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Abstract

Based on mixture models, we present a Bayesian method (called BClass) to classify
biological entities (e.g. genes) when variables of quite heterogeneous nature are analyzed.
Various statistical distributions are used to model the continuous/categorical data com-
monly produced by genetic experiments and large-scale genomic projects. We calculate
the posterior probability of each entry to belong to each element (group) in the mix-
ture. In this way, an original set of heterogeneous variables is transformed into a set
of purely homogeneous characteristics represented by the probabilities of each entry to
belong to the groups. The number of groups in the analysis is controlled dynamically by
rendering the groups as ’alive’ and ’dormant’ depending upon the number of entities clas-
sified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms,
we constructed a sampler to approximate posterior moments and grouping probabilities.
Since this method does not require the definition of similarity measures, it is especially
suitable for data mining and knowledge discovery in biological databases. We applied
BClass to classify genes in RegulonDB, a database specialized in information about the
transcriptional regulation of gene expression in the bacterium Escherichia coli. The clas-
sification obtained is consistent with current knowledge and allowed prediction of missing
values for a number of genes.

BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping
probabilities are analyzed and interpreted using graphical (dynamically linked plots) and
query-based approaches. We discuss the advantages of using Lisp-Stat as a programming
language as well as the problems we faced when the data volume increased exponentially
due to the ever-growing number of genomic projects.

Keywords: genetic databases, bioinformatics, MCMC, mixture models, clustering, data min-
ing.

http://www.jstatsoft.org/


2 BClass: A Bayesian Approach Based on Mixture Models

1. Introduction

The exponential growth of raw biological information represents an unprecedented challenge
for biologists and bioinformaticians. Striking breakthroughs in biotechnology currently allow
sequencing an average bacterial genome (the total DNA within an organism) in a matter of
days. Since 1995 when the first complete sequence of a free-living bacterium Haemophilus
influenzae was obtained (Flaischmann and et al 1995) to November 2004, there are already
more than 200 complete genomes available, sampling the three domains of life, at The Na-
tional Center for Biotechnology information (NCBI, http://www.ncbi.nih.gov), and more
than 140 are still under way. Furthermore, high throughput experimental approaches have
been developed to measure simultaneously the expression of all genes within an organism,
both at the level of messenger RNA (Brown and Botstein 1999) and protein content (Ander-
son et al. 2000; Dutt and Lee 2000); such approaches have led to the emergence of the fields
of transcriptomics and proteomics respectively. Statistical interpretation of transcriptome
results is not a straightforward endeavor since different growth conditions, different RNA ex-
traction procedures and different microarray-building systems hamper comparisons between
experiments. Pitfalls, challenges and limits of these approaches have been adequately dis-
cussed elsewhere Danchin and Sekowska (2000). Experiments focused on individual biological
systems, which involve a few genes, continue to appear in the literature and a substantial
part of the resulting information is available in specialized databases. The inescapable con-
sequence is that the pace at which raw experimental data is generated has greatly exceeded
our ability to extract insightful knowledge from such information. For example, it is not
trivial to infer from sets of coexpressed genes under a given experimental condition, which
genes are corregulated, what are the regulatory proteins that regulate them, and even much
more complicated, what is the network of regulatory interactions that produces the observed
expression patterns. More robust methods and enhanced computational tools are required to
come to grips with this problem by integrated analyses of heterogeneous data types.

We focused on the problem of clustering and knowledge discovery in RegulonDB, a biological
database specialized in information about operon organization and transcriptional regulation
of gene expression in the bacterium Escherichia coli (Salgado et al. 2004). The specific goal
is to build a statistical framework that, hopefully, will allow uncovering previously unknown
relationships among genes, given the diverse attributes that describe them. In our strat-
egy we use a classical mixture model to tackle the problem of multivariate, heterogeneous
classification and clustering. We call the resulting software BClass. Let X = (xiv) be a
(non-relational) database where xiv represents attribute v of gene (entry) i; i = 1, 2, . . . , n
and v = 1, 2, . . . , C. Let also xi be the ith row of X; all the attributes for gene i. By
heterogeneous databases we mean that the xiv’s may be very different in nature: continuous,
discrete, categorical, etc. See Section 6 for an application example of BClass to RegulonDB.

