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Abstract

We consider here the problem of computing the mean vector and covariance matrix
for a conditional normal distribution, considering especially a sequence of problems where
the conditioning variables are changing. The sweep operator provides one simple general
approach that is easy to implement and update. A second, more goal-oriented general
method avoids explicit computation of the vector and matrix, while enabling easy eval-
uation of the conditional density for likelihood computation or easy generation from the
conditional distribution. The covariance structure that arises from the special case of an
ARMA(p, q) time series can be exploited for substantial improvements in computational
efficiency.
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1. Introduction

Consider Z ∼ Normaln(µ, A) and partition Z = (Z1, Z2)T, similarly, µ = (µ1, µ2)T, and
the covariance matrix A, to write[

Z1

Z2

]
∼ Nn

([
µ1

µ2

]
,

[
A11 A12

A21 A22

])
s

n− s
. (1)

The conditional distribution of Z1 given Z2 = z2 is also multivariate normal, given by

(Z1 | Z2 = z2) ∼ Ns(µ1.2, A1.2), (2)

where

µ1.2 = µ1 + A12A
−1
22 (z2 − µ2),

and
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A1.2 = A11 −A12A
−1
22 A21 .

Note that the conditional density of (Z1 | Z2 = z2) equals the ratio of the joint normal
density of (Z1, Z2) and the marginal normal density of Z2 evaluated at Z2 = z2. Taking
µ = 0 to simplify, cancelling constants, and taking the log of both sides, we get the useful
result

(z1 −A12A
−1
22 z2)T (A1.2)−1(z1 −A12A

−1
22 z2) = zT A−1z − zT

2 A−1
22 z2 (3)

which can be rewritten as

zT A−1z = (z1 −A12A
−1
22 z2)T (A1.2)−1(z1 −A12A

−1
22 z2) + zT

2 A−1
22 z2. (4)

Amidst the cancellation of the constants is a useful relationship of the determinants:

|A1.2| = |A| / |A22| . (5)

We consider here the problem of computing the conditional mean vector µ1.2 and covariance
matrix A1.2 where n is large, s is modest in size, and where the partitioning is arbitrary.
The applications envisioned include both generation from the conditional distribution and
inference in cases of censored or missing values. Especially interesting are applications where
the partitioning may be repeatedly changing, as may occur in some MCMC techniques. In
Sections 2 and 3, we consider the case of the general multivariate normal distribution, and
the special case where Z arises from a Gaussian autoregressive-moving average (ARMA(p, q))
process is considered in Section 4. FORTRAN 95 code implementing some of these results is
included with this manuscript as ‘gsubex1.f95’ to ‘gsubex3.f95’.

2. A general approach with the sweep operator

Following standard computational techniques (see, for example, Golub and van Loan 1996;
Monahan 2001; Stewart 1973) such as Gaussian elimination or Cholesky factorization, the
direct computation of µ1.2 and A1.2 will take O(n3) floating point operations, owing from
computing the inverse (solving a system of equations) in A22 which is O(n) in size. However,
if the partitioning were to be changed slightly, little of these results could be used to address
the modified problem. The sweep operator is more appropriate here, being easy to update
while taking nearly the same computations to form µ1.2 and A1.2.

The sweep operator is widely used in regression problems (see Stiefel 1963; Goodnight 1979;
Monahan 2001, Section 5.12) computing the following tableau after sweeping the first p
rows/columns of the (p + 1)× (p + 1) matrix:[

XT X XT y
yT X yT y

]
→ sweep →

[
(XT X)−1 (XT X)−1XT y

−yT X(XT X)−1 yT y − yT X(XT X)−1XT y

]
.

The sweep operator can be viewed as a compact scheme for full column elimination using
diagonal pivots vjj . It is usually implemented as a single step, operating on one row/column
at a time, so that the inverse is a reciprocal. When an identity matrix is augmented, as below,
full elimination pivoting on the first p columns produces the matrix[

XT X XT y Ip

yT X yT y 0

]
→

[
Ip (XT X)−1XT y (XT X)−1

0 yT y − yT X(XT X)−1XT y −yT X(XT X)−1

]
.
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Merely overwriting the inverse on top of the matrix, and avoiding storing the known elements
of the identity matrix produces the sweep step. The sweep operator can be used to compute
the regression coefficients (XT X)−1XT y and error sum of squares yT y−yT X(XT X)−1XT y.
Applying the sweep operator to the partitioned covariance matrix A, the result of sweeping
the LAST n− s rows/columns produced the following tableau[

A11 A12

A21 A22

]
→ sweep →

[
A1.2 − A12A

−1
22

A−1
22 A21 A−1

22

]

which obviously includes the necessary information for the conditional distribution. The
ease of computing updates follows from the commutativity and reversibility properties of the
sweep operator. The commutativity property means that the order of the sweeping does not
matter. Reversibility means that sweeping a particular row/column a second time is the same
as not sweeping it in the first place. As a consequence, sweeping a particular row/column
merely moves a variable from one subset to the other. For the conditional distribution, the
rows/columns corresponding to the variables that are to be conditioned upon are swept.
Conditioning on a new variable means sweeping that row/column of the covariance matrix.
Removing a variable from the list to be conditioned upon means sweeping that row/column
a second time. Each sweep of a row/column takes O(n2) operations.

