
a question mark and the appropriate function, e.g., ?centiles. In the next section we will
use a variety of examples to demonstrate the gamlss package.

3. Examples

3.1. Introduction

This section gives four examples of using the GAMLSS framework for statistical modelling.
In the example in Section 3.2 different distributions are fitted to univariate count data. The
example in Section 3.3 illustrates different additive terms of a single explanatory variable
used to model the parameters of a continuous response variable distribution. The example in
Section 3.4 is a regression situation example where selecting explanatory variables is required.
The final example in Section 3.5 demonstrates estimation of smooth centile curves. Note that
all the examples here are used to demonstrate the capability of the GAMLSS framework and
gamlss package and not to answer substantive questions in the data.

3.2. The lice data

The following data come from Williams (1944) and they are frequencies (f) of prisoners with
number of head lice (y), for Hindu male prisoners in Cannamore, South India, 1937–1939.
Here we fit four discrete distributions the Poisson (PO), the negative binomial type I (NBI),
the Poisson inverse Gaussian (PIG) and the Sichel (SICHEL). Note that we are using the fre-
quencies as weights. More on how to use the weights argument correctly can be found in
Stasinopoulos et al. (2006, Section 3.2.1). The argument trace=FALSE in the gamlss() func-
tion is used to suppress the output at each iteration. The argument method=mixed(10,50)
used here, for the Sichel distribution, is for speeding the convergence. It instructs gamlss()
to use the RS() algorithm for the first 10 iterations (to stabilize the fitting process) and then
(if it has not converged yet) to switch to the CG() algorithm and continue with up to 50
iterations. CG() converges faster close to the maximum when the distribution parameters are
highly non-orthogonal at the maximum.

R> library("gamlss.dist")

R> data("lice")

R> mPO <- gamlss(head ~ 1, data = lice, family = PO, weights = freq,

+ trace = FALSE)

R> mNBI <- gamlss(head ~ 1, data = lice, family = NBI, weights = freq,

+ trace = FALSE)
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R> mPIG <- gamlss(head ~ 1, data = lice, family = PIG, weights = freq,

+ trace = FALSE)

R> mSI <- gamlss(head ~ 1, data = lice, family = SICHEL, weights = freq,

+ method = mixed(10, 50), trace = FALSE)

R> AIC(mPO, mNBI, mPIG, mSI)

df AIC
mSI 3 4646.198
mNBI 2 4653.687
mPIG 2 4756.275
mPO 1 29174.823

From the AIC we conclude that the Sichel model is explaining the data best. The summary
of the final fitted model is shown below.

R> summary(mSI)

*******************************************************************
Family: c("SICHEL", "Sichel")

Call:
gamlss(formula = head ~ 1, family = SICHEL, data = lice, weights = freq,

method = mixed(10, 50), trace = FALSE)

Fitting method: mixed(10, 50)

-------------------------------------------------------------------
Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.927 0.07915 24.35 8.38e-105

-------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.863 0.2095 23.21 4.739e-97

-------------------------------------------------------------------
Nu link function: identity
Nu Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0007871 0.01570 0.05013 0.96

-------------------------------------------------------------------
No. of observations in the fit: 1083
Degrees of Freedom for the fit: 3
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Residual Deg. of Freedom: 1080
at cycle: 5

Global Deviance: 4640.198
AIC: 4646.198
SBC: 4661.16

*******************************************************************

Hence the fitted SICHEL model for the head lice data is given by y ∼ SICHEL(µ̂, σ̂, ν̂) where
µ̂ = exp(1.927) = 6.869 and σ̂ = exp(4.863) = 129.4 and ν̂ = 0.0007871 almost identical to
zero. The profile global deviance plot for the parameter ν is shown in Figure 1. The figure is
created using the code prof.dev(mSI, which="nu", min=-.12, max=.1, step=.01) which
also produces a 95% confidence interval for ν as (−0.08532, 0.08867).

Figure 2 shows a plot of the fitted SICHEL model created by the following R commands. Note
that starting from the already fitted model, mSI using the argument start.from=mSI speeds
the process.

R> mSI <- histDist(lice$head, "SICHEL", freq = lice$freq, xmax = 10,

+ main = "Sichel distribution", start.from = mSI, xlim = c(0, 8.75),

+ trace = FALSE)

−0.10 −0.05 0.00 0.05 0.10

46
40

46
42

46
44

46
46

Profile Global Deviance

Grid of the nu parameter

95 %

Figure 1: The profile deviance plot for ν from the fitted model mSI.
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Figure 2: Sample distribution of the lice data (grey blocks) with the fitted probabilities for
the Sichel distribution respectively (red bars).

3.3. The CD4 data

The following data are given by Wade and Ades (1994) and they refer to CD4 counts (cd4)
from uninfected children born to HIV-1 mothers and the age in years of the child. Here
we input and plot the data in Figure 3. This is a simple regression example with only one
explanatory variable, the age, which is a continuous variable. The response while, strictly
speaking is a count, is sufficiently large for us to treat it at this stage as a continuous response
variable.

R> library("gamlss.dist")

R> data("CD4")

R> plot(cd4 ~ age, data = CD4)

There are several striking features in this specific set of data in Figure 3. The first has to do
with the relationship between the mean of cd4 and age. It is hard to see from the plot whether
this relationship is linear or not. The second has to do with the heterogeneity of variance in the
response variable cd4. It appears that the variation in cd4 is decreasing with age. The final
problem has to do with the distribution of cd4 given the age. Is this distribution normal?
It is hard to tell from the figure but probably we will need a more flexible distribution.
Traditionally, problems of this kind were dealt with by a transformation in the response
variable or a transformation in both in the response and the explanatory variable(s). One
could hope that this would possibly correct for some or all the above problems simultaneously.
Figure 4 shows plots where several transformations for cd4 and age were tried. It is hard to
see how we can improve the situation.

R> op <- par(mfrow = c(3, 4), mar = par("mar") + c(0, 1, 0, 0),
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Figure 3: The plot of the CD4 data.

+ pch = "+", cex = 0.45, cex.lab = 1.6, cex.axis = 1.6)

R> page <- c("age^-0.5", "log(age)", "age^.5", "age")

R> pcd4 <- c("cd4^-0.5", "log(cd4+0.1)", "cd4^.5")

R> for (i in 1:3) {

+ yy <- with(CD4, eval(parse(text = pcd4[i])))

+ for (j in 1:4) {

+ xx <- with(CD4, eval(parse(text = page[j])))

+ plot(yy ~ xx, xlab = page[j], ylab = pcd4[i])

+ }

+ }

R> par(op)

Within the GAMLSS framework we can deal with these problems one at the time. First
we start with the relationship between the mean of cd4 and age. We will fit orthogonal
polynomials of different orders to the data and choose the best using an GAIC criterion. At
the moment we fit a constant variance and a default normal distribution.

