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With stratospheric flight ormartian exploration inperspective, the compressibility influenceon thewakedynamics of

a NACA0012 profile is investigated. The unsteady flow past the airfoil at Re � 1000 is characterized using direct

numerical simulations for various angles of attack α ∈ �0°; 20°� and Mach numbers up to M∞ � 0.5. Steady flows

obtained using the selective frequency damping (SFD) technique are used as base states for a global linear stability

analysis. The influence of both the angle of attack and the Reynolds number on themost amplifiedmode characteristics

is first investigated in the incompressible regime. Then, the compressibility effects in the subcritical regime are

considered. A stabilizing or a destabilizing effect of compressibility is observed depending on the angle of attack and

theReynolds number. Forα < 20°, compressibility has a destabilizing effect close to the critical threshold,which results

in anearlierHopfbifurcation,whereas increasing theMachnumberalways results inadecreaseof the growthrateof the

mode well above the critical threshold. Finally, the mode frequency decreases with the Mach number.

Nomenclature

Km = Krylov subspace of dimension m
L = Jacobian matrix of the Navier–Stokes operator
M = propagator, exp�Lt�
M∞ = Mach number
q = state vector, �ρ; ρu; ρE�
qb = base state
q 0 = disturbance of the state vector, ~q exp�ωt�
~q = eigenvector, � ~ρ; ~ρu; ~ρE�
qτ� = direct numerical simulation solution at t is equal to τ

starting from initial condition �qb � ϵq 0�
qτ− = direct numerical simulation solution at t is equal toτ start-

ing from initial condition �qb − ϵq 0�
Re = Reynolds number
St = Strouhal number
α = angle of attack
Δ = temporal filter width
χ = gain coefficient
ω = eigenvalue, ωr � iωi

ωi = mode frequency
ωr = growth rate

I. Introduction

C OMPRESSIBLE flows at low Reynolds numbers have recently
gained significant interest in many prospective applications,

such as vactrains (e.g., hyperloop concept), stratospheric flight,
martian exploration, and optimization of liquid atomization. These
flows are generally typical of low-density/pressure environments or
high-speed micro-objects. Despite its importance in a growing num-

ber of engineering applications, fundamental knowledge on the
physics underlying low-Reynolds-number compressible flows is
lacking. In addition to those practical perspectives, the analysis of
compressibility effects under low-Reynolds-number condition could
help understand more complex mechanisms at higher Reynolds
numbers. For example, as suggested byMeliga et al. [1], the analysis
of vortex shedding phenomenon at lowReynolds numbers could be a
key point for understanding transition to turbulence, because the von
Kármánvortex street persists at higher Reynolds numbers in the fully
developed turbulent regime [2].
Recently, some studies have been conducted on the effect of

compressibility on the stability of low-Reynolds-number flows
[1,3,4]. In their global stability analysis of axisymmetric two-
dimensional (2D) wake flows, Meliga et al. [1] reported contrasted
effects of compressibility in the subsonic regime (up toM∞ � 0.7),
depending on the base flow configuration. Focusing on the secondary
Hopf bifurcation, they observed an increase of the critical Reynolds
number at which the secondary oscillating helical mode becomes
unstable with respect to the Mach number in the case of an axisym-
metric afterbody flow at zero angle of attack, hence a stabilizing
effect of compressibility. Conversely, they observed a decrease of the
same critical Reynolds number with respect to the Mach number, up
to M∞ ≈ 0.63, for the flow around a sphere. Through an adjoint-
based sensitivity analysis, they related this stabilizing/destabilizing
behavior to a change in the longitudinal advection of the perturbation
by the base flow within the recirculation zone in the lee of the body.
Their analysis questions the previous hypothesis of Bouhadji and
Braza [5], who attributed the destabilizing effect of compressibility to
an increase of the length of the recirculation bubble, whereas this
lengthening is observed for both the afterbody and the sphere in [1].
The increase of the recirculation length with growing Mach num-

ber has also been documented by Canuto and Taira [3] for the flow
around a circular cylinder and by Sansica et al. [4] for the sphere, with
a stronger elongation as the critical Reynolds number is approached.
In the latter case, the recirculation length is significantly reduced as
M∞ increases above unity (see also [6,7]). The size variation of the
separation regions behind bodies influences the natural frequency of
the flow [6–9], aswell as the frequency of themost unstablemode [4].
In both [3,4], the frequency of themost amplified eigenmode is found
to decrease as the recirculation length increases.
Sansica et al. also extended the stability analysis of Meliga for the

sphere up to low supersonic regime at M∞ � 1.2, for Reynolds
numbers between Re � 200 and Re � 370. Considering a three-
dimensional (3D) base flow, they confirmed the non-monotonic
effect of compressibility but observed a destabilization only in the
low subsonic regime up toM∞ ≈ 0.3. For higher Mach numbers, the
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helical oscillating mode is progressively damped until its complete
stabilization in the high subsonic regime (M∞ ≈ 0.7 for Re � 280).
They attributed this difference to the base flow axisymmetry
assumption used by Meliga et al.
This specific regime of compressible low-Reynolds-number flows

