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Résumé

Les phénomènes instationnaires dans les cavités de types rotor/stator sont connus
pour être la source de dangereuses vibrations dans les turbopompes spatiales. Bien
que plusieurs mesures palliatives aient été prises en comptes durant les phases de
conception, des campagnes d’essais ont mis en évidence de fortes oscillations des écoule-
ments internes pouvant menacer certains composants mécaniques ainsi que le moteur
cryogénique des lanceurs. Aujourd’hui, l’origine de ces instabilités d’écoulement, connues
sous le nom de « phénomène de bandes de pression », est peu comprise et difficile à
prédire numériquement. L’objectif principal de cette thèse est d’analyser les mécanismes
physiques de ce phénomène afin d’apporter des solutions techniques pour le contrôler.
Pour répondre à cette problématique, deux types de configuration sont étudiés: une cav-
ité annulaire académique de type rotor/stator et une cavité réelle de turbopompe spatiale.

Plus largement et d’un point de vue historique, Les couches limites tournantes
dans ces cavités sont connues pour être 3D et réceptives à plusieurs types d’instabilités
prenant entre autre la forme de spirales ou d’anneaux. Les simulations basées sur la
moyenne de Reynolds (RANS) ont par le passé échoué à prédire ce type d’écoulement.
Cependant, les Simulations aux Grandes Echelles (SGE) se sont avérées être une
alternative efficace à ce problème et sont donc été utilisées tout au long de cette
thèse. Des Densités Spectrales de Puissance (DSP) ainsi que des Décompositions
modales dynamiques (DMD) appliqués aux résultats SGE, ont permis de montrer que le
phénomène de bandes de pression est visible également dans une cavité annulaire de type
académique et composé de trois modes dictant toute la dynamique du système. Afin
d’établir l’organisation de ces modes et leurs possibles interactions, une nouvelle méthode
appelée Dynamic Mode Tracking/Control (DMT/DMTC) a été proposée durant cette
thèse. Basée sur des filtres temporels, la DMT est construite pour extraire des structures
cohérentes pour une ou plusieurs fréquence(s) donnée(s) dans une simulation SGE. De
plus, en ajoutant un terme de relaxation dans les équations de Navier-Stokes couplées
avec la DMT, sa variante appelée DMTC permet de contrôler et de suivre en temps réelle
un ou plusieurs modes et donc de pouvoir analyser de possibles interactions. Appliqué à
la cavité académique annulaire, cette méthode a permis de montrer que le mode basse
fréquence est généré dans l’écoulement par le mode dominant du système. Pour aller plus
loin, des analyses de stabilité linéaire de type global (GLSA), connues pour permettre
d’étudier des écoulements instables, sont effectuées sur la cavité académique. Grâce
à des méthodes adjointes, la GLSA a permis de mettre en avant l’origine spatiale de
chacun des trois modes et de montrer que le mode basse fréquence et le mode dominant
sont générés dans la couche limite du stator ce qui valide les résultats obtenus par
DMTC. Enfin et afin de mettre en place des stratégies de contrôle, la sensibilité à la
modification de l’écoulement de base, obtenue par GLSA, est analysée. L’objectif est
d’identifier la région à modifier pour stabiliser un mode donné ou décaler sa fréquence.
Appliqué au cas académique, il est montré que contrairement à la plupart des études
dans la littérature, contrôler la couche limite du stator est le moyen le plus efficace de
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supprimer le phénomène de bandes de pression à travers des injections/aspirations. En
rassemblant toutes le études précédentes, la SGE permet de valider notre compréhension
des phénomènes et d’illuster l’efficacité des stratégies de contrôle mises en place sur le
cas académique pour des amplitudes d’aspiration très basses. Pour finir, le phénomène
de bandes de pression est analysé dans une cavité de turbopompe spatiale.

En particulier, la sensibilité de ce phénomène aux changements géométriques est abor-
dée à travers deux configurations: une première sans les aubes du stator de la turbopompe
et une deuxième avec. Bien que les aubes génèrent un écoulement complexe notamment
avec la présence de chocs, des fréquences similaires de fluctuation de pression sont retrou-
vées dans les deux configurations avec cependant des nombres azimutaux caractéristiques
différents. En se basant sur les études faites sur la cavité académique, une version adap-
tée de GLSA pour la dynamique non-linéaire de la turbopompe permet de mettre en
avant que malgré que le phénomène de bandes pression soit particulièrement présent
dans l’écoulement principal (veine de la turbopompe), la source de ces modes se situe
dans les cavités inférieures entre le rotor et le stator. De plus les résultats de GLSA
mettent en avant que deux moyens de contrôle pourraient être appliqués pour supprimer
le phénomène de bandes de pression dans ce cas industriel: modifier le joint d’étanchéité
ou modifier la fuite présente autour du moyeu.
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Abstract