R> con <- gamlss.control(trace = FALSE)

R> m1 <- gamlss(cd4 ~ age, sigma.fo = ~1, data = CD4, control = con)

R> m2 <- gamlss(cd4 ~ poly(age, 2), sigma.fo = ~1, data = CD4, control = con)

R> m3 <- gamlss(cd4 ~ poly(age, 3), sigma.fo = ~1, data = CD4, control = con)

...

R> m8 <- gamlss(cd4 ~ poly(age, 8), sigma.fo = ~1, data = CD4, control = con)

First we compare the model using the Akaike Information criterion (AIC) which has penalty
k = 2 for each parameter in the model, (the default value in the function GAIC()). Next we
compare the models using Schwatz Bayesian Criterion (SBC) which uses penalty k = log(n).
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Figure 4: The CD4 data with various transformations for cd4 and age.

R> GAIC(m1, m2, m3, m4, m5, m7, m8)

df AIC
m7 9 8963.263
m8 10 8963.874
m5 7 8977.383
m4 6 8988.105
m3 5 8993.351
m2 4 8995.636
m1 3 9044.145
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Figure 5: The CD4 data and the fitted values using polynomial of degree 7 in age.

R> GAIC(m1, m2, m3, m4, m5, m7, m8, k = log(length(CD4$age)))

df AIC
m7 9 9002.969
m8 10 9007.992
m5 7 9008.266
m2 4 9013.284
m4 6 9014.576
m3 5 9015.410
m1 3 9057.380

R> plot(cd4 ~ age, data = CD4)

R> lines(CD4$age[order(CD4$age)], fitted(m7)[order(CD4$age)], col = "red")

Remarkably with both AIC and SBC model m7, with a polynomial of degree 7, comes as the
best model. Unfortunately the fitted values for the mean of cd4 shown together with the data
in Figure 5 look rather unconvincing. The line is too wobbly at the end of the age range,
trying to be very close to the data. This is a typical behavior of polynomial fitting.

Now we will try alternatives methods, two parametric, using fractional polynomials and piece-
wise polynomials, and one non-parametric smoothing method using cubic splines. We start
first with the fractional polynomials. Fractional polynomials were introduced by Royston and
Altman (1994). The function fp() which we are going to use to fit them works in gamlss()
as an additive smoother. It can be used to fit the best (fractional) polynomials within a spe-
cific set of possible power values. Its argument npoly determines whether one, two or three
fractional polynomials will be used in the fitting. For example with npoly=3 the following
polynomials functions are fitted to the data β0 +β1x

p1 +β2x
p2 +β3x

p3 where pj , for j = 1, 2, 3



20 GAMLSS in R

can take any values within the set (−2,−1,−0.5, 0, 0.5, 1, 2, 3). If two powers, pj ’s, happen to
be identical then the two terms β1jx

pj and β2jx
pj log(x) are fitted instead. Similarly if three

powers pj ’s are identical the terms fitted are β1jx
pj , β2jx

pj log(x) and β3jx
pj [log(x)]2. Here

we fit fractional polynomials with one, two and three terms respectively and we choose the
best using GAIC.

R> m1f <- gamlss(cd4 ~ fp(age, 1), sigma.fo = ~1, data = CD4, control = con)

R> m2f <- gamlss(cd4 ~ fp(age, 2), sigma.fo = ~1, data = CD4, control = con)

R> m3f <- gamlss(cd4 ~ fp(age, 3), sigma.fo = ~1, data = CD4, control = con)

R> GAIC(m1f, m2f, m3f)

df AIC
m3f 8 8966.375
m2f 6 8978.469
m1f 4 9015.321

R> GAIC(m1f, m2f, m3f, k = log(length(CD4$age)))

df AIC
m3f 8 9001.669
m2f 6 9004.940
m1f 4 9032.968

R> m3f

Family: c("NO", "Normal")
Fitting method: RS()

Call: gamlss(formula = cd4 ~ fp(age, 3), sigma.formula = ~1, data = CD4,
control = con)

Mu Coefficients:
(Intercept) fp(age, 3)

557.5 NA
Sigma Coefficients:
(Intercept)

5.93

Degrees of Freedom for the fit: 8 Residual Deg. of Freedom 601
Global Deviance: 8950.37

AIC: 8966.37
SBC: 9001.67

R> m3f$mu.coefSmo

[[1]]
[[1]]$coef
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one
-599.2970 1116.7924 1776.1937 698.6097

[[1]]$power
[1] -2 -2 -2

[[1]]$varcoeff
[1] 2016.238 4316.743 22835.146 7521.417

R> plot(cd4 ~ age, data = CD4)

R> lines(CD4$age[order(CD4$age)], fitted(m1f)[order(CD4$age)], col = "blue")

R> lines(CD4$age[order(CD4$age)], fitted(m2f)[order(CD4$age)], col = "green")

R> lines(CD4$age[order(CD4$age)], fitted(m3f)[order(CD4$age)], col = "red")

Both AIC and BSC favour the model m3f with three fractional polynomial terms. Note
that by printing m3f the model for µ gives a value of 557.5 for the “Intercept” and NULL
for the coefficient for fp(age, 3). This is because within the backfitting the constant
is fitted first and then the fractional polynomial is fitted to the partial residuals of the
constant model. As a consequence the constant is fitted twice. The proper coefficients
and the power transformations of the fractional polynomials can be obtained using the
mu.coefSmo component of the gamlss fitted object. For the CD4 data all powers happens
to be −2 indicating that the following terms are fitted in the model, age−2, age−2 log(age)
and age−2 [log(age)]2. Hence the fitted model m3f is given by cd4 ∼ NO(µ̂, σ̂), where µ̂ =
557.5 − 599.3 + 1116.8 age−2 + 17776.2 age−2 log(age) + 698.6 age−2

[
log(age)2

]
. Figure 6

shows the best fitted models using one, two or three fractional polynomial terms. The situa-
tion remains unconvincing. None of the models seem to fit particular well.

Next we will fit piecewise polynomials using the R function bs(). We try different degrees of
freedom (effectively different number of knots) and we choose the best model using AIC and
SBC.

