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Abstract

We present a set of functions in S-PLUS to implement the clustered data generalized
additive marginal modelling (CDGAM) strategy proposed by Berhane and Tibshirani
(1998). A variety of working correlation structures are supported, and the regression
basis may include components from the family of smoothing splines.
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1. Introduction – Notations and theoretical background

The CDGAM algorithm for the semi-parametric setting presented in this paper implements
fitting methods for a class of generalized additive models for clustered data with observations
(yit,xit). Here t = 1, · · ·,mi indexes observation times within the ith cluster, i = 1, · · ·, n; yit

is the response with expected value µit and xit is a (p+ q)× 1 vector of covariates. There are
p parameters to be estimated under a standard generalized linear modeling framework, and
q smooth functional parameters to be estimated non-parametrically. The marginal mean of
the response is related to the parameters and covariates by

g(µit) = ηit = β0 + β1Xit1 + · · ·+ βpXitp + f1(Xit(p+1)) + · · ·+ fq(Xit(p+q)) (1)

The marginal variance of the response,VAR(yit), depends functionally on the marginal mean
through the function v(µ)it. Hence

ηit = ηtotal,it = ηparametric,it + ηnonparametric,it (2)

We refer to the 1 to (p+ 1) components of (1) as the parametric component and components
(p+ 2) to (p+ q) as the nonparametric component of the model.
Estimation proceeds by forming the adjusted dependent variable McCullagh and Nelder (1989)

z = η + D−1(y − µ) (3)
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where D = D1 ⊕ D2 ⊕ · · · ⊕ Dn and using iterative reweighted least squares with weights
W = W1⊕W2⊕· · ·⊕Wn and Wi = DiV−1

i Di. Di is ami×mi diagonal matrix with diagonal
elements being ∂µit/∂ηit. Vi is defined as Vi = (A1/2

i Ri(α)A1/2
i )/φ, with Ai being the

mi×mi diagonal matrix vit as the diagonal elements. The correlation structure for each cluster
is denoted by Ri(α), which is an mi×mi square matrix for cluster i, as described by Berhane
and Tibshirani (1998), and that R(α) = R1(α)⊕R2(α)⊕ · · · ⊕Rn(α). Estimation of φ, the
dispersion parameter, and Ri(α) are performed as described in Section 3.3 of Liang and Zeger
(1986), while the only difference being that the total degrees of freedom (dftotal) taken into
consideration is represented here as the sum of total degrees of freedom due to the parametric
terms (dfparametric) and the total effective degrees of freedom due to the nonparametric terms
(dfnonparametric) expressed as below

dftotal = dfparametric + dfnonparametric (4)

where
dfparametric = p+ 1 (5)

accounting for the intercept term, and

dfnonparametric = df(f1) + · · ·+ df(fq) (6)

Effective degrees of freedom for each nonparametric term is estimated using the approach
described by Berhane and Tibshirani (1998), where

df(fj) = 2trSj − tr(ST
j WSjW−1) (7)

for the jth predictor, for j = 1, · · · , q, where Sj is the smoother matrix and W the weight
matrix at convergence.

The procedure for updating Sj and W is described by Green and Silverman (1994), where
the presence of ties and unsorted nature among the data points in the covariate is tackled by
making use of the notion of

∑
mi × q incidence matrix, N, with

∑
mi being the total number

of data points in the covariate undergoing smoothing, q the number of unique values of the
covariate. The smoother matrix, Sj , for the jth covariate is hence defined as

Sj = Nj(NT
j WNj + λjKj)−1NT

j W (8)

where Nj refers to the incidence matrix, λj refer to the smoothing parameter, and Kj the
basis matrix for the jth predictor. Calculation of λj by cross-validation is described by Hastie
and Tibshirani (1990), while details on the construction of Kj is found in Green and Silverman
(1994).

The local scoring algorithm for maximizing the penalized quasi-likelihood follows in vein with
that described in Berhane and Tibshirani (1998), and Green and Silverman (1994). Methods
on covariance estimation for nonparametric terms are detailed in Berhane and Tibshirani
(1998) where the empirical covariance for the jth covariate is approximated as

COVemp(fj) = SjW−1UUTW−1ST
j (9)

where U = DV−1(y−µ), together with Sj and W evaluated at convergence. The calculation
of empirical chi-squared statistics is also described in Berhane and Tibshirani (1998).
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2. Implementation of CDGAM

The code discussed in this paper has been developed under S-PLUS 2000 Professional Release 1
for Windows.

In addition to some auxiliary scripts, the library contains the following main functions:
cdgam function to fit the CDGAM
cdgam.par script called from cdgam to fit the parametric part

of the model
cdgam.nonpar script called from cdgam to fit the nonparametric part

of the model
summary.cdgam function to display the summary results of model fitting

performed by cdgam
plot.cdgam function to plot the estimated functional form against

the respective covariates

2.1. General schematics

The present cdgam implementation involves three major steps:

1. estimation of starting values for iterations in cdgam by fitting a generalized additive
model under independent correlation structure as described by Hastie and Tibshirani
(1990),

2. estimation of the correlation matrix for each cluster and fitting the parametric portion
of cdgam using the framework of GEE,

3. estimation of the non-parametric portion of the cdgam.