Unsteady phenomena in rotor/stator cavity are well known to be the source of dan-
gerous vibrations in space turbopump. Even though many palliative measures have been
taken during their design, experimental campaigns often reveal high flow oscillations that
can jeopardize turbomachinery components and even the rocket engine. Today, the origin
of such flow instabilities usually called ’pressure band phenomenon’ is not well understood
and difficult to predict numerically. The main goal of this thesis is to investigate such
phenomenon mechanism to find technical solutions so as to control it. This problematic
is addressed here trough two types of configuration: an academic smooth rotor/stator
cavity and a space turbopump cavity.
When it comes to cavity flows, their rotating boundary layers are known to be three
dimensional and receptive to several instabilities taking the form of spirals or annuli.
Reynolds Averaged Navier-Stokes Simulations (RANS) failed in the past to predict such
unsteady systems. However, Large Eddy Simulation (LES) proved to be a relevant alter-
native in many similar applications and is therefore chosen for the present work. Using
Power Spectral Analysis (PSD) and Dynamic Mode Decomposition (DMD) on LES pre-
dictions, one shows that the pressure band phenomenon is retrieved in an annular smooth
rotor/stator cavity and it is composed of three modes driving all the system dynamics. To
investigate these mode organization and their possible interactions, a new tool called Dy-
namic Mode Tracking /Control (DMT/DMTC) is introduced. Based on temporal filters,
DMT is constructed so as to extract "on-the-fly" flow coherent structures with a given fre-
quency on the basis of LES. Furthermore, augmenting the Navier-Stokes equations with
a relaxation term coupled to DMT, DMTC allows to control and follow the evolution of
a controlled mode as well as non controlled ones and thereby observe interactions. This
strategy after validation is applied to the annular rotating cavity and shows that the low
frequency mode is generated by the dominant mode of the system. To go further, Global
Linear Stability Analysis (GLSA), a well known approach to study oscillatory flows, is
used on the academic cavity. Augmented with adjoint methods, GLSA sheds some light
on all mode origins and points out that the low frequency and dominant modes are com-
ing from the stationary boundary layer. In order to set up control strategies, the GLSA
framework is further developed introducing the concept of the sensitivity to base flow
modifications which gives the location where the flow should be modified if one wants to
stabilize or at least shift a frequency mode. Applied to the academic cavity, one shows
that contrary to most studies in the literature, controlling the stator boundary layer is
the more efficient way to damp the pressure band phenomenon through suction/injection
devices. Finally, gathering all the previous understanding of this flow, the LES frame-
work enables to validate the control strategies proposed and to stabilize the pressure
band phenomenon for very low suction amplitudes. To finish, the pressure band phe-
nomenon is analyzed in real space turbompump cavities. In particular, the sensitivity of
this specific phenomenon to geometry changes is investigated through two configurations:
one without and one with the blades of the stator of the turbopump. Even though the
introduction of the blades in the LES creates a more complex flow with the presence of
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shocks, similar pressure fluctuation spectra are retrieved in both configurations but with
azimuthal wavenumber modes that are shifted. Following the studies on the academic
cavity, an adapted GLSA to the non-linear dynamics of the turbopump enables to point
out that even though the pressure band phenomenon modes are particularly marked in
the mainstream of the system, the source of these modes is located in the subcavity in
the rotor-stator wheel space. In particular, GLSA results indicate that two possible ways
to control the phenomenon are possible: modifying the flow around the seal rim and or
modifying the leak around the hub.
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2 Chapter 1 : Foreword

This chapter introduces the context of this PhD work which is born from a collabo-
ration between the CNES (Centre National des Etudes Spatiales) and Ariane Group.
Indeed, space industry has been recently shaken by new objectives and visions, es-
pecially with the arrival of low orbit satellites and constellations. To answer this
new demand, actors from private sector have emerged and changed the rules forcing
the well implemented launcher manufacturers to evolve and optimize their existing
systems. This PhD participates to this technology optimization by focusing on a spe-
cific phenomenon called "pressure bands" apt to appear in the turbopumps of rocket
engines. Indeed, this phenomenon characterized by self-sustained oscillations of the
flow can be particularly dangerous to the integrity of the launcher and the payload. To
introduce this subject, a detailed description of space industry is provided along with
the more recent evolutions. Finally the configuration of interest to this PhD work,
i.e the rocket engine turbopumps, are introduced along with its working principle and
the different unsteady phenomena that can occur in such a device.

1.1 Space industry

1.1.1 Market
Since the time when Youri Gargarine was sent around earth in april 1961, space industry
has evolved with new objectives and visions. At first, security and military were the
two subjects on the table that motivated the two dominant and active countries in the
field: URSS and US. In fact, as stated by Barbaroux (2016), two thirds of all the satellites
launched between 1957 and 2011 have been under military, governmental or spatial agency
decisions. However, as shown in Fig. 1.1, the market has drastically changed in the
last decades. Due to the increasing demand of ultra high-speed broadband services,
commercial and telecommunication satellites are now the most common satellites put into
orbit around Earth. In this specific context, constellation satellites (smallstas) provide
a promising solution to the increasing demand. These particular architecture systems
are however forcing launcher manufacturers to change their strategies and methods along
with parts of their launchers and their conception. In parallel, new actors in the field
have taken advantages of this high and new demand. Indeed, when governments are
focused on exploration, new fast developing private companies of billionaires tend to
create new rockets targeting human travel and space tourism. This competition, also
known as ’billionnaire space race’, began with Richard Branson who developed new ideas
and new launchers but also promised the beginning of space tourism and space travel. In
order to develop their own technologies and business, these new actors have also entered
the market of commercial satellites. In particular, Elon musk has clearly been the game-
changer by announcing a 30% reduction of the actual launch cost. Indeed, he forced
the well-established companies to change their strategies and to optimize more and more
their existing launchers. Apart from the billionaire companies, the industry of low orbit
launchers and small payloads (under 500kg) started also to take an important share of

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



1.1 Space industry 3

the market, especially with the arrival of constellation satellites. Northrop Grumman
Innovation Systems,Virgin Orbit or Rocket lab are examples of small companies that are
now dominating this market sector due to their low cost launchers.

Figure 1.1 – Space market trends: Earth Observation satellites launched in 2005-2014 and prospects
for 2015-2024, Source: Euroconsult

1.1.2 Launcher technology evolution
Space conquest has always been the biggest source of new technologies. Even nowadays,
a large part of the general public still doesn’t understand the primordial benefits of space
exploration for both the future and our technology development on Earth. History has
shown that projects like Apollo with the moon landing or the first satellite Spoutnik in
1957 were the source of many innovations that changed our lyfestyle. For example1: the
embedded system of the Apollo program was the predecessor of microcomputer that can
be found in all smartphones today. Likewise, thanks to research on space fires, clothes
have become far more fire-resistant. Finally astronauts, who have their health constantly
followed, helped scientists find new cures on Earth.

1Space: how far have we gone – and where are we going: The Guardian

Limited Distribution CNES/AGS/INPT/MEGEP/JURY
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4 Chapter 1 : Foreword

Nowadays, to stay competitive in this fast developing market, new technologies still
need to be developed. The more recent and striking ones are:

• Reusable launcher: The first success of a resuable launcher has been achieved
in November 2015 by Blue origin New Shepard rocket which is also the first vertical
take-off/landing rocket to reach the Kármán line. Space X achieved the same tech-
nological exploit with an orbital rocket stage (See Fig. 1.2). In Europe, the CNES
(Centre National d’Etudes Spatiales) and the German space agency (DLR) started
the Callisto demonstrator in 2015 (Sippel & Klevanski (2004)) in collaboration with
the Japanese space agency (JAXA). The purpose of this project is to conduct flight
tests, develop new complex technologies and prepare cost plans for future launchers
such as Ariane 6 or Ariane Next.