R> m2b <- gamlss(cd4 ~ bs(age), data = CD4, trace = FALSE)

R> m3b <- gamlss(cd4 ~ bs(age, df = 3), data = CD4, trace = FALSE)

R> m4b <- gamlss(cd4 ~ bs(age, df = 4), data = CD4, trace = FALSE)

R> m5b <- gamlss(cd4 ~ bs(age, df = 5), data = CD4, trace = FALSE)

R> m6b <- gamlss(cd4 ~ bs(age, df = 6), data = CD4, trace = FALSE)

R> m7b <- gamlss(cd4 ~ bs(age, df = 7), data = CD4, trace = FALSE)

R> m8b <- gamlss(cd4 ~ bs(age, df = 8), data = CD4, trace = FALSE)

R> GAIC(m2b, m3b, m4b, m5b, m6b, m7b, m8b)

df AIC
m7b 9 8959.519
m6b 8 8960.353
m8b 10 8961.073
m5b 7 8964.022
m4b 6 8977.475
m2b 5 8993.351
m3b 5 8993.351
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Figure 6: The CD4 data and the best fitting fractional polynomials in age with one (solid),
two (dashed) and three (dotted) terms, respectively.

R> GAIC(m2b, m3b, m4b, m5b, m6b, m7b, m8b, k = log(length(CD4$age)))

df AIC
m5b 7 8994.904
m6b 8 8995.648
m7b 9 8999.225
m4b 6 9003.946
m8b 10 9005.191
m2b 5 9015.410
m3b 5 9015.410

The best model with AIC uses 7 degrees of freedom while with SBC 5. Figure 7 shows the
fitted models using 5, 6 and 7 degrees of freedom for the polynomial terms in age.

We will proceed by fitting smoothing cubic splines to the data. In smoothing splines the
problem is how to choose a sensible value for the smoothing parameter λ. The smoothing
parameter is a function of the effective degrees of freedom, so we will use the following proce-
dure: we will use the optim() function in R to find the model with an the optimal (effective)
degrees of freedom according to an GAIC. Again we do not commit ourselves to what penalty
we should use in the GAIC but we will try both AIC and SBC.

R> fn <- function(p) AIC(gamlss(cd4 ~ cs(age, df = p[1]), data = CD4,

+ trace = FALSE), k = 2)

R> opAIC <- optim(par = c(3), fn, method = "L-BFGS-B", lower = c(1),

+ upper = c(15))

R> fn <- function(p) AIC(gamlss(cd4 ~ cs(age, df = p[1]), data = CD4,
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Figure 7: The CD4 data and the best fitting piecewise polynomials in age with 5 (solid), 6
(dashed) and 7 (dotted), degrees of freedom, respectively.

+ trace = FALSE), k = log(length(CD4$age)))

R> opSBC <- optim(par = c(3), fn, method = "L-BFGS-B", lower = c(1),

+ upper = c(15))

R> opAIC$par

[1] 10.85157

R> opSBC$par

[1] 1.854689

R> maic <- gamlss(cd4 ~ cs(age, df = 10.85), data = CD4, trace = FALSE)

R> msbc <- gamlss(cd4 ~ cs(age, df = 1.85), data = CD4, trace = FALSE)

According to AIC the best model is the one with degrees of freedom 10.85 ≈ 11. This model
seems to overfit the data as can been seen in Figure 8, (green continuous line). This is typical
behaviour of AIC when it is used in this context. Note that 11 degrees of freedom in the fit
refers to the extra degrees of freedom after the constant and the linear part is fitted to the
model, so the overall degrees of freedom are 13. The best model using SBC has 1.854 ≈ 2
degrees of freedom for smoothing (i.e., 4 overall) is shown in Figure 8 (blue dashed line). It
fits well for most of the observations but not at small values of age. It appears that we need
a model with smoothing degrees of freedom for the cubic spline with a value between 2 and
11 (i.e., 4 and 13 overall).

Given that the smooth cubic spline model for µ appears reasonable, we proceed by looking at
a suitable models for log σ (since the default link function for σ for the normal NO distribution
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Figure 8: The CD4 data and two different cubic spline fits in age, with four, (solid), and
twelve, (dashed), total effective degrees of freedom in the fit.

is a log link). We try a smooth cubic splines model for both terms. The following code will
give us the best choice of degrees of freedom for both µ and log(σ) according to AIC. Note
the fit of model m1 is used as the starting values.

R> m1 <- gamlss(cd4 ~ cs(age, df = 10), sigma.fo = ~cs(age, df = 2),

+ data = CD4, trace = FALSE)

R> fn <- function(p) AIC(gamlss(cd4 ~ cs(age, df = p[1]), sigma.fo = ~cs(age,

+ p[2]), data = CD4, trace = FALSE, start.from = m1), k = 2)

R> opAIC <- optim(par = c(8, 3), fn, method = "L-BFGS-B", lower = c(1,

+ 1), upper = c(15, 15))

R> opAIC$par

[1] 3.717336 1.808830

The resulting degrees of freedom for µ and log(σ) are (3.72, 1.81). The degrees of freedom for
µ are lower than expected from the previous analysis. It appears that by picking a suitable
model for σ the model for µ is less complicated. Rerunning the code for SBC results in
estimated degrees of freedom (2.55, 0.93). Note that the lower argument in optim() had to
change to lower=c(0.1,0.1) allowing the degrees of freedom to be lower that 1. We fit now
the two models.

R> m42 <- gamlss(cd4 ~ cs(age, df = 3.72), sigma.fo = ~cs(age, df = 1.81),

+ data = CD4, trace = FALSE)

R> m31 <- gamlss(cd4 ~ cs(age, df = 2.55), sigma.fo = ~cs(age, df = 0.93),

+ data = CD4, trace = FALSE)
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Figure 9: A plot of the fitted µ and σ values against age for models m42 (in solid green) and
m31 (in dashed blue).

Figure 9 shows the fitted values for both the models. The plot is obtained using the command
fitted.plot(m42,m31, x=CD4$age, line.type=TRUE). The function fitted.plot() is ap-
propriate when only one explanatory variable is fitted to the data. The models are almost
identical apart from early age where the SBC model has a slightly lower mean and standard
deviation of cd4 than the AIC. The validation generalized deviance function VGD() provides
an alternative way of tuning the degrees of freedom in a smoothing situation. It is suitable for
large sets of data where we can afford to use part of the data for fitting the model (training)
and part for validation. Here we demonstrate how it can be used.

R> set.seed(1234)

R> rSample6040 <- sample(2, length(CD4$cd4), replace = T, prob = c(0.6,

+ 0.4))

R> fn <- function(p) VGD(cd4 ~ cs(age, df = p[1]), sigma.fo = ~cs(age,

+ df = p[2]), data = CD4, rand = rSample6040)

R> op <- optim(par = c(3, 1), fn, method = "L-BFGS-B", lower = c(1,

+ 1), upper = c(10, 10))

R> op$par

[1] 4.779947 1.376534

The resulting degrees of freedom (4.78, 1.38) in this instance are not very different from the
ones we obtained from AIC and SBC methods.
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Figure 10: A worm plot of the residuals from models m42.

