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Crossover between Re-Nucleation and Dendritic Growth in
Electrodeposition without Supporting Electrolyte
Chams Kharbachi, Théo Tzedakis, and Fabien Chauvet*,z

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

This work deals with the formation of dendritic structures by electrodeposition of Cu2+ and Ag+ without supporting electrolyte in
Hele-Shaw cells. The transition between the two main patterns, ramified branches and dendrites, is specifically addressed at the
scale of branch microstructure using careful SEM observations. Ramified branches, composed only of grain assemblies, are
obtained at low current densities because of a re-nucleation process induced by space charge dynamics (Fleury, Nature, 1997). For
current densities higher than a given threshold, ramified branches are also formed by re-nucleation but another growth mode, the
dendritic growth, is also observed while, at the macro-scale, the pattern remains fractal and isotropic. This shows that 1) pattern
transition originates from a morphological transition at microstructure scale and 2) the re-nucleation process enables a freedom in
local growth direction allowing the pattern to be fractal at the macro-scale. The onset of the dendritic growth mode, from shape
instability of the grains, is considered with Mullins & Sekerka model. This latter disagrees with the observations by predicting that
the grains are always unstable. It is proposed that the space charge plays a key role by controlling the shape stability and thus the
transition between the two growth modes.
© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ac15bb]
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The electrodeposition of a metal is known to lead to the
formation of ramified structures commonly called dendrites.
Depending on the application, dendrites must be avoided, as in Li
batteries1–3 and electroplating,4 or they can be advantageously
exploited for their enhanced surface which gives them catalytic,5,6

optical7,8 and wetting9,10 properties. Understanding and controlling
the electrochemical formation of these ramified and dendritic
structures is therefore of major interest in several fields such as
energy, chemical sensing and coating of surfaces.

Among the possible configurations, the formation of ramified and
dendritic structures in transparent Hele-Shaw cells, in absence of
supporting electrolyte, is a model situation well suited for con-
ducting fundamental studies. This leads to the fast growth of two-
dimensional patterns which are visible to the naked eye. The reader
should be aware that the formation of such structures is explained by
the fact that no supporting electrolyte is used; otherwise, the
reduction of the solvent (water) takes place rapidly and this leads
to the formation of hydrogen bubbles which disturb, or even prevent,
the growth of ramified or dendritic structures;11 note that, here,
in the considered situations, the applied current is always higher than
the limiting current.12 As a consequence, to avoid the separation of
the charge carriers in the solution (anions and cations of the
dissolved metal salt), i.e. the deviation from electroneutrality, the
growth front (cathode) must move towards the anode at the same
velocity as that of the anions whose the movement is driven by
electromigration away from the cathode.3,12–14 Since this velocity is
typically high (∼10 μm s−1), the deposit density is very low that
leads to ramified structures;13,15 in addition, note that if a supporting
electrolyte is used, this growth mechanism is suppressed because the
presence of the inert ions of the supporting electrolyte prevents
charge separation. The resulting system of interest here is therefore
an electrochemical cell with a high electric resistance (no supporting
electrolyte and thin cell). The corresponding ohmic drop induces a
high cell voltage which can typically reach several volts.

During the 80’s and 90’s, the electrochemical growth of these
structures was used as a model situation for theoretical studies on
pattern formation in connection with Diffusion Limited Aggregation
(DLA) patterns.16–23 Indeed, even if the cations and anions are
transported by electromigration in addition to diffusion, the system
of equations governing the growth phenomenon can be converted

into an usual diffusion problem, assuming electroneutrality in the
whole electrolyte domain (transport in a binary electrolyte).15,24 At
the macro-scale, the concentration field (of cations and anions)
follows a diffusion-limited dynamics, as verified experimentally by
both interferometric measurements25 and morphological analyzes of
the electrodeposits (fractal property).26

From the previous works it appeared that, depending on the
operating parameters (imposed electric current, concentration of
metal salt, etc.) and on the nature of the metal, two main kinds of
patterns are obtained at the macro-scale (length scales > ∼10 μm):
ramified branches and dendrites.18,27,28

The ramified branches are fractal because the growth process is
mainly diffusion-limited without stabilizing effects (surface energy
and kinetics) at the macro-scale. In other words, the growth front is
unconditionally unstable (any protrusion is amplified), that results in
a random selection of growth directions and a fractal pattern on a
given range of length scales.19,26 The pattern of ramified branches
can be of two types: fractal-like and Dense Branching (DB). A
fractal-like pattern is obtained in the limit of low growth velocities
(low applied currents).26 Under this condition, the growth process is
then close to the Laplacian growth model giving rise to a fractal
deposit with an infinite upper cut-off length scale, i.e. a DLA
pattern.19,29 The DB patterns are obtained for higher and finite
growth velocities. The branches then grow behind an almost flat
growth front. The DB patterns are also fractal but on a limited range
of length scales with a finite upper bound due to the stabilization of
the growth front by a finite diffusion length.13,15,30–32 As resumed by
Léger et al. 2000,15 the transition between fractal-like and DB
patterns is still not well understood. Indeed, this is difficult to
know if this transition is intrinsically related to the diffusion,
because of the presence of interfering effects such as several kinds
of convection (natural convection,22,33 electroconvection34 and
electro-osmosis22) or the electrical resistance of the branches
themselves.35

Dendritic deposits are typically observed for even higher applied
currents than for DB patterns and mainly with zinc.17,18 Note that
here, the word “dendrite” is used to name a single crystal which has
been formed by an out-of-equilibrium growth with anisotropy effects
(surface energy and/or kinetics). This results in a crystal shape with
well-ordered geometry, such as a main arm with different levels of
side branching oriented with a constant angle. This differs from the
random and isotropic shape of the ramified branches as sketched in
Fig. 1. Grier et al. 198617 explain the appearance of the dendrites
(at the macro-scale) by an exacerbated difference in growth rate, as azE-mail: fabien.chauvet@univ-tlse3.fr
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function of the orientation, when the current is high. In other terms,
this corresponds to the out-of-equilibrium growth of a single
anisotropic crystal. Obviously, the dendrite shape depends on the
crystal structure of the metal, as noted by Grier et al. 198617 by
comparing copper and zinc deposits on the macro-scale. There is a
significant difference in microstructure between dendritic deposits
and ramified branches, as revealed by X-ray diffraction.17 As
expected, the X-ray diffraction pattern is anisotropic for dendrites
(single crystals) but isotropic for ramified branches. This suggests a
polycrystalline structure for ramified branches (Fig. 1). Note that
since the pioneer work of Barton and Bockris,36 dealing with the
propagation of the dendrite tip across the electrolyte, the electro-
chemical dendritic growth was extensively studied focusing on the
coupling between kinetics, mass transport and surface energy in
dedicated experiments where the overpotential is applied instead of
the current.37,38 Furthermore, a supporting electrolyte is generally
used and the current employed is lower than the limiting current
(a situation encountered in batteries), so this situation is different
from the one of interest here. The predictions of this standard theory
of the electrochemical dendritic growth have not yet been compared
with the dynamics of dendritic deposits obtained in Hele-Shaw cells
without the use of supporting electrolyte.

Very little work has focused on the micro/nano structure of the
ramified branches. One reason is the difficult recovery of these fragile
branches without damaging them. Using a cell, in which the inner
bottom wall is covered with a non-percolating (non-conductive) gold
coating (metallization by vapor deposition), Fleury39 succeeded in
forming copper ramified branches that adhere to this wall. SEM
observations of these plates show that the branches consist of small
metallic (non-dendritic) crystals or grains whose size could be lower
than 100 nm. To date, Fleury proposes the most advanced interpreta-
tion and modeling for the building of this structure during branch
growth: in order to match the average growth velocity to the velocity
of anions, new grains must periodically nucleate and grow at the top
of the branches. This principle is based on the fact that, assuming a
given grain grows at a constant rate, after a given duration, the local
growth velocity (on the grain surface) becomes lower than the
velocity of the anions.39 This leads, in the vicinity of the metal

surface, to the formation of a space charge region where the
electroneutrality is not respected.14 Furthermore, at the surface of
the growing metal, the electrolyte depletion induces the increase (even
divergence) of both the electric field Es and the cell voltage.

40,41 When
exceeds a given threshold, a new grain nucleates and grows and the
cycle restarts.39 Fleury showed that the grain size decreases with the
current density. He also provided a relation between the average
growth velocity v ,g the grain size Rg and the grain growth time T:

= /v R T2 .g g This equation enables access to the nucleation frequency

= /( )−T v R2 .g g
1 This law shows that −T 1 increases with the current

density, the latter causing vg to increase and Rg to decrease, Fig. 1.
However, this evolution of the nucleation frequency is not consistent
with the formation of dendrites in the limit of high current densities.
Indeed, the dendrites are formed/built only by growth without re-
nucleation events implying that −T 1 must vanish at high current
densities and consequently a transition from the re-nucleation/growth
regime (ramified branches) to the growth regime (dendrites) as
sketched in Fig. 1. In this paper, this intrinsic transition between the
two regimes is studied experimentally (SEM observations of the
branches) and theoretically at the scale of the branch microstructure.