• Re-ignition engine: For space engine manufacturers, re-ignition is of primary
importance as it increases flexibility and allows much more complex missions. For
example, to deliver supplies to the International Space Station, the ESA’s Auto-
mated Transfer Vehicle (ATV), requires multiple firings of the Ariane 5 ES upper
stage engine. The European engine VINCI which will equip Ariane 6, will enable
to put different satellites in several orbits in geostationary orbit (GEO) instead of
geostationary transfer orbit (GTO). On the other side of the Atlantic, Space X
created the Merlin rocket engine re-ignitable for different purposes. The first one
was to develop the first reusable launcher. Besides, their strategy was also to use
the same engine for all the stages of the launcher.

Figure 1.2 – Reusable rockects: (a) Falcon 9 of Space X and (b) Callisto demonstrator of the CNES

The next project that challenges all actors of the space industry is the promise for
interplanetary travel. Mars is actually the closest planet resembling Earth in our solar
system. The objective of reaching this planet mainly started with Elon Musk, helped
and supported by NASA. To make this project a success, multiple new technologies will
need to be developed. Among others, one can site radiation protections, advanced com-
munication systems, cooling systems to handle high speed on long distance or advanced
environmental control and life support systems for crew members. Finally, the actual
engines will need to be optimized or new systems to be developed to assure long travel
and a high maneuvering capabilities.

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



1.1 Space industry 5

1.1.3 PhD context
Liquid propellant rocket engine

Liquid propellant rocket engine is the most common engine found in the current
rockets worldwide. As shown by Fig. 1.3, its principle is to inject fuel and oxidizer at a
high pressure in the combustion chamber which after fast chemical reaction results in
hot gases that are ejected at high speed through a nozzle. This last specific component
purpose is to turn the subsonic flow of the combustion chamber into a supersonic flow
or, in other words, to turn the static pressure in dynamic pressure. Contrary to the
boosters, the liquid propellant power can be controlled, and is hence used to precisely
put into orbit satellites.

For analysis and design, the thrust, F , generated by a rocket engine can be approxi-
mated by;

F = ṁve + (Pe − P0)Se, (1.1.1)

with ṁ the mass flow rate, ve and Pe respectively the speed and the pressure of the
gases exhausted at the nozzle exit. P0 finally refers to the external pressure while Se is
the cross-section surface of the nozzle exit. Rocket engine performances are often defined
through their specific inpulse (ISP ) expressed as;

ISP = F

g · ṁ
, (1.1.2)

with g the gravitation constant.

Thanks to this specific definition, one can show that the power of an engine can
be controlled by the pressure of the combustion chamber or the propellant used. As a
consequence, history has shown that different possible configurations can be used to feed
the combustion chamber. The three main configurations also known as ’cycle’ are usually
applied:

• Pressure-fed cycle : This configuration has the simplest design. The propellants
are directly pressurized in their respective tanks and are directly injected in the
combustion chamber to generate thrust. Thanks to this system, quick and high
efficiency reactions are possible. However, it doesn’t enable to control its pressure
and imposes thick structures to sustain the high constraints. This specific cycle
can be found in the AJ10 hypergolic rockets family or even the Space shuttle OMS
engine.

• Gas-generator cycle: Often referred to as open system, engines configured with
this type of cycle have one or two turbopumps entrained by a turbine itself activated
by a preburner. The oxidizer pump, the fuel pumps and the turbine are usually
mounted on a unique shaft. The main drawback of such a configuration is the loss of
the exhaust gases coming from the preburner and, due to high thermal constraints,
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Figure 1.3 – Principle of a liquid properllant rocket engine

the difficulty to burn at an optimal equivalence ratio. This cycle can be found in
Saturn V’s F-1, Ariane 5’s HM7B, Ariane 5’s Vulcain or Falcon 9’s Merlin.

• Expander : Contrary to the gas generator cycle, the turbine of this configuration is
entrained by gases issued from the cryogenic propellant used to cool the combustion
chamber. The main benefit of this system is that the turbine does not have to
undergo high temperature. Advanced systems close the cycle by re-injecting the
gazified cryogenic propellant in the combustion chamber to increase its pressure.
This cycle can be found in Ariane 6’s Vinci.

• Staged combustion cycle: Most known cycle, its principle is to feed each pro-
pellant pumps by multiple preburners through a rich or lean fuel combustion. This
indeed enables to obtain engines with high thrust and efficiency. This cycle can be
found in the BE-4 (Blue origin), RS-25 (SLS) and RD-180 (Atlas V).

Typical liquid propellant engines are presented Fig. 1.4. Two different generations
can be distinguished: The ones developped before 2000 with the RD-180 (Atlas V),
F-1 (Saturn V), Vulcain 2 (Ariane 5) and RS-25 (SLS) and the more recent ones like
the Merlin, BE-4, Raptor and Prometheus are recent and future engines. From this
presentation, one can first notice that the main difference is the fuel used by the recent
engines. The choice of Methane/Oxygen (CH4/LOx) to power a rocket engine has indeed
been the subject of many studies (Burkhardt et al. (2004); Haidn et al. (2008)) and
this specific mixture showed to be a good compromise between kerosene/Oxygen (RP −
1/LOx) and Hydrogen/Oxygen (LH2/LOx) in terms of combustion efficiency and tank
weight. CH4/LOx proved also to be the easiest to produce and store. This was the main
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reason why Space X created such an engine. In fact, the atmosphere of Mars being mainly
composed of CO2, it will be easier to create methane from water through electrolysis and
a Sabatier process. Finally, in terms of pollution, CH4/LOx produces carbon dioxide
and water vapor which is less advantageous than the hydrogen while polluting far less
than RP-1.

