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A B S T R A C T   

This paper proposes a novel model-based approach to technology planning and roadmapping, consisting of two 
complementary steps: technology forecasting and game-theoretic planning. The inherent uncertainty of target 
technology performances, timelines and risks impact the roadmapping process. Reducing this uncertainty is a 
major challenge and allows elaborating different options and scenarios. A formal methodology is proposed for 
quantitative forecasting in a multi-dimensional space (different performance metrics and time) based on past 
technology development trend information. The method adopts concepts and approaches from econometrics and 
is formulated as a convex optimization problem with different constraints on the frontier’s shape. It provides 
useful product line assessment benchmarks and helps to set reasonable goals for future technology developments. 

Game-theoretic planning allows addressing the strategic decisions to take, considering the technology land-
scape, markets, and competition. The strategic decisions affect in turn other companies as well, which is the basis 
for the application of game theory, in the form of best-response functions to determine the subsequent reactions 
and movements of rivals in a technological landscape. The result is a simulation of a sequential game in tech-
nology space, allowing evaluating possible technological development pathways and determining optimal 
models on the Pareto frontiers, potential targets for technology roadmapping.   

1. Introduction 

Pursuing the goal of surviving in rapidly changing environments, 
technology companies resort to numerous techniques to plan their 
technology investments and define a technology strategy. Due to the 
increasing role of technology strategy in driving profitability of business 
operations, and due to the increasing complexity and interdependencies 
between technologies and products, Technology Planning and Road-
mapping (TPR) has become over the years an essential corporate function 
in large technology organizations. TPR approaches vary in scope and 
format. Technology roadmapping is used to produce visual displays of 
information from market, product and technology perspectives for 
external communication purposes. In its most advanced implementa-
tions, technology roadmapping is implemented to define multi-layered 
time-based roadmaps providing focus and integrating technology de-
velopments into future products and services, within organization’s top- 

down vision and strategy (Phaal et al., 2009, 2004). To accomplish these 
goals, technology roadmaps incorporate inputs across the entire orga-
nization including R&T, engineering, product policy, corporate strategy, 
support functions and outside partners – such as suppliers – while 
keeping track of developments of other relevant external entities. 

A McKinsey study (Heim et al., 2017) highlights that existing road-
mapping solutions fail at identifying “white spots” in technology 
development. They also fail at offering a holistic view on how technol-
ogies and markets may evolve over time, and what such changes may 
imply for future products. Therefore, companies face several challenges 
in planning technology and building a technology roadmap: 

<<

• the moving-target dilemma ("How will technology markets change in the 
future?"), 
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• the resource-focus dilemma ("Which of the multiple options should limited 
resources be allocated to?"), and 

• the evolution-revolution dilemma ("What should be emphasized: incre-
mental or breakthrough innovations in a technology portfolio?"). 

>> (Heim et al., 2017) 
Selecting a technology roadmap restrains an outcome to a certain 

tradespace region with limited evolution and demands of demonstrating 
a technology or raising the Technology Readiness Level (Mankins, 
2009). In a case of technology demonstration failure or other exogenous 
changes, an anticipated architecture and its magnitude of development 
would be restricted (Davison et al., 2015). We assert that a preliminary 
analysis of the technology tradespace and its possible evolutions, key 
competitors and associated technology targets, is needed to support the 
choice and mitigate financial uncertainties. The goal of this paper is to 
propose a novel approach for technology roadmapping and planning, to 
support technology experts and decision-makers in the process of R&D 
planning and selection, through quantitative, model-based approaches, 
and rigorous mathematical models of technology evolution. 

This paper models technological progress as quantitative forecasting 
of technology over time across key Figures of Merit (FOM) such as 
performance, cost, and risk (Yuskevich et al., 2018a), and the interplay 
of strategic decision-making in technology investments in a firm as a 
function of potential technology investments undertaken by competitors 
(Smirnova et al., 2018). The paper integrates two mathematical ap-
proaches: Pareto frontiers for technology forecasting and game theory 
for technology planning. The resulting framework represents a tech-
nology planning process as an extensive-form game. The 
Pareto-forecasting approach identifies Pareto optimal designs forecasted 
into the future (Yuskevich et al., 2018a). The game-theoretic approach 
simulates strategic industry competition among key producers through 
modeling of sequential games (Smirnova et al., 2018). This paper ex-
tends previous work by the authors (Smirnova et al., 2018; Yuskevich 
et al., 2018a) by providing a multi-dimensional formulation of the 
framework for N > 2 figures of merit and N > 2 number of producers 
within one technology tradespace. The framework is applied to a case 
study of future automobile conceptual design. 

The remainder of this paper is structured as follows. Section 2 pro-
vides background information on related research. Section 3 defines a 
comprehensive description of the framework for N players, illustrated 
with a notional three-player example. In addition, this section provides a 
discussion of challenges and limitations of the approach. Section 4 
presents the application of the proposed approach on an automotive 
industry case study. Section 5 discusses the validation of the proposed 
approach. Section 6 provides conclusions and lays out avenues for future 
work in technology forecasting and planning. 

2. Literature review 

In order to provide theoretical context to the work presented in this 
paper, this section overviews previous research in technology planning 
and roadmapping, with particular emphasis on multi-dimensional Par-
eto frontier forecasting and game-theoretic planning. 

2.1. Multi-dimensional Pareto frontier forecasting 

According to Phaal et al. (2004), the key defining feature of a tech-
nology roadmap is a time-based layered structure often visualized in a 
form of a chart. In his approach, the decomposition in levels (usually 
technology-product-market) helps to formalize technology/system re-
quirements and market expectations and explore the relationships be-
tween them. 

In the context of roadmapping for complex technical systems, tech-
nology levels are of the particular interest. Consequently, technology 
assessment (TA) and technology forecasting (TF) are important com-
ponents in technology roadmapping. In the roadmap architecture 

recently proposed in Knoll et al. (2018) a special role is given to 
Figures of Merit (FoMs), the quantitative performance indicators used to 
assess competing technologies, components, systems, products and 
services. The process of building high-quality roadmaps requires tools 
for accurate forecasting of future FoMs. 

