
Computers and Fluids 229 (2021) 105102

A
0

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

A conservative multirate explicit time integration method for computation of
compressible flows
Ramzi Messahel ∗, Gilles Grondin, Jérémie Gressier, Julien Bodart
ISAE-SUPAERO, Université de Toulouse, France

A R T I C L E I N F O

Keywords:
Multirate explicit time integration
Finite volume
Spectral-differences
High performance computing
Direct numerical simulation

A B S T R A C T

In the context of high fidelity simulation of compressible flows (LES and DNS) at extreme scale (small time
steps) on massively parallel supercomputers, explicit time integration methods are widely used since they
both have a good computational cost trade-off at small time scales and require a small number of parallel
communications, thus having little impact on the parallel strategy compared to their implicit counterpart.
However, the synchronous nature of the time integration of the governing equations can be a severe constraint
when the stability condition is applied globally since the time scales are related to the flow properties and
the mesh resolution, which may show strong variations throughout the computational domain. We propose
to further improve the efficiency (CPU wall-time reduction) of explicit Runge–Kutta methods by developing
a multirate explicit time integration method, by means of flux interpolation at the boundary between cells
evolving with different time-steps, which enforces the conservation properties. In terms of computational
efficiency, the presented multirate time integration method is easy to implement in pre-existing Eulerian
compressible Navier–Stokes codes, requires less additional memory storage, and provides a considerable speed-
up while being robust and preserving the order of accuracy of the legacy explicit Runge–Kutta time integration
method. The multirate time integration method is implemented in the massively parallel finite volume and
high-order (spectral difference) IC3 code (Bodart et al., 2016) (fork of the solver CharLESX), but it can also be
applied to any flux-based spatial method such as discontinuous Galerkin or others. For a targeted 𝑦+ = 0.2 on
the developed turbulent channel flow test case at 𝑅𝑒𝜏 = 392; a 2.48 effective speedup is obtained versus an
expected theoretical speedup of 2.53.
1. Introduction

Explicit time integration methods are widely used for high-fidelity
compressible flow simulations at small time scales in modern par-
allel codes due to their efficiency (limited amount of computations
per iteration) and the small number of communications required in
comparison with implicit time integration when small time steps are
involved [1]. However, the main drawback of explicit time schemes
is their conditional stability determined by the Courant-Friedrichs-
Lewy (CFL) stability condition [2]. For each cell of the computational
domain, this CFL stability criterion defines a maximum local time step
proportional to the ratio between a characteristic cell length (e.g., grid
size) and the maximum characteristic speed (wave/advection) by a
fixed cflmax factor specific to the time scheme, and states that the
local-step cannot exceed this maximum local time step. Under these
constraints, the stable global time step is determined by the smallest
local time step amongst all cells. For multi-scale phenomena such as
highly turbulent compressible flows where extensive fine meshing is

∗ Corresponding author.
E-mail address: ramzi.messahel@isae-supaero.fr (R. Messahel).

needed locally for the numerical method to be able to converge and
capture the physical phenomena, this approach may lead to unduly
expensive computations if the global time step imposed for the sake
of stability is much smaller than the computed local time step for a
large number of cells. Explicit multirate time integration methods aim
at overcoming such limitations of explicit time integration methods
imposed by the CFL condition, to considerably reduce the overall
CPU time, increase the code productivity of people using the code,
and finally solve more complex and realistic problems. To do so, the
computational domain is decomposed into several time stepping classes
of cells sharing the same class time step which satisfies the CFL stability
condition within the whole class of cells, while minimizing the ratio of
the local time steps to the different class time steps.

Two main difficulties arise from explicit multirate time integration
methods: the global synchronization of the time stepping classes and
the processing of inter-class boundaries between cells advancing in
time with different class time steps. The global synchronization aims
vailable online 5 August 2021
045-7930/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compfluid.2021.105102
Received 10 June 2020; Received in revised form 5 July 2021; Accepted 19 July 2
021

http://www.elsevier.com/locate/compfluid
http://www.elsevier.com/locate/compfluid
mailto:ramzi.messahel@isae-supaero.fr
https://doi.org/10.1016/j.compfluid.2021.105102
https://doi.org/10.1016/j.compfluid.2021.105102
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.105102&domain=pdf

Computers and Fluids 229 (2021) 105102R. Messahel et al.

p
t
m
C
a
m
w
t
i
m
m
c
s
u
t
I
t

t
d
b
s
t
h
c
t
s
T
c
r
s
b
i
n
p
t
S
c
s
e
m
s
n

i
o
a
s
i
a
c
s
s
l
o
i
i
r

w
𝑥
v

𝑸

p
r

𝑝

(
w
c
f

𝑭

at preserving temporal coherence to avoid any physical time-lag in
space (due to the spatial decomposition of the computational domain
into local time stepping classes), and also, to impose the conserva-
tion property by the means of a-posteriori local flux corrections. The
rocessing of inter-class boundaries must then enforce the conserva-
ion property and be implemented efficiently to be deployed in a
ultidimensional and unstructured mesh framework. In the work of
onstantinescu and Sandu [3], Puppo and Semplice [4], Seny et al. [5]
nd others, the transition between classes with different time steps is
anaged by inserting an intermediate buffer time stepping class. In this
ork, we propose a more compact approach where management of the

ransition between time stepping classes will be done directly at the
nter-class boundary without passing through a transition buffer zone
aking the approach more computationally efficient in an unstructured
esh context as it requires fewer data and computations at the inter-

lass interface. In a high-performance computing (HPC) framework, a
traightforward application of explicit multirate time integration may
nbalance the computational load across the processes/threads since
he number of time integrations varies between time stepping classes.
t follows that an efficient parallel implementation of explicit multirate
ime integration methods becomes a third difficulty.

Early explicit multirate time integration methods [6–8] were found
o be either locally inconsistent or non-mass-conservative (see Hunds-
orfer et al. [9]). Later, two explicit multirate time integration methods
ased on explicit Runge–Kutta (ERK) methods were proposed by Con-
tantinescu and Sandu [3] and Schlegel et al. [10]. In these methods,
he difficulty of processing the time stepping inter-class boundaries is
andled by creating buffer time stepping regions. This buffer region is
reated inside the time stepping classes with the biggest time step so
hat at least two cells separate the time stepping classes, while its time
tep is set as the minimum of the two neighboring class time steps.
he main drawback of this approach is the loss of computational effi-
iency due to the underestimation of the local time steps of the buffer
egion. However, the first method is conservative and preserves the
trong-stability-preserving (SSP) properties of the synchronous ERK-
ased method but was found to achieve at most second-order accuracy
n time. The second one achieved third-order accuracy in time but is
on-conservative (see [10,11]). Seny et al. [5] proposed an efficient
arallel strategy for a Discontinuous-Galerkin type implementation of
he explicit multirate time integration method of Constantinescu and
andu [3]. More recently, Jeanmasson et al. [12] proposed other
onservative in mass second-order and third-order schemes. The con-
ervation property is recovered with an additional correctional phase to
nforce the mass conservation. These latest schemes proposed by Jean-
asson et al. [12] were shown to be equivalent or more accurate than

chemes proposed by Constantinescu and Sandu [3] on the presented
umerical tests.

In this paper, we present another robust explicit multirate time
ntegration that has the benefits of being conservative by construction,
f preserving the order of accuracy of the legacy single rate method,
nd of treating locally the transition between the different local time
tepping classes at the inter-class boundary through conservative flux
nterpolation techniques. The local treatment of the inter-class bound-
ries avoids using overlapping buffer local time stepping classes and
onsequently improves the efficiency of the parallel implementation for
olving three-dimensional problems. In Section 2, we give a brief de-
cription of the considered governing Navier–Stokes equations and the
egacy spatial and time discretization methods; the basis and principles
f the proposed conservative multirate explicit time integration and its
mplementation including the grid partitioning strategy are described
n Sections 3 and 4, respectively; finally, validation and performance
2

esults are presented in Section 5.
2. Numerical method

2.1. Governing equations

In this work, we consider the compressible three-dimensional
Navier–Stokes equations in their local conservative form as follows:

𝜕𝑡𝑸 + ∇𝒙 ⋅ 𝑭 = 𝑺, (1)

here 𝑸, 𝑭 and 𝑺 denote the conserved variables, the flux tensor in the
, 𝑦 and 𝑧 directions and the source terms, respectively. The conserved
ariables and flux vectors are defined as follows:

=
⎛

⎜

⎜

⎝

𝜌
𝜌𝒖
𝜌𝐸

⎞

⎟

⎟

⎠

, (2)

𝑭 = 𝑭 inviscid − 𝑭 viscous =

⎛

⎜

⎜

⎜

⎝

𝜌𝒖

𝜌𝒖⊗ 𝒖 + 𝑝𝐈d
(𝜌𝐸 + 𝑝)𝒖

⎞

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

0
𝝉

𝝉 ⋅ 𝒖 + 𝒒

⎞

⎟

⎟

⎟

⎠

, (3)

where 𝜌, 𝒖, 𝑝, 𝐸, 𝝉 and 𝒒 are the density, the velocity vector, the
ressure, the total energy, the stress tensor and the heat flux vector,
espectively.

The pressure and total energy are related by the ideal gas law with:

= (𝛾 − 1)
(

𝜌𝐸 − 1
2
𝜌𝒖 ⋅ 𝒖

)

, (4)

where 𝛾 is the constant ratio of specific heats.

2.2. Finite-volume method

The present study was conducted using the Finite-volume (FV)
method implemented in the massively parallel compressible flow solver
CharLESX (see [13]). The FV method is a cell-centered control volume
cv) based discretization approach on unstructured polyhedral meshes
here the flux is computed at each control volume face using a convex

ombination of a non-dissipative central flux and a dissipative upwind
lux (see [14–16]), such as

i = 𝛼𝑭 i
central + (1 − 𝛼)𝑭 i

upwind-HLLC . (5)

The 𝛼 parameter is a local face parameter. It is used to choose
the flux calculation according to the geometric quality regions. For
good quality regions, the 𝛼 parameter tends to unity such that a low-
dissipative or non-dissipative blended flux is used. In the opposite
scenario, the 𝛼 parameter is decreased to avoid instabilities due to the
centered scheme through the addition of numerical dissipation in the
blended flux. The code CharLESX also allows solving shocks through
the use of shock sensors (dilatation, vorticity, density gradient, and
pressure gradient-based sensors) and the activation of second-order
ENO schemes.

The considered left and right face data for flux computation are high
order polynomial reconstructed data on an extensive stencil. For more
details on the CharLESX code numerical methods and its implementa-
tion, the reader can refer to [14–16]. Arbitrary-Lagrangian–Eulerian
and sliding mesh capabilities were recently added by Saez-Mischlich
et al. [17].

2.3. Spectral-difference method

In this paper, we consider the high-order compact Spectral-difference
(SD) method on unstructured hexahedral grids (see Kopriva [18], Liu
et al. [19] and Sun et al. [20]) that has been implemented in the
department code IC3 [1], a fork of an already well established LES FV

X
solver CharLES developed at the Center for Turbulence Research [13].

Computers and Fluids 229 (2021) 105102R. Messahel et al.

h

w
c
l
e
s
d

d
g
t
o
e

3

3

i
w
f
p
c

𝐶

,
i
t

s
c
t
t
c
i

Coordinate transformation. For computation efficiency purposes, each
exahedral cell is transformed from the physical domain (𝑥, 𝑦, 𝑧) to a

reference hexahedral element (𝜉, 𝜂, 𝜁) ∈ [0, 1]3 (see Fig. 1) by a linear
bijective mapping function 𝛷(𝑥, 𝑦, 𝑧) defined as follows

𝒙 =
⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

=
8
∑

𝑖=1
𝑀𝑖(𝜉, 𝜂, 𝜁)

⎛

⎜

⎜

⎝

𝑥𝑖
𝑦𝑖
𝑧𝑖

⎞

⎟

⎟

⎠

, (6)

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 𝑀𝑖(𝜉, 𝜂, 𝜁) denotes the mesh points coordinates
and the shape functions, respectively. Considering the transformation
function in Eq. (6), the governing equations are expressed in the
reference domain coordinate system by

𝜕𝑡𝑸̂ + ∇𝝃 ⋅ 𝑭̂ =0, (7a)
{

𝑸̂ = |𝑱 | 𝑸
𝑭̂ = |𝑱 | 𝑱−1𝑭 , 𝑱 = ∇𝝃𝒙 = 𝜕𝒙

𝜕𝝃
=
⎛

⎜

⎜

⎝

𝜕𝜉𝑥 𝜕𝜂𝑥 𝜕𝜁𝑥
𝜕𝜉𝑦 𝜕𝜂𝑦 𝜕𝜁𝑦
𝜕𝜉𝑧 𝜕𝜂𝑧 𝜕𝜁𝑧

⎞

⎟

⎟

⎠

, (7b)

where |𝑱 | is the determinant of the Jacobian matrix 𝑱 .