Even though new generation of engines have most of the time adopted a stage com-
bustion cycle, Space X has chosen a gas generator cycle for the Merlin. As said previously,
it enables to simplify the design of the engine. One can also note that the RD-180 is not
a usual engine that is composed of two combustion chambers for one single turbopump.
As shown in Fig. 1.4, the bigger the engine is the higher the thrust will be. However, one
interest for a rocket manufacturer is first of all a thrust/weight ratio as high as possible
even though it implies to add more engines on a rocket. New generation of engines such
as Prometheus confirms this idea, Merlin being the most powerful of all with a ratio of
198 : 1. Efficiency is the main characteristic of an engine that is usually defined by its
ISP . The old generation of engines reaches the highest performances with first the RS-
25 American engine closely followed by the Vulcain 2 European engine Finally, one can
clearly see that new engines have been designed to have a development and production
cost as low as possible. Merlin and Prometheus (in development) will be the two engines
in competition in a close future due to lower cost (1M$). Re-usability is to finish a factor
to be taken into account and that can be defined as a cost/flights ratio but is also more
difficult measure.

Figure 1.4 – Sum up main engines in the world
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Turbopumps

The components of interest to this PhD work are the turbopumps. As shown in
the previous section this turbomachinery is of first importance for rocket engines to gen-
erate high thrust. These systems are composed of two main components: a rotodynamic
pump and a driving gas turbine, usually both mounted on the same shaft or sometimes
geared together. Its principle is to produce a high-pressure fluid to feed the combustion
chamber. In 1942, this new technology appeared as a revolution for propulsion devices.
In fact, rockets of this time were suddenly able to sustain a maximum velocity of 1600
m/s thanks to these systems. Vulcain 2 developed by ArianeGroup and headed by the
French space agency (CNES) was designed with two types of turbopumps: the TPO for
the liquid oxygen LO2 (see example Fig. 1.5) and a TPH for the liquid hydrogen LH2.
The Vulcain 2 TPH turbine is a two-staged supersonic/transonic impulse type turbine,
working in a gas generator cycle.

Figure 1.5 – Example of LOx turbopump mounted on the japanese rocket engine LE-7A

Vibrations have been a source of many problems in turbomachinery design and can
come from many parts of the system like the turbine disks, cavities, shafts, blades, etc.
A critical speed is always defined to avoid a resonance phenomenon between a natural
frequency of a component of the system and the frequency of the rotating shaft. At
this critical state, a slight unbalance can be amplified and impact the pump system, the
bearing supports or create other damages. To stay versatile, operation points are therefore
higher or lower than the critical speed. Note also that optimizing the system by taking
for example stiff bearing supports, rigid bearing or greater shaft diameters can increase
this critical speed but will produce unwanted mass. Furthermore, many excitations other
than the ones related to the rotating parts can appear through unsteady flow fluctuations
(D’Agostino et al. (2017)). For example, as described in Sutton & Seifert (1950) or Hengli
& Zuoyi (2002), these systems can be subject to oscillating pressure loads, cavitation,
rotating stall instabilities, surge upstream shocks, fluttering, pogo or any other pressure-
wave vibration that can then couple and interact with the structure.
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1.1 Space industry 9

"Pressure band phenomenon"

Experimental campaigns have often evidenced undetermined unsteady phenomena
around the cavity of the first stage of turbopump turbines. The one of interest to this
PhD, usually called ’Pressure band phenomenon’, corresponds to oscillations that are
characterized by multiple dominant frequencies which can be measured everywhere in
the cavity. Those self-sustained oscillatory motions of the fluid can become dangerous
and if uncontrolled, impact the structural integrity of the engine. This phenomenon
has the particularity to be very sensitive to geometry changes, appears for particular
operating points and is also sensitive to thermal conditions of the turbine cavities.

The frequencies linked to this phenomenon could not be retrieved through RANS
(Reynolds Average Navier Stokes equations) simulations due to the high unsteadiness of
the flow. In fact, for the highly turbulent flow presents in space turbopumps, the mean
flow can be of the order as the unsteady perturbations. Time dependent simulations
like URANS (Unsteady Reynolds Average Navier Stokes equations) or LES (Large Eddy
Simulations) are still too expensive for industry but proved to be best to solution to
capture complex and highly unsteady phenomena. The hosting laboratory of this PhD
work, CERFACS, has been hence chosen for its expertise in the domain and especially
LES.

The ’Pressure band phenomenon’ has been first studied at CERFACS by Bridel-
Bertomeu during his PhD Bridel-Bertomeu (2016). His work was organized in two steps.
The first one was focused on academic rotating closed cavities for which he was able to
retrieve the pressure band phenomenon. In fact, he showed through LES that in a case
of an annular cavity, three dominant frequencies could be distinguished through Power
Spectral Density (PSD) and were present everywhere in the domain. He confirmed the
3D features of these modes and was able to demonstrate that almost all the dynamics of
the annular flow was dictated by the sum of those three modes. Specific structures were
pointed out in the flow boundary layers that are common to the infinite rotating disk
boundary layer model. Small and high cylindrical rotor stator cavity were also studied
and have been the fruit of a paper (Bridel-Bertomeu et al. (2017a)). To improve our
understanding of these modes’ origin, Linear Stability Analyses (LSA) were then used
and a solver called AVLP was developed at this occasion. In particular, the ‘wavemaker’
of each mode was spatially evidenced. In the case of the industrial turbopump, LES
showed to retrieve the specific modes behind ‘the pressure band’ phenomenon (Bridel-
Bertomeu et al. (2017b)). Once again, modal decomposition enabled to compute their
complex structures in the different cavities of the system and their sensitivity to geometry
changes and thermal conditions was finally confirmed.

The current PhD work main objectives is to extend the investigation realized on
academic rotor/stator cavities through the conjuction use of LES and Linear Stability
Analysis. In particular, a global stability approach needs to be developed to deeper inves-
tigate the modes’ settlement, organization and interactions. Control strategies for such
problems also need to be proposed in order to suppress the pressure band phenomenon.
From the industrial point of view, the impact of stator blades on the pressure band phe-
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nomenon still needs to be characterized. Finally, new linear stability analysis tools are
needed to analyse the highly turbulent and highly unsteady turbopump cavities so as to
identify the origin of these oscillations and propose relevant control strategies.