has also been investigated experimentally in theMarsWind Tunnel at
Tohoku University. Anyoji et al. [10] compared the aerodynamic
characteristics of a flat plate and a NACA0012-34 airfoil at Reynolds
numbers Re ∈ �4300; 41;000� in the low subsonic regime, up to
M∞ � 0.6. Effects of compressibility on the aerodynamic coeffi-
cients at Reynolds numbers in the range Re ∈ �100; 10;000� have
been also studied in [11–14] for flat plates, cambered and triangular
airfoils. From these studies, it can be concluded that for Reynolds
numbers up to Re ≈ 10;000, the influence of compressibility on the
drag and lift coefficients is not the same for the different angles of
attack tested. In particular, the dynamics of the separated leading-
edge shear layer at high angles of attack is highly dependent on the
Mach number, which affects leading-edge vortex formation and the
resulting aerodynamic force. Unique features related to the displace-
ment of the shock foot away from the airfoil surfacewere also put into
evidence in the transonic regime [13]. Yet, despite these few studies,
fundamental knowledge on the occurrence of instabilities in the
compressible flow past airfoils at low Reynolds numbers is still
lacking. In this regard, the objective of this work is to investigate
compressibility effects on the wake dynamics of a 2D NACA0012
profile through a global linear modal stability analysis [15,16] com-
bined with direct numerical simulations (DNS). In particular, our
study is focused on the first bifurcation in order to detail how the
characteristics of the most unstable mode and the associated critical
Reynolds number are affected by compressibility effects.
The choice of the base flow onwhich the global stability analysis is

performed is of crucial importance. Indeed, in their work, Sansica
et al. showed the different stability responses to the base flow choice:
mean flow versus fixed point solution. As originally found by
Barkley [17] in the case of the circular cylinder, before being theo-
retically proven by Sipp and Lebedev [18] and generalized by Turton
et al. [19], temporal averages of quasi-monochromatic frequency
oscillating flows are marginally stable close to critical parameters,
rendering the identification of bifurcation threshold impossible,
while the mode frequency matches the natural one. On the other
hand, stability analysis performed on actual base flows (obtained
with fixed point, filtered, or enforced symmetric solutions) enables a
clear identification of the critical threshold, but the mode frequency
diverges from the observed one when moving above the bifurcation
threshold. Because the present work focuses on the influence of the
Mach number on the first bifurcation, we opt for a base flow defined
as a fixed point solution of Navier–Stokes equations.

The paper is structured as follows. The numerical approaches used
for the base flow computation and for the global stability analysis are
presented in Sec. II. In Sec. III results from stability analysis andDNS
on the NACA0012 airfoil are discussed for both the incompressible
and compressible flow regimes, with angles of attack ranging from
α � 8° to α � 20° and Reynolds numbers up to Re � 1000. Con-
clusions and perspectives are reported in Sec. IV.

II. Numerical Methods

A. Governing Equations

We consider the 3D compressible Navier–Stokes (NS) equations
in conservative form for an ideal gas:

∂ρ
∂t

� ∇ ⋅ �ρu� � 0

∂ρu
∂t

� ∇ ⋅ �ρu ⊗ u� � −∇p�∇ ⋅
�
μ�∇u�∇uT� − 2

3
μ∇ ⋅ uδij

�

∂ρE
∂t

� ∇ ⋅ �ρuE� pu� � ∇ ⋅ �K∇T� �∇ ⋅
�
u

�
μ�∇u� ∇uT�

−
2

3
μ∇ ⋅ uδij

��
(1)

where ρ is the fluid density,u the velocity vector,p the pressure,T the
temperature, and E the total energy. The viscosity μ and the thermal
conductivity K are constant. The system can be written in the
following compact form:

∂q
∂t

� N �q� (2)

with q � �ρ; ρu; ρE�T representing the state vector and N the non-
linear Navier–Stokes dynamic operator. We introduce the four non-
dimensional numbers:

Re � ρ∞U∞L

μ
; M∞ � U∞���������

γ p∞
ρ∞

q ; St � fL

U∞
; Pr � μcp

K
(3)

the Reynolds number, Mach number, Strouhal number, and Prandtl
number, respectively. Here, the Prandtl number is taken constant
(Pr � 0.7). Quantities with subscript∞ indicate upstream quantities,
L is a characteristic length scale, cp is the specific heat at constant
pressure, γ is the ratio of specific heats, and f is the frequency. The
corresponding characteristic time scale is T � L∕U∞.

B. Base State Computation

The steady base flow is obtained with the numerical solver IC3,
a high-order compact compressible code developed at ISAE-
SUPAERO [20,21]. IC3 is a parallel finite-volume-based code with
explicit Runge–Kutta (RK) scheme for time integration. In this work,
the third-order RK and the fourth-order centered schemes have been
used, respectively, for temporal and spatial discretization.
Below the critical threshold of the first bifurcation, the base flow

corresponds to a steady solution of NS equations that is directly
obtained from DNS. Above the critical threshold, the numerically
simulated flow is naturally unsteady, and there are two options
to force a steady base flow required for the stability analysis. Either
it can be chosen as the time average of the unsteady solution, or
the steadiness of the numerical solution can be enforced. As
discussed in the Introduction, the former is better suited for the
prediction of the natural frequency, whereas the latter gives the
correct critical threshold and the growth rate of the unstable mode.
As we are interested in the influence of compressibility on the first
bifurcation, we opt for the second option and resort to a filtering
technique.
We use the selective frequency damping (SFD) method, first

introduced by Åkervik et al. [22], which damps the highest temporal
frequency modifying the Navier–Stokes equations (2) in the follow-
ing way:

∂q
∂t

� N �q� − χ�q − �q�
∂ �q
∂t

� q − �q

Δ
(4)

where χ is a control coefficient and �q an approximation of the
unknown steady solution computed at each iteration by applying a
low pass filter of width Δ to the solution q. Both q and �q converge
toward the targeted steady solution �q0, i.e., N � �q0� � 0.
The filter cutoff frequency fc � �1∕Δ�must be chosen below the