Figure 10 shows a worm plots from the residuals of model m42. Worm plots were introduced
by van Buuren and Fredriks (2001) and they are covered in more detail in Section 3.5. The
important point here is that quadratic and cubic shapes in a worm plot indicate the presence
of skewness and kurtosis respectively in the residuals (within the corresponding range of the
explanatory variable, i.e., CD4$age). That is, the normal distribution fitted so far to the data
is not appropriate. Now we try to identify a suitable distribution for the response variable.
There are zeros in the response so unless we shift them to the right by a small amount, we
must model it with distributions accepting zeros. Here we try the t (TF), power exponential
(PE), skew exponential power type 3 (SEP3) and sinh arcsinh (SHASH) distributions. We use
the update function and start from the normal m42 model.

R> library("gamlss.dist")

R> m42TF <- update(m42, family = TF)

R> m42PE <- update(m42, family = PE)

R> m42SEP3 <- update(m42, family = SEP3, method = mixed(30, 100))

R> m42SHASH <- update(m42, family = SHASH, method = mixed(20, 100))

R> GAIC(m42, m42TF, m42PE, m42SEP3, m42SHASH)
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df AIC
m42SEP3 11.531173 8690.531
m42SHASH 11.530125 8703.417
m42TF 10.531045 8785.149
m42PE 10.531061 8790.081
m42 9.529738 8790.437

R> GAIC(m42, m42TF, m42PE, m42SEP3, m42SHASH, k = log(length(CD4$age)))

df AIC
m42SEP3 11.531173 8741.405
m42SHASH 11.530125 8754.286
m42TF 10.531045 8831.611
m42 9.529738 8832.481
m42PE 10.531061 8836.542

The SEP3 distribution seems that fit this data best according to both the AIC and SBC
criteria. It can be shown that by adding a linear model to the ν models i.e., nu.fo=~age
improves the AIC but not the SBC.

3.4. The third party claims

The data used here are provided by Gillian Heller and can be found in de Jong and Heller
(2007). They are third party insurance data. Third party is a compulsory insurance for
vehicle owners in Australia. It insures vehicle owners against injury caused to other drivers,
passengers or pedestrians, as a result of an accident. This data set records the number of third
party claims, Claims, in a twelve month period between 1984–1986 in each of 176 geographical
areas (local government areas, LGA) in New South Wales, Australia. Areas are grouped
into thirteen statistical divisions (SD). Other recorded variables are the number of accidents,
Accidents, the number of people killed or injured (KI), population density (Pop_density)
and population (Population) with all variables classified according to area. In most of the
analysis here we will use the log values for Population, Accidents, KI and Pop_density
which are denoted as L_Population, L_Accidents, L_KI and L_Popdensity respectively.
Figure 11 shows the numbers of claims against the rest of the continuous variables in the
data.

R> library"(gamlss.dist")

R> data("LGAclaims")

R> with(LGAclaims, plot(data.frame(Claims, L_Popdensity, L_KI, L_Accidents,

+ L_Population)))

We start with a model for µ including all the explanatory variables. To check overdispersion
we compare the Poisson distribution model (PO) against the negative binomial type I model
(NBI). Since the reduction in deviance between those two models is enormous (4606.169) with
only one extra degree of freedom, for the rest of the chapter we will use the negative binomial
distribution model in order to choose terms for the µ and (possibly) for the σ models.
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Figure 11: The plot of the third party insurance data.

R> m0 <- gamlss(Claims ~ factor(SD) + L_Popdensity + L_KI + L_Accidents +

+ L_Population, data = LGAclaims, family = PO)

GAMLSS-RS iteration 1: Global Deviance = 6487.73
GAMLSS-RS iteration 2: Global Deviance = 6487.73

R> m1 <- gamlss(Claims ~ factor(SD) + L_Popdensity + L_KI + L_Accidents +

+ L_Population, data = LGAclaims, family = NBI)

GAMLSS-RS iteration 1: Global Deviance = 1883.942
GAMLSS-RS iteration 2: Global Deviance = 1881.561
GAMLSS-RS iteration 3: Global Deviance = 1881.561
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R> deviance(m0) - deviance(m1)

[1] 4606.169

Selection of variables

There are five functions within the gamlss package to assist with selecting explanatory variable
terms. The first two are the functions addterm() and dropterm() which allow the addition
or removal of a term in a model respectively. Those two functions are building blocks for the
functions stepGAIC.VR() and stepGAIC.CH() suitable for stepwise selection of models. Both
functions perform the stepwise model selection using a generalized Akaike information crite-
rion. The function stepGAIC.VR() is based on the function stepAIC() given in the package
MASS of Venables and Ripley (2002), where more details and examples of the function can be
found, with the additional property that it allows selection of terms for any selected distribu-
tion parameter. The function stepGAIC.CH() is based on the S-PLUS function step.gam()
(see Chambers and Hastie 1992, for more information) and is more suited to models with
smoothing additive terms in them. Again the function stepGAIC.CH() is generalized here
so it can be used for any distribution parameter within the gamlss packages. The main dif-
ference between stepGAIC.VR() and stepGAIC.CH() lies in the use of the scope argument.
The function stepGAIC() combines the two functions by having a extra argument additive
which when set to TRUE the stepGAIC.CH() is used, otherwise the stepGAIC.VR() is used.
stepGAIC.VR() is the default.

The functions addterm() and dropterm() are generic functions with their original definitions
defined at the package MASS of Venables and Ripley (2002). This package has to be attached,
(i.e., library("MASS")), first before their method for classes gamlss can be used. The func-
tions stepGAIC(), stepGAIC.VR() and stepGAIC.CH() can be used without attaching MASS.
We shall now use the dropterm() to check if model m1 can be simplified by dropping any of
the existing terms in µ and the function addterm() to check whether two way interactions of
the existing terms are needed. chunk 4

R> library("MASS")

R> mD <- dropterm(m1, test = "Chisq")

R> mD

Single term deletions for
mu

Model:
Claims ~ factor(SD) + L_Popdensity + L_KI + L_Accidents + L_Population

Df AIC LRT Pr(Chi)
<none> 1917.56
factor(SD) 12 1931.45 37.89 0.000160 ***
L_Popdensity 1 1970.84 55.28 1.045e-13 ***
L_KI 1 1961.00 45.44 1.576e-11 ***
L_Accidents 1 1920.63 5.07 0.024362 *
L_Population 1 1923.02 7.46 0.006313 **
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---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R> mA <- addterm(m1, scope = ~(factor(SD) + L_Popdensity + L_KI +

+ L_Accidents + L_Population)^2, test = "Chisq")

