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Abstract

In this article a procedure is proposed to simulate fractional fields, which are non
Gaussian counterpart of the fractional Brownian motion. These fields, called real harmo-
nizable (multi)fractional Lévy motions, allow fixing the Hölder exponent at each point.
FracSim is an R package developed in R and C language. Parallel computers have been
also used.
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1. Introduction

Irregular phenomena rise up in various fields of scientific research: fluid mechanics, image
processing and financial mathematics for example. From a mathematical point of view, one
can measure irregularity by the Hölder exponent, which is a real number 0 < H < 1. The lower
H, the more irregular the function, whereas H = 1 corresponds heuristically to differentiable
functions, which are considered smooth in this field. Of course, there exist many examples
of Hölder functions in mathematical literature. But, non specific Hölder functions are often
given by the sample path of a stochastic process.

One of the simplest models is the fractional Brownian motion BH , in short FBM, introduced
in Kolmogorov (1940) and further developed in Mandelbrot and Van Ness (1968). Then, the
multifractional Brownian motion, in short MBM, has been introduced independently in Peltier
and Lévy Véhel (1996) and Benassi, Jaffard, and Roux (1997) as a generalization of the FBM.
The FBM and the MBM provide very powerful models in applied mathematics. Whereas the
pointwise Hölder exponent of the FBM is almost surely equal to a constant, the MBM one is
allowed to vary along the trajectory.

On one hand, simulation of fractional Brownian motion is now both theoretically and practi-
cally well understood (see Coeurjolly 2000; Bardet, Lang, Oppenheim, Philippe, and Taqqu
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2003, for surveys on this problem). On the other hand, methods of generating sample paths of
the multifractional Brownian motion are given in Peltier and Lévy Véhel (1996) and in Chan
and Wood (1998).
However, it is a well known fact that in some fields of applications data do not fit Gaussian
models, see for instance Mallat (1989), Simoncelli (1999), and Vidakovic (1999) for image
modelling. More recently other processes that are neither Gaussian nor stable have been
proposed to model Internet traffic (Cohen and Taqqu 2004; Kaj and Taqqu 2004).
Real harmonizable fractional Lévy motions, in short RHFLMs, have been defined in Benassi,
Cohen, and Istas (2002) in order to obtain non-Gaussian fields that share many properties
with the FBM. In particular, their sample paths are locally Hölder and their pointwise Hölder
exponent is almost surely equal to a constant. Then in order to allow the pointwise Hölder
exponent to vary along the trajectory, the class of real harmonizable multifractional Lévy
motions, in short RHMLMs, has been introduced in Lacaux (2002). This class makes up a
class of locally asymptotically self-similar fields that includes RHFLMs and the MBM.
The main aim of this paper is to propose an R package, FracSim, composed of R (R Develop-
ment Core Team 2005) and C (Kernighan and Ritchie 1988) functions to simulate RHFLMs
and RHMLMs. Such motions are described from theory and practical aspects in a first part.
Then, in a second part, we give some illustrations of simulated processes in one or two di-
mension using FracSim. The third part is devoted to implementation of parallel computing
that are needed for two-dimensional simulations.

2. (Multi)fractional Lévy motions

2.1. Theory

In this part we recall some theoretical facts explained in Lacaux (2004). A RHMLM Xh with
multifractional function h is defined as the stochastic integral:

Xh(x) =
∫

Rd

e−ix·ξ − 1

‖ξ‖h(x)+d/2
M(dξ),

with M(dξ) a random Lévy measure without Brownian component. See Benassi et al. (2002)
for a precise definition of random Lévy measures.
In Lacaux (2004), RHMLMs with a Brownian part are considered. Since the Brownian part
leads to an independent multifractional Brownian motion for which simulations are known we
restrict ourselves to the simulation of the non-Brownian part Xh. The field Xh is an infinitely
divisible field and infinitely divisible laws can be represented as a generalized shot noise series.
An overview of these representations is given in Rosiński (2001). The control measure, ν(dz)
of the random Lévy measure M(dξ) is in general a sigma finite measure on the set of complex
numbers. If it has finite mass denoted by ν(C), the generalized shot noise series can be used
for simulation purpose. Let us first introduce definitions of random variables used in these
series. Let (Zn)n≥1, (Un)n≥1 and (Rn)n≥1 be independent sequences of random variables.

