
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/28278

 https://doi.org/10.1137/20M1349138

Bergou, El Houcine and Diouane, Youssef and Kungurtsev, Vyacheslav and Royer, Clément W. A Nonmonotone

Matrix-Free Algorithm for Nonlinear Equality-Constrained Least-Squares Problems. (2021) SIAM Journal on Scientific

Computing. S743-S766. ISSN 1064-8275

A NONMONOTONE MATRIX-FREE ALGORITHM FOR
NONLINEAR EQUALITY-CONSTRAINED LEAST-SQUARES

PROBLEMS ∗

E. BERGOU† , Y. DIOUANE ‡ , V. KUNGURTSEV § , AND C. W. ROYER ¶

Abstract. Least squares form one of the most prominent classes of optimization problems,
with numerous applications in scientific computing and data fitting. When such formulations aim
at modeling complex systems, the optimization process must account for nonlinear dynamics by
incorporating constraints. In addition, these systems often incorporate a large number of variables,
which increases the difficulty of the problem, and motivates the need for efficient algorithms amenable
to large-scale implementations.

In this paper, we propose and analyze a Levenberg-Marquardt algorithm for nonlinear least
squares subject to nonlinear equality constraints. Our algorithm is based on inexact solves of linear
least-squares problems, that only require Jacobian-vector products. Global convergence is guaranteed
by the combination of a composite step approach and a nonmonotone step acceptance rule. We
illustrate the performance of our method on several test cases from data assimilation and inverse
problems: our algorithm is able to reach the vicinity of a solution from an arbitrary starting point,
and can outperform the most natural alternatives for these classes of problems.

Key words. Nonlinear least squares; equality constraints; Levenberg-Marquardt method; iter-
ative linear algebra; PDE-constrained optimization.

AMS subject classifications. 65K05, 90C06, 90C30, 90C55.

1. Introduction. In this paper we are interested in solving least-squares opti-
mization problems wherein a set of unknown parameters is sought such that it mini-
mizes the Euclidean norm of a residual vector function. This objective is particularly
well suited to represent the discrepancy between a model and a set of observations.
As a result, such formulations have been successfully applied to a wide range of ap-
plications across disciplines [11]. This is not only due to the ubiquitous nature of
this problem, but also to the existence of efficient optimization algorithms dedicated
to solving this problem by exploiting its specific structure. In particular, the uncon-
strained setting is particularly well understood: linear least squares can be efficiently
solved by exploiting linear algebra solvers [6] while nonlinear least squares are classi-
cally tackled using variants of the Gauss-Newton paradigm [21].

In this paper, we consider nonlinear least-squares problems subject to nonlinear
constraints of the following form:

(1.1)
min
x∈Rd

f(x) , 1
2‖F (x)‖2 = 1

2

∑m
i=1 Fi(x)2,

s. t. C(x) = 0,

where ‖ · ‖ will denote the Euclidean norm, F : Rd → Rm and C : Rd → Rp will be
assumed to be nonlinear, potentially nonconvex, continuously differentiable functions.

∗Version of May 28, 2021.
†Mohammed VI Polytechnic University, Ben Guerir, Morocco (elhoucine.bergou@um6p.ma).
‡ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse Cedex 4, France

(youssef.diouane@isae-supaero.fr).
§Department of Computer Science, Faculty of Electrical Engineering, Czech Tech-

nical University in Prague. Support for this author was provided by the OP
VVV project CZ.02.1.01/0.0/0.0/16 019/0000765 Research Center for Informatics.,
(vyacheslav.kungurtsev@fel.cvut.cz).
¶LAMSADE, CNRS, Université Paris-Dauphine, Université PSL, 75016 Paris, France. Support

for this author was partially provided by Subcontract 3F-30222 from Argonne National Laboratory,
(clement.royer@dauphine.psl.eu).

1

Although one possible approach to solving this problem consists in incorporating the
constraints directly into the objective, we are mainly interested in situations in which
the constraints represent physical phenomena that drive the behavior of the underlying
system, and should not be treated as additional residual functions. Such formulations
arise when solving inverse problems [26] in variational modeling for meteorology, such
as 4DVAR [27], the dominant data assimilation least-squares formulation used in
numerical weather prediction centers. Similar applications include seismic imaging
and fluid mechanics [1].

In this work, we aim at combining the Levenberg-Marquardt method [16, 19],
one of the most popular algorithms for the solution of nonlinear least squares, with
nonlinear programming techniques tailored to solving large-scale equality-constrained
problems. Our framework is inspired by inexact trust-region sequential quadratic
programming (SQP) [8, 12], which uses inexact computation of a composite step in a
careful way that does not jeopardize the convergence guarantees. We combine these
techniques with a nonmonotone rule for accepting or rejecting the step, that eschews
the use of a penalty function while still guaranteeing global convergence [28]. A
nonmonotone rule allows greater flexibility in step acceptance, and thus in practice
often converges faster since it accepts a wider range of steps. Our approach builds
on previously proposed algorithms of trust-region type, that have a broader scope
than least squares. In our case, we do not use second-order derivatives (note that
those could be unavailable for algorithmic use), but rather take advantage of the
second-order nature of the Gauss-Newton model. We also allow for a “matrix-free”
implementation of our algorithm, that only requires access to products of the Jacobian
matrices (of both the constraints and objective) with vectors.

The existing literature on Levenberg-Marquardt methods for constrained least
squares has mainly focused on establishing local convergence [3, 15] or complexity
guarantees [20] for the proposed method. In particular, the work of Izmailov et al. [15]
is concerned with local convergence properties of Tikhonov-type regularization algo-
rithms, which requires the use of second derivatives. Meanwhile, other regularization
techniques for constrained least squares that do not directly belong to the Levenberg-
Marquardt class of methods have recently been proposed, that are also based on
the SQP methodology (see [17, 22] and references therein). However, to the best of
our knowledge, these approaches are not based on nonmonotone rules, and generally
require second-order derivatives.

The rest of this paper is organized as follows. In section 2, we detail the various
components of our proposed algorithm, with a focus on inexactness conditions and
nonmonotone rules. Section 3 addresses the global convergence of our algorithm. The
practical behavior of our method is investigated in Section 4 on problems including
nonlinear data assimilation and inverse PDE-constrained optimization. Conclusions
and perspectives are finally provided in Section 5.

Notations. Throughout ‖·‖ will denote the vector or matrix l2-norm in any space
of the form Rd, and 〈., .〉 the associated dot product. We will use A> to for the
transpose of the matrix A. The identity matrix in Rd×d will be denoted by Id.

2. Algorithmic framework. In this section, we provide a detailed descrip-
tion of the algorithm studied in this paper. Our method combines the Levenberg-
Marquardt algorithm with the classical Byrd-Omojokun SQP step [21, Chapter 18]
for equality constraints. At every iteration j, the method computes a trial step of the
form sj , nj + tj , with nj being an inexact quasi-normal step (see Section 2.1) and
tj being an inexact tangential step (see Section 2.2). The former aims at improving

2

feasibility, while the latter focuses on lowering the objective value while retaining fea-
sibility. This step is then accepted or rejected depending on nonmonotone decrease
requirements: those conditions are described in Section 2.3. The full description of
the method is given in Section 2.4.

2.1. Inexact quasi-normal step. Let φ(x) , 1
2‖C(x)‖2 denote the constraint

violation function at the point x. The quasi-normal step is defined as the solution of
the following minimization subproblem:

min
n∈Rd

mc
j(n) ,

1

2
‖Cj + Jcjn‖2 +

1

2
γj‖n‖2,(2.1)

where Cj , C(xj) and Jcj , Jc(xj) denotes the Jacobian of the constraints C at xj .
The first term in (2.1) is the Gauss-Newton model of the constraint violation function,
while the second term represents a regularization of Levenberg-Marquart type: the
regularization parameter γj will be chosen adaptively during the algorithmic process.

For practical purposes (and in particular in a large-scale setting), we consider
an approximate solution of the subproblem (2.1), typically computed using Krylov
subspace methods [4, 5]. More precisely, instead of solving (2.1) to global optimality,
we only require that our inexact quasi-normal step satisfies:

(2.2) mc
j(0)−mc

j(nj) ≥ κ1
‖Cj‖2

‖Jcj ‖2 + γj
.

for some constant κ1 > 0. Note that the Cauchy point, i.e. the minimizer of mc
j(n)

in the subspace spanned by ∇mc
j(0), satisfies the condition (2.2) under appropriate

assumptions [4].

2.2. Inexact tangential step. Having computed the (inexact) quasi-normal
step, we now seek an additional step tj that results in a sufficient decrease of the
objective function in the tangent space along the level sets of the constraints. We
thus consider the Lagrangian function associated with problem (1.1):

L(x, y) , f(x) + y>C(x), y ∈ Rp.

We also define the exact regularized Gauss-Newton model of the Lagrangian at the
j-th iteration by

(2.3) ml
j(s) ,

1

2
‖Fj + JFj s‖2 + y>j J

c
j s+

1

2
γj‖s‖2 + y>j C(xj),

where Fj , F (xj), J
F
j , Jf (xj) denotes the Jacobian of the residual function F at

the current iterate xj , and the vector yj ∈ Rp is a current estimate for the Lagrange
multiplier.

The exact tangent step is given as the solution of

(2.4)
min
t∈Rd

ml
j(nj + t),

s.t. Jcj t = 0,

Note that for any t ∈ Rd, the objective of (2.4) decomposes as

ml
j(nj + t) = ml

j(0) +
1

2
〈Hjnj , nj〉+

1

2
〈Hjt, t〉+ 〈∇L(xj , yj), nj〉+ 〈gj , t〉.