R> mA

Single term additions for
mu

Model:
Claims ~ factor(SD) + L_Popdensity + L_KI + L_Accidents + L_Population

Df AIC LRT Pr(Chi)
<none> 1917.56
factor(SD):L_Popdensity 12 1927.46 14.10 0.29424
factor(SD):L_KI 12 1921.44 20.12 0.06485 .
factor(SD):L_Accidents 12 1923.62 17.94 0.11764
factor(SD):L_Population 12 1923.94 17.62 0.12759
L_Popdensity:L_KI 1 1919.46 0.10 0.74753
L_Popdensity:L_Accidents 1 1919.25 0.32 0.57410
L_Popdensity:L_Population 1 1918.21 1.36 0.24430
L_KI:L_Accidents 1 1919.51 0.05 0.82555
L_KI:L_Population 1 1919.29 0.27 0.60173
L_Accidents:L_Population 1 1919.28 0.28 0.59547
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Based on the Chi square tests, no terms can be left out and no two way interaction is needed.
Since we established that adding or dropping terms in µ is not beneficial there is no point
using stepGAIC.VR() for modelling the µ parameter with linear terms. Instead we will use
stepGAIC.CH() trying to establish if smoothing terms are needed in the µmodel. The function
gamlss.scope()—similar to the function gam.scope() in the gam package (Hastie 2006)—is
used here to create the different models to be fitted.

R> gs <- gamlss.scope(model.frame(Claims ~ factor(SD) + L_Popdensity +

+ L_KI + L_Accidents + L_Population, data = LGAclaims))

R> gs

$‘factor(SD)‘
~1 + factor(SD)

$L_Popdensity
~1 + L_Popdensity + cs(L_Popdensity)

$L_KI
~1 + L_KI + cs(L_KI)
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$L_Accidents
~1 + L_Accidents + cs(L_Accidents)

$L_Population
~1 + L_Population + cs(L_Population)

R> m2 <- stepGAIC.CH(m1, scope = gs, k = 2)

Distribution parameter: mu
Start: Claims ~ factor(SD) + L_Popdensity + L_KI + L_Accidents +

L_Population; AIC= 1917.561
...
...
Trial: Claims ~ factor(SD) + cs(L_Popdensity) + L_KI + L_Accidents +
cs(L_Population); AIC= 1918.366

R> m2$anova

From To Df Deviance Resid. Df Resid. Dev
1 NA NA 158.0000 1881.561
2 L_Accidents cs(L_Accidents) -3.000838 -9.596529 154.9992 1871.964
3 L_Population cs(L_Population) -3.000782 -6.965547 151.9984 1864.999
4 L_Popdensity cs(L_Popdensity) -3.000727 -6.540878 148.9977 1858.458

AIC
1 1917.561
2 1913.966
3 1913.002
4 1912.463

R> formula(m2, "mu")

Claims ~ factor(SD) + cs(L_Popdensity) + L_KI + cs(L_Accidents) +
cs(L_Population)

The resulting gamlss object has an extra component anova which summarizes the selection
process. The best model includes smoothing terms for L_Popdensity, L_Accidents and
L_Population but not for L_KI. Plotting the smoothing additive functions can be achieved
using the function term.plot(), see Figure 12.

R> op <- par(mfrow = c(3, 2))

R> term.plot(m2, se = T, partial = T)

R> par(op)

Given that we have established a good model for µ, we proceed to find a good model for σ.
We start first with linear terms but we exclude the factor SD since some of the levels of the
factor have very few observations.
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Figure 12: The additive terms plot for the µ model.
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R> m11 <- stepGAIC.VR(m2, scope = ~L_Popdensity + L_KI + L_Accidents +

+ L_Population, what = "sigma", k = 2)

Distribution parameter: sigma
Start: AIC= 1912.46
~1
...
...
Final
sigma
Model:
~L_Population + L_Popdensity + L_KI

Step Df Deviance Resid. Df Resid. Dev AIC
1 148.9977 1858.458 1912.463
2 + L_Population 0.9983966 8.4984558 147.9993 1849.960 1905.961
3 + L_Accidents 0.9999946 8.5717312 146.9993 1841.388 1899.389
4 + L_Popdensity 0.9999033 3.0910247 145.9994 1838.297 1898.298
5 + L_KI 1.0000618 2.2042417 144.9993 1836.093 1898.094
6 - L_Accidents 1.0000190 0.2617682 145.9993 1836.354 1896.356

Note that the argument what is used here to determine which distribution parameter is to
be modelled. Here variables L_Population, L_KI and L_Accidents were found important in
explaining the σ parameter. The model chosen using AIC appears over complicated. Maybe
a higher penalty for GAIC would be more appropriate here.

3.5. Head circumference data

In this example we demonstrate the use of the gamlss package to constructing centile curves.
GAMLSS was adopted by the World Health Organization for constructing the world standard
child growth curves (see WHO Multicentre Growth Reference Study Group 2006).
The Fourth Dutch Growth Study (Fredriks, van Buuren, Burgmeijer, Meulmeester, Beuker,
Brugman, Roede, Verloove-Vanhorick, and Wit 2000a; Fredriks, van Buuren, Wit, and Verloove-
Vanhorick 2000b) is a cross-sectional study that measures growth and development of the
Dutch population between the ages 0 and 22 years. The study measured, among other vari-
ables, height, weight, head circumference and age for 7482 males and 7018 females.
Here the head circumference (y) of the males is analyzed with explanatory variable x = ageξ,
the transformed age. There are 7040 observations, as there were 442 missing values for head
circumference. The data are plotted in Figure 16. The data were previously analyzed by van
Buuren and Fredriks (2001) who found strong evidence of kurtosis which they were unable to
model. The data were subsequently analyzed by Rigby and Stasinopoulos (2006) using a BCT
distribution to model the kurtosis.
Given X = x, Y is modelled here by a Box-Cox t distribution, BCT(µ, σ, ν, τ), where the
parameters µ, σ, ν, and τ are modelled, using a special case of the GAMLSS model (2), as
smooth non-parametric functions of x, i.e., Y ∼ BCT(µ, σ, ν, τ) where

g1(µ) = h1(x)
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g2(σ) = h2(x) (10)
g3(ν) = h3(x)
g4(τ) = h4(x)

and, for k = 1, 2, 3, 4, gk(.) are known monotonic link functions, and hk(x) are smooth non-
parametric functions of x.

The model selection procedure comprised of choosing link functions gk(.), for k = 1, 2, 3, 4, ξ
in the transformation for age, x = ageξ, and the total (effective) degrees of freedom for the
smooth non-parametric cubic spline functions hk(x) for k = 1, 2, 3, 4, denoted dfµ, dfσ, dfν
and dfτ respectively. Identity link functions were chosen for µ and ν, while log link functions
were chosen for σ and τ (to ensure σ > 0 and τ > 0).