A variety of clustering algorithms based on dissimilarity or distance measures are currently
available. Methods for clustering and classification of heterogeneous, mixed, variables in-
clude converting variables to homogeneous types, analyzing variables separately and finding
a weighted average of standardized dissimilarity measures (see, for example, Kaufman and
Rousseau 1990; Gordon 1981). Regarding this latter method, many authors have suggested
procedures to properly define the weights in a joint dissimilarity measure. However, as yet,
there is the caveat that no standard method has been widely accepted and much heuristics
is here needed (see Everitt 1993). As an alternative, mixture models have the advantage of

http://www.ncbi.nih.gov


Journal of Statistical Software 3

not relying either on distance measures nor on building (or attempting to build) a statistical
model of the data analyzed (see Everitt 1993; McLachlan and Basford 1988) The now well
known software AutoClass of Cheeseman and Stutz (1996) uses mixtures for clustering and
classification in complex databases; it is largely based on the techniques presented by Titter-
ington et al. (1985). AutoClass uses expected maximization (EM) approximations to find,
mainly, maximum a posteriori (MAP) estimators (point estimators). In this paper, we build
a mixture model for X using the assumption of conditional independence across elements in
the mixture and attributes; this assumption has been shown both empirically and theoreti-
cally to be highly effective (Hand and Keming 2001). We embarked on doing a full Bayesian
analysis using Markov Chain Monte Carlo (MCMC, see for example Gamerman 1997) meth-
ods to approximate complete posteriors, specifically, all grouping probabilities. This means
that, in particular, given the number of groups or components in the mixture (J), we obtain
a matrix P = (pij) where pij is the posterior probability for entry i to belong to group j,
j = 1, 2, . . . , J . The whole process may be regarded as a transformation of X to P , where now
the “attributes” of each entry are its grouping probabilities pij ’s. These new “attributes” are
perfectly homogeneous. We then may use, as posterior interpretation tools, simple clustering
techniques on P to find clusters. Therefore, both groups and posterior grouping probabilities
(pij) are well defined mathematical objects, and “Clusters” are rather intuitive, and more
interpretable, in terms of the database under consideration. Overall, we follow AutoClass
philosophy of “automatic” classification, that is, setting the least number of parameters and
relying on reasonable default values.

The problem of deciding the appropriate number of components in a mixture has been studied
by many authors. However, there are only a handful of full Bayesian approaches that state
a prior and calculate a posterior for the number of components J in the mixture. The
difficulty here is that, as J varies, the dimension of the model changes, and standard MCMC
approaches cannot handle chains of variable dimension. Philips and Smith (1996) propose
using “jump diffusions”, while Richardson and Green (1997) make an application in mixture
models of the now popular “Reversible Jump” MCMC, developed by Green (1995). Stephens
(1997) proposes yet another approach, based on point-process simulation, to deal with variable
number of components. These strategies approach the problem in a full Bayesian setting
being applications of general methods for variable dimension models and tend to become quite
elaborate. Here, we tailored a procedure that allows handling different number of components,
yet keeping J fixed. This is achieved using a vector of indicator (“dimensionality”) variables
that designate the “alive” and the “dormant” components. Using an alternative prior for
the mixing probabilities that prefers parsimonious parameterizations, we construct a Markov
Chain Monte Carlo (MCMC) relying on standard Gibbs sampling and Metropolis-Hastings
algorithms (see Besag et al. 1995). It is worth noting that our method is suited for any set of
component distributions, whereas the aforementioned approaches have been explored mainly
for Normal mixtures.

The paper is organized as follows. In Section 2 we explain our model and the general form
of the hierarchical structure. Specific priors for various distributions of gene attributes are
explained in Section 3 and in Section 4 we discuss the posterior analysis of the MCMC
output. In Section 5 we describe our general strategy to implement the system in Lisp-Stat.
In Section 6 we apply BClass to the analysis of RegulonDB (Salgado et al. 2004) and some
comparisons are made with the software AutoClass. Finally, a general discussion of the paper
is given in Section 7.
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2. The model

We use the standard mixture model with allocation variables as explained, for example, in
Richardson and Green (1997). However, we add a vector of indicator variables to control the
“alive”and the“dormant”groups in the mixture. That is, given a set of (unknown) parameters
h, the database X has distribution

f(X | h) =
J∑

j=1

φjπj∑J
m=1 φmπm

f(X | θj),

where πj ≥ 0,
∑J

j=1 πj = 1, are the mixing probabilities, f(X | θj) are the within-group
(component) distributions, and the indicator variables φj = 0, 1 are the “dimensionality vari-
ables”. Thus if φj = 0, then group j is dormant (not considered), and if φj = 1, group j is
alive. We consider the number of components J to be fixed to a suitable large number and
by integrating out the φj ’s we tackle the problem of “finding” the number of components in
the mixture (the components that remained “alive”). We then have that h = (π,φ,θ), where
π = (π1, π2, . . . , πJ), φ = (φ1, φ2, . . . , φJ) and θ = (θ1, θ2, . . . , θJ).

We assume that all the component distributions f(xi | θj) belong to the same parametric
family. We also assume conditional independence among components and attributes in the
following sense,

f(X | θj) =
n∏

i=1

f(xi | θj)

and

f(xi | θj) =
C∏

v=1

f(xiv | θjv),

where θjv are the parameters needed for component j and attribute v. The above assumptions
mean that we consider all attributes as conditionally independent within each group. This is a
fairly reasonable assumption since, once all other sorts of variability are discarded, the internal
group variability may be expected to behave as random, non-correlated, error. As supporting
evidence, the studies of Hand and Keming (2001) presented an empirical and theoretical
performance analysis of the assumption of conditional independence among attributes. They
conclude that, although at first glance naive and most likely incorrect,

The independence Bayes model seems often to perform surprisingly well.