The inner wall of the cells used in this study is not activated (as in
the work of Fleury39); indeed, a set of preliminary experiments
shows that both the pattern and the microstructure of the branches
are affected by the surface state of the cell wall. A specific method,
based on the freezing of the cell, is used here to recover the non-
adherent branches without damage. Current densities higher than
these used in Fleury’s work, were applied to cover both regimes. The
main part of the study concerns the growth of copper branches and
some experiments are performed with silver, to investigate the effect
of the nature of the deposited metal.

As for the theoretical part, the onset of dendritic growth is
analyzed by considering the required shape instability of the growing
material. This is done by adapting the Mullins & Sekerka shape
stability model42 to the electrochemical situation. The effect of the
operating parameters (current density j and metal salt concentration
c0) on the obtained instability threshold is discussed and compared to
experiment results.

Figure 1. Illustration of the dependence of the nucleation frequency −T 1 on the applied current density j, when the growth regime changes from re-nucleation
process (ramified branches) to pure growth without re-nucleation process (dendrites).
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Experimental

Chemicals.—The aqueous metal salt solutions (0.1 to 0.75 M)
are made by dissolving either copper (II) sulfate pentahydrate
(>98%, Sigma Aldrich) or silver nitrate (>99%, Acros Organics)
in deionized water (18.2 MΩ.cm). Prior using the solutions, the
dissolved oxygen is removed by bubbling nitrogen (1 bar) for
10 min. (volume of solution ∼5 ml). The deaerated solutions are
then collected by a gastight syringe (Hamilton 1 ml, 1001LT) and
injected into the Hele-Shaw cell.

Experimental set-up.—The experimental set-up (Fig. 2) is made
from two microscope glass plates (76 × 56 × 1 mm) which
sandwich the electrodes in the form of two thin sheets of metal.
The depth of the Hele-Shaw cell therefore corresponds to the
thickness e of the electrodes (50 μm). The length and width L of
the electrolytic compartment are respectively 75 mm and 15 mm.
The same metal element was used for both electrodes (metallic form)
and for the electrolyte (dissolved metal salt). The purity of the metal
electrodes is 99.9% for both copper and silver (Goodfellow). To
avoid leakage between the electrodes and the glass plates, the inner
sides of the glass plates are covered by a transparent laboratory
parafilm. The effect of the functionalization of the inner cell walls is
investigated by metallizing the parafilm by gold vapor deposition.
The obtained gold coating is non-percolating (as in Fleury’s work) as
confirmed by resistivity measurements.

The electrodes are polished with polishing paper and cleaned
with ethanol and then flushed with deionized water before each use.
The two remaining opening sides of the cell are closed by applying a
reusable adhesive paste (UHU patafix). Fluidic connections are made
using nanoport connectors (Idex-hs) on holes drilled in the glass
(Dremel diamond wick). The cell is kept horizontal in a holder and
filled with the electrolyte solution previously collected with the
syringe. After each experiment, the device is dismantled, cleaned
and re-assembled for the next experiment.

The galvanostatic electrolyses are performed using either a
potentiostat (Autolab PGSTAT100N) or a current generator (TDK-
Lambda Gen2400W) to apply an electric current ranging from 1.25
to 20 mA ( j is in the range 33 to 266 mA cm−2) between the
electrodes, regardless of the electrical resistance of the system. All
experiments are performed under ambient conditions (∼20 °C).

Branch recovery method.—Just after the electrochemical for-
mation of the metallic branches, a cooling spray (RS components
846-682), inducing a temperature decrease of ∼50 °C, is applied to
the top glass plate of the device to freeze the liquid electrolyte. This
step allows the inlet fluidic connection to be opened without
disturbing the highly fragile electrodeposit, in order to connect a
syringe of deionized and deaerated water. After, the cell is left to
unfreeze and return to room temperature, and a flow is applied for
30 min to gently flush the metallic branches (∼20 μl min−1) using a
syringe pump (Harvard Apparatus PhD Ultra 70-3006). This allows
the removal of almost all the electrolyte thus avoiding any eventual
crystallization in samples examined by SEM.

The cell is then frozen again, with the cooling spray, to
disconnect the two fluidic connections before putting the entire
system in a freezer for ∼30 min. Next, the cell is opened quickly on
an ice bed and the branch pattern is transferred to an adhesive carbon
tape, where it is left free to dry under ambient conditions. This
method allows the recovery of branches with little disturbance
and their analysis by SEM on a wide range of length scales (from
∼1 mm up to ∼10 nm), as shown in Fig. 3.

Visualization of the branch pattern.—The growth of the
branches is visualized by transmission using a LED panel, placed
below the device, and a camera PCO pixelfly, associated with a 105
mm macro lens, facing the top glass plate. The acquisition frequency
is 1 image s−1 unless another value is specified. The ImageJ software
and python scripts are used for image processing.

Characterization of branch microstructure.—All the branch
samples are metalized by vapor deposition of a layer of ∼10 nm
of gold or platinum (duration = 60 s, vacuum = 10−1 mbar) before
being observed by SEM using a MEB-FEG JEOL JSM 7800F Prime
—EDS or a JEOL JSM 7100F TTLS.

Results and Discussion

Several experiments are carried out, varying j and c ,0 and the
resulting ramified branches are observed by both optical visualiza-
tion and SEM. Additionally, this is done with and without
metallization of the cell wall to investigate its effect on the branch
microstructure. The corresponding results are first discussed in the

Figure 2. Sketch of the experimental set-up.
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following sub-section. Then, the results obtained without metalliza-
tion are given and analyzed in the subsequent sub-sections.

Effect of cell wall metallization on branch microstructure.—
The microstructures of copper branches, obtained for j =
133 mA cm−2 and c0 = 0.5 M, with and without cell wall
metallization are shown in Fig. 4. With metallization, as already
reported in previous works,43,44 the branches adhere to the cell
wall; the deposit is thus easily recovered, flushed and analyzed

by SEM (as in the Fleury’s work39). The corresponding SEM
images, Figs. 4a–4b, show that the branches have the form of
“compact tongues” composed of small grains (equivalent dia-
meters range from ∼100 to ∼600 nm). Without metallization, the
branches do not adhere to the cell wall; their recovery and SEM
analyses are achieved from the method described in the section
Experiemental. In this case, the branch microstructure is different
and exhibits an expanded and dendritic structure, Fig. 4c–4d. The
same differences, with and without metallization, have been

Figure 3. (a) Optical image of ramified copper branches taken during a galvanostatic electrolysis in the Hele-Shaw cell (elapsed time = 220 s, c0 = 0.5 M, j =
133 mA cm−2 and non-metallized cell wall), (b) SEM image taken after the recovery of the deposit.

Figure 4. SEM images of copper branches obtained with gold metallization of cell walls, at a magnification of ×550 in a) and ×14000 in (b), and without
metallization (with cell walls made of bare parafilm), at magnification of ×450 in (c) and ×15000 in (d); j = 133 mA cm−2 and c0 = 0.5 M.
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observed when varying the values of the operating parameters ( j
and c0) in the investigated ranges.

These results show a strong influence of the interaction between
the cell wall and the electrodeposited metal on the branch micro-
structure. In the case of adherent branches (with metallization), the
growth phenomenon is complex since the microstructure should
clearly depend on the properties of the metallized film (nature of the
metal, size distribution, average thickness, etc); these properties
must therefore be considered for a full description of the branch
growth as initiated in previous works.43,44

This work focuses on the study of the still poorly explored
intrinsic transition between ramified branches and dendritic deposits
(at the scale of the microstructure) regardless of the surface state of
the cell wall. Consequently, the study is performed with non-
adherent branches obtained without metallization of the cell wall.

Morphology of non-adherent branches at the macro-scale.—
Fractal property.—Figure 5 (left column) shows optical images of
the obtained non-adherent ramified branches by electrolysis of a
0.5 M copper sulfate solution at three values of j, 66 mA cm−2,
133 mA cm−2 and 266 mA cm−2. As usually observed, these copper
deposits are ramified patterns of DB type. The fractal property of these
deposits is determined by using a two-dimensional box counting
algorithm (ImageJ). The corresponding curves of the number of boxes
(count), which covers the deposit, as a function of the box size are

plotted, using a log-log scale, in the right column of Fig. 5.
Concerning the range of the box size, the minimum value is set to
2 pixels (∼20 μm) and the maximum value used, of 256 pixels
(∼2 mm), is selected in such a way that the count remains higher than
10 (to keep a representative sampling). The linear curves obtained,
and their slope > −2, show that the deposits are fractal in the
corresponding range of length scales [∼20 μm, ∼2 mm], i.e. at the
macro-scale, as expected. A same value of the fractal dimension Df

(given by the slope ( ) / ( )−d dlog count log box size 1 ) of ∼1.61 is
obtained for each case (Fig. 5, right column). This value of Df

corresponds to the values typically reported for both ramified
electrodeposits26 and DLA patterns29 and this shows that, as expected,
branch growth is mainly limited by diffusion, at the macro-scale.