An automatic procedure, the function find.hyper() based on the numerical optimization
function optim in R (R Development Core Team 2007) was used by Rigby and Stasinopoulos
(2006) to minimize the GAIC(]) = −2ˆ̀+ ]df , (where ˆ̀ is the maximized log likelihood func-
tion, ] is the penalty and df is the total effective degrees of freedom used in the model), over
the five hyperparameters dfµ, dfσ, dfν , dfτ and ξ in the BCT model. The chosen hyperpa-
rameters for five different values of the penalty ] in GAIC(]) were shown in Table 3 of Rigby
and Stasinopoulos (2006). [Note that in general the GAIC(]) can potentially have multiple
local minima (especially for low values of ]) and so the automatic procedure should be run
with different starting values to ensure a global minimum has been found.]

For example the following R code can be used to find the chosen hyperparameters correspond-
ing to penalty ] = 2. The penalty ] is specified by the find.hyper() argument penalty.
Note also the c.spar argument in the cubic spline function cs() which is necessary in this
case to make sure that the degrees of freedom for smoothing is able to take small values (see
the comments on the help file for cs()). The five hyperparameters dfµ, dfσ, dfν , dfτ and ξ are
represented by p[1] to p[5] in the code below, while the argument par specifies initial values
for the five parameters and lower specifies their lower bounds. See details of the function
optim() in R for the other arguments.

R> library("gamlss")

R> data("db")

R> mod1 <- quote(gamlss(head~cs(nage, df = p[1]), sigma.fo = ~cs(nage, p[2]),

+ nu.fo = ~cs(nage, p[3], c.spar=c(-1.5,2.5)),

+ tau.fo = ~cs(nage, p[4], c.spar=c(-1.5,2.5)),

+ data = db, family = BCT,

+ control = gamlss.control(trace=FALSE)))

R> op <- find.hyper(model=mod1, other=quote(nage<-age^p[5]),

+ par = c(10,2,2,2,0.25),

+ lower = c(0.1,0.1,0.1,0.1,0.001),

+ steps = c(0.1,0.1,0.1,0.1,0.2),

+ factr = 2e9, parscale=c(1,1,1,1,0.035), penalty=2 )

The procedure takes a long time (approximately one hour!). The final chosen values of the
five hyperparameters and the final value of GAIC (]) are obtained by the components op$par
and op$value respectively.
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par 10 2 2 2 0.25 crit= 26792.24 with pen= 2
par 10.1 2 2 2 0.25 crit= 26792.06 with pen= 2
par 9.9 2 2 2 0.25 crit= 26792.43 with pen= 2
par 10 2.1 2 2 0.25 crit= 26792.01 with pen= 2
...
...
par 18.43638 2.679676 0.9969013 6.73205 0.08739384 crit= 26780.56 with pen= 2
par 18.43638 2.679676 0.9969013 6.83205 0.09439384 crit= 26780.57 with pen= 2
par 18.43638 2.679676 0.9969013 6.83205 0.08039384 crit= 26780.56 with pen= 2
R> op
$par
[1] 18.43637964 2.67967596 0.99690134 6.83204939 0.08739384

$value
[1] 26780.56

$counts
function gradient

13 13

$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Note that the degrees of freedom reported in each of the first four components of op$par in
the output do not include the constant and the linear term, so 2 degrees of freedom have
to be added to each value above to give the total degrees of freedom for each distribution
parameter. For example the total degrees of freedom for µ is 2 + 18.44 = 20.44. If the
automatic procedure results in a value of 0.1 for the extra degrees of freedom for a particular
parameter, that is, the lower boundary of the search, then a further search has to be done
to check if the model can be simplified further to either just a linear term or just a constant
term for that parameter.
A penalty value of 3 was chosen by Rigby and Stasinopoulos (2006) resulting in selected
hyperparameters (dfµ, dfσ, dfν , dfτ , ξ) = (12.3, 5.7, 2, 2, 0.33) minimizing GAIC(3).
Here for comparison we select the hyperparameters using a validation data set. The data
is split into 60% training and 40% validation data. For each specific set of hyperparame-
ters, model (10) is fitted to the training data and the resulting validation global deviance
V GD = −2ˆ̀

v where ˆ̀
v is the log-likelihood of the validation data given the fitted train-

ing data model. The VGD is then minimized over the hyperparameters using the numeric
optimization function optim(). The code we use is as follows:

R> library("gamlss")

R> data("db")

R> set.seed(101)

R> rand <- sample(2, length(db$head),replace=T, prob=c(0.6, 0.4))

R> table(rand)/length(db$head)
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rand
1 2

0.5940341 0.4059659

R> dbp <- db

R> dbp$agepower <- db$age^0.33

R> mBCT<- gamlss(head~cs(agepower,df=10.3), sigma.fo=~cs(agepower,df=3.7),

+ nu.fo=~agepower, tau.fo=~agepower, family=BCT, data=dbp)

GAMLSS-RS iteration 1: Global Deviance = 26916.28
...
GAMLSS-RS iteration 10: Global Deviance = 26745.67

R> mu.s <- fitted(mBCT, "mu")[rand == 1]

R> sigma.s <- fitted(mBCT, "sigma")[rand == 1]

R> nu.s <- fitted(mBCT, "nu")[rand == 1]

R> tau.s <- fitted(mBCT, "tau")[rand ==1 ]

R> fnBCT <- function(p) {

+ db$agepower <- db$age^p[1]

+ vgd <- VGD(head~cs(agepower,df=p[2],c.spar=list(-1.5, 2.5)),

+ sigma.fo=~cs(agepower,df=p[3],c.spar=list(-1.5, 2.5)),

+ nu.fo=~agepower, tau.fo=~agepower,

+ family=BCT, data=db, rand=rand, mu.start=mu.s,

+ sigma.start=sigma.s, nu.start=nu.s, tau.start=tau.s)

+ cat("p=", p, " and vgd=", vgd, "\n")

+ vgd }

R> op <- optim(par=c(.33, 12, 5.7), fnBCT, method="L-BFGS-B",

+ lower=c(.01,1,1), upper=c(.5, 20, 20))

Note that we have not attempted to model the parameters ν and τ using smoothing cubic
splines, but we just fit linear terms as in the chosen model of Rigby and Stasinopoulos (2006).
Hence the resulting hyperparameters and degrees of freedoms were (dfµ, dfσ, dfν , dfτ , ξ) =
(15.77, 8.05, 2, 2, 0.28). Below we fit this model chosen by minimizing VGD to the full data
set (i.e., training and validation data combined).