Spatial discretization. In the SD method used in this study, two sets of
mesh points are defined for each element (see Fig. 2):

• the solution points which are chosen to be the Gauss points,
• and the flux points which are chosen to be the Gauss–Legendre

points that have proven to be more stable (see [21]).

The discrete solution of the conservative variables is defined at the
solution points and then interpolated to flux points where the fluxes are
computed using a Lagrange polynomial interpolation. At this stage, it is
important to notice that the solution used for interpolation at the flux
points is continuous inside each element and it is but discontinuous at
elements interfaces. The common conservative flux at the discontinuous
Riemann interface is computed using a Riemann solver (both Harten–
Lax–van Leer-Contact and Rusanov Riemann solvers are implemented
in our department code IC3). The computation of the inviscid fluxes
and the reconstruction of the viscous fluxes are detailed in [20].

2.4. Explicit Runge–Kutta methods

General form. To evolve the solution in time, we consider the class of
ERK time integration methods applied to the semi-discrete problem

𝜕𝑡𝑸 = RHS(𝑸) = −∇𝒙 ⋅ 𝑭 , (8)

where the spatial derivatives regrouped in the right-hand side RHS(𝑸)
are, firstly, discretized using either a FV or a SD method.

Let us consider the discrete times 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 and a computed
solution 𝑸(𝑡𝑛) at time 𝑡𝑛 with 0 ≤ 𝑛 < 𝑁 . The general form of explicit
𝑠-stages RK methods is given by

∀𝑖 = 1,… , 𝑠

⎧

⎪

⎨

⎪

⎩

𝑡𝑛,𝑖 = 𝑡𝑛 + 𝑐𝑖 𝛥𝑡𝑛 ,
𝑸𝑛,𝑖 = 𝑸(𝑡𝑛) + 𝛥𝑡𝑛

∑𝑖−1
𝑘=1 𝑎𝑖,𝑘 𝒑𝑛,𝑘 ,

𝒑𝑛,𝑖 = RHS(𝑸𝑛,𝑖) ,

𝑸(𝑡𝑛+1) = 𝑸(𝑡𝑛) + 𝛥𝑡𝑛
∑𝑠

𝑘=1 𝑏𝑘 𝒑𝑛,𝑘 ,

(9)

where 𝛥𝑡𝑛 = 𝑡𝑛+1− 𝑡𝑛 is the time step and matrices 𝑨 = (𝑎𝑖,𝑗)𝑠×𝑠, 𝒃 = (𝑏𝑖)𝑠
and 𝒄 = (𝑐𝑖)𝑠 are composed of the coefficients defining the RK methods,
which must satisfy ∀𝑖 ∈ [1, 𝑠],

∑𝑖−1
𝑘=1 𝑎𝑖,𝑘 = 𝑐𝑖 and ∑𝑠

𝑘=1 𝑏𝑘 = 1. In Fig. 3,
the RK methods coefficients are represented in the Butcher tableau
form. In the specific case of explicit time integration presented here,
the matrix 𝑨 = (𝑎𝑖,𝑗)𝑠×𝑠 is lower triangular with a null diagonal.

Courant-friedrichs-lewy (CFL) stability condition. Although ERK methods
provide the advantage of having a good computational cost trade-off
at small time scales and require a small number of parallel communi-
cations compared to their implicit counterpart; the computational time
step is restricted by the CFL condition to preserve the stability condition
3

and, consequently, the convergence of the numerical solution. For a
given control volume (CV) 𝛺𝑘, the CFL condition is locally defined by

cfl𝑘 = max(𝑎conv
𝑘 , 𝑎acou

𝑘)
𝛥𝑡𝑘
𝑙𝑘

⩽ cflmax, (10)

here cfl𝑘, 𝑎conv
𝑘 , 𝑎acou

𝑘 , 𝛥𝑡𝑘, 𝑙𝑘 and cflmax denote the local CFL number,
onvective wave speed, acoustic wave speed, time step, characteristic
ength and the maximum authorized CFL number, respectively. To
nsure the CFL condition on the whole domain, the stable global time
tep is determined by the smallest local time step defined by the CFL
efinition in Eq. (10) among all control volumes.

This approach may lead to expensive computation if the stability-
riven global time step is much smaller than the local time step for a
reat number of cells. The next section presents a conservative mul-
irate explicit time integration method that overcomes the restriction
f the local time step by the global time step enabling the solution to
volve with locally different time steps.

. Conservative multirate explicit integration methods

.1. Definition and management of time-step classes

The explicit multirate time integration method consists in integrat-
ng temporally the different cells of the mesh with different time-steps
hile ensuring the temporal coherence of the time integration, i.e., the

irst-order accuracy, and potentially its accuracy at higher orders. For
ractical reasons of implementation and efficiency, the 𝑁cell cells of the
omputational domain are grouped into 1 +𝑁c local time-step classes

𝑖, 0 ≤ 𝑖 ≤ 𝑁c

where the cells of class 𝐶𝑖 share the same global time-step 𝛥𝑇𝑖 which
s specifically defined for a class. The ratio between the different class
ime-steps can be an integer [3,6,8,10,23–25] or a real [26,27].

In this work, we choose a ratio of two between the time-steps of two
uccessive classes: 𝛥𝑇𝑁c = 𝛥𝑡min, 𝛥𝑇𝑖 = 2𝛥𝑇𝑖+1. The partitioning of the
omputational domain into separate local time-step classes is based on
he local time-step of each cell, which is a function of: the CFL number,
he local physical field (convection and acoustic speeds) and the grid-
ell characteristic length (Eq. (10)). The local time-step class partition
s built as follows:

1. Computation of the time-step for each cell 𝛺𝑘, ∀𝑘 ∈ 𝐼𝑁cell =
[

1, 𝑁cell
]

:

𝛥𝑡𝑘 = 𝛥𝑡𝑘(cfl𝑘, 𝑙𝑘(𝛺𝑘), 𝑎conv
𝑘 , 𝑎acou

𝑘) ; (11a)

2. Computation of the minimum and maximum time-steps:

𝛥𝑡min = min
𝑘∈𝐼𝑁cell

(𝛥𝑡𝑘) , 𝛥𝑡max = max
𝑘∈𝐼𝑁cell

(𝛥𝑡𝑘) ; (11b)

3. Computation of the number 𝑁c+1 of classes needed to cover the
time-step range [𝛥𝑡min;𝛥𝑡max]:

𝑁c =
⌊

log2
(

𝛥𝑡max
/

𝛥𝑡min

)⌋

; (11c)

4. Computation of each class time-step:

∀𝑖 ∈
[

0, 𝑁c
]

, 𝛥𝑇𝑖 = 2𝑁c−𝑖𝛥𝑡min ; (11d)

5. Computation of local time-step intervals:

𝐽𝑖 =

{
[

𝛥𝑇𝑖, 𝛥𝑇𝑖−1
)

, ∀𝑖 ∈
[

1, 𝑁c
]

,
[

𝛥𝑇𝑖, 𝛥𝑡max
]

, 𝑖 = 0 ;
(11e)

6. Definition of the time-step classes
𝐶𝑖, 0 ≤ 𝑖 ≤ 𝑁c

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 1. Linear transformation from the physical domain (𝑥, 𝑦) to reference domain (𝜉, 𝜂).
Fig. 2. Representation of the solution points (circles) and flux points (solid squares) for two-dimensional SD methods: second order (left) and third order (right).
Fig. 3. Butcher’s tableaux for ERK methods, see [22].
s
s

which contain all cells 𝛺𝑘 with a local time-step 𝛥𝑡𝑘 in time-step
interval 𝐽𝑖:

𝐶𝑖 =
{

𝛺𝑘, 𝑘 ∈ 𝐼𝑁cell ∣ 𝛥𝑡𝑘 ∈ 𝐽𝑖
}

. (11f)
4

t

Each cell of a class 𝐶𝑖 (0 ≤ 𝑖 ≤ 𝑁c) is integrated in time with time-
tep 𝛥𝑇𝑖 = 2𝑁c−𝑖𝛥𝑡min, the lower bound of interval 𝐽𝑖, in order to locally
atisfy the CFL condition (Eq. (10)). The distribution of classes and local

ime-steps are shown in Fig. 4. For one global iteration of time-step

Computers and Fluids 229 (2021) 105102R. Messahel et al.

𝛥
r

t
t
d
a
w
o
o
w
t

t
g
i
h
t
A
t

c
o

Fig. 4. Distribution of classes and time-steps in logarithmic scale.
Fig. 5. A four-class (𝑁c = 3) example of multirate time integration over a global synchronized time-step 𝛥𝑇0 = 2𝑁c𝛥𝑡min = 8𝛥𝑡min.
𝑍

f

t
s
m

𝑇0 = 2𝑁c𝛥𝑡min, cells of a class 𝐶𝑖 are integrated in time 2𝑖 times with
espect to their class time-step 𝛥𝑇𝑖 as shown in Fig. 4.

One major difficulty in evolving the solution asynchronously is the
reatment of the interface between cells advancing with different class
ime-steps (inter-class faces). For practical and efficiency reasons, a
ifference of at most one class between two adjacent cells is imposed as
constraint: Otherwise, one would require either to add layers of cells
ith intermediate time-steps, which would be complex to implement,
r a large number of time integrations (four, eight, or higher power
f two) on the smaller time-step side while the larger time-step side
ould not evolve, which may cause stability problems or deteriorate

he accuracy of the method.
To enforce this constraint, an additional step is performed: when

wo adjacent cells belong to classes with an absolute index difference
reater than one, then the cell belonging to the class with the smaller
ndex (i.e. with the greater time-step) is transferred into the class with
igher index complying with the index difference constraint, to satisfy
he local CFL stability condition. This step is repeated while required.
n example of multirate time integration over a global synchronized

ime-step 𝛥𝑇0 is shown in Fig. 5.
It is important to underline that the previous reasoning allows de-

omposing the domain into integration classes based on the definition
f the cells’ local time-step defined as a function of the local cfl, the

physical characteristics of the flow, and the mesh metrics. Considering
that the local cfl is proportional to the time-step (see Eq. (10)), it
is also possible to have the same reasoning for the definition of the
classes based on the local cfl if fixed time-steps is considered. In the
particular case of incompressible flows with a low Mach number, the
convective speed is negligible compared to the acoustic speed and the
domain decomposition into classes can be based on the grid size which
5

is proportional to the time step and inversely proportional to the cfl.
Expected gain. Let 𝑛𝑖 = card(𝐶𝑖) and 𝑁cell be the number of cells in
class 𝐶𝑖 and the total number of cells, respectively. The numbers 𝑍sync
and 𝑍async of synchronous and multirate time integrations needed to
perform a global time integration over a global synchronized time-step
𝛥𝑇0 = 2𝑁c𝛥𝑡min and the theoretical expected gain 𝐺th are given by

sync =
𝑁c
∑

𝑖=0
𝑛𝑖 2𝑁c , 𝑍async =

𝑁c
∑

𝑖=0
𝑛𝑖 2𝑖 , 𝐺th =

𝑍sync

𝑍async
. (12)

3.2. Flux processing at multirate classes interfaces

For the sake of clarity, we only consider two-class multirate time
integration cases (𝑁c = 1). The generalization of the method to 𝑁c
classes and the global synchronization algorithm are presented later in
Section 3.3.

In the following subsections, we denote by 𝑭 𝑛,𝑗
𝑘+1∕2, 𝑸

𝑛,𝑗
𝑘 and 𝑸𝑛,𝑗

𝑘+1 the
lux at the 𝑘 + 1∕2 interface between cells 𝛺𝑘 and 𝛺𝑘+1 and the states

at these cells at a given ERK sub-step 𝑗 of time-step 𝑛, respectively. The
considered interface between classes 𝐶0 and 𝐶1 is located at interface
𝑖+ 1∕2, with cells 𝛺𝑘 belonging to class 𝐶0 for 𝑘 ≤ 𝑖− 1 and to class 𝐶1
for 𝑘 ≥ 𝑖.