3

with Hj , JFj
>
JFj +γjIm, ∇L(xj , yj) = JFj

>
Fj+Jcj

>yj and gj , ∇L(xj , yj)+Hjnj .
Problem (2.4) can be reformulated as an unconstrained linear least-squares prob-

lem. Indeed, let Wj , W (xj) ∈ Rd×d denote a projection matrix onto the null space
of Jc(x): then Wj = W>j = W 2

j and, for any t such that Jcj t = 0, there exists

w ∈ Rd such that t = Wjw. Using the reformulation t = Wjw, the minimization
subproblem (2.4) is thus equivalent to

(2.5) min
w∈Rd

1
2 〈W

>
j HjWjw,w〉+ 〈W>j gj , w〉

To compute the exact tangential step, one can compute a solution w∗ of (2.5) then
apply Wj to obtain the solution t∗ = Wjw

∗ of (2.4).
One challenge of the approach above is the computation of the matrix Wj , which

can be prohibitive in a large-scale environment. We will thus adopt a matrix-free
approach [12]: given w ∈ Rd, the vector t = Wjw can be computed by solving the
following augmented system

(2.6)

(
I Jcj

>

Jcj 0

)(
t
z

)
=

(
w
0

)
.

As long as Jcj is surjective, the linear system (2.6) possesses a solution. An inexact

solve of the linear system (2.6) corresponds to applying an approximation W̃j(·) of
Wj instead of applying the projection matrix Wj . Therefore, it can be shown [12]
that such an inexact solve of (2.5) corresponds to an exact solve of the following
subproblem:

(2.7) min
w∈Rd

1
2 〈HjW̃j(w), W̃j(w)〉+ 〈W̃j(gj), W̃j(w)〉,

which is itself equivalent to

(2.8) min
t̃∈Rd

1
2 〈Hj t̃, t̃〉+ 〈W̃j(gj), t̃〉,

with the change of variables t̃ = W̃j(w). The approximate solutions of (2.7) and (2.8)

are respectively denoted by wj and t̃j = W̃j(wj). The quality of the inexact step t̃j
will be measured by the inexact model:

m̃l
j(nj + t̃j) , ml

j(0) +
1

2
〈Hjnj , nj〉+

1

2
〈Hj t̃j , t̃j〉+ 〈∇L(xj , yj), nj〉+ 〈W̃j(gj), t̃j〉.

In order for our step to be sufficiently informative and useful, we will impose the
following conditions on the operator W̃j :

‖W̃j(nj)−Wjnj‖ ≤
ξ0
γ2
j

(2.9a)

‖W̃j(gj)−Wjgj‖ ≤
ξ1
γj

(2.9b)

for some ξ0 > 0 and ξ1 > 0. It can be shown [12, Theorem B.1] that the use of inexact

linear algebra leads to an approximation W̃j of Wj such that (2.9a) and (2.9b) hold.
In our experiments, this corresponds to applying the minres [7] solver to (2.6) with

4

appropriate choices for the hyperparameters so as to satisfy the conditions described
above.

Similarly to the quasi-normal step, we also require t̃j to satisfy a fraction of the
Cauchy decrease condition on the model m̃l

j , i.e.

(2.10) m̃l
j(nj)− m̃l

j(nj + t̃j) ≥ κ2
‖W̃j(gj)‖2

‖JFj ‖2 + γj
,

for some constant κ2 > 0.
Note that since we consider the use of inexact steps, the vector t̃j = W̃j(wj)

might not belong to the null space of Jcj . Following previous methodology proposed
for matrix-free SQP trust region [13, 12], we compute a step tj close to the projection
of t̃j onto this null space. More precisely, we enforce the following requirement on tj :

(2.11) ‖tj −Wj t̃j‖ ≤
ξ2
γ2
j

.

2.3. Nonmonotone acceptance rule. Having computed our inexact steps, we
now need to determine whether they are sufficiently promising to deserve acceptance.
As in standard SQP trust-region approaches, we compare the decrease predicted by
the model and the actual variation produced by the step. Classical monotone frame-
works require the actual reduction to be larger than a fraction of the predicted reduc-
tion, which may impose unnecessarily severe restrictions on the step [28]. We thus
adopt a nonmonotonic step acceptance procedure detailed below.

We first define the predicted reduction and the actual reduction to the constraint
violation function by

predcj , φ(xj)−mc
j(nj) =

1

2
‖C(xj)‖2 −mc

j(nj),

aredcj , φ(xj)− φ(xj + sj) =
1

2
‖C(xj)‖2 −

1

2
‖C(xj + sj)‖2.

In a monotone framework, the quasi-normal step nj is accepted if aredcj is larger than
a fraction of the predicted reduction predcj : our nonmonotonic approach requires
instead that raredcj ≥ ρ1 predcj , where ρ1 ∈ (0, 1), and raredcj defines the relaxed
actual reduction of φ, i.e.

(2.12) raredcj ,
1

2
max

Rj ,
νcj−1∑
k=0

µcjk‖Cj−k‖2
− 1

2
‖C(xj + sj)‖2,

where ν ∈ N∗, µ ∈ (0, 1/m), and the quantities Rj , µ
c
jk, νcj satisfy

νcj , min(j + 1, ν), µcjk ≥ µ > 0,

νcj−1∑
k=0

µcjk = 1, Rj ≥ ‖Cj‖2

In order to compute the quantity Rj , we rely on an auxiliary procedure described
in Algorithm 2.1. If the constraint violation is not significantly smaller than ‖ĝj‖,
where ĝj = W̃j(gj) is the reduced gradient, then Rj is set to ‖Cj‖2 so as to give
preference to steps that improve feasibility. On the other hand, if the constraint
violation is much smaller than the norm of the reduced gradient, Rj is set to a

5

value larger than ‖Cj‖2 but smaller than a given upper bound akj where {ak} is
a slowly decreasing sequence such that ak > 0, 0 < α0 ≤ ak+1

ak
< 1, limk→∞ ak =

0, and
∑∞
k=0 a

η
k = ∞, where 4 > η > 4/3 is a fixed constant (see [28] for details on

this procedure).

Algorithm 2.1 Updating procedure for Rj

Require: α > 0, β < 1/2, kj and {ak}.
1: if ‖Cj‖ < min{αakj , β‖ĝj‖} then
2: Rj = min{a2

kj
, ‖ĝj‖2}.

3: if Rj ≥
∑νcj−1

k=0 µcjk‖Cj−k‖2 then
4: Set kj+1 = kj + 1.
5: else
6: Set kj+1 = kj .
7: end if
8: else
9: Set Rj = ‖Cj‖2 and kj+1 = kj .

10: end if

As for the quasi-normal steps, we now introduce a nonmonotone acceptance rule
for the tangential step. The predicted reduction for the step s̃j = nj + t̃j is computed
as:

predtj , m̃l
j(nj)− m̃l

j(nj + t̃j) = −1

2
〈Hj t̃j , t̃j〉 − 〈W̃j(gj), t̃j〉,

while the predicted reduction for the step sj = nj + tj is defined as

predlj , m̃l
j(0)− m̃l

j(s̃j) +
1

2
〈γjtj + gj , nj − W̃j(nj)〉,

The actual reduction of the Lagrangian function L can be written as

aredlj , L(xj , yj)− L(xj + sj , yj)

and finally the relaxed (nonmonotone) actual reduction of L is defined by,

raredlj , max

L(xj , yj),

νlj−1∑
k=0

µljkL(xj−k, yj−k)

− L(xj + sj , yj),

where, similarly to (2.12), µ is chosen as in (2.12), and

νlj = min(j + 1, νl), µljk ≥ µ > 0,

νlj−1∑
k=0

µljk = 1.

with νl ∈ N∗ (Note that for simplicity, we may, and do, in our numerical experiments,
choose νl = ν).

Overall, in our proposed algorithm, two sets of conditions can lead to accep-
tance of the step sj . First, if the step sj satisfies predtj ≥ max{predcj , (predcj)

ξ},
predlj ≥ ρ2 predtj , raredlj ≥ ρ1 predlj , and raredcj ≥ ρ1 predcj (where ξ, ρ2 and ρ1

6

are pre-specified constants), then this step can improve both optimality and feasi-
bility (in a nonmonotone sense), and we thus accept it. Secondly, if sk satisfies
predtj < max{predcj , (predcj)

ξ}, predlj < ρ2 predtj and raredcj ≥ ρ1 predcj , we accept
this step and focus on improving feasibility (in a nonmonotone sense).

2.4. Main algorithm. A formal description of the complete algorithm is given
in Algorithm 2.2. Note that it encompasses both exact and inexact variants of our
method. Note also that we do not need to specify a procedure to compute the Lagrange
multiplier estimate, as those do not play a major role in our global convergence theory.
One standard choice, that we adopted in our numerical experiments, is the least-
squares multipliers, i.e. the solution to miny ‖gj − Jcj y‖22 (note that this subproblem
is another unconstrained linear least-squares problem).

Algorithm 2.2 A nonmonotone matrix-free LM for equality constraints.

Require: ρ1, ρ2 ∈ (0, 1), 0 < γ̂1 < 1 < γ̂2, 0 < α, β < 1/2, 2/3 < ξ < 1 0 < γ̂ < 1,
α0 ∈ (0, 1), and a sequence {ak}. k0 = 0.

1: Choose an initial x0 and γj > 0.
2: for j = 0, 1, . . . do
3: Step 1: Evaluate Fj , J

F
j , Cj , J

c
j , gj and a Lagrange multiplier estimate yj .

