

Journal of Statistical Software

August 2005, Volume 14, Issue 8.

http://www.jstatsoft.org/

An Algorithm for Clustered Data Generalized Additive Modelling with S-PLUS

Lin Yee Hin Private Medical Practitioner Vincent Carey Harvard Medical School

Abstract

We present a set of functions in S-PLUS to implement the clustered data generalized additive marginal modelling (CDGAM) strategy proposed by Berhane and Tibshirani (1998). A variety of working correlation structures are supported, and the regression basis may include components from the family of smoothing splines.

Keywords: generalized estimating equations, clustered data analysis.

1. Introduction – Notations and theoretical background

The CDGAM algorithm for the semi-parametric setting presented in this paper implements fitting methods for a class of generalized additive models for clustered data with observations $(y_{it}, \mathbf{x}_{it})$. Here $t = 1, \dots, m_i$ indexes observation times within the ith cluster, $i = 1, \dots, n$; y_{it} is the response with expected value μ_{it} and \mathbf{x}_{it} is a $(p+q) \times 1$ vector of covariates. There are p parameters to be estimated under a standard generalized linear modeling framework, and q smooth functional parameters to be estimated non-parametrically. The marginal mean of the response is related to the parameters and covariates by

$$g(\mu_{it}) = \eta_{it} = \beta_0 + \beta_1 X_{it1} + \dots + \beta_p X_{itp} + f_1(X_{it(p+1)}) + \dots + f_q(X_{it(p+q)})$$
(1)

The marginal variance of the response, $VAR(y_{it})$, depends functionally on the marginal mean through the function $v(\mu)_{it}$. Hence

$$\eta_{it} = \eta_{\text{total},it} = \eta_{\text{parametric},it} + \eta_{\text{nonparametric},it} \tag{2}$$

We refer to the 1 to (p+1) components of (1) as the parametric component and components (p+2) to (p+q) as the nonparametric component of the model.

Estimation proceeds by forming the adjusted dependent variable McCullagh and Nelder (1989)

$$\mathbf{z} = \eta + \mathbf{D}^{-1}(\mathbf{y} - \mu) \tag{3}$$

where $\mathbf{D} = \mathbf{D}_1 \oplus \mathbf{D}_2 \oplus \cdots \oplus \mathbf{D}_n$ and using iterative reweighted least squares with weights $\mathbf{W} = \mathbf{W}_1 \oplus \mathbf{W}_2 \oplus \cdots \oplus \mathbf{W}_n$ and $\mathbf{W}_i = \mathbf{D}_i \mathbf{V}_i^{-1} \mathbf{D}_i$. \mathbf{D}_i is a $m_i \times m_i$ diagonal matrix with diagonal elements being $\partial \mu_{it} / \partial \eta_{it}$. \mathbf{V}_i is defined as $\mathbf{V}_i = (\mathbf{A}_i^{1/2} \mathbf{R}_i(\alpha) \mathbf{A}_i^{1/2}) / \phi$, with \mathbf{A}_i being the $m_i \times m_i$ diagonal matrix v_{it} as the diagonal elements. The correlation structure for each cluster is denoted by $\mathbf{R}_i(\alpha)$, which is an $m_i \times m_i$ square matrix for cluster i, as described by Berhane and Tibshirani (1998), and that $\mathbf{R}(\alpha) = \mathbf{R}_1(\alpha) \oplus \mathbf{R}_2(\alpha) \oplus \cdots \oplus \mathbf{R}_n(\alpha)$. Estimation of ϕ , the dispersion parameter, and $\mathbf{R}_i(\alpha)$ are performed as described in Section 3.3 of Liang and Zeger (1986), while the only difference being that the total degrees of freedom (df_{total}) taken into consideration is represented here as the sum of total degrees of freedom due to the parametric terms ($df_{\text{parametric}}$) and the total effective degrees of freedom due to the nonparametric terms ($df_{\text{nonparametric}}$) expressed as below

$$df_{\text{total}} = df_{\text{parametric}} + df_{\text{nonparametric}} \tag{4}$$

where

$$df_{\text{parametric}} = p + 1 \tag{5}$$

accounting for the intercept term, and

$$df_{\text{nonparametric}} = df(f_1) + \dots + df(f_q) \tag{6}$$

Effective degrees of freedom for each nonparametric term is estimated using the approach described by Berhane and Tibshirani (1998), where

$$df(f_j) = 2tr\mathbf{S}_j - tr(\mathbf{S}_j^T \mathbf{W} \mathbf{S}_j \mathbf{W}^{-1})$$
(7)

for the jth predictor, for $j = 1, \dots, q$, where \mathbf{S}_j is the smoother matrix and \mathbf{W} the weight matrix at convergence.

The procedure for updating \mathbf{S}_j and \mathbf{W} is described by Green and Silverman (1994), where the presence of ties and unsorted nature among the data points in the covariate is tackled by making use of the notion of $\sum m_i \times q$ incidence matrix, \mathbf{N} , with $\sum m_i$ being the total number of data points in the covariate undergoing smoothing, q the number of unique values of the covariate. The smoother matrix, \mathbf{S}_j , for the jth covariate is hence defined as

$$\mathbf{S}_{j} = \mathbf{N}_{j} (\mathbf{N}_{j}^{T} \mathbf{W} \mathbf{N}_{j} + \lambda_{j} \mathbf{K}_{j})^{-1} \mathbf{N}_{j}^{T} \mathbf{W}$$
(8)

where \mathbf{N}_j refers to the incidence matrix, λ_j refer to the smoothing parameter, and \mathbf{K}_j the basis matrix for the jth predictor. Calculation of λ_j by cross-validation is described by Hastie and Tibshirani (1990), while details on the construction of \mathbf{K}_j is found in Green and Silverman (1994).

The local scoring algorithm for maximizing the penalized quasi-likelihood follows in vein with that described in Berhane and Tibshirani (1998), and Green and Silverman (1994). Methods on covariance estimation for nonparametric terms are detailed in Berhane and Tibshirani (1998) where the empirical covariance for the jth covariate is approximated as

$$COV_{emp}(\mathbf{f}_j) = \mathbf{S}_j \mathbf{W}^{-1} \mathbf{U} \mathbf{U}^T \mathbf{W}^{-1} \mathbf{S}_j^T$$
(9)

where $\mathbf{U} = \mathbf{D}\mathbf{V}^{-1}(\mathbf{y} - \mu)$, together with \mathbf{S}_j and \mathbf{W} evaluated at convergence. The calculation of empirical chi-squared statistics is also described in Berhane and Tibshirani (1998).