frequency of the unstable disturbance of the flow. Considering ω as
the most unstable eigenvalue of the unfiltered dynamic system, the
control coefficient has to satisfy ωr < χ < ωr � fc, where ωr repre-
sents the growth rate [22]. Besides, χ must be large enough to force
the relaxation of the system toward �q, but not that large to impact the
convergence.Close to the bifurcation threshold, one can consider that
ωr ≪ fc; therefore χ � fc stands as a good compromise. Despite its
ease of implementation, this method presents some limitations: it
does not converge for any arbitrary (Δ; χ) pairs and the convergence
toward the steady-state solution can be very long; see also [23]. In
this work, the filter parameters (Δ, χ) are deduced from unfiltered
DNS solutions: Δ � �1∕fn� and χ � �1∕Δ�, where fn is the natural
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frequency of the oscillating wake. The simulation is considered
converged to the equilibrium state at some time tf when the relative
variation of the momentum L2-norm stays below 0.2% during five
characteristic times, namely:

kρu�t� − ρu�tf − 5T�k
2

kρu�tf − 5T�k
2

≤ 0.002 for t ∈ �tf − 5T; tf�

C. Stability Analysis

Linear dynamics is based on the assumption that in a small
neighborhood of a state q, the dynamics of the nonlinear system _q �
N �q� is characterized by the dynamics of the linearized system:

∂�q� ϵq 0�
∂t

� N �q� ϵq 0�

� N �q� � ϵ
∂N �q�
∂q

����
q

q 0 �O�ϵ2� (5)

where ϵ ≪ 1. Therefore, the dynamics of a perturbation q 0 � ~qeωt,
with ~q � � ~ρ; ~ρu; ~ρE�T , in the neighborhood of the base state qb reads

∂q 0

∂t
� Lq 0 (6)

where L � ∂N �q�
∂q j

qb
is the Jacobian matrix of the Navier–Stokes

operator computed at the base state qb. To find the dominant modes
that govern the asymptotic behavior of the perturbation, we have to
compute the spectrum of L. Explicitly assembling the Jacobian
matrix of very-large-scale dynamic systems can be very expensive
and time-consuming. For this reason, the so-called matrix-free
approaches are becoming very popular nowadays: the coefficients
of the Jacobian matrix are not computed explicitly, but rather
accessed by evaluatingmatrix–vector products. Many iterative meth-
ods for solving eigenvalue problems allow a matrix-free implemen-
tation, including the Krylov–Schur method [24] that has been chosen
here. This method belongs to the class of Krylov projection methods
whose aim is to find an approximation of the most relevant Ritz pairs
of amatrix, projecting the original problemonto an orthonormal basis
of the Krylov subspace.
Given the eigenproblem

Ax � λx (7)

the Krylov subspace of m-dimension Km is generated by the n × n
matrix A and an n-vector b as follows:

Km � spanfb; Ab; A2b; : : : ; Am−1bg (8)

where fb; Ab; A2b; : : : ; Am−1bg is called the Krylov sequence. This
sequence, under certain assumptions, converges toward the eigen-
vector associated with the largest modulus eigenvalue as m → ∞
(power iteration method).
The Krylov–Schur method is an improvement of the Arnoldi

algorithm, whose main steps can be found in [25,26]. Considering
the problem (7) and the Krylov sequence, we can write

AKm ≃ Km�e2; e3; : : : ; em;−c�|�������������{z�������������}
Companionmatrix

(9)

The computation of the companion matrix spectrum is cheaper than
that ofA and, since the companionmatrix represents the projection of
A intoKm, its eigenpairs approximate those of A. Approximation (9)
can be reformulated as follows:

AVm � VmH� reTm|{z}
residual

(10)

whereVm is an orthonormal basis of theKrylov subspace, normalized
with the Euclidean norm. H is an upper Hessenberg matrix whose

spectrum approximates that of A and the residual indicates how far
the orthonormal basis is from an invariant subspace of A [26]. Once
the eigenpairs of H have been computed, those of A are given by
�λA; xA� ≃ �λH;VmxH�. The main difference between Arnoldi and
Krylov–Schur methods lies in the number of iterationsm required to
ensure the convergence of a given number of eigenvalues :mmay be
too large when using the Arnoldi method. This can yield very large
matrices that exceed the available memory and considerably
increase the cost of computingHm-eigenpairs (the cost grows cubi-
cally with m). The Krylov–Schur method, instead, incorporates an
effective restarting scheme,which fixes the dimension of theKrylov
subspace and iteratively applies the Arnoldi factorization. More
precisely, if k eigenpairs are needed, the Krylov subspace dimen-
sion is fixed so thatm > k, them-Arnoldi factorization is called, and
if k eigenpairs have not converged yet, the unwanted part of the
factorization is discarded in order to restart the process with the
remaining eigenvectors as the new initial Krylov subspace [26].
The matrix-free formulation can be used in Arnoldi-based algo-
rithms because an explicit representation of the Jacobian matrix is
not necessary. Only matrix–vector products are needed for the
construction of the Krylov subspace.
This method is implemented by coupling the software library

SLEPc for the solution of large-scale sparse eigenvalue problems,
which has proven to perform better than ARPACK [26], with our
computational fluid dynamics (CFD) solver IC3 for a time-stepping
matrix-free exponential transformation using full DNS, as first intro-
duced by Chiba [27], Tezuka and Suzuki [28], and Tezuka [29].
Considering the dynamics of the perturbation given by Eq. (6) and an
initial condition q 0�0�, the analytic solution at time t is

q 0�t� � Mq 0�0�

where M � eLt is the exponential propagator. Applying Arnoldi-
based algorithms on M instead of L is usually preferable, because
Arnoldi-based algorithms converge toward the eigenvectors associ-
ated with the eigenvalues of largest modulus that may not correspond
to the most amplified modes, i.e., the eigenvalues with the largest
real part.
In Chiba’s algorithm, Mq 0 is approximated as follows:

Mq 0 � qτ� − qτ−
2ϵ

(11)

where qτ� and qτ− are the DNS solutions corresponding to the initial
conditions �qb � ϵq 0� and �qb − ϵq 0� integrated until τ. The same
numerical parameters used for the base state computation have been
used for the computation of qτ� and qτ−.
Once the eigenpairs (λM; xM) ofM are computed, the eigenpairs

of L can be obtained by inverting the exponential transformation:

λL � log jλMj � i arg�λM�
τ

xL � xM (12)

In this formulation, two specific numerical parameters have to be
tuned, apart from those of the CFD solver: ϵ and τ. The finite differ-
ence parameter ϵ has to be large enough to avoid round-off errors,
but not too large to prevent nonlinear effects. There is no general rule
to set this parameter. For example, Bagheri et al. [30] recommend
ϵ ∈ �0.01; 1�, whereas Fosas de Pando et al. [31] use ϵ ∈ f10−8;
10−5; 1g. Others like An et al. [32], instead, set ϵ as a function
depending on both the base state and the perturbation. In our simu-
lations, we have set ϵ ≈ 10−6. Regarding the parameter τ, it must be
smaller than half the oscillation period of the mode, in order to avoid
aliasing effects and large enough to filter out numerical disturbances.
The stability solver has been successfully validated against literature
in the 2D cases of the lid-driven cavity (LDC) and the flow past a
circular cylinder (see Appendix for details).
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III. Stability of the NACA0012 Airfoil Wake

In this section, the 2D linear stability analysis on the NACA0012
airfoil is presented. The configuration of the current simulations is
depicted in Fig. 1. The upstream velocity is imposed as U �
U∞ cos αex �U∞ sin αey, where α is the angle of attack. The airfoil
closes at chordC � 1, with a sharp trailing edge, and the chord is taken
as the characteristic length scale, i.e.,L � C. Both the upper and lower
edges of the domain are divergent to allow simulations at different
angles of attack. To validate the present simulations, Table 1 summa-
rizes the growth rate and mode frequency of the most unstable modes,
obtained at different Reynolds numbers for the incompressible case at
α � 16° and compared with the results of Zhang and Samtaney [33].
The authors have performed a biglobal stability analysis on the incom-
pressible flow around a NACA0012 profile at α � 16°, studying both
the 2D and 3D cases by varying the transverse wavenumber value.
They also conducted a 2DDNS tracking the early time evolution of the
cross-stream velocity when the filtered base state is perturbed by a
small-amplitude perturbation. The comparison shows a good agree-
ment between present results and the reference. For the stability
analysis the value of τ has been set to 0.1 characteristic time and a
Krylov subspace of dimension m � 300 has been considered.

A. Incompressible Case

1. Influence of the Angle of Attack

The incompressible case has been simulated using aMach number
of 0.05. We first consider the unfiltered base flow whose mean
aerodynamic coefficients CD and CL and corresponding Strouhal
number St are reported in Fig. 2 for different angles of attack at
Re � 1000. The results are in very good agreement with those of
Kurtulus [34]. It can be observed from the St versus α plot that, at this
Reynolds number, the onset of vortex shedding occurs at α � 8°. The
Strouhal number initially reaches values of the order of 0.9 before
decreasing as α increases. This decrease shows that St scales with
C × sin α, which corresponds to the vertical distance between leading
and trailing edge separated shear layers and hence represents a
characteristic length scale for the interactions of shear layers across
thewake. The onset of vortex shedding is found to be correlated with
an increase in CL, which reflects the separation and roll-up of the
leading-edge shear layer and the influence of subsequent leading-
edge vortex formation on the upper surface of the airfoil. Note that
this trend in CL versus α curve is different from that observed at
higher Reynolds numbers, where leading-edge separation is gener-
ally associated with lift stall. Accordingly, because the leading-edge
vortex generates a pressure force that acts normally to the surface,CD

is also found to increase more strongly for α values above 8°.
In Fig. 3a the growth rate versus frequency of the most unstable

mode at different angles of attack is presented for Re � 1000. It
shows a non-monotonic behavior of the growth rateωrwith respect to
α : a sharp increase as the angle of attack increases from 8 to 14°,
where ωr is maximal, followed by a decrease for α ≥ 14°. The
frequency of the mode ωi, instead, constantly decreases. Although
this appears to correlate with the evolution of the natural frequency
(see Fig. 2), we stress the fact that stability analysis is here performed
on the filtered base flow and that, for such a base flow, the frequency

of the most unstable mode does not accurately match the vortex
shedding frequency away from the stability threshold.
The decrease in ωi can be correlated with an increase in size of

the recirculation region of the base flow, in both streamwise and
transverse directions, hence an increase in the wake characteristic
length scale, as depicted in Fig. 4. The length of the recirculation
region is here identified using zero streamwise velocity isolines.
Moreover, the streamwise wavelength of the most unstable mode
increases with the thickening of the recirculation region associated
with the increase of the angle of attack. The corresponding stream-
wise wavenumber is found to be proportional to the mode frequency,
leading to a relatively constant phasevelocity vϕ ≈ 0.8with respect to
α. This value scales with the base flowmean velocity measured in the
wake well downstream of the recirculation bubble.
Figure 4 further shows that the spatial structure of the most

unstable mode exhibits largest intensities in the wake downstream
of the recirculation region for all angles of attack. The streamwise
positions of maximal intensities of the mode are indicated by the red
circles and are calculated considering the position of maximal ampli-
tude of the envelope of the signal, i.e., the modulus of the complex
signal. Yet, it is observed that the relative position between peak
intensity and the recirculation region strongly varies with α. For
α � 8°, largest intensities are observed far downstream of the recir-
culation region, quite similarly to what can be observed behind bluff
bodies at Reynolds numbers slightly above the stability threshold,
i.e., critical Reynolds number corresponding to the first Hopf bifur-
cation [33,35]. The base flow in this region is nearly parallel, and the
instability can be explained by deficits of streamwise velocity in the
wake and the associated inflection points in their transverse distri-
bution. The location of maximal intensity in the spatial structure of
the most unstable mode and the tail end of the base flow recirculation
region get closer as α increases.