• ν is supposed to be a finite measure, and (Zn)n≥1 is a sequence of i.i.d. random variables
such that

L(Zn) =
ν(dz)
ν(C)

.
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• (Un)n≥1 is a sequence of i.i.d. random variables such that the law of U1 is the uniform
probability on the unit sphere in Rd.

• Rn is the nth arrival time of a Poisson process with intensity 1.

• ξn =
(

Rn
cd ν(C)

)1/d
Un, where cd = 2πd/2

Γ(d/2)d is the volume of the unit ball of Rd.

Note that when d = 1, Un is a symmetric Bernoulli random variable.

Let us now recall the theoretical result that allows us to simulate Xh. Next proposition
by Lacaux (2004) used in the following is given without proof.

Proposition 2.1. Let K ⊂ Rd be a compact set. Then almost surely, the series

Yh(x) = 2
+∞∑
n=1

<

{
Zn

e−ix·ξn − 1

‖ξn‖h(x)+ d
2

}
, (1)

where < denotes the real part of a complex number, converges uniformly on K and

{Xh(x) : x ∈ K} d= {Yh(x) : x ∈ K}.

where d= denotes equality in distribution.

The RHMLM is then approximated by

Yh,N (x) = 2
N∑

n=1

<

{
Zn

e−ix·ξn − 1

‖ξn‖h(x)+ d
2

}
. (2)

One can find in Lacaux (2004) theoretical rates of convergence for Yh,N . Theoretical results
are given on any compact set K but the algorithms are written on the interval [0, 1] or on the
cube [0, 1]2 for sake of simplicity.

2.2. Simulation procedure

Let us first introduce the formula used for the simulation of one-dimensional RHMLM (d = 1).
The parameters of the simulation are:

• n: the number of terms in the sum;

• k: the number of discretization points;

• h(t) (t = 1, . . . , k): the value of the multifractional function at each discretization point;

• m = ν(C): the mass value, usually fixed at 1. Actually we choose in the simulation to
take ν the uniform distribution on the unit circle in C.

If we consider the random variables that are standard to simulate

• θn: n-vector generated according to a uniform distribution in [0, 1], Zn = ei2πθn ;
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• Un: n-vector generated according to a Bernoulli distribution with equiprobability for
one-dimensional simulation;

• Rn: n-vector of cumulated sums of samples from exponential distribution with param-
eter λ = 1,

and apply (2)

Yh,n(t) =
n∑

l=1

cos(2πθl)
[
cos

(
Rl
m t.Ul

)
− 1

]
+ sin(2πθl)

[
sin

(
Rl
m t.Ul

)]
R

h(t)+1/2
l

 . (3)

When d = 2, the formula (3) becomes

Yh,n(x, y) =

n∑
l=1

cos(2πθl)
[
cos

((
Rl
πm

) 1
2 (x.U1

l + y.U2
l )

)
− 1

]
+ sin(2πθl) sin

((
Rl
πm

) 1
2 (x.U1

l + y.U2
l )

)
R

h(x,y)+1
l

 ,

(4)

where k is the number of discretization points for each axis kx and ky, c2 = π, (U1
n, U2

n) are
uniformly distributed on the unit sphere in R2.

In practice, the difficulty of the simulation lies on both the number of terms in the sum n and
in the calculation of scalar products between k-vectors. In our cases, n may vary between 103

and 108, and k between 100 and 1000, which may imply until 1014 loops for the computations
in the extreme case.

3. Using FracSim

FracSim is available from the Comprehensive R Archive Network (CRAN, http://CRAN.
R-project.org/ or one of its mirrors). Instructions for package installation are given by
typing help(INSTALL) or help(install.packages) in R.

3.1. Implementation of FracSim

FracSim is a set of R and C functions that allows performing RHFLMs and RHMLMs simu-
lations. Two classes of functions are implemented:

• R functions: fracsim.1d() and fracsim.2d() perform initialisations thanks to param-
eters set by the user (n, k and h(t)t=1,...,k), call C functions for calculation then get back
results for graphical representations.

• C functions: core_1D.c and core_2D.c perform the tasks in the computation that are
time consuming because of the number of loops required.

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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The R environment is the only user interface. The R procedure calls a C subroutine, whose
results are returned to R.

In order to make it easier for the reader not used to R language, we detail the call to functions
and the command used to produce graphical output in Appendix A. In the following, R
commands are preceded by the prompt symbol R>.