(Hand and Keming 2001, p. 395). Part of the reason is that less parameters are needed
to be estimated, thus outperforming models that consider interaction parameters, specially
for several attributes. Furthermore, generally speaking, little is known about the databases
studied and thus simple models need to be used (this approach is also taken in AutoClass
and has given promising results, see Cheeseman and Stutz (1996). In order to consider non-
independent attributes in the database, we could use multivariate distributions with some
correlation structure. The generalization of the techniques developed here to use multivariate
attributes is relatively straightforward (see Fraley and Raftery 1998, as an example using
normal variables only). However, in this paper we take f(xiv | θjv) to be univariate, thus we
write xiv, a scalar. For clarification, say we have C = 3 attributes xi = (xi1, xi2, xi3) for each
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gene i, and that these are Normal, Multinomial with four levels and Poisson. In such a case
we would have f(xi | θj) = f(xi1 | µj , σj)f(xi2 | pj1, pj2, pj3, pj4)f(xi3 | λj) with the obvious
notation.

Certainly, in general, we do not know which group each gene belongs to. Thus, for gene i, the
group this gene belongs to is given by the latent allocation variable Ji = 1, 2, . . . , J . Given
these allocation variables, we have

f(xi | J ,π,θ) = f(xi | θJi)

where J is the vector of Ji’s. That is, given J , xi is drawn from its corresponding group Ji.

For a given J our parameters are (J ,π,φ,θ). We assume that f(J ,π,φ,θ) = f(J ,π,φ)f(θ)
and a priori,

P (Ji = j | π,φ) ∝ φjπj

with f(J | π,φ) =
∏n

i=1 f(Ji | π,φ), and we assume that P [φj = 1] = α independently (α
will be taken equal to 1

2 , non-informative). Therefore, to construct our prior we are using the
decomposition

f(J ,π,φ,θ) = f(J | π,φ)f(π)f(φ)f(θ).

We take f(θ) =
∏J

j=1

∏C
v=1 f(θjv) and the definition of f(θjv) is left for Section 3. Al-

ternatively, φ and π may be considered not independent a priori by, for example, taking
f(φ,π) = f(φ | π)f(π), and making φj to depend on πj , somehow. However, this will only
be relevant for the case when prior information is availbale to distinguish the πj ’s, which is
not the case for f(π). An influence diagram (see, for example, Richardson and Green 1997)
for our model is presented in Figure 1.

We leave the more mathematical aspects of defining f(π) and the design of the Markov Chain
Monte Carlo algorithm for the Appendix. We now turn to consider the distributions for the
attributes in the data base.

3. Distributions for different attributes

In this section we present distributions for specific types of variables that are commonly used
in biological databases. However, it should be clear from the type of hierarchical modeling
used that any other type of distribution may also be considered, provided a default (proper)
prior is stated and sampling from its unknown parameters is properly described. Proper priors
are needed since we could encounter empty groups and in such a case we would need to sample
from the prior itself, during the MCMC iterations. As far as the MCMC sampler is concerned,
no further adjustments are required and the sampling scheme for the rest of the parameters
remains the same. Moreover, the prediction section below regarding missing or unobserved
values, is completely general and not solely restricted to the distributions presented herein.

3.1. Normal heterocedastic

With respect to Normal variables we have θjv = (µj , λj) and xiv | Ji = j,µ,λ ∼ N(µj , λj)
where µj is the mean and λj the precision (inverse of the variance). Let also µ be the vector
of µj ’s and λ the vector of λj ’s. Richardson and Green (1997) take µj ∼ N(µ0, λ0) and
λj ∼ Ga(α, β) independently for all j and µ0, λ0 and α fixed to some data dependent values.
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Figure 1: Directed acyclic graph for our model.

They consider a further hierarchy in the parameters by letting β ∼ Ga(g, h) with g and h fixed
(Stephens 1997, also follows this approach), to construct a quasi-non-informative yet proper
prior. We follow the same approach here. We fix the following parameters to µ0 = a+b

2 ,
g = 0.2, α = 2 λ0 = 1

(b−a)2
and h = 100g

α(b−a)2
, where a = minxiv and b = max xiv. Richardson

and Green (1997) and Stephens (1997) point out that these values convey the belief that the
“λj ’s are similar, without being informative about their absolute size”. To update µj , λj and
β, we simulate from their full conditionals (Gibbs kernel). That is, a N(µnj , λnj ), where λnj =
λ0+njλj and µnj = λ−1

nj
(λ0µ0+njλnj

∑
Ji=j xiv) for µj , a Ga(α+ 1

2nj , β+ 1
2

∑
Ji=j(xiv−µj)2)

for λj and a Ga(g + Jα, h +
∑J

j=1 λj) for β.

3.2. Normal homocedastic

We consider a homocedastic Normal variable, for which xiv | Ji = j, µ,λ ∼ N(µj , λ), with the
same precision λ across all groups. It is likely that in clustering problems we would prefer this
variable, instead of a heterocedastic one (see Richardson and Green 1997) since it will tend to
split the range of the data in more or less uniform intervals. Again, we take µj ∼ N(µ0, λ0)
a priori, and f(λ) ∝ λ−1 as a prior for λ. To update µj we simulate from N(µnj , λnj ), where
λnj = λ0 + njλ and λ from a Ga(1

2n, 1
2

∑J
j=1

∑
Ji=j(xiv − µj)2) (the full conditionals), which

are always proper although the prior for λ is not. As above, we take µ0 = a+b
2 (the data range

mid point) and λ0 = 1
(b−a)2

, a large precision.
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3.3. Multinomial

Regarding Multinomial attributes (eg. categorical), we assume that xiv = 1, 2, . . . , L (that
is, we translate labels into a numeric scale). The conjugate prior is a Dirichlet; however,
in this case, there is not a unique standard reference prior, with Di(1/L, . . . , 1/L) being a
common non-informative prior used. From simulated studies, where only one Multinomial
variable is considered, we have seen that a Di(1/2nL, . . . , 1/2nL) leads to a mixture where
only L components are effectively used and each component in fact takes only one level. We
thus consider the latter as our default (sample size dependent) prior and simulate the vector
of Multinomial probabilities in group j from its full conditional (Gibbs kernel), which is a
Di(1/2nL+nj1, 1/2nL+nj2, . . . , 1/2nL+njL), where njl = |{i : xiv = l, Ji = j}| (the current
Multinomial counts for group j).

3.4. Poisson

A basic procedure to deal with some types of ordinal variables is to use a Poisson model. We
assume that xiv = 0, 1, . . .. Given xiv ∼ Po(λj) the standard reference prior is f(λj) ∝ λ

−1/2
j ,

which is not proper. Following the hierarchical priors used for the Normal case, we take
λj ∼ Ga(α, β), fix α = 1 and take f(β) ∝ β−1 (as a reference prior for β). We then simulate
from the full conditional of λj which is a Ga(α +

∑
Ji=j xiv, β + nj) and we also simulate β

from its full conditional (Gibbs kernels), that is a Ga(Jα,
∑J

j=1 λj).

3.5. Prediction

In the context of MCMC, finding predictive distributions for missing (unobserved) attributes
is straightforward. Simply, a missing attribute xiv is taken as an unknown parameter and
included in the Markov Chain simulation. From Section 2 we see that the full conditional of xiv

is f(xiv | θJiv), that is, sampling from the model used for attribute v. A “predictive” sample
is then obtained for xiv, which can be used either to approximate its predictive distribution
or some point estimate like its predictive expectation.

4. Posterior analysis

As in any complex Bayesian analysis, an important problem is analyzing posterior informa-
tion. BClass produces approximations for the posterior grouping probabilities P = (pij) =
P (Ji = j | X), a n × J matrix, and posterior expectations for π and θ, E[πj | X] and
E[θjv | X]. As explained earlier one can regard the grouping probabilities as homogeneous
attributes. For small n, it is possible to calculate a distance matrix (with simple Euclidean
distance) and plot a dendrogram. However, even for moderate n (= 500), the dendrograms
are difficult to read since most branches overlap. An alternative and simpler method is to
plot the points a1pi1 + a2pi2 + · · · + aJpiJ where the aj ’s are equally spaced along the unit
circle. Thus the grouping probabilities for each entry i (pi1, pi2, . . . , piJ) are mapped within
the unit circle and similar grouping probabilities are plotted as nearby points (the contrary is
not necessarily true though, and thus some care is needed in the interpretation of the resulting
plots). These plots, hereafter referred to as “archipelago” plots, are used in the example to
visually recognize clusters. We worked around the problem of cluster definition by plotting
the grouping probabilities, say 10 times, with the order of the groups randomized. When
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these plots are linked, clusters can be reliably defined as points located nearby in all the
plots—false clusters always split apart when permuting the order of the groups.

With respect to the dimensionality variables, we only keep track of k(l) =
∑J

j=1 φ
(l)
j , the

number of “alive” groups at pass l. Using the sample k(l) we approximate probabilities for the
number of groups used. This is also done in the example.

5. BClass implementation in Lisp-Stat

BClass is fully implemented in Lisp-Stat for several reasons: (1) Lisp programming is remark-
ably straightforward; (2) it allows to focus on the problem at hand without much concern
about the technical innards of the language; (3) most functions are vectorized; and (4) the Lisp-
Stat’s dynamic graphical-linking capabilities facilitate tremendously the exploratory analysis
of both the input data and final results.

BClass was implemented following an object-oriented strategy. Every supported statistical
model (i.e. Poisson, multinomial, normal homocedastic and normal heterocedastic) consists
of a prototype that can be used to instantiate as many objects as necessary. Therefore, before
running BClass, a preliminary analysis is required so as to decide which distribution type
should be used to model each attribute.

The system includes a comprehensive tutorial plus a demo script to illustrate the readers
how to load their own data into BClass, fine tune internal parameters (i.e. the number of
groups J in the mixture, the number of iterations for the MCMC algorithm, etc.), how to
start the classification process, plus how to save or reload the BClass output in order to
postpone or continue a particular analysis. Two approaches (plot-based and query-based)
are combined to define, interpret, and evaluate the quality of the resulting clusters, which
are formed by observations sharing similar grouping probabilities. The system is open source
code, it consists of 16 script files, the tutorial and the demo. BClass is available free of charge
from the journal’s web page and from the sites http://www.cimat.mx/~jac/software and
http://www.ccg.unam.mx/amedrano/BClass.

6. Case study

In order to understand the instructive example here presented several, biological concepts are
necessary. First, DNA is a linear sequence of four types of concatenated building blocks called
nucleotides or bases: adenine (A), thymine (T), guanine (G) and cytosine (C). Structurally,
DNA is a macromolecule with two complementary strands arranged in a double helix, each
strand being read in opposite directions (forward or reverse) by the cellular machinery. Sec-
ond, a gene is a DNA fragment that encodes the necessary information to produce proteins,
which in turn are responsible for carrying out most of the cellular processes indispensable for
sustaining life. Genes may be physically positioned in any of the two DNA strands and their
length is the sum of As, Ts, Cs, and Gs in their sequence. Third, a bacterial chromosome is a
circular self-replicating DNA sequence that contains in a linear array all or most of the genes.
Fourth, transcriptional regulation refers to the molecular mechanism responsible for strate-
gically expressing the genes required by the cell in order to survive environmental changes,
reproduce, metabolize nutrients, etc. Fifth, the protein product of genes can be classified in
several types, here we will deal only with four of them: enzyme (to accelerate biochemical

http://www.cimat.mx/~jac/software
http://www.ccg.unam.mx/amedrano/BClass
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reactions), regulator (to control whether or not the protein product of other genes will be
manufactured), transport (to take nutrients, toxins, etc in and out of the cell), and leader
(specific sequences at the beginning of some genes that may function in targeting reactions or
regulation). Sixth, gene function in this example refers to metabolic processes in which the
genes participate (e.g. amino acid biosynthesis, energy production, cell division, etc.). These
definitions, albeit sufficient, are by no means complete.

RegulonDB (Salgado et al. 2004) has information on transcriptional regulation for more than
2300 genes. We selected a set of 435 genes for which all attributes are completely described,
with the exception of a few missing values (see below). We used the following attributes for
the analysis: The DNA strand (forward or reverse), gene length in base pairs (bp), position
within the chromosome (in minutes), gene type (enzyme, leader, regulator, transporter and
miscellaneous), gene function (20 functional classes) and regulation mode (positive, negative
or dual). These attributes, in turn, are modeled as Multinomial with 2 levels, Normal ho-
mocedastic, Normal homocedastic, Multinomial with 5 levels, Multinomial with 20 levels and
Multinomial with 3 levels, respectively. There are 3 genes that have an unclassified or un-
known function, and 11 genes with an unknown mode of regulation. Following the technique
explained in Section 3.5 we predicted the values for these missing data. We considered a
mixture of (J =)30 components.

Given the complexity of the multidimensional model entertained and the fact that Lisp-Stat
is an interpreter, the convergence of the MCMC chain turned out to be slow. We took quite
a long burn-in of 100,000 sweeps followed by a run of 50,000 sweeps. The πj ’s were sorted
and sampling was carried out every 5 sweeps. With the current BClass implementation in
Lisp-Stat, these calculations took nearly 9 hours in a Intel Xeon processor (2.4 GHz) running
Linux Red Hat 7.3. In this analysis we concentrated on calculating the grouping probabilities,
that is, on obtaining the matrix P = (pij). The archipelago plot for P (see Section 4) is shown
in figure 2.

As explained above, using the sample k(l) we approximate probabilities for the number of
groups used, see figure 3. We see that the most likely number of components is 29, and thus
we have some confidence that we are using an appropriate number of groups.

So far, we have analyzed more than 15 clusters arising from the archipelago plots. For
illustration, however, we present a brief analysis of the cluster shown in figure 2. This cluster
has 13 genes. We see that all genes are regulated positively (their expression needs to be
activated), all but two have a miscellaneous type, all are on the reverse strand, 12 genes
participate in central intermediary metabolism (function 3) and the function of one gene is
unknown. For this latter gene, phnQ, there is a predictive probability of more than 0.98 that
its product is involved in central intermediary metabolism (function 3), as the rest of the
genes in the cluster. Concerning their position within the chromosome the genes form two
clusters: 12 genes form one cluster between minutes 92.93 and 93.11 and one gene, known as
gcvH, is in minute 65.68. Regarding the size of the genes, they are in the range 309 to 1137 bp
(small to average size), with the smallest gene being gcvH. In bacteria, a substantial fraction
of genes is co-transcribed (expressed at the same time) defining the so-called “operons”. All
but gcvH belong to an operon containing 15 genes. This is the largest known operon in E. coli
as most operons contain 2 or 3 genes. As far as we know, there is no reported evidence that
these genes are functionally linked. Further theoretical and experimental research should be
directed at studying the biological meaning of the association between the former gene and the
latter operon. A preliminary transcriptome analysis of 4 growth conditions (i.e. heat shock,
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Cluster