Due to the fact that roadmapping activities are often focused on 
emergent technologies, products and services, the authors usually sug-
gest using forecasting methods based on qualitative approaches such as 
expert opinions (Bloem da Silveira Junior et al., 2018), bibliometrics 
(Bildosola et al., 2017; Kostoff and Schaller, 2001; Martin and Daim, 
2012) and patent analysis. The widespread use of expert elicitation is 
also due to the traditional approach of developing roadmaps through 
workshops (Phaal et al., 2004). Quantitative methods such as 
model-based approaches have not traditionally been employed in 
technology planning and roadmapping. 

Although the use of quantitative approaches received relatively little 
attention in the literature, previous work has demonstrated the appli-
cation of quantitative trend extrapolation methods to forecasting in-
cremental technology evolution at all levels of the value chain 
(technologies, components, systems) (Anderson et al., 2002; Iamrata-
nakul et al., 2005; Inman et al., 2006). Quantitative technology fore-
casting becomes relevant as soon as sufficient information about existing 
systems is gathered and organized in structured databases. Such infor-
mation, which typically refers to incremental evolution of technology, 
can also be used to estimate the likelihood of “technology jumps” in 
terms of technology disruption. Incremental technology progress may 
eventually lead to disruptive technology jumps, and therefore emer-
gence of completely new products and services. For instance, the gradual 
miniaturization of electronics enabled the integration of digital cameras 
into smartphones with an emergence of all corresponding services. In-
cremental progress can also lead to a rapid adoption of new technology 
and consequent turbulence on the market. According to disruptive 
innovation theory, the latter happens when a new technology breaks the 
low-end performance demand (Christensen, 1993). This strategy is 
referred to as low-end disruption. On the other hand, some companies 
may pursue a high-end disruption strategy aiming at gradual afford-
ability improvement by investing in high-performant technologies. An 
example of a company implementing such a strategy is Tesla Inc. (Dyer 
and Furr, 2015). In the context of disruptive innovation planning, 
quantitative trend extrapolation approaches can be used for time pre-
dictions to estimate time of adoption of a technology of interest. 

Usually, disruption theories are illustrated with charts of state-of- 
the-art performance (or affordability) and performance (or afford-
ability) as demanded by different market segments versus time (Chris-
tensen, 1993). The real picture, however, is multi-dimensional (Fig. 1). 

Fig. 1. Multi-dimensional illustration for the disruptive innovation strategies.  
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A company may choose to invest into high-end regions of the technology 
frontier to improve affordability (path-A), or into the low-end region to 
improve performance (path-B); they also can opt to pursue both per-
formance and affordability improvement in different proportions. For 
instance, the aforementioned case of Tesla Inc. (Dyer and Furr, 2015) 
indicates that their technology investments aimed not only at the 
development of more affordable car models, but also at better perfor-
mance, such as by improving battery capacity. 

By integrating with Disruptive Innovation Theory (DIT) (Chris-
tensen, 1993), quantitative approaches can also be used to forecast the 
emergence of disruptive technologies, by estimating the cross-over time 
at which incremental evolution of technology breaks the so-called 
Low-End performance thresholds, as defined in DIT. For instance, the 
emergence of smartphones in the retail market could be forecasted by 
looking at the gradual miniaturization of electronics and correspond-
ingly the integration of digital cameras into phones. 

Trend extrapolation is a numerical method of particular interest in 
technology forecasting. Extrapolation allows inferring future evolution 
of technology as a function of prior evolution. Trend extrapolation is 
implemented by combining different forecasting approaches. For 
example, Martin and Daim (2012) discuss the combination of multiple 
forecasting approaches (e.g., bibliometrics, patent analysis, Delphi, 
technology intelligence, etc.) within the roadmapping process to over-
come limitations of a single technique and enrich the results of the 
analysis. Technology forecasting can be performed by looking at evo-
lution on individual or multiple figures of merit. Multidimensional 
Technology Forecasting (TF) was initially proposed by a research group 
from Portland State University. In their initial work (Anderson et al., 
2002), TF is approached using Data Envelopment Analysis (TFDEA). The 
idea of TFDEA is to assess existing technical systems by calculating ef-
ficiency scores using DEA and making forecasts by estimating technol-
ogy rates-of-change. This approach was validated successfully in 
application to performance prediction for microprocessors (Anderson 
et al., 2002), computer display projectors (Iamratanakul et al., 2005), jet 
fighter aircrafts (Inman et al., 2006), wireless networks (Anderson et al., 
2008), passenger airplanes technologies (Lamb et al., 2010) and electric 
vehicles (Jahromi et al., 2013). In Lim and Anderson (2016) the evo-
lution paths of the flat panels technologies were built, and results dis-
cussed through the lens of Disruptive Innovation Theory. DEA models 
assume of convex production sets. Forecasting using DEA, therefore, 
imposes the constraints on the shape of the Pareto frontier composed by 
the Figures of Merit of interest. Nevertheless, the literature shows that 
the assumption of convexity is quite strict and is often not respected in 
engineering applications. As an example, Smaling and Weck (2007) 
showed that the number of design options based on several different 
design concepts mapped in the same multi-objective criteria space form 
a non-convex feasibility set. A theoretical evolution of interest is, 
therefore, to extend DEA to non-convex Pareto frontier shapes. Previous 
work in (Yuskevich et al., 2018a) by the authors of this paper has pro-
posed such evolution, framing technology evolution as a multivariate 
extrapolation of scattered data. Compared to TFDEA, the approach in 
(Yuskevich et al., 2018a, 2018b) enables the estimation of both 
increasing and decreasing returns-to-scale frontiers and adopts 
growth-curves models as proven patterns of technology performances 
evolution and infusion rates in a single run of the linear optimization 
procedure. The paper extends this previous work to a general, 
n-dimensional formulation of the problem. 

2.2. Game-theoretic technology planning 

Game theory is widely used to study economic, political, and bio-
logical phenomena (Osborne, 2003). The application of game-theoretic 
approaches in engineering design and, especially, system engineering is 
a topic of interest in engineering research. Its application in the engi-
neering field has been historically limited to the study of interactions 
between designers in selection and design of complex systems. The 

theoretical and mathematical basis of games is used to abstract the 
processes required to design a complex system. 