4: Step 2: Choose {µcjr} and {µljr}, then update Rj using Algorithm 2.1.
5: Step 3: Compute nj such that condition (2.2) holds and t̃j satisfying the

conditions (2.9a), (2.9b), and (2.10). Set s̃j = nj + t̃j .
6: Step 4: Compute tj satisfying the condition (2.11) and set sj = nj + tj
7: Step 5:
8: if predtj ≥ max{predcj , (predcj)

ξ} and predlj ≥ ρ2 predtj then

9: if raredcj ≥ ρ1 predcj and raredlj ≥ ρ1 predlj then
10: Set γj = max(γmin, γ̂1γj) and accept the step,i.e., xj+1 = xj + sj .
11: else
12: Set γj = γ̂2γj and go to Step 4.
13: end if
14: else
15: if raredcj ≥ ρ1 predcj then
16: Set γj = max(γmin, γ̂1γj) and accept the step,i.e., xj+1 = xj + sj .
17: else
18: Set γj = γ̂2γj and go to Step 4.
19: end if
20: end if
21: end for

3. Global convergence.

3.1. Assumptions and intermediary results. We will establish global con-
vergence of Algorithm 2.2 under the following standard set of assumptions.

Assumption 3.1. The sequence {xj , xj + sj} lies in a compact set Ω.

Assumption 3.2. The functions F and C are continuously differentiable (thus φ
is too). In addition, the gradients of the functions f , φ and Ci are Lipschitz continu-
ous.

Though the rest of the paper, Lf and Lφ will denote Lipschitz constants for
the gradients of f and φ, respectively. Note that Assumption 3.2 implies that the

7

constraint Jacobian Jc(·) is also Lipschitz continuous: through the rest of the paper,
Lc will be used as the Lipschitz constant for this Jacobian matrix.

Assumptions 3.1 and 3.2 imply that the functions F , C, f , φ and their derivatives
are bounded. In what follows, we will make use of constants κf , κφ, κfg , κ

φ
g , κ

F
J , κ

c
J such

that for any x ∈ Ω, we have

f(x) ≤ κf , φ(x) ≤ κφ,(3.1a)

‖∇f(x)‖ ≤ κfg , ‖∇φ(x)‖ ≤ κφg ,(3.1b)

‖JF (x)‖ ≤ κFJ , ‖Jc(x)‖ ≤ κcJ .(3.1c)

We will add the following assumption to the above properties.

Assumption 3.3. There exists κcJJ > 0 and κW > 0 such that such that for every

index j, we have

∥∥∥∥(Jcj Jcj>)−1
∥∥∥∥ ≤ κcJJ and ‖W̃j(x)‖ ≤ κW ‖x‖ for any x.

Assumption 3.4. There exists κy > 0 such that ‖yj‖ ≤ κy for every j.

Equipped with these assumptions, we can now state and prove several bounds
on algorithmic quantities. To this end, we first state properties of the quasi-normal
and tangential steps in Lemma 3.1. Note that those arise from the analysis of the
two unconstrained problems (2.1) and (2.5), and apply to exact as well as inexact
solutions of these subproblems (see [4, Lemma 2.1] and [5, Lemma 5.1] for details).

Lemma 3.1. Under Assumptions 3.1 to 3.4, for all j, one has:

‖nj‖ ≤
‖Jcj
>Cj‖
γj

,(3.2a)

‖γjnj + Jcj
>Cj‖ ≤

‖Jcj ‖2‖Jcj
>Cj‖

γj
,(3.2b)

and

‖t̃j‖ ≤
‖W̃j(gj)‖

γj
,(3.3a)

‖γj t̃j + W̃j(gj)‖ ≤
‖JFj ‖2‖W̃j(gj)‖

γj
.(3.3b)

We can then prove the following series of bounds.

Lemma 3.2. Under Assumptions 3.1 to 3.4, the sequences {‖gj‖}, {γj ‖nj‖},{
γj
∥∥t̃j∥∥}, {γj ‖tj‖}, {γj ‖s̃j‖}, {γj ‖sj‖} and

{
γj‖γj t̃j + W̃j(gj)‖

}
are uniformly

bounded from above by a positive constant b0 > 0.

Proof. Since gj = JFj
>
Fj + Jcj

>yj + JFj
>
JFj nj + γjnj , we have:

‖gj‖ ≤ ‖JFj
>
Fj‖+ ‖Jcj ‖‖yj‖+ ‖JFj

>
JFj + γId‖‖nj‖.

Using the bounds (3.1) and (3.2a), we obtain:

‖gj‖ ≤ κfg + κcJκy + κFJ
2 ‖Jcj

>Cj‖
γj

+ ‖Jcj
>Cj‖ ≤ κfg + κcJκy +

κFJ
2
κφg

γmin
+ κφg , a0.

8

Using the bound on ‖gj‖ together with (3.3a), we obtain:

‖t̃j‖ ≤
‖W̃j(gj)‖

γj
≤ ‖W̃j‖‖gj‖

γj
≤ κWa0

γj
.

Since ‖Wj‖ = 1 as Wj is a projection matrix, and (2.11) holds, we also have;

‖tj‖ ≤ ‖Wj t̃j‖+ ‖tj −Wj t̃j‖ ≤
κWa0

γj
+
ξ2
γ2
j

≤ κWa0 + ξ2γ
−1
min

γj
,

Meanwhile, property (3.2a) guarantees that ‖nj‖ ≤
‖Jcj
>Cj‖
γj

≤ κφg
γj

.

Thanks to the three previous bounds on ‖tj‖, ‖t̃j‖ and ‖nj‖, we then obtain

‖s̃j‖ ≤ ‖nj‖+ ‖t̃j‖ ≤
κφg+κW a0

γj
, as well as

(3.4) ‖sj‖ ≤ ‖nj‖+ ‖tj‖ ≤
κφg + κ2

Wa0 + ξ2γ
−1
min

γj
.

Finally, property (3.3b) in Lemma 3.2 gives

‖γj t̃j + W̃j(gj)‖ ≤
‖JFj ‖2‖W̃j(gj)‖

γj
≤ (κFJ)2κWa0

γj
.

Setting b0 , max{a0, κWa0, κ
φ
g+κWa0+ξ2γ

−1
min, (κ

F
J)2κWa0} gives the desired result.

The result of Lemma 3.2 allows us to bound the difference between actual and
predicted reductions relatively to the regularization parameter.

Lemma 3.3. Under Assumptions 3.1 to 3.4, there exist positive constants b1 and
b2 such that for every iteration index j, one has:

| aredcj −2 predcj | ≤
b1
γ2
j

,(3.5a)

| aredlj −2 predlj | ≤
b2
γ2
j

.(3.5b)

Proof. To lighten the notation, we will omit the index j in the proof. We begin
by proving (3.5a). Thanks to Assumption 3.2 and the following first-order Taylor
expansion of φ(·) = 1

2‖C(·)‖2, we have:∣∣∣‖C(x+ s)‖2 − ‖C(x)‖2 − 2C>Jcs− s>Jc>Jcs
∣∣∣ ≤ Lφ‖s‖2 + ‖Jcs‖2 ≤ (Lφ + κcJ

2)‖s‖2.

Using this formula, we have:

| aredc−2 predc | =
∣∣∣∣12‖C‖2 − 1

2
‖C(x+ s)‖2 − 2

(
1

2
‖C‖2 − 1

2
‖C + Jcn‖2 − 1

2
γ‖n‖2

)∣∣∣∣
=

∣∣∣∣12‖C‖2 − 1

2
‖C(x+ s)‖2 − 2C>Jcn− ‖Jcn‖2 − γ‖n‖2

∣∣∣∣
≤
∣∣∣∣12‖C‖2 + C>Jcs+

1

2
s>Jc>Jcs− 1

2
‖C(x+ s)‖2

∣∣∣∣
+

∣∣∣∣−C>Jcs− 1

2
s>Jc>Jcs− 2C>Jcn− ‖Jcn‖2 − γ‖n‖2

∣∣∣∣
≤ Lφ + κcJ

2

2
‖s‖2 +

∣∣∣∣−C>Jcs− 1

2
s>Jc>Jcs− 2C>Jcn− ‖Jcn‖2 − γ‖n‖2

∣∣∣∣ .
9

Using now the decomposition s = n+t and the fact that JcWt̃ = 0, we can reformulate
the second term in the last inequality:

−C>Jcs− 1

2
s>Jc>Jcs− 2C>Jcn− ‖Jcn‖2 − γ‖n‖2

= −C>Jct− 3C>Jcn− 3

2
‖Jcn‖2 − 1

2
‖Jct‖2 − γ‖n‖2

= −(C + Jcn)>Jct− n>(γn+ Jc>C)− 3

2
‖Jcn‖2 − 1

2
‖Jct‖2

= −(C + Jcn)>Jc(Wt̃− t)− n>(γn+ Jc>C)− 3

2
‖Jcn‖2 − 1

2
‖Jct‖2.