Average growth velocity and deposit density.—The average
growth velocity vg of these DB patterns is expected to correspond
to the anion velocity:13

= − [ ]v z u EF , 1g a

where z is the ion valence, F the Faraday’s constant, ua the mobility
of anions and E is the electric field in the bulk electrolyte (away
from the electrodes). In this region, the electrolyte has not yet been
consumed to make grow the deposit and thus the concentration field
is uniform (this is justified because the applied current is higher than

Figure 5. Left: optical images of ramified copper deposits obtained with c0 = 0.5 M and several j values. Right: the corresponding plots of the box counting
method (ImageJ) to highlight the fractal property and to measure the fractal dimension Df (indicated inside each graph).
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the limiting current which is based on the concentration gradient
given by the ratio between c0 and the distance between the initial
electrodes12). As a consequence, in this region, Ohm’s law applies,

= − ( + )j z u u c EF a c
2 2

0 (where uc is the mobility of cations), and
Eq. 1 can be given in a form in which the operating parameters, j
and c ,0 appear explicitly:15

= − [ ]v
t

z

j

c

1

F
, 2g

c

0

where tc is the transference number of cations.
vg is experimentally measured from the temporal evolution of the
average front location ¯ ( )x t ,f = ¯ /v dx dt.g f ¯ ( )x tf is determined from
the density profiles ρd which are computed from the optical images

as ∫ρ ( ) = ( ) /x A x y dy W, ,d
W

0
where W is the width of the image,

A = 1 where there is metal and A = 0 elsewhere (x the coordinate
along the axis perpendicular to the initial surface of the cathode and
directed towards the anode, and y the coordinate along the axis
parallel to the initial electrode surfaces). In Fig. 6b, the density
profiles ρd are plotted, at several growth times, for a copper deposit
obtained with c0 = 0.5 M and j = 266 mA cm−2; the corresponding
final image of the deposit is shown in Fig. 6a. The branch growth
quickly reaches a steady state characterized by the S-shaped curve of
the density profiles which is uniformly translated along the x axis
(Fig. 6b). The average front location x̄f is then defined and measured
from the position of the inflection point of these curves, as sketches
in Fig. 6b for the last profile (this position is also shown in the
optical image of Fig. 6a). As already reported,15,21 x̄f evolves
linearly with time after the initial depletion phase15,45 (Sand’s time),
see the insert in Fig. 6b.

Note that all the S-shaped density profiles have the same
amplitude (Fig. 6b), which means that the growth front moves by
leaving behind a deposit of constant density. This indicates that the
deposit is no longer fractal above a given length scale. This is
characteristic of DB patterns and is explained by the scaling effect of
the growth front by the diffusion length which decreases when j (or
the mass flux) is increased.13,15,30–32,46 The length scale above which
the deposit is non-fractal can be estimated to be ∼1 mm, from the
width of the wave of the ρd profiles for j = 266 mA cm−2,
Fig. 6b.30,32,46 For lower j values, this length scale is even higher
(this is indeed visible in the optical images of Fig. 5, where the
branch density decreases when j decreases). This explains why the
non-fractal property is not captured by the box counting method
(Fig. 5, right column) in which the larger length scale does not
exceeds 2 mm whereas at least an additionally order of magnitude
would be necessary to capture it.

In Fig. 7, the measured values of vg are plotted as a function of
the ratio /j c0 for all the investigated cases (0.10, 0.25, 0.50 and
0.75 M) for c0 and ∈j [33, 266 mA cm−2]). As expected, the points
align along a linear curve, in accordance with Eq. 2. From a linear
fit, we obtained for tc a value of 0.393, that is also in accordance with
other works on copper branches.15 Note that vg corresponds to the
highest local growth velocity on the contour of the branches; the
branch tops grow fastest at vg (Fig. 6a).

In the next section, the microstructure of these ramified branches
is observed and analyzed by SEM.

Microstructure of non-adherent branches.—Effect of the cur-
rent density.—Figures 8 and 9 show the SEM images of the
microstructure of the obtained ramified branches by electrolysis of
a 0.5 M copper sulfate solution at two values of j, 33 mA cm−2 and
266 mA cm−2. Multiple magnifications of a same region are used to
properly show the microstructure up to the lower cut-off length
scale.

For j = 33 mA cm−2 (Fig. 8), at low magnification (×45 and
×370), the branch appears to be spongy/powdery. At ×370
magnification, some regions (blue square, in the right column)
exhibit a dendritic structure more easily seen by getting closer at
×2,500 (black dashed line ellipses, in both columns). The images
obtained at ×10,000 magnification show that these dendritic
structures consist of grain assemblies and that the grains are the
smallest particulate constituents of the branches. These grain
assemblies appear to be randomly ordered, but some of them show
an apparent ordered arrangement and appear exhibiting a dendritic
shape (black dashed line ellipses). Indeed, because these grain
assemblies are composed of several grains, i.e. single crystals,
they are not dendrites (a dendrite is a single crystal), and their
mode of formation is different from that of a dendrite. Besides, the
images obtained with ×2,500 and ×10,000 magnifications, show the
presence of only a few real single dendrites (see black rectangles and
inserts); these real dendrites are recognizable by their characteristic
sharp apex and the symmetry of their geometry. Let’s go back to the
main morphologies observed. The grain assemblies that exhibit an
ordered arrangement, so called dendritic structures here, arise from a
combination of both re-nucleation and crystal (dendritic) growth. It
can be concluded that these dendritic structures result from the
growth of dendrite arms, on which re-nucleation events occurs
continuously. Consequently, it seems difficult to differentiate
between random grain assemblies and grain assemblies exhibiting
a dendritic shape (dendritic structures). The re-nucleation process
probably overcomes dendrite growth, for this current density.
However, the dendritic structures cannot be neglected, as they could
be well visible in some regions of the branch. In the next paragraph,
a different microstructure is observed at high j.

The obtained branches at higher current densities exhibit a different
microstructure as shown in Fig. 9 for j = 266 mA cm−2. Dendritic
structures are now clearly observed, more frequently, and at lower
magnifications. They are found in the central part of the main branch
(see for example, the image at a magnification of×5,000, right column).
Additionally, grain assemblies are also well visible but in localized
regions corresponding to the ends of sub-branches (see the image at a
magnification of ×5,000, left column). However, even if dendritic
structures appear more clearly, and look like single dendrites, they are
not single dendrites. They cannot be considered as single crystals
because they do not exhibit the characteristic symmetry of dendrites
(already observed with single dendrites for 33 mA cm−2, black
rectangles and inserts in Fig. 8 at ×2,500). A mixed growth, combining
re-nucleation and dendrite growth, also applies for this current density.
Remind that in the absence of re-nucleation a single (dendritic) crystal
must be observed; here the deposit appears as a forest of dendritic
structures of which the growth direction can change suddenly as
indicated by the gray lines at ×5,000 in Fig. 9. This can only be
explained by still ongoing re-nucleation events which allow the starting
of new dendritic structures and freedom in growth direction. The
continuous re-nucleation, during the growth of a dendrite, is clearly
shown in Fig. 10, where freshly nucleated crystals are observed on the
top of a dendritic structure (for an intermediate current density of 133
mA cm−2 and 0.5 M). The resulting random growth direction is
compatible, and even required, with the fractal property of the pattern at
the macro-scale (Fig. 5). At the microstructure scale, if only dendrites
would be formed (without re-nucleation process), the pattern cannot
have the same fractal and isotropic properties because of the too limited
growth directions allowed by the purely anisotropic crystal growth. The
re-nucleation process allows the connection between the isotropic and
fractal structure, at the macroscale, and the anisotropic structure, at the
microscale.

To have a better view of the spatial distribution of the two main
particulate morphologies (grain assemblies and dendritic structures)
all along a branch, a region of a branch is first scanned with an
intermediate magnification ×370, Fig. 11. Next, the resulting images
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are processed (automatic thresholding, particle detection and mor-
phology properties) to generate an image in which each particle
region is colored as a function of a morphology property. Here, the
solidity is chosen to differentiate between grain assemblies and
dendritic structures. The solidity of a particle corresponds to the ratio
between the projected area of the particle divided by the area of the
corresponding hull image (smallest convex polygon enclosing the
particle). For a grain, the shape is rounded and so the solidity is close
to 1. On the contrary, for a dendritic structure, the solidity is
markedly smaller than 1.