In Vincent (1983) it is shown the usefulness of some of the 
game-theoretic concepts in engineering design, through the analysis of a 
generic mathematical problem in engineering. The authors mention the 
application of game theory to model decentralized design by a team of 
engineering designers. A number of studies have followed this topic. For 
instance, Chanron and Lewis (2005) modeled a design process where 
decision makers follow an iterative process of communication and 
developed the vector, scalarization, and trade-off-curve methods to 
achieve multi-objective solutions. A different framework (Smirnov at al., 
2019) was proposed for design optimization using game theory, where a 
design process with any number of discipline designers is shown as a 
normal form game. This work describes the difference between Nash 
Equilibria and Pareto optimal solutions. In Brafman et al. (2009), a 
Coalition-Planning game formulation has been developed for 
self-interested players with personal goals who find the cooperation 
with each other beneficial in order to increase their personal net benefit. 
The research is focused on cooperative self-interested agents in groups 
(Hadad et al., 2013) and game scenarios in resource coalition (Dunne 
et al., 2010). A pure game-theoretic approach has been proposed to 
perform a strategic analysis of all possible player strategies and define 
equilibria based on the relationships between different solutions in 
game-theoretic terms (Bowling et al., 2003). Another work (Jordán and 
Onaindia, 2015) used the game-theoretic approach for non-cooperative 
planning to predict the plan schedules which player will adopt so that 
the set of strategies of all players constitute Nash Equilibrium (NE). 
Similar research (Davison et al., 2015) has been devoted to defining and 
plotting ‘evolution’ pathways within a tradespace in the form of the 
weighted directed graph where nodes are possible architectures. In 
Goswami et al. (2016); Sadeghi et al. (2011), product portfolio man-
agement is considered as a combinatorial optimization problem for a 
competitive duopolistic market. The focus of Goswami et al. (2016) is to 
develop a Bayesian-Game theoretic framework for planning problem 
thereby aiding the manufacturers operating across the variety of product 
industries to offer the right product portfolio set. Initially, feasible 
product portfolio candidates are generated as combinations of different 
product attributes and their attribute levels employing the attribute 
compatibility constraints. Manufacturing costs and product premiums, 
respectively, are estimated for different product portfolios, employing 
function-based cost-estimating relationships and multi-linear regression 
methodology. A Bayesian approach is used to classify purchase proba-
bilities in high, medium and low-risk states for various product portfo-
lios. The purchase probabilities so obtained act as input to the final 
payoff calculation. Finally, employing these payoff values, product of-
fering scenarios are populated for the two manufacturers both in equi-
librium and non-equilibrium state. 

A development planning approach using game theory and network 
model was suggested in Xiong et al. (2017) to address the strategy se-
lection and evolution of weapons systems-of-systems (WSoS) charac-
terized by a competition between countries. With the development of 
weapons, SoS planning is changing in a state whereby every country is 
chasing each other especially potential competitors. The development 
planning framework includes a game player, strategy definition, and 
constraints (e.g., time and money). The framework defines a combat 
network presenting a structure and evolution of WSoS. Next, the selec-
tion process of the development planning strategy is considered based 
on damage accumulation and mitigation related to WSoS confrontation. 
Finally, a competitive coevolution algorithm is designed to find the 
optimal development strategy, reflecting that WSoS evolve along with 
the strategy selection change. 

Choosing a promising project with desirable outcomes is an impor-
tant stage of technology planning. The correct choices of roadmap and 
technology development (e.g. R&D projects to perform) influence an 
enterprise’s successful position at the market. They are essential for a 
firm’s competitive advantage and long-term goals. Failures in 
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technology investment decision-making have ripple effects in an orga-
nization bottom line for years, and may lead to significant waste in 
research and development resources. The work of Heidenberger and 
Stummer (1999) gives an overview of quantitative methods for selecting 
R&D projects and allocating resources. They describe game theory ap-
proaches as those explicitly considering rational acting of a firm’s 
environment which depends on the firm’s actions. However, a gap is 
observed between the complexity of real-life decision-making and its 
corresponding theory. Heidenberger and Stummer (1999) exemplify the 
game-theoretic approach by considering a patent race in a duopolistic 
market; dynamic aspects of R&D competition and a framework for 
assessing a value of intermediate result in R&D project under competi-
tion. This paper builds on the state of the art here presented and gen-
eralizes the forecasting and strategic planning approach to a case of a 
market with multiple players. 

3. Methodology 

Building on the literature reviewed in Section 2, this section de-
scribes a methodology to technology planning and roadmapping based 
on multi-dimensional Pareto frontier forecasting and game-theoretic 
planning (considering scenarios with n firms operating in the market). 

3.1. Multi-dimensional Pareto frontier forecasting 

The feasibility boundary of technology performance can be numer-
ically modeled as a surface in the n-dimensional space defined by the 
FoMs of interest. The evolution of technology can be modeled as the 
time-variant extension of the FoM surface: 

F(X, t) = 0, (1) 

Where X = (x1, x2,…, xn) are quantitative (performance, cost, etc., 
xi ∈ R) and categorical (e.g. features, functions, etc., xi ∈ N) FoMs of a 
technology or a system, whereby the concrete value of vector X is the 
Pareto-optimal combination of characteristics at the time t (state-of-the- 
art). 

Each quantitative element within vector X following production ef-
ficiency theory (Farrell, 1957) can be classified as inputs or outputs. 
System designers typically aim at minimizing inputs (such cost, con-
sumption, mass, etc.) and maximizing outputs (performance, reliability, 
user experience, value, etc.) in order to obtain efficient and competitive 
designs. Additionally, each element of vector X may have lower Xl and 
upper bounds Xu (physical limits). In each specific case physical limits 
shall be estimated beforehand. For example, generally energy conver-
sion efficiency lies between 0 and 1, but maximal Carnot efficiency of 
specific heat engine depends on the ratio of working temperatures and 
usually does not exceed 0.5. 