3.2.1. Non-conservative multirate RK1 method
A first straightforward approach for evolving asynchronously the

cells of the two classes 𝐶0 and 𝐶1 with respective time-steps 𝛥𝑇0 =
2𝛥𝑡min and 𝛥𝑇1 = 𝛥𝑡min is to advance in time each cell 𝐶𝑘 with respect
o its local class time-steps 𝛥𝑇𝑘 (𝑘 = 0, 1) starting by the smallest time-
tep class 𝐶1 following by the largest time-step class 𝐶0. The successive
ultirate steps are enumerated below and shown in Fig. 6

1. Computation of fluxes at the faces of classes 𝐶0 and 𝐶1 faces
based on the known states at time 𝑡0

(

𝑭 0
𝑘+1∕2

(

𝑸0
𝑘,𝑸

0
𝑘+1

)

𝑘=𝑖−2,𝑖−1,𝑖,
𝑸0 and 𝑸0 in Fig. 6, respectively

)

.
𝑖−1 𝑖

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 6. Non-conservative local time-stepping ERK1 algorithm between times 𝑡0 and 𝑡2 = 𝑡0 + 2𝛥𝑡min with intermediate time 𝑡1 = 𝑡0 + 𝛥𝑡min.
2. Computation of class 𝐶1 new states
(

𝑸1
𝑖 on Fig. 6,

respectively
)

at time 𝑡1 = 𝑡0 +𝛥𝑡min through summation of states

and aggregation of fluxes as defined in Eq. (9)
(

𝑸0
𝑖 ,

𝑭 0
𝑖−1∕2 and 𝑭 0

𝑖+1∕2 in Fig. 6
)

.

3. Computation of fluxes at the faces of class 𝐶1 faces from the

known states at times 𝑡0 and 𝑡1 = 𝑡0 + 𝛥𝑡min for class 𝐶0
and 𝐶1 cells, respectively.

(

𝑭 1
𝑖−1∕2

(

𝑸0
𝑖−1,𝑸

1
𝑖
)

, 𝑭 1
𝑖+1∕2

(

𝑸1
𝑖 ,𝑸

1
𝑖+1

)

,
𝑸0

𝑖 and 𝑸1
𝑖+1 in Fig. 6, respectively

)

.

4. Computation of class 𝐶1 new states
(

𝑸2
𝑖 in Fig. 6,

respectively
)

at time 𝑡2 = 𝑡0+2𝛥𝑡min through summation of states

and aggregation of fluxes as defined in Eq. (9)
(

𝑸1
𝑖 ,

𝑭 1 and 𝑭 1 in Fig. 6
)

.

6

𝑖−1∕2 𝑖+1∕2
5. Computation of class 𝐶0 new states
(

𝑸2
𝑖−1 in Fig. 6,

respectively
)

at time 𝑡0 + 𝛥𝑇0 through summation of states and

aggregation of fluxes as defined in Eq. (9)
(

𝑸0
𝑖−1 , 𝑭 0

𝑖−3∕2

and 𝑭 0
𝑖−1∕2 in Fig. 6

)

.

This multirate algorithm presents two major drawbacks :

• At the third step, the 𝐶0∕𝐶1 interface flux is computed at time
𝑡1 = 𝑡0+𝛥𝑡min

(

𝑭 1
𝑖−1∕2 on Fig. 6

)

from the non-updated 𝐶0 states at

time 𝑡0
(

𝑸0
𝑖−1 on Fig. 6

)

. This time inconsistency introduces
second-order time inaccuracy since we are locally staggered in
time.

• The conservation property is lost at the 𝐶0∕𝐶1 interface since
the present algorithm uses different fluxes on each side of the
interface

(

𝑭 0 on the 𝐶 side and the two fluxes 𝑭 0 and
𝑖−1∕2 0 𝑖−1∕2

Computers and Fluids 229 (2021) 105102R. Messahel et al.

𝑭

i
r

𝑡
A

Fig. 7. Conservative local time-stepping ERK1 algorithm between times 𝑡0 and 𝑡2 = 𝑡0 + 2𝛥𝑡min with intermediate time 𝑡1 = 𝑡0 + 𝛥𝑡min, where the corrected flux is given by
∗
𝑖−1∕2 =

1
2

[

𝑭 0
𝑖−1∕2

(

𝑸0
𝑖−1 ,𝑸

0
𝑖

)

+ 𝑭 1
𝑖−1∕2

(

𝑸0
𝑖−1 ,𝑸

1
𝑖

)

]

.

w

𝑭 1
𝑖−1∕2 on the 𝐶1 side in Fig. 6, respectively

)

in order to obtain the

final synchronized states
(

𝑸2
𝑖−1 and 𝑸2

𝑖 in Fig. 6
)

.

3.2.2. Conservative multirate RK1 method
To ensure the conservation (strict exchange of fluxes at the 𝐶0∕𝐶1

nterface), it is necessary to modify the previous Section 3.2.1 algo-
ithm. To do so, it is proposed to correct the 𝐶0∕𝐶1 interface fluxes
(

𝑭 0
𝑖−1∕2 in Fig. 6

)

used to compute class 𝐶0 states at time 𝑡0 + 𝛥𝑇0
(

𝑸2
𝑖−1 in Fig. 6

)

so that conservation is enforced.
Let us examine the flux balance over a time integration from time

0 to 𝑡2 = 𝑡0 +𝛥𝑇0 with intermediate time 𝑡1 = 𝑡0 +𝛥𝑇1 for class 𝐶1 cells.
ccording to Eq. (9), class 𝐶 final states 𝑸𝐶0 (𝑡)

(

𝑸2 in Fig. 6
)

7

0 2 𝑖−1
are given by

𝑸𝐶0 (𝑡2) = 𝑸𝐶0 (𝑡0) + 2𝛥𝑡min
[

RHS(𝑄𝐶0 (𝑡0))
]

, (13)

hile class 𝐶1 final states 𝑸𝐶1 (𝑡2) (𝑸2
𝑖 on Fig. 6) are given by

𝑸𝐶1 (𝑡2) = 𝑸𝐶1 (𝑡0) + 𝛥𝑡min
[

RHS(𝑸𝐶1 (𝑡0)) + RHS(𝑸𝐶1 (𝑡1))
]

. (14)

For the sake of clarity, let us assume the classes interface 𝐶0∕𝐶1
to be located between the two cells 𝑸𝑘 and 𝑸𝑘+1 of classes 𝐶0 and
𝐶1, respectively. We denote by 𝑭 𝐶0

𝑘+1∕2
(

𝑸𝑘,𝑸𝑘+1
)

and 𝑭 𝐶1
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

the accumulated fluxes contribution at the 𝐶0 and 𝐶1 sides of the
𝐶0∕𝐶1 interface that are extracted from the sum of fluxes in the RHS
computation (see Eqs. (13) and (14)), respectively. Considering time
integration with respect to the same local time-step 𝛥𝑡min, we can
extract the accumulated fluxes contribution at both 𝐶 and 𝐶 sides
0 1

Computers and Fluids 229 (2021) 105102R. Messahel et al.

a

𝑭

w

f
f

p
l

T
i

3

g
t
i
m
t
p

s

3

t

𝐶

s
o
i
2

c
𝑁

f
s
a

3

t
i

from Eqs. (13) and (14) as

𝑭 𝐶0
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

= 2𝑭 0
𝑘+1∕2

(

𝑸0
𝑘,𝑸

0
𝑘+1

)

(15)

nd
𝐶1
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

= 𝑭 0
𝑘+1∕2

(

𝑸0
𝑘,𝑸

0
𝑘+1

)

+ 𝑭 1
𝑘+1∕2

(

𝑸0
𝑘,𝑸

1
𝑘+1

)

, (16)

here 𝑭 𝑛
𝑘+1∕2 = 𝑭 𝑘+1∕2

(

𝑡𝑛
)

.
Now, in order to enforce the conservation (the strict exchange of

luxes 𝑭 𝐶0
𝑘+1∕2 = 𝑭 𝐶1

𝑘+1∕2), we substitute a corrected flux 𝑭 ∗
𝑘+1∕2 for the

lux 𝑭 0
𝑘+1∕2 in Eq. (15) so that

𝑭 𝐶0
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

= 𝑭 𝐶1
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

, (17)

which can be written as

2𝑭 ∗
𝑘+1∕2

⏟⏞⏟⏞⏟
𝑭𝐶0
𝑘+1∕2(𝑸𝑘 ,𝑸𝑘+1)

= 𝑭 0
𝑘+1∕2

(

𝑸0
𝑘,𝑸

0
𝑘+1

)

+ 𝑭 1
𝑘+1∕2

(

𝑸0
𝑘,𝑸

1
𝑘+1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑭𝐶1
𝑘+1∕2(𝑸𝑘 ,𝑸𝑘+1)

, (18)

which yields the expression

𝑭 ∗
𝑘+1∕2 =

1
2

[

𝑭 0
𝑘+1∕2

(

𝑸0
𝑘,𝑸

0
𝑘+1

)

+ 𝑭 1
𝑘+1∕2

(

𝑸0
𝑘,𝑸

1
𝑘+1

)

]

. (19)

Using the corrected flux in Eq. (19), the conservative version of the
revious multirate algorithm is obtained through the substitution of the
ast step with the two following steps

• Substitution of the 𝐶0∕𝐶1 interface fluxes (𝑭 0
𝑖−1∕2 in Fig. 7) at time

𝑡0 by the corrected fluxes (𝑭 ∗
𝑖−1∕2 in Fig. 7) according to Eq. (19),

so that conservation is enforced.
• Computation of class 𝐶0 new states

(

𝑸2
𝑖−1 in Fig. 7,

respectively
)

at time 𝑡0+𝛥𝑇0 through the summation of the states

and the aggregation of fluxes as defined in Eq. (9)
(

𝑸0
𝑖−1 ,

𝑭 0
𝑖−3∕2 and 𝑭 ∗

𝑖−1∕2 in Fig. 7
)

.

he successive steps of the conservative multirate algorithm are shown
n Fig. 7.

.2.3. Generalization to higher-order ERK methods
In Section 3.2.2, we have derived a conservative multirate time inte-

ration method for the legacy synchronous ERK1 method. Considering
hat the general form of ERK methods in Eq. (9), with no loss of general-
ty, we can extend the previous reasoning to all legacy synchronous ERK
ethods: computation of the aggregated fluxes to enforce conservation

hrough a posteriori corrections (Eq. (13) to Eq. (19)). The general
rocedure is the following:

1. Computation of fluxes at the faces of class 𝐶1 faces based
on the known states at time 𝑡0

(

𝑭 0
𝑘+1∕2

(

𝑸0
𝑘,𝑸

0
𝑘+1

)

𝑘=𝑖−1,𝑖−1,𝑖,
𝑸0

𝑖−1 and 𝑸0
𝑖 in Fig. 8, respectively

)

.

2. Computation of class 𝐶1 new states
(

𝑸1
𝑖 on Fig. 8,

respectively
)

at time 𝑡1 = 𝑡0 + 𝛥𝑇𝑚𝑖𝑛 through the summation
of the states and the aggregation of fluxes as defined in Eq. (9)
advancing on RK sub-steps. At each RK sub-step 𝑗 = 1, 𝑠, the class
𝐶0 cells are frozen to their initial state (at time 𝑡0), and the 𝐶0∕𝐶1
interface fluxes are computed based on both the 𝐶0 frozen states
and the local 𝐶1.

3. We repeat the first step considering the known states at time 𝑡1
for class 𝐶1 cells and the frozen states at time 𝑡0 for class 𝐶0 cells
(

𝑸0
𝑖−1 and 𝑸1

𝑖 in Fig. 8, respectively
)

.

4. We repeat the second step to compute class 𝐶1 new states
(

𝑸1
𝑖 on Fig. 8, respectively

)

at time 𝑡2 = 𝑡0 + 2𝛥𝑇𝑚𝑖𝑛
through the summation of the states and the aggregation of
fluxes.
8

e

5. Construction of the accumulated fluxes 𝑭 𝐶1
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

at the
𝐶1 side of the 𝐶0∕𝐶1 interface during the two local time-steps
marching (step 5 in Fig. 8). According to Section 3.2.2, the class
𝐶1 final states

(

𝑸2
𝑖 on Fig. 8

)

are given by

𝑸𝐶1 (𝑡2) = 𝑸𝐶1 (𝑡0) +𝛥𝑡min

𝑠
∑

𝑗=1
𝑏𝑗
[

RHS
(

𝑸𝐶1 (𝑡0,𝑗)
)

+ RHS
(

𝑸𝐶1 (𝑡1,𝑗)
)]

,

(20)

where (𝑏𝑗)1≤𝑗≤𝑠 are the Butcher coefficients. It follows that

𝑭 𝐶1
𝑘+1∕2

(

𝑸𝑘,𝑸𝑘+1
)

=
𝑠
∑

𝑗=1
𝑏𝑗
[

𝑭 0,𝑗
𝑘+1∕2 + 𝑭 1,𝑗

𝑘+1∕2

]

, (21)

where 𝑭 𝑛,𝑗
𝑘+1∕2 = 𝑭 𝑘+1∕2

(

𝑡𝑛,𝑗
)

and 𝑡𝑛,𝑗 = 𝑡𝑛+𝑐𝑗𝛥𝑡min (𝑐𝑗 , 𝑗 = 1, 𝑠 are
the Butcher coefficients, see Fig. 3). According to Section 3.2.2,
the corrective flux 𝑭 ∗

𝑘+1∕2 at the 𝐶0 side of the 𝐶0∕𝐶1 inter-
face is computed from 𝑭 𝐶1

𝑘+1∕2
(

𝑸𝑘,𝑸𝑘+1
)

so that conservation is
enforced (by construction). It is defined by

𝑭 ∗
𝑘+1∕2 ←

1
2

𝑠
∑

𝑗=1
𝑏𝑗
[

𝑭 0,𝑗
𝑘+1∕2 + 𝑭 1,𝑗

𝑘+1∕2

]

. (22)

6. Computation of class 𝐶0 new states
(

𝑸1
𝑖 on Fig. 8,

respectively
)

at time 𝑡2 = 𝑡0 + 2𝛥𝑇𝑚𝑖𝑛 through summation of
states and aggregation of fluxes as defined in Eq. (9) advancing
on RK sub-steps, where the fluxes 𝑭 𝐶0

𝑘+1∕2
(

𝑸𝑘,𝑸𝑘+1
)

at the 𝐶0∕𝐶1
interface are replaced, for each RK sub-step, by the corrective
flux weighted by the Butcher coefficients (𝑏𝑗)1≤𝑗≤𝑠

𝑭 𝑛,𝑗
𝑘+1∕2 ← 𝑏𝑗𝑭 ∗

𝑘+1∕2, (23)

to enforce the conservation property through a strict exchange
of fluxes.