By comparing the solidity maps, for 33 and 266 mA cm−2

(Fig. 11), it is highlighted that:

• at high j (266 mA cm−2, Fig. 11b), dendritic structures (purple and
blue particles) are located in the core of the branch while, as
already noticed above, grain assemblies (yellow and white

particles) are found mainly at the ends of sub-branches; the
branch has a broccoli structure

• at low j (33 mA cm−2, Fig. 11a), both particulate morphologies are
uniformly distributed.

The two growth modes, the growth by re-nucleation and the
dendritic growth, take place simultaneously, whatever j values. It is
observed that the re-nucleation growth mode is favored at low j
while the dendritic growth mode is favored at high j. Furthermore,
this competition seems to apply locally. Indeed, grain assemblies are
observed in ends of sub-branches which correspond to branch
regions experiencing low local current densities, especially when
they stop growing while the main branch continues to grow.
Conversely, the central part of a branch has been formed faster by
being subjected to higher local current densities. The latter regions
are composed of dendritic structures, at high j. When j is increased,

Figure 6. (a) Optical image of a ramified copper deposit obtained with c0 = 0.5 M, j = 266 mA cm−2 after an electrolysis duration of 280 s, the red line
indicates the average front location x̄f detected from the inflection point of the last S-shaped density profile shown in (b). (b) The corresponding density profiles
ρd at several times (10 s between each curve), the insert shows the temporal evolution of x̄ .f
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the range of the local current density widens-from 0 to the average
growth velocity vg (Eq. 2) which corresponds to the local growth
velocity at the top of the branches (Figs. 6a and 6b)—and this results
in an apparent spatial segregation of the two particulate morphol-
ogies (as observed in Fig. 11b). While, when j is decreased, the
current density range shortens (vg decreases), that limits the
appearance of dendritic structures everywhere. In the limit of low
j, the re-nucleation growth mode dominates and branches are mainly
composed of grain assemblies (note that the few single dendrites
observed if Fig. 8 can be attributed to early but limited growth of
dendritic structures). This corresponds to the growth mode described
by Fleury. Note that, the Fleury’s prediction concerning the increase
of grain size with the decrease of the growth velocity, is observed
locally at the ends of sub-branches: the grain size increases when
going towards the end of a sub-branch, as indicated in Fig. 9 at
×5,000.

Note that other branch patterns, obtained with intermediate j
values, were also observed by SEM. The obtained images are
consistent with this analysis based on the two extreme cases (33 and
266 mA cm−2) by showing a progressive effect.

Effect of the concentration.—The effect of the concentration was
also studied. This is shown in Fig. 12 where branches, obtained with
j = 66 mA cm−2 and for two concentrations 0.25 and 0.75 M, are
observed by SEM at several magnifications. We mainly observe
dendritic structures for 0.25 M and grain assemblies for 0.75 M. It is
interesting to note that, dendritic structures are observed even at the
ends of sub-branches contrary to the previous case 0.5 M and
266 mA cm−2. This is observed while the average growth velocity
v ,g which is proportional to the ratio /j c0 (Eq. 2) and corresponds to
the maximum local growth velocity around a branch, is lower for

0.25 M and 66 mA cm−2 than for 0.5 M and 266 mA cm−2. This
shows that the local microstructure does not only depend on the local
growth velocity but also on the concentration c .0 When c0 is
decreased, the dendritic growth mode is favored over the re-
nucleation process.

Effect of the nature of the metal.—Some experiments were
carried out with silver instead of copper. Fig. 13 shows the
microstructures of silver branches obtained for four values of j
(33, 66, 133 and 266 mA cm−2) and an electrolyte concentration of
0.25 M. At the lowest j (33 mA cm−2), branches appear composed
of grain assemblies as for copper at low j (re-nucleation growth
mode dominates). For the other values of j (66-266 mA cm−2), the
deposits consist of larger and elongated single crystals that shows
that the dendritic growth mode predominates at these j values; these
elongated crystals are assimilated to dendrites since their shape
differs from the equilibrium shape which would have an aspect ratio
closer to 1. The fact that the amount of re-nucleation events
(apparently lower for silver) and the shape of the dendrites differ
between copper and silver is probably related to a difference in
anisotropy between these two materials. This shows that the
properties of the deposited material affect the competition between
both growth modes.

To sum up, for copper and silver, at low j, the branches consist of
grain assemblies. Such a microstructure is attributed to the re-
nucleation process described by Fleury.39 Increasing j leads to the
formation of dendritic structures at the scale of branch microstruc-
ture while at the macro-scale, the deposits exhibit a DB morphology
by being isotropic and fractal. These dendritic structures arise from
the combination of the two growth modes, re-nucleation process and
dendritic growth. Decreasing the concentration leads to an earlier

Figure 7. The average growth velocity vg as a function of the ratio /j c0 for all of the investigated concentrations; the red line corresponds to the linear fit of all
the points (the slope = 3.144 × 10–9 m.(mol l−1) (A.s)−1).
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predominance of the dendritic growth mode over the re-nucleation
process. The next section focuses on the origin of the dendritic
growth mode at the scale of branch microstructure.

On the onset of the dendritic growth mode at the scale of the
microstructure.—Origin of dendritic growth: shape instability.—
Why the dendritic growth mode proceeds inside the branches, when

j is increased and c0 is decreased, is theoretically considered here. It
is widely accepted that the onset of dendritic growth is fundamen-
tally due to a shape instability during the growth of an initially stable
shape growing material (whatever the initial shape), as described in
several Refs. 47–49. The shape instability occurs when the ampli-
fication rate of infinitesimal protrusions is higher than their damping
rate. The Mullins & Sekerka model,42 adapted to diffusion-limited

Figure 8. SEM images of a copper branch obtained for an applied current density of 33 mA cm−2 and c0 = 0.5 M. Two regions are visualized by successively
increasing the magnification. For each magnification, on the left, the main particulate morphologies observed are given in order of importance. In order to focus
on the main result, only one kind of morphology is indicated per image by either black dashed line ellipses, for dendritic structures, or black rectangles, for single
dendrites.
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Figure 9. SEM images of a copper branch obtained for an applied current density of 266 mA cm−2 and c0 = 0.5 M. One region is visualized by successively
increasing the magnification. In order to focus on the main result, only some dendritic structures are indicated per image by black dashed line ellipses. The
growth directions of the dendritic structures are indicated by gray lines.
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growth, isotropic materials and fast kinetics, usually describes this
mechanism. The amplification or the damping of shape fluctuations
is dictated by the balance between destabilizing effects, generally a
“point effect of diffusion”, and stabilizing effects which are surface
energy and kinetics. If the growth is slow, the stabilizing effects
have time to damp any eventual deviations/protrusions to the stable
shape and consequently the particle is stable keeping its equilibrium
shape (non-dendritic particle). While if the growth is fast, the
amplification rates of the protrusions are higher than the damping
rates and the particle is unstable; this results in the formation of a
dendrite.

The stability problem is formulated with a threshold which has to
be exceeded for inducing dendritic growth. In the experiments this
threshold is exceeded above a given j, from when some grains
become unstable and start to grow as dendrites. By being combined
with the still acting re-nucleation process, this leads to the formation
of the dendritic structures.

Consequently, the shape stability of a growing grain (particle),
idealized as spherical, is considered. We consider the shape stability
threshold formulated in term of a threshold grain size R .t If the size
of the growing grain ( )R t stays lower than R ,t during its growth
duration T , no dendritic growth can occur. Dendritic growth is
considered possible if ( ) = >R T R R .g t

Concerning the spherical shape considered in this modeling, this
is an idealization but this is not expected to affect the roles of the
main physical effects. Indeed, as it could be seen on the SEM images
of the microstructure, the (non-dendritic) grains are not spherical.
Therefore, there is an anisotropic effect as expected for the deposited
materials (also shown by the dendrites themselves). But, as
discussed jut before, the onset of dendritic growth, even for
anisotropic material, is also fundamentally due to a shape
instability.48,50 This latter is usually described by a Mullins &
Sekerka like model in which orientation-dependent surface energy
and kinetic coefficient are taken into account. In this case, the
situation is more complex since the threshold depends on the
orientation.50 In the present work, it is not relevant and necessary
to take into account all the complexity brought by anisotropies.
Because, even if this would be done, the derived threshold would
show the same trend (as a function of the operating parameters) as if
an isotropic case would be considered. This is due to the fact that the
competition between the stabilizing and destabilizing effects remains
intrinsically the same regardless of the taking into account of the
anisotropy and therefore of the shape of the growing grain. Instead,
an isotropic situation is considered, and so a spherical shape is

considered, but the transport of cations around the growing grain is
specifically considered.

