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Abstract

Our ltsa package implements the Durbin-Levinson and Trench algorithms and provides
a general approach to the problems of fitting, forecasting and simulating linear time series
models as well as fitting regression models with linear time series errors. For computational
efficiency both algorithms are implemented in C and interfaced to R. Examples are given
which illustrate the efficiency and accuracy of the algorithms. We provide a second package
FGN which illustrates the use of the ltsa package with fractional Gaussian noise (FGN).
It is hoped that the ltsa will provide a base for further time series software.
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1. Introduction

Let zt, t = 1, . . . , n, denote n successive observations from an ergodic covariance stationary
Gaussian time series with autocovariance function (acvf) γk = Cov (zt, zt−k), k = 0, 1, . . . , n−
1 and mean µ. The general linear process (GLP) may be specified by its autocovariance
sequence, γk, or equivalently in terms of its autocorrelation sequence (acf), ρk = γk/γ0 or
coefficients ψk in the infinite moving-average (MA),

zt = µ+ at + ψ1at−1 + ψ2at−2 + . . . , (1)

where at ∼ NID (0, σ2
a) and ψ2

1 + ψ2
2 + . . . <∞. Notice that both acf and infinite MA model

specifications also require the innovation variance σ2
a. The condition ψ2

1 + ψ2
2 + . . . < ∞

ensures that the acvf exists and that the GLP is stationary. For sufficiently large Q we may
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approximate using a MA of order Q,

zt = µ+ at + ψ1at−1 + ψ2at−2 + . . . ψQat−Q, (2)

Most parametric time series models may be specified so that either the autocovariances, γk,
or the MA coefficients, ψk, are functions of a small number of parameters, β. Both theory and
experience suggests that exact maximum likelihood are preferable to other methods. Please
see the Appendix for further discussion about the GLP.

The covariance matrix of zt, t = 1, . . . , n, denoted by Γn, is given by Γn = (γi−j), where the
(i, j)-entry in the n×n matrix is indicated. The minimum-mean-square linear predictor of zt
given zs, s = 1, . . . , t− 1, where t ≤ n, may be written

ẑt = φt−1,1z1 + . . .+ φt−1,t−1zt−1, (3)

where φ(t) = (φt−1,1, . . . , φt−1,t−1) is determined by the linear equations

Γtφ
(t) = (γ(1), . . . , γ(t))′, (4)

and the variance of the predictor is given by

σ2
k = γ(0)− φt−1,1γ(1)− . . .− φt−1,t−1γ(t− 1). (5)

The covariance determinant is,

|Γt| =
k=t−1∏
k=0

σ2
k. (6)

The Durbin-Levinson algorithm (Golub and Loan 1996, Algorithm 5.7-1) provides an efficient
algorithm for solving Equations (4) and (5) in O(n2) flops. The Trench algorithm (Golub and
Loan 1996; Trench 1964) may be derived by determining the parameters in an AR (n−1) with
autocovariances γ0, . . . , γn−1 using the Durbin-Levinson algorithm. After the AR coefficients
have been found, Γ−1

n is obtained using the method given by Siddiqui (1958). The Trench
algorithm evaluates the matrix inverse in O(n2) flops. Our R function TrenchInverse uses
the C interface to provide an efficient implementation of the Trench algorithm. On a typical
current PC it takes less than a fraction of a second to evaluate this inverse for matrices
with n = 1000. In the special case of ARMA time series, Zinde-Walsh (1988) obtained an
explicit expression for computing the elements in Γ−1

n . This method is suitable for symbolic
computation (McLeod 2005).

The Durbin-Levinson and Trench algorithms provide a convenient method for computing
the exact likelihood function of a general linear Gaussian time series model (Li 1981; Sowell
1992; Brockwell and Davis 1991). In a suitable quantitative programming environment such
as R the likelihood function may be explored graphically, optimized to obtain exact MLE
or integrated for Bayesian estimates (McLeod and Quenneville 2001). For the well-known
ARMA family of time series models there are many algorithms for the computation of the
exact likelihood function which require only O(n) flops per function evaluation Box and
Luceño (1997, Section 12B) as opposed to the O(n2) flops required in the Durbin-Levinson or
Trench algorithm. For long ARMA time series, a superfast likelihood algorithm requiring only
O(1) flops per log-likelihood evaluation is available (McLeod and Zhang 2007). The advantage
of the Durbin-Levinson or Trench algorithm is that they are more general and with current
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computing technology, MLE using this algorithm is sufficiently fast provided that n is not too
large. When the ARMA model is extended to include long-memory alternatives such as the
ARFIMA model Brockwell and Davis (1991, Section 13.2) and other ARMA long-memory
extensions (Baillie 1996), the Durbin-Levinson likelihood algorithm is as computationally
efficient as other commonly used exact likelihood methods such as the innovation algorithm
or Kalman filter. A brief discussion and comparison with the superfast algorithm (Chen,
Hurvich, and Lu 2006) is given in Section 2.3.

For linear parametric time series models, it is assumed that the acvf or MA coefficients, ψk, k =
0, 1, . . . , are uniquely determined by p parameters, β = (β1, . . . , βp). An example we will
discuss in Section 3 is the fractional Gaussian noise time series model which is characterized
by its autocorrelation function Hipel and McLeod (1994, page 340),

ρk = (|k + 1|2H − 2|k|2H + |k − 1|2H)/2, 0 < H < 1. (7)

In addition to fitting and forecasting linear time series models, there are many other applica-
tions for our algorithms in time series analysis including regression with autocorrelated error,
an example of which is discussed in Section 3.4. Another example where the inverse matrix
is needed is for power computations in intervention analysis (McLeod and Vingilis 2005).

2. Main package

2.1. Package overview

The R functions in the ltsa package are shown in Table 1. The TrenchInverse function is
especially useful for efficient exact MLE for regression with autocorrelated error and for the
mean, µ, as well for computing and updating forecasts. The log-likelihood may be computed
using either the Durbin-Levinson or Trench algorithm. Residuals are useful for checking
model adequacy and these may also be computed using the Durbin-Levinson algorithm. A
linear time series may be simulated using the Durbin-Levinson recursion, the Davies-Harte
algorithm (Davies and Harte 1987) or another method using the fast Fourier transform that
is given in Section 2.6. In the next section we discuss in more detail TrenchInverse and in
the following sections the remaining functions are discussed. The FGN package discussed in
Section 3 describes how the ltsa functions may be used to develop a package for fractional
Gaussian noise (FGN) time series modeling.