The successive steps of the conservative multirate algorithm are
hown in Fig. 8.

.3. Recursive synchronization

For the sake of clarity, the previous algorithms were presented for
he particular case of a two-class problem (𝑁c = 1) where synchro-

nization between classes 𝐶0 and 𝐶1 occurs at the end of the sequence:
1 → 𝐶1 → 𝐶0.

It is possible to generalize the method by noting that the global
ynchronization of a (𝑘 + 1)-class case (𝑁c = 𝑘) is a nested succession
f two-class (𝐶𝑗 -𝐶𝑗+1)-synchronizations for 𝑗 ∈ [0, 𝑁c − 1] given by the
ntegration sequence 𝐶𝑗+1 → 𝐶𝑗+1 → 𝐶𝑗 , which are synchronized every
𝑁c+1−𝑗𝛥𝑡min, resetting the corrective fluxes to zero at the 𝐶𝑗∕𝐶𝑗+1.

For a recursive synchronized time integration over the global syn-
hronization time-step 𝛥𝑡0 = 2𝑁c−1𝛥𝑡min, we count a total number of
seq = 2𝑁c+1 − 1 local class time integrations.

In Fig. 9, the global class synchronization sequence is shown for a
our-class problem (𝑁c = 3), where the local classes time integration
equence and the detailed sequence are shown on the right side figure
nd on the left side table, respectively.

.4. Numerical implementation

In this sub-section, we remind the key elements of the conserva-
ive multirate explicit time integration method and we summarize its
mplementation in explicit compressible Navier–Stokes codes. The key

lements are the following:

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 8. Conservative multirate ERK2 algorithm between times 𝑡0 and 𝑡2 = 𝑡0 + 2𝛥𝑡min with intermediate time 𝑡1 = 𝑡0 + 𝛥𝑡min where the corrected flux is given by
𝑭 ∗

𝑖−1∕2 =
1
2

∑2
𝑗=1 𝑏𝑗

[

𝑭 0,𝑗
𝑖−1∕2 + 𝑭 1,𝑗

𝑖−1∕2

]

.

1. Definition and management of local time-step classes: For prac-
tical reasons of implementation and efficiency, the 𝑁cell cells
of the computational domain are grouped into 1 +𝑁c time-step
classes

𝐶𝑖, 0 ≤ 𝑖 ≤ 𝑁c,

where the cells of the class 𝐶𝑖 share the same time-step 𝛥𝑇𝑖.
In this work, we choose a ratio of two between the time-steps
of two successive classes (𝛥𝑇𝑁c = 𝛥𝑡min, 𝛥𝑇𝑖 = 2𝛥𝑇𝑖+1) (see
Section 3.1).

2. Successive nested synchronous time integrations of time-step
classes’ cells. The recursive sequence of synchronization is de-
tailed in Section 3.3.
9

3. Enforcement of the conservation (strict exchange of fluxes) at
class interfaces by use of a corrective aggregated flux (see Sec-
tion 3.2.3).

The implementation of the proposed multirate time integration
method is highlighted in blue in the main explicit Runge–Kutta time
marching solver and the computation of the right-hand-side algorithms
1 and 2, respectively.

The first key element is achieved by adding to the explicit Runge–
Kutta solver function (computeAsyncClasses function in algorithm 1)
after reading/computing the mesh and initializing the physical fields
(readMesh and initialize functions in algorithm 1) because the defi-
nition and the management the CFL number, the local physical fields

(convection and acoustic speeds) and the grid-cell characteristic length.

Computers and Fluids 229 (2021) 105102R. Messahel et al.

t
c
i

b

m
𝐶
c
c

Fig. 9. Global synchronization sequence for a four-class case (𝑁c = 3).
1
1
1
1
1
1
1
1

1
1

The second key element is achieved at each global time-step through
he addition of an external loop that iterates on the successive syn-
hronous local time-step classes integration (see Fig. 9). The loop
ndex iclass is passed to the right-hand-side and the flux computation

functions (computeRHS and CalcFluxNum procedures, respectively)
in order to limit the computations to the concerned cells of class
𝐶iclass and to manage the inter-classes 𝐶iclass−1|𝐶iclass and 𝐶iclass|𝐶iclass+1
oundary faces.

The last key element is achieved by applying a specific treat-
ent to inter-classes boundary faces: if the face is on the inter-classes
iclass−1|𝐶iclass boundary then compute the flux and aggregate it to the
orrective flux, else (𝐶iclass|𝐶iclass+1 boundary) consider the aggregated
orrective flux.

Algorithm 1: ERK solver.
1: procedure ERKsolver
2: …
3: readMesh()
4: initialize(𝑄)
5: computeAsyncClasses(𝑄,mesh)
6: …
7: 𝑡 ← 0
8: while 𝑡 < 𝑡final do
9: 𝑄

(

𝑡1
)

← 𝑄 (𝑡)
10: for 𝑖𝑡𝑒𝑟 ← 1, 2nclasses − 1 do
11: for irk ← 1, 𝑠rk do
12: iclass ← getClassId(iter)
13: 𝑝irk−1,iclass ← computeRhs(𝑄

(

𝑡irk−1,iclass
)

, irk)
14: 𝑄

(

𝑡irk,iclass
)

← 𝑄
(

𝑡irk−1,iclass
)

+
𝛥𝑡𝑛,iclass

∑irk−1
𝑘=1 𝑎̃irk−1,𝑘 𝑝𝑘,iclass

15: …
16: end for
17: 𝑡 ← 𝑡 + 𝛥𝑡
18: end for
19: end while
20: end procedure

3.5. Advantages and drawbacks

The conservative multirate time integration method and algorithms
proposed in this paper exhibit the following advantages
10
Algorithm 2: Computation of the RHS.
1: procedure computeRhs(𝑄 (𝑡,iclass) , irk)
2: CalcVarAtFace(iclass)
3: CalcGradAtFace(iclass)
4: CalcFluxNum(iclass,irk)
5: CalcRhsFromFlux(iclass)
6: end procedure
7: procedure CalcFluxNum(iclass,irk)
8: …
9: for each face iface of a cell 𝛺𝑘 ∈ 𝐶iclass do
0: if iface is an interior face then
1: computeFlux(iface)
2: else
3: if iface is a 𝐶iclass−1|𝐶iclass boundary face then
4: computeFlux(iface)
5: 𝐹 ∗

iface ← 𝐹 ∗
iface + 𝑏𝑗𝐹 irk

iface
6: else
7: Use of 𝐹 ∗

iface at the 𝐶iclass|𝐶iclass+1 boundary

8: end for each
9: end procedure

• Providing a potential CPU-time speedup by considerably reducing
the computations and the MPI communications and exchanged
data for cells integrated with larger time-steps. Indeed, consider-
ing the four classes example presented in Fig. 9, one can see that
the corrective flux (but also intermediate solution from 𝐶1 classes)
is only exchanged once for class 𝐶0 instead of eight times for its
legacy single rate counterpart.

• Offering a simple implementation/integration in existing com-
pressible Navier–Stokes codes. Indeed, the code structure of the
legacy synchronous solver is maintained and, in comparison to
other methods proposed in the literature (see [5]), the processing
of the inter-class boundary is local and algebraically simple. In
the parallel implementation proposed by Seny et al. [5], the
authors introduce a bulk group of cells that overlap the inter-class
boundaries and cells from sides of the latest boundary. Such an
approach is efficient for two-dimensional problems but tends to
be less efficient and more complex to implement for unstructured
three-dimensional codes.

Computers and Fluids 229 (2021) 105102R. Messahel et al.

H

e

Fig. 10. Grid overview where 𝑛𝑥0 is the base class 𝐶0 number of cells.
owever, the proposed method exhibits also drawbacks such as:

• The requirement of extra storage for data related to the definition
and the management of local time-step classes and the aggregated
corrective fluxes.

• The MPI distribution and static management of the time-step
classes: since the class distribution is performed after the mesh
partitioning using the ParMETIS library [28] and the different
memory allocations in each MPI process, it is possible to effi-
ciently handle load-balancing by constraining the graph-
partitioning with adequate face/cv based weights before entering
the time-marching solver loop. However, the dynamic variation
of local time-step classes may unbalance the workload across
MPI processes and may require a new mesh-partitioning to re-
equilibrate the workload which is complex in the middle of the
run but not impossible [29,30].

From an implementation point of view, the proposed algorithms
xhibit the following drawback in an parallel computing framework

• The sequential approach which consists in, synchronously, locally
integrating the cell classes with a local time-step in the framework
of parallel computations on unstructured meshes: indeed, the
cells of lower local time-step classes (higher local time-step) need
to wait for the computation of higher local time-step classes to
gather the aggregated corrective fluxes; thus, it may force MPI
processes to wait while others are busy and, consequently, impact
the global parallel efficiency. In the worst case scenario, if a
processor contains only cells of class 𝐶0, it will have to wait for all
others to complete their time integration steps to use the 𝐶0∕𝐶1
correction fluxes to enforce the conservation properties.

• The dynamic load balancing is not considered and is performed
only once at the beginning.

We remark that these two latest drawbacks are just ‘‘software issues’’
and non-blocking in a general context. Although it is not discussed
and presented in this paper, the first one can be resolved with a smart
domain-decomposition considering the distribution of at least one cell
of each class per processor and managing the load using a weight-
constrained cell using the ParMETIS library [28] domain-partitioning
and, the second one can be added as described in [29,30].

With its advantages and drawbacks, the proposed conservative mul-
tirate time integration method shall potentially reach the theoretical
11

expected gain 𝐺th (see Eq. (12)). As discussed, the management of
the load-balancing is more complex with this method. In particular, if
the local time-step classes change during the simulation, this could be
expensive in CPU time, but not ‘‘strictly impossible’’. Indeed, solutions
to similar problems exist in the context of dynamic load balancing
management for ‘‘Adaptive Mesh Refinement’’ applications [29,30]. In
the context of dynamic evolution of cell classes over time, it should
be noted that one may end up with only one time-integration class
throughout the whole domain in the worst-case scenario (𝐺th = 1). In
this case, we should have the same number of computations per cell as
in the single rate case, which would be a lower bound in performance.
In a massively parallel context, this could even lead to imbalance
in the distribution: processes with cells undergoing time-integration
class shift due to time-step reduction would see an increase in their
computational load, which would even further reduce the theoretical
gain. In this case, a new domain decomposition would be required
in order to re-balance loads and avoid loss in efficiency. In the next
section, we will numerically investigate the accuracy of the method
(conservation of the legacy synchronous global space/time convergence
order) using the linear advection academic benchmark test; and we
will demonstrate the validation of the scheme on the Sod shock tube
test with discontinuities where the conservation property is required.
Finally, we will demonstrate its performances in terms of effective CPU-
time speedup through well-documented DNS simulations of developed
turbulent channel flows at 𝑅𝑒𝜏 = 392 [31].

4. Numerical results

4.1. Linear advection: Error analysis

Problem description. To investigate the accuracy and the characteri-
zation of the conservative multirate time integration method, let us
consider the periodic one-dimensional linear advection of a density
pulse by solving the Euler’s equations on the computational domain
𝛺 = [0, 1]. The initial conditions at time 𝑡 = 0 are the following
(

𝑈0;𝑉0;𝑊0;𝑃0
)

= (10; 0; 0; 100) , (24)

𝑇0 = 100 + 10 cos(2𝜋𝑥), (25)

𝜌0 = 𝑃0∕(𝑟gaz𝑇0), (26)

where 𝑟gaz = 1∕𝛾 is chosen to defined the unperturbed flow at 𝑀0 =
0.01.