In the following, from the Mullins & Sekerka shape stability analysis,
the developed modeling aims to derive an equation for R .t The modeling
of the growth and shape of the resulting dendrites (that would require the
taking into account of material anisotropies) is not attempted. As it
stands, the Mullins & Sekerka shape stability analysis (adapted to
crystallization, condensation, etc.) is not directly adapted to the electro-
chemical situation. Firstly, because species transport involves at least two
fields (electrolyte concentration and electric potential) instead of just one.
Secondly, because the driving force is the overpotential instead of the
oversaturation. Electrochemical shape stability analyses have already
been performed, notably in Refs. 51, 52, but they cannot be applied here
because they are not adapted to the shape stability of the growing
spherical grain: the initial shape is spherical and dynamic instead of being
flat and the driving force (applied current or potential) varies during the
growth instead of being constant. Consequently, a specific shape stability
analysis is derived here.

Derivation of the threshold grain size from the adaptation of the
model of Mullins & Sekerka model to the electrochemical situa-
tion.—A growing grain at the top of a branch is assimilated to an
initially spherical metal particle which grows, under the action of a
cathodic polarization, in a stagnant solution of the metal salt
(electrolyte), Fig. 14.

To enable the derivation of the stability analysis (using spherical
harmonics, see below), the grain is considered as a single particle (note
that the same simplification is used in the Fleury’s model). The relevant
scalar fields (concentrations and electric potential) are thus subject to
spherical symmetry, Fig. 14. Eventual departure from the electroneu-
trality is not considered in this application of the Mullins & Sekerka
model. Consequently, the cation concentration +c is equal to the anion
concentration −c in the solution (the electrolyte is considered symmetric).

As already indicated above, even if there are diffusion and
migration of ions (no supporting electrolyte), the transport problem
can be mathematically reduced to a simple diffusion process
(transport in a binary electrolyte).15,24 The grain growth can there-
fore be considered as diffusion-limited. Furthermore, this diffusion
process is quasi-stationary because the concentration field adapts
sufficiently rapidly to the change in grain size. This is directly
related to the strong difference in metal density between the grain
(solid metal) and the liquid (dissolved metal salt), see also the
discussion in Ref. 42. As a consequence, the Laplace equation is
satisfied in the liquid:

Figure 10. SEM images of a copper branch (central part) obtained with 0.5 M and 133 mA cm−2. This shows that the re-nucleation process is still present during
the formation of copper dendritic structures.
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Figure 11. SEM images of copper branches over a significant part of their length at ×370 magnification and the corresponding solidity maps, for 33 mA cm−2 in
(a) and 266 mA cm−2 in (b); c0 = 0.5 M. Solidity maps are obtained by image processing using python: automatic thresholding from MaxEntropy method
(Kapur, pythreshold), particle detection and morphology properties (skimage).
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Figure 12. SEM images of copper branches, for two concentrations c0 of 0.25 and 0.75 M, and for a current density j of 66 mA cm−2.
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∇ = [ ]+c 0. 32

The cation concentration at the grain surface +cs depends on both the
overpotential η and the local curvature K:

⎛
⎝⎜

⎞
⎠⎟η

γ
( ) =

( )
− ( ) [ ]

+
t

z

c t

c

V

z
K t

RT

F
log

F
, 4s PL m

0

where R is the ideal gas constant, T the temperature, γPL is the free
surface energy of the interface between the grain and the liquid, Vm the
molar volume and K the local curvature of the interface. In the right
hand side of this latter equation, the first term corresponds to the
concentration overpotential53 and the second one is a correction to
account for the curvature of the interface (Gibbs-Thomson effect);38,54

for a spherical grain of radius R, = /K R2 . In accordance with the
diffusion-limited growth assumption, the activation overpotential,
related to the electrochemical kinetics, is neglected.

After linearization assuming small K in Eq. 4, +cs depends on
shape deformations according to the following relation:

= ( + Γ ) [ ]+ +c c K1 , 5s sf

where ( )η= ( )+c c texpsf
zF

0 RT
is the equilibrium concentration of the

cations at a flat metal surface and Γ = γ V

RT
PL m the capillary length.

As in classical shape stability analyses, the deformations are
modeled with spherical harmonics θ φ( )Y ,lm of degree l and mode m
(θ and φ being the angular spherical coordinates). The location of
the grain surface rs is given by (Fig. 14):

θ φ δ θ φ( ) = ( ) + ( ) ( ) [ ]r t R t t Y, , , , 6s lm

where δ is the deformation amplitude. We aim to find from which
grain radius R, the amplification rate δ δ/̇ becomes positive.

Figure 13. SEM images of silver branches (top of the branches) for the following operating conditions: [AgNO3] = c0 = 0.25 M, and j = 33 mA cm−2 (a), j =
66 mA cm−2 (b), j = 133 mA cm−2 (c) and j = 266 mA cm−2 (d).

Figure 14. Sketch of the growth of a spherical grain (dark grey), surrounded
by an electrically neutral and diffusional region (color map), and subject to
shape deformations whose the amplitude is measured by δ ( )t .
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To the first order in δ, the solution of the Laplace equation (Eq. 3)
satisfying the boundary condition Eq. 5 is given by (by identification
with Eq. 7 in Ref. 42):
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The conservation of the deposited metal at the grain surface leads to:
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where ρ is the metal density (mol m−3), D the mean diffusion
coefficient defined by = ( + ) /( + )D u D u D u uc a a c c a (where Da and
Dc are the diffusion coefficients of anions and cations respectively),
and = /v dr dts the normal velocity of the surface.42

Combining Eqs. 7 and 8, the interface velocity expresses as
(Eq. 8 in Ref. 42):
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where = ( + Γ/ )+ +c c R1 2 .sR sf In the right hand side of Eq. 9, the term
in square brackets is exactly the same as in Ref. 42. Mullins &
Sekerka show that shape instability requires that the deformations
grow faster than the grain expansion, δ δ( /̇ )/( ̇/ )R R > 1, and ⩾l 3.
This leads to the definition of the threshold radius R :t

= Γ
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Shape deformations appear if R exceeds R .t Contrary to usual phase
changes (crystallization, condensation, etc.), where the surface
concentration is constant (equilibrium saturation), here, +csf changes
during the grain growth because of its dependence on the over-
potential, η= (( / ) )+c c zFexp RTsf 0 (Eq. 5). Consequently, the stabi-
lity condition ( )Rt changes during the grain growth.

The periodic temporal evolution of η is sketched in Fig. 15b and
explained here. According to Fleury’s nucleation/growth model, just
after the nucleation of a new grain, the incoming current is
concentrated on its surface to make it grow at a constant growth
rate (the previous grain does no longer growth, Fig. 15a); the grain
radius thus follows a one-third power law on a time period of T ,
Fig. 15a.

Initially, the grain size ( )R 0 is very low, typically ∼1 nm
(corresponding to overpotential ∼100 mV). This induces a so high
interface velocity (∝ )−R 2 that both space charge and electrolyte
depletion do not have time to develop (as initially postulated by
Fleury39) and this prevents /+c cs 0 to reach small values. At the early
stage of the grain growth, the Gibbs-Thomson overpotential then

overcomes the concentration overpotential η( ) ≈ − γ
( )

t
V

zF R t

1PL m . This

induces a fast decrease of η at the beginning of a cycle, Fig. 15b.
For longer times, up to the end of grain growth, the interface

velocity is well lowered (because the grain is now large, →R Rg ∼
100 nm, Figs. 8–10 and 12) and both electrolyte depletion and space
charge have time to develop.39 This leads to / ≪+c cs 0 1 and the
overpotential now corresponds to the concentration overpotential

( )η( ) ≈ ( )+
t log

zF

c t

c

RT s

0
. As it is shown below, for this regime, +cs is

proportional to ( ) /j tg
2 3 (see also Eqs. A·21 with A·19 and A·20),

with ( )j tg the current density on the growing grain surface. The

assumption of constant growth rate induces ∝ −j Rg
2 and conse-

quently η( ) ≈ − ( ( ))t C R t
4

3
log (where C is a constant) as sketched

in Fig. 15b. When η reaches a critical value η η η= ( ) = ( )T00 , a new
grain nucleates and grows immediately on the one that was growing
and a new cycle starts, Fig. 15a. Note that the temporal signal of η is
very similar to the temporal signal of the surface electric field shown
in Ref. 39 (Fig. 4).