1.2 Overview of this thesis
The present PhD work is divided in three main parts and focuses on the pressure band
phenomenon in two types of rotating cavities: academic and industrial. The two first
parts of this manuscript are dedicated to academic cavities with a first part on their
dynamics prediction through Large Eddy Simulation and a second part focused on linear
stability analysis and control. The last part then deals with a space turbopump and
gathers all previous founding. The following items summarize the main elements of this
document that were obtained through the course of this research work of three years and
detail the chapters constituting the different parts of the present PhD:

Chap 1, Foreword:

Space industry has recently evolved with new objectives in an explosive market.
Telecommunication and commercial satellites’ high demand are forcing the launcher
manufacturers to optimize their technologies or develop new systems. In this context, the
main type of liquid engines composing the market are first compared in this chapter. In
order to optimize a rocket engine, unsteady phenomena occurring in space turbopumps
and especially in turbine cavities need to be precisely investigated. Flow oscillations,
besides being able to reduce engine performances, can indeed be very dangerous and
jeopardize the integrity of turbomachinery parts. The "pressure band phenomenon"
corresponding to self-sustained motions of the flow is particularly discussed in this
chapter and will be investigated all along this PhD work.

PART 1, Large Eddy Simulation of enclosed rotor/stator cavity:

Chap 2, Flow dynamics of academic rotor/stator cavity through Large Eddy
Simulations:

This specific chapter focuses on the structures appearing in smooth rotor/stator cav-
ities. In particular, the unstable rotating boundary layers are discussed. Although, the
main configuration of interest to this PhD work is an annular enclosed rotor/stator cav-
ity due to its relevance with real turbomachinery, a cylindrical cavity is also studied
here to highlight the shaft impact on the dynamics of such systems. Following Bridel-
Bertomeu (2016), the Large Eddy Simulation (LES) framework is used to extract the
pressure band phenomenon modes. This numerical tool indeed enables to simulate com-
plex flows with highly unsteady phenomena. The mean flows obtained are first analyzed
and good agreement is found with configurations coming from experimental studies with
close characteristics. In conjunction with Dynamic Mode Decomposition (DMD) and
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Power Spectral Density (PSD), LES shows that three specific modes with distinct az-
imuthal wave numbers m = 0 (annular shape), m = 12 ( 12-arms spiral) and m = 29
(29-arms spiral) are demonstrated as the main drivers of the global annular rotor/stator
cavity. The cylindrical cavity activity is found on its side to synchronize around a unique
frequency mode composed of multiple azimuthal wavenumbers.

Chap 3, Mode dominance and interactions:

In the previous chapter, Large Eddy Simulation (LES) demonstrated that three modes
defined the pressure band phenomenon in an annular rotor/stator cavity. However, the
sources and the mechanisms of this complex flow could not be identified. In fact, no clear
understanding can be found in the literature on how can one control a multi-frequency
phenomenon and more specifically how these modes effectively interact. In this context,
a new method called Dynamic Mode Tracking (DMT) aiming at tracking dynamically
modes or flow features thanks to time filters is proposed. Contrary to classical flow feature
analyses, DMT has indeed the benefit to be easy to implement in a Navier-Stokes solver
while giving a direct possibility to visualize a mode evolution over time. By computing
a mode "on-the-fly", DMT furthermore offers gain in memory and CPU time. Thanks to
these properties, a second method called Dynamic Mode Tracking and Control (DMTC)
corresponding to a mode artificial controller can also be easily created using a relaxation
method. A complete set of test cases and sensitivities of these new tools is given in this
chapter and compared to the more classical "post-mortem" method like DMD. In the
annular cavity context, the link between modes m = 29 and m = 12 observed in Chap. 2
needed more understanding to identify which mode is to be tempered with in priority.
To do so, the DMTC method which enables the control of individual modes is used.
As a result, damping mode m = 12 proves to have no effect on mode m = 29. At the
opposite, suppressing mode m = 29 induces mode m = 12 to be progressively attenuated,
signifying that it can not live without mode m = 29. By analyzing the response of the
m = 0 annular mode to the two cases, one can show that this mode is independent of
the two other ones. At the end, this study provides the information that to stabilize the
whole cavity, controlling mode m = 29 will be the most efficient approach.

PART 2, Global Stability analysis of an enclosed rotor/stator cavity

Chap 4, Mode identification and stability analyses:

The self-sustained oscillations driving the above discussed simple rotating cavities
proved to be originating from complex phenomenon whose origins stay almost unknown.
To study these instabilities in more details, linear stability analysis framework is applied
in this chapter to investigate the becoming of local disturbances. To do so, two types
of approach are developed and confronted: local and global stability analyses. Results
show that the two methods complement one another but also point out the limits of
the local approach. In fact, this latter provides the location of absolute instabilities
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(primordial to generate a global mode) but fails to retrieve the complex mode of the
cylindrical cavity or the m = 0 mode of the annular cavity. On the contrary, the global
approach enables to retrieve with good agreement the modes obtained by DMD not
only in terms of frequency but also their spatial distribution. Adjoint global analysis
also enables finding the origin of each mode while giving a description of each mode
mechanisms by use of structural sensitivity analysis. Finally, the instability mechanisms
of a cylindrical cavity is compared to the annular ones and the role of the shaft on the
complex dynamics of the annular cavity is provided.

Chap 5, Control of a rotor/stator cavity flow:

The previous chapters shed some light on the mode interactions and indicated a strat-
egy to control the multi frequency pressure band phenomenon in an annular rotor/stator
cavity. However, no physical controller could be derived for stabilizing this system. To
overcome this problem, the global stability framework is further developed addressing
the notions of sensitivity to base flow modifications. Indeed, contrary to the wavemaker
obtained through structural sensitivity analysis, the sensitivity to base flow modification
enables to point out the exact location where a given mode should be modified to shift its
frequency or growth rate. After a brief introduction of the rotating flow control studies,
the principle and the steps to obtain the base flow sensitivity are detailed. Applied to
the annular cavity, injection and suction show to be relevant solutions to suppress the
pressure band phenomenon. In fact and contrary to the literature where the rotating
disk is usually controlled, the sensitivity analysis preconizes to position these passive
controllers in the stator boundary layer. Indeed, one shows that for very low suction
axial amplitudes, the overall instabilities in the cavity can be damped. Care is however
recommended since it is also shown that increasing the controller amplitudes too much
results in a new limit cycle with frequencies and amplification rates that shift. These
new limit cycles can finally be explained through the stability analysis of the controlled
cavity which are shown to be unstable.