2.2. TrenchInverse

The TrenchInverse function in R is interfaced to a C function for maximum speed. R memory
management C functions are used so there is complete compatibility with all R platforms. Our
package has been tested in the Windows, Mac OS X and Debian Linux environments.

The function TrenchInverse in this package inverts a positive-definite Toeplitz matrix uti-
lizing the interface provided in R to call a C function. If the matrix is not a positive definite,
a suitable error message is returned.

The TrenchInverse function takes a single matrix argument Γn. The built-in R function,
toeplitz, may be used to create this matrix Γn from the vector input (γ0, . . . , γn−1). For
maximum computational efficiency one could work with just this vector, and this is how in fact
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Function Purpose
DHSimulate Simulate using Davies-Harte method
DLAcfToAR AR parameters, variances, pacf
DLLoglikelihood Exact concentrated log-likelihood
DLResiduals Standardized prediction residuals
DLSimulate Simulate using DL recursion
SimGLP Simulate general linear process
tacvfARMA Acvf of ARMA
TrenchInverse Toeplitz matrix inverse
ToeplitzInverseUpdate Updates the inverse
TrenchLoglikelihood Exact concentrated log-likelihood
TrenchMean Exact MLE for mean
TrenchForecast Exact forecast and variance

Table 1: The principal functions in ltsa.

the underlying C algorithm is implemented. As a brief illustrative example of this package, in
the code below, we subtract the product of a Toeplitz matrix and its inverse from the identity
matrix and compute the largest absolute error in the result:

R> phi <- 0.8

R> n <- 1000

R> r <- (1 / (1 - phi^2)) * phi^(0:(n-1))

R> G <- toeplitz(r)

R> Gi <- TrenchInverse(G)

R> id <- matrix(0, nrow=n, ncol=n)

R> diag(id) < -1

R> max(abs(id - G%*%Gi))

[1] 6.661338e-16

We investigated the timings for the function TrenchInverse and compared them with the
general purpose matrix inverse function solve in R. The timings reported in this section were
done on a 3.6 GHz Pentium 4 PC running Windows XP. For these timings we first generated 25
uniform random values on the interval (−1, 1), denoted by φk, k = 1, . . . , 25. These values were
used to generate 25 Toeplitz matrices of the form, Γn = (φ|i−j|

k /(1 − φ2
k))n×n, k = 1, . . . , 25,

for each n = 400, 800, 1200, 1600, 2000. The code for generating this table is included in the
package documentation for TrenchInverse. We conclude from Table 2 that TrenchInverse
is significantly faster than solve.

In forecasting applications that we will discuss below in Section 2.5, the successive inverses of
Γn+k, k = 1, 2, . . ., are needed. Then Γ−1

n+k may be more efficiently computed using the result
for the inverse of partitioned matrices Graybill (1983, Section 8.3). When k = 1, we obtain,

Γ−1
n+1 =

(
Γ−1

n (In + Γ−1
n /a) f

f ′ e

)
, (8)
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n TrenchInverse solve
400 0.08 0.43
800 0.22 4.57

1200 0.44 18.73
1600 0.74 51.15
2000 1.16 114.30

Table 2: CPU time in seconds for TrenchInverse and the R function solve.

where a = ehh′, e = 1/(γ0 − h′Γ−1
n h), h = (γ1, . . . , γn)′, f = −eΓ−1

n h and In is the n × n
identity matrix. Then Equation (8) may be applied repeatedly to obtain Γ−1

n+k, k = 1, 2, . . ..

In Table 3, we compare the timing and accuracy of the updating approach described in Equa-
tion (8), implemented in ToeplitzInverseUpdate, with direct inversion in TrenchInverse.
The function TrenchInverse is implemented using R interface to C, whereas
ToeplitzInverseUpdate is implemented entirely in R. For the comparison we used the
hyperbolic decay autocovariance function γk = 1/(k + 1), k ≥ 0, and computed Γ−1

n+k,
k = 1, 2, . . . , 100 and n = 100, 500, 1000, 2000. As a check, the absolute error for the dif-
ference between the two matrices was computed and it was found to be negligible. The CPU
times are shown in Table 3. The updating algorithm is about 3 to 4 times as fast and this
factor does not seem to change much with n. This might be expected since both algorithms
require O(n2) flops.

2.3. Log-likelihoood

In this section we discuss the functions DLLoglikelihood and TrenchLoglikelihood.

Assuming the mean is known and that zt has been mean-corrected, the log-likelihood function
for parameters (β, σ2

a) given data z = (z1, . . . , zn)′ may be written, after dropping the constant
term,

L(β, σ2
a) = −1

2
log(det(Γn))− z′Γ−1

n z/2. (9)

Letting Mn = Γn/σ
2
a and maximizing L over σ2

a, the concentrated log-likelihood may be

n ToeplitzInverseUpdate TrenchInverse
100 0.09 0.61
500 2.14 7.89

1000 7.85 29.47
2000 33.07 110.00

Table 3: CPU time in seconds for direct computation using TrenchInverse and
ToeplitzInverseUpdate. First the inverse of a matrix of order n is computed and then
the inverses for matrices of orders n+ 1, . . . , n+ 100 are computed using TrenchInverse and
ToeplitzInverseUpdate.
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written,

Lc(β) = −n
2

log(S(β)/n)− 1
2

log(gn), (10)

where S(β) = z′M−1
n z and gn = det(Mn). Note that Lc is unchanged if we simply replace Mn

in S(β) and gn by the autocorrelation matrix Rn = (ρ|i−j|)n×n. Using the Durbin-Levinson
algorithm,

S(β) =
n∑

t=1

(zt − ẑt)2/σ2
k, (11)

where ẑt and σ2
k are given in Equation (3) and (5). The C functions we developed can evaluate

S(β) as well as log(gn) using the Durbin-Levinson method as well as the more direct Trench
algorithm. These C functions are interfaced to DLLoglikelihood and TrenchLoglikelihood.
Either can then be used with the optimization functions provided with R to obtain the MLE.
In practice, the Durbin-Levinson is somewhat faster as can be seen in Table 4.