We consider two numerical setups:

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 11. Error and effective global order plots of the one dimensional linear advection of a density pulse for a two-class problem (𝑁c = 1).
1. A first numerical setup to investigate the accuracy of the method
where we consider a two-class multirate time integration prob-
lems (𝑁c = 1) through the decomposition of the computational
domain 𝛺 into two local class time step domains

• An inner domain 𝛺𝑁𝑐=1
0 = [1∕4; 3∕4] that contains 𝑛𝑥0

uniform class 𝐶0 cells with class time step 𝛥𝑇0 = 2𝛥𝑇1.
• An outer domain 𝛺𝑁𝑐=1

1 = [0∕4; 1∕4] ∪ [3∕4; 4∕4] that
contains 𝑛𝑥1 = 2𝑛𝑥0 uniform class 𝐶1 cells with class time
step 𝛥𝑇1.

The domains 𝛺𝑁𝑐=1
0 and 𝛺𝑁𝑐=1

1 are thus, respectively, discretized
into 𝑛𝑥0 and 𝑛𝑥1 = 2𝑛𝑥0 uniform cells for 𝑛𝑥0 = 10, 20, 40, 80.
Periodic conditions are used at the boundaries. Cross tests are
conducted considering on one side both finite volume (FV) and
high order spectral difference (SD) methods (with the same
number of cells and cell sizes) and on the other side single rate
and conservative multirate time integration schemes. A sketch of
the grid is shown in Fig. 10. Simulations are run for a physical
time of 𝑡𝑓 = 0.4 which is equivalent to four passages of the pulse
through the domain.

2. A second numerical setup to investigate the behavior of non-
conservative and conservative multirate time integration meth-
ods for different number of classes (𝑁c = 2 and 𝑁c = 3). We
remind that, without loss of generality, any problem involving
more than two classes time integration can be processed as a
sequence of local two-classes time integration as discussed in
Section 3.4.
We consider corresponding single rate fourth order RK4 time
integration scheme (Fig. 3), the HLLC approximate solver [32] as
12
well as Monotonic Upwind Scheme for Conservation Laws (MUSCL,
see van Leer [33]) spatial scheme. The computational domains
are the following

• an inner domain 𝛺𝑁𝑐=2
0 = [1∕3; 2∕3] that contains 𝑛𝑥0

uniform class 𝐶0 cells with class time step 𝛥𝑇0 = 4𝛥𝑇2,
• an intermediate domain 𝛺𝑁𝑐=2

1 = [1∕6; 1∕3]∪[2∕3; 5∕6] that
contains 𝑛𝑥1 = 2𝑛𝑥0 uniform class 𝐶1 cells with class time
step 𝛥𝑇1 = 2𝛥𝑇2,

• an outer domain 𝛺𝑁𝑐=2
2 = [0; 1∕6] ∪ [5∕6; 1] that contains

𝑛𝑥2 = 4𝑛𝑥0 uniform class 𝐶2 cells with class time step 𝛥𝑇2,

And

• an inner domain 𝛺𝑁𝑐=3
0 = [3∕8; 5∕8] that contains 𝑛𝑥0

uniform class 𝐶0 cells with class time step 𝛥𝑇0 = 8𝛥𝑇3,
• an intermediate domain 𝛺𝑁𝑐=3

1 = [2∕8; 3∕8]∪[5∕8; 6∕8] that
contains 𝑛𝑥1 = 2𝑛𝑥0 uniform class 𝐶1 cells with class time
step 𝛥𝑇1 = 4𝛥𝑇3,

• an intermediate domain 𝛺𝑁𝑐=3
2 = [1∕8; 2∕8]∪[6∕8; 7∕8] that

contains 𝑛𝑥2 = 4𝑛𝑥0 uniform class 𝐶2 cells with class time
step 𝛥𝑇2 = 2𝛥𝑇3,

• an outer domain 𝛺𝑁𝑐=3
3 = [0; 1∕8] ∪ [7∕8; 1] that contains

𝑛𝑥3 = 8𝑛𝑥0 uniform class 𝐶3 cells with class time step 𝛥𝑇3,

where 𝑛𝑥0 = 10. A sketch of the grids are shown in Fig. 10.
Simulations are run for a physical time of 𝑡𝑓 = 1.6 which is
equivalent to twelves passages of the pulse through the domain.
Physical time is increased compared to the first setup to amplify

the numerical errors and compare results.

Computers and Fluids 229 (2021) 105102R. Messahel et al.

𝛥
s

m
o
i
t
c
s
s
u
o
i
e
t
d
i
t
l
𝛥
i
i
s
l
m
t
w

v
f
m
W
m
i
c
s
T
s
b
t
C
t
m

b

𝑸

A
t
(
i
c
w
c
i
t
a
c
1

s
n
a
c

t
a
L
i
t
t

Simulations are run at constant global cfl which leads to the local
definition of the cell time step

𝛥𝑡𝑖 = cfl
𝛥𝑥𝑖
𝑈0

. (27)

In the first simulation setup, we compare each multirate solution to
the two legacies single rate solutions with global time-steps 𝛥𝑇0 and
𝑇1 = 𝛥𝑇0∕2. To satisfy globally the cfl condition for both single rate
imulations with time steps 𝛥𝑇0 and 𝛥𝑇1 = 𝛥𝑇0∕2, we set the constant

global cfl to 0.5 instead of 1.

Results and discussions. Considering the exact reference solution 𝑦ref,
𝐿𝑞 norms used to compute the error of the numerical solution 𝑦 are
defined by

𝐿𝑞(𝑦) =
(

∑

𝛥𝑥𝑖
|

|

|

𝑦(𝑥𝑖) − 𝑦ref(𝑥𝑖)
|

|

|

𝑞) 1
𝑞 ,

𝐿∞(𝑦) = max ||
|

𝑦(𝑥𝑖) − 𝑦ref(𝑥𝑖)
|

|

|

.
(28)

The effective global space/time scheme order 𝑂𝑞 with respect to the
norm 𝑞 is estimated based on two numerical solutions 𝑦1 and 𝑦2 for
constant CFL through a spatial refinement of ratio 2 and doubling the
time step between 𝑦1 and 𝑦2 as follows

𝑂𝑞(𝑦) = log2

(

𝐿𝑞(𝑦1)

𝐿𝑞(𝑦2)

)

. (29)

Firstly, the accuracy of the conservative multirate time integration
ethod is investigated in terms of numerical error and global scheme

rder through its comparison with the respective base single rate time
ntegration method. The errors and effective global order (slope of
he curves) are shown in Fig. 11 for three space–time configurations:
entered finite volume/4th order Runge–Kutta (FV-RK4), 3rd order
pectral difference/4th order Runge–Kutta (SD3-RK4) and 5th order
pectral difference/2nd order Runge–Kutta (SD5-RK2). For all config-
rations, it is deduced from the slope of the lines that the global
rder of both algorithms is maintained using the multirate approach
n comparison to the legacy single rate approach. Since the temporal
rrors are negligible compared to the spatial ones, we consider in
he last configuration (SD5-RK2) a high 5th order spatial scheme (to
ecrease the spatial errors) and a low second-order temporal scheme (to
ncrease the temporal errors) to highlight the behavior of the numerical
emporal errors for the multirate approach in comparison with two
egacies single rate approach results using constant time steps 𝛥𝑇0 and
𝑇1 = 𝛥𝑇1∕2. As it is observed in Fig. 11, the multirate solution which
ntegrates locally the solution with two different time steps 𝛥𝑇0 and 𝛥𝑇1
s between the two synchronous solutions with respective global time
teps 𝛥𝑇0 and 𝛥𝑇1; and also, the global order is still maintained for this
ast configuration. These last results are coherent in the sense that the
ultirate solution is less accurate than the synchronous solution with

he smaller time step and more accurate than the synchronous solution
ith the higher time step.

Secondly, the variation of the number of classes and the conser-
ation properties effects on the numerical simulation are investigated
or a fixed case combining the legacy RK4 single rate time integration
ethod and the FV with a combination of HLLC-MUSCL schemes.
e present the comparison of the legacy single rate time integration
ethod and both conservative and non-conservation multirate variants

n Fig. 12 for 𝑁𝑐 = 1, 𝑁𝑐 = 2 and 𝑁𝑐 = 3 cases, respectively. For each
ase 𝑁𝑐 = 𝑖 (𝑖 = 1, 2, 3), the single rate simulation are run with the
mallest local time step 𝛥𝑇𝑖.
he comparison of the results for 𝑁𝑐 = 1, 𝑁𝑐 = 2, and 𝑁𝑐 = 3 cases
how that the multirate time integration method is robust and that in
oth cases the solution is not qualitatively affected by the wave passing
hrough the interfaces.
omparison between single rate and multirate shows that the multirate
ime integration solution is more accurate than its legacy single rate
ethod. This can be explained by the fact the multirate solution is
13
integrated in time locally with a greater or equal local cfl (compared
to the single rate solution) that, consequently, results in reducing
the diffusion errors by decreasing locally the total number of local
time integrations. In the context of problems involving shocks, the
application of the multirate approach can lead to a better shock capture
reducing the diffusion errors locally at the shock location as it will be
shown in the next subsection for the Sod Euler shock tube test.
Finally, the comparison between the conservative and non-conservative
approaches shows that neglecting the conservation property of the
method introduces locally at the inter-classes boundaries numerical
errors that accumulate and result in a convection error that manifests
itself as a spatial shift of the density pulse as shown in Fig. 12.

4.2. Euler equation: Sod shock-tube

Numerical setup. To investigate the ability of the conservative multirate
time integration method to solve nonlinear gas dynamics conservation
laws while preserving the accuracy and stability of the single rate time
integration methods, we consider the Sod shock-tube test-case on the
domain 𝛺 = [0, 5] with the following initial conditions:

𝑸(𝑥, 0) =
{

𝑸𝐿 if 𝑥 < 2.5
𝑸𝑅 if 𝑥 ≥ 2.5

, (30)

where 𝑸𝐿 =
(

𝜌𝐿, 𝑢𝐿, 𝑝𝐿
)

= (1, 0, 1) and 𝑸𝑅 =
(

𝜌𝑅, 𝑢𝑅, 𝑝𝑅
)

= (0.125, 0,
0.1). The following Dirichlet boundary conditions are considered at
oth left and right ends as

(𝑥, 𝑡) =
{

𝑸𝐿 if 𝑥 = 0
𝑸𝑅 if 𝑥 = 5

(31)

s discussed in Section 3.1, for nonlinear cases such as Euler equations
he classification depends both on the cell size and the wave speeds
convective and acoustic), and its evolution in time is dynamic, mean-
ng that it can potentially change at every global time iteration. To
onsider the temporal evolution of the classification of the cells, we
ill consider the discretization of the domain 𝛺 into 𝑛𝑥 = 100 uniform

ells such that the time step computation and, by consequence, the time
ntegration classes are fully defined by the physical properties. That is
o say that in this case, the cell size is constant while the convection
nd acoustic speed waves are not, hence the latter triggers the cell
lassification. Initially, we have the following two-class problem (𝑛𝑐 =
) defined by the initial conditions (Eq. (30)):

• 𝛺1 = [0; 2.5] with class time step 𝛥𝑇1 = 𝛥𝑡min,
• 𝛺0 = [2.5; 5] with class time step 𝛥𝑇0 = 2𝛥𝑇1.

The simulations are run for a physical time 𝑡𝑓 = 0.8 before the
hock-wave reaches the domain’s right boundary. At the final time, the
umerical solution is compared to the exact solution that we consider
s the reference solution in Eq. (28) for the accuracy and global
onvergence order analysis.

We consider corresponding single rate fourth-order RK4 time in-
egration scheme (Fig. 3), the HLLC approximate solver [32] as well
s Monotonic Upwind Scheme for Conservation Laws (MUSCL, see van
eer [33]) spatial scheme. The CFL number is set to cfl0 = 0.5 that
s close to the stability limit of the single rate time integration method
o assess the behavior of both the multirate time integration method,
hat is to say,

• The stability of the multirate time integration method.
• The accuracy of the numerical solution by switching from the

legacy single rate to the multirate time integration method and
the effect of the numerical diffusion error reduction by local
increase of the CFL number.