PART 3, Investigation of the unsteady phenomena in a space turbopump
turbine

Chap 6, Industrial application: Turbine cavities of a rocket engine turbopump:

This chapter focuses on the study of the flow in a space turbopump turbine stage.
The Large Eddy Simulation (LES) framework is hence first applied to this complex
geometry to extract the coherent structures coming from the three dimensional boundary
layers. Even though these boundary layers are far more turbulent than the academic
annular case, similar velocity profiles can be highlighted. Furthermore, the ’pressure
bands’ captured in the academic cavities are also observed here in this industrial case
where a high Reynolds number and a complex geometry affect the dynamics of the
system. Known to be very sensitive to geometry parameters, two different configurations
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are studied in this chapter: Case 1 corresponds to the turbine stream channel and
the rotor/stator cavity with smooths disks while Case 2 also takes into account the
stator blades present in the turbine stream channel. Power Spectral Density (PSD) on
pressure enables first to unveil the modes polluting the whole system and it is shown
that the blades increase directly the overall pressure fluctuation level of the retrieved
instabilities. In a second time, the 3D spatial distribution of the modes are studied
thanks to Dynamic Mode Decomposition (DMD) and Dynamic Mode Tracking (DMT).
Equivalently to the academic problems, DMD is found in a good agreement with PSDs
and DMT both capturing the multi-azimuthal wave number modes appearing in the low
cavities. Finally, to shed some light on the flow dynamics, the global stability framework
of Chap. 4 is resumed to highlight the source of these self-sustained oscillations of the
flow. In particular receptivity and structural sensitivity analyses tend to preconize two
possible ways to control this limit-cycle: modifying the flow around the seal rim and or
modify the leak around the hub.
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Self-sustained oscillations of rotor/stator cavity flows are well known to indus-
try. In aeronautical engines, this unsteady phenomenon can be very dangerous and
jeopardize the structural integrity of the entire system by damaging turbomachinery
components or turbopumps in the context of space applications. Today, the origin
of such a flow instability and resulting limit-cycle is not well understood and is still
difficult to predict numerically. The present investigation purpose is to shed some
light on this phenomenon relying on numerical simulations. Large Eddy Simulations
(LES) indeed showed in previous studies to be a good candidate to simulate such
unsteady flows and is applied here to two different rotor/stator academic cavities:
an annular and a cylindrical one. The annular cavity is the closest configuration
to the space turbopump cavities and will be of main interest to this PhD. However,
the cylindrical cavity enables to give more insight on the impact of the hub on the
dynamics of the system. For both cases, the mean flow resulting from LES is found
in good agreement with the literature. Furthermore, the ’pressure band phenomenon’
corresponding to the modal content of the system is well captured through Power
Spectral Density (PSD) and Dynamic Mode Decomposition (DMD). In case of the
annular cavity, three modes are found to drive totally the flow. For the cylindrical
cavity, the whole dynamic is synchronized around a unique frequency composed of
multiple azimuthal wave number modes differing with the radius.

2.1 State-of-the-art of enclosed cavity flows
Rotating enclosed cavities raised a new interest in the last decades mostly because of the
many industrial applications relying in these flows: centrifugal separator process, com-
puter storage devices, turbomachinery, etc. These complex systems are also found to be
representative of the turbompumps presented in Chap. 6 and have been the source of
many experimental and theoretical studies (Schouveiler (2001); Bridel-Bertomeu et al.
(2016);Séverac et al. (2007)). In the context of this PhD work, simple enclosed rotor/s-
tator cavities with annular and cylindrical shapes will be first particularly analyzed (see
Fig. 2.1). To discover the variety of flows and structures that can be found in this kind
of systems, interested readers can refer to Owen & Rogers (1989) These flows are in-
deed a source of complex phenomena and confinement has quickly been identified as the
key driver affecting the dynamics of enclosed cavities compared to simple infinite disks
(Healey (2007),Littell & Eaton (1994)). In fact, two geometrical features can distort and
generate different disturbances in such flows: finite radius configurations and end walls
(shroud and/or hub for annular cavity). Indeed, finite disk lenght is one of the form
of confinement that impacts the usual parallel flow assumption introduced for infinite
disk studies. This also makes the self-similarty solution of Batchelor (1951) or Stewart-
son (1953) inconsistent especially for high Reynolds numbers (Viazzo et al. (2012)) even
though there may be qualitative resemblance far from the end walls as shown by Brady &
Durlofsky (1987) or Lopez (1998). Contrarily to infinite disks, outward travelling modes
are expected but so do inward travelling disturbances appearing at the ends of the disks.
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In that respect, Appelquist et al. (2015) noted that if the radius of the finite disk rmax
results in a larger local Reynold number Rer = r/h than the critical local Reynolds num-
ber Rerc , the frequency and shape of the global mode will be directly imposed by the
boundary condition at rmax. This was confirmed experimentally by Pier (2013). Likewise,
in the particular case of an annular cavity, if the central hub local Reynolds number is
greater than the critical Reynolds number then the stator instability will be transmitted
to the rotor boundary layer.

Figure 2.1 – Academic enclosed rotor/stator cavities with a cylindrical shape in(a) and an annular
shape in (b). The rotating part of both configurations are filled in grey.