Chen et al. (2006) have implemented a superfast method of solving linear Toeplitz systems of
the form Γnx = b, where Γn is an order n symmetric positive-definite Toeplitz matrix, b is a
known vector of length n and x is the vector of unknowns. With their method, x can be found
in O(n log5/2 n) flops. This provides an alternative and, in principle, computationally more
efficient method of evaluating the loglikelhood. However, unless n is very large, the gain may
not be significant. The time will also depend on the computer and the specific implementation.
Timings they gave for their superfast algorithm, ML-PCG (S-PLUS), are reported in Table 4
and Table 5 along with timings for their S-PLUS version of the Durbin-Levinson method,
ML-Levinson (S-PLUS). Apart from coding, their ML-Levinson (S-PLUS) is equivalent to
our DLLoglikelihood, useC=TRUE. Our timings for the Durbin-Levison algorithm are much
faster and this is no doubt due to language/machine differences. In Table 5 we used a Windows
PC with a 3.6 Ghz Pentium processor and in Table 4 we used a newer PC running Debian
Linnux since our Windows PC could not handle such large matrices. (Chen et al. 2006, Table
4) used a Sun Workstation running the Solaris OS. Tables 4 and 5 suggest that, for many
purposes, the current implementation of our algorithms has a satisfactory performance with
respect to computer time.

The superfast algorithm of Chen et al. (2006) is an iterative method which is more compli-
cated to program and has several other practical limitations. If only the inverse matrix is
required then the Trench algorithm is always computationally more efficient, since the super-
fast algorithm only solves a set of linear equations and does not directly compute the matrix

Algorithm Computer/OS n
10000 15000

DLLoglikelihood, useC=FALSE PC/Linnux 6.11 14.34
DLLoglikelihood, useC=TRUE PC/Linnux 0.52 1.17
TrenchLoglikelihood PC/Linnux 3.73 9.35
ML-Levinson (S-PLUS) Sun/Solaris 168.4 379.8
ML-PCG (S-PLUS) Sun/Solaris 6.3 9.4

Table 4: CPU time in seconds for d = 0.45, n = 10, 000 and n = 15, 000.
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Algorithm Computer/OS d
−0.45 −0.25 0.25 0.45

DLLoglikelihood, useC=FALSE PC/WinXp 3.42 3.39 3.40 3.39
DLLoglikelihood, useC=TRUE PC/WinXP 0.17 0.17 0.17 0.17
TrenchLoglikelihood PC/WinXP 2.88 2.61 2.70 2.60
DLLoglikelihood, useC=FALSE MacBook/OS X 2.45 2.51 2.48 2.48
DLLoglikelihood, useC=TRUE MacBook/OS X 0.14 0.14 0.14 0.14
TrenchLoglikelihood MacBook/OS X 1.40 1.14 1.13 1.13
DLLoglikelihood, useC=FALSE PC/Linnux 1.64 1.63 1.64 1.64
DLLoglikelihood, useC=TRUE PC/Linnux 0.13 0.13 0.13 0.13
TrenchLoglikelihood PC/Linnux 0.91 0.90 0.93 0.92
ML-Levinson (S-PLUS) Sun/Solaris 42.8 42.6 42.3 42.6
ML-PCG (S-PLUS) Sun/Solaris 5.50 4.40 3.80 4.70

Table 5: Comparison of CPU time in seconds for n = 5000.

inverse. A further advantage of the Trench algorithm is that as a byproduct the exact value
of the determinant is also obtained.

2.4. Estimation of the mean

Given the other parameters in the model, so that γk, k = 0, . . . , n − 1 is specified, the best
linear unbiased estiamte estimate (BLUE) for µ is given by (Beran 1994, Section 8.2),

µ̂ =
1′nΓ−1

n z

1′nΓ−1
n 1n

, (12)

where z′ = (z1, . . . , zn) and 1n is an n dimensional column vector whose entries are all equal to
one. Notice that the autocovariances in Equation (12) may be replaced by autocorrelations.
The function TrenchMean implements the computation in Equation (12).

An iterative algorithm may be used for the simultaneous joint MLE of µ and the other
parameters β.

Step 0 Set the maximum number of iterations, M ← 5. Set the iteration counter, i ← 0.
Set µ̂(0) ← z̄, where z̄ is the sample mean. Set initial parameters to zero, β(0) ← 0 or
some other suitable initial estimate. Set `0 = Lc(β̂(0), µ̂(0)).

Step 1 Obtain β̂(i+1) by numerically maximizing Lc(β, µ̂(i)) over φ. Set `i+1 = Lc(β̂(i+1), µ̂(i)).

Step 2 Evaluate µ̂(i+1) using β̂(i+1) in Equation (12).

Step 3 Terminate when `i+1 has converged or i > M . Otherwise set i← i+ 1 and return to
Step 1 to perform the next iteration.

Convergence usually occurs in two or three iterations.
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Another topic of interest is the question of the efficiency of the sample mean. The variance
of the sample mean, z̄ = (z1 + . . .+ zn)/n, may be written,

Var (z̄) = Var (1′nz)
= 1′nΓn1n/n

2

=
γ0

n
+

2
n

n−1∑
k=1

(1− k

n
)γk. (13)

It may be shown that the exact finite sample efficiency of the sample mean is (Beran 1994,
Section 8.2)

E = n2/((1′nΓ1n)(1′nΓ−11n)). (14)

Although the sample mean often provides an efficient estimate, situations exist it is not very
efficient. We will discuss an example of this in Section 3.2.

2.5. Forecasting

The Trench algorithm is useful for the computation of exact finite-sample forecasts and their
variances. Let zn(k) denote the minimum-mean-square-error linear predictor of zn+k, given
the data z′ = (z1, . . . , zn), the mean µ and autocovariances γ`, ` = 0, . . . , n−1. Then Hamilton
(1994, Section 4.3) or Hipel and McLeod (1994, Section 10.4.5),

zn(k) = µ+ g′kΓ−1
n (z − µ), (15)

where g′k = (γn+k−1, . . . , γk) and the variance for the forecast,

Vk = γ0 − g′kΓ−1
n gk, (16)

For large n, V1
.= σ2

a. In Equation (15), the autocovariances may be replaced by autocorre-
lations, but in Equation (16) autocovariances must be used. Equations (15) and (16) may
be vectorized to compute the k-step predictor for k = 1, 2, . . . , L, and this is implemented in
TrenchForecast. The computation of the forecasts and their variances using Equations (15)
and (16) requires the autocovariances γ0, . . . , γn+k−1. The prediction variance may also be
computed in another way as described in Section 2.9, and this is implemented in the function
PredictionVariance.

In practice we may also be interested in updating the forecasts given a new data values
zn+k, k = 1, 2, . . . , L. This entails computing Γ−1

n+k for k = 1, 2, . . . , L given Γ−1
n and may be

computed using the updating method described in Section 2.2. The function TrenchForecast
implements the updating method as well as an option to compute the forecasts using direct
matrix inversion. This is done in order to provide an optional check on the computations.