The corresponding signal of Rt is plotted in Fig. 15c. On a growth
cycle, the instability is favored at the end of grain growth. This
differs from usual situations where Rt is constant. As sketched in
Figs. 15d–15e, the stability condition for a growing grain to be stable
on a full cycle is < ( )R Rmin .g t

The estimation of ( )Rmin t requires η0 (Eq. 10) which can be
derived at the end of a grain growth. For these long growth times, the
electrolyte depletion at the electrode surface induces a divergent
electric field (assuming electroneutrality). By considering the
corresponding Poisson-Nernst-Planck problem, assuming a sta-
tionary and one-dimensional system, Chazalviel14 showed the very
high electric field at the electrode surface leads to the formation of a
space charge region. The electrolyte phase consists of two
regions:14,39 in the vicinity of the electrode (grain) surface, on a
certain small thickness xI (∼100 nm), the solution is not electrically
neutral, ≫+ −c c , this is the charge space region, while beyond x ,I

the solution is neutral ( = )+ −c c . In the space charge region, both
cation concentration and electric potential profiles can be derived
according to Chazalviel’s model.14 This gives access to ( = )+c t Ts

and therefore to ( )η ≈ ( )+
log

zF

c T

c0
RT s

0
.

Note that the use of Chazalviel’s model requires the system to be
stationary. This is actually the case for long growth times for which
grain grow so slowly that mass transport, across the space charge by
both diffusion and migration, can be considered as quasi-stationary.
This is justified by the estimation of the characteristic growth time

= /T R v2 ,g g the characteristic diffusion time = /T x Dd I c
2 and the

characteristic migration time = /( ∣ ∣ /( ))T x zF E D RT .m I s c By esti-
mating xI and ∣ ∣Es from the stationary and one-dimensional
Chazalviel’s theory (Eq. 23, 25 and 27 in Ref. 14 and considering
a potential drop across the space charge region, ∣ ∣E x ,s I of 1 V,
Appendix B) and considering the typical encountered ranges for Rg

[150, 550 nm] and vg [1, 20 μm s−1] (for ∈j [33, 100 mA cm−2] and
∈c0 [0.50, 0.75 M], Fig. 7), /T Td and /T Tm are lower than 0.07%.

This greatly simplifies the modeling contrary to the beginning of a
grain growth for which the problem is transient and requires
numerical simulation.39

Nevertheless, x ,I computed from Chazalviel’s model, which is
one-dimensional, (xI ∼ 100 nm), is of the same order of magnitude
as the size of the grains (∼100 nm, Figs. 8–9). Consequently, we
expect that xI depends on the grain radius.

Here, the Chazalviel’s model is revisited taking into account a
spherical geometry (Appendix A). For a spherical electrode (grain)
of radius R subject to a current density j ,g from the theoretical
framework of Chazalviel,14 we obtain the following profiles across
the space charge layer for both electric field and cation concentra-
tion:
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Figure 15. Sketches of the periodic temporal evolution of radius of a growing grain R (a), overpotential η (b) and threshold radius for the onset of shape
instability assuming a diffusion-limited growth Rt given by Eq. 10 (c). In (a), successive nucleation/growth events are sketched, the top grain, colored in gray, is
the grain which is growing. The ( )R t and ( )R tt signals are plotted in the same graph for both cases stable grain (d) and unstable grain (e).
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for + ⩾ ⩾R x r RI and where ε0 is the vacuum permittivity, ε the
relative permittivity of water and r the radial coordinate. The
potential drop across the space charge layer δV is obtained from
Eq. 11 δ ϕ ϕ( = ( + ) − ( ))V x R R :I
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δV has been measured and it is around 1 V for each case
(Appendix B). This is in agreement with similar measurements.41,45

The link between jg and the operating parameters ( j and c0) can
be established from Fleury’s nucleation/growth model. An important
statement of this model is the link between microstructure and
macro-scale (pattern) through the relation:39
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Note that Eq. 14 is obtained by neglecting the size of the nucleus
( )R 0 in front of ( ) =R T R .g According to Fleury’s nucleation/growth

model,39 the grain growth rate is constant and the Faraday’s law
leads to:
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where π= ( )I R j4g g
2 is the incoming current on one growing grain.

After integration of Eq. 15, coupled with Eqs. 2 and 14, we obtain a
relation for the current density at the end of the growth phase ( )j T :g

ρ( ) = [ ]j T z v
1

6
F . 16g g

Equation 16 is an important relation because it gives a direct access
to the current density on the grain surface at the end of growth, as a
function of the operating parameters through vg (Eq. 2) whatever the
arrangement of the branches on the pattern scale.

For each set of input parameters ( j, c ,0 =R Rg), the concentration
+c ,sf which is equal to the surface concentration ( ) = ( )+ +c T c R ,s g can
therefore be estimated combining Eqs. 2, 12, 13 and 16. Note that xI
is determined by numerically solving Eq. 12, jointly using a non-
linear solver and a numerical integration; xI is found to have a very
weak dependence on R unlike ( )+c Ts (Appendix A). The estimated
values of +csf are so low (maximum value of 10–3 M, Appendix A,
Fig. A·1c) that the growing grains are expected to be always
unstable. The prefactor of δ in the second member of the right
hand side of Eq. 9 is always positive. The damping of shape
deformations (δ δ/̇ < 0, in Eq. 9) would require prohibitive values of
l (>100) for the typical grain size R of 100 nm: ≫ ( )R Rmin .g t This
is not consistent with the experiments which clearly show that there
is a stable growth regime of the grains.

Furthermore, it is interesting to analyze the variation of ( )Rmin t

with j and c .0 According to Eq. 10, ( ) ≈ Γ ( ) /+R c T cmin 42 .t s 0 The
value of ( )+c Ts results from the specific interaction between both
cation concentration and electric potential, in the space charge layer.
Indeed, across the space charge layer, the current flow is mainly
ensured by the migration of cations (Appendix A, Eq. A·15),

δ(( ) ) ( ) / ≈ ( )+z u Vc T x j TF .c s I g
2 Since the potential drop δV is constant

and that ( ) ∝ /j T j cg 0 (Eqs. 13 and 16), ( ) /+c T xs I is found to be
proportional to /j c .0 By considering the Poisson equation (Eq. A·14),
δ εε/ ≈ ( /( )) ( )+V x zF c T ,I s

2
0 the following power laws are obtained:

∝ ( / )− /x j cI 0
1 3 and ( ) ∝ ( / )+ /c T j c .s 0

2 3 If /j c0 increases (i.e. vg

increases), this induces an increase of the electric field δ(≈ / )V xI
which is limited, to avoid divergence, by the enrichment in cations,

( )+c Ts increases.
Consequently, ( )Rmin t increases with j ( ( ) ∝ )/R jmin t

2 3 that is
also not consistent because this would favor stability instead of
instability when j is increased. Additionally, ( )Rmin t decreases with
the concentration c0 ( ( ) ∝ − /R cmin t 0

5 3). This would suggest that jc
decreases with c .0 This trend is also not correlated with the
experimental results.

These differences show that the standard shape stability analysis,
adapted from Mullins & Sekerka model, is not able to describe the
appearance of dendrites on the level of branch microstructure. This
probably comes from the too simplified model of mass transport
which considers only diffusion. Indeed, in the vicinity of the grain
surface, due to the presence of the space charge layer, the mass
transport problem can no longer be assimilated to a diffusion
situation. In the space charge layer, the migration overcomes the
diffusion of cations (14 and Appendix A) and this affects the stability
condition.

Effect of the space charge layer on the stability threshold.—Even
if a full derivation is required (as in Ref. 52 but at the scale of a grain
and for a spherical shape, this will be done in another work), we
could predict the main effect of the space charge on the shape
stability.

By considering the limitation by migration of the cations, Eq. 8
becomes:
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In the space charge layer, the amplitude of the variation of ϕ is δ∼ V ,
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As in diffusion-

limited cases, there is therefore a destabilizing point effect but
induced by the electric potential across a shell (gradient zone) which
the thickness is x ;I this differs significantly from diffusion-limited
cases where the shell stays conform to the grain during its growth

≈ /∂
∂

+
c R.c

r r
0

s

During the growth of a grain, ∝ − /x jI g
1 3 (Eq. A·19), and therefore

∝ /x t .I
2 9 For short times, this power law induces a faster increase

for xI than for ∝ /R t1 3 (shell thickness for diffusion-limited cases).
For long times, →t T , xI reaches typical values around 100 nm and
it varies rather slowly with time ( )/t .2 9 This prevents the amplifica-
tion of shape deformations δ( ≪ )xI as long as the grain size ( )R t is
lower than ∼ ( )∼x TI 100 nm; the grain grows inside a shell with an
almost constant thickness. On the contrary, for a diffusion situation,
the point-like effect is likely to appear earlier, for smaller grains, and
this leads to a low instability threshold as obtained with Eq. 10
(where the oversaturation ( − ) /+ +c c csf sf0 is typically high in such an
electrochemical situation). The taking into account of a space charge
must therefore lead to a positive instability threshold which the order
of magnitude is the same as the one of ( )x TI ∼100 nm. This latter is
compatible with the actual size of the grains encountered here Rg

which is also ∼100 nm (Figs. 8–9). Furthermore, since
( ) ∝ ( / )− /x T j c ,I 0

1 3 this suggests that the onset of shape instability,
and thus the presence of dendrites, is favored when j is increased
and when c0 is decreased. These predicted tendencies are now
consistent with the experiments.