Hence, we obtain:

| aredc−2 predc | ≤ Lφ + κcJ
2

2
‖s‖2 + ‖(C + Jcn)>Jc‖‖Wt̃− t‖+

∣∣∣n>(γn+ Jc>C)
∣∣∣

+
3

2
‖Jc‖2‖n‖2 +

1

2
‖Jc‖2‖t‖2

≤ Lφ + κcJ
2

2
‖s‖2 + (‖C‖+ ‖Jc‖‖n‖) ‖Jc‖ ξ2

γ2
+ ‖n‖‖γn+ Jc>C‖

+
3

2
‖Jc‖2‖n‖2 +

1

2
‖Jc‖2‖t‖2

≤ (Lφ + κcJ
2)b20

2γ2
+ ‖Jc‖

(
‖C‖+ ‖Jc‖b0

γ

)
ξ2
γ2

+
b0‖Jc‖2‖Jc>C‖

γ2
+

2b0‖Jc‖2

γ2

≤
[

(Lφ + κcJ
2)b20

2
+ κcJ

(
κc +

κcJb0
γmin

)
ξ2 + b0κ

c
J

2(κφg + 2)

]
1

γ2
,

where we applied (2.9b), (3.2b), Lemma 3.2, (3.1) and γ ≥ γmin. Hence (3.5a) holds

with b1 =
[

(Lφ+κcJ
2)b20

2 + κcJ

(
κc +

κcJb0
γmin

)
ξ2 + b0κ

c
J

2(κφg + 2)
]
.

We now establish (3.5b). The definition of predl gives:

predl = −1

2
〈Hn, n〉 − 1

2
〈Ht̃, t̃〉 − 〈∇xL(x, y), n〉 − 〈W̃ (g), t̃〉+

1

2
〈γt+ g, n− W̃ (n)〉

=
1

2
〈Hn, n〉 − 1

2
〈Ht̃, t̃〉 − 〈∇xL(x, y) +Hn, n+Wt̃〉

−〈W̃ (g)−Wg, t̃〉+
1

2
〈γt+ g, n− W̃ (n)〉

=
1

2
〈Ht, t〉 − 1

2
〈Ht̃, t̃〉 − 〈∇xL(x, y) +Hn,W t̃− t〉

−〈∇xL(x, y), s〉 − 1

2
〈Hs, s〉 − 〈W̃ (g)−Wg, t̃〉+

1

2
〈γt+ g, n− W̃ (n)〉,

where we first used the formula g = ∇xL(x, y) + Hn and W = W>, then s = t + n.

10

Consequently,

−2 predl = −〈Ht, t〉+ 〈Ht̃, t̃〉+ 2〈∇xL(x, y) +Hn,W t̃− t〉
+2〈∇xL(x, y), s〉+ 〈Hs, s〉+ 2〈W̃ (g)−Wg, t̃〉 − 〈γt+ g, n− W̃ (n)〉

= 〈∇xL(x, y), s〉+ 2〈g,W t̃− t〉+ 2〈W̃ (g)−Wg, t̃〉 − 〈γt+ g, n− W̃ (n)〉
+〈∇xL(x, y), s〉 − 〈Ht, t〉+ 〈Ht̃, t̃〉+ 〈Hs, s〉
+〈g, s〉 − 〈Hn, s〉 − 〈Ht, t〉+ 〈Ht̃, t̃〉+ 〈Hs, s〉

= 〈∇xL(x, y), s〉+ 2〈g,W t̃− t〉+ 2〈W̃ (g)−Wg, t̃〉 − 〈γt+ g, n− W̃ (n)〉
+〈g, s〉+ 〈Ht, s〉 − 〈Ht, t〉+ 〈Ht̃, t̃〉.

Using H = JF
>
JF + γId, we obtain:

−2 predl = 〈∇xL(x, y), s〉+ 2〈g,W t̃− t〉+ 2〈W̃ (g)−Wg, t̃〉 − 〈γt+ g, n− W̃ (n)〉

+〈γt+ g, s〉+ 〈JF>JF t, s〉 − 〈JF>JF t, t〉 − 〈γt, t〉+ 〈JF>JF t̃, t̃〉+ 〈γt̃, t̃〉
= 〈∇xL(x, y), s〉+ 2〈g,W t̃− t〉+ 2〈W̃ (g)−Wg, t̃〉+ 〈γt+ g, W̃ (n)〉

+〈g, t〉+ 〈JF>JF t, n〉+ 〈JF>JF t̃, t̃〉+ 〈γt̃, t̃〉
= 〈∇xL(x, y), s〉+ 2〈g,W t̃− t〉+ 〈W̃ (g)−Wg, t̃〉+ 〈γt+ g, W̃ (n)−Wn〉
〈γt+ g,Wn〉+ 〈g, t〉 − 〈Wg, t̃〉+ 〈γt̃+ W̃ (g), t̃〉

+〈JF>JF t, n〉+ 〈JF>JF t̃, t̃〉
= 〈∇xL(x, y), s〉+ 2〈g,W t̃− t〉+ 〈W̃ (g)−Wg, t̃〉+ 〈γt+ g, W̃ (n)−Wn〉

〈W (γt+ g), n〉+ 〈g, t−Wt̃〉+ 〈γt̃+ W̃ (g), t̃〉+ 〈JF>JF t, n〉+ 〈JF>JF t̃, t̃〉
= 〈∇xL(x, y), s〉+ 〈g,W t̃− t〉+ 〈W̃ (g)−Wg, t̃〉+ 〈γt+ g, W̃ (n)−Wn〉

〈W (γt+ g), n〉+ 〈γt̃+ W̃ (g), t̃〉+ 〈JF>JF t, n〉+ 〈JF>JF t̃, t̃〉,

where the line before last is obtained using W> = W . As a result,

| aredl−2 predl | = |L(x)− L(x+ s)− 2 predl |
≤ |L(x) + 〈∇xL(x, y), s〉 − L(x+ s)|+ ‖g‖‖Wt̃− t‖

+‖W̃ (g)−Wg‖‖t̃‖+ (γ‖t‖+ ‖g‖)‖W̃ (n)−Wn‖
+‖W (γt+ g)‖‖n‖+ ‖γt̃+ W̃ (g)‖‖t̃‖.+ ‖JF ‖2

(
‖t‖‖n‖+ ‖t̃‖2

)
By Assumptions 3.2 and 3.4, we have

|L(x, y) + 〈∇xL(x, y), s〉 − L(x+ s, y)| ≤
∣∣f(x+ s)− f(x)−∇f(x)>s

∣∣
+‖y‖

∥∥∥C(x+ s)− C(x)− Jc>s
∥∥∥

|L(x, y) + 〈∇xL(x, y), s〉 − L(x+ s, y)| ≤ Lf + κyL
c

2
‖s‖2.(3.6)

Therefore,

| aredl−2 predl | ≤ Lf + κyL
c

2
‖s‖2 + ‖g‖‖Wt̃− t‖

+‖W̃ (g)−Wg‖‖t̃‖+ (γ‖t‖+ ‖g‖)‖W̃ (n)−Wn‖
+‖W (γt+ g)‖‖n‖+ ‖γt̃+ W̃ (g)‖‖t̃‖.+ ‖JF ‖2

(
‖t‖‖n‖+ ‖t̃‖2

)
,(3.7)

11

where the last line comes from (3.6). To conclude, we need the result below, that uses
the properties W 2 = W = W> and ‖W‖ = 1 of the projection matrix W . One has:

‖W (γt+ g)‖ = ‖γW (t−Wt̃) +W (γt̃+ W̃ (g)) +W (Wg − W̃ (g))‖
≤ γ‖t−Wt̃‖+ ‖γt̃+ W̃ (g)‖+ ‖Wg − W̃ (g)‖

‖W (γt+ g)‖ ≤ ξ2
γ

+
b0
γ

+
ξ1
γ
.(3.8)

where the last line uses (2.11), Lemma 3.2 and (2.9b).
Using (3.8) as well as (2.9a),(2.9b),(2.11), the bounds from Lemma 3.2 and (3.6),

we can bound all the terms in (3.7) and we arrive at:

| aredl−2 predl | ≤ (Lf + κyL
c)b20

2γ2
+
b0ξ2
γ2

+
b0ξ1
γ3

+
2b0ξ0
γ2

+
2b0(ξ2 + b0 + ξ1)

γ2
+
b20
γ2

+
2κFJ

2
b20

γ2
.

Using γ ≥ γmin, we obtain | aredl−2 predl | ≤ b2
γ2 with

b2 = b0

(
(Lf+κyL

c+6+4κFJ)b0
2 + 3ξ2 + ξ1+2γmin

γmin
+ 2ξ0

)
.

3.2. Main convergence results. We now present a global convergence analy-
sis for our framework, that is inspired by the analysis of nonmonotone trust-region
algorithms without penalty function [28].

We first establish that, if the method has not converged yet, Algorithm 2.2 even-
tually computes and accepts a step for a sufficiently large γj . This is the purpose of
the next lemma, which is similar to [28, Lemma 1] but adapted to our inexact context.

Lemma 3.4. Under Assumptions 3.1-3.4, let ε > 0, and suppose that the j-th
iterate of Algorithm 2.2 is such that ‖Cj‖+ ‖W̃j(gj)‖ > 2ε. Then, there exists γ̄ > 0
(depending on ε, ‖Cj‖ and akj) such that the step sj is accepted whenever γj > γ̄.

Proof. Since ‖Cj‖+ ‖W̃j(gj)‖ > 2ε, one of the two quantities ‖Cj‖ and ‖W̃j(gj)‖
must be larger than ε. We thus consider two cases.

Case 1 : Suppose that ‖Cj‖ > ε. By combining (2.2) and (3.1c), we then have

that predcj ≥ κ1
ε2

κcJ
2+γj

, while Lemma 3.3 guarantees that | aredcj −2 predcj | ≤ b1
γ2
j
.

Hence, ∣∣∣∣2− aredcj
predcj

∣∣∣∣ =

∣∣∣∣2 predcj
predcj

−
aredcj
predcj

∣∣∣∣ ≤ b1
κ1ε2

κcJ
2 + γj
γ2
j

→ 0 as γj →∞.