The code discussed in this paper has been developed under S-PLUS 2000 Professional Release 1 for Windows.

In addition to some auxiliary scripts, the library contains the following main functions:

cdgam	function to fit the CDGAM
cdgam.par	script called from cdgam to fit the parametric part
	of the model
cdgam.nonpar	script called from cdgam to fit the nonparametric part
	of the model
<pre>summary.cdgam</pre>	function to display the summary results of model fitting
	performed by cdgam
plot.cdgam	function to plot the estimated functional form against
	the respective covariates

2.1. General schematics

The present **cdgam** implementation involves three major steps:

- 1. estimation of starting values for iterations in cdgam by fitting a generalized additive model under independent correlation structure as described by Hastie and Tibshirani (1990),
- 2. estimation of the correlation matrix for each cluster and fitting the parametric portion of cdgam using the framework of GEE,
- 3. estimation of the non-parametric portion of the cdgam.

In Step 1, a generalized additive model is being fitted under the independence $(\mathbf{R}(\alpha))$ framework, but not using the GEE sandwich method, in order to obtain fitted values for the parametric and nonparametric covariates to be used in Step 2. The script in S for performing Step 1 is gam(), an algorithm in S-PLUS that fits the generalized additive model when the data points are not correlated. See Chambers and Hastie (1993) for operation details.

Calculations for Step 2 and Step 3 are coordinated by a script called cdgam(). Step 2 is executed by cdgam.par(). Step 3 is executed by cdgam.nonpar(). cdgam() separates the covariates into two groups. Covariates requiring parametric estimation are passed, within cdgam(), to cdgam.par() where conventional **GEE** fitting is performed until local convergence is reached. Then, the results from cdgam.par() is passed into cdgam.nonpar() to perform the nonparametric estimation until local convergence criteria is reached. Finally, global convergence of the parametric and nonparametric covariates is checked.

The presence of local and global covergence arise from the nature of the iteration architecture. The outer loop is a local scoring procedure. In the inner loop, the Fisher scoring iteration is performed in cdgam.par() while the Gauss-Seidel iteration is performed in cdgam.nonpar(). Local convergence criteria refers to the convergence criteria used within either cdgam.par() or cdgam.nonpar(), while global convergence criteria refers to the criteria used within cdgam().

Local convergence within cdgam.par() is checked by measuring the values of absolute difference between each of the estimated coefficients from the present Fisher scoring interation (β_{new}) and the immediately preceeding iteration (β_{old}) , defined as $\Delta(\beta_{\text{new}}, \beta_{\text{old}})$. Parametric local convergence is considered reached when all values are smaller than a predetermined value, called the local tolerance. In cdgam.par(), the local tolerance is set at 5×10^{-4} , and it can be adjusted by the user within cdgam.par(). Hence the parametric local convergence for cdgam.par() is expressed as

$$\Delta(\beta_{\text{new}}, \beta_{\text{old}}) = \max(\|\beta_{\text{new}} - \beta_{\text{old}}\|)$$
(10)

Local convergence within cdgam.nonpar() is checked by measuring the fraction of absolute change in the values of the estimated nonparametric functions between those estimated from one Gauss-Seidel iteration (f_{new}) and the immediately preceeding iteration (f_{old}) , defined as $\Delta(f_{new}, f_{old})$. Nonparametric local convergence is considered reached when all values are smaller than a predetermined value, called the local tolerance. In cdgam.nonpar(), the local tolerance is set at 0.02, and it can be adjusted by the user within this script. Hence the nonparametric local convergence is:

$$\Delta(f_{\text{new}}, f_{\text{old}}) = \max\left\{\frac{\left(\|f_{\text{new}} - f_{\text{old}}\|\right)}{\|f_{old\|}}\right\}$$
(11)

where, in the spirit of Equation (1), we can define $f_{\text{new}} = f_{1,new} + \cdots + f_{q,new}$ and $f_{\text{old}} = f_{1,old} + \cdots + f_{q,old}$ respectively.

Global covergence within cdgam() is checked by measuring the fraction of absolute change in the values of the estimated nonparametric functions between those estimated from one local-scoring iteration (F_{new}) and the immediately preceeding local-scoring iteration (F_{old}), defined as $\Delta(F_{\text{new}}, F_{\text{old}})$. Nonparametric global convergence is considered reached when all values are smaller than a predetermined value, called the global tolerance. Similar to the nonparametric local convergence criteria, the global tolerance in cdgam() is set at 5×10^{-5} , and it can be adjusted by the user within cdgam(). It follows that

$$\Delta(F_{\text{new}}, F_{\text{old}}) = \max\left\{\frac{\left(\|F_{\text{new}} - F_{\text{old}}\|\right)}{\|F_{old}\|}\right\}$$
(12)

where, we define $F_{\text{new}} = F_{1,new} + \cdots + F_{q,new}$ and $F_{\text{old}} = F_{1,old} + \cdots + F_{q,old}$ respectively.

The cdgam() script makes use of the results of calculation performed by gam($\cdots, x=T$) in order to retrieve three entities: (1) data matrix for the nonparametric terms, (2) effective degree of freedom for each nonparametric term, and (3) estimated values for the nonparametric terms. The data matrix for the nonparametric terms is used for calculation of the incidence matrices for the jth nonparametric term, N_j . This, together with the estimation of smoothing parameter λ_j and basis matrix \mathbf{K}_j , are used to construct the smoother matrix \mathbf{S}_j for the jth nonparametric covariate later on. For fast calculation, the calculation of λ_j is made basedon the S-PLUS built-in function called smooth.spline(). For a domain of unique x values x_1, x_2, \cdots, x_t on some interval $[x_1, x_t]$, satisfying $x_1 < x_2 < \cdots < x_t$ over which smoothing is carried out, where $x_1 < x_2 < \cdots < x_t$, the spar value of the object fitted by smooth.spline() returns a value, denoted as ξ , that is connected to λ_j as below:

$$\lambda_j = \xi (x_t - x_1)^3 \tag{13}$$

The effective degrees of freedom and the estimated values for the nonparametric terms are then passed, within cdgam(), into cdgam.par() where the correlation structure $\mathbf{R}(\alpha)$, and the dispersion scale parameter ϕ are estimated. Then, using these two entities, the Fisher scoring iterations for estimating the parametric covariates is performed. At local convergence, tests for significance as described in Liang and Zeger (1986) is carried out.