In Step 1, a generalized additive model is being fitted under the independence (R(α)) frame-
work, but not using the GEE sandwich method, in order to obtain fitted values for the
parametric and nonparametric covariates to be used in Step 2. The script in S for performing
Step 1 is gam(), an algorithm in S-PLUS that fits the generalized additive model when the
data points are not correlated. See Chambers and Hastie (1993) for operation details.

Calculations for Step 2 and Step 3 are coordinated by a script called cdgam(). Step 2 is
executed by cdgam.par(). Step 3 is executed by cdgam.nonpar(). cdgam() separates the
covariates into two groups. Covariates requiring parametric estimation are passed, within
cdgam(), to cdgam.par() where conventional GEE fitting is performed until local conver-
gence is reached. Then, the results from cdgam.par() is passed into cdgam.nonpar() to
perform the nonparametric estimation until local convergence criteria is reached. Finally,
global convergence of the parametric and nonparametric covariates is checked.

The presence of local and global covergence arise from the nature of the iteration architecture.
The outer loop is a local scoring procedure. In the inner loop, the Fisher scoring iteration is
performed in cdgam.par() while the Gauss-Seidel iteration is performed in cdgam.nonpar().
Local convergence criteria refers to the convergence criteria used within either cdgam.par() or
cdgam.nonpar(), while global convergence criteria refers to the criteria used within cdgam().

Local convergence within cdgam.par() is checked by measuring the values of absolute dif-
ference between each of the estimated coefficients from the present Fisher scoring interation
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(βnew) and the immediately preceeding iteration (βold), defined as ∆(βnew, βold). Parametric
local convergence is considered reached when all values are smaller than a predetermined
value, called the local tolerance. In cdgam.par(), the local tolerance is set at 5× 10−4, and
it can be adjusted by the user within cdgam.par(). Hence the parametric local convergence
for cdgam.par() is expressed as

∆(βnew, βold) = max(‖βnew − βold‖) (10)

Local convergence within cdgam.nonpar() is checked by measuring the fraction of absolute
change in the values of the estimated nonparametric functions between those estimated from
one Gauss-Seidel iteration (fnew) and the immediately preceeding iteration (fold), defined
as ∆(fnew, fold). Nonparametric local convergence is considered reached when all values are
smaller than a predetermined value, called the local tolerance. In cdgam.nonpar(), the local
tolerance is set at 0.02, and it can be adjusted by the user within this script. Hence the
nonparametric local convergence is:

∆(fnew, fold) = max

{
(‖fnew − fold‖

‖fold‖

}
(11)

where, in the spirit of Equation (1), we can define fnew = f1,new + · · · + fq,new and fold =
f1,old + · · ·+ fq,old respectively.

Global covergence within cdgam() is checked by measuring the fraction of absolute change
in the values of the estimated nonparametric functions between those estimated from one
local-scoring iteration (Fnew) and the immediately preceeding local-scoring iteration (Fold),
defined as ∆(Fnew,Fold). Nonparametric global convergence is considered reached when all
values are smaller than a predetermined value, called the global tolerance. Similar to the
nonparametric local convergence criteria, the global tolerance in cdgam() is set at 5 × 10−5,
and it can be adjusted by the user within cdgam(). It follows that

∆(Fnew,Fold) = max

{
(‖Fnew − Fold‖

‖Fold‖

}
(12)

where, we define Fnew = F1,new + · · ·+ Fq,new and Fold = F1,old + · · ·+ Fq,old respectively.

The cdgam() script makes use of the results of calculation performed by gam(· · ·,x=T) in order
to retrieve three entities: (1) data matrix for the nonparametric terms, (2) effective degree of
freedom for each nonparametric term, and (3) estimated values for the nonparametric terms.

The data matrix for the nonparametric terms is used for calculation of the incidence matrices
for the jth nonparametric term, Nj . This, together with the estimation of smoothing pa-
rameter λj and basis matrix Kj , are used to construct the smoother matrix Sj for the jth
nonparametric covariate later on. For fast calculation, the calculation of λj is made based-
on the S-PLUS built-in function called smooth.spline(). For a domain of unique x values
x1, x2, · · · , xt on some interval [x1, xt], satisfying x1 < x2 < · · · < xt over which smoothing is
carried out, where x1 < x2 < · · · < xt, the spar value of the object fitted by smooth.spline()
returns a value, denoted as ξ, that is connected to λj as below:

λj = ξ(xt − x1)3 (13)
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The effective degrees of freedom and the estimated values for the nonparametric terms are
then passed, within cdgam(), into cdgam.par() where the correlation structure R(α),and the
dispersion scale parameter φ are estimated. Then, using these two entities, the Fisher scoring
iterations for estimating the parametric covariates is performed. At local convergence, tests
for significance as described in Liang and Zeger (1986) is carried out.
The results of estimated values for the parametric covariates, R(α), and φ at convergence in
cdgam.par() are then used by cdgam.nonpar() to perform Gauss-Seidel iterations in order
to fit the nonparametric terms. At local convergence, the chi-squared test of significance as
described in Berhane and Tibshirani (1998) is carried out. Then, the updated effective degree
of freedom and estimated values for the nonparametric terms are passed into cdgam.par()
again for the second local scoring iteration until global convergence is reached.