Thus there exists γ̄1 > 0 such that if γj ≥ γ̄1 > 0, then raredcj ≥ aredcj ≥ ρ1 predcj . If

either predtj < max{predcj , (predcj)
ξ} or predlj < ρ2 predtj , we know that the step will

be accepted. Otherwise (i.e. predtj ≥ max{predcj , (predcj)
ξ} and predlj ≥ ρ2 predtj):

predlj ≥ ρ2 predtj ≥ ρ2 predcj ≥ ρ2κ1
ε2

κcJ
2 + γj

.

Since by Lemma 3.3, | aredlj −2 predlj | ≤ b2
γ2
j
, we can use the same argument than

above to show that there exists γ̄2 such that raredlj ≥ aredlj ≥ ρ1 predlj for γj ≥ γ̄2,
and thus the step is accepted.

12

Case 2 : Suppose now that ‖W̃j(gj)‖ > ε. By (2.10) and (3.1c), this implies that

predtj ≥ κ2
ε2

κFJ
2+γj

. We consider two subcases.

Case 2.1: If predcj ≥ predtj , we have predcj ≥ κ2
ε2

κFJ
2+γj

and the same argument than

in Case 1 can be employed to guarantee that the step is accepted for γj ≥ γ̄3 for a
certain γ̄3 > 0.
Case 2.2: If predcj < predtj , then the only condition required for step acceptance is
that raredcj ≥ ρ1 predcj . Defining εkj = min(αakj , βε) (see Algorithm 2.1, we then
compare εk,j and ‖Cj‖. If ‖Cj‖ > εkj , the reasoning of Case 1 (with εk,j playing the
role of ε) guarantees that there exists γ̄4 > 0 such that the step is accepted when
γj > γ̄4. On the other hand, if ‖Cj‖ ≤ εkj , we have Rj ≥ min(a2

kj
, ε2) ≥ 4ε2kj , which

then gives:

raredcj ≥
1

2
Rj −

1

2
‖C(xj + sj)‖2 ≥

1

2
Rj −

1

2
‖C(xj)‖2 − Jcj

>sj −
Lc

2
‖sj‖2

≥ 3

2
ε2k,j −

κcJb0
γj
− Lcb20

2γ2
j

,

where the last inequality comes from (3.1c) and Lemma 3.2. Thus there exists γ̄5 > 0
such that raredcj ≥ ρ1ε

2
kj

for γj > γ̄5: since predcj ≤ 1
2‖Cj‖

2 ≤ 1
2ε

2
kj

by definition, we

then have raredcj ≥ ρ1 predcj , and the step is accepted.
Letting γ̄ = max{γ̄1, γ̄2, γ̄3, γ̄4, γ̄5} finally leads to the desired result.

The remainder of our analysis relies on several arguments that are identical to the
trust-region setting, which we restate below (see [28, Lemmas 2-5] for proofs). The
analysis relies on considering the steps that have been accepted: for this purpose, the
subscript j,a will refer to quantities related to the j-th iteration at which the step was
accepted (e.g. sj,a denotes the accepted step at iteration j).

Lemma 3.5. Under Assumptions 3.1-3.4, suppose that there exists ĵ ≥ 0 such

that for all j ≥ ĵ, we have raredcj,a = max
{
‖Cj‖2,

∑νcj−1

k=0 µcjk‖Cj−k‖2
}
− ‖Cj+1‖2.

Then, for all j ≥ ĵ, ‖Cj+1‖2 ≤ maxĵ−νcj<l≤ĵ
Rl − ρ1

∑j

r=ĵ
µmin{j−r,ν} predcr,a .

Lemma 3.6. Under Assumptions 3.1 to 3.4, suppose that there exists ĵ ≥ 0 such
that, for all j ≥ ĵ, we have raredlj,a +L(xj+1, yj)− L(xj+1, yj+1) ≥ ρ1

2 predlj,a.

Then, for all j ≥ ĵ,

|L(xj+1, yj+1)| ≤ max
ĵ−νlj<l≤ĵ

L(xl, yl)−
ρ1

2

j∑
r=ĵ

µmin(j−r,ν) predlr,a .

Lemma 3.7. Let Assumptions 3.1-3.4 hold. If, at the j-th iteration of Algo-
rithm 2.2, Algorithm 2.1 performs the update kj+1 = kj + 1, then ‖Cj′‖ ≤ 1√

µakj

for all j′ ≥ j. In particular, for all iterations j with kj ≥ 1, one has ‖Cj‖ ≤
akj√
µα0

.

Lemma 3.8. Let Assumptions 3.1-3.4 hold. If for infinitely many iterations,

raredcj,a 6= max

‖Cj‖2,
vcj−1∑
r=0

µcjr‖Cj−r‖2
− ‖Cj+1‖2

holds, then kj →∞ and ‖Cj‖ → 0.

13

We now have all the ingredients to establish global convergence of our framework.
We begin by showing that the sequence of iterates is asymptotically feasible.

Theorem 3.9. Under Assumptions 3.1-3.4, if Algorithm 2.2 does not terminate
finitely, then limj→∞ ‖Cj‖ = 0.

Proof. The proof proceeds by contradiction. Suppose that lim supj→∞ ‖Cj‖ > 0.

Then, by Lemma 3.8, there exists ĵ such that for j ≥ ĵ,

raredcj,a = max

‖Cj‖2,
vcj−1∑
r=0

µcjr‖Cj−r‖2
− ‖Cj+1‖2

which implies by Lemma 3.5:

‖Cj+1‖2 ≤Mĵ − ρ1

j∑
r=ĵ

µmin{j−r,ν} predcr,a where Mĵ = max
ĵ−νcj<l≤ĵ

Rl,

Since µ ∈ (0, 1), we thus get for all j ≥ ĵ,

(3.9) ‖Cj+1‖2 ≤Mĵ − ρ1µ
ν

j∑
r=ĵ

predcr,a .

We first consider the case lim infj→∞ ‖Cj‖ 6= 0: in that situation, there exists an ε

for which ‖Cj‖ ≥ ε for j ≥ ĵ. By (2.2), this implies

predcj,a ≥ κ1
ε2

(κcJ)2 + γj,a
,

which, combined with (3.9), leads to

(3.10)

∞∑
j=ĵ

1

(κcJ)2 + γj,a
<∞ ⇒ lim

j→∞
γj,a = +∞.

Since ‖Cj‖ ≥ ε, similarly to Case 1 in the proof of Lemma 3.4, we can show that
for sufficiently large γj , the step must be accepted. This, together with the step
acceptance rule, guarantees that there exists an upper bound for γj,a, which contra-
dicts (3.10). Thus, we must have lim infj→∞ ‖Cj‖ = 0.

Because we assumed that lim supj→∞ ‖Cj‖ 6= 0, for any ε > 0, there exists a
subsequence {j} such that ‖Cj‖ ≥ 2ε. Since we just established lim infj→∞ ‖Cj‖ = 0,

for each index j of that subsequence, there exists j > j such that ‖Cj+1‖ < ε and

‖Cj‖ ≥ ε for j = j, ..., j. For j = j, ..., j, it thus holds that

(3.11) predcj,a(nj,a) ≥ κ1
ε2

(κcJ)2 + γj,a
, j = j, ..., j.

On the other hand, by (3.9) and our assumption that lim supj→∞ ‖Cj‖ 6= 0, we

have that
∑j
j=j predcj,a → 0 for j → ∞. Meanwhile, Lemma 3.2 guarantees that

14

‖sj,a‖ ≤ b0
γj,a

, so that

‖xj+1 − xj‖ ≤
j∑
j=j

b0
γj,a

= b0

j∑
j=j

(κcJ)2 + γj,a
γj,a((κcJ)2 + γj,a)

≤ b0
ε2κ1

(
(κcJ)2

γmin
+ 1

) j∑
j=j

predcj,a → 0 for j →∞,

where the last inequality comes from (3.11). By Assumption 3.2, we then obtain

ε = 2ε− ε ≤ ‖Cj+1‖ − ‖Cj‖ ≤ ‖Cj+1 − Cj‖ ≤ 2‖Jcj ‖‖‖xj+1 − xj‖+ Lc‖xj+1 − xj‖,

and the right-hand side goes to 0 as j → ∞. We have thus reached a contradiction,
from which we conclude that limj→∞ ‖Cj‖ = 0.

We now establish convergence towards a certain form of stationarity.

Theorem 3.10. Under the assumptions of Theorem 3.9, the sequence of iterates
of Algorithm 2.2 is such that lim infj→+∞ ‖W̃j(gj)‖ = 0.