An example application of TrenchForecast to actual time series data is given in Section 3.3.

In the example below, we simulate a series of length n = 202 from an AR(1), then using
the known parameter, we forecast starting at origin n = 200 for lead times k = 1, 2, 3, and
updating the forecast origin to n = 201, 202. The result is a list with two 3 × 3 matrices. It
is easy to check the forecasts and standard deviations in this case,

R> n <- 200

R> m <- 2
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R> maxLead <- 3

R> N <- n +m

R> phi <- 0.9

R> r <- phi^seq(0, N + maxLead - w1)

R> set.seed(19890824)

R> z <- DLSimulate(N, r)

R> out <- TrenchForecast(z, r, 0.0, n, maxLead)

R> out$Forecasts

1 2 3
200 0.4016172 0.36145544 0.32530990
201 0.3366849 0.30301644 0.27271480
202 -0.0794845 -0.07153605 -0.06438244

R> outer(z[n:N],phi^(1:maxLead))

[,1] [,2] [,3]
[1,] 0.4016172 0.36145544 0.32530990
[2,] 0.3366849 0.30301644 0.27271480
[3,] -0.0794845 -0.07153605 -0.06438244

It should be noted that the predict.Arima function in R can not be used to obtain the above
results, since it only predicts for a single forecast origin time which is fixed to be at the end of
the series. This hampers the use of R in forecasting experiments in time series where the data
is divided into training and test samples. Examples of this technique are given in Sections 3.3
and 3.4.
Finally, it should be noted that often the Gaussian assumption may not be valid for the
forecast errors. In the non-Gaussian case the prediction variances should not be used to
set probability limits for the forecasts. Instead probability limits for the forecasts may be
obtained by simulation or bootstrapping (McCullough 1994; Aronsson, Holst, Lindoff, and
Svensson 2006).

2.6. Simulation

Simulation of time series is widely used in bootstrapping for statistical inference as well in
the exploration of statistical properties of time series methods. Time series simulation is also
important in engineering design and operational research (Dembo 1991; Hipel and McLeod
1994; Maceira and Damázio 2006). The Durbin-Levinson algorithm provides a convenient
method for simulating a Gaussian time series, z1, . . . , zn, with autocovariances, γ0, . . . , γn−1

(Hosking 1981; Hipel and McLeod 1994). Using the Durbin-Levinson algorithm to solve
Equations (4) and (5), the series z1, . . . , zn may be generated for t = 2, . . . , n from

zt = φt−1,1z1 + . . .+ φt−1,t−1zt−1 + et (17)

where et ∼ NID (0, σ2
t−1) and z1 ∼ NID (0, σ2

0).
The function DLSimulate implements this simulation method using an interface to C. As
a check the algorithm was also implemented in R and may be invoked using the optional
argument useC = FALSE.
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Davies and Harte (1987) gave an algorithm which only requires O(n log(n)) flops as compared
with Durbin-Levinson’s O(n2) flops. This algorithm is implemented in R, in our function
DHSimulate. However, the Davies-Harte algorithm requires a complicated non-negativity
condition, and this condition may not always hold. For example, in Table 6 we generate a
time series of length n = 5000 with fractional difference d = 0.45, and we found the Davies-
Harte non-negativity condition failed, and so DLSimulate was needed.

Table 6 compares the average time needed for 100 simulations for various series lengths,
n. >From this table we see that DHSimulate is overall faster even though it is entirely
implemented in R.

Another method is useful for simulating time series with innovations from a specified non-
Gaussian distribution that also uses the Fast Fourier Transform (FFT). In this case we may
approximate the linear time series model as a high-order MA

zt = µ+
Q∑

i=1

ψiat−i. (18)

The order Q may be quite large in some cases, and it may be chosen so that mean-square
error difference,

E = |γ0 − σ2
a

Q∑
i=1

ψ2
i | = σ2

a

∞∑
i=Q+1

ψ2
i , (19)

is made sufficiently small. It may be shown that by making E small we can make the
Kullback-Leibler discrepancy between the exact model and the MA(Q) approximation neg-
ligible McLeod and Zhang (2007, Equation 13) An example R script for determining the
approximation is given in the online documentation for DLAcfToAR. The sum involved in
Equation (18) is efficiently evaluated using the R function convolve which uses the FFT
method. Hence the simulation requires O(n log(n)) flops when n is a power of 2 and assum-
ing n > Q. The built-in R function arima.sim may also be used, and it uses direct evaluation
and drops the initial transients values. The number of initial transient values to drop is de-
termined by the optional argument n.start. Only O(n) flops are required by arima.sim. In
Table 6, we took Q = 1000 and n.start=1000 for SimGLP and arima.sim respectively. These
two approximate methods were compared with the exact simulation methods, DLSimulate
and DHSimulate, for the case of an hyperbolic decay time series with γk = 1/

√
k + 1, k ≥ 0,

for time series of lengths 100, 200, 500, 1,000, 5,000 and 10,000. For each n, the total time
for 100 simulations was found.

Algorithm n
100 200 500 1000 5000 10000

arima.sim 0.31 0.56 1.08 2.00 9.43 18.72
SimGLP 0.28 0.30 0.55 0.65 0.64 15.09
DLSimulate, useC=TRUE 0.04 0.05 0.18 0.68 15.43 61.30
DLSimulate, useC=FALSE 1.59 2.93 8.25 19.46 220.36 785.11
DHSimulate 0.03 0.05 0.10 0.22 1.49 3.67

Table 6: CPU time in seconds for 100 simulations of a time series of length n.
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In general, if it is planned to do many simulations, DHSimulate may be preferred provided
the Davies-Harte condition is met. As described in the documentation for DHSimulate, one
can use the function DHSimulate itself to test, if the Davies-Harte condition is satisfied.
Both DHSimulate and DLSimulate can also be used to generate non-Gaussian time series by
setting the optional argument rand.gen to some other distribution. However, only SimGLP and
arima.sim allow one to specify the exact innovation distribution. See online documentation
for examples.

2.7. Regression with autocorrelated error

Consider the regression with autocorrelated error model, zt = α0 + α1x1,t + . . .+ αkxk,t + ξt,
where ξt’s, the errors, are assumed to be generated from a general linear Gaussian mean-zero
process with parameters β and σ2

a. Given observed data (zt, x1,t, . . . , xk,t), t = 1, . . . , n, for
fixed β, the MLE for α′ = (α0, α1, . . . , αk) is given by

α̂ = (X ′R−1
n X)−1X ′R−1

n z, (20)

where X is the n× (k+1) matrix with first column 1’s and j-th column xj,t, t = 1, . . . , n; j =
2, . . . , k + 1.