Computers and Fluids 229 (2021) 105102R. Messahel et al.

n
r

R
s
t
t
a
c
a
s

t
s
d
a
l

c
a

Fig. 12. Results and error plots in black solid lines, blue solid lines with triangles, red solid lines with circles and dashed green lines the exact, RK4 single rate, conservative and
on-conservative RK4 multirate simulation, respectively. Respective meshes are displayed in the error plots in black and positioned with respect to its local time integration class
ight respect to the right 𝑦-axis..
esults and discussions. The numerical solutions and errors plots are
hown in Figs. 13–16 for velocity, density, energy and pressure respec-
ively. In the aforementioned figures, numerical solutions are shown for
he legacy single rate time integration simulation with the maximum
llowed CFL and the multirate time integration approach with a local
lass CFL varying between the smallest and highest local cell CFL. From
qualitative point of view, very good agreement between the legacy

ingle rate and multirate approaches is observed.
From a quantitative point of view, we see from the errors plots that

he multirate approaches remain at least as accurate than the legacy
ingle rate approach and even more accurate locally in the shock-
iscontinuity region as the solution is integrated locally in time with
greater cfl that results in reducing the diffusion errors by decreasing

ocally the total number of local time integrations.
In Fig. 17 we exhibit the dynamic evolution of the domain local time

lasses partition where solid blue line plot represents the density profile
long the shock tube and red plots represent the computational mesh by
14
intervals positioned at the mesh cells class id with respect to the right 𝑦-
axis. Considering that the mesh is uniform, the local cell cfl varies with
respect to the physical properties. We can clearly observe the evolution
of the cells’ class id and, in fine, the evolution of the inter-class interface
that moves to the right with respect to shock front movement.

4.3. DNS of developed turbulent channel flows at 𝑅𝑒𝜏 = 392 [31]

To investigate wall turbulence properties, turbulent models, and
numerical methods, the Direct Numerical Simulation (DNS) of Turbu-
lent Channel Flows (TCF) have been widely studied from the first DNS
performed by Kim et al. [34] (𝑅𝑒𝜏 = 180) to the later DNS (see Alfonsi
et al. [35] for a review and an outline of the works on DNS of TFC).
In this paper, we consider the validation and the performance analysis
of the presented multirate time integration method against the DNS
of TCF conducted by Moser et al. [31] at (𝑅𝑒𝜏 = 392). The simula-
tion database provided by Moser et al. [31] is being considered as a
reference solution.

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 13. Numerical solution and error plots for velocity using 4th order RK4 time integration and MUSCL space discretization schemes at CFL = 0.5.
Fig. 14. Numerical solution and error plots for density using 4th order RK4 time integration and MUSCL space discretization schemes at CFL = 0.5.
Fig. 15. Numerical solution and error plots for energy using 4th order RK4 time integration and MUSCL space discretization schemes at CFL = 0.5.
Fig. 16. Numerical solution and error plots for pressure using 4th order RK4 time integration and MUSCL space discretization schemes at CFL = 0.5.
Problem description. The DNS of TCF consists of conducting a high
fidelity simulation of a three-dimensional fluid flow moving between
two parallel infinite flat plates in one dominant direction.

The parallel infinite plates are modeled by the means of a finite
bounded box 𝛺 = [0; 6] × [−1; 1] × [−1.5; 1.5] (𝐿𝑥 = 6, 𝐿𝑦 = 2, 𝐿𝑧 = 3)
with bottom and top no-slip iso-thermal wall boundary condition (in
𝑦-direction) and periodic boundary conditions in both stream-wise and
span-wise directions (𝑥-direction and 𝑧-direction respectively).
15
Physical parameters. The density, pressure and temperature follow the
ideal gas law given in Eq. (4) with a specific heat-ratio set to 𝛾 = 1.4.
The fluid viscosity is given by the following viscosity power law

𝜇 = 𝜇ref

(

𝑇
𝑇 ref

)0.76
, (32)

where 𝜇, 𝑇 , 𝜇ref, 𝑇 ref are respectively the viscosity, the temperature,
the reference viscosity and temperature. These quantities are set to
𝜇 = 2.898551 ⋅ 10−5, 𝑇 = 1.0.
ref ref

Computers and Fluids 229 (2021) 105102R. Messahel et al.

r

l

⟨

𝑇

𝑈

w
w
n

s
c

s

Fig. 17. Animation of the evolution in time of the inter-class interface with respect to the shock interface. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
m
(
r
g

T
c
s
f
l

[
t
g
s
w
a
(
t

c
𝛥
(
d
t
w
v
u
a
2
s
s

To characterize the turbulent flow properties, we consider the fol-
owing space and time averaging of a given field function 𝑓

𝑓 (𝑦, 𝑡) = 1
2𝐿𝑥𝐿𝑧 ∬

(

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑓 (𝑥,−𝑦, 𝑧, 𝑡)
)

d𝑥d𝑧 , 𝑦 ∈ [0, 𝐿𝑦∕2] , (33)

𝑓 ⟩𝑡(𝑥, 𝑦, 𝑧) =
1
𝑁s

𝑁s−1
∑

𝑖=0
𝑓 (𝑥, 𝑦, 𝑧, 𝑡s + 𝑖𝛥𝑡s) , (34)

where 𝑁s, 𝑡s and 𝛥𝑡s denote the number of record-samples, the start-
ing time of sample recording and the physical time interval between
two records, respectively. Through the use of Eqs. (33) and (34), the
root-mean-square (rms) fluctuation of a field function 𝑓 is given by

𝑓 ′ =
√

⟨ 𝑓 ′2
⟩𝑡 , (35)

where 𝑓 ′ = 𝑓 − 𝑓 denotes the field function 𝑓 fluctuation. Considering
Eq. (33), we can define the wall quantities: 𝜌w = 𝜌(𝑦w), 𝜇w = 𝜇(𝑦w),

w = 𝑇 (𝑦w) and 𝜏w = 𝜇 𝜕𝑢
𝜕𝑦 |(𝑦=𝑦w); and the bulk quantities:

𝜌𝑏 = 1
𝐿𝑥𝐿𝑦𝐿𝑧

∫𝑉 𝜌d𝑉 , (𝜌𝑢)𝑏 = 1
𝐿𝑥𝐿𝑦𝐿𝑧

∫𝑉 𝜌𝑢d𝑉 ,

𝑅𝑒𝑏 = 𝜌𝑏𝑢𝑏𝐿𝑦
𝜇w

, 𝑀𝑏 = 𝑢𝑏
𝑐w

= 𝑢𝑏
√

𝛾𝑟gaz𝑇w
, (36)

where 𝜌𝑏, (𝜌𝑢)𝑏, 𝑅𝑒𝑏, 𝑀𝑏 denote the bulk: density, momentum, Reynolds
number and Mach number, respectively.

It follows that the definition of the wall friction velocity 𝑢𝜏 , the
friction Reynolds number 𝑅𝑒𝜏 , and skin friction coefficient 𝐶𝑓 are given
by:

𝑢𝜏 =
√

𝜏w
𝜌w

, 𝑅𝑒𝜏 =
𝜌w𝑢𝜏𝐿𝑦

2𝜇w
and 𝐶𝑓 =

2𝜏w
(

𝜌w𝑢𝜏
)2

. (37)

The normalized mean stream-wise velocity profile 𝑈+ is defined as

+ (𝑦+
)

=
⟨ 𝑢 ⟩𝑡
𝑢𝜏

, 𝑦+ = 𝑦𝑅𝑒𝜏 , 𝑦 ∈ [0, ℎ] , (38)

here the friction velocity 𝑢𝜏 is computed based on the time-averaged
all density ⟨ 𝜌w ⟩𝑡 and wall shear-stress ⟨ 𝜏w ⟩𝑡. The parameter ℎ de-
otes the channel half-width and is equal to unity.

Near the wall (viscous sub-layer, 𝑦+ < 5), the normalized mean
tream-wise velocity profile 𝑈+ follows a linear law, whereas near the
enter of the channel it follows a log law profile defined as

𝑈+ (𝑦+
)

= 𝑦+ , if 𝑦+ < 5 ,

𝑈+ (𝑦+
)

= 1
𝜅
ln
(

𝑦+
)

+ 𝐶+ , otherwise
(39)

where 𝜅 is the Von Kàrmàn constant set to 𝜅 = 0.41 and 𝐶+ is a constant
+

16

et to 𝐶 = 5.0. t
Finally, the normalized rms velocity in each direction are defined as
follows

𝑢′
(

𝑦+
)

=

√

⟨ 𝑢2 ⟩𝑡 − ⟨ 𝑢 ⟩2𝑡
𝑢𝜏

, 𝑣′
(

𝑦+
)

=

√

⟨ 𝑣2 ⟩𝑡 − ⟨ 𝑣 ⟩2𝑡
𝑢𝜏

and 𝑤′ (𝑦+
)

=

√

⟨𝑤2
⟩𝑡 − ⟨𝑤 ⟩

2
𝑡

𝑢𝜏
.

(40)

Simulation parameters. We solve the Navier–Stokes equations using
both FV (fully-centered, 𝛼 = 1 in Eq. (5)) and third-order SD spatial

ethods and both single rate and multirate third-order Runge–Kutta
𝑅𝐾3𝑆𝑆𝑃) time integration methods. To maintain a constant mass flow
ate, the following time-varying bulk source terms are added to the
overning equations (right-hand-side in Eq. (1))

𝑆T =
[

0 ⃖⃖⃖⃗𝑏𝑓 ⃖⃖⃖⃗𝑏𝑓 .⃖⃗𝑢
]

, ⃖⃖⃖⃗𝑏𝑓 =
[(𝜌𝑢)𝑏−(𝜌𝑢)target

𝑡diff
0 0

]

and 𝑡diff =
𝜌𝑏𝐿𝑥
(𝜌𝑢)𝑏

(41)

he term 𝑡diff denotes the diffusion time and (𝜌𝑢) target is an imposed
onstant targeted bulk momentum which is set to (𝜌𝑢) target = 0.2. The
imulation is run for a total physical time 𝑡𝑠𝑖𝑚 ≈ 20𝑡diff such that the
irst five diffusion times are needed to reach a stationary state and the
ast 15𝑡diff to collect the data and compute the different statistics.

For both FV and SD simulations, the mesh counts [𝑁𝑥, 𝑁𝑦, 𝑁𝑧] =
127, 159, 127] grid cells in the stream-wise, the normal to walls and
he span-wise direction, respectively. The mesh is built with a uniform
rid spacing 𝛥𝑥+ ≈ 18.5 and 𝛥𝑧+ ≈ 9.25 expressed in wall unit in the
tream-wise and the span-wise directions, respectively. In the normal to
alls direction, the grid spacing varies in the range 𝛥𝑦+ ≈ [0.4 − 24.4]
nd the value of the first grid point expressed in wall unit is 𝑦+𝑤 = 0.2
computed based on the distance between the first grid centroid and
he two parallel plates for both FV and SD methods).

For the sake of data collection and statistics computation, we
onducted the simulations with a constant minimum local time step
𝑡min. In this configuration, we consider the flow to be incompressible
𝑀𝑎 0.2) and, thus, we can assume that the stability condition is
ominated by the grid size. Under the condition of incompressibility of
he flow and considering that the time step is quasi-constant per cell,
e have conducted a preliminary stability study conditioned by the
ariability of the time step for the single rate approach. By ramping
p the time step we were able to deduce the stability limit 𝛥𝑡𝑙𝑖𝑚𝑖𝑡
nd we fixed in purpose 𝛥𝑡min = 𝛥𝑡𝑙𝑖𝑚𝑖𝑡 = 5𝑒 − 4. To reach 𝑡𝑠𝑖𝑚 ≈
0𝑡diff, the simulations were run for a total of 𝑛𝑖𝑡𝑒𝑟𝑠𝑟𝑎𝑡𝑒 = 4.000.000
ingle rate iterations which is equivalent to 𝑛𝑖𝑡𝑒𝑟𝑚𝑟𝑎𝑡𝑒 = 500.000 global
ynchronized multi-rate iterations and corresponding to a total physical

ime 𝑡𝑝ℎ𝑦 = 2000.

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 18. Plot of the local CFL and the class distributions along the Y axis.
Fig. 19. Domain decomposition.
Considering the flow low Mach number and the fixed 𝛥𝑡min, we
obtain a domain decomposition based on the cfl definition provided
in Eq. (10) which is inversely proportional to the grid size as discussed
in Section 3.1. This leads to a maximum local cfl𝑚𝑎𝑥 ≈ 0.68 and a min-
imum local cfl𝑚𝑖𝑛 ≈ 0.043 close to the wall and channel center where
the grid sizes in Y-direction are minimum and maximum, respectively.
Finally, the definition and management of time step classes, presented
in Section 3.1, yields to a four-class multirate time integration problem
(𝑁 = 3) as follows multirate time integration classes:
17

c

• 𝛺3 = [−1; −0.97] ∪ [0.97; 1] with class time step 𝛥𝑇3 = 𝛥𝑡min

composed of 580644 cells with local cfl ∈
[

cfl𝑚𝑎𝑥∕2, cfl𝑚𝑎𝑥
]

,
• 𝛺2 = [−0.97; −0.925] ∪ [0.925; 0.97] with class time step 𝛥𝑇2 =

2𝛥𝑡min composed of 354838 cells with local cfl ∈
[

cfl𝑚𝑎𝑥∕4, cfl𝑚𝑎𝑥∕2
]

,
• 𝛺1 = [−0.925; −0.825] ∪ [0.825; 0.925] with class time step 𝛥𝑇1 =

4𝛥𝑡min composed of 419354 cells with local cfl ∈
[

cfl ∕4, cfl ∕8
]

,
𝑚𝑎𝑥 𝑚𝑎𝑥

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 20. Domain decomposition for 𝑁𝑜𝑑𝑒𝑡𝑜𝑡 = 20 nodes and 𝑁𝑐𝑝𝑢 = 18 cores per node.
Fig. 21. Comparison of Synchronous and Asynchronous RK3SSP results with Moser et al. [31] DNS results using the centered-based finite-volume space discretization.
• 𝛺0 = [−0.825; 0.825] with class time step 𝛥𝑇0 = 8𝛥𝑡min composed
of 1209675 cells with local cfl ∈

[

cfl𝑚𝑎𝑥∕8, cfl𝑚𝑎𝑥∕16
]

(we remark
that cfl𝑚𝑖𝑛 ∈

[

cfl𝑚𝑎𝑥∕8, cfl𝑚𝑎𝑥∕16
]

).