To explain the mathematics involved in the proposed methodology, 

three notions need to be introduced from convex geometry: convex set, 
exposed points and orthants. 

By definition, a convex set C is a set of points such that, given any two 
points A, B in that set, the line AB joining them lies entirely within that 
set. An orthant in n-dimensions can be considered as the intersection of n 
mutually orthogonal half-spaces (thus orthant is a convex set). An 
orthant in 2-dimensional space is called a quadrant. 

In Fig. 2a, point A divides a two-dimensional space into four convex 
sets (quadrants): V1, V2, V3, V4. In mathematics, the exposed point A of 
a convex set V is defined as the point A ∈ V in which a linear function 
attains maximum value over V. If xi, xj are both outputs, then function 
φ(X) = xi + xj exposes A over V3. All points belonging to V3 are referred 
to as Pareto dominated by A and points belonging to V1 are Pareto 
dominating for A (Fig. 2b). 

Depending on the type of FoM (input or output) (mathematically 
defined by a form of the function φ =

∑n
i=1(±1) ⋅ xi), each point in ℝn 

will be exposed by φ over just one convex set (orthant) out of 2npossible. 
An orthant for which A is an exposed point is of particular interest. We 
further refer to this orthant as dominated and denote Vdom(A) and the 
opposite orthant (for which functionalφinf (X) = − φdom(A)) as a domi-
nating orthant Vinf (A). 

The input for the forecasting algorithm is a set of scattered obser-
vations that are known from the past evolution of technology S = {(X1,

t1), (X2, t2)... (Xm, tm)}. The problem of trend extrapolation consists in 
finding the one-sided interpolation of the set S with the surface F(X,t), i. 
e., in minimizing the functional J[F] representing summary Euclidian 
distance between the set S and surface F: 

J[F] =
∑m

k=1
distance(F(X, t), Sk) (2.a)  

Sk ∈ Vfeasible(F(X, t)), (2.b)  

Xl ≤ X ≤ Xu, (2.c)  

where Vfeasible(F(X, t)) is a convex or non-convex set formed as a union of 
orthants dominated by points belonging to surface F(X, t). Usually, 
Vfeasible(F(X, t)) is referred to as a feasibility set (or feasible region of a 
tradespace). The real-world meaning of constraint 2.b is that no tech-
nology can surpass the current technological frontier. Equation 2.c 
constraints vector X with physical limits. 

Note that the union of two convex sets is not necessarily convex. The 
region lying below the Pareto frontier in Fig. 2b is feasible and non- 
convex. Feasibility sets that do not hold the convexity assumption are 
quite common in engineering practice. 

Equation (1) is an implicit form of a multi-dimensional technology 
frontier. From now and on, we will use an explicit form of a surface 
solved for time t: 

Fig. 2. Two-dimensional objective (criteria) space.  
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t = T(X) (3) 

The scalar field t defined on X shows at which point of time the 
technology reach performance level X.

The shape of the surface T(X) is not arbitrary. Empirically, we know 
that technologies evolve following certain paths that may be approxi-
mated by linear, exponential, or S-shaped functions referred to as 
growth-curves (Wissema, 1982). Consequently, we can add a functional 
form assumptions (equality constraints) on T(X) in a way that the 
change of a field T along chosen dimension xk has a growth-curve shape: 

T(x1 = χ1, x2 = χ2,…xk, …, xn = χn) = g(xk).

Secondly, isochrones of T(X), T(X) = τ represent the state-of-the-art 
of technology (Pareto frontier) for a given year τ. As previously 
mentioned, the form of technology frontier may violate convexity as-
sumptions. However, it is quite rare that a frontier is non-monotonic or 
discontinuous. Therefore, we should also add a number of non- 
functional form assumptions (inequality constraints) on partial de-
rivatives of T(X) = τ. 

To solve this problem with a linear programming solver, we need to 
reformulate the continuous problem into a discrete problem. We will be 
looking for values of t in nodes of the Cartesian grid GX defined in n- 
dimensional space ℝn of technology FoMs t = T(GX), with two types of 
assumptions on the shape of T:  

• non-functional assumptions:  
○ along all directions of space X, scalar field t is either decreasing or 

increasing sequence (depending on the orientation of elements of 
vector X);  

○ in cross-sections of t, isochrones (Pareto frontiers) are either 
convex or concave (t should not experience strong discontinuities);  

• functional assumptions:  
○ For one or number of elements of X we can write: t = g(xi), where 

g(⋅) is a growth curve (Gompertz, logarithmic, linear, etc.). 

One can formulate a corresponding concrete optimization problem 
by following the algorithm:  

1 Create Cartesian grid G = (i1⋅dx1, i2⋅dx2,…, in⋅dxn) | i1, i2,…, in ∈

N in Rn, so we can write a discrete function X = (x1, x2,…, xn) =

Xd(i1, i2,…, in) that returns coordinates of grid nodes based on in-
dexes of grid G.  

2 Define orientation and bounds of each component of vector X. 
3 With respect to each node of grid G, find minimal year among ob-

servations lying in the dominating orthant V(Xd(i1, i2,…, in)) based 
on available data C⊂S : Tmin(Xd(i1, i2,…,in)) =mint(C) | C ∈ V(Xd(i1,
i2, …, in)). In other words, among all observations with superior 

performances than a target (values of the grid node) we find the 
earliest date. Discrete functions Tmin(X) and T(X) form corresponding 
matrices Tmin and T with elements tmini1 , i2 ,..,in and ti1 , i2 ,..,in .  