R> db$agepower <- db$age^0.28

R> mBCT <- gamlss(head~cs(agepower,df=13.77), sigma.fo=~cs(agepower,df=6.05),

+ nu.fo=~agepower, tau.fo=~agepower, family=BCT, data=db)

GAMLSS-RS iteration 1: Global Deviance = 26902.78
...
GAMLSS-RS iteration 9: Global Deviance = 26732.04

Figure 13, obtained using fitted.plot(mBCT, x=db$age), shows the fitted models for µ, σ,
ν, and τ for the model chosen by minimizing VGD.
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Figure 13: The fitted parameters against age for the “best” BCT model with hyperparameters
chosen to minimize the validation global deviance (VGD) (a) µ (b) σ (c) ν (d) τ .

Figure 14 displays the (normalized quantile) residuals, from modelBCT (15.77, 8.05, 2, 2, 0.28).
Panels (a) and (b) plot the residuals against the fitted values of µ and against age respec-
tively, while panels (c) and (d) provide a kernel density estimate and normal QQ plot for
them respectively. The residuals appear random but the QQ plot shows seven extreme out-
liers (0.1% of the data) in the upper tail of the distribution of y. Nevertheless the Box-Cox
t distribution model provides a reasonable fit to the data. Below gives the commands for
obtaining Figure 14.

R> newpar <- par(mfrow = c(2, 2), mar = par("mar") + c(0, 1, 0,0),

+ col.axis = "blue4", col = "blue4", col.main = "blue4",

+ col.lab = "blue4", pch = "+", cex = 0.45, cex.lab = 1.2,

+ cex.axis = 1, cex.main = 1.2)

R> plot(mBCT, xvar = db$age, par = newpar)
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Figure 14: The residuals from model BCT (15.77, 8.05, 2, 2, 0.28). (a) against fitted values of
µ (b) against age (c) kernel density estimate (d) normal QQ plot.

*******************************************************************
Summary of the Quantile Residuals

mean = -0.0003786376
variance = 1.000140

coef. of skewness = 0.008874363
coef. of kurtosis = 3.056934

Filliben correlation coefficient = 0.999539
*******************************************************************

R> par(newpar)

Figure 15 displays detailed diagnostic plots for the residuals using a worm plot developed
by van Buuren and Fredriks (2001). In this plot the range of age is split into 20 contiguous
non-overlapping intervals with equal numbers of cases. The 20 age ranges are displayed in
horizontal steps in the chart above the worm plot in Figure 15. A detrended normal QQ plot
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of the residuals in each interval is then displayed. Ten outliers are omitted from the worm
plot as their deviations lie outside the deviation range used in the plots. The worm plot allows
detection of inadequacies in the model fit within specific ranges of age. From Figure 15, the
de-trended QQ plots show adequate fits to the data within most of the 20 age ranges, with
only occasional minor inadequacies. van Buuren and Fredriks (2001) proposed fitting cubic
models to each of the de-trended QQ plots, with the resulting constant, linear, quadratic and
cubic coefficients, b̂0, b̂1, b̂2 and b̂3 respectively, indicating differences between the empirical
and model residual mean, variance, skewness and kurtosis respectively, within the age range
in the QQ plot. They summarize their interpretations in their Table II. For model diagnosis,
they categorize absolute values of b̂0, b̂1, b̂2 and b̂3 in excess of threshold values, 0.10, 0.10,
0.05 and 0.03 respectively, as misfits.

The commands below produce the worm plot in Figure 15 together with the number of points
missing from each of the 20 detrended Q-Q plots (from the bottom left to top right of Figure
15). The 20 age ranges used are given by $classes, while $coef gives the coefficients b̂0, b̂1,
b̂2, and b̂3, of van Buuren and Fredriks (2001).

R> a<- wp(mBCT, xvar = db$age, n.inter = 20, ylim.worm = 0.6, cex = 0.3,

+ pch = 20)

number of missing points from plot= 3 out of 374
...
number of missing points from plot= 1 out of 351

R> a

$classes

[,1] [,2]

[1,] 0.025 0.185

...

[20,] 19.075 21.685

$coef

[,1] [,2] [,3] [,4]

[1,] -0.057187844 0.017469571 3.411925e-02 -0.0040514944

...

[20,] -0.024159686 0.027327238 -5.999749e-03 -0.0177428163

van Buuren and Fredriks (2001) reported results for the male head circumference data us-
ing the LMS model with a ‘re-scale transformation’ of age which stretches periods of rapid
growth and compresses periods of lower growth in y to provide a uniform growth rate on
the transformed age scale (see Cole, Freeman, and Preece 1998, for details). Following this
complex transformation of age, they chose 9 degrees of freedom for µ, 5 for σ and a con-
stant value ν = 1. However, they reported a total of 16 violations in the resulting worm
plot coefficients from their chosen fitted model (i.e., values of b̂’s in excess of their threshold
values), indicating that the model does not adequately fit the data within many specific age
ranges. In contrast, there are no violations in the worm coefficients from the fitted model
BCT (15.77, 8.05, 2, 2, 0.28), indicating an adequate fit to the data within age ranges.
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Figure 15: Worm plot of the residuals from model BCT (15.77, 8.05, 2, 2, 0.28). The 20 de-
trended QQ plots read in rows, from bottom left to top right plot, correspond to 20 age ranges
(displayed in steps above the worm plot from 0 to 22 years).

The fit within age groups can be further investigated by calculating Q statistics for testing
normality of the residuals within age groups (Royston and Wright 2000). The application of
Q statistics to centile data was also discussed by Rigby and Stasinopoulos (2004).

Let G be the number of age groups and let {rgi, i = 1, 2, .., ni} be the residuals in age group
g, for g = 1, 2, .., G. Statistics Zg1,Zg2,Zg3,Zg4 are calculated from the residuals in group g
to test whether the residuals in group g have population mean 0, variance 1, skewness 0 and
kurtosis 3. See Royston and Wright (2000) for their definition and Rigby and Stasinopoulos
(2004) for an application to centile data.

The Q statistics of Royston and Wright (2000) are then calculated by Qj =
∑G
g=1 Z2

gj for
j = 1, 2, 3, 4. Royston and Wright (2000) discuss approximate distributions for the Q statistics
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under the null hypothesis that the true residuals are normally distributed. The resulting
significance levels should be regarded as providing a guide to model inadequacy, rather than
exact formal test results.

‘Significant’ Q1, Q2, Q3 or Q4 statistics indicate possible inadequacies in the models for param-
eters µ, σ, ν and τ respectively, which may be overcome by increasing the degrees of freedom
in the model for the particular parameter. Q-statistics can be obtained using the Q.stats()
function. The results below suggest possible inadequacy in the chosen model (particularly for
ν and τ).