The local time-step for each time integration class is set considering
the lowest local CFL and Eq. (10). In Fig. 18, we show the local CFL
and the multirate class distributions along the 𝑌 -axis.

For efficiency reasons, we would like to

• overcome the drawback related to the sequential approach of
integrating (cell classes/locally) by imposing that all cores contain
18
cells of each class to avoid forcing some cores with higher local

time-steps to wait for other cores with lower classes time-steps to

catch-up as discussed in Section 3.5.
• Limit the number of inter-nodes communications preferring to

increase communications of cores shared by the same node.
• Consider the symmetry of the multirate problem: same class

distribution in X and Z directions and symmetric decomposition

of the classes in the Y direction.

Computers and Fluids 229 (2021) 105102R. Messahel et al.

F
d

Fig. 22. Comparison of Synchronous and Asynchronous RK3SSP results with Moser et al. [31] DNS results using the third-order spectral-differences space discretization.
t
d
m
t
i
t

or this purpose, we considered a symmetric orthogonal two-
imensional grid decomposition into a total 𝑁𝑜𝑑𝑒𝑡𝑜𝑡 nodes in the X–

Y plane (two nodes per dimension Y 𝑁𝑜𝑑𝑒𝑡𝑜𝑡 and 𝑁𝑜𝑑𝑒𝑡𝑜𝑡∕2 nodes in
X direction) and a one dimensional domain decomposition in the Z
direction into the constant total number of cores per nodes 𝑁𝑐𝑝𝑢 as
shown in Fig. 19.
With such a domain decomposition and considering the symmetric
multirate class distribution shown in Fig. 18, we can see that each core
contain cells from all classes and that pair of cells at each side of the
inter-core boundaries share the same multirate class Id.

In this study, we consider a total number of 𝑁𝑜𝑑𝑒𝑡𝑜𝑡 = 20 nodes and
a number of 𝑁𝑐𝑝𝑢 = 18 cores per node for a total of 360 cores. It follows,
that some cores will have slightly more cells than others but will not
globally penalize the overall efficiency as demonstrated below in the
results paragraph. A sketch of the domain decomposition is shown in
Fig. 20

Results and discussions. We first focus on the validation of the multirate
method by comparing the obtained results with the legacy synchronous
counterpart. We rely on the analysis of the mean-flow characterization
(as defined in Eq. (39)). That is to say, the mean stream-wise veloc-
ity profiles and the root-mean-squared velocity profiles as shown in
Figs. 21 and 22, respectively. In Figs. 21 and 22, we show that the mean
flow and the root-mean-squared characteristics for both synchronous
and multirate approaches are well recovered through the comparison
of the obtained results with the reference DNS data provided by [31].
19

Regarding the validation of the proposed method, we observe a good
quantitative agreement between the multirate time integration ap-
proach and the legacy synchronous using both the finite volume and
the spectral differences solvers. This demonstrates the robustness of
the method, as the obtained results preserve the order of accuracy of
its legacy synchronous method, independently from the choice of the
spatial discretization method.

Secondly, we are interested in the performance analysis of the pro-
posed conservative multirate time integration method in terms of com-
putational time speedup thanks to the reduction of the total number of
time integrations per cell (see Eq. (12)) and the MPI-communications.
For this specific test case and both domain and class decompositions we
can estimate MPI communications and exchanged data ratio between
single rate and multirate time integration approaches to be similar
to the theoretical gain 𝐺th = 2.53. For the sake of the performance
analysis, let us define the following reference CPU-time per iteration

𝑡∗cpu =
𝑡cpu𝑛procs

𝑛dof𝑛cells𝑛iter
, (42)

where 𝑡cpu, 𝑛procs, 𝑛dof, 𝑛cells, 𝑛dof and 𝑛iter denote the cpu walltime, the
otal number of processors, the total number of cells, the number of
egrees of freedoms per cell (one and twenty-seven for the FV and SD3
ethods, resp.) and the total number of synchronous iterations, respec-

ively. In Fig. 23, we show the comparison of normalized CPU-time per
teration defined between multirate and synchronous approaches for
he four main subroutines of the RHS computation:

• calcVarAtFace_{FV,SD3}: field data extrapolation at the cell

faces,

Computers and Fluids 229 (2021) 105102R. Messahel et al.
Fig. 23. Comparison of the reference CPU-time (see Eq. (42)) for the four main subroutines of the RHS computation. The effective gain 𝐺eff normalized by the theoretical gain
𝐺th = 2.53 (see Eq. (12)) is displayed on the top.
• calcGradAtFace_{FV,SD3}: gradient of field data extrapolation
at cell faces,

• calcNumFlux_{FV,SD3}: computation of numerical fluxes,
• calcRHS_{FV,SD3}: computation of the RHS from the numerical

fluxes.

The previous subroutines represent ≈ 90% of the overall computational
time. Only calcVarAtFace_{FV,SD3}: and calcGradAtFace_{FV,SD3}:
contains MPI-communication that exchanges the missing neighbors
cells data at the inter-processors boundaries necessary to compute the
states and the gradients at the cell face.

The effective gain 𝐺eff normalized by the theoretical gain 𝐺th = 2.53
(see Eq. (12)) is displayed on the top of Fig. 23. It can be observed
that the proposed multirate time integration method is very efficient as
the ratio 𝐺eff∕𝐺th is close to unity for the SD3 scheme when the time
step classes are well managed (with an adequate domain decomposition
such as explained in Section 3.5) and the workload per processor well
equilibrated in a massive-parallel framework. CPU times for a complete
iteration (single rate) enclosing MPI communications are 828 μs and
0.024 s for the FV (one DoF per cell) and SD3 (27 DoF per cell) methods,
respectively.
20
5. Conclusion and perspectives

In this paper, we proposed a conservative multirate explicit time
integration method that can significantly improve the efficiency of
explicit Runge–Kutta time integration of any hyperbolic system and
especially addressed to compressible flows. The efficiency (in terms of
effective CPU time speedup) and robustness have been assessed through
the study of linear advection and one-dimensional Sod shock tube
benchmark-tests and, the direct numerical simulation of a developed
turbulent channel flow at 𝑅𝑒𝜏 = 392.

The investigation of the method’s accuracy for the linear advection
test case has shown that the global convergence order of single rate
time integration is maintained compared to its conservative multirate
version. We have also checked the conservation property through the
one-dimensional Sod shock tube and demonstrated that the multirate
method can be successfully applied in a nonlinear context involving
shocks and with varying local cell time step and dynamic evolution of
the time integration class decomposition. Through the direct numeri-
cal simulation of the turbulent channel flow, we have finally proved
the versatility of the integration method with the application to two
different spatial discretization methods (FV and SD).

Computers and Fluids 229 (2021) 105102R. Messahel et al.

M
B

D

c
i

A

f
d
o
f
J
o

R

Regarding the improvement of explicit Runge–Kutta methods ef-
ficiency in terms of CPU time speedup, we have demonstrated in
the case of the DNS of turbulent channel flow that a considerable
2.48 speedup is reached for the specific configuration (physical and
numerical parameters) described in the previous subsection.

A direct perspective would consist in considering dynamic man-
agement of time step classes that consider a redefinition of the time
step classes partition in a massively parallel framework. This task is
highly challenging in an HPC context as the dynamic management of
classes may unbalance the processors’ workload and potentially require
a new domain decomposition to optimize the computational efficiency.
Indeed, solutions to similar problems exist in the context of dynamic
load balancing management for ‘‘Adaptive Mesh Refinement’’ applica-
tions [29,30]. Combining ‘‘Adaptive Mesh Refinement’’ and multirate
methods in addition to the ‘‘dynamic management of time step classes’’
would enable solving very efficiently strongly nonlinear problems using
explicit time integration methods where the time step is highly depen-
dent on the physical fields and thus highly variable in space and time
such as combustion or fast transient dynamics problems.

CRediT authorship contribution statement

Ramzi Messahel: Formal analysis, Conceptualization, Methodol-
ogy, Software, Validation, Visualization, Writing – original draft, Writ-
ing – review & editing. Gilles Grondin: Conceptualization, Method-
ology, Writing – review & editing. Jérémie Gressier: Supervision,

ethodology, Writing – review & editing, Funding acquisition. Julien
odart: Supervision, Writing – review & editing, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

The authors thank Athanasios Boutsikakis and Radouan Boukhar-
ane for many helpful discussions and for carefully reviewing a first
raft of the paper. This research was supported by the French Ministry
f Defense through a financial support of the DGA. This work was per-
ormed using HPC resources from GENCI-IDRIS and GENCI-CINES on
ean Zay and Occigen, respectivly (Grant A0082A07178); and CALMIP
n Olympe (Grant 2020-p1425).

eferences

[1] Bodart J, Gressier J, Lamouroux R, Grondin G, Grabner F. A fair performance
comparison between high order and classical finite volume schemes for unstruc-
tured grids and complex turbulent flows. In: ECCOMAS 2016 - European congress
on computational methods in applied sciences and engineering - Crete Island
(Greece), June; 2016.

[2] Courant R, Friedrichs K, Lewy H. Über die partiellen Differenzengleichungen
der mathematischen Physik. Math Ann 1928;100(1):32–74. http://dx.doi.org/10.
1007/BF01448839.

[3] Constantinescu E, Sandu A. Multirate timestepping methods for hyperbolic
conservation laws. J Comput Sci 2007;33:239–78. http://dx.doi.org/10.1007/
s10915-007-9151-y.

[4] Puppo G, Semplice M. Numerical entropy and adaptivity for finite volume
schemes. Commun Comput Phys 2011;10(5):1132–60. http://dx.doi.org/10.
4208/cicp.250909.210111a.

[5] Seny B, Lambrechts J, Toulorge T, Legat V, Remacle J. An efficient parallel
implementation of explicit multirate Runge–Kutta schemes for discontinuous
Galerkin computations. J Comput Phys 2014;256:135–60. http://dx.doi.org/10.
1016/j.jcp.2013.07.041.

[6] Osher S, Sanders R. Numerical approximations to nonlinear conservation laws
with locally varying time space grid. Math Comp 1983;43:321–36. http://dx.doi.
org/10.1090/S0025-5718-1983-0717689-8.
21
[7] Maurits N, van der Ven H, Veldman A. Explicit multi-time stepping methods
for convection-dominated flow problems. Comput Methods Appl Mech Engrg
1998;157(1):133–50. http://dx.doi.org/10.1016/S0045-7825(98)80002-9, http:
//www.sciencedirect.com/science/article/pii/S0045782598800029.

[8] Dawson C, Kirby R. High resolution schemes for conservation laws with locally
varying time steps. SIAM J Sci Comput 2000;22(6):2256–81. http://dx.doi.org/
10.1137/S1064827500367737.

[9] Hundsdorfer W, Mozartova M, Savcenco V. Analysis of explicit multirate and
partitioned Runge–Kutta schemes for conservation laws. CWI report. MAS-E, vol.
0715, Centrum voor Wiskunde en Informatica; 2007.

[10] Schlegel M, Knoth O, Arnold M, Wolke R. Multirate Runge–Kutta schemes for
advection equations. J Comput Appl Math 2009;226(2):345–57. http://dx.doi.
org/10.1016/j.cam.2008.08.009.

[11] Hundsdorfer W, Ketcheson DI, Savostianov I. Error analysis of explicit partitioned
Runge-Kutta schemes for conservation laws. J Sci Comput 2015;63(3):633–53.
http://dx.doi.org/10.1007/s10915-014-9906-1.

[12] Jeanmasson G, Mary I, Mieussens L. Explicit local time stepping scheme for
the unsteady simulation of turbulent flows. In: ICCFD10 - Tenth international
conference on computational fluid dynamics - Barcelona (Spain), July; 2018.