Joint MLE for α, β and σ2
a may be obtained using the following iterative algorithm.

Step 0 Initialization. Set i← 0. Set Rn to the identity matrix. Set `0 to a negative number
with large absolute value.

Step 1 Use Equation (20) to obtain an estimate of α, α̂(i). Compute the residuals ξ̂ =
z −Xα̂(i).

Step 2 Taking ξ̂ as the input time series, maximize Lm using a nonlinear optimization func-
tion to obtain β̂(i) and `i = Lm(β̂(i)).

Step 3 If `i − `i−1 < 10−3, perform Step 4. Otherwise set i← i+ 1, and return to Step 1 to
perform the next iteration.

Step 4 Compute the MLE for σ̂2
a.

The error tolerance is set to 10−3, since in terms of the log-likelihood the change in parameters
is of negligible importance. With this error tolerance, convergence usually occurs in three or
four iterations. An implementation of this method for multiple linear regression with FGN
error is given in our FGN package.

2.8. Prediction residuals

The prediction residuals are defined by the difference between the observed value and the
one-step ahead minimum-mean-square error forecast. These residuals may be standardized
by dividing by their standard deviations. If the model is correct, these residuals should be
approximately uncorrelated. It should be noted that asymptotically the prediction residuals
are equivalent to the usual residuals, the estimated innovations, ât. Hence, the widely used
Ljung-Box portmanteau test (Ljung and Box 1978) and other diagnostic checks (Li 2004) may
be used to check the adequacy of the fitted model.
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2.9. Acf to AR parameters and ARMA Acvf

Given the autocorrelations ρ1, . . . , ρm, the function DLAcfToAR uses the Durbin-Levinson re-
cursions to obtain the parameters φ1, . . . , φm of the best linear predictor of order m as well
the partial autocorrelations φ1,1, . . . , φm,m and the minimum mean-square-errors σ2

1, . . . , σ
2
m

corresponding to the k-th order predictor, k = 1, . . . ,m. For our purposes DLAcfToAR provides
more general and useful output than the built-in R function Acf2AR.

As an illustrative application, consider the computation R2 (Nelson 1976),

R2 = 1− σ2
a

γ0
. (21)

For a fitted model we may use estimates of the parameters. For sufficiently large m,

R̂2 .= 1− σ̂2
m, (22)

where σ̂2
m is computed with DLAcfToAR using the fitted values, ρ̂1, . . . , ρ̂m ,and setting, without

loss of generality, γ0 = 1 in Equation (21). R2 indicates the proportion of variability accounted
for by the model and is sometimes called the coefficient of forecastibility.

In the brief example below, we show that for a FGN model with H = 0.84, R2 .= 41%.

R> library("FGN")

R> m <- 10^4

R> r < -FGNAcf(1:m, 0.84)

R> 1 - DLAcfToAR(r)[,3][m]

10000
0.4075724

(Box, Jenkins, and Reinsel 1994, Chapter 7) gave algorithms for forecasting ARMA models
which work well when n is not too small and the model is invertible whereas the method
given in Section 2.5 is always exact although not as computationally efficient or elegant their
methods. (Box et al. 1994, Chapter 7) showed,

Vk = σ2
a

k−1∑
j=0

ψ2
k. (23)

Given autocorrelations ρ1, . . . , ρn, we may fit the AR(n) linear predictor using DLAcfToAR, and
then expand as a MA using the built-in R function ARMAtoAR. Our function PredictionVariance
uses Equation (23) to compute Vk, k = 1, . . . , L, where L is the maximum lead time. As an
option, PredictionVariance also implements the exact method of Section 2.5.

Another useful function is tacvfARMA for the tacvf of the ARMA(p, q) which is similar to
the built-in ARMAacf but provides autocovariances (McLeod 1975) instead of autocorrela-
tions. Again this function generalizes the built-in R function in a useful way. The function
tacvfARMA is needed to demonstrate that the output from our TrenchForecast normally
agrees quite closely with the built-in predict.Arima for ARMA models – see Example 1 in
the TrenchForecast documentation. This function is also useful in computing the variance
of the sample mean using Equation (13).
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2.10. Validation and checking of the algorithms

Many checks were done to ensure the accuracy of our results. Most of the checks described
below are given in the help file documentation associated with the particular R functions.

The function TrenchInverse is easily checked by simply multiplying the output by the input
to obtain the identity matrix. The exact concentrated log-likelihood function defined in
Equation (10) and implemented in TrenchLoglikelihood was checked by implementing in
R the Durbin-Levinson recursion to compute (10). This function, DLLoglikelihood, with
the option useC=FALSE provides a slower alternative method for the evaluation of (10). The
computation is also easily verified in the case of the Gaussian AR(1) model, zt = φ1zt−1 +
at, at ∼ NID (0, σ2

a). Given data z1, . . . , zn, Equation (10) for the concentrated log-likelihood
reduces to

Lc(β) =
1
2

log(1− φ2
1)− n

2
log(S/n), (24)

where S = (1−φ2
1)z2

1+(z2−φ1z1)2+(z3−φ1z2)2+. . .+(zn−φ1zn−1)2. In the documentation for
DLLoglikelihood we show numerically that these two methods of evaluating the concentrated
log-likelihood for the AR(1) are equivalent.

Also, for the AR(1), the exact forecast function may be written zn(k) = µ+ φk(zn − µ) with
variance Vk = σ2

a(1−φ2k)/(1−φ2). The output from TrenchForecast agrees with the results
produced by this formula for the AR(1) case. Details are given in the package documentation
for TrenchForecast. The function TrenchMean can be checked by computing the exact MLE
for an AR(1) fitted to some test data and then using the function TrenchMean to compute the
exact MLE for µ given the estimate φ̂ obtained from arima. This estimate of µ closely agrees
with that given by arima. An illustration of this check is provided in the documentation to
the function TrenchMean.

3. Application to fractional Gaussian noise

3.1. FGN package

The FGN package illustrates the use of the ltsa package. This package provides modelling
capabilities for the FGN time series defined by the autocorrelation function given in Equa-
tion (7). The principal functions available in this package are shown in Table 7.