3.2. Simulations

One-dimensional fractional motions

To simulate RHFLM, one needs to specify one real parameter 0 < h < 1 or, equivalently, the
multifractional function is set to a constant h(t) = h,∀t ∈ [0, 1].

For instance,

R> X05 = fracsim.1d(h=0.5,k=1000,n=5000)

sets the multifractional function equal to 0.5 on [0,1] and simulates the corresponding process.

To simulate on unequally spaced discretization points, the user can give a vector as input for
the k parameter. For instance, to get more details between 0 and 0.2, one may define k as:

R> kdiscr = c(seq(from=0,to=0.2,length=800),seq(0.205,1,l=200))

So, respectively 800 and 200 points are used to discretise the intervals [0;0.2] and [0.205;1].
And then call the fracsim.1d function as: fracsim.1d(h=0.5,k=kdiscr,n=5000).

The result of the function fracsim.1d is an R object of class list. It contains the following
elements:

• the vector simul.h of the simulated regularity value;

• the vector t of discretization points;

• the k-vector process whose elements are the RHFLM value at each discretization point.

Thus to produce the graphs on the Figure 1, one has to call the function plot as

R> plot(x=X05$t,y=X05$process,type="l")

As previously mentioned, we can see on the Figure 1, the greater the regularity, the smoother
the sample paths.

One-dimensional multifractional motions

To simulate RHMLMs, one has to give as input for h, either a vector of length k, or a
function that will calculate the regularity function at each discretization point. The two
following commands give examples of:

• an increasing regularity function from 0.1 to 0.9 (Hinc);
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Figure 1: Examples of fractional Lévy motions: from top to bottom the regularity is set to
0.1, 0.5, 0.9.

• a sinusoidal regularity function oscillating according to a linear combination of sinus
(Hsin);

R> Hinc = seq(from=0.1,to=0.9,length=1000)
R> Hsin = 0.25+0.25*sin(seq(0,1,length=1000)*(6*pi))

We can then call the function fracsim.1d() with the vectors previously defined given as
parameter to the argument h:

R> Xinc = fracsim.1d(h=Hinc,k=1000,n=5000)
R> Xsin = fracsim.1d(h=Hsin,k=1000,n=5000)

An equivalent way of simulating a process according to a sinusoidal regularity function consists
in using a function as input for h. Let us define the function hsin as below

R> hsin = function(a){0.25+0.25*sin(6*pi*a)}

The function fracsim.1d will calculate the regularity function at each point of the discretiza-
tion, maybe user-defined as kdiscr:

R> Xsin2 = fracsim.1d(h=hsin,k=kdiscr,n=5000)
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Figure 2: Two examples of multifractional Lévy motions: figures on the top represent the
regularity function, bottom, the corresponding process.

To highlight the behaviour of the RHMLM according to the multifractional function, we
represent both regularity functions and the corresponding sample paths on the Figure 2.

As previously mentioned for RHFLMs, the greater the regularity, the smoother the trajectory
and this can be observed on one graph: for example when we look at the sinusoidal regularity,
the corresponding process is much more perturbed when the regularity is close to zero.

Two-dimensional fractional motions

RHFLMs can be simulated by calling the function fracsim.2d() with one value given for h.
For instance,

R> X2d05 = fracsim.2d(h=0.5,kx=100,ky=100,n=100000)

sets h constant and equal to 0.5 on a 100×100 regular grid with 105 terms in the sum. The
user can simulate on an irregular grid by specifying kx and ky as vectors.

The elements of the object X2d05 provided by the function fracsim.2d() are the same as
those given by fracsim.1d(), except that, in this case, the motion values are now located on
a grid and are stored in a matrix object.

To represent two-dimensional motions, we now use the R function persp to draw a surface:

R> persp(X2d05$process,shade=0.5,phi=30)
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Arguments shade and phi are optional; they can be set to give a nice representation: shade
modify the shade at a surface facet and phi is the colatitude angle defining the viewing
direction.

Other functions can be used to represent two-dimensional motions, we propose a comparison
of various representations at the end of this section.

Figure 3: Examples of fractional Lévy motions: from left to right h=0.1, 0.5, 0.9.

Two-dimensional multifractional motions

To simulate two-dimensional RHMLMs, one has to give for h, either a matrix which dimensions
are kx × ky, or, as in the one-dimensional case, a function. This function takes two parameters
as input and returns a matrix whose elements are calculated on the grid defined by kx and
ky vectors.