This is further highlighted on Fig. 3b, which plots the streamwise
position of the most downstream point of the recirculation region and
that of peak intensity in the spatial structure of themost unstablemode.
It is shown that the two regions first exhibit strong correlation at
α ≈ 12°–14°, where the trend of the peak intensity position changes
and starts increasing with respect to α, then both curves join at
α � 18°. The two regions seem uncorrelated below α � 14° and
strongly correlated above. For α ≥ 14°, the most unstable mode is
preferentially located in the nonparallel region of the base flow, and
hence the mechanism driving the instability may differ from that at
lower α. We note that α � 14° also corresponds to maximal growth
rate of the unstable mode (see Fig. 3a), but it remains unclear at this

Fig. 1 Domain details for simulations around the NACA0012 profile at zero angle of attack.

Table 1 Growth rate and frequency (ωr � ωii� with respect to
Reynolds number at α � 16° compared with reference results

Re Current work 2D DNS [33] Biglobal analysis [33]

400 0.2591� 0.4555i 0.2754� 0.4549i 0.2956� 0.4285i

600 0.5164� 0.4468i 0.5363� 0.4459i 0.5126� 0.4264i

800 0.6393� 0.4261i 0.6625� 0.4247i 0.6202� 0.4085i

1000 0.6949� 0.4012i 0.7160� 0.3994i 0.6783� 0.3860i
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point whether or not the decrease of growth rate observed for α ≥ 14°
is due to the interaction between the recirculation region and themode.
For the flowpast square and circular cylinders,Mao andBlackburn

[35] attributed the maximum growth rate to the base flow being most
parallel at the end of the recirculation region. A measure of parallel-
ism in this region was provided by the closing angle of the recircu-
lation region, quantified by the ratio between the streamwise distance
from thewidest point to the end of the recirculation region (L) and its
maximum width (H), as it is shown in Fig. 4. Although not shown
here for the sake of conciseness, we also find that this ratio ismaximal
(i.e., the flow is most parallel at the end of the recirculation region)
when the growth rate is maximal, which seems to corroborate pre-
vious observations of Mao and Blackburn. However, we will see in
the next section that this hypothesismay not strictly hold for all cases.

2. Influence of the Reynolds Number

The evolution ofωr as a function ofωi for the most unstable mode
at differentReynoldsnumbers and forα � 20° is displayed in Fig. 5a.
Themode frequency slightly increases close to the stability threshold,
i.e., fromRe � 200 toRe � 300; this is probably due to the thinning
of the shear layers, caused by the decrease of viscosity, which at those
very low Reynolds numbers may impact the frequencymore than the
elongation of the recirculation region. Beyond Re � 300, instead,
the mode frequency decreases, and the growth rate exhibits a non-
monotonic trend with a maximum observed around Re � 800.
It can be observed from Fig. 6 that the recirculation region extends

further downstreamwith increasingRe, which is in linewith previous
observations on circular and square cylinders [35] and on the
NACA0012 airfoil at α � 16° [33]. This supports the idea that
the characteristic length scale of the recirculation region drives ωi.
The evolution of the streamwise wavenumber with respect to Re is
also in line with the results of Mao and Blackburn [35] for the square

cylinder: it slightly increases close to the stability threshold and drops
as the Reynolds number is further increased. The wavenumber is
proportional to the mode frequency, leading to a constant phase
velocity vϕ ≈ 0.8, which is similar to what has been observed at
constant Re � 1000 for the different angles of attack. Overall,
Figs. 5b and 6 indicate that the evolution of the most unstable modes
with Re is somewhat similar to that with α.
Figure 6 further shows that the end of the recirculation region and

the streamwise abscissa of maximal intensity in the spatial structure
of mode, indicated by the red circles, are clearly separated at Re �
200 and then get closer to one another as Re is increased. Figure 5b
shows that the Reynolds number at which both locations first exhibit
strong correlation is Re ≈ 400–500, but the peak intensity joins the
recirculation region at Re � 800, which corresponds to the maxi-
mum growth rate. This suggests that the interaction between the
recirculation region and the far wake instability is a necessary con-
dition, but not (solely) responsible for the change in the trend ofωr as
we move away from the stability threshold. On the other hand, we
find again that the maximum growth rate is obtained when the base
flow is most parallel at the end of the recirculation region, as mea-
sured by the closing angle defined previously.
Figure 7 summarizes these results in the form of contours of ωr in

the plane (α, Re). WI and RBI labels are added to denote regions of
the parameter space where the dominant instability is located well
downstream (wake instability) or at the end of the recirculation region
(recirculation bubble instability) of the base flow. The thick red line
delimits the two regions and is obtained by considering when the
length of the recirculation region and the location of the mode peak
intensity first exhibit strong correlation. The dashed black line marks
themaximumgrowth rate obtained at eachRe (asα is varied). For this
range ofReynolds number and angles of attack, themaximumgrowth
rate is always reached within the RBI region. The blue thick line

a) b)

Fig. 3 Growth rate as a function of frequency of the most unstable mode (a) and length of the recirculation region and streamwise location of maximal
intensity in the spatial structure of the most unstable mode (b), at Re � 1000 and varying α.

Fig. 2 Evolution of the mean values of CD, CL, and Strouhal number Stwith α at Re � 1000. Black marks show present results and light gray those of
Kurtulus [34].

D
ow

nl
oa

de
d 

by
 I

SA
E

 o
n 

O
ct

ob
er

 6
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

07
92

 



a) b)

Fig. 5 Growth rate as a function of frequency of the most unstable mode (a) and length of the recirculation region and streamwise location of maximal
intensity in the spatial structure of the most unstable mode (b), for α � 20° and varying Re.