Function Purpose
Boot Generic function for bootstrap
FGNAcf Autocorrelation of FGN
FGNLL Evaluate Equation (10)
FitFGN Exact MLE in FGN
FitRegressionFGN Implements algorithm in Section 2.3
GetFitFGN Fitting function used in FitFGN
HurstK Hurst’s estimator
SimulateFGN Simulation of FGN time series

Table 7: The principal functions in FGN.
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n 500 1000 2000 5000
GetFitFGN 0.02 0.05 0.19 1.07
FitFGN 0.35 0.33 0.50 1.47

Table 8: Average CPU time to simulate and fit an FGN series of length n.

The functions FGNLL, FitFGN, FitRegressionFGN, GetFitFGN, and SimulateFGN are specific
implementations of the general methods discussed in Section 2.5 for the case of the FGN
model.

The function HurstK provides a nonparametric estimator of H which is described in detail in
Hipel and McLeod (1994, page 232).

The simulation function SimulateFGN utilizes DHSimulate or DLSimulate. It was determined
empirically that the Davies-Harte non-negativity condition holds for n ≥ 50 and 0 < H <
0.84. So in this case DHSimulate is used, and DLSimulate is used otherwise. Table 8 shows
average time taken to simulate and fit an FGN model for various n on our PC Windows XP
3.6 GHz Pentium IV computer.

The output from FitFGN is an S3-class object "FitFGN" with methods implemented for the
standard R generic functions: coef, plot, predict, print and summary.

3.2. Efficiency of the sample mean

It is shown in Beran (1994, Section 8.2) that the asymptotic efficiency of the sample mean
is always greater than 98% in the persistent case, that is, when 1

2 < H < 1. Table 9,
obtained by evaluating Equation (14), shows the exact small sample efficiency for various
lengths n. The finite sample efficiency is in good agreement with the asymptotic limit in the
persistent case. Note that when H = 1

2 , the series is simply Gaussian white noise, and when
0 < H < 1

2 the series is said to be antipersistent. Such antipersistent time series can arise
when differencing is used to transform a nonstationary time series to a stationary one. In the
strongly antipersistent case with H = 0.1, the efficiency of the small mean can be quite low
as seen in Table 9. Since most annual geophysical time series exhibit persistence, the sample
mean may be used for such data.

n H = 0.1 H = 0.3 H = 0.7 H = 0.9
50 0.6086 0.9492 0.9872 0.9853

500 0.5684 0.9455 0.9866 0.9847
1000 0.5657 0.9453 0.9866 0.9847
2000 0.5643 0.9451 0.9866 0.9847

Table 9: Efficiency of the sample mean in FGN

3.3. Fitting FGN model with ARMA comparison

The Nile minima time series consists of n = 663 observations of the annual minimum flow from
622 AD to 1284 AD. It is an often cited example of a geophysical time series exhibiting long-
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Figure 1: Diagnostic plots produced by plot for the fitted FGN model to the NileMin series.

term dependence. (Beran 1994, page 118) obtained Ĥ = 0.84 using the Whittle approximate
MLE. The MLE using FitFGN is Ĥ = 0.831 which agrees with the Whittle estimate as well
as with the Hurst K nonparametric estimate which was K = 0.825.

R> data("NileMin")

R> out < -FitFGN(NileMin)

R> out

H = 0.831, R-sq = 38.46%
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Figure 2: Normal probability plot of the standardized prediction residuals of the fitted FGN
model to the NileMin series.

length of series = 663 , number of parameters = 2
loglikelihood = 236.52 , AIC = -469 , BIC = -460

R> coef(out)

MLE sd Z-ratio
H 0.8314782 0.03028091 10.947
mu 11.4812519 0.33459046 34.314

R> plot(out)

R> qqnorm(resid(out))

The diagnostic plots produced by plot are shown in Figure 1. Figure 2 shows the normal
probability of the residuals. These diagnostic plots confirm that the FGN is a reasonable
model.
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Model k Lm AIC BIC
FGN 1 236.52 −471.0 −466.5
ARMA(2, 1) 3 237.61 −469.2 −455.7

Table 10: Comparison of models fitted to the Nile minima time series. Lm is the concentrated
log-likelihood, BIC = −2Lm + 2k, BIC = −2Lm +k log(n), n = 663 is the series length and
and k is the number of parameters.

An ARMA(2, 1) was fit using the R function arima and was found to fit the observed se-
ries very well. The exact likelihood for the fitted ARMA model was determined using the
DLLoglikleihood function. Table 10 summarizes the fits in terms of Lm. We see that the
ARMA(2, 1) is slightly better in terms of the log-likelihood but requires more parameters than
FGN so that FGN is better in terms of both the AIC and BIC criteria.

In Table 11, we compare the forecasts at origin time n = 663 for lead times k = 1, . . . , 5 for the
FGN and ARMA models. The standard deviations of the forecasts were also computed. The
differences between the models seem minor. In the case of the ARMA model we compared the
built-in R function predict.Arima with our TrenchForecast for the fitted ARMA model.
As expected there is almost no difference in this case.

A further forecasting experiment compares the quality of the forecasts using TrenchForecast
with the built-in R function predict for the ARMA(2, 1) model. In addition, the forecast
for the fitted FGN model was included to compare with the ARMA(2, 1). In each case, the
model was fit to all the time series up to time t = n1 + k for each k, k = 1, . . . ,K, where
we took n1 = n−K, K = 100, and n = 663 is the length of the series NileMin. For each t,
t = n1+1, . . . , n, we compute the forecasts zt(`), ` = 1, 2, 3, and their errors et(`) = zt+`−zt(`).
The empirical root-mean-square errors (RMSE), were computed for ` = 1, 2, 3 and are shown
in Table 12. It is interesting that the FGN outperformed ARMA and that at ` = 2 the
TrenchForecast was more accurate than predict.Arima. The R script to produce Table 12
is available with our paper.

It is common practice to divide the data in two parts: a training sample and a test sample.
The model is fit to the training sample and then its performance is evaluated on the test
sample. In time series analysis, experiments are often reported in which an initial portion

Lead-time of forecast
Model Algorithm 1 2 3 4 5

Forecast
FGN predict.FitFGN 11.34 11.46 11.51 11.54 11.56
ARMA predict.Arima 11.40 11.53 11.57 11.58 11.58
ARMA TrenchForecast 11.40 11.53 11.57 11.58 11.58

Standard deviation of forecast
FGN predict.FitFGN 0.70 0.76 0.78 0.79 0.80
ARMA predict.Arima 0.70 0.76 0.78 0.79 0.79
ARMA TrenchForecast 0.70 0.76 0.78 0.79 0.80

Table 11: Forecasts and their standard deviations for NileMin.