Conclusions

It is experimentally shown that the transition from non-adherent
ramified branches (nucleation/growth regime) towards dendrites
(growth regime) appears at the scale of the grains constituting the
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ramified branches. These non-dendritic crystals undergo a shape
instability leading to the formation of dendrites when j exceeds a
given critical applied current density. This latter increases with the
electrolyte concentration c .0

The fact that the grains become unstable when j increases could
appear usual (similarly to other crystallization or condensation
phenomena) but this is not so simple. Notably because both the
grain size and the oversaturation (Eqs. 10 and A·21) decrease with
the ratio /j c0 that generally prevents shape instability and thus
dendritic growth. According to the standard Mullins & Sekerka
shape stability analysis (Eq. 10), unlike the experiment results, these
tendencies suggest an enhanced shape stability when /j c0 increases.
This discrepancy is due to the periodic formation of a space charge
layer (which avoids the divergence of the electric field, a specificity
of the present situation) which strongly modifies the transport
problem, compared to classic (diffusion-limited) crystallization or
condensation situations.

By considering a space charge layer around a growing grain, the
right tendencies are qualitatively obtained. It was previously
demonstrated that the space charge region plays a major role on
the formation of ramified branches (onset of branch growth14 and
re-nucleation process39). Here, the obtained results suggest the space
charge region also plays a role in:

• stabilization of the shape of grains constituting ramified
branches (the dendritic growth is delayed)

• onset of dendritic growth at the scale of the growing grains.

This shows, once again,39 the originality of this growth phenom-
enon compared to other solidification or condensation situations.

This study focuses only on the onset of dendritic growth. Many
questions remain open especially beyond the dendritic transition, when
the branch microstructure is mixed (grain assemblies and dendritic
crystals). For example, in the case of copper (as here) and iron (11,55),
why the size of the dendrites is always so low that, on the macro-scale,
the pattern remains ramified? While for zinc (and in some extent for
silver), very large dendrites are obtained.17 There should be a competi-
tion between re-nucleation process and dendrite growth (beyond shape
instability) governed by material (anisotropic) properties and mass
transport at length scales of both macroscale and branch microstructure.

The obtained improved knowledge on the transition between
non-dendritic and dendritic regimes will favor the development of an
alternative synthesis of metal nanomaterial based on the exploitation
of the nanostructure of the branches.
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Appendix A. Derivation of the Relations of the Space Charge
Region for a Spherical Particle

The electrochemical growth of a spherical particle of radius ( )R t
is considered. The derivation is carried out for the end of the growth
( →t T , ( ) →R t Rg) when the system can be considered quasi-
stationary (see the section related to the derivation of the threshold
grain size). In the liquid, ⩾ ( )r R t , the concentration of cations and
anions and the electric potential satisfy the transport equations:

ϕ∇ ( ∇ ) + = [ · ]+ +zu c D cF . 0, A 1c c
2

ϕ− ∇ ( ∇ ) + = [ · ]− −zu c D cF . 0, A 2a a
2

as well as Poisson equation:

ϕ
εε

∇ = − ( − ) [ · ]+ −zc zc
F

. A 32

0

There are no advection terms since they are typically negligible for
such small particles (the Péclet number ∼ /v R Dg g is lower than 0.01).
Using spherical coordinates, the relations A1–3 become:

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ϕ+ = [ · ]
+

+D
d

dr
r

dc

dr
zu

d

dr
r c

d

dr
F 0, A 4c c

2 2

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ϕ− = [ · ]
−

−D
d

dr
r

dc

dr
zu

d

dr
r c

d

dr
F 0, A 5a a

2 2

⎜ ⎟⎛
⎝

⎞
⎠

ϕ
εε

= − ( − ) [ · ]+ −
r

d

dr
r

d

dr
zc zc

1 F
. A 6

2
2

0

Integrating Eq. A·4 between R and ⩾r R, considering the total mass
flux of cations is π ( /( ))R j z4 Fg

2 at the particle surface, leads to:

⎜ ⎟⎛
⎝

⎞
⎠

ϕ+ = [ · ]
+

+D
dc

dr
zu c

d

dr

j

z

R

r
F

F
. A 7c c

g
2

By doing the same for the anions (Eq. A·5), considering the total
mass flux of anions is 0 at the particle surface, leads to:

ϕ− = [ · ]
−

−D
dc

dr
zu c

d

dr
F 0. A 8a a

Integrating Eq. A·6 between ⩾r R and a distance ′L being
sufficiently high such that the electrolyte concentration ≈c ,0 we
obtain:

⎛
⎝⎜

⎞
⎠⎟ϕ ϕ( ) = − ( ( ′) − ( )) [ · ]−c r c

zu

D
L rexp

F
. A 9a

a
0

Combining Eqs. A·7 and A·8, assuming electroneutrality ( =− +c c )
and using = /u D RTc c and = /u D RT,a a we obtain:

⎜ ⎟⎛
⎝

⎞
⎠= [ · ]

+
D

dc

dr

j

z

R

r
2

F
. A 10c

g
2

Following the theoretical model of Chazalviel,14 the thickness of the
charge region xI is defined such that, for > +r R x ,I the electro-
neutrality applies, and, for ⩽ < +R r R x ,I the electroneutrality
does not apply. By integrating Eq. A·10 between +R xI and r the
cation (and anion) concentration field is given by:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) =

+
− [ · ]+c r

j

z

R

r D

R

R x

R

rF

1

2
, A 11

g

c I

2 2 2

where, ( + )+c R xI is neglected in front of ( )+c r in this neutral region
(as in Ref. 14). By combining Eqs. A·8 and A·10, the gradient of
electric potential, in the neutral region, is given by:

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
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ϕ =
−

[ · ]
+

d

dr

D

zu rF

1
. A 12a

a
r

R xI

2

By integrating this latter equation between r (> +R xI) and ′L , we
obtain for the electric potential:
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⎛
⎝⎜

⎞
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⎛
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⎞
⎠⎟

⎤
⎦⎥ϕ ϕ( ) = ( ′) − ′ − ( + )

− ( + )
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r L
D

zu

L R x

r R x
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R xF
log log .

A 13

a

a

I

I I

Equation A·13 shows that ϕ( → + ) → −∞r R x ,I and from Eq. A·9,
( → + ) →−c r R x 0.I Since ϕ( )r is expected to be a monotonic

function, →−c 0 in the space charge region (see also concentration
profiles obtained numerically14).

In the space charge region, Poisson equation becomes:

⎜ ⎟⎛
⎝

⎞
⎠

ϕ
εε

= − [ · ]+
r

d

dr
r

d

dr
zc

1 F
. A 14

2
2

0

Because of the high electric field in the space charge region
(Eq. A·8), the transport of cations is mainly due to migration and
Eq. A·7 becomes:

⎜ ⎟⎛
⎝

⎞
⎠

ϕ = [ · ]+zu c
d

dr

j

z

R

r
F

F
. A 15c

g
2

Combining Eqs. A·14 and A·15, after integration between r and
+R xI (and considering ( + ) ≫ ( )+ +c R x c rI ), leads to:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥εε

( ) = ( ) ( + ) − [ · ]+
− /

c r
z u

j

R x r

R

2

3

F
. A 16c

g

I
3

0

3 3

2

1 2

From Eq. A·15, after integration, the electric potential is given by:

∫ϕ ϕ
εε

( ) = ( + ) −
( + ) −

[ · ]

+
r x R R

j

z u

x R x

x
dx

2

3 F
.

A 17

I
g

c r

x R
I

0

3 3

2

I

From the latter equation, introducing δ ϕ ϕ= ( + ) − ( )V x R RI the
potential drop across the space charge, the thickness of the space
charge layer xI can be deduced from:

∫δ
εε

=
( + ) −

[ · ]
+

V R
j

z u

x R x

x
dx

2

3 F
. A 18

g

c R

x R
I

0

3 3

2

I

Figure A·1. Comparison between spherical and one-dimensional models for the prediction of both space charge region/layer thickness (a), (b) and cation surface
concentration (c), (d). Space charge region thicknesses (xI for the spherical model, xI