2.2. Handling of intracluster correlation structure

The calculation of within cluster correlation matrices Ri(α) is performed in the script called
cdgam.par() where the Pearson’s residual calculated using the most update ηparametric,it,
ηnonparametric,it, dfparametric and dfnonparametric for each cluster. The options of correlation
structures currently supported are:

1. exchangeable correlation, otherwise known as uniform correlation model, where there
is a positive correlation coefficient, α, between any two measurements within the same
cluster and that α is the same across all clusters;

2. stratified exchangeable correlation, where there is a positive correlation coefficient, αi,
between any two measurements within the same cluster, and variation of αi across
clusters is allowed;

3. first order autoregressive model for evenly spaced time scale; and

4. first order autoregressive model for unevenly spaced time scale. The methods applied
in this algorithm follows directly from that described in Liang and Zeger (1986).

Since R(α) = R1(α) ⊕ R2(α) ⊕ · · · ⊕ Rn(α) is a blocked-diagonal matrix, calculation of
R−1(α) required in the calculation of weights W makes use of the identity R−1(α) =
R−1

1 (α) ⊕ R−1
2 (α) ⊕ · · · ⊕ R−1

n (α) in order to save computing memory and time. There-
fore, two subroutines options need to be specified in cdgam(), where the one assigned to
the option called alpfun specifies one of the four options of correlation structures described
above, and one to the option called wcorigen calculates R−1

i (α) for clusters i = 1, · · · n.
In addition, there is an input option, called cor.met, in cdgam() that needs to be specified
for calculation of certain types of correlation structure specification. For uniform correlation
structure, it need not be specified. For stratified uniform correlation structure, the variable
assigned to cor.met is the pointer variable identifying the cluster origin of the data points. For
first order autoregressive model for evenly spaced time scale, assignment to cor.met constitutes
a matrix with two columns, the first is the pointer variable identifying the cluster origin of
the data points, while the second is the recording of the times at which the corresponding
data points were observed.
This arrangement leaves room for extensions by users where, by simply writing the scripts
for alpfun and wcorigen, one can deploy the present cdgam to cater for other types of
intracluster correlation structures.
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2.3. Choice of smoothing parameter

Leave-one-out generalized cross-validation is computationally intensive in the setting of gen-
eralized semiparametric modelling, requiring re-computation of the entire iterative fit for each
value of λ on a grid in order to carry out the necessary minimization over λ (Green and Silver-
man 1994), and its performance in practice is sometimes questionable (Hastie and Tibshirani
1990).
The use of empirical-bias bandwith selector (EBBS) (Ruppert 1997) is an alternative approach
when applied to clustered data using profile likelihood-kernel regression GEEs. However, Lin
and Carroll (2001b) and Lin and Carroll (2001a) noted that the profile likelihood-kernel
regression is not semiparametric efficient when correlation at the observation-level is taken
into account, and, in order to achieve consistency, arbitrary undersmoothing or assuming
correlation structure at observation-level to be independent becomes necessary.
In the light of this situation, the present approach is to obtain λ using smooth.spline(), a
smoothing function generic to S-PLUS, based on cross-validation as a starting point. Then,
by graphical inspection, and model refit by adjusting the value of λ, a reasonable degree
of smoothing is achieved (See demonstration in later section dealing with Infectious Disease
Data). Changing the value of λ in multiples of 10 in the initial phase of modelling process,
and reduce magnitude of change in λ later on for fine tuning once a reasonable fit is obtained
is a useful strategy to speed up the modelling process.

2.4. Choice of smoothing technique

Lin and Carroll (2001b) reported that conventional kernel method, when used in semi-
parametric form of PA-GEE, does not produce n1/2 consistent estiamtes of coefficients for the
parametric covariates. Subsequent work reported in Lin, Wang, Welsh, and Carroll (2004)
justified the use of smoothing splines for clustered data in this setting because splines are
non-local, and are able to account for intra-cluster correlation, as opposed to conventional
kernel methods. Therefore, we have chosen to employ smoothing splines for nonparametric
covariates handling as described in Berhane and Tibshirani (1998).

2.5. Choice of platform

The initial conception of this project evolves from codes written in S-PLUS. In S-PLUS, the
calculation of Equation (3) involves extending the existing canonical link for the exponen-
tial family to provide ∂µ/∂η. For convenience, we modified glm.links in the S-PLUS into
yags.links used in cdgam. However, there is no exact equivalence of glm.links in the R
environment. Hence, a major portion of the program needs to be re-written to enable migra-
tion from S-PLUS to R, which is currently under way. Once the R version of cdgam becomes
available, it will be submitted to CRAN for public access.

2.6. Limitations

1. For the case of
ηit = β0 + f1(Xit(p+1)) + · · ·+ fp(Xit(p+q)) (14)

the formula in cdgam() is set to be formula = y ~ 1, where β0 is taken as the centering
value for the model fit.
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However, cdgam() does not cater for

ηit = β0 + β1Xit(p+1) + · · ·+ βqXit(p+q) (15)

because it reduces to the special case described by Liang and Zeger (1986), and there
are already available libraries such as gee and (yags) that can handle this situation.

2. Due to the transparent nature of the present implementation of cdgam, all codes are
written in S, and admittedly, the computation is slow compared to compiled languages
such as C and FORTRAN. This is made worse by the heavy demand of inverting large
matrices. We trade speed for ease of maintainance, and leaves room for further refine-
ment. It will also allow users to modify the codes according to their specific needs,
including writing scripts to handle correlation structures not included here, and adjust-
ing presentation of the output.