18 Algorithms for Linear Time Series Analysis: With R Package

Lead FGN ARMA(2, 1) ARMA(2, 1)
1 0.378 0.381 0.381
2 0.558 0.562 0.610
3 0.668 0.675 0.677

Table 12: RMSEs for forecasts for the last 100 values in the NileMin dataset. In this case,
the model was refit to each series for each new data value and the forecast for the updated
model was computed. For comparison, the sample standard deviation of the series over the
forecasting period was 0.733.

of the time series is used for fitting the model, and the second portion is used to evaluate
the out-of-sample forecast performance (Noakes, McLeod, and Hipel 1985; Jaditz and Sayers
1998). In the case of ARIMA models the built-in function predict can not do this, since
it is necessary to update the fitted model for the next forecast. A script was written to fit
ARMA(p, q) and FGN time series models to one part of the series and to compute the RMSE
for the second part. This script is available in the online documentation for the dataset
NileMin. Selecting p = 2, q = 1, we fit the ARMA(p, q) as well as the FGN to all but the
last m = 100 observations, and then compared the forecasts with the actual values for the
remaining 100 values. The RMSE for the forecasts at lead times ` = 1, 2, 3 was computed.
The forecasts for both models were computed using TrenchForecast. As shown in Table 13,
the FGN model slightly outperforms the ARMA(2, 1) model. Notice that because the model
is not updated, the forecast errors are larger in Table 13 than in Table 12.

Lead FGN ARMA(2, 1)
1 0.568 0.579
2 0.659 0.678
3 0.686 0.706

Table 13: RMSEs for forecasts for the last 100 values in the NileMin dataset. In this case,
the model was fit only once to the first 563 values and then its forecasting performance was
evaluated on the next 100 values.

3.4. Simulation and bootstrapping experiments

The computation results reported in this section were carried out using the Rmpi package
(Yu 2002) on a Beowulf cluster with 48 CPUS running Debian Linux. This reduced the time
needed for our computations by a factor of about 30. The R scripts used are available and
provide a template for bootstrapping and simulating with Rmpi.

Properties of MLE for Hurst coefficient

We investigated the asymptotic properties of the MLE, Ĥ, using the function GetFitFGN.
We simulated 105 replications of FGN with various parameter settings, H and n, shown in
Table 14 and determined the empirical asymptotic bias,

√
n(Ĥ−H), and asymptotic variance,

n Var (Ĥ). The variance depends on the long-memory parameter H. The last column in
Table 14 is used in our function FitFGN to obtain an approximate standard error of Ĥ.
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n
H 100 200 500 1000 2000 100 200 500 1000 2000

Asymptotic Bias Asymptotic Variance
0.1 0.04 0.03 0.02 0.02 0.01 0.14 0.14 0.13 0.13 0.13
0.2 0.14 0.10 0.08 0.06 0.05 0.26 0.25 0.24 0.24 0.23
0.3 0.21 0.16 0.11 0.08 0.07 0.35 0.33 0.32 0.31 0.31
0.4 0.26 0.20 0.14 0.10 0.08 0.42 0.40 0.37 0.36 0.36
0.5 0.30 0.23 0.16 0.12 0.09 0.47 0.43 0.41 0.40 0.40
0.6 0.33 0.25 0.18 0.13 0.10 0.50 0.47 0.44 0.43 0.42
0.7 0.37 0.27 0.19 0.14 0.11 0.51 0.48 0.46 0.45 0.44
0.8 0.41 0.31 0.21 0.16 0.12 0.50 0.48 0.46 0.46 0.45
0.9 0.49 0.37 0.25 0.18 0.14 0.42 0.42 0.44 0.45 0.45

Table 14: Properties of the MLE for H.

Bootstrapped forecasting experiment

The FGN model was also fit to the entire NileMin series, and then three independent boot-
strap versions of the series were generated using Boot. The forecasting experiment discussed
in the last paragraph of Section 3.3 was then repeated on each of the bootstrap series but
in addition to fitting the FGN and ARMA(2, 1) models, we also used FGN model with the
true parameter value H = 0.831 in order to allow us to investigate the effect of parameter
estimation errors on the FGN forecast.

Then the bootstrapping was iterated B = 104 times for all three models. The average RMSE
is shown in Table 15. As expected when the parameter H is known, the forecast is then,
without question, the optimal RMSE forecast and as expected it did better than the other two
methods using estimated parameters. The FGN only slightly outperforms the ARMA(2, 1)
model at lead-times 2 and 3. The whole experiment was repeated six times, and each time
results comparable to Table 15 were produced. If desired, the jackknife could be used to
estimate the standard deviation or the experiment could be re-run as a paired comparison,
and a suitable confidence interval for the difference given but we feel confident enough about
the overall general conclusion. The R script used for Table 15 is provided for the interested
reader.

Lead FGN FGN ARMA(2, 1)
1 0.545 0.546 0.546
2 0.594 0.596 0.597
3 0.610 0.612 0.613

Table 15: Average RMSE in B = 104 bootstrap iterations.

3.5. Nile river intervention analysis

In 1903 the Aswan Dam went into operation and it is of hydrological interest to quantify the
effect of this dam on downstream annual riverflow (Hipel, Lennox, Unny, and McLeod 1975).
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Figure 3: Comparison of 95% confidence regions for (µ, ω) with AR(1) and FGN disturbances.
The confidence regions were determined using a likelihood ratio test. The larger region cor-
responds to the FGN case. This graph is interesting because it shows that a mis-specified
ARMA may may drastically underestimate the uncertainty involved in some situations. This
figure was produced using a Mathematica version of the ltsa and FGN packages.

An intervention analysis model was described in Hipel and McLeod (1994, Section 19.2.4) for
the average annual riverflow in cubic meters per second for the Nile river at Aswan, 1870–1945.
The model fit by Hipel and McLeod (1994, Section 19.2.4) may be written, zt = µ+ωS(T )

t +ξt,
where ξt = φξt−1 + at follows an AR(1) and S

(T )
t is the unit step function defined by,

S
(T )
t =

{
0 if t < T
1 if t ≥ T (25)

It is assumed that T = 33. This model was fit using the algorithm outlined in Section 2.7
for both the AR(1) and the FGN case. The parameter estimates are shown in Table 16. The
AR(1) fits slightly better in terms of Lm, but the relative plausibility, defined by the likelihood
ratio (Royall 1997; Sprott 2000), of the FGN versus the AR(1) is about 8%. So the FGN error
model cannot be ruled out. Furthermore, some scientists feel that long-memory models are
often more suitable for many annual geophysical time series (Beran 1994; Hampel 1998), and
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Parameter AR(1) FGN
µ 3343.11 3273.88
ω -699.863 -571.082
β 0.391 0.781
Lm -449.855 -452.363

Table 16: Intervention models fit the annual Nile riverflow series. The parameter β = φ or
H correspond to the AR(1) and FGN models.

so the FGN model may be preferred on these grounds. Figure 3 shows the confidence regions
for both models. The larger region corresponds to FGN errors. This is due to the stronger
form of dependence present in the FGN case. In conclusion, we see that the uncertainty in
the effect of the intervention is much greater with FGN errors.