Fig. 4 k ~ρuk∕max�k ~ρuk� isocontours atRe � 1000 andM∞ � 0.05. Five levels of contours in the range �0.5 − 1� are plotted. The base flow streamlines
are in light gray and the solid black line corresponds to the isocontourux � 0. Red circles indicate the streamwise position of the peak intensity of themode.
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indicates when the base flow is most parallel at the end of the
recirculation zone, measured by the maximum L∕H ratio at each
Re. This maximum is relatively close to that of the growth ratewithin
the range of Re and α tested. Hence, Fig. 7 shows that ωr reaches a
maximum for all Re and that the angle of attack at which this value is
obtained increases as Re decreases. Accordingly, the angle of attack

at which the mode transitions from the WI to the RBI type increases
as Re decreases. Moreover, it appears that within this range of
Reynolds numbers, ωr does not reach a maximum for all α and
additional cases at higher Re should be computed to clarify whether
ωr continuously riseswithRe or drops at some point.We note that the
continuous increase in ωr with Re is in line with previous results of

Fig. 6 k ~ρuk∕max�k ~ρuk� isocontours at α � 20° andM∞ � 0.05. Same conventions as in Fig. 4.
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Zhang and Samtaney [33] obtained on the NACA0012 airfoil at α �
16° and Re ∈ �400–1000�. Finally, it can be observed that the vari-
ability of ωr with α increases with the Reynolds number.

B. Compressibility Effects in the Subcritical Regime

The effect of compressibility on the aerodynamic coefficients is
shown in Fig. 8 for a Reynolds number of Re � 1000 and various
angles of attack. Both the drag and lift coefficients increase with the
Mach number. This increase is more noticeable at high angles of
attack and steepenswith theMach number, as expected. The Strouhal
number, instead, decreases with the increase ofM∞ for all the tested

angles of attack, except for α � 20°, for which it increases with
respect to the Mach number.
In Fig. 9a, the growth rate of themost amplifiedmode is shown as a

function of its frequency atRe � 1000 for different angles of attack α
andMach number varying between 0.05 and 0.5. First, the frequency
ωi of this oscillatory mode decreases with α for all M∞, which
generalizes previous results on the incompressible case to the com-
pressible one. In addition, ωi decreases with M∞ for all α. As
discussed previously in the incompressible case, there is no strict
correlation between the evolution of St and that of ωi with respect to
the Mach number, which can be attributed to our approach based on
the filtered base state (rather than on the time-averaged base state).
The decrease in ωi with increasing M∞ is consistent with previous
works on bluff bodies [1,3,4,6,7] and can again be related to the
elongation of the recirculation region. As illustrated in Fig. 10 for
α � 16°, the recirculation region of the base flow, depicted by the
zero streamwise velocity contour in thick black line, elongates as the
Mach number is increased.
On the other hand, the influence of compressibility on the growth

rate of the most unstable mode depends on the angle of attack. For
α � 8° and 9° the growth rate increases with the Mach number,
indicating a destabilizing effect of compressibility that is clearly less
pronounced for α � 9° than for α � 8°. At α � 10°, compressibility
does not change the growth rate, whereas further increasing the angle
of attack leads to a decrease of the growth rate with increasing Mach
number, hence a stabilizing effect of compressibility. This figure
further shows that themaximumgrowth rate (as α is varied) decreases
with increasing M∞ and it is achieved at slightly lower angles of
attack compared with the incompressible case.
The transition between stabilizing and destabilizing effect of

compressibility is also shown in Fig. 9b, where the characteristics
of the leading mode are presented at α � 16° for different Reynolds
numbers. Compressibility has a stabilizing effect atRe � 1000; 600,
and 400, whereas it has a destabilizing effect atRe � 300, i.e., as one
gets closer to the critical Reynolds number (Rec ≈ 285), leading to

Fig. 7 Growth rate of the most unstable mode in the plane (α, Re). The
dashed line corresponds to the maximum growth rate at each Re. The
thick red line separates WI region from RCI region. The thick blue line
corresponds to the maximum L∕H ratio.

Fig. 8 Evolution of CD, CL, and Strouhal number St as a function of α at Re � 1000 and variousM∞.

a) b)

Fig. 9 Most unstablemode evolution in the complexplanea)with respect toα andM∞ atRe � 1000andb)with respect toReandM∞ atα � 16°.Dashed
lines represent iso-Mach interpolation curves.
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the first Hopf bifurcation. Figure 11 summarizes the effect of
compressibility on the most amplified mode in the plane (α, Re).
The solid black line separates regions where compressibility has a
stabilizing (S) effect from thosewhere it has a destabilizing (D) effect.
This limit goes from high to low Reynolds numbers as the angle
of attack is increased, and it also shows that the destabilizing effect
of the upstreamMach number is observed close to the critical thresh-
old only.
In Fig. 12, the critical Reynolds number Rec is presented as a

function of the Mach number. Compressibility brings the first Hopf
bifurcation forward for all the angles of attack considered here.
Nevertheless, the intensity of the destabilization (the variation of
ΔRec withM∞)weakens asα increases:ΔRec � Rec�M∞ � 0.5� −
Rec�M∞ � 0.05� represents 15%, 8% and 3% for α � 8°; 12°, and
16°, respectively, up to α � 20°, where compressibility does not
influence the transition (ΔRec ≈ 0).
Through an adjoint-based sensitivity analysis, Meliga et al. [1]

have analyzed the stabilizing/destabilizing effects of the Mach
number on axisymmetric wake flows (sphere and afterbody) by

Fig. 10 k ~ρuk∕max�k ~ρuk� isocontours at α � 16° and Re � 1000. Same conventions as in Fig. 4.