3. Example with simulated data

In this section, we illustrate the use of our routines on a simulated example (similar to the
simulation example in Section 4.3 of Berhane and Tibshirani (1998).

We consider three predictors given by

f1(x1) = x1.5
1 , f2(x2) = cos

(
2.5πx2

1 + 3x2
2

)
, f3(x3) = x3. (16)

for a model given by
logit(yij) = f1(x1) + f2(x2) + f3(x3) (17)

where x1,x2, and x3 are generated from U(0,1) in the framework of Lee (1993), following a
similar strategy described by Berhane and Tibshirani (1998). In that setting, the intra-cluster
correlation is expressed in terms of ψ with (0 < ψ < 1), where a low value of ψ signifies a
high correlation, and vice versa. We generated 150 clusters, with each cluster containing 3
observations, with a high exchangeable intra-cluster correlation (ψ = 0.3). We have enclosed
the dataset, denoted as cdgam.data. The dataset contains the followings variables:
individual Cluster pointer where observations of the same cluster

share the same number.
x1 Random number used to generate f(x1).
fx1 Values for x1.5

1 as defined above
x2 Random number used to generate f(x2)
fx2 Values for cos((2.5πx2)/(1 + 3x2

2)) as defined above.
x3 Random number used to generate f(x3).
fx3 Values for x3 as defined above.
y Binary variables generated as the response variable

We first fit the generalized additive model under independent correlation structure as de-
scribed by Hastie and Tibshirani (1990).

> step1 <- gam(y ~ s(x1) + s(x2) + x3, family = binomial, x = T,

+ data = cdgam.data)
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Then, we fit the model under exchangeable correlation structure with logistic link. Note that
in step1, we need to specify the entire formula, as opposed to specifying only the parametric
covariates in step2.

> step2 <- cdgam(formula = y ~ x3, id = individual, family = binomial,

+ corstr = "exchangeable", gamob = step1, data = cdgam.data)

The summary of the model fit result can be obtained by the following:

> summary(step2)

$call:
cdgam(formula = y ~ x3, id = individual, family = binomial,
corstr = "exchangeable", gamob = step1, data = cdgam.data)

$parametric.coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.142578 0.3946116 -0.3613122 0.3439056 -0.4145846
x3 3.746447 0.7466218 5.0178646 0.6338137 5.9109591

$coef.smooth:
Df exact Df approx empirical Chisq P(Chi)

s(x1) 59.84610 63.38170 47.58698 0.85314782
s(x2) 65.55037 69.21069 86.35508 0.03634361

$scale:
[1] 1.390494

$alpha:
[1] 0.4480969

attr(, "class"):
[1] "summary.cdgam"

The following produces a plot of the estimated values of f2(x2) against x2 and adds the line
representing plot of the actual values f2(x2) against x2 (See Figure 1):

> plot(step2, ci = T, resid = T, j = 2)

> attach(cdgam.data)

> lines(smooth.spline(x2, fx2), lty = 4, lwd = 4)

4. Example using infectious disease data

We apply the model to analysing the longitudinal infectious disease data involving 275
preschool-age children who were re-examined in 3 monthly intervals for 18 months, ascer-
taining the presence of respiratory infection (yes=1, no=0). This dataset was described by
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Figure 1: The plot of f̂2(x2) against x2 where f̂ is the estimation of f2(x2) where f2(x2) =
cos(2.5πx2)/(1+3x2

2) with the dots representing the residuals, the solid dashed line represents
f2(x2), the fine continuous line represents f̂2(x2), and the two fine dotted lines bounding f2(x2)
and f̂2(x2) on either side represent the 95interval.

Zeger and Karim (1991) and has been used in Lin and Carroll (2001b) and Lin and Carroll
(2001a) to perform generalized additive marginal modelling analyses. We have enclosed this
dataset, and called it indon. The description of each variable is as follows:

id Cluster identifier, where observations from the
same cluster share a common number.

res.infect Binary variable with presence of respiratory
infecton=1, otherwise=0.

xeroph Presence of Vitamin A deficiency = 1,
otherwise = 0.

cos.visit Seasonal cosine.
sin.visit Seasonal sine.

sex Gender of the subject.
height Height for age.
stunt Presence of stunting.
visit The number of visit when the observation was made.
season 1=Spring, 2=Summer, 3=Autumn, 4=Winter.

age Age in years at the time of observation.
baseline.age Age in years at the time of recruitment into study.

4.1. Initial phase of data modelling using GAM

Select part of the data for calculation:

> indon.sub <- indon[c(1:300),]
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> length(unique(indon.sub[,1]))

[1] 71

There are 71 clusters in this subset.