4. Concluding remarks

The ltsa package is implemented in R (R Development Core Team 2007) and C and is available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/. The FGN,
available as well from CRAN, illustrated how this package can be used to provide a building
block for other time series software. It is intended to develop a package for another paper
which implements the ARFIMA model and some of its generalizations. Another possible
extension is to the parametric model suggested by Bloomfield (1973). In this case a fast
method is needed to evaluate the required autocovariances. It is hoped to report on these
developments in another paper.

S-PLUS, Mathematica and MATLAB are some other computing environments that are very
popular for teaching and research and it is hoped that others may find it useful to port the
ltsa package to these and other computer environments.
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A. Wold decomposition

The Wold decomposition Brockwell and Davis (1991, Section 5.7) indicates that any covari-
ance stationary time series may be expressed as the sum of a deterministic component plus
an infinite moving average as in Equation (1) where at is white noise, that is, E(at) = 0,
Var (at) = σ2

a and Cov (at, as) = 0, t 6= s. In practice the deterministic component often
taken to be the mean, µ, of the series.

The autocovariances and moving-average coefficients satisfy the equation,

γ(B) = σ2
aψ(B)ψ(B−1), (26)

where ψ(B) = 1 + ψ1B + ψ2B
2 + . . . . They are equivalent parameterizations.

B. Ergodicity

The ergodicity condition for GLP which was mentioned in the introduction means that γk −→
0 as k −→ 0 sufficiently fast so that it is possible to estimate the mean and autocovariances
from past values of the series. Sometimes this condition is referred to as mixing. See Parzen
(1962) for an introductory approach and (Hannan 1970, Section IV.3) for a full discussion of
ergodicity in the GLP.

C. Exact MLE

Under some further conditions, the maximum likelihood estimate (MLE) in the GLP is con-
sistent, asymptotically normal and efficient (Hannan 1970, pages 395–398). As indicated in
the introduction one of the reasons for exact MLE is that experience suggests it works better
– especially for short series. It should also be pointed out that asymptotically the maximum
likelihood estimators have been found to be second-order efficient (Taniguchi 1983). Not all
first-order efficient estimation methods are necessarily second-order efficient (Rao 1962).

D. Gaussian efficiency and QMLE

When the assumption that at ∼ NID (0, σ2
a) is relaxed to that merely the at ∼ IID (0, σ2

a),
then it can be shown that for many types of linear time series models (Hannan 1970, pages
395–398) the estimates obtained by maximizing the likelihood function under the normality
assumption continue to enjoy the same properties of consistency and asymptotic normality
with the same covariance matrix as in the Gaussian case (Kabaila 1980; Whittle 1962). In this
situation this estimator are are known as the quasi-maximum likelihood estimator (QMLE)
(McCullagh and Nelder 1989, Chapter 9). Whittle (1962) has termed this Gaussian efficiency
since the estimators obtained by maximizing the Gaussian likelihood even when at are IID
continue to have the same large-sample distribution as in the case of Gaussian at. When in
fact the at are non-Gaussian, the true MLE may have even smaller variances than that of
the Gaussian estimators (Li and McLeod 1987). So among the IID distributions with finite
variance, the Gaussian case is in a sense the worst case scenario from an asymptotic viewpoint.
The assumption on the innovations at may be relaxed even further, merely assuming that it
is a sequence of martingale differences with finite fourth moment (Hannan and Heyde 1972;
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Hannan and Kavalieris 1991). This is especially interesting since it shows that linear time
series models may still be quite useful for modeling long financial time series which may
exhibit GARCH innovations. The GARCH innovations may themselves be modeled using a
linear time series model fitted to the squared values of the innovations and the usual Gaussian
efficiency property will still hold. When the finite variance assumption on σ2

a is relaxed, the
Gaussian estimates may still be consistent but the rate of convergence is even faster (Lin and
McLeod 2007).

E. Outliers and gray swans

Two very interesting books about financial markets, Mandelbrot and Hudson (2004) and
Taleb (2007), discuss the limitations of the normal distribution for describing many financial
time series. Even though these authors are undoubtedly correct about the limitations of the
normal distribution, linear time series models estimated via QMLE remains essentially valid
under even these conditions. Of course, even more efficient estimators may be available if the
distribution is known as was demonstrated by Lin and McLeod (2007).

In the non-Gaussian case, it is especially important that care must be taken to properly
account for the uncertainty in forecasting and simulation applications. In forecasting, a pre-
diction interval based on the normal distribution may greatly underestimate the true forecast
error. Similarly in scenario generation in financial planning (Dembo 1991) the choice of the
innovation distribution may be important for simulation.

Affiliation:

A. Ian McLeod, Hao Yu, Zinovi L. Krougly
Department of Statistical and Actuarial Sciences
University of Western Ontario
London, Ontario N6A 5B9, Canada
E-mail: aimcleod@uwo.ca, hyu@stats.uwo.ca, zkrougly@stats.uwo.ca
URL: http://www.stats.uwo.ca/faculty/aim/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 23, Issue 5 Submitted: 2005-10-14
December 2007 Accepted: 2007-11-11

mailto:aimcleod@uwo.ca
mailto:hyu@stats.uwo.ca
mailto:zkrougly@stats.uwo.ca
http://www.stats.uwo.ca/faculty/aim/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Main package
	Package overview
	TrenchInverse
	Log-likelihoood
	Estimation of the mean
	Forecasting
	Simulation
	Regression with autocorrelated error
	Prediction residuals
	Acf to AR parameters and ARMA Acvf
	Validation and checking of the algorithms

	Application to fractional Gaussian noise
	FGN package
	Efficiency of the sample mean
	Fitting FGN model with ARMA comparison
	Simulation and bootstrapping experiments
	Properties of MLE for Hurst coefficient
	Bootstrapped forecasting experiment

	Nile river intervention analysis

	Concluding remarks
	Wold decomposition
	Ergodicity
	Exact MLE
	Gaussian efficiency and QMLE
	Outliers and gray swans