4 First non-functional assumption: 

if xj is output-oriented, then: ti1 , i2 ,…,ij=u,…,in − ti1 , i2 ,…,ij=u− 1,…,in ≥ 0,
for ∀ u, j; if xj is input-oriented, then ti1 , i2 ,…,ij=u,…,in −

ti1 , i2 ,…,ij=u− 1,…,in ≤ 0,

a for ∀ u, j;  
1 Second non-functional assumption: 

if in a cross-section xj,xk, isochrones are convex then: 

ti1 , i2 ,…,ij=u− 1,…,ik=v,…,in − ti1 , i2 ,…,ij=u,…,ik=v,…,in − − ti1 , i2 ,…,ij=u+1,…,ik=v,…,in
+ti1 , i2 ,…,ij=u+2,…,ik=v,…,in ++ti1 , i2 ,…,ij=u,…,ik=v− 1,…,in − ti1 , i2 ,…,ij=u,…,ik=v,…,in

− ti1 , i2 ,…,ij=u,…,ik=v+1,…,in + ti1 , i2 ,…,ij=u,…,ik=v+2,…,in ≥ 0 | ∀ u, v  

if in a cross-section xj, xk isochrones are concave, then: 

ti1 , i2 ,⋯,ij=u− 1,⋯,ik=v,⋯,in − ti1 , i2 ,⋯,ij=u,⋯,ik=v,⋯,in − ti1 , i2 ,⋯,ij=u+1,⋯,ik=v,⋯,in
+ti1 , i2 ,⋯,ij=u+2,⋯,ik=v,⋯,in +ti1 , i2 ,⋯,ij=u,⋯,ik=v− 1,⋯in

− ti1 , i2 ,⋯,ij=u,⋯,ik=v,⋯,in − − ti1 , i2 ,⋯,ij=u,⋯,ik=v+1,⋯,in +ti1 , i2 ,⋯,ij=u,⋯,ik=v+2,⋯,in ≤0 |∀u,v 

See Fig. 3 for the clarification of the latter. These formulas are ob-
tained by finding gradients of the scalar field and calculating the 
divergence using the basic definition: 

∇⋅(V(x, y)) =
∂Vx(x, y)

∂x
+

∂Vy(x, y)
∂y

.

1 Functional-form assumption: 

Linear along xj: ti1 ,…,ij=u,…,in − ti1 ,…,ij=u− 1,…,in = ti1 ,…,ij=u+1,…,in −

ti1 ,…,ij=u,…,in | ∀ u 
Gompertz along xj: 
First, xj should be transformed by the linear form of Gompertz curve 

formula yj = log
(
− log

(
xj
L

))
, where L is the physical limit of xj. Then the 

equality constraint for optimization problem will have the same linear 
form T(Yd(i1, ...,ij = u, ..., in)) − T(Yd(i1,..., ij = u − 1, ...,in)) = T(Yd(i1,...,
ij = u + 1, ..., in)) − T(Yd(i1, ..., ij = u, ..., in)) | ∀ u 

Finally, yj should be transformed back xj = L exp( − exp(yj)). 
Piecewise-linear approximation of S-curve: a(ti1 ,…,ij=u,…,in −

ti1 ,…,ij=u− 1,…,in ) = ti1 ,…,ij=u+1,…,in − ti1 ,…,ij=u,…,in | ∀ u, where a>1 on an 
accelerating growth part of the S-curve and a<1 on a slowing growth 
part.  

1 F(X) shall dominate S (no technology surpass the frontier): 

Tmin − T ≥ 0.

2 Finally, to solve the problem, we need to minimize the distance be-
tween the technology frontier and the best technology performances 
at the time. Hence, now we can formulate the objective function of 
the linear optimization problem in the following form: 

Tmin − T.

Fig. 3. Explanation to the convexity assumptions  
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3.2. Game-theoretic planning 

In competitive markets, companies try to release their products 
earlier or close to each other in order to increase their market share. 
Before the new model is released, the company announces its ambition 
and their competitors take this information for consideration. 

The formulation of N-player games is an extension to Smirnova et al. 
(2018). There is a highly competitive technological market with N 
companies denoted by C1,C2,… CN where a company Ci obtains an in-
formation set (ni) (over i ∈ N) The information sets of the companies are 
such that Cj (over j ∈ N) has access to the action of Ci. Each company 
knows the state of the game at every level of play. 

Technology competition takes place in the form of a sequential game. 
All firms are exploring a technology tradespace to see and invest into 
feasible architectures. These architectures are Pareto optimal and are 
located on time-variant Pareto frontiers at the technology tradespace. 
They are considered as strategies to decide upon. Stated above leads to 
an extensive form of an N-person finite game with a tree structure (with 
a specific vertex indication the starting point of the game). 

There is a finite number of available strategies for each firm to 
choose from. Therefore, company Ci has a set of alternatives Si

ni 
with 

elements si at the nodes belonging to the information set ni. If company 
Cj chooses a strategy sj(ni) ∈ Sj

nj , and this so for all j ∈ N, then the 

outcome (so-called utility) obtained by Cj is a number aj
s1 ,s2 ,...sN . The set of 

alternatives for each player is the same at all information sets. 
A (real-valued) utility function defines the possible objective 

ai
s1 ,s2 ,...sN

of company Ci and is denoted by Ui = f(s1, s2, ...sN). It is a 
transitive, complete, continuous and convex function. This utility 
function ranks different strategic options and represents the company’s 
preference over other available strategies. The outcome number is given 
in target FoMs and is assigned to each terminal vertex of the tree. 

Thus, a unique outcome of a single game (shown holding in a sepa-
rate timeframe) is an ordered N-tuple of all these numbers (over i ∈ N), i. 
e. (a1

s1 ,s2 ,...sN
,a2

s1 ,s2 ,...sN
, ..., aN

s1 ,s2 ,...sN
). All decisions are made independently 

and each enterprise seeks a maximum possible outcome, considering 
possible rational choices of other companies. 

An N-company technology competition takes a form of a non-zero- 
sum finite game in extensive form. An N-tuple of strategies (s∗1, s∗2, ...,
s∗N) with s∗i ∈ Si, i ∈ N, is said to constitute its i ∈ N Nash equilibrium 
(Nash, 1950) solution if the following N-inequalities are satisfied for all 

si ∈ Si, i ∈ N: 

U∗
1 ≡ U1

(
s∗1, s

∗
2,…, s∗N

)
≥ U1

(
s1, s∗2,…, s∗N

)

U∗
2 ≡ U2

(
s∗1, s

∗
2,…, s∗N

)
≥ U2

(
s∗1, s2,…, s∗N

)

…
U∗

N ≡ UN
(
s∗1, s∗2,…, s∗(N− 1), s?