[13] Bermejo-Moreno I, Bodart J, Larsson J, Barney B, Nichols J, Jones S. Solving
the compressible Navier-Stokes equations on up to 1.97 million cores and 4.1
trillion grid points. In: Proceedings of the international conference on high
performance computing, networking, storage and analysis. SC ’13, New York, NY,
USA: ACM; 2013, p. 62:1–62:10. http://dx.doi.org/10.1145/2503210.2503265,
http://doi.acm.org/10.1145/2503210.2503265.

[14] Khalighi Y, Nichols JW, Lele SK, Ham F, Moin P. Unstructured large Eddy
simulation for prediction of noise issued from turbulent jets in various configu-
rations. In: 17th AIAA/CEAS aeroacoustics conference (32nd AIAA aeroacoustics
conference), 05-08 June. 2011, http://dx.doi.org/10.2514/6.2011-28, https://
arc.aiaa.org/doi/pdfplus/10.2514/6.2011-2886.

[15] Brès GA, Nichols JW, Lele SK, Ham FE. Towards best practices for jet noise
predictions with unstructured large Eddy simulations. In: 42nd AIAA fluid
dynamics conference and exhibit 25-28 June. 2012, http://dx.doi.org/10.2514/
6.2012-2965, https://arc.aiaa.org/doi/10.2514/6.2012-2965.

[16] George KJ, Lele SK. Large Eddy simulation of airfoil self-noise at high
Reynolds number. In: 22nd AIAA/CEAS aeroacoustics conference, 30 May - 01
June. 2016, http://dx.doi.org/10.2514/6.2012-2965, https://arc.aiaa.org/doi/
10.2514/6.2012-2965.

[17] Sáez-Mischlich G, Grondin G, Bodart J, Jacob MC. Assessment of LES using
sliding interfaces. In: García-Villalba M, Kuerten H, Salvetti MV, editors. Direct
and large Eddy simulation XII. Cham: Springer International Publishing; 2020,
p. 405–10.

[18] Kopriva DA. A staggered-grid multidomain spectral method for the com-
pressible Navier–Stokes equations. J Comput Phys 1998;143(1):125–58. http:
//dx.doi.org/10.1006/jcph.1998.5956, https://www.sciencedirect.com/science/
article/pii/S0021999198959563.

[19] Liu Y, Vinokur M, Wang Z. Spectral difference method for unstructured
grids I: Basic formulation. J Comput Phys 2006;216(2):780–801. http://dx.doi.
org/10.1016/j.jcp.2006.01.024, https://www.sciencedirect.com/science/article/
pii/S0021999106000106.

[20] Sun Y, Wang Z, Liu Y. High-order multidomain spectral difference method for
the Navier–Stokes equations on unstructured hexahedral grids. Commun Comput
Phys 2006;2(2):310–33.

[21] Van den Abeele K, Lacor C, Wang Z. On the stability and accuracy of the spectral
difference method. J Sci Comput 2008;37(2):162–88. http://dx.doi.org/10.1007/
s10915-008-9201-0.

[22] Shu C, Osher S. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J Comput Phys 1988;77(2):439–71. http://dx.doi.org/
10.1016/0021-9991(88)90177-5, http://www.sciencedirect.com/science/article/
pii/0021999188901775.

[23] Tang H, Warnecke G. High resolution schemes for conservation laws and
convection-diffusion equations with varying time and space grids. J Comput
Math 2006;24(2):121–40. http://dx.doi.org/10.1002/fld.3646, http://www.jstor.
org/stable/43694072.

[24] Seny B, Lambrechts J, Comblen R, Legat V, Remacle J-F. Multirate time stepping
for accelerating explicit discontinuous Galerkin computations with application to
geophysical flows. Internat J Numer Methods Fluids 2013;71(1):41–64. http://dx.
doi.org/10.1002/fld.3646, http://arxiv.org/abs/https://onlinelibrary.wiley.com/
doi/pdf/10.1002/fld.3646, https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.
3646.

[25] Savcenco V, Hundsdorfer W, Verwer JG. A multirate time stepping strategy
for stiff ordinary differential equations. BIT Numer Math 2007;47(1):137–55.
http://dx.doi.org/10.1007/s10543-006-0095-7.

[26] Liu L, Li X, Hu F. Nonuniform time-step Runge–Kutta discontinuous Galerkin
method for computational aeroacoustics. J Comput Phys 2010;229(19):6874–
97. http://dx.doi.org/10.1016/j.jcp.2010.05.028, http://www.sciencedirect.com/
science/article/pii/S0021999110002895.

[27] Liu L, Li X, Hu F. Nonuniform-time-step explicit Runge–Kutta scheme for
high-order finite difference method. Comput & Fluids 2014;105:166–78. http:
//dx.doi.org/10.1016/j.compfluid.2014.09.008, http://www.sciencedirect.com/
science/article/pii/S0045793014003454.

http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1007/s10915-007-9151-y
http://dx.doi.org/10.1007/s10915-007-9151-y
http://dx.doi.org/10.1007/s10915-007-9151-y
http://dx.doi.org/10.4208/cicp.250909.210111a
http://dx.doi.org/10.4208/cicp.250909.210111a
http://dx.doi.org/10.4208/cicp.250909.210111a
http://dx.doi.org/10.1016/j.jcp.2013.07.041
http://dx.doi.org/10.1016/j.jcp.2013.07.041
http://dx.doi.org/10.1016/j.jcp.2013.07.041
http://dx.doi.org/10.1090/S0025-5718-1983-0717689-8
http://dx.doi.org/10.1090/S0025-5718-1983-0717689-8
http://dx.doi.org/10.1090/S0025-5718-1983-0717689-8
http://dx.doi.org/10.1016/S0045-7825(98)80002-9
http://www.sciencedirect.com/science/article/pii/S0045782598800029
http://www.sciencedirect.com/science/article/pii/S0045782598800029
http://www.sciencedirect.com/science/article/pii/S0045782598800029
http://dx.doi.org/10.1137/S1064827500367737
http://dx.doi.org/10.1137/S1064827500367737
http://dx.doi.org/10.1137/S1064827500367737
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb9
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb9
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb9
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb9
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb9
http://dx.doi.org/10.1016/j.cam.2008.08.009
http://dx.doi.org/10.1016/j.cam.2008.08.009
http://dx.doi.org/10.1016/j.cam.2008.08.009
http://dx.doi.org/10.1007/s10915-014-9906-1
http://dx.doi.org/10.1145/2503210.2503265
http://doi.acm.org/10.1145/2503210.2503265
http://dx.doi.org/10.2514/6.2011-28
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2011-2886
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2011-2886
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2011-2886
http://dx.doi.org/10.2514/6.2012-2965
http://dx.doi.org/10.2514/6.2012-2965
http://dx.doi.org/10.2514/6.2012-2965
https://arc.aiaa.org/doi/10.2514/6.2012-2965
http://dx.doi.org/10.2514/6.2012-2965
https://arc.aiaa.org/doi/10.2514/6.2012-2965
https://arc.aiaa.org/doi/10.2514/6.2012-2965
https://arc.aiaa.org/doi/10.2514/6.2012-2965
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb17
http://dx.doi.org/10.1006/jcph.1998.5956
http://dx.doi.org/10.1006/jcph.1998.5956
http://dx.doi.org/10.1006/jcph.1998.5956
https://www.sciencedirect.com/science/article/pii/S0021999198959563
https://www.sciencedirect.com/science/article/pii/S0021999198959563
https://www.sciencedirect.com/science/article/pii/S0021999198959563
http://dx.doi.org/10.1016/j.jcp.2006.01.024
http://dx.doi.org/10.1016/j.jcp.2006.01.024
http://dx.doi.org/10.1016/j.jcp.2006.01.024
https://www.sciencedirect.com/science/article/pii/S0021999106000106
https://www.sciencedirect.com/science/article/pii/S0021999106000106
https://www.sciencedirect.com/science/article/pii/S0021999106000106
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb20
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb20
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb20
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb20
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb20
http://dx.doi.org/10.1007/s10915-008-9201-0
http://dx.doi.org/10.1007/s10915-008-9201-0
http://dx.doi.org/10.1007/s10915-008-9201-0
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://www.sciencedirect.com/science/article/pii/0021999188901775
http://www.sciencedirect.com/science/article/pii/0021999188901775
http://www.sciencedirect.com/science/article/pii/0021999188901775
http://dx.doi.org/10.1002/fld.3646
http://www.jstor.org/stable/43694072
http://www.jstor.org/stable/43694072
http://www.jstor.org/stable/43694072
http://dx.doi.org/10.1002/fld.3646
http://dx.doi.org/10.1002/fld.3646
http://dx.doi.org/10.1002/fld.3646
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3646
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3646
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3646
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.3646
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.3646
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.3646
http://dx.doi.org/10.1007/s10543-006-0095-7
http://dx.doi.org/10.1016/j.jcp.2010.05.028
http://www.sciencedirect.com/science/article/pii/S0021999110002895
http://www.sciencedirect.com/science/article/pii/S0021999110002895
http://www.sciencedirect.com/science/article/pii/S0021999110002895
http://dx.doi.org/10.1016/j.compfluid.2014.09.008
http://dx.doi.org/10.1016/j.compfluid.2014.09.008
http://dx.doi.org/10.1016/j.compfluid.2014.09.008
http://www.sciencedirect.com/science/article/pii/S0045793014003454
http://www.sciencedirect.com/science/article/pii/S0045793014003454
http://www.sciencedirect.com/science/article/pii/S0045793014003454

Computers and Fluids 229 (2021) 105102R. Messahel et al.
[28] Karypis G, Kumar V. MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 4.0. 2009, http://www.cs.umn.edu/~metis.

[29] Rettenmaier D, Deising D, Ouedraogo Y, Gjonaj E, De Gersem H, Bothe D, et al.
Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. SoftwareX
2019;10:100317. http://dx.doi.org/10.1016/j.softx.2019.100317, https://www.
sciencedirect.com/science/article/pii/S2352711018301699.

[30] Zhiling Lan, Taylor VE, Bryan G. Dynamic load balancing for structured adaptive
mesh refinement applications. In: International conference on parallel processing,
2001. 2001, p. 571–9. http://dx.doi.org/10.1109/ICPP.2001.952105.

[31] Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel
flow up to 𝑅𝑒𝜏=590. Phys Fluids 1999;11(4):943–5. http://dx.doi.org/10.1063/
1.869966, http://arxiv.org/abs/10.1063/1.869966.
22
[32] Toro EF, Spruce M, Speares W. Restoration of the contact surface in the
HLL-Riemann solver. Shock Waves 1994;4(1):25–34. http://dx.doi.org/10.1007/
BF01414629.

[33] van Leer B. Towards the ultimate conservative difference scheme.
V. A second-order sequel to Godunov’s method. J Comput Phys
1979;32(1):101–36. http://dx.doi.org/10.1016/0021-9991(79)90145-1,
http://www.sciencedirect.com/science/article/pii/0021999179901451.

[34] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow
at low Reynolds number. J Fluid Mech 1987.

[35] Alfonsi G, Ciliberti SA, Mancini M, Primavera L. Direct numerical simulation
of turbulent channel flow on high-performance GPU computing system. Compu-
tation 2016;4(1). http://dx.doi.org/10.3390/computation4010013, http://www.
mdpi.com/2079-3197/4/1/13.

http://www.cs.umn.edu/~metis
http://dx.doi.org/10.1016/j.softx.2019.100317
https://www.sciencedirect.com/science/article/pii/S2352711018301699
https://www.sciencedirect.com/science/article/pii/S2352711018301699
https://www.sciencedirect.com/science/article/pii/S2352711018301699
http://dx.doi.org/10.1109/ICPP.2001.952105
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.1063/1.869966
http://arxiv.org/abs/10.1063/1.869966
http://dx.doi.org/10.1007/BF01414629
http://dx.doi.org/10.1007/BF01414629
http://dx.doi.org/10.1007/BF01414629
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://www.sciencedirect.com/science/article/pii/0021999179901451
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb34
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb34
http://refhub.elsevier.com/S0045-7930(21)00253-X/sb34
http://dx.doi.org/10.3390/computation4010013
http://www.mdpi.com/2079-3197/4/1/13
http://www.mdpi.com/2079-3197/4/1/13
http://www.mdpi.com/2079-3197/4/1/13

	A conservative multirate explicit time integration method for computation of compressible flows
	Introduction
	Numerical method
	Governing equations
	Finite-volume method
	Spectral-difference method
	Explicit Runge–Kutta methods

	Conservative blackmultirate explicit integration methods
	Definition and management of time-step classes
	Flux processing at blackmultirate classes interfaces
	Non-conservative blackmultirate RK1 method
	Conservative blackmultirate RK1 method
	Generalization to higher-order ERK methods

	Recursive synchronization
	Numerical implementation
	Advantages and drawbacks

	Numerical results
	Linear advection: Error analysis
	Euler equation: Sod shock-tube
	DNS of developed turbulent channel flows at retaueq392, citemoser99

	Conclusion and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

	anm0:

