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Abstract Because of its very general formulation, the local volatility model does not

have an analytical solution for European options. In this article, we present a new

methodology to derive closed form solutions for the price of any European options.

The formula results from an asymptotic expansion, terms of which are Black-Scholes

price and related Greeks. The accuracy of the formula depends on the payoff smooth-

ness and it converges with very few terms.
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1 Introduction

The local volatility model, introduced by Dupire [Dup94], Rubinstein [Rub94] and

Derman Khani [ED94], has the main advantage of fitting all call and put option prices.

However, in contrast to the seminal Black-Scholes model, this model has no more

closed form solution for general European options. This comes from the very general

form of the local volatility function. Only in a few cases this model admits closed for-

mulas, as explained in [ACCL01]. In the special case of a separable local volatility

function written as the product of two independent functions of time and underlying,

σloc(t, f ) = α(t)A( f ), one can derive an asymptotic expansion for the price of vanilla

options (call, put) using singular perturbation techniques as explained in [HW99].
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Another type of asymptotic expansion can be also derived from an expansion of the

heat kernel as shown in [Lab05]. However, for the general case, there is no method-

ology so far. This paper tackles precisely this challenge.

The overall idea is to do an asymptotic expansion directly on the diffusion using

Malliavin calculus. We will consider a local volatility model, in which the underlying

asset is classically related to the diffusion process

dXt = σ(t,Xt)dWt + µ(t,Xt)dt, X0 = x0. (1.1)

Typically, in the following, X stands for the log-price of the underlying asset1. σ(t,Xt)
is the volatility term whereas µ(t,Xt) is the drift term. Our aim is to give an analytical

accurate2 approximation of any European option, written as the expected value under

the risk neutral probability measure of a payoff function h evaluated at the maturity

time T :

E(h(XT )) (1.2)

where E stands for the standard expectation operator. To accomplish this, we intro-

duce a parametrized process given by:

dXε
t = ε(σ(t,Xε

t )dWt + µ(t,Xε
t )dt),Xε

0 = x0, (1.3)

where the parameter ε lies in the range [0,1]. Obviously, this parametrized process is

equal to the initial one for ε = 1. Remarkably, it is much easier to calculate the price

(1.2) as an expansion formula with respect to ε . Once we have derived all the terms

of the expansion, we see that the price of the European option is obtained by taking

ε = 1.

Compared to standard expansion methods, the accuracy of this expansion is not re-

lated to the perturbation parameter ε . Indeed, the limit value ε = 1 is not small at

all. This is a significant difference compared to singular perturbation techniques. Our

expansion is just a way to derive convenient closed form solution. This asymptotic

expansion is achieved using the infinite dimensional analysis of Malliavin calculus.

A key feature of our approach is that we can provide explicit formulas for the terms at

any order and explicit upper bounds of the errors, for general forms of the drift term

µ and the volatility term σ . The derivation of expansion terms at any order completes

for pure diffusion some earlier work done in [BGM08].

In practice, we compute a limited number of terms. The main term is the price in

a suitable Black-Scholes model, while the other terms are a weighted summation of

sensitivities (Greeks). These terms are straightforward to evaluate numerically, with a

computational cost equivalent to the Black-Scholes formula. The smaller the param-

eters µ and σ are, the smaller the maturity T is, or the smaller the derivatives of the

functions µ and σ with respect to their second variable are, the faster the convergence

of the expansion is. This means that in practice, we need to calculate the expansion

up to the second order, or possibly to the third order, to achieve an excellent accuracy

(smaller than 2 bp on implied volatilities for various strikes and maturities). In addi-

tion, as a consequence of our approximation formulas, we establish that, for any fixed

1 when explicitely stated, X may alternatively stand for the asset price.
2 in some sense detailed later in this paper



3

maturity, a time dependent CEV model is equivalent to a CEV model with appropriate

constant parameters (parameter averaging principle).

Comparison with the literature. In previous works, like Hagan et al in [HKLW02]

for the SABR model, or Fouque et al in [FPS00] for stochastic volatility models, or

Antonelli-Scarletti in [AS07], authors do a perturbation analysis with respect to a

specific model parameter like the volatility, the mean reversion or the correlation.

Their approach relies on a perturbation of the corresponding PDE. In contrast, we do

not approximate the underlying PDE, or the related operator. We focus directly on the

law of the random variable X1
T at maturity time, given its initial condition X0 = x0,

using Malliavin calculus. Nicely, the extension to time dependent coefficients comes

without any extra efforts.

Outline of the paper. In the following, we give some notations and assumptions

used throughout the paper. The next section presents in an heuristic way our method-

ology to approximate the expected cost. We provide approximation formulas at the

second and third order, using a log-normal or a normal proxy. In Section 3, we detail

the approximation formulas for the case of time dependent CEV volatility. In Section

4, we analyse the magnitude of the correction and error terms of the general approx-

imation formula (and at any order). The analysis depends on the payoff smoothness.

The proofs of the main theorems 4.1-4.3-4.5 are postponed to section 5. In appendix

6, we bring together useful results to make our expansion explicit.

Definitions

Definition 1.1 As usual, we define C ∞
0 (R) as the space of real infinitely differen-

tiable functions h with compact support. We also define H as the space of functions

having at most an exponential growth. A function h belongs to H if |h(x)| ≤ c1ec2|x|

for any x, for two constants c1 and c2.

Notations

The following notation will be used extensively throughout the paper.

Notation 1.1 Differentiation.

If these derivatives have a meaning, we write:

– ψ
(i)
t (x) = ∂ iψ

∂xi (t,x) for any function ψ of two variables.

– Xε
i,t =

∂ iXε
t

∂ε i is the ith derivative of the parametrized process with respect to ε .

– Xi,t =
∂ iXε

t

∂ε i |ε=0 . These processes play a crucial role in this work.

– σt = σ(t,x0),µt = µ(t,x0),σ
(i)
t = σ (i)(t,x0),µ

(i)
t = µ(i)(t,x0).

The following notation of Greeks will be useful for interpreting the expansion

terms.

Notation 1.2 Greeks.

Let Z be a random variable. Given a payoff function h, we define the ith Greek for the

variable Z by the quantity (if it has a meaning) :

Greekh
i (Z) =

∂ i
E[h(Z + x)]

∂xi
|x=0.
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Assumptions. In order to derive accurate approximations, we may assume that co-

efficients σ and µ are smooth enough. In what follows, N is an integer greater than

4.

– Assumption (RN). The functions σ and µ are bounded and of class CN w.r.t x.

Their derivatives up to order N are bounded.

This assumption may be restrictive because σ and µ have to be bounded as well their

derivatives. Actually, this statement is made only to simplify a bit our analysis, but we

can prove that our approximation remains valid if some boundedness requirements

are partially relaxed.

Notation 1.3 Function amplitudes.

Under (RN), we set

M0 =max(|σ |∞, · · · , |σ (N)|∞, |µ|∞, · · · , |µ(N)|∞), (1.4)

M1 =max(|σ (1)|∞, · · · , |σ (N)|∞, |µ(1)|∞, · · · , |µ(N)|∞). (1.5)

Although M0 and M1 may depend on N, we remove this dependence in our notation,

for the sake of simplicity.

Remark 1.2 The constant M0 measures the amplitude of the objective functions µ,σ
and their derivatives w.r.t. the second variable, whereas M1 measures only the ampli-

tude of their derivatives. Notice that M1 ≤ M0 and in case of deterministic functions

σ and µ , one has M1 = 0.

To perform the infinitesimal analysis, we rely on smoothness properties not re-

lated to the payoff function itself but rather to the law of the underlying stochastic

models.

– Assumption (E). The function σ does not vanish and its oscillation is bounded,

meaning 1 ≤ |σ |∞
σin f

≤CE where σin f = inf(t,x)∈R+×R σ(t,x).

The assumption (E) is commonly called an ellipticity assumption.

We also need to divide our analysis according to the payoff smoothness. We split

our analysis into three cases.

– Assumption (H1). h belongs to C ∞
0 (R). This case corresponds to smooth payoffs.

– Assumption (H2). h and h(1) belongs to H . This case corresponds to vanilla

options (call-put).

– Assumption (H3). h belongs to H . This is the case of binary options (digital).

2 Smart Taylor Development

In the following, we provide several approximation formulas, at the second and third

order. These formulas are different if X models the logarithm of the underlying asset

price or if it models directly the asset price. In the first case, our approximation is

equivalent to take a lognormal proxy (or Black-Scholes proxy) for the asset price; in

the second case, it is equivalent to use a normal proxy.
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2.1 Second order approximation

Here, we consider that the dynamics (1.1) for X models the logarithm of the underly-

ing asset. In the case of call option, the payoff is then h(x) = (ex −K)+, where K is

the strike price.

Our perturbation approach relies on the Taylor expansion of the parameterized

process. We have paved the way in our previous work [BGM08]. For the sake of

completeness, we briefly recall the main steps to achieve a closed approximative for-

mula.

From the definitions, Xi,t ≡ ∂ iXε
t

∂ε i |ε=0, we can expand the perturbed process Xε
T as

follows:

Xε
T = Xε

T |ε=0 + εX1,T +
ε2

2!
X2,T + . . . (2.1)

Indeed, under the assumption (R5), almost surely for any t, Xε
t is C4 w.r.t ε (see

Theorem 2.3 in [Kun84]). The diffusion dynamics of (Xε
i,t ≡

∂ iXε
t

∂ε i )t≥0 is obtained by

a straight differentiation of the parameters of the diffusion equation of Xε . The first

order term Xε
1,t is easily obtained as follows:

dXε
1,t =σt(X

ε
t )dWt + µt(X

ε
t )dt

+εXε
1,t(σ

(1)
t (Xε

t )dWt + µ
(1)
t (Xε

t )dt),Xε
1,0 = 0. (2.2)

From the definitions, we have σt ≡σ(t,x0), µt ≡ µ(t,x0), σ
(i)
t ≡σ (i)(t,x0) and µ

(i)
t ≡

µ(i)(t,x0). Then, we obtain

dX1,t =σtdWt + µtdt,X1,0 = 0,

dX2,t =2X1,t(σ
(1)
t dWt + µ

(1)
t dt),X2,0 = 0.

Applying the expansion (2.1) at ε = 1, we conclude that x0 + X1,T is a proxy for

XT . This is a Gaussian proxy for X , hence a lognormal proxy for the asset price (or

Black-Scholes diffusion proxy). It justifies the notation

XBS
T = x0 +X1,T = x0 +

∫ t

0
µsds+

∫ t

0
σsdWs. (2.3)

To obtain an approximation formula, we use the Taylor formula twice: first, for X1
T at

the second order w.r.t ε around x0, secondly for smooth function h at the first order

w.r.t x around XBS
T . This leads to:

E[h(XT )] = E[h(XBS
T +

X2,T

2
+ ...)] = E[h(XBS

T )]+E[h(1)(XBS
T )

X2,T

2
]+ ...

To achieve an explicit formula, it remains to transform the correction term involving

X2,T into a summation of greeks computed in the Black-Scholes proxy. This is per-

formed using the Malliavin calculus. We refer to [BGM08] where the computations

are detailed, or to the proof of Theorem 2.3 in this paper. This leads to the following

theorem, which is a particular case of Theorem 2.1 of [BGM08] when there is no

jump.
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Theorem 2.1 (Second order approximation price formula using lognormal proxy).

Assume that the process (Xt) fulfills (R5) and (E), and that the payoff function fulfills

one of the assumptions (H1), (H2) or (H3). Then

E[h(XT )] = E[h(XBS
T )]+

3

∑
i=1

αi,T Greekh
i (X

BS
T )+Resid2, (2.4)

where

α1,T =
∫ T

0
µt(

∫ T

t
µ

(1)
s ds)dt,

α2,T =
∫ T

0
(σ2

t (
∫ T

t
µ

(1)
s ds)+ µt(

∫ T

t
σsσ

(1)
s ds))dt,

α3,T =
∫ T

0
σ2

t (
∫ T

t
σsσ

(1)
s ds)dt.

Additionally, estimates of the error term Resid2 (otherwise stated as residual terms)

are given in Theorems 4.1, 4.3 and 4.5, according to the cases (H1), (H2) or (H3).

Formula (2.4) is refereed as a second order approximation formula because we estab-

lish, in Theorem 4.3 for call/put option, that the error term Resid2 is of order three

with respect to the amplitudes of coefficients.

The above approximation of the price is a sum of two terms:

1. E[h(XBS
T )] is the leading order, corresponding to the price when the parameters σ

and µ are deterministic. In the case of call/put option, it is given by the Black-

Scholes formula. For other payoffs, we can use numerical integration because the

density of the random variable XBS
T is explicit.

2. ∑
3
i=1 αi,T Greekh

i (X
BS
T ) are the volatility and drift correction terms, which depend

on the first derivatives of µ and σ . These terms can be computed as easily as the

main term.

The above formula may be simplified when the asset (i.e. (eXt )t≥0) is a martingale un-

der the pricing measure3 (also refered to Dupire model). Then, µ(t,x) = − 1
2
σ2(t,x)

and the formula writes

E[h(XT )] = E[h(XBS
T )]+C1,T (

1

2
Greekh

1(X
BS
T )− 3

2
Greekh

2(X
BS
T )+Greekh

3(X
BS
T ))+Resid2

with

C1,T =
∫ T

0
σ2

t (
∫ T

t
σsσ

(1)
s ds)dt. (2.5)

3 for instance, when one models the evolution of the forward price.
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2.2 Third order approximation using a lognormal proxy

If the original model is close to its lognormal proxy, the formula (2.4) is very accurate

(see the numerical results in Section 3). Otherwise, we can obtain higher accuracy by

adding third order correction terms. The following result provides explicit expres-

sions for these terms in the Dupire model (µ(t,x) = − 1
2
σ2(t,x)) for vanilla payoffs.

Before, we introduce an appropriate definition, which will enable us to represent the

coefficients of the greeks as iterated time integrals.

Definition 2.2 Integral Operator.

The integral operator ωT is defined as follows: for any integrable function l, we set

ω(l)T
t =

∫ T

t
ludu

for t ∈ [0,T ]. Its n-times iteration is defined analogously: for any integrable functions

(l1, · · · , ln), we set

ω(l1, · · · , ln)T
t = ω(l1ω(l2, · · · , ln)T

. )T
t

for t ∈ [0,T ].

Theorem 2.3 (Third order approximation price formula in the Dupire model using

lognormal proxy). Assume that the process (Xt)t≥0 fulfills (R7) and (E), and that the

payoff function fulfills the assumption (H2). Then

E[h(XT )] = E[h(XBS
T )]+

6

∑
i=1

ηi,T Greekh
i (X

BS
T )+Resid3, (2.6)

where

η1,T =
C1,T

2
− C2,T

2
− C3,T

2
− C4,T

4
− C5,T

4
− C6,T

2
,

η2,T =− 3C1,T

2
+

C2,T

2
+

C3,T

2
+

5C4,T

4
+

5C5,T

4
+

7C6,T

2
+

C7,T

2
+

C8,T

4
,

η3,T =C1,T −2C4,T −2C5,T −6C6,T −3C7,T − 3C8,T

2
,

η4,T =C4,T +C5,T +3C6,T +
13C7,T

2
+

13C8,T

4
,

η5,T =−6C7,T −3C8,T ,

η6,T =2C7,T +C8,T ,

and

C1,T = ω(σ2,σσ (1))T
0 , C2,T = ω(σ2,(σ (1))2)T

0 ,

C3,T = ω(σ2,σσ (2))T
0 , C4,T = ω(σ2,σ2,(σ (1))2)T

0 ,

C5,T = ω(σ2,σ2,σσ (2))T
0 , C6,T = ω(σ2,σσ (1),σσ (1))T

0 ,

C7,T = ω(σ2,σ2,σσ (1),σσ (1))T
0 , C8,T = ω(σ2,σσ (1),σ2,σσ (1))T

0 .

In addition, the estimate of the error term Resid3 is given in Theorem 4.3.
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An application of Theorem 4.3 yields that Resid3 is of order four with respect to the

volatility coefficient.

The proof of Theorem 2.3 is postponed to subsection 6.3.

2.3 Third order approximation using a normal proxy

In the previous third order approximation formula, numerous correction terms appear

because the smart expansion involves simultaneously the volatility and the drift coef-

ficients. If we consider directly a model on the asset price (and not on its logarithm),

our expansion simplifies much because the drift in the Dupire model vanishes:

dXt = σ(t,Xt)dWt . (2.7)

The above function σ for the asset price X and the volatility function σ in (1.1)

for the log-asset are different, they are simply related by a change of variables of

exponential type. Similarly, here the call payoff is equal to h(x) = (x−K)+. Then, we

can perform our expansion approach using the parametrized process Xε that solves

dXε
t = εσ(t,Xε

t )dWt . We obtain that the model proxy for the asset price is defined by

XN
t = x0 +

∫ t

0
σ(s,x0)dWs, (2.8)

which is a Gaussian process. We call it normal proxy. Formal computations of our

smart expansion are analogous to those done for the lognormal proxy. We will skip

details regarding the proof and the assumptions. We do not provide a rigorous esti-

mation of the error term, we prefer to focus on the expressions of correction terms to

achieve a third order approximation formula.

Theorem 2.4 (Third order approximation price formula in the Dupire model using

normal proxy). For a vanilla payoff h, we have

E[h(XT )] = E[h(XN
T )]+

6

∑
i=1

ηi,T Greekh
i (X

N
T )+Error, (2.9)

where

η1,T =0, η2,T =− C2,T

2
+

C3,T

2
, η3,T =C1,T ,

η4,T =C4,T +C5,T +3C6,T , η5,T =0, η6,T =2C7,T +C8,T .

The coefficients (C j,T )1≤ j≤8 are defined as in Theorem 2.3.

In the case of call/put option, the computations of the main term E[h(XN
T )] and of

the related greeks (Greekh
i (X

N
T ))1≤i≤6 are straightforward because the proxy (2.8) is

normal. Numerical results are reported in Section 3.

If one prefers to restrict to a second order approximation formula, it simpy writes

E[h(XT )] = E[h(XN
T )]+C1,T Greekh

3(X
N
T )+Error. (2.10)
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2.4 Parameter averaging in CEV model

The time dependent CEV model on the underlying asset is defined by

dXt = νtX
βt
t dWt .

We suppose that the risk-free rate (rt)t and the dividend yield (qt)t are both determin-

istic. For simplicity in the following discussion, we assume X0 = 1 in order to have a

normalized model.

As discussed in [BGM08], the time dependent CEV model is interesting because

it generates all the possible values of (σt)t and (σ
(1)
t )t by appropriate choices of (νt)t

and (βt)t . Thus, in view of (2.4) and (2.10), this model may potentially generate all

the possible prices at the second order.

When the coefficients (νt)t and (βt)t are constant, there is a closed formula for

the call price (see [Sch89]). For general time dependent coefficients, we may use

our approximation formulas based on log-normal or normal proxy. Alternatively, we

may look for an equivalent CEV model with constant coefficients ν̄ and β̄ , with

which the prices coincide at the second order. This is possible maturity by maturity.

This principle has been studied for stochastic volatility models by Piterbarg [Pit05].

Owing to our approximation formulas, we retrieve that

ν̄ =

√

∫ T
0 ν2

t dt

T
, β̄ =

∫ T

0
βtρtdt, with ρt =

ν2
t

∫ t
0 v2

s ds
∫ T

0 ν2
t

∫ t
0 v2

s ds
. (2.11)

Proof In the context of lognormal proxy (β close to 1), we take

σ(t,x) = νte
(βt−1)x, µ(t,x) =−1

2
σ2(t,x), h(x) = e−

∫ T
0 rsds(e

∫ T
0 (rs−qs)dsex −K)+.

Then, our approximation formula (2.4) depends only on two constants
∫ T

0 ν2
t dt and

∫ T
0 ν2

t

∫ T
t (βs −1)ν2

s dsdt. Consequently, two models must coincide with respect these

two quantities in order to provide the same approximation formula (with lognormal

proxy) up to second order. This easily leads to the identification (2.11).

When the model is close to normal proxy (β close to 0), we take

σ(t,x) = νtx
βt , µ(t,x) = 0, h(x) = e−

∫ T
0 rsds(e

∫ T
0 (rs−qs)dsx−K)+.

Then, using a similar approach based on formula (2.10), one retrieves exactly the

same averaged parameters (2.11).

We conjecture that the averaging rule (2.11) is true not only for β close to 0 or 1,

but also for various values in between. A numerical result (see Table 3.4) illustrates

this averaging property. ⊓⊔



10

3 Numerical Experiments

In this section, we compare approximation formulas given in Theorem 2.1, Theorem

2.3 and Theorem 2.4, applied to Dupire model for call option. We assume that the

risk-free rate and the dividend yield are both set at 0. For the following numerical

results, we choose a CEV-type function for the local volatility. When the model is

applied directly to the asset price (see (2.7) and Theorem 2.4), we have

σ(t,x) = νtx
βt , µ(t,x) = 0, h(x) = (x−K)+.

When the model is used for the log-asset price (see (1.1), Theorems 2.1 and 2.3), we

have

σ(t,x) = νte
(βt−1)x, µ(t,x) = −1

2
σ2(t,x), h(x) = (ex −K)+.

When the functions (νt)t and (βt)t do not depend on time (and thus are constant),

we use the closed formula for call price [Sch89] as a benchmark. Otherwise, for time

dependent functions, we use PDE methods to obtain reference values.

3.1 Accuracy of the second order formula (2.4) (based on a log-normal proxy)

Constant parameters.In the case of time independent volatility, the coefficient C1,T

becomes:

C1,T = σ3
0 σ

(1)
0

T 2

2
.

In Table 3.1, we report related numerical results, which show that our formula is very

accurate (errors in implied volatilities are smaller4 than 2 bp) for β close to 1. This

is coherent with the estimate of the error term Resid2, because this model is close

to the lognormal one. In Table 3.2, analogous tests are reported with β = 0.2. Here,

Table 3.1 Errors on implied Black-Scholes volatilities (in bp) between the second order approximation

formula (2.4) and the closed formula for CEV model, expressed as a function of maturities in fractions of

years and relative strikes. Parameters: β = 0.8, ν = 0.2 and x0 = 0.

T/K 80% 90% 100% 110% 120%

6M -1.63 -0.22 -0.08 -0.17 -0.86

1Y -1.11 -0.26 -0.15 -0.22 -0.63

1.5Y -0.98 -0.32 -0.21 -0.28 -0.60

2Y -0.95 -0.38 -0.28 -0.34 -0.62

3Y -0.98 -0.51 -0.41 -0.46 -0.69

5Y -1.16 -0.77 -0.67 -0.70 -0.89

10Y -1.70 -1.37 -1.26 -1.27 -1.40

4 1 bp on implied volatilities is equal to 0.01%.
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the errors are roughly equal to 20 bp, which is quite satisfactory. This case motivates

the use of the third order approximation formula to obtain a better accuracy, this is

discussed in the following subsection (see Table 3.6).

Table 3.2 Errors on implied Black-Scholes volatilities (in bp) between the second order approximation

formula (2.4) and the closed formula for CEV model, expressed as a function of maturities in fractions of

years and relative strikes. Parameters: β = 0.2, ν = 0.2 and x0 = 0.

T/K 80% 90% 100% 110% 120%

6M -22.85 -3.33 -1.07 -2.61 -14.87

1Y -16.60 -4.07 -2.14 -3.21 -10.20

1.5Y -15.21 -5.11 -3.21 -4.03 -9.31

2Y -15.13 -6.23 -4.27 -4.92 -9.29

3Y -16.36 -8.53 -6.39 -6.74 -10.12

5Y -20.47 -13.19 -10.60 -10.42 -12.74

10Y -32.01 -24.45 -20.77 -19.45 -20.26

Piecewise constant parameters.Here, the functions ν and β are piecewise constant

on each interval [Ti,Ti+1[ for each i ≤ n. Therefore, C1,. can be calculated recursively

C1,Ti+1
= C1,Ti

+(Ti+1 −Ti)σTi
σ

(1)
Ti

i−1

∑
j=1

σ2
Tj

(Tj+1 −Tj)+
(Ti+1 −Ti)

2

2
σ3

Ti
σ

(1)
Ti

,

with C1,T1
= σ3

0 σ
(1)
0

T1
2

2
. In our tests, the piecewise constant functions ν and β are

equal respectively on each interval of the form [ i
20

, i+1
20

[ to 25% − i × 0.11% and

100%− i× 0.75%. Results given in Table 3.3 show that our second order approxi-

mation formula is still very accurate for time dependent parameters ν and β . Using

Table 3.3 Errors on implied Black-Scholes volatilities (in bp) between the second order approximation

formula (2.4) and the PDE method, expressed as a function of maturities in fractions of years and relative

strikes. Parameters: time dependent ν and β , x0 = 0.

T/K 80% 90% 100% 110% 120%

6M -0.67 -0.09 0.03 -0.07 -0.35

1Y -0.44 0.10 0.06 -0.09 -0.26

1.5Y -0.38 -0.13 0.09 0.11 -0.25

2Y 0.37 0.15 -0.11 -0.14 -0.26

the same time dependent coefficients, we test the parameter averaging principle, that

is described in paragraph 2.4. Results are reported in Table 3.4. The accuracy is still

very good.
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Table 3.4 Errors on implied Black-Scholes volatilities (in bp) between the closed CEV formula applied to

an equivalent CEV model (2.11) and the PDE method, expressed as a function of relative strikes. Parame-

ters: time dependent ν and β , x0 = 0 and T = 1Y .

T/K 80% 90% 100% 110% 120%

1Y 0,09 -0,27 -0,20 -0,07 0,00

3.2 Accuracy of the third order formula (2.6)

Constant parameters. Tables 3.5 and 3.6 show that the third order approximation (2.6)

is very good for various values of β . The use of this formula has much improved the

accuracy in the case β = 0.2, for which the model is not close to the log-normal

proxy.

Table 3.5 Error in implied Black-Scholes volatilities (in bp) between the third order approximation for-

mula (2.6) and the closed formula for CEV model, expressed as a function of maturities in fractions of

years and relative strikes. Parameters: β = 0.8, ν = 0.2 and x0 = 0.

T/K 80% 90% 100% 110% 120%

6M -0.08 -0.02 -0.01 0.00 0.00

1Y -0.06 -0.03 -0.01 -0.01 0.00

1.5Y -0.06 -0.03 -0.02 -0.01 0.00

2Y -0.06 -0.04 -0.02 -0.01 0.00

3Y -0.08 -0.05 -0.03 -0.01 0.00

5Y -0.10 -0.06 -0.04 -0.01 0.01

10Y -0.16 -0.10 -0.06 -0.02 0.01

Table 3.6 Error in implied Black-Scholes volatilities (in bp) between the third order approximation for-

mula (2.6) and the closed formula for CEV model, expressed as a function of maturities in fractions of

years and relative strikes. Parameters: β = 0.2, ν = 0.2 and x0 = 0.

T/K 80% 90% 100% 110% 120%

6M -1.23 -0.18 -0.01 0.12 0.53

1Y -0.93 -0.34 -0.03 0.22 0.52

1.5Y -1.19 -0.51 -0.06 0.31 0.68

2Y -1.51 -0.68 -0.09 0.39 0.85

3Y -2.22 -1.05 -0.19 0.52 1.17

5Y -3.71 -1.87 -0.47 0.67 1.69

10Y -7.32 -4.13 -1.56 0.55 2.38
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3.3 Accuracy of the third order formula using normal approximation

Constant parameters. Tables 3.7 and 3.8 show that the third order approximation

(2.9) is also very good for various values of β . The computation of this formula is

slightly quicker than that with a log-normal proxy, because there are fewer terms.

Table 3.7 Error in implied Black-Scholes volatilities (in bp) between the third order approximation for-

mula (2.9) and the closed formula for CEV model, expressed as a function of maturities in fractions of

years and relative strikes. Parameters: β = 0.8, ν = 0.2 and x0 = 0.

T/K 80% 90% 100% 110% 120%

6M -1.61 -0.07 -0.01 0.03 0.77

1Y -0.88 -0.08 -0.02 0.03 0.45

1.5Y -0.61 -0.11 -0.02 0.04 0.31

2Y -0.51 -0.15 -0.03 0.06 0.25

3Y -0.49 -0.23 -0.05 0.10 0.23

5Y -0.71 -0.44 -0.11 0.16 0.30

10Y -1.70 -1.09 -0.37 0.22 0.56

Table 3.8 Error in implied Black-Scholes volatilities (in bp) between the third order approximation for-

mula (2.9) and the closed formula for CEV model, expressed as a function of maturities in fractions of

years and relative strikes. Parameters: β = 0.2, ν = 0.2 and x0 = 0.

T/K 80% 90% 100% 110% 120%

6M 0.22 0.06 -0.01 -0.06 -0.16

1Y 0.41 0.11 0.00 -0.10 -0.26

1.5Y 0.56 0.17 0.00 -0.13 -0.34

2Y 0.71 0.24 0.02 -0.16 -0.41

3Y 1.02 0.39 0.06 -0.20 -0.53

5Y 1.75 0.79 0.21 -0.23 -0.71

10Y 4.71 2.55 1.15 0.10 -0.84

4 General results about error analysis

In this section, we analyse the error terms according to the payoff smoothness (smooth,

vanilla or binary). To accomplish this, we first give some notations that will be used

throughout the theorems and the proofs. Then, we provide a general expansion for-

mula of the price E[h(XT )] at any order, making explicit the order of magnitude of

each term. This expansion is different according to the payoff smoothness: smooth

payoff in Theorem 4.1, vanilla payoff in Theorem 4.3 under an additional ellipticity

condition on σ and binay payoff in Theorem 4.5.
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For the three cases, we discuss the form of error estimates. We show that the

second order approximation formula (2.4) (and those at any order) is accurate under

one of the following conditions:

– the maturity of the option T is small.

– the derivatives of the volatility σ and the drift µ w.r.t. the second variables are

small. This is measured by the constant M1 defined in (1.5). In particular, the

model and the proxy coincide (X ≡ XBS) when these derivatives vanish (M1 = 0,

see remark 1.2). This is coherent with our estimates since the correction and the

error terms are estimated as O(M1) where O is the Landau symbol.

– The volatility, the drift and their derivatives are small. This dependence is repre-

sented using the constant M0 defined in (1.4).

Moreover, when the three conditions are all satisfied, the approximation formula be-

comes even more accurate.

All the proofs are given in Section 5.

Notations.

– About floating constants and upper bounds. In the following statements and proofs,

for the upper bounds we use numerous constants, that are not relabelled during

the computations. We simply use the unique notation

A ≤c B

to assert that A ≤ cB, where c is a positive constant depending on the model

parameters M0, M1, T , CE (defined in assumption (E)) and on other universal

constants. The constant c remains bounded when the model parameters go to 0,

and it is uniform w.r.t. the parameter ε ∈ [0,1]. When informative, we make clear

the dependence of upper bounds w.r.t. M0, M1 and T .

– Model differentiation. In the proofs, the derivatives of the parameterized process

Xε are useful: they are defined by Xε
i,t =

∂ iXε
t

∂ε i when these derivatives have a mean-

ing. Additionally, we write:

Y ε
T = Xε

T − (x0 + εX1,T ), Y ε
k,i,T =

∂ i((Y ε
T )k)

∂ε i
, Yk,i,T = Y 0

k,i,T ,

Rk,i,T =

∫ 1
0 Y

(1−λ )
k,i+1,T λ idλ

i!
.

– Miscellaneous. As usual, the Lp-norm of a real random variable Z is denoted by

‖Z‖p = [E|Z|p]1/p.

4.1 Error analysis for smooth payoff

Theorem 4.1 Asymptotic expansion for the price of smooth payoff ( h ∈ C ∞
0 (R)).

For m ≥ 2 assume that (Rm+2) holds. If the payoff h fulfills Assumption (H1), then

one has

E[h(XT )] = E[h(XBS
T )]+

m

∑
i=2

Ordi +Residm, (4.1)
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where different terms are estimated as follows.

– The contribution for order i ∈ {2, . . . ,m} : Ordi = ∑
⌊ i

2 ⌋
k=1 E[h(k)(XBS

T )
Yk,i,T

k!i!
] and it

is estimated by

|Ordi| ≤c sup |h( j)|∞
1≤ j≤⌊ i

2 ⌋−1

M1Mi−1
0 (

√
T )i. (4.2)

– The residual term for order m is : Residm = E[∑
[ m

2 ]

k=1 h(k)(XBS
T )

Rk,m,T

k!

+
(Y 1

T )⌊
m
2
⌋+1

⌊m
2 ⌋!

∫ 1
0 h(⌊m

2 ⌋+1)(vXT +(1− v)(XBS
T ))(1− v)⌊

m
2 ⌋dv], such that

|Residm| ≤c sup |h( j)|∞
1≤ j≤⌊m

2 ⌋
M1Mm

0 (
√

T )m+1. (4.3)

In the multiplicative case (σ(t,x) = ∆a(t,x) and µ(t,x) = ∆b(t,x)), we have

M0 ≤c ∆ and M1 ≤c ∆ . Thus, we obtain

Ordi = O((∆
√

T )i) for 2 ≤ i ≤ m, Residm = O((∆
√

T )m+1).

This justifies that Equation (4.1) should be viewed as an approximation formula of

order m.

Notice that the above theorem provides which terms have to be computed to

achieve a given accuracy. But to effectively compute these terms as a summation

of Greeks (as in Theorems 2.1 and 2.3), we shall use results in Appendix 6.

4.2 Error analysis for vanilla payoff

The payoff h for this kind of option is not necessarily smooth, it is almost every-

where differentiable and belongs to the space H . The previous expansion in the case

of smooth payoff is no more valid. Indeed, the i-th order contribution Ordi has been

represented using the derivatives of h(1) that do not necessarily exist anymore. There-

fore we introduce some new variables in order to represent higher contributions only

using h(1) (and not higher order derivatives).

Lemma 4.2 Given m≥ 2, assume (R3m−2) and (E). Let v∈ [0,1]. There exist random

variables (Gi)2≤i≤m,Sm, Im,v ∈ ∩p≥1 Lp such that for any l ∈ C ∞
0 (R), one has

i−1

∑
k=1

1

k!
E[l(k)(XBS

T )
Yk,k+i−1,T

(k + i−1)!
] = E[l(1)(XBS

T )Gi] for 2 ≤ i ≤ m,

m−1

∑
k=1

1

k!
E[l(k)(XBS

T )Rk,k+m−1,T ] = E[l(1)(XBS
T )Sm],

E[
(Y 1

T )m

(m−1)!
l(m)(vXT +(1− v)XBS

T )] = E[l(1)(vXT +(1− v)XBS
T )Im,v].
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Additionally, we have for any p ≥ 1

‖Gi‖p ≤c (
M0

σin f

)i−2M1Mi−1
0 (

√
T )i, (4.4)

‖Sm‖p + sup
v∈[0,1]

‖Im,v‖p ≤c (
M0

σin f

)m−1M1Mm
0 (

√
T )m+1. (4.5)

The proof of this lemma is postponed to Subsection 5.2.

The random variables in the above lemma are now used to represent conveniently

successive contributions in the general approximation formula for vanilla payoffs.

This is the following statement.

Theorem 4.3 Asymptotic expansion for the price of vanilla payoff (h ∈ H and

h′ ∈ H ).

Given m ≥ 2, assume (R3m−2) and (E). If the payoff h fulfills Assumption (H2), then

we have

E[h(XT )] = E[h(XBS
T )]+

m

∑
i=2

Ordi +Residm, (4.6)

where different terms are estimated as follows.

– The contribution of order i ∈ {2, . . . ,m} is Ordi = E[h(1)(XBS
T )Gi] and it is esti-

mated by:

|Ordi| ≤c‖h(1)(XBS
T )‖2(

M0

σin f

)i−2M1Mi−1
0 (

√
T )i. (4.7)

– The residual for order m is Residm = E[h(1)(XBS
T )Sm] +

∫ 1
0 E[h(1)(vXT + (1 −

v)XBS
T )Im,v](1− v)m−1dv, such that

|Residm| ≤c(‖h(1)(XBS
T )‖2 + sup

v∈[0,1]

‖h(1)(vXT +(1− v)XBS
T )‖2)

(
M0

σin f

)m−1M1Mm
0 (

√
T )m+1. (4.8)

Notice that the error term in Theorem 2.1 for vanilla payoff is Resid2. For the third

order approximation formula of Theorem 2.3, it is Resid3. Let us comment on the

above theorem.

– The label Ordi is due to the fact that this term is bounded by M1Mi−1
0 (

√
T )i mul-

tiplied by an ellipticity factor of the form ( M0
σin f

)n. This ellipticity factor is new

compared to the case of smooth payoffs. To have a clear view on each contri-

bution, one should have in mind the multiplicative case (σ(t,x) = ∆a(t,x) and

µ(t,x) = ∆b(t,x)) which leads to max(M1,M0) ≤c ∆ and

Ordi = O((∆
√

T )i) for 2 ≤ i ≤ m, Residm = O((∆
√

T )m+1).

That is why we refer to Equation (4.6) as an approximation formula of order m.
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– Correction terms are brought together in a different way than in the case of smooth

payoffs. Indeed, the hierarchy (in terms of amplitudes) is modified according to

the payoff smoothness. However, it is easy to check that the second order approx-

imation is the same for smooth payoffs and vanilla ones. For higher orders, there

is no more coincidence with the smooth case.

– Similarly to the smooth case, the above formula provides the appropriate terms

to compute to reach a given level of accuracy. It remains to explicitely compute

these terms as a summation of Greeks, using results in Appendix 6. This is done

in Theorems 2.1 and 2.3 for m = 2 and m = 3.

– Finally to accommodate irregular payoffs, we require extra smoothness properties

on µ and σ .

4.3 Error analysis for binary payoff

For this kind of option, the payoff h is not necessarily smooth, it is at least in H . The

results below are easy extensions of the case of vanilla options, we leave the proof to

the reader.

Lemma 4.4 Given m≥ 1, assume (R3m+2) and (E). Let v∈ [0,1]. There exist random

variables (Pi)1≤i≤m,Qm,Tm,v ∈ ∩p≥1 Lp such that, for any l ∈ C ∞
0 (R), one has:

i

∑
k=1

1

k!
E[l(k)(XBS

T )
Yk,k+i,T

(k + i)!
] = E[l(XBS

T )Pi] for 1 ≤ i ≤ m,

m

∑
k=1

1

k!
E[l(k)(XBS

T )Rk,k+m,T ] = E[l(XBS
T )Qm],

E[
(Y 1

T )m+1

m!
l(m+1)(vXT +(1− v)XBS

T )] = E[l(vXT +(1− v)XBS
T )Tm,v].

Moreover, they are estimated in the Lp norm as follows:

‖Pi‖p ≤c(
M0

σin f

)iM1Mi−1
0 (

√
T )i,

‖Qm‖p + sup
v∈[0,1]

‖Tm,v‖p ≤c(
M0

σin f

)m+1M1Mm
0 (

√
T )m+1.

We are now in a position to state an expansion formula of order m.

Theorem 4.5 Asymptotic expansion for the price of binary payoff (h ∈ H ).

Given m ≥ 1, assume (R3m+2) and (E). If the payoff h fulfills Assumption (H3), then

we have

E[h(XT )] = E[h(XBS
T )]+

m

∑
i=1

Ordi +Residm, (4.9)

where different terms are as follows.
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– The contribution for order i∈ {1, . . . ,m} is Ordi = E[h(XBS
T )Pi] and it is estimated

by:

|Ordi| ≤c ‖h(XBS
T )‖2(

M0

σin f

)iM1Mi−1
0 (

√
T )i. (4.10)

– The residual term for order m is Residm = E[h(XBS
T )Qm] +

∫ 1
0 E[h(vXT + (1 −

v)XBS
T )Tm,v](1− v)mdv, such that

|Residm| ≤c(‖h(XBS
T )‖2 + sup

v∈[0,1]

‖h(vXT +(1− v)XBS
T )‖2)

(
M0

σin f

)m+1M1Mm
0 (

√
T )m+1. (4.11)

Notice that the second order approximation for smooth payoffs and vanilla options is

only a first order approximation for binary options. This is due to the lack of regularity

of the binary payoffs.

5 Proofs

For the following, we use the same definitions and notations as in chapter 1 of

[Nua06]. Before giving the proofs for the main theorems, we need to upper bound

the Lp norm of the derivatives Xε
i,t to state Theorem 4.1, to upper bound also the Lp

norm of the Malliavin derivatives D
j
t1,··· ,t j

Xε
i,t , and use the key lemma 5.5 in order to

state Theorems 4.3 and 4.5.

5.1 Proof of Theorem 4.1 (Smooth payoff)

The proof of Theorem 4.1 is performed through two steps:

– Step 1: Upper bound the Lp norm of Xε
i,t .

– Step 2: Completion of the proof of Theorem 4.1.

We first recall that ε � Xε
t is almost surely CN−1 w.r.t. ε under assumption (RN).

5.1.1 Step 1: Upper bounds for the Lp norm of Xε
i,t

We aim at proving the following result, which may be useful, independently of our

work.

Theorem 5.1 Given N ≥ 2, assume (RN). For every ε ∈ [0,1] and p ≥ 1, we have

sup
t≤T

‖Xε
1,t‖p ≤c M0

√
T ; (5.1)

sup
t≤T

‖Xε
i,t‖p ≤c M1Mi−1

0 (
√

T )i, ∀i ∈ {2, . . . ,N −1}. (5.2)
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A meaning of the first inequality is that the first derivative has the same amplitude

as the implicit total standard deviation M0

√
T . The second inequality shows that the

bounds of the derivative estimates decrease successively by the implicit total standard

deviation M0

√
T . Furthermore, the dependence w.r.t. the constant M1 shows that the

derivatives (Xi,t)i≥2 are null if the function σ and µ are deterministic (see Remark

1.2). In this case, X is the Black-Scholes model.

Proof The existence of any moment is easy to establish, we will skip details. In the

following, we rather focus on their dependence w.r.t. M0, M1 and
√

T .

Clearly, it is sufficient to prove estimates for p ≥ 2. Take p ≥ 2, note that Xε
1,. is

the solution of the linear SDE:

dXε
1,t = σt(X

ε
t )dWt + µt(X

ε
t )dt + εXε

1,t(σ
(1)
t (Xε

t )dWt + µ
(1)
t (Xε

t )dt),

Xε
1,0 = 0.

To estimate the Lp norm of the solution of the above linear equation, we state a

lemma, that will be repeatedly used in the following computations.

Lemma 5.2 Assume that Z is an Itô process such that

i) supt≤T ‖Zt‖p < +∞ for some p ≥ 2;

ii) Z solves a linear equation

Zt =
∫ t

0
Zs(asdWs +bsds)+

∫ t

0
αsdWs +βsds,

where supt≤T (‖αt‖p +‖βt‖p) < +∞, a and b are bounded.

Then, for a constant c (depending only on p and T ), we have

sup
t≤T

‖Zt‖p ≤ csup
t≤T

(‖αt‖p +‖βt‖p)
√

T ec(|a|∞+|b|∞)pT P/2

. (5.3)

The proof is quite standard: it results from easy calculations using BDG inequalities

and Gronwall’s lemma. We omit further details.

From this, it readily follows that

sup
t≤T

‖Xε
1,t‖p ≤c max(|σ |∞, |µ|∞)

√
T ≤c M0

√
T .

This proves the first inequality (5.1).

We now prove the second inequality (5.2) which is not straightforward. To ac-

complish this, it is useful to scale the parameters. Let us define the new variables:

X̃ε
t = X

ε
M0

√
T

t , (5.4)

σ̃(t,x) =
σ(t,x)

M0
, µ̃(t,x) =

µ(t,x)

M0
. (5.5)

From Equation (1.3), one obtains the dynamics of the rescaled process (X̃ε
t )t :

dX̃ε
t = ε(σ̃t(X̃

ε
t )

dWt√
T

+ µ̃t(X̃
ε
t )

dt√
T

), X̃ε
0 = x0, (5.6)



20

where ε ∈ [0,M0

√
T ]. The advantage of this change of parameters is that the constant

M0 associated to the new coefficients σ̃ and µ̃ is bounded by 1 (thus, it is model-free):

max(|σ̃ |∞, · · · , |σ̃ (N)|∞, |µ̃|∞, · · · , |µ̃(N)|∞) = 1.

Additionally, there is a simple relation between derivatives of Xε and those of X̃ε :

X̃ε
i,t ≡

∂ i(X̃ε
t )

∂ε i
=

∂ i(X
ε

M0

√
T

t )

∂ε i
=

1

(M0

√
T )i

X

ε
M0

√
T

i,t .

Using this notation, the proof of Inequality (5.2) is reduced to prove that

sup
t≤T

‖X̃ε
i,t‖p ≤c

M1

M0
. (5.7)

for every ε ∈ [0,M0

√
T ] and i ∈ {2, . . . ,N −1}.

Proof of (5.7) . By successive differentiation of (5.6), it is not hard to prove

sup
t≤T

‖X̃ε
i,t‖p ≤c 1. (5.8)

Indeed, we obtain linear SDEs5 solved by X̃ε
i,., to which we can apply Lemma 5.2.

It gives uniform bounds because the arising processes (a,b,α,β ) are proportional

to 1/
√

T and then multiplied by
√

T in Lemma 5.2. Another heuristic argument, to

get that the bound (5.8) is indeed equal to 1, is the following: on the one hand, the

integrands Wt√
T

and t√
T

in the SDE (5.6) are O(1) over the maturity T . On the other

hand, the uniform bounds for the derivatives of σ̃ and µ̃ up to order N are smaller

than 1. Consequently, the Lp estimates (5.8) remain uniformly bounded.

However, the inequality (5.8) is not equivalent to the inequality (5.7) because
M1
M0

≤ 1. But this preliminary estimate is useful to establish the final one as follows.

To prove the required inequality, we first show that X̃ε
i,. solves a linear equation, this

is stated in the following proposition.

Proposition 5.3 Given N ≥ 2, assume (RN). For 2 ≤ i ≤ N −1, X̃i,. is the solution of

the linear SDE:

dX̃ε
i,t = dHε

i,t + X̃ε
i,tdLε

t , X̃ε
i,0 = 0, (5.9)

dLε
t = ε(σ̃

(1)
t (X̃t)

dWt√
T

+ µ̃
(1)
t (X̃t)

dt√
T

),

dHε
i,t = Pε

σ̃ ,i,t

dWt√
T

+Pε
µ̃,i,t

dt√
T

,

where the processes (Pε
σ̃ ,i,t)t≥0 and (Pε

µ̃,i,t)t≥0 are defined in the proof.

5 this is fully justified in Proposition 5.3.
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Proof Take i ≥ 2, the SDE for the ith derivative is obtained from Equation (5.6) using

differentiation under the integral sign (see [Kun84]):

dX̃ε
i,t =

∂ i(εσ̃t(X̃
ε
t ))

∂ε i

dWt√
T

+
∂ i(εµ̃t(X̃

ε
t ))

∂ε i

dt√
T

, X̃ε
i,0 = 0. (5.10)

The application of the Leibniz formula for the ith derivative of the product (that is

(ε f (ε))(i) = ε f (i)(ε)+ i f (i−1)(ε)) gives:

∂ i(εσ̃t(X̃
ε
t ))

∂ε i
= ε

∂ i(σ̃t(X̃
ε
t ))

∂ε i
+ i

∂ i−1(σ̃t(X̃
ε
t ))

∂ε i−1
.

Using the Faà di Bruno formula for derivative of composite function (apply Lemma

6.4 with g(x) = σ̃t(x) and f (ε) = X̃ε
t ), one obtains

∂ i(εσ̃(t, X̃ε
t ))

∂ε i
=ε ∑

k=(k1,··· ,ki)∈Ni

∑
i
j=1 jk j=i

dkσ̃
(∑i

j=1 k j)

t (X̃ε
t )

i

∏
j=1

(X̃ε
j,t)

k j

+ i ∑
k=(k1,··· ,ki−1)∈Ni−1

∑
i−1
j=1 jk j=i−1

dkσ̃
(∑i−1

j=1 k j)

t (X̃ε
t )

i−1

∏
j=1

(X̃ε
j,t)

k j .

Notice that the ith component ki can take only two values 0 or 1 (because iki ≤
∑

i
j=1 jk j = i). When ki = 1, one has k j = 0 for j < i and dk = 1 (see Lemma 6.4).

Thus, we obtain

∂ i(εσ̃(t, X̃ε
t ))

∂ε i
=εσ̃

(1)
t (X̃ε

t )X̃ε
i,t

+ ε ∑
k=(k1,··· ,ki−1,0)∈Ni

∑
i−1
j=1 jk j=i

dkσ̃
(∑i−1

j=1 k j)

t (X̃ε
t )

i−1

∏
j=1

(X̃ε
j,t)

k j

+ i ∑
k=(k1,··· ,ki−1)∈Ni−1

∑
i−1
j=1 jk j=i−1

dkσ̃
(∑i−1

j=1 k j)

t (X̃ε
t )

i−1

∏
j=1

(X̃ε
j,t)

k j

:= εσ̃
(1)
t (X̃ε

t )X̃ε
i,t +Pε

σ̃ ,i,t . (5.11)

We define analogously Pε
µ̃,i,t by replacing σ̃ by µ̃ in the expression (5.11). It writes

∂ i(εµ̃(t, X̃ε
t ))

∂ε i
= εµ̃

(1)
t (X̃ε

t )X̃ε
i,t +Pε

µ̃,i,t . (5.12)

The two equalities (5.11) and (5.12) plugged into the relation (5.10) give immediately

the result. ⊓⊔
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End of proof of (5.7). Owing to Equation (5.3), X̃i,. is the solution of a linear SDE, to

which we apply Lemma 5.2. We obtain

sup
t≤T

‖X̃ε
i,t‖p ≤c sup

t≤T

‖Pε
σ̃ ,i,t‖p + sup

t≤T

‖Pε
µ̃,i,t‖p.

In view of the expression of Pε
σ̃ ,i,t in Equation (5.11), using the Hölder inequality and

the preliminary estimates (5.8), we obtain

sup
t≤T

‖Pε
σ̃ ,i,t‖p ≤c ∑

k=(k1,··· ,ki−1,0)∈Ni

∑
i−1
j=1 jk j=i

|σ̃ (∑i−1
j=1 k j)|∞ + ∑

k=(k1,··· ,ki−1)∈Ni−1

∑
i−1
j=1 jk j=i−1

|σ̃ (∑i−1
j=1 k j)|∞

Since ∑
i−1
j=1 jk j ≥ 1 and k j are integers, we have ∑

i−1
j=1 k j ≥ 1. It readily follows

sup
t≤T

‖Pε
σ̃ ,i,t‖p ≤c max(|σ̃ (1)|∞, · · · , |σ̃ (N−1)|∞) = c

max(|σ (1)|∞, · · · , |σ (N−1)|∞)

M0

≤c

M1

M0
.

The same inequality holds for Pε
µ̃,i,t , which finishes the proof of (5.7). Consequently,

Theorem 5.1 is proved. ⊓⊔

5.1.2 Step 2: Proof of Theorem 4.1 (Smooth payoff)

Before performing the Taylor expansion, we recall the notations:

Y ε
T = Xε

T − (x0 + εX1,T ), Y ε
k,i,T =

∂ i((Y ε
T )k)

∂ε i
, Yk,i,T = Y 0

k,i,T ,

Rk,i,T =

∫ 1
0 Y

(1−λ )
k,i+1,T λ idλ

i!
.
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Clearly one has XT = XBS
T +Y 1

T . We write

E[h(XT )] =E[h(XBS
T )]+

⌊m
2 ⌋

∑
k=1

1

k!
E[h(k)(XBS

T )(Y 1
T )k]

+
∫ 1

0
E[

(Y 1
T )⌊

m
2 ⌋+1(1− v)⌊

m
2 ⌋

⌊m
2
⌋!

h(⌊m
2 ⌋+1)(vXT +(1− v)XBS

T )]dv

=E[h(XBS
T )]+

⌊m
2 ⌋

∑
k=1

1

k!
E[h(k)(XBS

T )(
m

∑
i=2k

Yk,i,T

i!
+Rk,m,T )]

+
∫ 1

0
E[

(Y 1
T )⌊

m
2 ⌋+1(1− v)⌊

m
2 ⌋

⌊m
2
⌋!

h(⌊m
2 ⌋+1)(vXT +(1− v)XBS

T )]dv

=E[h(XBS
T )]+

m

∑
i=2

[ i
2 ]

∑
k=1

1

k!
E[h(k)(XBS

T )
Yk,i,T

i!
]

+
⌊m

2 ⌋

∑
k=1

1

k!
E[h(k)(XBS

T )Rk,m,T ]

+
∫ 1

0
E[

(Y 1
T )⌊

m
2 ⌋+1(1− v)⌊

m
2 ⌋

⌊m
2
⌋!

h(⌊m
2 ⌋+1)(vXT +(1− v)XBS

T )]dv

=E[h(XBS
T )]+

m

∑
i=2

Ordi +Residm,

where we have used a Taylor expansion twice for the two first identities (notice that

Yk,i,T = 0 for i ≤ 2k−1), and we have interchanged the summations for the third one.

The equation (4.1) is proved.

Now we establish estimates (4.2) and (4.3). By differentiation of composite func-

tion using the Faà di Bruno formula (see Lemma 6.4 with g(x) = xk and f (ε) = Y ε
T ),

we obtain

Y ε
k,i,T = ∑

α=(α1,··· ,αi)∈Ni

∑
i
j=1 jα j=i, ∑

i
j=1 α j≤k

dα
k!

(∑i
j=1 α j)!

(Y ε
T )k−∑

i
j=1 α j

i

∏
j=1

(Y ε
1, j,T )α j . (5.13)

Here, we restrict to the indices α such that ∑
i
j=1 α j ≤ k because we have g

(∑i
j=1 α j)(x)=

0 when ∑
i
j=1 α j > k. Using Equation (5.2), one deduces for each j ∈ {2, . . . , i} that

‖Y ε
1, j,T‖p = ‖Xε

j,T‖p ≤c M1M
j−1
0 (

√
T ) j (5.14)

for any p ≥ 1. For j = 1, the inequality (5.14) is also available because we can write

Y ε
1,1,T =

∫ ε
0 Xλ

2,T dλ , which readily implies

‖Y ε
1,1,T‖p ≤c M1M0(

√
T )2 ≤c M1

√
T .
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For any indices α , we have the rough estimate ‖(Y ε
T )k−∑

i
j=1 α j‖p ≤c 1. Using the

above estimate, (5.14) and the Hölder inequality, we finally get

‖Y ε
k,i,T‖p ≤c ∑

α=(α1,··· ,αi)∈Ni

∑
i
j=1 jα j=i

i

∏
j=1

(M1M
j−1
0 (

√
T ) j)α j

≤c ∑
α=(α1,··· ,αi)∈Ni

∑
i
j=1 jα j=i

(
M1

M0
)∑

i
j=1 α j M

∑
i
j=1 jα j

0 (
√

T )∑
i
j=1 jα j

≤c

M1

M0
Mi

0(
√

T )i = cM1Mi−1
0 (

√
T )i, (5.15)

where we used
M1
M0

≤ 1 and ∑
i
j=1 α j ≥ 1 (since (α j) j are integers that satisfy ∑

i
j=1 jα j =

i ≥ 1). The inequality (5.15) gives immediately the inequality (4.2). It also leads to

‖Rk,m,T‖p ≤c M1Mm
0 (

√
T )m+1. (5.16)

Since Y 1
T = X2,T +R1,2,T , one has

‖Y 1
T ‖p ≤ ‖X2,T‖p +‖R1,2,T‖p ≤c M1M0(

√
T )2 +M1M2

0(
√

T )3 ≤c M1M0(
√

T )2

(recall our definition of generic constants). Therefore

‖(Y 1
T )⌊

m
2 ⌋+1‖p ≤c M

⌊m
2 ⌋+1

1 M
⌊m

2 ⌋+1

0 (
√

T )2(⌊m
2 ⌋+1) ≤c M1Mm

0 (
√

T )m+1, (5.17)

where we have used M1 ≤ M0 and 2⌊m
2
⌋ ≥ m−1. The inequalities (5.16) and (5.17)

readily leads to the inequality (4.3). The proof is complete. ⊓⊔

5.2 Proof of Lemma 4.2

For Malliavin calculus, we use the notation of Nualart [Nua06] for the Sobolev spaces

Dk,p associated to the norm ‖.‖k,p. We divide the proof of Lemma 4.2 into three steps:

– Step 1: Upper bounds for the D
k,p norm of Xε

i,t .