Figure 2: Archipelago plot for the 435 genes analyzed from the RegulonDB E. coli gene
database.
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Figure 3: Posterior distribution for the number of “alive” components.
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osmotic shock, minimal media, and IPTG) indicates that none of these genes change their
expression significantly, so potential coexpression under other non-essayed growth conditions
cannot be completely ruled out.

Besides the gene phnQ mentioned above, genes yhdG and dsdX have a predictive probability
of nearly 1 that their product is involved in transport (function 14). Regarding the missing
values for the type of regulation, gene treB has a probability of more than 0.99 of having a
dual regulation type. The rest of the missing values analyzed do not have high predictive
probabilities. It might be interesting to confirm these predictions with further experimental
research.

For the sake of comparison, AutoClass was also applied to RegulonDB, for exactly the same
genes and variables as above. Since AutoClass relies on MAP (point) estimates it only reports
the most likely group each entry belongs to. AutoClass found 7 groups after 10,000 iterations
(a minimum of 50 is recommended), however, none of these groups could be identified as one
single cluster in the archipelago plot produced by BClass. Moreover, the groups produced
by AutoClass were split into several well compacted more interpretable clusters by BClass.
Indeed, it is not surprising that we can extract more significant information out of BClass
since we do have access to the whole vector of grouping probabilities for each entry and not
just the most likely group. More comprehensive evaluations are needed to fully address the
issue of comparing the performance and capabilities of each software.

7. Discussion

Here we present a general tool for Bayesian classification of genetic databases using mixture
models. The methodology is “open” in the sense that, in principle, any set or combination of
quantitative genetic attributes may be analyzed, with few new technicalities to be taken care
of.

As explained in Section A.2, without any identifiability constraint, the posterior distribution
has J ! symmetric components. If a MCMC sampler is run without such constraints, samples
will be drawn from any of these components. The output of such sampler should be analyzed
with much care, avoiding mixing samples from different components. By post-processing the
MCMC output, Stephens (1997) proposes two methods to “relabel” a sample from a mixture
model. Stephens’ second method could be applied here since it is independent of the type of
component distributions used. However, this method post-processes the probabilities of the
full conditionals for each Ji in every MCMC iteration. This involves keeping s matrices of
size n × J , where s is the MCMC sample size; a formidable task even for moderate n. The
ordering constraint in the πj ’s followed in this paper does avoid some of the label switching
problems, provided that the groups do not have similar πj ’s. The label switching problem has
just recently been addressed, and thus further research efforts are required to find a simpler
on-line solution.

The number of components used in the mixture is controlled by the indicator dimensional-
ity variables φj ’s, while the entropy prior on the mixing probabilities enable the method to
obtain parsimonious parametrizations. We use standard Metropolis-Hastings, which leads to
reasonable simple algorithms, in contrast with the complexity of methods proposed elsewhere
(Philips and Smith 1996; Richardson and Green 1997; Stephens 1997). Moreover, our ap-
proach is independent of the families of component distributions used, making unnecessary
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any fine tuning of details for each new distribution introduced.

As discussed above, the rationale behind BClass offers several advantages, particularly in the
case of genetic databases, compared to other clustering techniques. These ideas should be
useful and robust for applications in diverse areas of research such as satellite imaging, social
sciences, medicine etc. besides biology.

As far as we know, mixture models have been applied to biology at the level of morphological
traits (na and noz 1998) but not to mine databases in molecular biology. Bayesian statistics
has been certainly used in Bioinformatics in learning strategies to identify common motifs
in related sequences (Neuwald et al. 1995), in sequence alignment (Zhu et al. 1998), phy-
logenetics (Lewis and Swofford 2001), as well as in transcriptome analysis (Baldi and Long
2001). Given the explosion and growth of biological databases (see the January issues of
the journal Nucleic Acids Research where biological databases are presented), it is reason-
able to foresee the increasing importance of mixture models as a tool for clustering analysis
and biological knowledge discovery. A well known example of the contribution of clustering
techniques to molecular biology is the determination of 3 general codon usage classes in E.
coli (Médigue et al. 1991). These major codon usage groups have been observed in other
bacteria as well, which fueled the development of improved computational methods for gene
prediction (Borodovsky et al. 1995). More recently, the emergence of post-genomic experi-
mental tools has generated an outburst of large data sets of expression profiles for all genes
within complete genomes. The virtues of clustering analysis in functional genomics have been
clearly illustrated by Eisen et al. (1998). Currently, clustering techniques are routinely used
in transcriptome analysis to discover genes that might contribute to disease, identify potential
drug targets, and sets of corregulated genes that will play an essential role in the eventual
characterization of complete genomic regulatory networks (see D’Haeseleer et al. 2000). Even
though expression values are homogeneous, the methodology here presented permits an inte-
grated analysis through the inclusion of other additional gene attributes. For instance, BClass
is able to analyze simultaneously transcriptome data, functional categories, regulation modes,
position within the chromosome and/or other biological attributes that could strategically im-
prove the search for sets of co-regulated genes. Future work with BClass shall illustrate the
extent to which heterogeneous classification impinges upon integrative genomic analyses.