Formulate the first step of modelling process using gam:

> step1 <- gam(formula = res.infect ~ s(age) + xeroph + cos.visit +

+ sin.visit + sex + height + stunt, family = binomial, x = T, data = indon.sub)

> summary(step1)

Call: gam(formula = res.infect ~ s(age) + xeroph + cos.visit +
sin.visit + sex + height + stunt, family = binomial, data = indon.sub, x = T)
Deviance Residuals:

Min 1Q Median 3Q Max
-0.9851055 -0.6414985 -0.4321241 -0.2996751 2.709284

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 253.6255 on 299 degrees of freedom

Residual Deviance: 228.4742 on 289.1412 degrees of freedom

Number of Local Scoring Iterations: 4

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1

s(age) 1 2.9 8.242089 0.03678064
xeroph 1

cos.visit 1
sin.visit 1

sex 1
height 1
stunt 1

Since the approximate nonparametric degree of freedoms for s(age) is 2.9, the step1 is re-
fitted with s(age, df=3) so that it provides a better set of starting values of age for cdgam()
formulation. step1 provides the starting values for model fitting in subsequent sections:

> step1 <- gam(formula = res.infect ~ s(age,df=3) + xeroph + cos.visit +

+ sin.visit + sex + height + stunt, family = binomial, x = T,data = indon.sub)

The degree of freedom for a nonparametric covariate is related to the smoothing parameter
λ used in smooth.spline() called from gam(). When the nonparametric covariate is speci-
fied as s(age), the smooth.spline() algorithm optimize the value of λ used in smoothing,



Journal of Statistical Software 11

and it is reflected as the nonparametric degree of freedom. Hence, refitting the model by
specifying the nonparametric covariate as above using the specification s(age, df=3), the
degree of smoothing is controlled so that the value of λ used in gam() is that optimized
by smooth.spline(). We should refrain from using the nonparametric degree of freedom
produced with s(age, df=3) to refit using gam() because the aim is to obtain the optimal
smoothing for the nonparametric covariate age, as opposed to obtain the optimal smoothing
for the smoothed for of the nonparametric covariate with 3 degrees of freedom s(age, df=3).

4.2. Modelling under exchangeable correlation structure

We first fit the model assuming exchangeable correlation structure:

> step2.ex.1 <- cdgam(formula = res.infect~xeroph + cos.visit + sin.visit +

+ sex + height + stunt, id = id, family = binomial, corstr = "exchangeable",

+ gamob = step1, data = indon.sub)

> summary(step2.ex.1)

$call:
cdgam(formula = res.infect ~ xeroph + cos.visit + sin.visit + sex + height +
stunt, id = id, family = binomial, corstr = "exchangeable", gamob = step1,
data = indon.sub)

$parametric.coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -2.59349718 0.3184684 -8.14365674 0.26718656 -9.70669032
xeroph 0.28062820 1.2883989 0.21781158 0.80096584 0.35036225

cos.visit -0.48070271 0.3361932 -1.42984087 0.28653001 -1.67766966
sin.visit -0.23239116 0.3201893 -0.72579301 0.22724533 -1.02264439

sex -0.01935372 0.3939345 -0.04912928 0.31438041 -0.06156147
height -0.05338726 0.0532786 -1.00203941 0.04880356 -1.09392144
stunt -0.18177428 0.8179407 -0.22223407 0.67382854 -0.26976340

$coef.smooth:
Df exact Df approx empirical Chisq P(Chi)

s(age, df = 3) 57.34003 62.75955 20.52969 0.9999969

$scale:
[1] 1.473711

$alpha:
[1] -0.03638948

attr(, "class"):
[1] "summary.cdgam"

Plotting the fitted function of age against age shows that the risk of respiratory infection is
seen to increase until the age of 2, and then decrease after that. (See Figure 2)
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> plot(step2.ex.1, ci = T, resid = T)
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Figure 2: The plot of f̂age against age where the dots represent residuals from the indon data
subset estimated assuming exchangeable intracluster correlation structure, the fine continuous
line represents estimated contribution to the risk of respiratory infection over age, and the
two dotted fine lines its 95% confidence interval bound.

4.3. Modelling under AR(1) correlation structure

Fitting the model assuming an AR(1) correlation structure as it involves time factor, and
specifying the parameter visit as the correlation metameter:

> step2.ar1.1 <- cdgam(formula = res.infect~xeroph + cos.visit + sin.visit +

+ sex + height + stunt, id = id, cor.met = visit, family = binomial,

+ corstr = "ar1", gamob = step1, data = indon.sub)

> summary(step2.ar1.1)

$call:
cdgam(formula = res.infect ~ xeroph + cos.visit + sin.visit + sex + height +
stunt, id = id, cor.met = visit, family = binomial, corstr = "ar1",
gamob = step1, data = indon.sub)

$parametric.coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -2.47755331 0.30066914 -8.2401316 0.27204927 -9.1070022
xeroph 0.19130901 1.20910944 0.1582231 0.73388062 0.2606814

cos.visit -0.46533788 0.30787297 -1.5114606 0.28895306 -1.6104273
sin.visit -0.19771496 0.29324839 -0.6742235 0.22741069 -0.8694181
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sex -0.09426448 0.37910997 -0.2486468 0.31784530 -0.2965735
height -0.05628223 0.05030511 -1.1188174 0.04832306 -1.1647075
stunt -0.19887753 0.77582578 -0.2563430 0.66140927 -0.3006875

$coef.smooth:
Df exact Df approx empirical Chisq P(Chi)

s(age, df = 3) 55.90675 60.93737 15.06681 1

$scale:
[1] 1.267612

$alpha:
[1] -0.05534506

attr(, "class"):
[1] "summary.cdgam"

Plotting the fitted function of age against age shows there is over fitting due to a small value
of λ, retrievable from step2.ar1.1. (See Figure 3)

> plot(step2.ar1.1, ci = T, resid = T)
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Figure 3: The plot of f̂age against age where the dots represent residuals from the indon data
subset estimated assuming AR(1) intracluster correlation structure with λ = 4.478831×10−6,
the fine continuous line represents estimated contribution to the risk of respiratory infection
over age, and the two dotted fine lines its 95% confidence interval bound.