The results of estimated values for the parametric covariates, $\mathbf{R}(\alpha)$, and ϕ at convergence in cdgam.par() are then used by cdgam.nonpar() to perform Gauss-Seidel iterations in order to fit the nonparametric terms. At local convergence, the chi-squared test of significance as described in Berhane and Tibshirani (1998) is carried out. Then, the updated effective degree of freedom and estimated values for the nonparametric terms are passed into cdgam.par() again for the second local scoring iteration until global convergence is reached.

2.2. Handling of intracluster correlation structure

The calculation of within cluster correlation matrices $\mathbf{R}_i(\alpha)$ is performed in the script called cdgam.par() where the Pearson's residual calculated using the most update $\eta_{parametric,it}$, $\eta_{nonparametric,it}$, $df_{parametric}$ and $df_{nonparametric}$ for each cluster. The options of correlation structures currently supported are:

- 1. exchangeable correlation, otherwise known as uniform correlation model, where there is a positive correlation coefficient, α , between any two measurements within the same cluster and that α is the same across all clusters;
- 2. stratified exchangeable correlation, where there is a positive correlation coefficient, α_i , between any two measurements within the same cluster, and variation of α_i across clusters is allowed;
- 3. first order autoregressive model for evenly spaced time scale; and

data points were observed.

4. first order autoregressive model for unevenly spaced time scale. The methods applied in this algorithm follows directly from that described in Liang and Zeger (1986).

Since $\mathbf{R}(\alpha) = \mathbf{R}_1(\alpha) \oplus \mathbf{R}_2(\alpha) \oplus \cdots \oplus \mathbf{R}_n(\alpha)$ is a blocked-diagonal matrix, calculation of $\mathbf{R}^{-1}(\alpha)$ required in the calculation of weights \mathbf{W} makes use of the identity $\mathbf{R}^{-1}(\alpha) = \mathbf{R}_1^{-1}(\alpha) \oplus \mathbf{R}_2^{-1}(\alpha) \oplus \cdots \oplus \mathbf{R}_n^{-1}(\alpha)$ in order to save computing memory and time. Therefore, two subroutines options need to be specified in $\mathsf{cdgam}()$, where the one assigned to the option called alpfun specifies one of the four options of correlation structures described above, and one to the option called wcorigen calculates $\mathbf{R}_i^{-1}(\alpha)$ for clusters $i = 1, \dots, n$. In addition, there is an input option, called $\mathsf{cor.met}$, in $\mathsf{cdgam}()$ that needs to be specified for calculation of certain types of correlation structure specification. For uniform correlation structure, it need not be specified. For stratified uniform correlation structure, the variable assigned to $\mathsf{cor.met}$ is the pointer variable identifying the cluster origin of the data points. For first order autoregressive model for evenly spaced time scale, assignment to cor.met constitutes a matrix with two columns, the first is the pointer variable identifying the cluster origin of the cluster origin of the data points.

This arrangement leaves room for extensions by users where, by simply writing the scripts for alpfun and wcorigen, one can deploy the present cdgam to cater for other types of intracluster correlation structures.

2.3. Choice of smoothing parameter

Leave-one-out generalized cross-validation is computationally intensive in the setting of generalized semiparametric modelling, requiring re-computation of the entire iterative fit for each value of λ on a grid in order to carry out the necessary minimization over λ (Green and Silverman 1994), and its performance in practice is sometimes questionable (Hastie and Tibshirani 1990).

The use of empirical-bias bandwith selector (EBBS) (Ruppert 1997) is an alternative approach when applied to clustered data using profile likelihood-kernel regression GEEs. However, Lin and Carroll (2001b) and Lin and Carroll (2001a) noted that the profile likelihood-kernel regression is not semiparametric efficient when correlation at the observation-level is taken into account, and, in order to achieve consistency, arbitrary undersmoothing or assuming correlation structure at observation-level to be independent becomes necessary.

In the light of this situation, the present approach is to obtain λ using smooth.spline(), a smoothing function generic to S-PLUS, based on cross-validation as a starting point. Then, by graphical inspection, and model refit by adjusting the value of λ , a reasonable degree of smoothing is achieved (See demonstration in later section dealing with Infectious Disease Data). Changing the value of λ in multiples of 10 in the initial phase of modelling process, and reduce magnitude of change in λ later on for fine tuning once a reasonable fit is obtained is a useful strategy to speed up the modelling process.

2.4. Choice of smoothing technique

Lin and Carroll (2001b) reported that conventional kernel method, when used in semiparametric form of PA-GEE, does not produce $n^{1/2}$ consistent estiantes of coefficients for the parametric covariates. Subsequent work reported in Lin, Wang, Welsh, and Carroll (2004) justified the use of smoothing splines for clustered data in this setting because splines are non-local, and are able to account for intra-cluster correlation, as opposed to conventional kernel methods. Therefore, we have chosen to employ smoothing splines for nonparametric covariates handling as described in Berhane and Tibshirani (1998).

2.5. Choice of platform

The initial conception of this project evolves from codes written in S-PLUS. In S-PLUS, the calculation of Equation (3) involves extending the existing canonical link for the exponential family to provide $\partial \mu / \partial \eta$. For convenience, we modified glm.links in the S-PLUS into yags.links used in cdgam. However, there is no exact equivalence of glm.links in the R environment. Hence, a major portion of the program needs to be re-written to enable migration from S-PLUS to R, which is currently under way. Once the R version of cdgam becomes available, it will be submitted to CRAN for public access.

2.6. Limitations

1. For the case of

$$\eta_{it} = \beta_0 + f_1(X_{it(p+1)}) + \dots + f_p(X_{it(p+q)})$$
(14)

the formula in cdgam() is set to be formula = $y \sim 1$, where β_0 is taken as the centering value for the model fit.

However, cdgam() does not cater for

$$\eta_{it} = \beta_0 + \beta_1 X_{it(p+1)} + \dots + \beta_q X_{it(p+q)}$$
(15)

because it reduces to the special case described by Liang and Zeger (1986), and there are already available libraries such as **gee** and (yags) that can handle this situation.