∗
N

)
≥ UN

(
s∗1, s∗2,…, s∗(N− 1), sN

)

(4) 

The N-tuple of quantities (U∗
1,U∗

2, ..., U∗
N) is a Nash equilibrium 

outcome of the non-zero-sum game in extensive form. The strategies (s∗1,
s∗2, ..., s∗N) correspond to the best response strategies to the opponents’ 
strategic choices and s∗i ∈ BRi(s∗1, s∗2, ..., s∗N). 

Limitations. The extensive form implies a certain players’ sequence of 
deciding upon strategies: who reacts first, who is second, etc., and the 
determination of further best response sets. A number of order variations 
is found as k = N! and each variant leads to different architecture out-
comes and corresponding FoM values. It is computationally impossible 
to calculate all architecture outcomes and paths for a big number of 
companies. 

According to Vincent (1983), the determination of the best response 
sets can be quite difficult. If they are not determined numerically, then a 
number of scalar optimization problems would have to be solved in 
order to define the sets. The best response functions can be represented 
as linear or nonlinear functions with one or more Nash Equilibria with 
an axis of the variables (Hey et al, 2007). The geometrical character is 
unknown and therefore the problem of determining reactions is reduced 
to the use of a multivariate linear regression approach based on the 
made assumption of best response function linearities in Smirnova et al. 
(2018). In addition, while forecasting reactions for each player in 
separately standing m, its number to be determined, m = Mk grows in 
geometrical progression with every game level: m = Mk where M is a 
number of FoMs under consideration and k is a level of a game. 

4. Illustration of the methodology on a case study 

4.1. Pareto-frontier forecasting 

In this section, a case study on the automotive industry is described, 
to demonstrate our proposed methodology. Despite the rapid growth of 
hybrid and electric vehicles, cars with gasoline engines will be still 
dominating in the following 10-15 years. The abundance of historical 
data enables robust trend-forecasting study. The pursuit of fuel 

Fig. 4. Results of forecasting procedure (darker colors signify later dates)).  
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efficiency has become the major driver of innovations in this field due to 
government regulations and users’ economic considerations. For driving 
experience, car manufacturers strive to maximize engine power and 
vehicle acceleration. These two FoMs are highly correlated, but strictly 
speaking, not fully equivalent. Ideally, users would like to maximize 

both. Acceleration affects mainly the driving experience, while higher 
power of the engine with the same level of acceleration also improves 
loading capacity and off-road performances. 

The database used in this case study (obtained from open web- 
resource (Car specs database, 2020) consists of 3,289 data points and 
encompasses car models from 32 car brands from all major automotive 
companies. The results of applying the proposed algorithm to this 
dataset are shown in Fig 4. 

We propose the following heuristic formula for the estimation of the 
statistical significance of the dataset used for the multi-dimensional 
frontier forecasting: 

M ∼

(
σsample

σtarget

)2

⋅
∏n

i=1
pi,

where M – sample size, σsample – estimated standard deviation of obser-
vations, σtarget – expected accuracy of frontiers approximation, n – 
number of dimensions, p – parameter that determines the minimum 
number of points required for the determination of the frontier’s shape 
along each of the dimensions. For example, if the number of dimensions 
is 4 (3 FoMs and time), p along all dimensions equals to 3, target ac-
curacy is 1.0 year, and standard deviation of the sample is 5.0 years, 
then and the minimal statistically significant amount of points is about 
2025. The proposed formula gives rough estimates due to the uneven 
distribution of points in a tradespace (real accuracy will be lower in 
some regions of a tradespace), so it needs to be adapted for concrete 
datasets. 

4.2. Game-theoretic planning 

The database considered in this study includes data from over 30 
carmakers. To show the visibility of framework with a number of players 
more than 2, three companies, (С1, С2, С3) are chosen as major com-
petitors with comparable models belonging to different tradespace 
areas. First, it is important to understand who is a “technology pioneer” 
and who is a “follower” out of the taken companies by studying their car 
designs at a 3-FoM tradespace (Maximum engine power – Average 
consumption – Acceleration). Fig. 5 a, b and c displays released auto-
mobiles between 1979 and 2013 with FoM trends exposing their evo-
lution directions. It is inferenced that the models have almost identical 
characteristics and are compatible based on minimum distances be-
tween plotted data points in 3 different projections of a chosen trades-
pace. Overall, Company С2 is the closest to the edge of the tradespaces 
Horsepower-Consumption and Consumption-Acceleration, which leads 
to the assumption of its pioneering role. The other two players seem to 
be “followers”, the companies producing models close to the pioneer’s 
ones after its respective model releases. 

An important variable is a sequence of company’s reactions to 
competitor’s responses. In this case, there are 6 possible variations for 

Fig. 5. Technology tradespace of players with FoM trends.  

Fig. 6. Best-Response plane of Total Max Power for Company 1.  
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the 3 players: С1С2С3, С1С3С2, С2С1С3, С2С3С1, С3С1С2, С3С2С1. 
There is no strong preference above any of the stated sequences. The 
chosen sequence in the following is С1С2С3: Company 1 reacts first, then 
Company 2 and Company 3 the last. 

Historical data about manufactured and released models (Fig. 5 a,b 
and c) is considered to be previous technology development by com-
panies and is used to approximate the BR functions. The intersection of 
those BR functions is the Nash Equilibrium which presents a goal for 
competitors. The last known or chosen companies’ positions are marked 
on approximated BR functions in order to get a reaction to other com-
petitors’ “move” or released model in our case. 

Whereas in a 2-player case, a best-response function is a function line 
in a 2-D representation showing all possible reactions to competitor’s 
model choice; in a 3-player case it forms a plane. Fig. 6 shows such a 
plane for past reactions on Power FoM, obtained by multivariate linear 
regression with R-squared 0.79 using a similar approach as in Smirnova 
et al. (2018) The level of dependence is slightly lower compared to a 
2-player case. However, it shows a moderate linear relation between 
competitors’ levels. It can be seen that Company 1 has reacted by lower 
levels and couldn’t steadily jump over other companies. The same 
planes are built for the other competitors in order to get next reactions to 
the latest models. 