– Step 2: Statement of a suitable integration by parts formula (Lemma 5.5) in order

to handle the irregularity of vanilla payoffs.

– Step 3: Completion of the proof of Lemma 4.2.

In all this subsection, we assume (R3m−2) for a given m ≥ 2.

5.2.1 Step 1: Upper Bounds for the D
k,p norm of Xε

i,t

The aim of this paragraph is to show that, for every ε ∈ [0,1], we have

– Xε
T ∈ D

3m−2,∞ with

‖DXε
T‖3m−3,p ≤c |σ |∞

√
T , (5.18)
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– for each i ∈ {1, . . . ,3m−3}, Xε
i,T belongs to D

3m−3−i,∞ with

‖Xε
1,T‖3m−4,p ≤c M0

√
T , (5.19)

‖Xε
i,T‖3m−3−i,p ≤c M1Mi−1

0 (
√

T )i, i ≥ 2. (5.20)

Only the proofs of upper bounds need few details. To prove the inequality (5.18), we

use the following lemma.

Lemma 5.4 For any t ∈ [0,T ] and ε ∈ [0,1], Xε
t belongs to D

3m−2,∞. Moreover, the

j first Malliavin derivatives of Xε
t satisfy the following estimates:

sup
(t1,··· ,t j)∈[0,T ] j ,t∈[0,T ]

‖D
j
t1,··· ,t j

Xε
t ‖p ≤c |σ |∞.

Proof We first take j = 1; for t1 ∈ [0, t], using formula (2.59) in [Nua06] p.126, we

have

Dt1 Xε
t = εσ(t1,X

ε
t1
)e

∫ t
t1

ε(σ
(1)
s (Xε

s )dWs+(µ
(1)
s −ε

(σ
(1)
s )2

2 )(Xε
s )ds)

.

This leads to the announced estimate when j = 1. The result for j ≥ 2 is easily ob-

tained by induction. ⊓⊔

From the definition of the D
k,p norm, it follows that

‖DXε
T‖3m−3,p = (

3m−3

∑
j=1

E[(
∫ T

0
· · ·

∫ T

0
(Dt1,··· ,t j

Xε
T )2dt1 · · ·dt j)

p
2 ])

1
p

≤ (
3m−3

∑
j=1

T
j
2 sup

(t1,··· ,t j)∈[0,T ] j

‖D
j
t1,··· ,t j

Xε
T‖p

p)
1
p ≤c |σ |∞

√
T

using Lemma 5.4 at the last inequality. This proves the first inequality (5.18).

Now, to establish the upper bounds (5.19) and (5.20), we note that it is equivalent to

prove, for every ε ∈ [0,M0

√
T ], that

‖X̃ε
1,T‖3m−4,p ≤c 1, (5.21)

‖X̃ε
i,T‖3m−3−i,p ≤c

M1

M0
, i ≥ 2, (5.22)

where (X̃ε
t )t is the rescaled process introduced in (5.4). Using similar arguments as

for (5.8), we obtain

‖X̃ε
i,T‖N−1−i,p ≤c 1, (5.23)

for any ε ∈ [0,M0

√
T ]. The inequality (5.21) is proved but not (5.22), because

M1
M0

≤ 1.

To establish (5.22), we proceed as for the proof of Theorem 5.1. We will skip further

details.
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5.2.2 Step 2: Statement of the integration by part Lemma

To handle non-smooth payoffs, our computations rely on a non-degenerate condition

on the volatility (stated in assumption (E)). This type of condition is essential to

prove the following lemma.

Lemma 5.5 Assume (E) and (Rk+1) for a given k ≥ 1 . Let Z belong to ∩p≥1D
k,p.

For any v ∈ [0,1], there exists a random variable Zv
k in any Lp (p ≥ 1) such that for

any function l ∈ C ∞
0 (R), we have

E[l(k)(vXT +(1− v)XBS
T )Z] = E[l(vXT +(1− v)XBS

T )Zv
k ].

Moreover, we have ‖Zv
k‖p ≤c

‖Z‖k,2p

(σin f

√
T )k

, uniformly in v.

This is a straightforward adaptation of Lemma 5.3 in [BGM08], we omit the proof.

5.2.3 Step 3: Proof of Lemma 4.2

Starting from Equation (5.13) with i+ k−1 instead of i, we write

Y ε
k,i+k−1,T = ∑

α=(α1,··· ,αi)∈Ni

∑
i+k−1
j=1 jα j=i+k−1,∑i+k−1

j=1 α j≤k

dα
k!

(∑i+k−1
j=1 α j)!

(Y ε
T )k−∑

i+k−1
j=1 α j

i+k−1

∏
j=1

(Y ε
1, j,T )α j .

Using Equation (5.20) one deduces, for 2 ≤ j ≤ i+ k−1, that

‖Y ε
1, j,T‖k−1,p = ‖Xε

j,T‖k−1,p ≤c M1M
j−1
0 (

√
T ) j.

This inequality is also available for j = 1, since

‖Y ε
1,1,T‖k−1,p = ‖

∫ ε

0
Xλ

2,T dλ‖k−1,p ≤c M1M0(
√

T )2 ≤c M1

√
T .

Additionally, we note that Y ε
k,i+k−1,T ∈ D

k−1,∞. Furthermore, using the Hölder in-

equality for the spaces D
k−1,∞ (see Proposition 1.5.6 in [Nua06]), we obtain

‖Y ε
k,i+k−1,T‖k−1,p ≤c M1Mi+k−2

0 (
√

T )i+k−1. (5.24)

We omit the details of the above computations because they are very similar to those

used for (5.15). Then, Lemma 5.5 ensures the existence of a random variable Gi in

Lp. Its Lp norm is estimated using Lemma 5.5 and Inequality (5.24):

‖Gi‖p ≤c

i−1

∑
k=1

M1Mi+k−2
0 (

√
T )i+k−1

(σin f

√
T )k−1

≤c

M1M
2(i−1)−1

0 (
√

T )i

σ i−2
in f

,

using
M0
σin f

≥ 1. For Sm and Im,v, we proceed analogously.
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5.3 Statement of Theorem 4.3 (Vanilla options)

We first assume that h is a smooth function. We have

E[h(XT )] =E[h(XBS
T )]

+
m−1

∑
k=1

1

k!
E[h(k)(XBS

T )(
m

∑
i=k+1

Yk,k+i−1,T

(k + i−1)!
+Rk,k+m−1,T )]

+
∫ 1

0
E[

(Y 1
T )m(1− v)m−1

(m−1)!
h(m)(vXT +(1− v)XBS

T )]dv

=E[h(XBS
T )]+

m

∑
i=2

1

k!

i−1

∑
k=1

E[h(k)(XBS
T )

Yk,k+i−1,T

(k + i−1)!
]

+
m−1

∑
k=1

1

k!
E[h(k)(XBS

T )Rk,k+m−1,T ]

+
∫ 1

0
E[

(Y 1
T )m(1− v)m−1

(m−1)!
h(m)(vXT +(1− v)XBS

T )]dv

=E[h(XBS
T )]+

m

∑
i=2

E[h(1)(XBS
T )Gi]

+E[h(1)(XBS
T )Sm]

+
∫ 1

0
E[h(1)(vXT +(1− v)XBS

T )Im,v](1− v)m−1dv,

where we have used a Taylor expansion in the first identity, interchanged the summa-

tions in the second equality, and used the Lemma 4.2 in the last one. So yields the

identity (4.6) for smooth payoff.

Additionally, using estimates (4.4) and (4.5) from Lemma 4.2, it is straightforward to

deduce the inequalities (4.7) and (4.8).

It remains to extend the result to vanilla options (instead of smooth function h). Since

all the estimates depend only on h(1), it can be achieved by a standard density argu-

ment. We refer to [BGM08] for details.

6 Appendix

Here, we bring together the results (and their proofs) which allow us to derive the

explicit terms in the formulas (2.4), (2.6), (2.9) and (2.10).

In the following, (ut) (resp. (vt)) is a square integrable and predictable (resp. deter-

ministic) process and l is a smooth function with compact support.

6.1 Technical results related to explicit correction terms

The two first lemmas are proved in [BGM08].
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Lemma 6.1 For any continuous (or piecewise continuous) function f , any continu-

ous semimartingale Z vanishing at t=0, one has:
∫ T

0
ftZtdt =

∫ T

0
(
∫ T

t
fsds)dZt .

Lemma 6.2 One has:

E[(
∫ T

0
utdWt)l(

∫ T

0
vtdWt)] = E[(

∫ T

0
vtutdt)l(1)(

∫ T

0
vtdWt)].

In the case of deterministic u, it is equal to
∫ T

0 vtutdt Greekl
1(

∫ T
0 vtdWt).

6.2 Explicit correction in the case of Dupire model

In this case (µ ≡− 1
2
σ2), the SDEs solved by the derivatives Xi,. become:

dX1,t =σtdWt −
σ2

t

2
dt,X1,0 = 0,

dX2,t =2X1,t(σ
(1)
t dWt −σtσ

(1)
t dt),X2,0 = 0,

dX3,t =3(X2,t(σ
(1)
t dWt −σσ

(1)
t dt)+(X1,t)

2(σ
(2)
t dWt − (σtσ

(2)
t +(σ

(1)
t )2)dt)),X3,0 = 0.