1D for the one-dimensional model) (a) and the ratio /x xI I
1D (b) as a function

of respectively the particle radius R and the ratio /x R,I for several values of the ratio /j c .0 Cation surface concentrations ( ( )+c Ts for the spherical model, +cs
1D for

the one-dimensional model) (c) and the ratio ( ) /+ +c T cs s
1D (d) as a function of respectively the particle radius R and the ratio /x R,I for several values of /j c0 (given

in A.m mol−1).
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The values obtained for xI and ( = ) = ( )+ +c R R c T ,g s for this spherical
case, are compared to the prediction of the one-dimensional model of
Chazalviel (Eqs. 27 and 25 in Ref. 14]):

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟δ εε= [ · ]

/
/

/

x V
z u

j

3

2

F

2
, A 19I

c

g

1D
2 3

2 3 0

1 3

⎛
⎝⎜

⎞
⎠⎟

εε=
( )

[ · ]+
/

c
z u

j

x2 F
. A 20s

c

g

I

1D 0
3 1D

1 2

xI is found to stay close to xI
1D whatever the ratios /j c0 and /x RI (for

the ranges encountered here), Fig. A·1a. As expected, →x xI I
1D for

/ →x RI 0, Fig. A·1b.
The same trend is obtained for ( ) /+ +c T cs s

1D but ( )+c Ts is
significantly lower than +cs

1D for high values of /x R,I Fig. A·1c. A
useful observation is that the curves ( ) /+ +c T c ,s s

1D as a function of
/x R,I coincide for all values of /j c ,0 Fig. A·1d. This enables a

separation of the variables in the relation providing ( )+c Ts for the
spherical case:

( ) = ( / )[ ( )] [ · ]+ +c T f x R c j c, , A 21s I s
1D

0

where the indeterminate function ( / )f x RI can be roughly considered
as an exponential function, ( ) = (− )f x xexp 0.336 , Fig. A·1d.

Appendix B. Estimation of the Potential Drop Across the Space
Charge Region

During a galvanostatic electrolysis, the cell voltage ΔV evolves
as shown in Fig. B·1a for the particular case c0 = 0.5 M, j = 133 mA
cm−2. Just after the application of the current, there is a decrease of
ΔV up to ∼5 s. This initial variation is related to a capacitive effect
on a rather large time scale compared to usual electrochemical
situations (∼1 ms); de Bruyn explained this effect by the influence
of natural convection.45

At the same time, an increasing part of the applied current (all the
current from the moment when ΔV stops to decrease with t) is used
to convert the cations into metal at the cathode surface (electro-
chemical reduction). Due to the non-renewal of the electrolyte
(stagnant solution) there is a depletion region close to the initially
flat cathode surface. At the surface of the cathode, the concentration
tends towards ∼0. The instant when the concentration reaches ∼0
(Sand’s time) marks the onset of branch growth.56 At the same time,
cell voltage rises (partly because of the increase in the resistivity,
itself induced by electrolyte depletion) up to a maximum value,
Fig. B·1a. The time at the peak is close to Sand’s time and it also
marks the beginning of branch growth.45,56

Next, ΔV decreases linearly with time because the growth front
(cathode) gets closer to the anode and the corresponding inter-
electrode distance decreases linearly with time (as shown and
discussed in several previous works21,45). By considering that the
branches are a perfect electrical conductor, ΔV is the sum of several
contributions:

η η δ δ δΔ = ∣ ∣ + + ′ + + [ · ]V V V V , B 1a conc ohm

where:

• ηa is the anodic overpotential
• δVohm the potential drop where the concentration field is

uniform (the enriched anodic region is not considered), ahead the
region of concentration gradients (Fig. B·2)

• δVconc the potential drop, where there are concentration
gradients and electroneutrality of the solution (typically on a length
LD related to the average growth velocity by = /L D vD g), between
the region with uniform concentration field and the region where the

fields (concentration and potential) cannot be considered as one-
dimensional (due to the branch microstructure)

• δ ′V is the remaining potential drop across the space charge
region and a small part of the neutral region, Fig. B·2.

By considering the system as one dimensional, from a distance H
(∼ ∈Rg [150, 550 nm]) above the top of the branches (Fig. B·2), the
two last terms in the right hand side of Eq. B·1 are given by:

∫δ ϕ= [ · ]
¯ +

¯ + +
V d , B 2conc

x H

x H L

f

f D

δ ρ= ( ) ( − ¯ − − ) [ · ]V c j L x H L , B 3ohm e f D0

where x̄f is the average location of the growth front (Fig. B·2) and
ρ ( )ce 0 the electric resistivity of the solution. Assuming that the
overpotentials are negligible compared to the other contributions
(this is generally satisfied, and even comforted for fast kinetics as
considered here, since the overpotentials fall in the range ∼10–
100 mV) as well as δV ,conc Eq. B·1 takes the simplified form:

δ δΔ ≈ ′ + [ · ]V V V . B 4ohm

δVconc has been neglected compared to δV ,ohm as in previous
works.41,45 This can be justified because δVconc slowly diverges
when the concentration at the growth front tends towards ∼0.
Indeed, in this region, the dependence of the electric potential on the
local concentration can be deduced from the general expression of
the electric current inside the electrolyte which is given here by
( = = )+ −c c c :

ϕ= ( + ) ( ) ∂
∂

+ ( − ) ∂
∂

[ · ]j z u u c x
x

z D D
c

x
F F . B 5a c c a

2 2

This latter equation can be simplified by neglecting the diffusion
term (this is reasonable, first because the diffusion coefficients are
expected to be close, and second because this term does not contain
diverging terms contrary to the migration term):

ϕ≈ ( + ) ( ) ∂
∂

[ · ]j z u u c x
x

F . B 6a c
2 2

In this neutral region, the concentration profile satisfies the diffusion
equation:24

∂
∂

= ∂
∂

[ · ]c

t
D

c

x
, B 7

2

which can be converted to its stationary form using the coordinate
relative to the front ′ = −x x v t:g

′
+

′
= [ · ]−d c

dx
L

dc

dx
0 B 8D

2

2
1

A solution of this latter equation is:

⎛
⎝⎜

⎞
⎠⎟*

( ′) −
−

= − ′ − [ · ]c x c

c c

x H

L
exp , B 9

D

0

0

where *c is the electrolyte concentration at ′ =x H (Fig. B·2). By
integrating Eq. B·6 between ¯ +x Hf and ¯ + +x H L ,f D using
Eq. B·9, we obtain:

⎜ ⎟⎛
⎝

⎞
⎠*

δ =
( + )

+ ( ( ) − ) [ · ]V
j

z u u

L

c

c

cF
log 1 exp 1 1 . B 10conc

a c

D
2 2

0

0

Since = /L D vD g and ∝ /v j cg 0 (Eq. 2), according to Eq. B·10, δVconc

does not directly depend on j nor c .0 Eq. B·10 shows that the
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divergence of δVconc with / *c1 is slight because of the logarithmic
dependence. The value of the electrolyte depletion / *c c ,0 and its
trend with both j and c ,0 can be estimated by taking the value of

( ) = ( )+ +c R c T ,s given by Eq. A·20, for *c (= ( ¯ + )c x Hf ); note that
/ *c c0 and δVconc are therefore overestimated. We find that δVconc

decreases with j and for the worst case (0.75 M, j = 33 mA cm−2),
δVconc < 0.093 V. This rather low upper value, and the fact that

δVconc decreases with j, (see below and Fig. B·1b) allows this term to
be neglected.

Considering a cell length L well higher than LD and x̄f (and xI),
δ ρ≈ ( )V c jL,ohm e 0 and its value can be estimated from the value of
ΔV just after the initial capacitive phase (for t < ∼5 s in Fig. B·1a)
when the concentration profile has not changed much yet (this value
is taken as the minimum value on the plot ΔV as a function of time).

Figure B·1. (a) The cell voltage ΔV as a function of time for c0 = 0.5 M and = 133 mA cm−2, the red line (corresponding to the linear fit of the decreasing part
of the curve on the right of the peak) highlights the linear decrease of ΔV with t. (b) The estimated potential drop across the space charge region as a function of
the applied current density j and for several concentrations c .0

Figure B·2. Sketch of the electric potential profile across the electrochemical cell.
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By subtracting this last value from the maximum value of ΔV (at the
peak), we measure δ ′V . δ ′V thus determined actually correspond to
the actual space charge region at the initially flat cathode surface
(δ ′V = potential drop across the space charge region for a one-
dimensional system for which H = 0). Since, after the peak, there is
no discontinuity of the cell voltage and that it decreases linearly with
time, this suggests that δ ′V remains almost the same even if the
electroactive surface changes significantly (flat surface → top of the
ramified branches, H can no longer be considered as 0). We deduce
that this estimation of δ ′V gives access to δV .

Overall, we obtain values for δV of about 1 V. The same value
has already been reported for the same system.41 As already
observed in the work of de Bruyn 1997,45 we observe a slow
decrease in δV with the applied current density j (note that this trend
is not expected to be due to not taking into account δVconc since this
latter would induce the opposite trend as discussed just above).
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