Proof. We again seek a contradiction by assuming that there exists ε > 0 such
that lim infj→+∞ ‖W̃j(gj)‖ ≥ ε. From Lemma 3.4, we know that, in that case, the
trial step is always accepted if γj is sufficiently large. By the updating rule for γj ,
this implies that the sequence {γj} is bounded from above, i.e. there exists γM > 0

such that γj < γM for all j. From (2.10), we then have predtj,a ≥ κ2
ε2

(κfg)2+γM
: since

predcj,a ≤ ‖Cj,a‖2 → 0 thanks to Theorem 3.9, for j sufficiently large, we must have

eventually predtj,a > predcj,a. Furthermore, using Lemma 3.2,

|predlj,a−predtj,a | ≤ |m̃l
j(0)− m̃l

j(nj,a)|+ 1

2
‖γjtj,a + gj,a‖‖nj,a − W̃j,a(nj,a)‖

≤ 1

2

(
‖JFj ‖2 + γj,a

)
‖nj,a‖2 +

(
‖Jfj,a

>
Fj,a‖+ ‖Jcj,a‖‖yj,a‖

)
‖nj,a‖+ b0(1 + κW)‖nj,a‖

≤ 1

2
((κfJ)2 + γM)‖nj,a‖2 + (κfJκ

f + κcgκy + b0(1 + κW))‖nj,a‖

≤ 1

2
((κfJ)2 + γM)

(‖Jcj,a‖‖Cj,a‖
γj,a

)2

+ (κfgκ
f + κcgκy + b0(1 + κW))

‖Jcj,a‖‖Cj,a‖
γj,a

≤ 1

2
((κfg)2 + γM)

(
κcJ‖Cj,a‖
γmin

)2

+ (κfgκ
f + κcgκy + b0(1 + κW))

κcJ‖Cj,a‖
γmin

.

The last right-hand side converges to zero by Theorem 3.9. Thus, for j sufficiently
large, we must have predlj,a ≥ ρ2 predtj,a. Since the step is accepted, the conditions in

Step 5 of Algorithm 2.2 ensure that we also have raredlj,a ≥ ρ1 predlj,a.
In addition, using

|L(xj+1, yj+1)− L(xj+1, yj)| ≤ ‖yj+1 − yj‖‖Cj+1‖

together with the fact that we have just established above, raredlj,a ≥ ρ1 predlj,a, the
boundedness of yj as given by Assumption 3.4 and ‖Cj‖ → 0 as shown in Theorem 3.9,
we have for sufficiently large j:

raredlj,a +L(xj+1, yj)− L(xj+1, yj+1) ≥ ρ1

2
predlj,a .

15

Therefore, by Lemma 3.6,

|L(xj+1, yj+1)| ≤ max
ĵ−νlj<l≤ĵ

L(xl, yl)−
ρ1

2

j∑
r=ĵ

µmin(j−r,νl) predlr,a

≤ max
ĵ−νlj<l≤ĵ

L(xl, yl)−
ρ1ρ2

2

j∑
r=ĵ

κ2µ
νl ε2

κFJ
2

+ γM
,

where we used predlj,a ≥ ρ2 predtj,a ≥ κ2
ε2

(κfg)2+γM
. Since the sequence {L(xj , yj)}j is

bounded on Ω, we thus obtain
∑∞
j=ĵ κ2

ε2

(κfg)2+γM
<∞ and we arrive at a contradiction,

from which we conclude that lim infj→∞ ‖W̃j(gj)‖ = 0.

To end this section, we point out that it is possible to strengthen the result of
Theorem 3.10 by replacing (2.9b) with the following condition:

(3.12) ‖W̃j(gj)−Wjgj‖ ≤ ξ1 min

{
‖W̃j(gj)‖,

1

γj

}
.

Combining this condition with

‖Wjgj‖+ ‖Cj‖ ≤ ‖W̃j(gj)‖+ ‖W̃j(gj)−Wjgj‖+ ‖Cj‖ ≤ (1 + ξ1)‖W̃j(gj)‖+ ‖Cj‖,

the proofs of Theorems 3.9 and 3.10 can be readily modified so as to establish the
stronger result lim infj→∞ (‖Wjgj‖+ ‖Cj‖) = 0. Although both conditions (3.12)
and (2.9b) are trivially satisfied for an exact step, we point out that a given iterative

solver that uses (3.12) instead of (2.9b) to estimate W̃j(gj) may need more iterations
to converge. In our experiments, both conditions lead to a similar performance:
interestingly, in both cases, the results were comparable to enforcing the condition
‖W̃j(gj)−Wjgj‖ ≤ 10−12. We thus settled on the criterion that was least demanding
at the iteration level, and adopted condition (2.9b) in our implementation.

4. Numerical experiments. In this section, we report the results of several
experiments performed in order to assess the efficiency and the robustness of Algo-
rithm 2.2. We implemented all the algorithms as Matlab m-files. Our tests include
small-scale standard test cases, a challenging nonlinear nonconvex data assimilation
task, and two large-scale inverse problems with systems governed by PDE-based dy-
namics. Our main goal is to understand the behavior of our method on generic least
squares problems compared to standard alternatives, and to observe how it handles
additional challenges such as nonlinearity in both the constraints and the objective
functions.

4.1. Implementation details. Our parameter values follow that previously
adopted for matrix-free trust region SQP [12] and nonmonotone trust-region meth-
ods [28]. We thus set ν = νl = 5, µ = 10−3, ρ1 = 10−2, ρ2 = 10−2, γ̂1 = 0.9, γ̂2 = 2,
α = β = 0.1, ξ = 3/4, γmin = 10−16, and γ0 = 1. For the sequence {ak}, we used

a0 = min
{

0.1 max(1, ‖Cj‖), ‖W̃j(gj)‖+ ‖Cj‖
}

and ak = a0(k + 1)−1/2 ∀k ≥ 1.

In all our variants, the Lagrange multipliers yj are computed as the solution of
miny ‖gj − Jcj y‖22.

We implemented Algorithm 2.2 in an exact and an inexact variant, respectively us-
ing direct and iterative linear algebra. For the exact variant, named LM-EC-EXACT, the

16

subproblems (2.1) and (2.5) are solved with the backslash Matlab operator (which uses
the UMFPACK Fortran library). Direct elimination based on Matlab’s LU-factorization

routine was used to compute Wj = Γj(Γ
>
j Γj)

−1Γ>j where Γj = P>j

[
−L−>j N>j
In−p

]
,

where Nj ∈ R(n−p)×p, Lj ∈ Rp×p (a lower triangular matrix), and Pj (permutation
matrix) are computed from a factorization of the Jacobian matrix Jcj of the form[
Lj
Nj

]
Rj = PjJ

c
j . Note that Wj is computed explicitly, the steps t̃j and tj (and thus

s̃j and sj) coincide for the exact version.
The inexact variant, named LM-EC-MATRIXFREE, is a matrix-free implementation

of Algorithm 2.2, that is similar in spirit to matrix-free trust-region implementa-
tions [12]. However, since our method relies on regularization rather than trust-region,
we can use a standard conjugate gradient (cg) method to solve our subproblems. For
approximately solving (2.1), we apply cg until either the residual norm drops be-
low min{1e-4, max{1e-15,1e-8×ξ0

n}}, where ξ0
n is the norm of the residual after

one iteration, or a maximum of 1000 iterations has been reached. Similarly, the ap-
proximate tangential step (2.8) is computed using cg with a tolerance of min{1e-4,
max{1e-15,1e-8×ξ0

t }} (where ξ0
t is the norm of the residual after one iteration) and

a maximum of 1000 iterations; to compute the residual vector in an iteration of cg,
the minres solver [7] is applied to (2.6) with the same tolerance. Finally, the vector

tj and the projection operator W̃j are computed using minres with the tolerance
min{1e-4, max{1e-15,min{‖nj‖, 1/γ2

j }}}.
For comparison, we implemented a Gauss-Newton solver that does not rely on

regularization: the underlying iteration is xj+1 = xj + nj + tj , where nj and tj are
respectively solutions of (2.1) and (2.5) with γj = 0. As for our proposed solver,
we implemented two variants of the Gauss-Newton method; an exact version, termed
GN-EC-EXACT, where the two steps nj and tj are computed using the backslash Mat-
lab operator; and a matrix-free implementation, named GN-EC-MATRIXFREE, where
the steps are computed using the same procedure as our matrix-free implementation
of Algorithm 2.2. Our tests also include an implementation of the nonmonotone SQP
trust-region method [28]: this trust-region solver will be referred to as TR-EC-EXACT.
For the latter solver, we set the initial trust-region radius to 1 and used the default set-
ting for the rest of the parameters as in Ulbrich and Ulbrich [28]. All the subproblems
in the nonmonotone trust-region TR-EC-EXACT are solved using the Steihaug-conjugate
gradient method [25]. Unlike our proposed algorithm, the nonmonotone trust-region
requires an approximate Hessian B for the objective function f : we employ the Gauss-
Newton approximation, i.e., for a given x ∈ Rd, we set B(x) = JF (x)>JF (x). Note
that the TR-EC-EXACT solver does not have a matrix-free counterpart and thus can
not be used to solve our most challenging PDE inverse problems. For that reason,
TR-EC-EXACT will only be tested on problems for which it is possible to store the
Jacobians of F and C in memory.

4.2. Test on standard least-squares problems. In this section, we report
numerical results on a collection P of 20 problems used in Li et al [17], formed by the
nonlinear least-squares problems subject to equality constraints within well-known
benchmarks [14, 23]: the problem dimensions range between 2 and 9. The indexes of
the chosen problems as given in the reference [17] are: 6, 26, 42, 47, 60, 65, 77, 79,
216, 235, 249, 252, 269, 316, 317, 318, 322, 344, 345 and 373. For all problems, we
used the starting points x0 given in the above reference. A method was considered
successful if it reached an iterate such that max(‖Cj‖, ‖W̃j(gj)‖) ≤ 10−6: if this was

17

not the case after jmax := 1000 iterations, the method was considered to have failed.
To compare the algorithms in this section, we use performance profiles proposed

by Dolan and Moré [9]. Given the set of problems P (of cardinality |P|) and a set of
algorithms (solvers) S, the performance profile ρs(τ) of an algorithm s is defined as
the fraction of problems where the performance ratio rp,s is at most τ :

ρs(τ) =
1

|P|
size{p ∈ P : rp,s ≤ τ} where rp,s =

tp,s
min{tp,s : s ∈ S}

.