2. Due to the transparent nature of the present implementation of cdgam, all codes are written in S, and admittedly, the computation is slow compared to compiled languages such as C and FORTRAN. This is made worse by the heavy demand of inverting large matrices. We trade speed for ease of maintainance, and leaves room for further refinement. It will also allow users to modify the codes according to their specific needs, including writing scripts to handle correlation structures not included here, and adjusting presentation of the output.

3. Example with simulated data

In this section, we illustrate the use of our routines on a simulated example (similar to the simulation example in Section 4.3 of Berhane and Tibshirani (1998).

We consider three predictors given by

$$f_1(x_1) = x_1^{1.5}, \qquad f_2(x_2) = \cos\left(\frac{2.5\pi x_2}{1+3x_2^2}\right), \qquad f_3(x_3) = x_3.$$
 (16)

for a model given by

$$logit(y_{ij}) = f_1(x_1) + f_2(x_2) + f_3(x_3)$$
(17)

where x_1, x_2 , and x_3 are generated from U(0,1) in the framework of Lee (1993), following a similar strategy described by Berhane and Tibshirani (1998). In that setting, the intra-cluster correlation is expressed in terms of ψ with $(0 < \psi < 1)$, where a low value of ψ signifies a high correlation, and vice versa. We generated 150 clusters, with each cluster containing 3 observations, with a high exchangeable intra-cluster correlation ($\psi = 0.3$). We have enclosed the dataset, denoted as cdgam.data. The dataset contains the followings variables:

individual Cluster pointer where observations of the same cluster

- share the same number.
- **x1** Random number used to generate $f(x_1)$.
- fx1 Values for $x_1^{1.5}$ as defined above
- **x2** Random number used to generate $f(x_2)$
- fx2 Values for $\cos((2.5\pi x^2)/(1+3x_2^2))$ as defined above.
- **x3** Random number used to generate $f(x_3)$.
- **fx3** Values for x_3 as defined above.
 - y Binary variables generated as the response variable

We first fit the generalized additive model under independent correlation structure as described by Hastie and Tibshirani (1990).

```
> step1 <- gam(y ~ s(x1) + s(x2) + x3, family = binomial, x = T,
+ data = cdgam.data)
```

Then, we fit the model under exchangeable correlation structure with logistic link. Note that in **step1**, we need to specify the entire formula, as opposed to specifying only the parametric covariates in **step2**.

```
> step2 <- cdgam(formula = y ~ x3, id = individual, family = binomial,
+ corstr = "exchangeable", gamob = step1, data = cdgam.data)
```

The summary of the model fit result can be obtained by the following:

```
> summary(step2)
$call:
cdgam(formula = y ~ x3, id = individual, family = binomial,
corstr = "exchangeable", gamob = step1, data = cdgam.data)
$parametric.coefficients:
                                    Naive z Robust S.E.
            Estimate Naive S.E.
                                                          Robust z
(Intercept) -0.142578 0.3946116 -0.3613122
                                              0.3439056 -0.4145846
        x3 3.746447 0.7466218 5.0178646
                                              0.6338137 5.9109591
$coef.smooth:
      Df exact Df approx empirical Chisq
                                             P(Chi)
s(x1) 59.84610 63.38170
                                47.58698 0.85314782
s(x2) 65.55037 69.21069
                                86.35508 0.03634361
$scale:
[1] 1.390494
$alpha:
[1] 0.4480969
attr(, "class"):
[1] "summary.cdgam"
```

The following produces a plot of the estimated values of $f_2(x_2)$ against x_2 and adds the line representing plot of the actual values $f_2(x_2)$ against x_2 (See Figure 1):

> plot(step2, ci = T, resid = T, j = 2)
> attach(cdgam.data)
> lines(smooth.spline(x2, fx2), lty = 4, lwd = 4)

4. Example using infectious disease data

We apply the model to analysing the longitudinal infectious disease data involving 275 preschool-age children who were re-examined in 3 monthly intervals for 18 months, ascertaining the presence of respiratory infection (yes=1, no=0). This dataset was described by

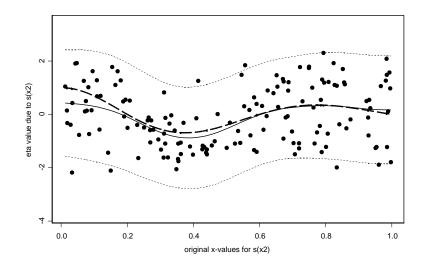


Figure 1: The plot of $\hat{f}_2(x_2)$ against x_2 where \hat{f} is the estimation of $f_2(x_2)$ where $f_2(x_2) = \cos(2.5\pi x_2)/(1+3x_2^2)$ with the dots representing the residuals, the solid dashed line represents $f_2(x_2)$, the fine continuous line represents $\hat{f}_2(x_2)$, and the two fine dotted lines bounding $f_2(x_2)$ and $\hat{f}_2(x_2)$ on either side represent the 95 interval.

Zeger and Karim (1991) and has been used in Lin and Carroll (2001b) and Lin and Carroll (2001a) to perform generalized additive marginal modelling analyses. We have enclosed this dataset, and called it indon. The description of each variable is as follows:

id	Cluster identifier, where observations from the
	same cluster share a common number.
res.infect	Binary variable with presence of respiratory
	infecton=1, otherwise=0.
xeroph	Presence of Vitamin A deficiency $= 1$,
	otherwise $= 0.$
cos.visit	Seasonal cosine.
sin.visit	Seasonal sine.
sex	Gender of the subject.
height	Height for age.
stunt	Presence of stunting.
visit	The number of visit when the observation was made.
season	1=Spring, 2=Summer, 3=Autumn, 4=Winter.
age	Age in years at the time of observation.
baseline.age	Age in years at the time of recruitment into study.