Therefore, a new value for λ is specified, arbitrarily set as 10 times that in step2.ar1.1 and
a new model is fitted. (See Section 5 for the rationale of such choice of factor of expansion
for λ)
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> step2.ar1.1$lambda

[[1]]:
[1] 4.478831e-006

> lambda.new <- 10*unlist(step2.ar1.1$lambda)

> step2.ar1.2 <- cdgam(formula = res.infect~xeroph + cos.visit + sin.visit +

+ sex + height + stunt, id = id, lambda=lambda.new, cor.met = visit,

+ family =binomial, corstr = "ar1", gamob = step1, data = indon.sub)

The summary results of model fit with the new smoothing parameter λ’ is as follows:

> summary(step2.ar1.2)

$call:
cdgam(formula = res.infect ~ xeroph + cos.visit + sin.visit + sex + height +
stunt, id = id, lambda = lambda.new, cor.met = visit, family = binomial,
corstr = "ar1", gamob = step1, data = indon.sub)

$parametric.coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -2.67058236 0.2950029 -9.0527314 0.2711807 -9.8479804
xeroph 0.23805501 1.2055512 0.1974657 0.7619607 0.3124243

cos.visit -0.46098502 0.3018453 -1.5272228 0.2858164 -1.6128711
sin.visit -0.19783700 0.2882948 -0.6862315 0.2278433 -0.8683028

sex -0.07251887 0.3741501 -0.1938229 0.3198790 -0.2267072
height -0.05315972 0.0495429 -1.0730039 0.0470079 -1.1308678
stunt -0.32053131 0.7654951 -0.4187242 0.6768653 -0.4735526

$coef.smooth:
Df exact Df approx empirical Chisq P(Chi)

s(age, df = 3) 40.20359 41.77025 54.38034 0.05418916

$scale:
[1] 1.242216

$alpha:
[1] -0.04773346

attr(, "class"):
[1] "summary.cdgam"

Plotting the fitted function of age against age shows a reasonable degree of roughness penalty.
(See Figure 4)

> plot(step2.ar1.2, ci = T, resid = T)
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Figure 4: The plot of f̂age against age where the dots represent residuals from the indon
data subset estimated assuming AR(1) intracluster correlation structure with λ′ = 10× λ =
4.478831 × 10−5, the fine continuous line represents estimated contribution to the risk of
respiratory infection over age, and the two dotted fine lines its 95% confidence interval bound.
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Figure 5: The plot of f̂age against age where the dots represent residuals from the indon
data subset estimated assuming AR(1) intracluster correlation structure with λ′ = 10× λ =
4.478831 × 10−5, the fine continuous line represents estimated contribution to the risk of
respiratory infection over age, and the two dotted fine lines its 95% confidence interval bound.
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Plotting the fitted function of age against age without standard error bands and residuals
allows a closer inspection of the trend of respiratory infection risk against age. (See Figure 5)
The risk of respiratory infection is noted to increase since birth to 2 years old, and then
decreases thereafter. Similar observation is reported in Figures 3 and 4 of Lin and Carroll
(2001b).

> plot(step2.ar1.2)

Due to the slow convergence rate, modelling for step2.ex.1, step2.ar1.1, and step2.ar1.2,
require up to 6 back-fitting loops, and up to 200 Gauss-Seidel interations within each loop.
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A. Instructions for using cdgam()

The code is available as an archived directory containing the files listed below. Copy the
entire directory called cdgam to the library folder in S-PLUS. The code comes in two versions,
one designed to run under S-PLUS 2000 Professional Edition for Windows, while the other
under S-PLUS 5.1 on UNIX.
Listed below is the detailed alternative for each input and a description of the output. This
is available as a help file for the library.

Usage

cdgam(formula, id, lambda = NULL, weights = NULL, cor.met = NULL,
family = gaussian, alpfun = NULL, scalefun = BT.scalefun,
wcorigen = identni, tol = 0.001, contrasts = NULL,
corstr = c("independence", "exchangeable", "ar1", "unstructured"),
maxiter = 25, verbose = F, gamob, data)

Required arguments

formula Follows the Response∼covariates convention, but the covari-
ates should include only the paramtetric terms only.

id A vector of numbers serving as cluster pointer, where data-
points from the same cluster share the same number.

corstr Specified correlation structure, taking either independence,
exchangeable, AR(1) or unstructured. If it is not supplied,
then, a combination of cor.met, alpfun and wcorigen need
to be specified depending on the correlation structure.

gamob The object of the S-plus generic function gam(), the formula
of which contain all parametric and nonparametric terms,
and the option for design matrix return is turned on.

data data frame.