R> Q.stats(mBCT, xvar = db$age, n.inter = 20)

Z1 Z2 Z3 Z4 AgostinoK2 N
0.02500 to 0.18499 -0.4484003 0.261715 1.7067101 0.8872568 3.7000843 374
0.18499 to 0.46499 0.1840299 -0.484436 -1.1752911 0.1132373 1.3941318 334
0.46499 to 0.87499 0.3685602 -0.235589 0.4005546 -1.1005652 1.3716879 351
0.87499 to 1.255 0.4392752 -1.498977 0.1873113 -1.5442777 2.4198793 358
1.255 to 1.755 0.2217602 1.918012 2.3170652 3.0642958 14.7587003 352
1.755 to 2.355 -1.4535468 1.042338 -1.5839443 0.7935995 3.1386799 344
2.355 to 3.155 0.1568195 -0.293398 -0.4419538 -0.6724331 0.6474895 355
3.155 to 5.535 0.3904703 -0.171900 -1.4829916 1.1527648 3.5281311 348
5.535 to 8.905 0.1774860 0.179760 -1.0866496 0.6702548 1.6300489 352
8.905 to 9.995 0.1466325 -0.806457 -0.0210452 -0.2453329 0.0606311 353
9.995 to 11.015 -0.7650576 0.319668 -1.0899948 -0.9988486 2.1857873 353
11.015 to 11.975 0.3233806 -0.395298 1.5364611 -0.6661094 2.8044145 350
11.975 to 12.995 -0.0142166 -0.277707 0.4057170 -1.2407151 1.7039803 355
12.995 to 13.925 -0.3719043 -1.342941 0.5006712 0.2489784 0.3126619 353
13.925 to 14.845 -0.1652504 1.824631 1.0214185 0.7920882 1.6706996 350
14.845 to 15.835 0.5482230 0.159326 -0.3981177 -0.8198388 0.8306335 353
15.835 to 16.895 1.2623821 0.181071 -1.0792911 -0.0886510 1.1727282 349
16.895 to 17.915 -0.9114567 -0.256590 -0.8270233 -0.1165021 0.6975404 352
17.915 to 19.075 0.3389135 0.395489 2.0835231 2.2136206 9.2411850 353
19.075 to 21.685 -0.5646241 -0.629562 -0.2334364 -1.6327868 2.7204855 351
TOTAL Q stats 6.9700513 14.314279 27.3534790 28.6361020 55.9895811 7040
df for Q stats 4.2276359 15.474309 18.0000000 18.0000000 36.0000000 0
p-val for Q stats 0.1552353 0.537060 0.0726000 0.0530118 0.0179523 0

The Zgj statistic when squared provides the contribution from age group g to the statistic
Qj , and hence helps identify which age groups are causing the Qj statistic to be significant
and therefore in which age groups the model is inadequate.

Provided the number of groups G is sufficiently large relative to the degrees of freedom
in the model for the parameter, then the Zgj values should have approximately standard
normal distributions under the null hypothesis that the true residuals are standard normally
distributed. We suggest as a rough guide values of |Zgj | greater than 2 be considered as
indicative of significant inadequacies in the model. See Rigby and Stasinopoulos (2004) for
an application of Z statistics to centile data. The residuals in the age range (1.255, 1.755)
years are highly positively skewed and kurtotic indicating possible inadequacies of the ν and
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Figure 16: Observed head circumference with nine fitted model centile curves (0.4, 2, 10, 25,
50, 75, 90, 98, 99.6), from model BCT (15.77, 8.05, 2, 2, 0.28), against age: (a) 0–2.5 years (b)
2.5–22 years

τ models in this range or perhaps the presence of outliers in head circumference in this age
range.

The following command centiles.split obtains the centiles curves given in Figure 16 for head
circumference against age, split at age= 2.5 years (defined by c(2.5) in the command). The
output below compares the sample proportion below each centile curve for each of the two
age ranges, i.e., below age 2.5 years and above age 2.5 years. They agree reasonably well with
the model proportions given by the first column.

R> centiles.split(mBCT, xvar = db$age, c(2.5), ylab = "HEAD", xlab = "AGE",

+ bg= "transparent")

0.03 to 2.5 2.5 to 21.68
0.4 0.4599816 0.4110152
2 1.8859246 1.7673654
10 10.0735971 9.8438142
25 26.2649494 25.2979860
50 50.2299908 50.0205508
75 73.7810488 74.4143033
90 90.0643974 90.0739827
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98 98.2980681 98.2120838
99.6 99.4480221 99.7739416

Figure 16 provides nine fitted model centile curves, defined by (11) below, for head circum-
ference for model BCT (15.77, 8.05, 2, 2, 0.28), with centiles 100α = 0.4, 2, 10, 25, 50, 75, 90,
98, 99.6. For each α, the centile curve, yα against x, is obtained by finding the fitted values
(µ̂, σ̂, ν̂, τ̂) for each x (over a range of values of x) and substituting the values into

yα =
{
µ[1 + σνtτ,α]1/ν if ν 6= 0
µ exp[σtτ,α] if ν = 0,

(11)

where tτ,α is the 100α centile of tτ , a standard t distribution with degrees of freedom parameter
τ . Strictly the exact formula for yα is given in Rigby and Stasinopoulos (2006, Appendix A).
The resulting centiles are plotted separately for age range 0 to 2.5 years and for age range 2.5
to 22 years in Figure 16, for clarity of presentation.
Finally, in order to investigate the effect of the extreme outliers, the 14 most extreme ob-
servations (7 from the upper and 7 from the lower tail, were removed and the model was
refitted. The fit to the data were substantially improved, leading to improved Q statistics
and improved centile estimates. Hence the 14 outliers were causing a distortion of the fitted
model and of the (detrended) QQ plot of the residuals resulting in a distortion of the centile
estimates. The centile percentages can be adjusted for the 0.1% of cases removed from each
tail.

4. Conclusions

GAMLSS is a general framework for univariate regression type statistical problems. It allows
flexibility in specifying the distribution of the response variable including highly skew and/or
kurtotic distributions and also allows all the distribution parameters to be modelled flexibly
as functions of explanatory variables. New distributions can be added easily. The use of
(modified) backfitting in the fitting algorithm makes the addition of new additive smoothing
terms easy. The fitting algorithm is fast enough to allow the rapid exploration of very large
and complex data sets. For medium to large size data, GAMLSS allows flexibility in statistical
modelling far beyond other currently available methods. While flexibility allows more realistic
assumptions about the data in hand, it has the drawback that model selection becomes more
difficult for the simple reason that there are more models to select from. More work needs to
be done here.
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