4.1. Initial phase of data modelling using GAM

Select part of the data for calculation:

```
> indon.sub <- indon[c(1:300),]</pre>
```

10 An Algorithm for Clustered Data Generalized Additive Modelling with S-PLUS

```
> length(unique(indon.sub[,1]))
```

[1] 71

There are 71 clusters in this subset. Formulate the first step of modelling process using gam:

```
> step1 <- gam(formula = res.infect ~ s(age) + xeroph + cos.visit +</pre>
+ sin.visit + sex + height + stunt, family = binomial, x = T, data = indon.sub)
> summary(step1)
Call: gam(formula = res.infect ~ s(age) + xeroph + cos.visit +
sin.visit + sex + height + stunt, family = binomial, data = indon.sub, x = T)
Deviance Residuals:
        Min
                    1Q
                           Median
                                           3Q
                                                  Max
 -0.9851055 -0.6414985 -0.4321241 -0.2996751 2.709284
(Dispersion Parameter for Binomial family taken to be 1 )
    Null Deviance: 253.6255 on 299 degrees of freedom
Residual Deviance: 228.4742 on 289.1412 degrees of freedom
Number of Local Scoring Iterations: 4
DF for Terms and Chi-squares for Nonparametric Effects
            Df Npar Df Npar Chisq
                                      P(Chi)
(Intercept)
            1
     s(age)
            1
                   2.9
                         8.242089 0.03678064
     xeroph 1
  cos.visit 1
  sin.visit 1
        sex 1
     height 1
      stunt
             1
```

Since the approximate nonparametric degree of freedoms for s(age) is 2.9, the step1 is refitted with s(age, df=3) so that it provides a better set of starting values of age for cdgam() formulation. step1 provides the starting values for model fitting in subsequent sections:

```
> step1 <- gam(formula = res.infect ~ s(age,df=3) + xeroph + cos.visit +
+ sin.visit + sex + height + stunt, family = binomial, x = T,data = indon.sub)</pre>
```

The degree of freedom for a nonparametric covariate is related to the smoothing parameter λ used in smooth.spline() called from gam(). When the nonparametric covariate is specified as s(age), the smooth.spline() algorithm optimize the value of λ used in smoothing,

and it is reflected as the nonparametric degree of freedom. Hence, refitting the model by specifying the nonparametric covariate as above using the specification s(age, df=3), the degree of smoothing is controlled so that the value of λ used in gam() is that optimized by smooth.spline(). We should refrain from using the nonparametric degree of freedom produced with s(age, df=3) to refit using gam() because the aim is to obtain the optimal smoothing for the nonparametric covariate age, as opposed to obtain the optimal smoothing for the nonparametric covariate with 3 degrees of freedom s(age, df=3).

4.2. Modelling under exchangeable correlation structure

We first fit the model assuming exchangeable correlation structure:

```
> step2.ex.1 <- cdgam(formula = res.infect<sup>~</sup>xeroph + cos.visit + sin.visit +
+ sex + height + stunt, id = id, family = binomial, corstr = "exchangeable",
+ gamob = step1, data = indon.sub)
> summary(step2.ex.1)
$call:
cdgam(formula = res.infect ~ xeroph + cos.visit + sin.visit + sex + height +
stunt, id = id, family = binomial, corstr = "exchangeable", gamob = step1,
data = indon.sub)
$parametric.coefficients:
              Estimate Naive S.E.
                                       Naive z Robust S.E.
                                                              Robust z
(Intercept) -2.59349718 0.3184684 -8.14365674 0.26718656 -9.70669032
    xeroph 0.28062820 1.2883989 0.21781158 0.80096584 0.35036225
 cos.visit -0.48070271 0.3361932 -1.42984087 0.28653001 -1.67766966
 sin.visit -0.23239116 0.3201893 -0.72579301 0.22724533 -1.02264439
        sex -0.01935372 0.3939345 -0.04912928 0.31438041 -0.06156147
    height -0.05338726 0.0532786 -1.00203941 0.04880356 -1.09392144
     stunt -0.18177428 0.8179407 -0.22223407 0.67382854 -0.26976340
$coef.smooth:
              Df exact Df approx empirical Chisq
                                                     P(Chi)
s(age, df = 3) 57.34003 62.75955
                                         20.52969 0.9999969
$scale:
[1] 1.473711
$alpha:
[1] -0.03638948
attr(, "class"):
[1] "summary.cdgam"
```

Plotting the fitted function of age against age shows that the risk of respiratory infection is seen to increase until the age of 2, and then decrease after that. (See Figure 2)

> plot(step2.ex.1, ci = T, resid = T)

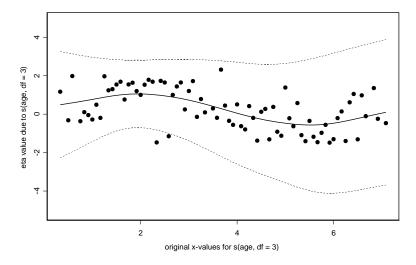


Figure 2: The plot of f_{age} against age where the dots represent residuals from the indon data subset estimated assuming exchangeable intracluster correlation structure, the fine continuous line represents estimated contribution to the risk of respiratory infection over age, and the two dotted fine lines its 95% confidence interval bound.

4.3. Modelling under AR(1) correlation structure

Fitting the model assuming an AR(1) correlation structure as it involves time factor, and specifying the parameter visit as the correlation metameter:

```
> step2.ar1.1 <- cdgam(formula = res.infect<sup>~</sup>xeroph + cos.visit + sin.visit +
+ sex + height + stunt, id = id, cor.met = visit, family = binomial,
+ corstr = "ar1", gamob = step1, data = indon.sub)
> summary(step2.ar1.1)
$call:
cdgam(formula = res.infect ~ xeroph + cos.visit + sin.visit + sex + height +
stunt, id = id, cor.met = visit, family = binomial, corstr = "ar1",
gamob = step1, data = indon.sub)
$parametric.coefficients:
               Estimate Naive S.E.
                                      Naive z Robust S.E.
                                                             Robust z
(Intercept) -2.47755331 0.30066914 -8.2401316 0.27204927 -9.1070022
    xeroph 0.19130901 1.20910944 0.1582231 0.73388062 0.2606814
 cos.visit -0.46533788 0.30787297 -1.5114606 0.28895306 -1.6104273
 sin.visit -0.19771496 0.29324839 -0.6742235 0.22741069 -0.8694181
```

```
sex -0.09426448 0.37910997 -0.2486468
                                               0.31784530 -0.2965735
    height -0.05628223 0.05030511 -1.1188174
                                               0.04832306 -1.1647075
      stunt -0.19887753 0.77582578 -0.2563430
                                               0.66140927 -0.3006875
$coef.smooth:
               Df exact Df approx empirical Chisq P(Chi)
s(age, df = 3) 55.90675 60.93737
                                         15.06681
                                                        1
$scale:
[1] 1.267612
$alpha:
[1] -0.05534506
attr(, "class"):
[1] "summary.cdgam"
```

Plotting the fitted function of age against age shows there is over fitting due to a small value of λ , retrievable from step2.ar1.1. (See Figure 3)

> plot(step2.ar1.1, ci = T, resid = T)

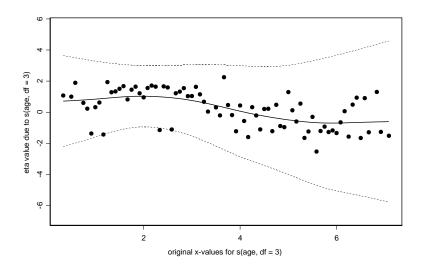


Figure 3: The plot of \hat{f}_{age} against age where the dots represent residuals from the indon data subset estimated assuming AR(1) intracluster correlation structure with $\lambda = 4.478831 \times 10^{-6}$, the fine continuous line represents estimated contribution to the risk of respiratory infection over age, and the two dotted fine lines its 95% confidence interval bound.