The scalar tp,s > 0 measures the performance of the algorithm s when solving prob-
lem p, seen here as the number of iterations. Better performance of the algorithm s
relatively to the other algorithms on the set of problems, is indicated by higher val-
ues of ρs(τ). In particular, efficiency is measured by ρs(1) (the fraction of problems
for which algorithm s performs the best) and robustness is measured by ρs(τ) for τ
sufficiently large (the fraction of problems solved by s). To facilitate the visualization
of the results [9], we plot the performance profiles in a log2-scale.

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Exact implementation.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Matrix-free implementation.

Fig. 4.1. Iteration performance profiles using 20 standard constrained least-squares problems [17].

Figure 4.1 depicts the obtained performance profiles: Figure 4.1(a) compares the
exact solvers while Figure 4.1(b) compares the matrix-free variants. In both figures,
the Gauss Newton methods (GN-EC-EXACT and GN-EC-MATRIXFREE) exhibit the worst
performance, which one could expect as this variant is only guaranteed to converge
locally. For instance, in terms of efficiency, the Gauss Newton approach is the best
only on less than 35% of the problems. In term of robustness (when ε = 10−4), for the
exact implementation, GN-EC-EXACT converges for only 65% of the problems, whereas
TR-EC-EXACT converges for almost all the problems and LM-EC-EXACT converges for
all problems.

In the matrix-free case, GN-EC-MATRIXFREE converges for 50% of the problems
while LM-EC-MATRIXFREE converges for all of the problems. Our proposed method
and TR-EC-EXACT exhibit almost the same performance (with a slight advantage for
LM-EC-EXACT), which illustrates the efficiency and the robustness of globalization
approaches (TR and our LM method) compared to a basic Gauss-Newton paradigm.
Note that these matrix-free variants are sensitive to the tolerance for (approximately)
solving the subproblems, and that fine tuning would likely be necessary to match the
performance of their exact counterparts. Nevertheless, we will focus on these matrix-

18

free variants in Sections 4.4 and 4.5 as the exact variants will not be practical there.

4.3. A data assimilation problem solved using exact linear algebra.
Data assimilation is concerned with the estimation of a hidden random temporal
process (Xi)

T
i=0, where Xi is the state of the process at time i and T denotes a time

horizon. This technique usually combines prior information about the process with
a numerical model and some observations. More formally, one aims to determine
x0, . . . , xT , where xi ∈ Rn is an estimator of the state Xi, from (i), the prior state
X0 = xb+Wb, Wb ∼ N(0, B), (ii) the numerical model Xi =Mi(Xi−1), i = 1, . . . , T ,
whereMi is the model operator at time i and (iii) the observations yi = Hi(Xi) +Vi,
Vi ∼ N(0, Ri), i = 0, . . . , T . Here T denotes the time horizon for the assimilation.
The random vectors Wb and Vi represent the noise on the prior and the observation
at time i, respectively, and are supposed to be Gaussian distributed with mean zero
and covariance matrices B and Ri, respectively.

The 4DVAR “strong constraint” method [2] is one of the most important data
assimilation techniques for weather forecasting, that consists in computing x0, . . . , xT
by solving the following optimization problem:

(4.1)
min

(x0,...,xT)∈Rn(T+1)
f([x0, . . . , xT]) :=

1
2

(
‖x0 − xb‖2B−1 +

∑T
i=0 ‖yi −Hi(xi)‖

2

R−1
i

)
s. t. xi −Mi(xi−1) = 0, i = 0, . . . , T

where x−1 = xb, x = (x0, . . . , xT), and ‖z‖2M = z>Mz is the norm defined by a
positive definite matrix M . This problem conforms to our generic formulation (1.1).
In our experiments, the numerical model is chosen to be the nonlinear Lorenz 63

system [18]: for a given xi−1 = [x
(1)
i−1, x

(2)
i−1, x

(3)
i−1]> ∈ R3 (i.e., n = 3), the model is

given by

Mi(xi−1) =

 −σ(x
(1)
i−1 − x

(2)
i−1

ρx
(1)
i−1 − x

(2)
i−1 − x

(1)
i−1x

(2)
i−1

x
(1)
i−1x

(2)
i−1 − βx

(3)
i−1

 ,

where σ, ρ, and β are parameters whose values are chosen as 10, 28, and 8/3, respec-
tively. These values are known to result in chaotic behavior of the Lorenz 63 model
with two regimes [18]. We choose the matrices B and Ri, i = 0, . . . , T to be iden-
tity matrices. The observations {yi}i={0,...,T} and xb are generated randomly. Each
variable is observed through the nonlinear operator

Hi(xi) =
xi
2

1 +
|xi|γ

obs−1

10

 , i = 0, . . . , T,

where |xi| is the component wise absolute value of xi and γobs is a scalar which tunes
the nonlinearity of the observation operator [2, Chapter 6]. Note that the problem is

smooth if γobs is an odd integer.
As in the previous section, we tested our three solvers on this problem with the

convergence criterion max(‖Cj‖, ‖W̃j(gj)‖) ≤ 10−4 and a maximum of jmax := 1000
iterations. Table 4.1 and Figure 4.2 depict the performance of the algorithms in
terms of the constraint and the projected gradient norms. Considering that T = 45

and γobs = 3, from Figure 4.2, we see that LM-EC-EXACT exhibits better performance
compared to TR-EC-EXACT and GN-EC-EXACT: the latter method even diverges, as
the values of the gradient and the constraint norm oscillate or stagnate over the

19

Table 4.1
Results on the data assimilation problem (4.1) using two different γobs values.

T
γobs = 3 γobs = 5

#it f(xj) ‖Cj‖ ‖ĝj‖ #it f(xj) ‖Cj‖ ‖ĝj‖

L
M
-
E
C
-
E
X
A
C
T 2 83 5.9e+00 3.7e-10 8.0e-05 98 6.7e+00 7.7e-10 8.6e-05

3 103 8.8e+00 1.7e-05 1.3e-01 103 8.7e+00 5.8e-05 1.6e-01
15 70 2.6e+01 2.4e-09 4.5e-05 40 2.7e+01 2.7e-09 4.2e-05
45 36 6.7e+01 2.1e-11 8.5e-05 48 6.8e+01 1.8e-09 7.7e-05
225 58 3.4e+02 5.0e-09 6.9e-05 45 3.4e+02 1.3e-11 8.3e-05

T
R
-
E
C
-
E
X
A
C
T 2 103 5.9e+00 6.1e-09 1.2e-02 103 6.6e+00 3.6e-08 1.5e-02

3 103 7.9e+00 2.3e-16 1.0e-01 103 8.3e+00 2.4e-05 2.0e-01
15 103 2.6e+01 9.1e-06 7.0e-02 103 2.7e+01 1.8e-06 2.3e-02
45 73 6.7e+01 5.7e-09 7.6e-05 103 6.8e+01 1.1e-16 2.8e-02
225 103 3.4e+02 6.7e-16 5.8e-03 103 3.4e+02 2.2e-07 5.5e-02

G
N
-
E
C
-
E
X
A
C
T 2 103 3.2e+01 1.2e-01 1.0e+01 103 9.2e+00 2.4e-01 4.2e+0

3 103 9.7e+00 3.2e-02 2.5e-01 103 9.2e+00 6.7e-02 9.0e-01
15 103 9.7e+01 2.0e-01 2.7e+01 103 3.5e+02 3.0e-01 2.1e+2
45 103 7.4e+01 1.2e-01 4.7e+00 103 1.9e+02 4.1e-02 7.6e+1
225 103 3.5e+02 1.1e-01 5.3e+00 103 3.5e+02 2.7e-02 4.7e+0

0 50 100 150 200

10
-4

10
-2

10
0

10
2

0 50 100 150 200

10
-10

10
-5

10
0

10
5

Fig. 4.2. Data assimilation convergence plots, considering T = 45 and γobs = 3.

iterations. On the contrary, our algorithm LM-EC-EXACT and the trust-region method
TR-EC-EXACT are able to decrease both the gradient and the constraint norm to a small
accuracy, with our method converging faster. Table 4.1 confirms the superiority of
our approach on this problem: GN-EC-EXACT diverges for all instances, TR-EC-EXACT
shows slightly better results as it converges for some instances, and LM-EC-EXACT

converges for most of the instances.

4.4. A PDE-constrained optimization problem. We now study a least-
squares problem with a hyperbolic forward PDE as equality constraints [10]. Given
a time interval [0, T], a time dependent density field y(x, t), and a time velocity field
u(x, t), one wishes to solve the constrained nonlinear least-squares problem

(4.2)

min
(y,u)

f([y, u]) := 1
2‖Qy − z‖

2 + 1
2

∫
Ω

(
(u− ur)2 + |∇(u− ur)|2

)
s. t. y +∇ · (yu) = 0

y(0, x) = y0.

20

where ur is a chosen reference model. Given the forward problem on y, the operator
Q represents the projection of y onto the space of the data z. Since problem (4.2) is
infinite-dimensional, we considered a discretization grid such that d = 4096. To this
end, we adapted the existing Matlab implementation of this problem available online1.
To initialize the variables in each optimization procedure, we used the reference model
for u and zero for y. Due to the nature of the PDE problem, only matrix-free opti-
mization solvers can be used, hence only LM-EC-MATRIXFREE and GN-EC-MATRIXFREE

were tested on this problem. Figure 4.3 shows the first 200 iterations of the two meth-
ods. Within 200 iterations, our proposed approach is able to reduce both the norm of
the gradient and the norm of the constraints below 10−5. The Gauss-Newton method
converges to a feasible point but does not reach a first-order optimal solution as the
norm of the projected gradient remains large.