As in computing the determinant from full column pivoting, the determinant of A22 can be
computed from the product of the pivot elements vjj , which can be seen in the following
Example 1.

Example 1: Let n = 3, and A given below and the following sweep sequence:

A =

 3 1 0
1 4 2
0 2 6

→ sweep 2 →

 2.75 −.25 −.5
.25 .25 .5
−.5 −.5 5

 v22 = 4,
∣∣∣ [4]

∣∣∣ = 4

(Z1, Z3 | Z2 = z2) ∼ N2

([
µ1

µ3

]
+

[
1/4
1/2

]
(z2 − µ2) ,

[
2.75 −.5
−.5 5

])
 2.75 −.25 −.5

.25 .25 .5
−.5 −.5 5

→ sweep 3 →

 2.7 −.3 .1
.3 .3 −.1
−.1 −.1 .2

 v33 = 5,

∣∣∣∣∣
[

4 2
2 6

]∣∣∣∣∣ = 20

(Z1 | Z2 = z2, Z3 = z3) ∼ N1(µ1 +
[

.3 −.1
] [ z2 − µ2

z3 − µ3

]
, 2.7 ) 2.7 −.3 −.1

.3 .3 −.1
−.1 −.1 .2

→ sweep 2 →

 3 1 0
1 3.333 −.333
0 .333 .166

 v22 = .3,
∣∣∣[ 6

]∣∣∣ = 6

(Z1, Z2 | Z3 = z3) ∼ N2

([
µ1

µ2

]
+

[
0

1/3

]
(z3 − µ3),

[
3 1
1 3.333

])
 3 1 0

1 3.333 −.333
0 .333 .166

→ sweep 1 →

 .333 .333 0
−.333 3 −.333

0 .333 .166

 v11 = 3,

∣∣∣∣∣
[

3 0
0 6

]∣∣∣∣∣ = 18

(Z2 |Z1 = z1, Z3 = z3) ∼ N1(µ2 +
[

1/3 1/3
] [ z1 − µ1

z3 − µ3

]
, 3 )
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Note that the repeating decimals .333 and .166 in the example above are rounded versions
of 1/3 and 1/6. In practice, rounding error will accumulate with each sweep step, and the
process may need to be restarted when the accumulated error becomes noticeable.

3. A second general method

This second general approach aims to solve the two specific problems without explicitly com-
puting the conditional mean vector and covariance matrix. One task is computing the likeli-
hood of the conditional normal distribution, namely the quadratic form

(z1 − µ1.2)
T (A1.2)−1(z1 − µ1.2)

and the determinant |A1.2|. The second task would be to generate a random vector from the
conditional distribution.

Consider the reverse-Cholesky factorization of the covariance matrix A, producing the upper
triangular factor U :

A =

[
A11 A12

A21 A22

]
= UUT =

[
U1 U2

0 U3

] [
U1 U2

0 U3

]T

=

[
U1U

T
1 + U2U

T
2 U2U

T
3

U3U
T
2 U3U

T
3

]
The usual Cholesky factorization produces a lower triangular matrix and the induction order
goes from upper left to lower right; here the order is reversed and an upper triangular matrix
is produced. Now consider the problem of generating from the joint distribution using a
random vector

v ∼ Normaln(0, In).

Partitioning v in the same way, the algebra would follow the simple form

z1 = µ1 + U1v1 + U2v2

z2 = µ2 + U3v2.

Conditioning on Z2 = z2 would really mean knowing z2. If that were so, we could then solve
for v2, solving the triangular system to get

v2 = U−1
3 (z2 − µ2).

Then z1 could then be generated conditional on the value of z2, following

z1 = µ1 + U1v1 + U2U
−1
3 (z2 − µ2),

leading to the result A1.2 = U1U
T
1 .

For computing the likelihood, the determinant part is easy: |A1.2| = |U1|2, following from
(5), since |U3|2 = |A22|. The quadratic form is nearly as easy, since from (4) we have

(z1 − µ1.2)
T (A1.2)−1(z1 − µ1.2) = (z − µ)T A−1(z − µ)− (z2 − µ2)

T (A22)−1(z2 − µ2).