The application of BClass to a data subset of RegulonDB is presented here as a preliminary
example. However, it was apparent that the current list-based implementation of BClass
in Lisp-Stat, albeit functional, is not adequate to analyze large data sets because the code
is interpreted. Given that the time required for the execution of the MCMC algorithm is a
function of the number of parameters and the number of observations, we have re-implemented
the whole system using an array-based approach and a commercial version of common Lisp
(Allegro), in order to compile the source code and obtain a fast binary stand-alone application.
Here we concentrated on efficiency issues to minimize time-consuming bottlenecks in the code.
However, although the overall BClass speed was significantly increased, it is not fast enough
to handle thousands of entries in a few minutes, often requiring several hours or even days.
Given this situation, we are currently working on a parallel version of BClass that will be able
to run much faster.
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A. Technical considerations

A.1. Identifiability and the entropy prior

The problem of identifiability has been discussed extensively in the literature of mixture
models (see, for example, Titterington et al. 1985). The problem may be described in the
following way. Given two sets of parameters h1 and h2 for our mixture model f(X | h), when
is it the case that f(X | h1) = f(X | h2) ⇔ h1 = h2? (in such circumstances h1 uniquely
describes the model and there are no alternative parametrizations). Obviously, if we have h
and permute the indices j in h, say σ(h), we have f(X | h) = f(X | σ(h)). To avoid this,
we only consider labelings in which π1 ≤ π2 ≤ . . . ≤ πJ . Now, it is well known, for example,
that a mixture of Normals is identifiable, that is f(X | h1) = f(X | h2) ⇔ h1 = h2

(besides, indeed, label permutations). On the contrary, it is easy to see that in general a
mixture of Multinomials is not identifiable (see Titterington et al. 1985, p. 35) in which case
we have a set H such that f(X | h1) = f(X | h2) for h1, h2 ∈ H. When analyzing
heterogeneous databases we will be dealing with Multinomial component distributions and,
in general, we do not know which combinations of component distributions or even which
families of distributions will be used in the analysis of specific databases. Moreover, even if we
were dealing with an identifiable mixture we may still have the problem of sub-identifiability.
For example, a mixture with five components, J = 5, but only four effective groups, φ5 = 0,
could just as well be described with φ5 = 1, 5 groups. This illustrates two nested models that
describe the data equally well.

Therefore, non-identifiability or sub-identifiability (or both) results in a likelihood f(X | h)
with large flat areas. Thus, choosing among alternative parametrizations, could and should be
done with an appropriate prior. Suppose then that h1 and h2 are two alternative parametriza-
tions, how would we choose a priori among them? Indeed, we would like parsimonious
parametrizations, using the least number of groups, or more “compact” groups. In mathemat-
ical terms we say that we select the parametrization that has the larger information content
(less entropy) in its mixing probabilities. Thus if

∑J
j=1 π1

j log π1
j >

∑J
j=1 π2

j log π2
j we prefer

h1 from h2 (using superindices to distinguish the πj ’s).

Finally, to express the above in terms of a prior for π we propose the entropy prior

f(π) ∝ exp


J∑

j=1

πj log πj

 , (1)

for 0 < π1 ≤ π2 ≤ . . . ≤ πJ < 1 and
∑J

j=1 πj = 1. Thus parametrizations with a higher
information content in the mixing probabilities πj ’s will have higher prior probability density.
From the properties of the information score (see Bernardo and Smith 1994, p. 79) note that
the kernel of f(π) is bounded by 1, therefore f(π) is well defined.

The natural conjugate prior for π is a Dirichlet, the prior used for π in virtually all Bayesian
mixture model analysis. The entropy prior in (1) is not conjugate but still has a convenient
form regarding the MCMC calculations that follow (We may think of a more general form for
(1), say f(π) ∝ exp{

∑J
j=1(αj −1) log πj +γjπj log πj}. This distribution has as a special case

the Dirichlet and would be a conjugate prior for π. However, we decided to use (1) since it
represents clearly the information we are trying to convey.).
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A.2. MCMC

It is routine in almost any modern Bayesian analysis to use Markov Chain Monte Carlo
(MCMC) methods to approximate posterior densities; for a review of the subject see Besag
et al. (1995). We design our MCMC sampler in the following way. We simulate in turn the
parameters θjv, for j = 1, 2, . . . , J , v = 1, 2, . . . , C from their full conditionals. The allocation
variables Ji’s are simulated using a Metropolis step and we simulate π and φ in a single stage
using a Metropolis-Hastings step.