Fig. 11 Compressibility effects on themost amplifiedmode in the (α,Re)
plane. The solid black line separates regions of stabilizing (S) and desta-
bilizing (D) compressibility effect. The dashed lines correspond to the
critical Re at M∞ � 0.05 and M∞ � 0.5.
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considering the competition between the production, cross-stream,
and streamwise advection of the disturbance by the base flow. In
particular they have hypothesized that the destabilization is governed
by the streamwise advection and is promoted when blockage effects
are strong, i.e., when the width of the recirculation region is large
compared with the characteristic length of the body. Yet, in our case,
we find that blockage increases with α and that the intensity of
destabilization (with increasing M∞) decreases (see Fig. 12).
Nevertheless, the relation between blockage and the role of

streamwise and crosswise advection may not be as straightforward.
Figure 13 shows the spatial distribution of the base flow momentum
variation with respect to the Mach number at Re � 1000. The
streamwise momentum variation is negative downstream of the

recirculation region, which promotes advection of the instability
toward the recirculation bubble (destabilizing effect) for all the angles
of attack. Its absolute value increases with α. The cross-stream
momentum variation, instead, is significant only close to the recircu-
lation bubble and tends to convect the instability away from the
recirculation region (stabilizing effect). Looking at the location of
the unstable mode relatively to the base flow recirculation region, the
cross-stream momentum variation is likely to induce a stabilizing
effect for α > 10° because the instability is close to the recirculation
region; even if at α � 10°, they do not present strong correlation
yet. Conversely, for lower angles of attack, the instability is located
far downstream of the recirculation region and is presumably not
affected by such stabilizing effects. In a similar way, stabilizing

a) b)

c) d)

Fig. 12 Neutral stability curves in the �M∞;Re� plane for a) α � 8°, b) α � 12°, c) α � 16°, and d) α � 20°.

a) b)

Fig. 13 Momentum variation of the base state with respect to theM∞ for different α atM∞ � 0.5 andRe � 1000. Streamwise component ∂ρux∕∂M∞ in
column (a) and cross-stream component ∂ρuy∕∂M∞ in column (b). Same conventions as in Fig. 4.
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effects due to crosswise advection may not play a significant role at
Reynolds numbers close to stability threshold, where the unstable
mode is located far downstream of the recirculation region, at least
for α < 20°.

IV. Conclusions

Interest in low-Reynolds-number compressible flows has recently
emerged together with prospective applications like stratospheric
flight, Mars exploration, and vactrains. Up-to-date, very few studies
have addressed this peculiar regime, and there is a lack of funda-
mental knowledge on the physics that drives compressible effects at
low Reynolds numbers.
In this work, we have performed a global linear stability analysis,

based on the finite volume spatial discretization of the compressible
Navier–Stokes equations and Chiba’s time-stepping approach, to
gain insight into the mechanisms that govern wake instabilities
behind a NACA0012 airfoil in the low-Reynolds-number compress-
ible flow regime.
As a reference case, we first investigated the incompressible case

(M∞ � 0.05) at different angles of attack and Reynolds numbers.
Our results indicate that the frequency of the most unstable mode
decreases as α or Re increases, which is related to the elongation of
the recirculation region of the (filtered) base flow, as previously
observed on bluff bodies. Moreover, it has been observed that the
growth rate of the most unstable mode first increases beyond the
stability threshold with α or Re, before eventually decreasing.
The instability first appears far downstream of the recirculation
region, and the position of maximal intensity in the spatial structure
of the mode gets closer to the airfoil, until the mode starts to interact
with the recirculation region and then moves back downstream
following the elongation of the recirculation zone; i.e., the mode
transitions from a wake instability (WI) to a recirculation bubble
instability (RBI). Nevertheless, the relative distance between the end
of the recirculation region and the location ofmaximal intensity of the
mode keeps decreasing. When Re is varied, the maximum growth
rate is obtained when the peak intensity of the mode enters the
recirculation zone. However, this is not as clear when α is varied,
as the entry of the peak intensity into the recirculation zone is
observed after the maximum value of growth rate has been reached.
On the other hand, the maximum growth rate is observed when the
base flow at the end of the recirculation region is most parallel and
the instability is of RBI type, when both α and Re are varied. This
somewhat generalizes results obtained on bluff bodies.
We then have investigated the effects of compressibility. Our

results show that the general trends observed in the incompressible
case hold for the subcritical regime. In particular, for all the Mach
numbers investigated (i.e., up to 0.5), the frequency of the most
unstable mode decreases with α and Re, which is again related to
the elongation of the recirculation region of the base flow. Similar
observations are made as M∞ increases. Peak values in growth rate
are found to occur whenmaximal intensities in the spatial structure of
the most unstable mode are close to or on the recirculation region
(RBI type). Moreover, it has been shown that the Mach number may
have a stabilizing or destabilizing effect depending on α and Re. It
was hypothesized that destabilizing effects of compressibility are due
to an increase in negative streamwise advection (backward) of the
disturbance by the base flow, on and downstream of the recirculation
region, with increasing Mach number, whereas stabilizing effects
result from an increase in crosswise advection on the recirculation
region. Consequently, destabilizing effects are always nonnegligible,
whereas stabilizing effects are significant in (or near) the RBI state,
hence for Reynolds numbers and angles of attack far from critical
values. This was further supported byRe versusM∞ neutral stability
curves obtained at different angles of attack.
As a future work, it would be interesting to explore further the

influence of compressibility on the 3D instabilities developing on
the 2D filtered base state, as done by Zhang and Samtaney [33] in the
incompressible regime. The effect of an increasing Mach number on
the development of 3D secondary instabilities that develop on thevon
Kármán vortex street could be also considered. This regime is still

unexplored and may clarify on how compressibility changes the
three-dimensionalization of the wake of the NACA0012 airfoil.