To introduce the different regimes potentially present in an annular or cylindrical
rotor/stator cavity, characteristic numbers need first to be defined. To do so, one uses
Figs. 2.1(a) and (b) that represent respectively an academic cylindrical and an annular
enclosed cavity. The upper disk is said stationary while the lower one rotates at the speed
Ω. One then defines h, the height of the cavity, R1 the external radius and R0 the internal
radius. The aspect ratio, defined as G = h/R1, is another important characteristic
number but one also often talks about the curvature parameter defined as Rm = (R1 +
R0)/(R1 − R0). Note that, in gas-turbine systems, the aspect ratio is usually G < 1
corresponding to radially elongated cavities. For all academic cavities, besides the local
Reynolds number Rer, note that two other Reynolds numbers can be used to define the
flow of such systems:

• The boundary layers Reynolds number: Reδ = (h/δ)2 with δ = (ν/Ω)1/2,

• The global Reynolds number : Re = Rermax = ΩR2
1/ν.

When it comes to the steady, mean and axisymmetric flow structure of rotating cav-
ities, studies showed a long time ago that it is usually composed of two boundary layers,
one on each disk, and a central core flow in near solid-body rotation. Figure 2.2 shows a
map of the different regimes found for cavities with G << 1 as a function of the global
Reynolds number Re and classified by Daily & Nece (1960) in four different regimes:

• The two laminar regimes (category I for merged boundary layers, II for separated)
are separated by a line Re G11/5 ' 2.9,
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• The transition to turbulence for flows with separated boundary layers (regime II to
IV) occurs at Re ' 1.58× 105,

• The common boundary to the two turbulent regimes: category III for merged
boundary layers and IV for the turbulent separated one is defined by Re G16/3 '
7.8× 10−3,

• The curve between regimes I and III is such that Re G10/9 ' 366,

• Finally, the common boundary to regimes II and III satisfies the equation Re
G16/15 ' 4.6× 106.

Figure 2.2 – Map of the four regimes found in rotor/stator cavities function of the aspect ration G and
the global Reynolds Number Re. Source: Daily & Nece (1960).

Although many different flows can appear, the present PhD focuses on the so called
Batchelor type flows corresponding to two separated boundary layer flows. The more
relevant experimental studies linked to these configurations are Itoh et al. (1992) and
Schouveiler (2001). In this latter, the authors provide a map of all the instabilities
present in these cavities as a function of the global Reynolds number Re and the cavity
aspect ratio G, Fig. 2.3. For these flows, two types of wave have been identified: circular
waves around the edge of the disks and spiral waves driving all the dynamics of the flow.
In the present chapter, a specific enclosed cavity with a similar operating point that the
turbopump one, is studied through Large Eddy Simulation (LES) (Sagaut (2006)). Even
though this type of study has been already realized in the past (Bridel-Bertomeu (2016),
Séverac et al. (2007)), this investigation is primordial for the next chapters and will be
taken as reference results. Note that the LES framework will be further developed to
understand the mode interactions in Chap. 3.
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Figure 2.3 – Transition diagram of a rotor/stator cavity function of the aspect ration G and the global
Reynolds number Re with Circular Rolls (CR), Spiral Rolls (SRI, SRII, SRIII), Solitary Waves (SW),
tubulent SPots (SP). The different states generating different structures are separated by numbered
curves. Letter annoted curves enable to distinguish the different base flows (Separated (BFs), joined
BFj and mixed (BFm). Source: Launder et al. (2010).

The present chapter is organized as follows. First, LES concepts and equations are
introduced in Sec. 2.2. After a brief description of the numerical set up and the config-
urations of interest in Sec. 2.3 and in Sec. 2.4, LES predictions and flow dynamics are
discussed in Sec. 2.5.

2.2 Large Eddy Simulations
In industry, most numerical studies are based on the Reynolds-Averaged Navier-Stokes
(RANS) equations (Pope (2001)) due to their low computational cost but are however
restrained to stationary flows. In the context of turbomachinery, the unsteady nature
of the flows is critical and RANS failed multiple time to describe the good beahavior
of such a flow (Su et al. (2013)). Unsteady Reynolds-Averaged Navier-Stokes (URANS)
simulations could hence be a good alternative to provide more physical understanding
but as reported in the review of Launder et al. (2010), eddy viscosity models failed to
predict rotating boundary layer thicknesses, the rotation rates of the central core and
hence the transition to turbulence. Finally, Wu & Squires (2000) performed the first
LES on a simple disk and a few years later, Séverac et al. (2007) analyzed an enclosed
rotating cavity with also a LES using a spectral vanishing viscosity (SVV) technique.
Thanks to this advanced method, both were able to retrieve a good agreement with the
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corresponding experimental data. According to these sucesses, LES is therefore the more
relevant alternative for this specific problem and will be retrieved in the present study.

2.2.1 Filtered Navier Stokes Equations
LES equations and concept for compressible flows are provided in this section. Note that
throughout this introduction, i, j, l, will be the 3 space directions following Einstein’s
notation. Note also that the index k will refer to the kth species and does not follow the
summation rule unless specifically mentioned or implied by the ∑ sign.

In a turbulent flow, different scales of structures can be generated going from the
integral scale length lt to the more dissipative and smallest scale usually called the Kol-
mogorov scale (Kolmogorov (1991)). The main difference between DNS, RANS and LES
is the ratio of scales resolved by the model. When DNS resolves all the turbulence scales
with very refined meshes (of the order of the Kolmogorov scale) and RANS models all
the turbulence, LES corresponds to a compromise where the largest structures are re-
solved and the more dissipative structures are modeled. This difference between LES and
RANS is translated through different mathematical operators applied to the original set
of Navier-Stokes equations. RANS is based on a temporal or ensemble average operator
while LES introduces a spatial filter dependent on the mesh grid size. For any variable
f(x, t), this LES operation corresponds to a convolution product:

f̄(x, t) =
∫

Ω
Gδ(x, x′)f(x′, t)dx′, (2.2.1)

where f̄ is the resolved field and Gδ is the spatial filter. From this filter, the unresolved
quantity usually noted f ′ and usually referred to as the subgrid scale is defined so that,

f ′ = f − f̄ . (2.2.2)

Finally, note that for the compressible Navier-Stokes equations, the mass-weighted
Favre filtered variables f̃ (Favre (1983)) are usually introduced following,

f̃ = ρf

ρ̄
. (2.2.3)

with ρ̄ is the filtered density.