The intensity of competition is seen in the closeness of Best Re-
sponses (BR) in separate FoMs (Fig. 7.a-c). Best Responses are found 
without specifying Nash Equilibrium solutions for each known year. The 
BR in one FoM does not always mean a Best Response in the other. The 
difference of FoM levels is decreasing over time which seems to make the 
models to be interchangeable based on a selected set of characteristics. It 
can be concluded the FoM levels of BR models are converging and 
reaching their physical limits. 

Full information (without unknown values or Not-a-Number (NaNs)) 
about car models is available till 2013 (vertical line at Fig. 7.a-c). Next 
best responses (2014) beyond the dataset are demonstrated for all 
companies and FoMs after the last known year at Fig. 7.a-c. FoM re-
actions and possible architectures for next years can be shown with the 
use of forecasted Pareto frontiers. They are intersections of best re-
sponses with frontier lines. Based on this, there are three major di-
rections for formulating best responses:  

• improve the engine power figure of merit (formed by the power BR 
reaction);  

• improve the average consumption (formed by the consumption BR 
reaction), and  

• improve the acceleration which is resulted in in-between directions 
in the tradespace (formed by the acceleration BR reaction). 

The intersection of all three best responses forms a utopia point. The 
utopia point represents an ideal architecture which is located beyond the 
Pareto frontier of the current technology level. It is omitted during 
discussion and selection because of the limited technology level in the 
current time period. 

Based on the number of reasons, 3-5 years is a period limit for the 
framework. There are several reasons behind the choice:  

1 Long-term planning can be interrupted by disruptive innovations and 
technologies;  

2 Computational consumption increases with a number of years 
growing. In total, 3,375 reaction and intersections with frontiers 
should be determined for 5 years with 15 levels (3 levels per year) of 
games; 

3 Significant errors might occur because of a company’s internal un-
known factors which define the overall direction of their car models’ 
development. 

5. Validation 

In this section, a validation approach and associated results are 
shown with a discussion on the obtained errors. Backward testing is 
selected as a general approach for validation involving splitting the 
original data for a given year and calculating differences and errors 

Fig. 7. Best Responses over time.  
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between actual data and predictions. 

5.1. Multi-dimensional Pareto frontier forecasting 

Generally speaking, to prove our ultimate hypothesis that multi- 
dimensional Pareto frontier forecasting improves the utility and accu-
racy of quantitative (numeric) roadmaps in the context of a big com-
pany, one needs to conduct the observational study in technology 
management department of a real company. The main questions for this 
study would be the following: 

• is there enough historical data about key technologies to make ac-
curate predictions;  

• are the produced predictions worth the effort of gathering data;  
• how often the company resorts to quantitative technology forecasts 

and how often to qualitative. 

Such a study is out of the scope of this paper. Instead, we present here 
an internal validation of the algorithm to test the sensitivity of the re-
sults to the variations in input data. 

We utilize the idea of backward testing. We cut the full dataset with 
some past threshold year to see the current state-of-the-art prediction 
accuracy. By doing this, we calculate the accuracy of the forecast as if it 
was done in the past. 

Fig. 8 shows the Pareto frontiers calculated for the full and cut 
dataset, respectively. The forecasting error is calculated as an absolute 
difference between results obtained for the full tfull and cut tcut dataset in 
each node of the Cartesian grid G. In Fig. 9 the error scatter plot is 
shown. The mean value of forecasting errors equals 2.8 years, which 
means that if our assumptions regarding growth-curve and frontier 
shapes are correct and the general trend will not experience the dramatic 
change, a performance forecast for the next 20-years has an accuracy of 

around 15%. 
The calculated accuracy of the backward test, however, depends on 

input parameters: variation of the grid size, piecewise-linear approxi-
mation coefficient a, threshold year tcut , etc. Therefore, the authors 
recommend performing parameters tuning for every new dataset. 

The expression for forecasting error for the backward test is the 
following (for each node of the grid G): 

Δt = tfull − tcut.

5.2. Game-theoretic planning 

The key objective of validation is to get possible “moves” or di-
rections for development via models on Pareto frontiers and compare 
them to the real Best Responses of the following year. The number of 
years which contains full data about companies С1, С2, С3 (released 
models are known for each company) is only 30 epochs (1979-2013). 
For validation the last available (threshold) year is cut to compare 
released Best Responses models with suggested ones (predicted Best 
Responses models) by the algorithm based on the approach presented in 
the paper in the context of 3 FoMs and possible evolution paths. The 
threshold year is 2013: a Pareto frontier is built for this year; the Best 
Response models are predicted based on BR planes; the actual models 
released by the companies are known and analyzed. The FoMs (Total 
Max Power, Average Consumption, Acceleration) are chosen as critical 
and significant for the following technology. While every model is a 
tradeoff of the FoMs which are interconnected, a player (or the company 
in the following case) could prefer one upon the others. This preference 
prioritizes a model among others with similar characteristics, but with 
worse in the prefered FoM, or a priority merit. A priority merit means 
that a preference of BR is given to a forecasted model with a better FoM 
value. For example, if a priority merit is Total Max Power, then a BR is a 
model with this highest FoM out of other enumerated variants. Due to 3 
priority FoMs, 3 evolution pathways are studied: each devoted to one 
priority merit. (Fig. 10.d-f). 

Fig. 10 a, b, c, d, e and f present the calculated (predicted) models 
found as the intersection of regressed BR with a Pareto frontier and the 
released models (real manufactured models) by companies in 2013. 
First, Fig. 10. a, c and e (on the left) show all possible models (blue 
circles) for 2013 suggested by the presented approach in terms of all 3 
FoMs which are selected as a priority merit one by one for companies. 
According to the chosen sequence of company’s reactions, Company 1 
reacts to the latest model of Company 3 that gives 9 possible outcomes. 
Further, Company 2 reacts to each defined model. Second, the plots on 
the left show all manufactured and released models (green, orange, and 
red circles) by companies in 2013. 