Appendix: Validation of the Stability Solver

A.1. Lid-Driven Cavity

The lid-driven cavity (LDC) consists of a square box of size L
whose upper wall is a moving isothermal no-slip wall with constant
tangential velocityU∞ while the three other sides are fixed adiabatic
no-slip walls.
All LDC simulations have been performed at Re � 200 and

M∞ � 0.05 in order to compare our results with those of Gómez
et al. [36], who investigated the efficiency of the time-stepping
approach on the incompressible LDC. To perform grid refinement
analysis, three different meshes have been tested. The coarsest M1,
mediumM2, and finest M3 meshes have 48 × 48, 64 × 64, and 94 ×
94 elements, respectively. In Fig. A1, the spectra obtained with mesh
M2 and two different values of τ are presented. The cutoff frequency
fc given by

jfcj � jωic

2π
j � 1

2τ
(A1)

for a given τ is clearly visible in the figure. Here, there are no mode
with frequencies greater than jfcj (jfcj � 3.33 for τ � 0.15 and
jfcj � 0.8 for τ � 0.625).
In Fig. A2a, the spectra obtained for different values of CFL

number show that the time step does not influence the results,
especially for the largest growth rates, as it can be seen in the
close-up view of the spectrum displayed in Fig. A2b. The two sta-
tionary modes labeled Mode 6 and Mode 9 are those described in
[36] and are used for validation. Their growth rates are reported in
Table A1 for the different meshes and are in close agreement with
those obtained by Gómez et al. [36].
Figure A3 presents the mesh convergence for the growth rate of

these two modes together with the asymptotic value as given by the
Richardson extrapolation. The values obtained with mesh M3 are
correctly converged and the corresponding order of convergence is
p � 1.5 and p � 6.3 for Mode 6 and Mode 9, respectively. More-
over, the values obtained with mesh M2 differ from the Richardson
extrapolation by 1.2% for Mode 6 and by 0.1% for Mode 9. The
structures of the modes are presented in Fig. A4 for mesh M2 and
compared with those obtained by Gómez et al. [36]. The different
isolines accurately match.

Fig. A1 Cutoff effect of τ on the spectrum of the LDC at Re � 200 and
M∞ � 0.05.

Table A1 Growth rate ofMode 6 andMode 9 in
comparison with the results of Gómez et al. [36]

Mode M1 M2 M3 Gómez et al.

6 −0.3258 −0.3281 −0.3301 −0.3322
9 −0.5476 −0.5527 −0.5536 −0.5437

D
ow

nl
oa

de
d 

by
 I

SA
E

 o
n 

O
ct

ob
er

 6
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

07
92

 



In Fig.A5a,we consider the influence of both the integration time τ
and the CFL number on the growth rate of Mode 6, for a Krylov
subspace of dimension m � 50. We can see that, whatever the CFL,

large values of τ are required to reach convergence, i.e., τ > 0.6. In
Fig. A5b, instead, the convergence of the growth rate of Mode 6 is
presented for different values of the Krylov subspace dimensionm at

a) b)

Fig. A3 Mesh convergence on the growth rate of a) Mode 6 and b) Mode 9. Red dots correspond to the Richardson extrapolation asymptotic values.

Fig. A4 Isocontours of a) Mode 6 and b) Mode 9. Upper and bottom lines correspond to results of [36] and present results, respectively.

a) b)

Fig.A2 a)Effect ofCFLnumber on the spectrumof theLDCwith τ � 0.625 atRe � 200 andM∞ � 0.05, andb) close-up viewon themost relevant part
of the spectrum.
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CFL � 1. For low values of τ, the growth rate is very dependent on
the Krylov subspace dimension, which is no longer true for higher
values of τ.

A.2. Circular Cylinder

We now analyze the effect of compressibility on the stability of the
2D flow around a circular cylinder for different Reynolds numbers
and compare our results with those of Canuto and Taira [3]. In their
work, they obtained the complex frequency of the most unstable
mode, by tracking the early time evolution of the lift coefficient of the
unstable steady state computed with the SFD filtering technique and
initially perturbed by a small numerical perturbation.

We firstly performed a domain sensitivity analysis. Two domains
have been considered: a 40D × 90D and a 40D × 175D domain,
whereD is the diameter of the cylinder and is taken as the character-
istic length scale, i.e.,L � D. In Fig.A6a, the difference observed for
the growth rates atM∞ � 0.2 andM∞ � 0.3may be due to a lack of
convergence for the results of Canuto and Taira as indicated by the
non-monotonic behavior. Nevertheless, the characteristics of the
most unstable mode obtained with both domains are in good agree-
ment with the overall trend of the reference. For this reason, the
simulations used to validate the compressibility effect have been
performed on a 40D × 90D domain. Moreover, the value of τ has
been set to 0.5 characteristic time and theKrylov subspace dimension
to m � 300.

a) b)

Fig. A6 a) Growth rate and b) frequency of themost unstable eigenmodewith respect to theM∞ atRe � 50 for two domain sizes. Results of Canuto and
Taira [3] are also reported.

a) b)

Fig. A7 a) Growth rate and b) frequency of themost unstable eigenmodewith respect toM∞ for differentRe. Gray lines correspond to results of Canuto
and Taira [3].

a) b)

Fig. A5 Convergence of the growth rate of Mode 6 with respect to τ for a) different CFL andm � 50 and b) for differentm and CFL � 1.
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In Fig. A7a, the growth rate and frequency of the most unstable
eigenmode are reported with respect to Mach number for different
Reynolds numbers together with the results of Canuto andTaira [3] in
gray-colored lines. Overall, relatively good agreement is shown
between both data sets. The stabilizing effect of the Mach number
is clearly observed for all the Reynolds numbers considered, with
growth rates decreasing as M∞ increases. The mode frequency
decreases as well with respect to the Mach number (see Fig. A7b),
and this is found to be correlated with the elongation of the recircu-
lation region that forms behind the cylinder, as observed in the base
state, corroborating previous results by [3].
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