It is easy to see that the full conditionals for θjv are proportional to
∏

Ji=j f(xi | θjv)f(θjv).
This means that θjv will be drawn as if from a posterior distribution using the likelihood∏

Ji=j f(xi | θjv) and prior f(θjv). We will concentrate on conjugate forms for f(θjv) and,
in general, θjv will be easy to simulate. There is, however, the difficulty that improper priors
may not be used (see Roeder and Wasserman 1997). The definition of f(θjv) for specific type
of variables is left for Section 3.

With respect to the allocation variables J , we make a proposal J ′
i for Ji with P (J ′

i = j) ∝ φj

(that is, uniformly from the alive components). This represents a Metropolis (symmetrical)
proposal and it is not difficult to see that its acceptance probability is

min

(
1,

f(xi | θJ ′
i
)πJ ′

i

f(xi | θJi)πJi

)
.

In our experience, both with simulated and real data, we have seen that this Metropolis step
has better mixing than simulating directly from the full conditional of Ji, with the added
benefit that only two evaluations of the likelihood are involved.

We construct proposals for π and φ to be accepted or rejected through a Metropolis-Hastings
acceptance probability. Let nj = |{i : Ji = j}|. We use a Dirichlet Di(n1+1, n2+1, . . . , nJ +1)
to simulate a proposal π′ = (π′

1, π
′
2, . . . , π

′
J) for π. At a first step we ignore the ordering

imposed on the πj ’s. Due to alternative relabelings, the posterior distribution will have J !
symmetric components. Given a simulated value h∗ from the posterior, a relabeling of h∗

may be considered to be a simulated value from the posterior. We therefore run the MCMC
sampler and after a burn-in, when samples may be viewed as drawn from the posterior, we
relabel the components to have the correct ordering in the πj ’s. After the burn-in we relabel
the samples every 5 or 10 passes and use only those samples both to ensure the correct
ordering in the πj ’s and avoid correlation. Thus in what follows we take the prior for π as in
(1) ignoring the ordering constraint.

We simulate a proposal φ′ = (φ′
1, φ

′
2, . . . , φ

′
J) for φ, independently of π, using P (φ′

j = 1 |
nj > 0) = 1 and P (φ′

j = 1 | nj = 0) = β, for some suitable proposal probability β. Note that
we are only considering the “birth” or “death” of a group φ′

j = 1, 0 when the group is empty,
nj = 0, since a proposal φ′

j = 0 given nj > 0 has zero acceptance probability.

It is proved below that the acceptance ratio for this proposal is

A = exp

u log
α

1− α
+ w log

β

1− β
+

J∑
j=1

π′
j log π′

j − πj log πj

 (2)

where u =
∑J

j=1 φ′
j − φj and w = ν0 − ν ′0, where ν0 = |{j : nj = 0, φj = 0}| and ν ′0 = |{j :

nj = 0, φ′
j = 0}|. π’ and φ’ are then accepted with probability min(1, A). We see that it
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is not difficult to simulate the proposals and that the acceptance ratio has a rather compact
form and is quite simple to calculate.

A.3. Proof of (2)

As explained in Section 2 we use a Dirichlet Di(n1+1, n2+1, . . . , nJ +1) to simulate a proposal
π′ for π and we simulate a proposal φ′ for φ, independently of π, using P (φ′

j = 1 | nj > 0) = 1
and P (φ′

j = 1 | nj = 0) = β. For the transition kernel we have that K{(π,φ), (π′,φ′)} =

k1(π′)k2(φ′) and k1(π′) ∝ exp
(∑J

j=1 nj log π′
j

)
and k2(φ′) = exp (ν ′1 log β + ν ′0 log β), where

ν ′h = |{j : nj = 0, φ′
j = h}|, h = 0, 1. Noting that f(π,φ | X,J ,θ) ∝ f(J | π,φ)f(π)f(φ)

and using that f(J | π,φ) = exp
(∑J

j=1 nj log πj

)
for φj = 1 such that nj > 0 and zero

otherwise, we see that the likelihood is canceled out with k1(π) and what is left is the prior
ratio and the ratio for k2(φ). Therefore we obtain

A = exp

 J∑
j=1

π′
j log π′

j − πj log πj


exp

 J∑
j=1

(φ′
j − φj) log α + (φj − φ′

j) log(1− α)


exp

(
(ν1 − ν ′1) log β + (ν0 − ν ′0) log(1− β)

)
,

with the equivalent definition for ν1 and ν0. Letting n0 = |{j : nj = 0}| we have that
ν1 = n0 − ν0 and it is easy to see that ν0 − ν ′0 = ν ′1 − ν1 = v; (2) follows immediately.
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