Therefore, a new value for λ is specified, arbitrarily set as 10 times that in step2.ar1.1 and a new model is fitted. (See Section 5 for the rationale of such choice of factor of expansion for λ)

```
> step2.ar1.1$lambda
[[1]]:
[1] 4.478831e-006
> lambda.new <- 10*unlist(step2.ar1.1$lambda)
> step2.ar1.2 <- cdgam(formula = res.infect~xeroph + cos.visit + sin.visit +
+ sex + height + stunt, id = id, lambda=lambda.new, cor.met = visit,
+ family =binomial, corstr = "ar1", gamob = step1, data = indon.sub)</pre>
```

The summary results of model fit with the new smoothing parameter λ' is as follows:

```
> summary(step2.ar1.2)
$call:
cdgam(formula = res.infect ~ xeroph + cos.visit + sin.visit + sex + height +
stunt, id = id, lambda = lambda.new, cor.met = visit, family = binomial,
corstr = "ar1", gamob = step1, data = indon.sub)
$parametric.coefficients:
              Estimate Naive S.E. Naive z Robust S.E.
                                                          Robust z
(Intercept) -2.67058236 0.2950029 -9.0527314 0.2711807 -9.8479804
    xeroph 0.23805501 1.2055512 0.1974657 0.7619607 0.3124243
 cos.visit -0.46098502 0.3018453 -1.5272228 0.2858164 -1.6128711
 sin.visit -0.19783700 0.2882948 -0.6862315 0.2278433 -0.8683028
       sex -0.07251887 0.3741501 -0.1938229 0.3198790 -0.2267072
    height -0.05315972 0.0495429 -1.0730039 0.0470079 -1.1308678
     stunt -0.32053131 0.7654951 -0.4187242 0.6768653 -0.4735526
$coef.smooth:
              Df exact Df approx empirical Chisq
                                                    P(Chi)
s(age, df = 3) 40.20359 41.77025
                                     54.38034 0.05418916
$scale:
[1] 1.242216
$alpha:
[1] -0.04773346
attr(, "class"):
[1] "summary.cdgam"
```

Plotting the fitted function of age against age shows a reasonable degree of roughness penalty. (See Figure 4)

> plot(step2.ar1.2, ci = T, resid = T)

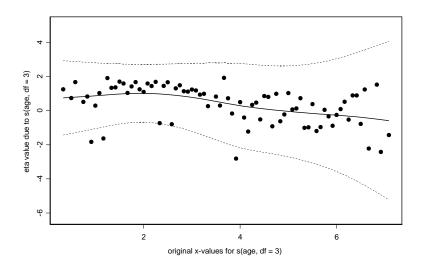


Figure 4: The plot of \hat{f}_{age} against age where the dots represent residuals from the indon data subset estimated assuming AR(1) intracluster correlation structure with $\lambda' = 10 \times \lambda =$ 4.478831×10^{-5} , the fine continuous line represents estimated contribution to the risk of respiratory infection over age, and the two dotted fine lines its 95% confidence interval bound.

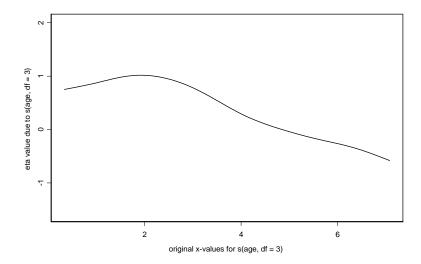


Figure 5: The plot of \hat{f}_{age} against age where the dots represent residuals from the indon data subset estimated assuming AR(1) intracluster correlation structure with $\lambda' = 10 \times \lambda = 4.478831 \times 10^{-5}$, the fine continuous line represents estimated contribution to the risk of respiratory infection over age, and the two dotted fine lines its 95% confidence interval bound.

Plotting the fitted function of age against age without standard error bands and residuals allows a closer inspection of the trend of respiratory infection risk against age. (See Figure 5) The risk of respiratory infection is noted to increase since birth to 2 years old, and then decreases thereafter. Similar observation is reported in Figures 3 and 4 of Lin and Carroll (2001b).

> plot(step2.ar1.2)

Due to the slow convergence rate, modelling for step2.ex.1, step2.ar1.1, and step2.ar1.2, require up to 6 back-fitting loops, and up to 200 Gauss-Seidel interations within each loop.

References

- Berhane K, Tibshirani RJ (1998). "Generalized Additive Models for Longitudinal Data." The Canadian Journal of Statistics, 26, 517–535.
- Chambers JM, Hastie TJ (1993). Statistical Models in S. Chapman and Hall, London.
- Green PJ, Silverman BW (1994). Nonparametric Regression and Generalized Linear Models. Chapman and Hall, London.
- Hastie TJ, Tibshirani RJ (1990). Generalized Additive Models. Chapman and Hall, London.
- Lee AJ (1993). "Generating Random Binary Deviates Having Fixed Marginal Distribution and Specified Degrees of Association." *The American Statistician*, **47**, 209–215.
- Liang KY, Zeger SL (1986). "Longitudinal Data Analysis Using Generalized Linear Models." Biometrika, 73, 13–22.
- Lin X, Carroll RJ (2001a). "Semiparametric Regression for Clustered Data." *Biometrika*, 88, 1179–1185.
- Lin X, Carroll RJ (2001b). "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations." Journal of American Statistical Association, **96**, 1045–1056.
- Lin X, Wang N, Welsh AH, Carroll RJ (2004). "Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data." *Biometrika*, 91, 177–193.
- McCullagh P, Nelder JA (1989). Generalized Linear Models. Chapman and Hall, London.
- Ruppert D (1997). "Empirical-Bias Bandwith for Local Polynomial Nonparametric Regression and Density Estimation." Journal of American Statistical Association, **92**, 1049–1062.
- Zeger SL, Karim MR (1991). "Generalized Linear Models with Random Effects: A Gibb's Sampling Approach." Journal of American Statistical Association, 86, 79–86.