For example, we can define two matrices corresponding to the cases presented in one dimension
with the following command:

R> Hinc = matrix(rep(seq(0,1,l=100),100),nc=100)
R> Hsin = matrix(rep(0.25+0.25*sin(seq(0,1,l=100)*(6*pi)),100),nc=100)

One can obtain the graph of the regularity function (Figure 4) as well by calling the func-
tion persp with the same optional arguments used for the representation of fractional two-
dimensional motions.

Once the matrix containing the regularity function at each point of the grid is built, we
can perform the simulation of the motion by calling, as in the fractional case, the function
fracsim.2d().

R> Xinc = fracsim.2d(h=Hinc,kx=100,ky=100,n=100000)
R> Xsin = fracsim.2d(h=Hsin,kx=100,ky=100,n=100000)

The function fracsim.2d can also be called with a function as input for h. Let us define the
function Hinc.diag:

Hinc.diag = function(x,y){outer(x,y,function(a,b){(a+b)/(2*max(a,b))})}

which calculates an increasing regularity function along the diagonal of the grid.

Then fracsim.2d can be called as below:
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Figure 4: Two examples of regularity function for multifractional Lévy motions: increasing
on the left and sinusoidal on the right.

Xinc.diag = fracsim.2d(Hinc.diag,n=10000,kx=100)

Regularity function and corresponding motion are presented further in the discussion about
graphical representations (Figure 7).

Figure 5: Two examples of multifractional Lévy motions: increasing regularity function on
the left and sinusoidal regularity function on the right.

Figure 5 illustrates the behaviour of multifractional process. Considering an increasing reg-
ularity (graphic on the left of the Figure 5), the surface looks like a landscape where we go
from the mountain with several peaks (low regularity) to the plain (high regularity). With a
sinusoidal regularity, the ‘landscape’ looks like an alternation of moutains and valleys.

Graphical representations

The way we represent a two-dimensional motion has an influence on the visual impression
provided. If we only use the persp function to draw a surface, it could be interesting to modify
point of view by changing phi (vertical rotation) and theta (horizontal rotation) parameters.
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However, we can use other kinds of representations such as images or contour line plots as it
is done on the Figure 6.

Figure 6: Image and contour representations of the simulations performed in Section 3.2.3
(Figure 5).

Amongst these various representations, it is not easy to decide which is the best; it can
depend on the practice of the user. However, let’s note that with a high discretization and
a regularity close to zero, the visual impression given by the image is smoother than the one
given by the sheet (Figure 8, obtained thanks to improvements detailed in Section 4). This
can be explained by the inability to distinguish varying intensity in the same color on the
image whereas the peaks appear clearly on the sheet. On the other hand, the image of a
two-dimensional motion highlights more precisely the global trends of the process, which is
more difficult to observe on the sheet. For instance, in the case of a motion with an increasing
regularity function along the diagonal, it would be difficult to set the point of view to give a
good sheet representation whereas the behaviour of the motion appears clearly on an image
(Figure 7): perturbed in the bottom-left corner and smoother in the top-right one.

Durations

For one-dimensional simulations, calculations last about few seconds on a ‘current use’ ma-
chine (SGI Origin 2000, RAM: 3840 MO, processors: 195 MHz - Technical informations
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Figure 7: Regularity function produced by Hinc.diag() (on the left) and two-dimensional
motion associated (on the right). Values increase from red to yellow.

are described at http://www.cict.fr/sys/Serveurs/ondine.html) for the configuration
we performed, and we did not have any trouble with too long calculations.

For two-dimensional motions, the calculation durations order of magnitude can be linearly
extrapolated from the basic configuration {kx = ky = 100, n = 10000}. Such a configuration,
with 108 loops, lasts about 2 minutes on the machine previously mentioned. We can estimate
the potential duration for the extreme configuration we would like to perform {kx = ky = 500,
n = 108} at about one year. In Section 4, we described out first steps in parallel computing
to try to reach this extreme configuration in a ‘reasonable’ duration.

4. Parallel computing

In order to go further in our experimental design, we use a supercomputer via the scientific
group Calmip (Calcul en Midi-Pyrénées http://www.calmip.cict.fr/). This machine is
exclusively dedicated to intensive computation. Its is composed of 68 processors (1.5 GHz)
with 136 Go of RAM memory in shared configuration. Technical characteristics are detailed
in CALMIP (2005).