All suggested models found as the intersection of Best Response in 
the following FoM and the 2013 Pareto frontier are analyzed for which 
are the Best Response model for the priority merit. It leads to one BR 
model selected per each priority FoM (Table 1). In Table 1 each BR 
model is presented in the following format - (Total Max Power; Average 

Fig. 8. The results of the frontier forecasting for full (1971-2016) and cut (1971-1996) dataset.  

Fig. 9. Frontier forecasting error (in years).  
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Fig. 10. Visual comparison of predicted (suggested) models with released models of players.  

Table 1 
Calculated BR models in terms of the priority FoMs.   

Total Max 
Power, Hp 

Average Consumption, l/ 
100km 

Acceleration, 
km/h 

Company 
1 

(418; 7.5; 4.6) (147; 3.5; 8.9) (351; 5.8; 4,9) 

Company 
2 

(351; 5.8; 5.0) (232; 4.7; 6.2) (345; 5.7; 5) 

Company 
3 

(444; 8.4; 4.6) (174; 3.7; 7.86) (395; 6.7; 4.7)  

Table 2 
Released BR models in terms of the priority FoMs.   

Total Max 
Power, Hp 

Average Consumption, l/ 
100km 

Acceleration, 
km/h 

Company 
1 

(435; 8.9; 4.5) (136; 4.3; 9.3) (435; 8.9; 4.5) 

Company 
2 

(560; 9.9; 4.2) (163; 4.1; 8) (560; 9.9; 4.2) 

Company 
3 

(585; 10.4; 3.6) (170; 4.1; 8.4) (585; 10.4; 3.6)  
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Consumption; Acceleration). 
All the real released models are analyzed in the same way as calcu-

lated models in order to state the BR model for the year under consid-
eration and comparison (Table 2). The same BR models are chosen for 2 
FoMs, Total Max Power and Acceleration. 

Fig. 10. b, d and f (on the right) show those selected Best Response 
models out of the whole scope of predicted and released ones shown in 
Fig. 10. a, c and e (on the left). The released BR models don’t form the 
Pareto frontier and stand slightly behind from it in spite of this they 
exceed the calculated BR models in certain FoM characteristics. 

Overall, С1 gets better results due to the 1st mover; the 3rd mover С3 
gets the worst results. FoM differences are presented in Fig. 11 in per-
centage. Those percentage differences are calculated between FoM 
characteristics of selected BR models in Table 1 and 2 accordingly in 
terms of each FoM level. The percentage difference shows a prediction 
error of BR functions based on the accuracy of done regression and found 
intersection with a Pareto frontier. For С1: the biggest difference is in 
Max Power interpretable by a “follower” position at tradespace. С2 re-
sults are in average at the same level for all FoMs. 

Based on Fig. 11 visually it can be concluded that a priority merit, 
Acceleration, got the most accurate results. The average difference for 
FoM 1 and FoM 2 for all companies’ models is 25% with a FoM value of 
released models; FoM 3 exhibits a difference of 15%. Comparing only 
priority FoMs values in the suggested models shows a difference in Total 
Max Power if 21%; -13% Average Consumption, and -20% Acceleration. 
These levels of differences can be explained by the reasons of:  

• Non-linear character of Best-Response dependences between 
companies;  

• “Pioneer” or “Follower” roles of players within a tradespace;  
• Approaches of Pareto-frontiers calculation;  
• Unavailable internal information (strategy, prototypes, etc.) which 

affect released model architectures. 

The obtained results don’t show large differences so that gives an 
empirical validation of the proposed approach1. Nonetheless, the set 
assumptions in the framework idealize the technology competition 
which is rarely met in real market situations and influence the results. 
The extreme assumptions are taken in the game under discussion what 
should be challenged. 

6. Conclusions 

Availability of large amounts of data on the complex systems design 
past experience opens the road for the application of data science 

methods and tools to the domain of systems engineering and technology 
management. Being fully numeric, these approaches help to reach a 
higher level of formalization and automatization, overcome biases and 
facilitate decision making even in the fields where human creativity 
plays a key role. 

Multi-dimensional Pareto frontier forecasting is a method based on 
the idea of technology forecasting by extrapolation of past trends in the 
future. We proposed an algorithm that overcomes limitations of existing 
algorithms and tested it on the case of the forecasting of fuel efficiency of 
cars with petrol engines. The obtained average forecasting error is less 
than 3 years for a forecast period of more than 20 years, making the 
proposed approach usable for quantitative technology forecasts (at least 
for datasets with similar properties). The proposed methodology’s dif-
ficulty is that datasets of the past technology evolution need to be 
relatively large (thousands of points even for the 3-dimensional case). 
The results of multi-dimensional forecasting can be used for technology 
planning and roadmapping. Specifically, we suggest using multi- 
dimensional Pareto frontiers combined with multi-dimensional de-
mand curves to support the planning of disruptive innovation strategies. 

Another limitation of the proposed approach is the possibility of a 
forecast distortion caused by external factors. For example, environ-
mental concerns lead to changes in policies. In their turn, policies 
change the investment dynamics into internal combustion engine tech-
nologies, invalidating forecasts based on the trend extrapolation 
concept. 

The goal of game-theoretic technology planning is to give an un-
derstanding of possible direction for model involvement based on 
competition and dependence. It is a method based on the idea of inter-
dependent technology evolution of key tradespace players. The average 
obtained precision is around 20% with a set of extreme assumptions of 
the considered game. This approach is a new view on application of 
game theory in technology planning and roadmapping. In combination 
with Pareto-frontier forecasting, it advances the process of technology 
planning by providing technology insights essential to strategy decision- 
making. The goal of further research is to find theoretical fundamentals, 
to prove the obtained results and to challenge the assumptions taken in 
the present work (complete information set, linear best response func-
tions) for better approximation of practical problems in real environ-
ments. A second area of interest for future research is to address the 
fuzzy (stochastic) nature of technology frontiers. We foresee conducting 
a comparative study to calculate the accuracy of different approaches of 
multi-dimensional technology forecasting and clarify their limitations. 
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