Optional arguments

lambda The smoothing parameter referred to as λ in the cubic spline
smoothing that minimizes (y−g)T (y−g)+λgKg. New values
of λ, in numeric or vector form, can be supplied to alter the
degree of smoothing.

weights Optional input allowing pre-specified weights
cor.met The corelation metameter used for correlation calculation.
family The family of the link function, covering the entire exponen-

tial family as supported by S-PLUS.
alpfun This supplies the estimator function of correlation matrix

R(α) for each cluster.
scalefun The default scale function is BT.scalefun.
wcorigen No need to specify wcorigen if corstr is specified. However,

if corstr is not specified, but alpfun is specified instead,
then, wcorigen need to be specified.
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tol The tolerance limit defining convergence of the local scoring
procedure.

contrasts Optional entry for constrast can be supplied here.
maxiter The maximum local scoring iterations allowed by default is

25.
verbose logical.

Details

Corresponding cor.met for each correlation structure is as below:

Correlation structure cor.met
exchangeable need not specify
stratified exchangeable a vector of numbers serving as

cluster pointer, identical to the
entry for input id.

AR(1)-evenly spaced time scale a vector the times at which the
corresponding data points were
recorded.

AR(1)-unevenly spaced time scale a matrix with two columns; the
first being the cluster pointer,
the second the times at which the
corresponding data points were
recorded.

unstructured a vector providing the means
for selecting appropriate
elements for incomplete clusters
from the time-saturated
correlation matrix.

Corresponding alpfun for each correlation structure is as below:

Correlation structure alpfun
exchangeable BT.exchalp
stratified exchangeable BT.strat.exchalp
AR(1)- evenly spaced time scale BT.prop.ar1alp
AR(1)- unevenly spaced time scale LZ.ar1alp
unstructured BT.prop.unstruc.alp
independence (no need to specify)

Corresponding wcorigen for each alpfun is as below:

alpfun wcorigen
BT.exchalp excoriput or excori
BT.strat.exchalp strat.excoriput
BT.prop.ar1alp ar1.coriput
LZ.ar1alp LZ.ar1.coriput
BT.prop.unstruc.alp unstr.coriput
independence (no alpfun needed) identni
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Output

The output is a list containing the following elements:

para output from cdgam.par()
pertaining to the parametric portion of the
modelling process

nonparametric output from cdgam.nonpar()
pertaining to the nonparametric portion of
the modelling process

lambdaK the product of the smoothing parameter
and the cubic spline basis matrices (Green &
Silverman pp 13)

lambda the value(s) of the smoothing parameter
used in smoothing

x.smooth the covariates requiring smoothing. When
more than one, it is ordered by column from
left to right as appeared in the formula
supplied in gam(..., x = T).

incidence.matrix the list of incidence matrices used by
each nonparametric term that allow for ties
(Green & Silverman pp 65)

final.eta the smoothed values of the nonparametric
terms. When more than one, it is ordered by
column from left to right as appears in the
formula supplied in gam(..., x = T).

call the call that produce the results

The para portion of the output contain the followings:

coefficients Values of the coefficients for the
parametric terms at local convergence

naive.parmvar the product of the scale parameter and
the variance matrix

robust.parmvar the sandwich estimate of variance
alpha correlation parameter(s)
phi scale parameter
linear.predictors eta values for the parametric portion
fitted.values mu values for the parametric portion,

i.e., g(µ) = η.
pearson.resid Pearson’s residuals
iter number of Fisher’s scoring loop for the

last local scoring iteration at convergence.
family the family of the link function
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rank the number of parametric parameters in
the cdgam.par() fitting

errorcode the error messages generated during
calculation of cdgam.par()

Rinv.i the list containing inverse of the
working correlation matrix for each cluster
to be used in cdgam.nonpar()

MX the matrix containing all covariates
information, by column, as ordered in the
formula of gam(..., x = T).

b0 fitted values of beta, the coefficients
for the parametric terms

The nonparametric portion of the output contain the followings:

T.s.emp Empirical calculation of chi-squared
values for nonparametric terms (Berhane &
Tibshirani Section 4.2)

T.s.mb Model-based calculation of chi-squared
values for nonparametric terms (Berhane &
Tibshirani Section 4.2)

T.s.chisq p-value for chi-squared based on
approximate degrees of freedom (Berhane &
Tibshirani Section 4.2)

df.nl Degree of freedom according to Berhane &
Tibshirani Equation 8.

df.approx Degree of freedom approximated by
1.25trace(S)-0.5.

eta.nonpar Sum of eta values for smoothing term(s)
for each observation point.

se.emp Empirical calculation of standard error
(Berhane & Tibshirani Equation 26)

se.mb Model-based calculation of standard error
(Berhane & Tibshirani Equation 25)

smooth.terms Matrix containing individual eta for each
smoothed term, the addition of which by row-
wise produces eta.nonpar

smoother Smoother matrix for each smoothing term
at convergence

weight Weight matrices at convergence
A.nonpar Variance matrix (q × q)
V.nonpar sandwich estimate of variance

(non-parametric form of Berhane & Tibshirani
Equation 4)

V.inv inverse of V.nonpar
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B. Instructions for using plot.cdgam()

Usage

plot(x, ci.option = c("mb", "emp"), j = NULL, ci = F, resid = F)

Required arguments

x The fitted object from class cdgam

Optional arguments

ci.option The option of using model-based (ci.option = "mb") stan-
dard deviation for error-band plotting, or to use empirical
(ci.option = "emp") standard deviation. Default uses the
model-based version (ci.option = "mb").

j The option of selecting the nonparametric term to plot. De-
fault is plotting all nonparametric terms.

ci The option of plotting the pointwise 95% standard error
bands for the eta.value plotted. Default is not plotting
the standard error bands.

resid The option of plotting the fitted values for the eta.value
plotted. Default is not plotting the points.