To make better use of this machine, we adapted our programs to exploit multi-threadings
possibilities via parallel computing. We used an implicit parallelization (OpenMP 2005) that
seemed to be a good compromise between automatic and explicit parallelization. The former
is easier to implement (just add an argument to the compilation command) but less efficient.
The latter, using for example Message Passing Interface, (MPI 2005), is more efficient but
more demanding: the programmer has to give each processor a specific task and to ensure
inter-processors communications. With OpenMP, one just has to add few lines to precise
the piece of code that has to be shared between the processors and then performed in a
multi-threading way.

To do so, we convert our function for two-dimensional simulations into one main C program.

http://www.cict.fr/sys/Serveurs/ondine.html
http://www.calmip.cict.fr/
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Figure 8: Surface and image representations of a RHFLM (h=0.4) on a 256 × 256 grid.

It is composed of three parts:

• initializations and random number generation;

• computations;

• output to a file.

The first and the third part were previously dealt in R; the second one is equivalent to the C
part of the package. This task, which contains the most demanding part of the computation,
requires three nested loops: the rows, the columns and the terms of the sum to be caculated
in each cell.

Our problem is quite easy to parallelize because of the independence between the calculation
performed on each cell of the grid. Thus we can divide the grid in several blocks and give each
processor a block to perform computation on. Technically, the loops intructions are nested in
an OpenMP environment written in C as follows:

#pragma omp parallel private(tmp,tmp1,tmp2,tmp3,l)
{
#pragma omp for
for (i=0;i<kx;i++) /* loop over the rows */
#pragma omp parallel shared(i)
{
#pragma omp for
for (j=0;j<ky;j++) /* loop over the columns */
{
for (l=0;l<n;l++) /* loop over the terms of the sum */
{
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/*
* Computations
*/

} /* End of loop l */
} /* End of loop j */

} /* End of loop i */
} /* End of parallel area */

OpenMP instructions must be preceded by the # character. Details on how to run such a
program are given in Appendix B.

First simulations performed in this way are promising. We can divide the computation du-
ration by at least the number of processors involved in the computations. We use from 8 to
16 processors. Furthermore, one processor of the supercomputer is faster than those of the
current machine previously used.

So a simulation with kx = ky = 512 and n=107 last about 25 hours using (only) 8 processors
instead of an estimated time around 2 months (1500 hours) with our previous configuration
(R and C functions).

5. Conclusion

In this article we have proposed an efficient way to produce non Gaussian fields and we hope
it can help to model various irregular phenomena. Of special interest is the use of parallel
computers that shows that the algorithm is flexible enough. On the other hand, other non-
Gaussian models exist and could be simulated in a similar way (Cohen, Lacaux, and Ledoux
2005) and we plan to generalize our techniques to those fields. Moreover statistical estimations
of the Hölder exponent (Coeurjolly 2000) are possible for fractional Brownian motions and
we plan to apply this to non-Gaussian fields.

We maintain a web page about RHFLMs and RHMLMs. It will always contain the latest
release of the FracSim package: http://www.lsp.ups-tlse.fr/FracSim/.
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A. Description of R script

In this appendix, we give the code used to produce figures of the article.

• Simulations of 1D-RHFLMs with h = 0.1, h = 0.5 and h = 0.9. The results are stored
in the three objects X01, X05 and X09.

R> X01 = fracsim.1d(h=0.1,k=1000,n=5000)
R> X05 = fracsim.1d(h=0.5,k=1000,n=5000)
R> X09 = fracsim.1d(h=0.9,k=1000,n=5000)

• Graphical representations of 1D-RHFLMs (Figure 1)

R> par(mfrow=c(3,1))
R> plot(x=X01$t,y=X01$process,type="l")
R> plot(X05$t,X05$process,type="l")
R> plot(X09$t,X09$process,type="l")

The first line divides the graphical window horizontally in three part to put graphics
one under each other. Then, we produce plots giving the time discretization vector as
abscissa and the process values as ordinate. The option type="l" draws a line between
each point.

• Simulations of 1D-RHMLMs with increasing and sinusoidal multifractional function

R> Hinc = seq(from=0.1,to=0.9,length=1000)
R> Hsin = 0.25+0.25*sin(seq(0,1,length=1000)*(6*pi))

We define an increasing multifractional function with the function seq in order to get
1000 (length) values regularly spaced between 0.1 (from) and 0.9 (to). The same
function is used in combination with the sinus function to simulate a sinusoidal multi-
fractional function.