A. Instructions for using cdgam()

The code is available as an archived directory containing the files listed below. Copy the entire directory called **cdgam** to the library folder in S-PLUS. The code comes in two versions, one designed to run under S-PLUS 2000 Professional Edition for Windows, while the other under S-PLUS 5.1 on UNIX.

Listed below is the detailed alternative for each input and a description of the output. This is available as a help file for the library.

Usage

```
cdgam(formula, id, lambda = NULL, weights = NULL, cor.met = NULL,
family = gaussian, alpfun = NULL, scalefun = BT.scalefun,
wcorigen = identni, tol = 0.001, contrasts = NULL,
corstr = c("independence", "exchangeable", "ar1", "unstructured"),
maxiter = 25, verbose = F, gamob, data)
```

Required arguments

formula	Follows the Response~covariates convention, but the covari-
	ates should include only the paramtetric terms only.
id	A vector of numbers serving as cluster pointer, where data-
	points from the same cluster share the same number.
corstr	Specified correlation structure, taking either independence,
	exchangeable, $AR(1)$ or unstructured. If it is not supplied,
	then, a combination of cor.met, alpfun and wcorigen need
	to be specified depending on the correlation structure.
gamob	The object of the S-plus generic function gam(), the formula
	of which contain all parametric and nonparametric terms,
	and the option for design matrix return is turned on.
data	data frame.

Optional arguments

lambda	The smoothing parameter referred to as λ in the cubic spline smoothing that minimizes $(y-g)^T(y-g)+\lambda \mathbf{g}\mathbf{K}\mathbf{g}$. New values of λ , in numeric or vector form, can be supplied to alter the degree of smoothing.
weights	Optional input allowing pre-specified weights
cor.met	The corelation metameter used for correlation calculation.
family	The family of the link function, covering the entire exponen-
	tial family as supported by S-PLUS.
alpfun	This supplies the estimator function of correlation matrix
	$\mathbf{R}(\alpha)$ for each cluster.
scalefun	The default scale function is BT.scalefun.
wcorigen	No need to specify wcorigen if corstr is specified. However,
	if corstr is not specified, but alpfun is specified instead,
	then, wcorigen need to be specified.

18 An	Algorithm for Clustered Data Generalized Additive Modelling with S-PLUS
tol	The tolerance limit defining convergence of the local scoring procedure.
contrasts	Optional entry for constrast can be supplied here.
maxiter	The maximum local scoring iterations allowed by default is
	25.
verbose	logical.

Details

Corresponding cor.met for each correlation structure is as below:

Correlation structure exchangeable	cor.met need not specify
stratified exchangeable	a vector of numbers serving as
	cluster pointer, identical to the
	entry for input id.
AR(1)-evenly spaced time scale	a vector the times at which the
	corresponding data points were
	recorded.
AR(1)-unevenly spaced time scale	a matrix with two columns; the
	first being the cluster pointer,
	the second the times at which the
	corresponding data points were
	recorded.
unstructured	a vector providing the means
	for selecting appropriate
	elements for incomplete clusters
	from the time-saturated
	correlation matrix.

Corresponding alpfun for each correlation structure is as below:

Correlation structure	alpfun
exchangeable	BT.exchalp
stratified exchangeable	BT.strat.exchalp
AR(1)- evenly spaced time scale	BT.prop.ar1alp
AR(1)- unevenly spaced time scale	LZ.ar1alp
unstructured	BT.prop.unstruc.alp
independence	(no need to specify)

Corresponding wcorigen for each alpfun is as below:

alpfun	wcorigen
BT.exchalp	excoriput or excori
BT.strat.exchalp	strat.excoriput
BT.prop.ar1alp	ar1.coriput
LZ.ar1alp	LZ.ar1.coriput
BT.prop.unstruc.alp	unstr.coriput
independence (no alpfun needed)	identni

Output

The output is a list containing the following elements:

para	output from cdgam.par()
	pertaining to the parametric portion of the
nonparametric	modelling process output from cdgam.nonpar()
I	pertaining to the nonparametric portion of
	the modelling process
lambdaK	the product of the smoothing parameter
	and the cubic spline basis matrices (Green &
	Silverman pp 13)
lambda	the value(s) of the smoothing parameter
	used in smoothing
x.smooth	the covariates requiring smoothing. When
	more than one, it is ordered by column from
	left to right as appeared in the formula
	supplied in $gam(\ldots, x = T)$.
incidence.matrix	the list of incidence matrices used by
	each nonparametric term that allow for ties
	(Green & Silverman pp 65)
final.eta	the smoothed values of the nonparametric
	terms. When more than one, it is ordered by
	column from left to right as appears in the
	formula supplied in $gam(\ldots, x = T)$.
call	the call that produce the results

The para portion of the output contain the followings:

Values of the coefficients for the
parametric terms at local convergence
the product of the scale parameter and
the variance matrix
the sandwich estimate of variance
correlation $parameter(s)$
scale parameter
eta values for the parametric portion
mu values for the parametric portion,
i.e., $g(\mu) = \eta$.
Pearson's residuals
number of Fisher's scoring loop for the
last local scoring iteration at convergence.
the family of the link function

rank	the number of parametric parameters in
	the cdgam.par() fitting
errorcode	the error messages generated during
	calculation of cdgam.par()
Rinv.i	the list containing inverse of the
	working correlation matrix for each cluster
	to be used in cdgam.nonpar()
MX	the matrix containing all covariates
	information, by column, as ordered in the
	formula of $gam(\ldots, x = T)$.
Ъ0	fitted values of beta, the coefficients
	for the parametric terms

The nonparametric portion of the output contain the followings:

T.s.emp	Empirical calculation of chi-squared values for nonparametric terms (Berhane &
T.s.mb	Tibshirani Section 4.2) Model-based calculation of chi-squared
I.S.MD	-
	values for nonparametric terms (Berhane &
	Tibshirani Section 4.2)
T.s.chisq	p-value for chi-squared based on
	approximate degrees of freedom (Berhane &
	Tibshirani Section 4.2)
df.nl	Degree of freedom according to Berhane &
	Tibshirani Equation 8.
df.approx	Degree of freedom approximated by
	1.25 trace(S)-0.5.
eta.nonpar	Sum of eta values for smoothing term(s)
	for each observation point.
se.emp	Empirical calculation of standard error
-	(Berhane & Tibshirani Equation 26)
se.mb	Model-based calculation of standard error
	(Berhane & Tibshirani Equation 25)
smooth.terms	Matrix containing individual eta for each
	smoothed term, the addition of which by row-
	wise produces eta.nonpar
smoother	Smoother matrix for each smoothing term
	at convergence
weight	Weight matrices at convergence
A.nonpar	Variance matrix $(q \times q)$
V.nonpar	sandwich estimate of variance
· · · · · · · · · · · · · · · · · · ·	(non-parametric form of Berhane & Tibshirani
	Equation 4)
V.inv	inverse of V.nonpar
· · ·	

B. Instructions for using plot.cdgam()

Usage

х

plot(x, ci.option = c("mb", "emp"), j = NULL, ci = F, resid = F)

Required arguments

The fitted object from class cdgam

Optional arguments

ci.option	The option of using model-based (ci.option = "mb") stan- dard deviation for error-band plotting, or to use empirical
	(ci.option = "emp") standard deviation. Default uses the
	model-based version (ci.option = "mb").
j	The option of selecting the nonparametric term to plot. De-
	fault is plotting all nonparametric terms.
ci	The option of plotting the pointwise 95% standard error
	bands for the eta.value plotted. Default is not plotting
	the standard error bands.
resid	The option of plotting the fitted values for the eta.value
	plotted. Default is not plotting the points.

Details

The specification of j follows the sequence of the formula in the cdgam call; eg., a model fitting $y \sim x1 + x2 + s(x3) + s(x4)$ corresponds to the following:

j = 1	x3 versus eta.value for x3
j = 2	x4 versus eta.value for x4 $$

Output

A plot as specified by the options.

C. Description of scripts contained in the cdgam library

Function name cdgam	Description Fits the cdgam algorithm
summary.cdgam	Displays the summary results of the fitted cdgam object called via summary method to
	objects of the cdgam class
plot.cdgam	Plots the nonparametric terms against their
	corresponding covariates called via plot
_	method using objects of the cdgam class
cdgam.par	Called internally by cdgam to fit the parametric portion of cdgam, and handle the intracluster correlation
cdgam.nonpar	Called internally by cdgam to fit the
cugam: nonpar	nonparametric portion of cdgam
BT.exchalp	Estimation for exchangeable correlation
BT.strat.exchalp	Estimation for exchangeable correlation, but different
_	cluster may have different correlation coefficients
BT.prop.ar1alp	Estimation for auto-regressive process 1 with evenly
	spaced measurement time interval
BT.prop.unstruc.alp	Estimation of unstructured correlation
LZ.ar1alp	Estimation of auto-regressive process 1 allowing for
identni	unevenly spaced measurement time interval Produce identity matrix, serve as input for wcorigen
Identiti	under independence correlation structure
excori	Calculates inverse working correlation matrix for
	exchangeable correlation from each cluster
excoriput	Performs identical function as excori with improved efficiency
strat.excoriput	Calculates inverse working correlation matrix for exchangeable correlation from each cluster, allowing
ar1.coriput	for correlation coefficient to vary between clusters Calculates inverse working correlation matrix for $AR(1)$
arr.corrput	correlation from each cluster, assuming equally spaced observation
unstr.coriput	Calculates inverse working correlation matrix for unstructured correlation from each cluster
LZ.ar1.coriput	Calculates inverse working correlation matrix for $AR(1)$
	correlation from each cluster, allowing for unequally
- · · ·	spaced observations
yags.links	Extension of glm.links
bspline.smoother	Construct basis matrix K for smoothing.
pmat	Sets up a classed list with appropriate class tag
pmat2mat	Convert a series of partitioned matrices to a single matrix
fill	single matrix Produces a list that is treated as a block diagonal matrix with ith block

22

sum.pmat	Sum over structure
sum.pmat.block	Sum over structure
solve.pmat	Inverse the structure
solve.pmat.block	Inverse the structure
<pre>solve.pmat.block.default</pre>	Inverse the structure
<pre>solve.pmat.block.diag</pre>	Inverse the structure
t.pmat	Transpose the structure
t.pmat.block	Transpose the structure
det	Calculate determinant of structure
det.default	Calculate determinant of structure
det.pmat	Calculate determinant of structure
det.pmat.block	Calculate determinant of structure
det.pmat.block.default	Calculate determinant of structure
det.pmat.block.diag	Calculate determinant of structure
cdim	Assignment of attribute to object in support of pmat2mat
rdim	Assignment of attribute to object in support of pmat2mat
msplit	Convert a matrix to a partitioned matrix
dist2full	Matrix manipulation for lower triangle
full2tri $\&$ tri2full	Matrix manipulation for lower triangle
split.preserveord	Create pointer for partitioning
load.clustered.design	Partition the design matrix
load.clustered.outcome	Partition the response variable
load.bd.weight	Partition the weight vector
vsplit	General function for matrix partition
transfer.matfun	Support load.clustered.design and
	load.clustered.outcome for matrix partition
cdgam.data	Data set for Section 9
indon	Actual dataset for Section 10
ngau.m211	Evaluates 2 times the Gaussian log likelihood of
	the residuals
gau.hetex.alp	Script assignment for alp optional argument in
	cdgam to model Gaussian estimation for correlation
	parameters
nexinv	Analytic form of inverse of compound symmetry matrix
make.exch.cor.genarg	Script to support calculation of inverse working
	correlation matrix for Gaussian estimation for
	correlation parameters
exch.cor	Function in conjunction with make.exch.cor.genarg
exch.gaussian.loglik	Function in conjunction with make.exch.cor.genarg

Affiliation:

Lin Yee Hin Private Medical Practitioner Hong Kong E-mail: lyhin@netvigator.com

Vincent Carey Associate Professor of Medicine (Biostatistics) Harvard Medical School Channing Laboratory 181 Longwood Ave Boston MA 02115 USA E-mail: stvjc@channing.harvard.edu

Journal of Statistical Software August 2005, Volume 14, Issue 8. http://www.jstatsoft.org/ Submitted: 2005-01-27 Accepted: 2005-08-31