Lemma 6.3 We have

E[(
∫ T

0
vtX1,tdt)l(

∫ T

0
σtdWt)] = ω(σ2,v)T

0

(

E[l(1)(
∫ T

0
σtdWt)]−

1

2
E[l(

∫ T

0
σtdWt)]

)

,

(6.1)

E[(
∫ T

0
vt

X2,t

2
dt)l(

∫ T

0
σtdWt)] = ω(σ2,σσ (1),v)T

0

(

E[l(2)(
∫ T

0
σtdWt)]

− 3

2
E[l(1)(

∫ T

0
σtdWt)]+

1

2
E[l(

∫ T

0
σtdWt)]

)

, (6.2)

E[(
∫ T

0
vt

(X1,t)
2

2
dt)l(

∫ T

0
σtdWt)] = ω(σ2,σ2,v)T

0

(

E[l(2)(
∫ T

0
σtdWt)]−E[l(1)(

∫ T

0
σtdWt)]

)

+
(1

4
ω(σ2,σ2,v)T

0 +
1

2
ω(σ2,v)T

0

)

E[l(
∫ T

0
σtdWt)], (6.3)

E[(
∫ T

0
σtσ

(1)
t

X2,tX1,t

2
dt)l(

∫ T

0
σtdWt)] = (−3

2
C6,T − 1

2
C7,T − 1

4
C8,T )E[l(

∫ T

0
σtdWt)]

+(2C6,T +
5

2
C7,T +

5

4
C8,T )E[l(1)(

∫ T

0
σtdWt)]

+(−4C7,T −2C8,T )E[l(2)(
∫ T

0
σtdWt)]

+(2C7,T +C8,T )E[l(3)(
∫ T

0
σtdWt)], (6.4)

where

C6,T = ω(σ2,σσ (1),σσ (1))T
0 , C7,T = ω(σ2,σ2,σσ (1),σσ (1))T

0 ,

C8,T = ω(σ2,σσ (1),σ2,σσ (1))T
0 .
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Proof Applying first Lemma 6.1 to f (t) = vt and Zt = X1,t , we obtain:

E[(
∫ T

0
vtX1,tdt)l(

∫ T

0
σtdWt)] =E[(

∫ T

0
(
∫ T

t
vsds)dX1,t)l(

∫ T

0
σtdWt)]

=E[(
∫ T

0
(
∫ T

t
vsds)(σtdWt −

σ2
t

2
dt)l(

∫ T

0
σtdWt)]

=(
∫ T

0
σ2

t (
∫ T

t
vsds)dt)E[l(1)(

∫ T

0
σtdWt)]

− (
∫ T

0

σ2
t

2
(
∫ T

t
vsds)dt)E[l(

∫ T

0
σtdWt)],

and we have used Lemma 6.2 for the last equality. This gives (6.1).

To establish the equalities (6.2), (6.3) and (6.4), we proceed analogously. We only

detail the computations for (6.4). Using Lemma 6.1 ( f (t) = σtσ
(1)
t , Zt =

X2,t X1,t

2
) to

justify the first following identity and Lemma 6.2 for the second one, we can write

E[(
∫ T

0
σtσ

(1)
t

X2,tX1,t

2
dt)l(

∫ T

0
σtdWt)]

=E[(
∫ T

0
ω(σσ (1))T

t (X2
1,t(σ

(1)
t dWt −σtσ

(1)
t dt)

+
X2,t

2
(σtdWt −

σ2
t

2
dt)+σtσ

(1)
t X1,tdt))l(

∫ T

0
σtdWt)]

=E[(
∫ T

0
ω(σσ (1))T

t (−σtσ
(1)
t X2

1,t −σ2
t

X2,t

4
+σtσ

(1)
t X1,t)dt)l(

∫ T

0
σtdWt)]

+E[(
∫ T

0
ω(σσ (1))T

t (σtσ
(1)
t X2

1,t +σ2
t

X2,t

2
)dt)l(1)(

∫ T

0
σtdWt)].

Then, we obtain the announced identity by an application of the three first identities

(6.1), (6.2) and (6.3). ⊓⊔

6.3 Proof of Theorem 2.3

Proof Using Theorem 4.3 and Lemma 4.2, the price is approximated at the third

order by

E[h(XBS
T )]+E[h(1)(XBS

T )
X2,T

2
]+E[h(1)(XBS

T )
X3,T

3!
]+E[h(2)(XBS

T )
(

X2,T

2
)2

2
].

We compute each correction term separately.

Step 1: term with X2,T . Owing to Lemma 6.2, we have

E[h(1)(XBS
T )

X2,T

2
] =E[h(1)(XBS

T )(
∫ T

0
X1,t(σ

(1)
t dWt −σtσ

(1)
t dt))]

=E[h(2)(XBS
T )(

∫ T

0
σtσ

(1)
t X1,tdt)]

−E[h(1)(XBS
T )(

∫ T

0
σtσ

(1)
t X1,tdt)].
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Apply Lemma 6.3 (equality (6.1)) to obtain

E[h(1)(XBS
T )

X2,T

2
] = C1,T (E[h(3)(XBS

T )]− 3

2
E[h(2)(XBS

T )]+
1

2
E[h(1)(XBS

T )]),

where C1,T = ω(σ2,σσ (1))T
0 .

Step 2: term with X3,T . From Lemma 6.1 and 6.2, we obtain

E[h(1)(XBS
T )

X3,T

3!
] =E[h(2)(XBS

T )

∫ T
0 σtσ

(1)
t X2,tdt

2
]

−E[h(1)(XBS
T )

∫ T
0 σtσ

(1)
t X2,tdt

2
]

+E[h(2)(XBS
T )

∫ T
0 σtσ

(2)
t (X1,t)

2dt

2
]

−E[h(1)(XBS
T )

∫ T
0 (σtσ

(2)
t +(σ

(1)
t )2)(X1,t)

2dt

2
].

An application of Lemma 6.3 (equalities (6.2) and (6.3)) gives:

E[h(1)(XBS
T )

X3,T

3!
] =(−1

2
C2,T − 1

2
C3,T − 1

4
C4,T − 1

4
C5,T − 1

2
C6,T )E[h(1)(XBS

T )]

+(
1

2
C3,T +C4,T +

5

4
C5,T +2C6,T )E[h(2)(XBS

T )]

+(−C4,T −2C5,T − 5

2
C6,T )E[h(3)(XBS

T )]

+(C5,T +C6,T )E[h(4)(XBS
T )],

where

C2,T = ω(σ2,(σ (1))2)T
0 , C3,T = ω(σ2,σσ (2))T

0 , C4,T = ω(σ2,σ2,(σ (1))2)T
0 ,

C5,T = ω(σ2,σ2,σσ (2))T
0 , C6,T = ω(σ2,σσ (1),σσ (1))T

0 .

Step 3: term with (X2,T )2. Similarly, we have

E[h(2)(XBS
T )

(
X2,T

2
)2

2
] =E[h(2)(XBS

T )
∫ T

0
(σ

(1)
t

X1,tX2,t

2
dWt −σtσ

(1)
t

X1,tX2,t

2
dt +(σ

(1)
t )2

X2
1,t

2
dt)]

=E[h(3)(XBS
T )

∫ T

0
(σtσ

(1)
t

X1,tX2,t

2
dt]

−E[h(2)(XBS
T )

∫ T

0
(σtσ

(1)
t

X1,tX2,t

2
dt]

+E[h(2)(XBS
T )

∫ T

0
(σ

(1)
t )2

X2
1,t

2
dt].



31

Using Lemma 6.3 (third and fourth equalities), it follows

E[h(2)(XBS
T )

(
X2,T

2
)2

2
] =(

1

2
C2,T +

1

4
C4,T +

3

2
C6,T +

1

2
C7,T +

1

4
C8,T )E[h(2)(XBS

T )]

+(−C4,T − 7

2
C6,T −3C7,T − 3

2
C8,T )E[h(3)(XBS

T )]

+(C4,T +2C6,T +
13

2
C7,T +

13

4
C8,T )E[h(4)(XBS

T )]

+(−6C7,T −3C8,T )E[h(5)(XBS
T )]

+(2C7,T +C8,T )E[h(6)(XBS
T )],

where

C1,T = ω(σ2,σσ (1))T
0 , C2,T = ω(σ2,(σ (1))2)T

0 ,

C4,T = ω(σ2,σ2,(σ (1))2)T
0 , C6,T = ω(σ2,σσ (1),σσ (1))T

0 ,

C7,T = ω(σ2,σ2,σσ (1),σσ (1))T
0 , C8,T = ω(σ2,σσ (1),σ2,σσ (1))T

0 .

Final step. To get the announced formula, we bring together all the previous contri-

butions and use that E(h(i)(XBS
T )) = Greekh

i (X
BS
T ). ⊓⊔

6.4 Faà di Bruno’s formula [dB57]

Lemma 6.4 If g and f are functions that are sufficiently differentiable, then

(g( f (ε)))(n) = ∑
k=(k1,··· ,kn)∈Nn

∑
n
j=1 jk j=n

dkg
(∑n

j=1 k j)( f (ε))
n

∏
j=1

( f ( j)(ε))k j ,

where dk are integer numbers depending only on k. Notice that when kn = 1 one has

k1 = · · · = kn−1 = 0 and dk = 1.

References

[ACCL01] C. Albanese, G. Campolieti, P. Carr, and A. Lipton. Black-Scholes goes hypergeometric. Risk

magazine, 14(12):99–103, 2001.

[AS07] F. Antonelli and S. Scarlatti. Pricing options under stochastic volatility: a power series ap-

proach. Preprint, 2007.

[BGM08] E. Benhamou, E. Gobet, and M. Miri. Smart expansion and fast calibration for jump diffusion.

Available on ssrn.com. In revision., 2008.
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