• Graphical representations of 1D-RHMLMs (Figure 2)

R> par(mfrow=c(2,2))
R> plot(Xinc$t,Hinc,type="l",ylim=c(0,1))
R> plot(Xsin$t,Hsin,type="l",ylim=c(0,1))
R> plot(Xinc$t,Xinc$process,type="l")
R> plot(Xinc$t,Xsin$process,type="l")

The graphical window is divided into four parts (2 × 2 grid). The top row contains
the plots of the multifractional functions; the vertical axis is set to [0,1] (ylim). The
bottom row contains the trajectory of the RHMLMs.

• Simulations of 2D-RHFLMs with h = 0.1, h = 0.5 and h = 0.9.

R> X2d01 = fracsim.2d(h=0.1,kx=100,ky=100,n=100000)
R> X2d05 = fracsim.2d(h=0.5,kx=100,ky=100,n=100000)
R> X2d09 = fracsim.2d(h=0.9,kx=100,ky=100,n=100000)
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In these calls, the argument ky is optional; if missing, its value is taken to be equal to
kx.

• Graphical representations of 2D-RHFLMs (Figure 3)

R> par(mfrow=c(1,3))
R> persp(X2d01$process,shade=0.5,phi=30)
R> persp(X2d05$process,shade=0.5,phi=30)
R> persp(X2d09$process,shade=0.5,phi=30)

The function persp produces the plot on a grid determined by the size of the matrix
given as the first parameter (X2d0*). We used shade=0.5 to define the shade at a
surface facet in order to provide an approximation to daylight illumination as explained
in the R help for the persp function. The option phi=30 implies a vertical rotation that
sets the point of view above the surface.

• Simulations of 2D-RHMLMs with increasing and sinusoidal multifractional function

R> Hinc = matrix(rep(seq(0,1,l=100),100),ncol=100)
R> Hsin = matrix(rep(0.25+0.25*sin(seq(0,1,l=100)*(6*pi)),100),ncol=100)

The two lines above produce two matrices that are the discretization of the multifrac-
tional functions in two cases: 1) the regularity increases column by column, 2) the
regularity is sinusoidal according to the columns of the grid. By default, the R function
matrix produces a matrix from a vector filling by column.

R> Xinc = fracsim.2d(h=Hinc,kx=100,ky=100,n=100000)
R> Xsin = fracsim.2d(h=Hsin,kx=100,ky=100,n=100000)

Once defined the regularity matrix, the call to fracsim.2d() is the same as for RHFLMs.

• Graphical representations of multifractional functions for 2D-RHMLMs (Figure 4)

R> persp(Hinc,shade=0.5,phi=30)
R> persp(Hsin,shade=0.5,phi=30)

• Graphical representations of 2D-RHMLMs (Figure 5)

R> persp(Xinc$process,shade=0.5,phi=30)
R> persp(Xsin$process,shade=0.5,phi=30)

• Image and contour plots (Figure 6)

par(mfrow=c(2,2))
R> image(Xinc$process)
R> image(Xsin$process)
R> contour(Xinc$process)
R> contour(Xsin$process)

• Regularity function increasing along the diagonal and corresponding 2D-motion repre-
sented as an image (Figure 7)
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R> Hinc.diag =
+ function(x,y){outer(x,y,function(a,b){(a+b)/(2*max(a,b))})}
R> Xinc.diag = fracsim.2d(Hinc.diag,n=10000,kx=100)

R> par(mfrow=c(1,2))
R> image(Hinc.diag(seq(0,1,l=100),seq(0,1,l=100)))
R> image(Xinc.diag)

B. Run parallel program

The compilation is done using the option -openmp to deal with the OpenMP command pre-
ceded by ’#’.

> icc -openmp -O2 -o exec-2d main-2d-openmp.c

The option -O2 specifies the level of optimisation. This produces an executable file (exec-
2d). Details about the compiler used can be found at http://www.intel.com/cd/software/
products/asmo-na/eng/compilers/clin/219831.htm.
In order to optimise the execution, we use the Portable Batch System (PBS, http://www.
OpenPBS.org/). A file (exec-2d.cmd) containing the following line is created.

## PBS data
## Number of processors
#PBS -l ncpus=8

## Memory size
#PBS -l mem=4gb

## Maximal CPU time
#PBS -l cput=100:00:00

export OMP_NUM_THREADS=8

./exec-2d

The submission is done thanks to the command: qsub exec-2d.cmd. The execution is delayed
until the number of required processors is available.
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