Details

The specification of j follows the sequence of the formula in the cdgam call; eg., a model
fitting y ~ x1 + x2 + s(x3) + s(x4) corresponds to the following:
j = 1 x3 versus eta.value for x3
j = 2 x4 versus eta.value for x4

Output

A plot as specified by the options.
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C. Description of scripts contained in the cdgam library

Function name Description
cdgam Fits the cdgam algorithm
summary.cdgam Displays the summary results of the fitted

cdgam object called via summary method to
objects of the cdgam class

plot.cdgam Plots the nonparametric terms against their
corresponding covariates called via plot
method using objects of the cdgam class

cdgam.par Called internally by cdgam to fit the parametric
portion of cdgam, and handle the intracluster
correlation

cdgam.nonpar Called internally by cdgam to fit the
nonparametric portion of cdgam

BT.exchalp Estimation for exchangeable correlation
BT.strat.exchalp Estimation for exchangeable correlation, but different

cluster may have different correlation coefficients
BT.prop.ar1alp Estimation for auto-regressive process 1 with evenly

spaced measurement time interval
BT.prop.unstruc.alp Estimation of unstructured correlation
LZ.ar1alp Estimation of auto-regressive process 1 allowing for

unevenly spaced measurement time interval
identni Produce identity matrix, serve as input for wcorigen

under independence correlation structure
excori Calculates inverse working correlation matrix for

exchangeable correlation from each cluster
excoriput Performs identical function as excori with improved

efficiency
strat.excoriput Calculates inverse working correlation matrix for

exchangeable correlation from each cluster, allowing
for correlation coefficient to vary between clusters

ar1.coriput Calculates inverse working correlation matrix for AR(1)
correlation from each cluster, assuming equally spaced
observation

unstr.coriput Calculates inverse working correlation matrix for
unstructured correlation from each cluster

LZ.ar1.coriput Calculates inverse working correlation matrix for AR(1)
correlation from each cluster, allowing for unequally
spaced observations

yags.links Extension of glm.links
bspline.smoother Construct basis matrix K for smoothing.
pmat Sets up a classed list with appropriate class tag
pmat2mat Convert a series of partitioned matrices to a

single matrix
fill Produces a list that is treated as a block diagonal

matrix with ith block
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sum.pmat Sum over structure
sum.pmat.block Sum over structure
solve.pmat Inverse the structure
solve.pmat.block Inverse the structure
solve.pmat.block.default Inverse the structure
solve.pmat.block.diag Inverse the structure
t.pmat Transpose the structure
t.pmat.block Transpose the structure
det Calculate determinant of structure
det.default Calculate determinant of structure
det.pmat Calculate determinant of structure
det.pmat.block Calculate determinant of structure
det.pmat.block.default Calculate determinant of structure
det.pmat.block.diag Calculate determinant of structure
cdim Assignment of attribute to object in support of pmat2mat
rdim Assignment of attribute to object in support of pmat2mat
msplit Convert a matrix to a partitioned matrix
dist2full Matrix manipulation for lower triangle
full2tri & tri2full Matrix manipulation for lower triangle
split.preserveord Create pointer for partitioning
load.clustered.design Partition the design matrix
load.clustered.outcome Partition the response variable
load.bd.weight Partition the weight vector
vsplit General function for matrix partition
transfer.matfun Support load.clustered.design and

load.clustered.outcome for matrix partition
cdgam.data Data set for Section 9
indon Actual dataset for Section 10
ngau.m2ll Evaluates 2 times the Gaussian log likelihood of

the residuals
gau.hetex.alp Script asssignment for alp optional argument in

cdgam to model Gaussian estimation for correlation
parameters

nexinv Analytic form of inverse of compound symmetry matrix
make.exch.cor.genarg Script to support calculation of inverse working

correlation matrix for Gaussian estimation for
correlation parameters

exch.cor Function in conjunction with make.exch.cor.genarg
exch.gaussian.loglik Function in conjunction with make.exch.cor.genarg



24 An Algorithm for Clustered Data Generalized Additive Modelling with S-PLUS

Affiliation:

Lin Yee Hin
Private Medical Practitioner
Hong Kong
E-mail: lyhin@netvigator.com

Vincent Carey
Associate Professor of Medicine (Biostatistics)
Harvard Medical School
Channing Laboratory
181 Longwood Ave Boston MA
02115 USA
E-mail: stvjc@channing.harvard.edu

Journal of Statistical Software Submitted: 2005-01-27
August 2005, Volume 14, Issue 8. Accepted: 2005-08-31
http://www.jstatsoft.org/

mailto:lyhin@netvigator.com
mailto:stvjc@channing.harvard.edu
http://www.jstatsoft.org/

	Introduction -- Notations and theoretical background
	Implementation of CDGAM
	General schematics
	Handling of intracluster correlation structure
	Choice of smoothing parameter
	Choice of smoothing technique
	Choice of platform
	Limitations

	Example with simulated data
	Example using infectious disease data
	Initial phase of data modelling using GAM
	Modelling under exchangeable correlation structure
	Modelling under AR(1) correlation structure

	Instructions for using cdgam()
	Instructions for using plot.cdgam()
	Description of scripts contained in the cdgam library