0 50 100 150 200
10

-6

10
-4

10
-2

10
0

10
2

0 50 100 150 200
10

-15

10
-10

10
-5

10
0

10
5

0 50 100 150 200

10
1

10
2

0 50 100 150 200
10

-4

10
-3

10
-2

10
-1

10
0

Fig. 4.3. Convergence plots for the PDE-constrained optimization problem using matrix-free
solvers.

4.5. A coupled ODE-PDE nonlinear inverse problem. We finally com-
pare our methods on the G Water problem described by Schittkowski [24, Section
6.3]. This inverse problem features a nonlinear least-squares objective and nonlinear
constraints formed by a discretized coupled ODE-PDE system modeling acidification

1http://www.mathcs.emory.edu/∼haber/Code/ModelProblems.tar

21

of groundwater pollution. The resulting infinite-dimensional optimization problem is:

min
cm,cim

f([cm, cim]) := 1
2

∥∥∥cm(40, t)− Dm
Vm

∂cm
∂x (40, t)− ĥ

∥∥∥2

subject to θm
∂cm
∂t (x, t) = θmDm

∂2cm
∂x2 (x, t)− θmVm∂cm

∂x (x, t)

θim
∂cim
∂t (x, t) = α(cm(x, t)− cim(x, t))

cm(0, t)− Dm
Vm

∂cm
∂x (0, t) =

{
5800, if t < 0.01042
0, otherwise

cm(80, t) + Dm
Vm

∂cm
∂x (80, t) = 0,

where {θm, θim, Vm, α,Dm} are parameters, cm and cim are the functions to deter-

mine, ĥ is the infinite-dimensional observation vector, and Ω× T = (0, 80)× (0, 2.55]
is the domain. The initial conditions are that cim(x, 0) = 0 and cm(x, 0) = 0.

In order to generate the measurements, we took the values of the parameters
corresponding to the lowest residual in the reported results in [24], and simulated the
PDE using a spatial discretization with nx = 16 using the ode15s MATLAB function,
which generated a time discretization of nt = 197. Since there is an observation at
each time point, we obtained a residual vector (corresponding to F (x) in (1.1)) of
length 197. We used the measurements of h̃(cm) := cm(40, t)− Dm

Vm
∂cm
∂x (40, t) at each

of the time points to compute the vector of ĥ. Ultimately, the dimension of the
constraints vector C(x) is m = 6304 and the number of the unknown variables was
d = 6309.

We emphasize that this problem is highly nonlinear and difficult to solve, espe-
cially with a low-quality starting point. Since we did not find recommendations for
starting points in the literature, we ran our two matrix-free solvers from 150 starting
points chosen uniformly at random: the final residual for ‖C(x)‖ + ‖W̃g‖ was less
than 10 for 23 of the runs, while the final feasibility measure ‖C(x)‖ was less than
10−1 on 67 of the runs. The initial values of ‖C(x)‖ + ‖W̃g‖ were typically of the
order of [104, 106], which illustrates the challenges posed by this problem. Figure 4.4
plots the progress along the iterations of both algorithms with the lowest final value
of ‖C(x)‖+ ‖W̃g‖. Note that the norm of the constraint quickly drops to tolerance,
which indicates that our methods produce iterates that end to respect the physics of
the problem.

5. Conclusion. We have proposed and analyzed a nonmonotone composite-step
Levenberg-Marquardt algorithm for the solution of equality-constrained least-squares
problems. Our approach allows for approximate solutions of the subproblems com-
puted by iterative linear algebra, and is endowed with global convergence guarantees
through a nonmonotone step acceptance rule. Our numerical experiments showed that
our method is competitive with trust-region approaches, and converges on a variety
of experiments from data assimilation to PDE-constrained optimization.

Our theoretical analysis focuses on global convergence, yet complexity results
have become increasingly popular in the optimization community. Deriving worst-
case bounds on the number of Hessian-vector products required to reach an approx-
imate solution of the problem is a potential follow-up of this work. Besides, our
applications of interest such as data assimilation and PDE-constrained optimization,
the measurements (and sometimes the models themselves) can be noisy, which signif-
icantly hardens the optimization task. Incorporating uncertainty into our framework
thus represents an interesting avenue for future research.

22

0 50 100 150 200
10

-2

10
0

10
2

10
4

10
6

10
8

0 50 100 150 200
10

-20

10
-10

10
0

10
10

0 50 100 150 200
10

0

10
5

10
10

0 50 100 150 200
10

-2

10
-1

10
0

10
1

10
2

Fig. 4.4. Performance for the first 100 iterations on the inverse coupled PDE-ODE problem.

Acknowledgements. The authors would like to thank the guest editors as well
as two anonymous referees for their insightful comments.

REFERENCES

[1] H. Antil, D. P. Kouri, M.-D. Lacasse, and D. Ridzal, editors. Frontiers in PDE-Constrained
Optimization, volume 163 of The IMA Volumes in Mathematics and its Applications.
Springer, New York, NY, USA, 2016.

[2] M. Asch, M. Bocquet, and M. Nodet. Data Assimilation: Methods, Algorithms, and Applica-
tions. SIAM, 2016.

[3] R. Behling and A. Fischer. A unified local convergence analysis of inexact constrained
Levenberg-Marquardt methods. Optim. Lett., 6:927–940, 2012.

[4] E. Bergou, Y. Diouane, and V. Kungurtsev. Convergence and complexity analysis of a
Levenberg-Marquardt algorithm for inverse problems. J. Optim. Theory Appl., 185:927–
944, 2020.

[5] E. Bergou, S. Gratton, and L. N. Vicente. Levenberg-Marquardt methods based on probabilistic
gradient models and inexact subproblem solution, with application to data assimilation.
SIAM/ASA J. Uncertain. Quantif., 4:924–951, 2016.

[6] S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra - Vectors, Matrices and
Least Squares. Cambridge University Press, Cambridge, United Kingdom, 2018.

[7] S.-C. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method
for indefinite or singular symmetric systems. SIAM J. Sci. Comput., 33:1810–1836, 2011.

[8] J. E. Dennis, M. El-Alem, and M. C. Maciel. A global convergence theory for general trust-
region-based algorithms for equality constrained optimization. SIAM J. Optim., 7:177–207,
1997.

[9] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[10] E. Haber and L. Hanson. Model problems in pde-constrained optimization. Technical report,
2007.

[11] P. C. Hansen, V. Pereyra, and G. Scherer. Least Squares Data Fitting with Applications. Johns
Hopkins University Press, Baltimore, MD, USA, 2012.

23

[12] M. Heinkenschloss and D. Ridzal. A matrix-free trust-region sqp method for equality con-
strained optimization. SIAM J. Optim., 24(3):1507–1541, 2014.

[13] M. Heinkenschloss and L. N. Vicente. Analysis of inexact trust-region sqp algorithms. SIAM
J. Optim., 12(2):283–302, 2002.

[14] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes. J. Optim.
Theory Appl., 30:127–129, 1980.

[15] A. F. Izmailov, M. V. Solodov, and E. Uskov. A globally convergent Levenberg–Marquardt
method for equality-constrained optimization. Comput. Optim. Appl., 72(1):215–239, 2019.

[16] K. Levenberg. A method for the solution of certain problems in least squares. Quart. Appl.
Math., 2:164–168, 1944.

[17] Z. F. Li, M. R. Osborne, and T. Prvan. Adaptive algorithm for constrained least-squares
problems. J. Optim. Theory Appl., 114:423–441, 2002.

[18] E. N. Lorenz. Deterministic non periodic flow. J. Atmos. Sci, 20(2):130–141, 1963.
[19] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM J.

Appl. Math., 11:431–441, 1963.
[20] N. Marumo, T. Okuno, and A. Takeda. Constrained Levenberg-Marquardt method with global

complexity bound. arXiv:2004.08259, 2020.
[21] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research

and Financial Engineering. Springer-Verlag, New York, second edition, 2006.
[22] D. Orban and A. S. Siqueira. A regularization method for constrained nonlinear least squares.

Comput. Optim. Appl., 76:961–989, 2020.
[23] K. Schittkowski, editor. More Test Examples for Nonlinear Programming Codes. Springer-

Verlag, Berlin, Heidelberg, 1987.
[24] K. Schittkowski. Parameter estimation in one-dimensional time-dependent partial differential

equations. Optim. Methods Softw., 7(3-4):165–210, 1997.
[25] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.

SIAM J. Numer. Anal., 20:626–637, 1983.
[26] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM,

Philadelphia, 2005.
[27] Y. Trémolet. Model-error estimation in 4D-Var. Quarterly Journal of the Royal Meteorological

Society, 133:1267–1280, 2007.
[28] M. Ulbrich and S. Ulbrich. Nonmonotone trust region methods for nonlinear equality con-

strained optimization without a penalty function. Math. Program., 95:103–135, 2003.

24

	Introduction
	Algorithmic framework
	Inexact quasi-normal step
	Inexact tangential step
	Nonmonotone acceptance rule
	Main algorithm

	Global convergence
	Assumptions and intermediary results
	Main convergence results

	Numerical experiments
	Implementation details
	Test on standard least-squares problems
	A data assimilation problem solved using exact linear algebra
	A PDE-constrained optimization problem
	A coupled ODE-PDE nonlinear inverse problem

	Conclusion
	Bibliography
	References