The quadratic form in A−1 can be written in partitioned form as the squared length of[
U1 U2

0 U3

]−1 [
z1 − µ1

z2 − µ2

]
=

[
U−1

1 [(z1 − µ1)−U2U
−1
3 (z2 − µ2)]

U−1
3 (z2 − µ2)

]
,
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while the quadratic form in (A22)−1 is just the squared length of the second partitioned vector
above

(z2 − µ2)
T (A22)−1(z2 − µ2) =

∥∥∥U−1
3 (z2 − µ2)

∥∥∥2

so that the difference is the squared length of the first component

(z1 − µ1.2)
T (A1.2)−1(z1 − µ1.2) =

∥∥∥U−1
1 [(z1 − µ1)−U2U

−1
3 (z2 − µ2)]

∥∥∥2
.

As presented, this approach offers no particular advantage over any other direct method – it
merely uses a form of Cholesky decomposition. If the partitioning were changed, however, this
Cholesky factor can be updated. The updating procedure due to Clarke (1981) was devised
for subset regression computations and follows the same spirit as the sweep operator (see also
Daniel, Gragg, Kaufman, and Stewart 1976). The efficiency of the update scheme will depend
on the pattern of changes of partitioning.

The change in partitioning can be viewed in terms of a permutation matrix P . Conditioning
on an additional component (or one fewer) means permuting that component to the partition
boundary and then moving the boundary. Here we want to construct the reverse-Cholesky
(upper triangular) factor of the changed matrix PAP T using PU . The problem is that
PU is no longer upper triangular but needs to be returned to that form. This can be done
by postmultiplying by sufficient Givens transformations G1, G2, ..., Gm , each an orthogonal
matrix, as many as may be needed to return PUG1 · · ·Gm to upper triangular form, and
restoring the factorization

PAP T = (PUG1 · · ·Gm)(PUG1 · · ·Gm)T .

Example 2: For the covariance matrix A below, the decomposition

A =


25 11 0 4
11 19 7 2
0 7 5 2
4 2 2 4

 = UUT =


2 4 −1 2
0 3 3 1
0 0 2 1
0 0 0 2




2 0 0 0
4 3 0 0
−1 3 2 0
2 1 1 2


provides U that could be easily employed for (Z1, Z2 |Z3 = z3,Z4 = z4). Now suppose we now

want (Z1, Z4 |Z2 = z2,Z3 = z3), so that A1.2 =

[
11.8478 4.9565
4.9565 3.1304

]
, |A|1.2 = |A|/|A22| =

596/46 = 12.5217, and

PU =


2 4 −1 2
0 0 0 2
0 3 3 1
0 0 2 1

 .

To return this matrix to upper triangular form, first postmultiply by a Givens transformation
G1 defined by elements (4,3) and (4,4), changing everything in columns 3 and 4, and placing
a zero in (4,3). Here G1 is an identity matrix except for (G1)33 = (G1)44 = 1

√
5 and

(G1)34 = −(G1)43 = 2
√

5. Next construct G2 using (3,2) and (3,3), changing columns 2 and
3 and placing a zero in (3,2), and return the upper triangular form. The zeros in (2,2) and
(2,3) will change with these two transformations, but this will not affect the triangular form.
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4. ARMA covariance model

The case where Zt, t = 1, . . . , n follows the ARMA(p, q) time series model

Zt − φ1Zt−1 ... − φpZt−p = et − θ1et−1 ... − θqet−q (6)

brings some special structure that can be exploited. If the partitioning followed the same sim-
ple structure as in (1), then the conditional distribution can be easily constructed. However,
we are interested here in the case where the partitioned vectors are

Z1 = (ZS(1), ZS(2), . . . , ZS(s))
T and Z2 = (ZT (1), ZT (2), . . . , ZT (n−s))

T

and where subset list of indices S(j) may be arbitrary and S and T are complementary.

A device due to Ansley can be exploited to compute the conditional distribution efficiently.
Let Zt, t = 1, . . . , n follow the ARMA(p, q) process (6) and denote the covariance matrix by
A. Now let the n × n matrix B have its first p rows all zeros except for 1 on the diagonal,
and the last n− p rows of the form

· · · 0 0 − φp − φp−1 ... − φ2 − φ1 1 0 0 · · ·

aligned so that the 1 appears on the diagonal. Ansley (1979) shows that the covariance matrix
of BZ, namely BABT , is a banded positive definite matrix. The bandwidth of BABT is
max(p, q) = m for the first p rows, and q thereafter. Its Cholesky factor L, such that

BABT = LLT ,

is lower triangular with the same banding structure, and can be computed in O(nm2). Solving
a system of equations in L, say to compute L−1u, can done in O(nm). The space required is
only O(m2). As a result, a bilinear form in the inverse of the covariance matrix

uT A−1v = uT (BT L−T L−1B)v = (L−1Bu)T (L−1Bv)

can be computed in O(nm2) time and O(m2) space.

Before applying this result to the arbitrary partitioning problem, and so following the original
partitioning in (1), first notice that[

Is

0

]
A−1

[
Is 0

]
= (A1.2)−1 (7)

which can be established through the usual results for the inverse of a partitioned matrix.
The remaining results are more complicated. Defining Q(z) = zT A−1z, and employing result
(4), we have the derivative results

∂2Q(z)/∂zi∂zj = 2
[
(A1.2)−1

]
ij

for 1 ≤ i, j ≤ s, and

∂Q(z)/∂zi|z1=0 = −2
[
(A1.2)−1A12A

−1
22 z2

]
i
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for 1 ≤ i ≤ s. For computation, we replace the derivative with a difference expression. In the
case of a quadratic function Q(z), the second difference will be exact for the second partial
derivative, so that

[Q(z + δei + δej)−Q(z + δei)−Q(z + δej) + Q(z)] /δ2 = ∂2Q(z)/∂zi∂zj = 2eT
i A−1ej

or

eT
i A−1ej = [ (A1.2)−1 ]ij

where ei is the ith elementary vector, verifying (7) above. A similar result using the first
difference, at z1 = 0, gives

[Q(

[
0
z2

]
+ δei)−Q(

[
0
z2

]
)]/δ = ∂Q(z)/∂zi|z1=0

= −2
[
(A1.2)−1A12A

−1
22 z2

]
i

leading to the computational route of

eT
i A−1

[
0
z2

]
= [(A1.2)−1A12A

−1
22 z2]i

for 1 ≤ i ≤ s.

Now to transform these results to the case of arbitrary parititioning, construct the n × s
matrix P , which is zero everywhere except for elements

(P )S(i),i = 1

for 1 ≤ i ≤ s, and, similarly, the n× (n− s) matrix Q, which is zero everywhere except

(Q)T (i),i = 1

for 1 ≤ i ≤ n−s. Putting P and Q together as
[

P Q
]

forms an n×n permutation matrix.
Then we have the computational formulas

P T A−1P = (L−1BP )T (L−1BP ) = (A1.2)−1

and

P T A−1
[

P Q
] [ 0

z2

]
= (L−1BP )T (L−1B

[
P Q

] [ 0
z2

]
)

= −(A1.2)−1A12A
−1
22 z2.

The key computational advantage of this method is that, as bilinear forms in A−1, the com-
putational burden is only O(nm2 + nms + s2) for ARMA(p, q) time series models.

One remaining detail is that (A1.2)−1 and (A1.2)−1A12A
−1
22 z2 (or with (z2 − µ2)) are not

the most convenient forms for most applications, which would involve A1.2 or (A1.2)−1, and
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A12A
−1
22 (z2 − µ2). Equally useful would be a Cholesky factor of (A1.2)−1 and A12A

−1
22 (z2 −

µ2). To compute these in a stable and efficient manner, construct the matrix[
L−1BP L−1BP

[
P Q

] [ 0
z2 − µ2

]]
= L−1B

[
P

[
P Q

] [ 0
z2 − µ2

] ]

and perform Householder transformations H1, , . . . , Hs

Hs · · ·H2H1

[
L−1BP L−1B

[
P Q

] [ 0
z2 − µ2

]]
=
[

R u
]

to form the upper triangular matrix R. Then RT R = (A1.2)−1 shows that R is a factor, and
R−1u = A12A

−1
22 (z2 − µ2) finishes the computations. Computation of the likelihood from

the conditional distribution would then take the computational route of

(z1 − µ1.2)T (A1.2)−1(z1 − µ1.2) = [R(z1 − µ1.2)]T [R(z1 − µ1.2)]

and generation from the conditional distribution would follow

z1 = µ1.2 + R−1v,

where, as before, v ∼ Normaln(0, In). The steps using Householder transformations are the
same orthogonalization steps for a QR factorization in regression; see, for example, Golub and
van Loan (1996, Section 6.2), Monahan (2001, Section 5.6), or Stewart (1973, Section 5.3).

Finally, if the conditioning variables z2 (or its mean) were changed, the resulting vector u
would have to be recomputed, taking only O(n). If a variable were moved from S to T , the
mean vector would change and u must be updated. If a variable were moved from T to S,
then a new column would be added to P , and the mean vector would also have to be updated.
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