Thanks to these definitions, one obtains the LES conservation equations that read,

Filtered mass flow conservation

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ũj) = 0, (2.2.4)

where ũj are the filtered velocity components.
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Filtered momentum conservation:

∂ρ̄ũi
∂t

+ ∂

∂xj
(ρ̄ũiũj) = − ∂

∂xj
[P̄ δij − τ̄ij − τ̄ tij], (2.2.5)

where P is the pressure and δij stands for the Kronecker symbol. The resolved viscous
stress tensor τ̄ij is then given by:

τ̄ij = 2µ(S̃ij −
1
3δijS̃ll), (2.2.6)

where S̃ij is the rate of strain tensor defined as:

S̃ij = 1
2(∂ũj
∂xi

+ ∂ũi
∂xj

), (2.2.7)

and µ is the mixture molecular viscosity, described with a Sutherland or a Power law.

Filtered species conservation:

∂ρ̄Ỹk
∂t

+ ∂

∂xj
(ρ̄Ỹkũj) = − ∂

∂xj
[Jj,k + Jj,k

t], (2.2.8)

where ρk = ρYk with kth specie’s mass fraction Yk. Jj,k = Vj,kYk represents the
diffusion flux with Vk,j the components of the diffusion velocity of species k.

Filtered Energy conservation:

∂ρ̄Ẽ

∂t
+ ∂

∂xj
(ρ̄Ẽũj) = − ∂

∂xj
[uj(Pδij − τij) + q̄j + q̄tj], (2.2.9)

where E =
∫ T0
T CpdT + 1

2uiuj −
P
ρ
and qj is the heat flux.

The state equation which closes the Navier-Stokes equations is hereafter assumed to
be an ideal gas mixture so that,

P

ρ
= rT, (2.2.10)

where r is the gas constant of the mixture, r = R/W where W is the mean molecular
weight of the mixture:

1
W

=
N∑
k=1

Yk
Wk

, (2.2.11)

with Wk is the molecular weight of the kth species.
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In Eqs. (2.2.4)-(2.2.9), τ̄ij t, q̄tj and Jk,j
t correspond to the turbulent or subgrid terms

which need to be modeled. Only details on the subgrid-grid scale Reynolds stress tensor
are provided hereafter, more details being found in the book of Sagaut (2006).

The subgrid-grid scale Reynolds stress tensor can be expressed as,

τ̄ij
t = −ρ̄(ũiuj − ũiũj). (2.2.12)

A Boussineq approximation (Boussineq (1897)) is usually used to model this term so
that,

τ̄ij
t = 2ρ̄νt(S̃ij −

1
3δijS̃ll). (2.2.13)

This expression relates the subgrid stress to a quantity that takes the form of a
viscosity and also called subgrid-scale turbulent viscosity νt. The νt model used in the
present work is WALE (Wall-adapting local eddy-viscosity) originally proposed by Nicoud
& Ducros (1999) and is of the form,

νt = (Cw∆)2 (sdijsdji)3/2

(S̃ijS̃ij)5/2 + (sdijsdji)5/4
, (2.2.14)

where S̃ij = 1
2

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
, and sdij = 1

2

(∂ũi
∂xj

)2

+
(
∂ũj
∂xi

)2
+ 1

3δij
(
∂ũk
∂xk

)2

,

for which, the closure coefficient is Cw = 0.325.

2.3 Studied cavities
In this chapter, as represented by Fig. 2.1, the cavities of interest to be simulated by
LES have a cylindrical and annular shapes. Two specific configurations already studied
theoretically and experimentally at Re = 105 are used, Table 2.1 summing up all the
parameters of both cases as well as their rotor rotation rate:

• Case 1 is a cylindrical cavity designed with G = 0.2 and is a first order approxi-
mation of a real life turbine rotor/stator cavity. Such an aspect ratio is indeed often
considered in the literature (Serre et al. (2001b, 2004); Tuliszka-Sznitko & Zielinski
(2007); Lopez et al. (2009)) as relevant to model industrial cavities without the
complex flow effects induced by the presence of a hub. Experimental results for
such a configuration can be found in Daily & Nece (1960) or Czarny et al. (2002).

• Case 2 is an annular cavity with G = 0.2 and Rm = 1.8. It only differs fromCase
1 by the presence of a hub (R0 > 0). It hence allows to illustrate the effect of a non-
unit curvature parameter on the rotor/stator cavity flow response to destabilizing
effects. This specific value of Rm = 1.8 is chosen because the corresponding in-
cavity flow was extensively studied by Séverac et al. (2007) experimentally as well
as numerically and later by Tuliszka-Sznitko et al. (2009).
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Case 1 Case 2
R0 — 71 mm
R1 178 250 mm
h 35 35 mm
Ω 615 315 rad/s
Re 105 105 —
G 0.2 0.2 —
Rm 1.0 1.8 —
Stator z 35 35 mm

Rotor z 0 0 mm

Table 2.1 – Characteristic parameters of the two rotor/stator cavities shown in Fig. 2.1.

Note that the wall resolved LES predictions and validations for both cases under con-
siderations have been comprehensively detailed and validated in Bridel-Bertomeu et al.
(2016). Features of interest for each prediction are detailed hereafter with the objective
of identifying the origin of the observed flow large structures and dynamics.

2.4 Numerical model

2.4.1 Mesh
In order to create Case 1 and Case 2 meshes, 2D disk and annular unstructured meshes
have been first generated through the software CENTAUR1 and finally 3D extruded
along the z-axis via the mesher HIP2. Figure 2.4 presents a view of the results obtained
for Case 2, only a sector of the 3D mesh is given. One can note that the final 3D grids of
each configuration are only composed of prismatic elements with a constant thickness z1.
Table 2.2 sums up the spatial resolution adopted and measures for both cases. Nnodes,
Ncells and ∆t correspond respectively to the number of nodes, number of cells and the
average LES time step. Note that z1 has been taken of the same order of δ (rotating
boundary layer thickness usually defined as δ =

√
ν/Ω). In order to evaluate the good

quality of the mesh at the walls, the first grid node wall normal coordinate z+ = z1uτ/ν

has been computed where uτ is the total wall-friction velocity defined as uτ =
√
τw/ρ

with τw standing for the flow shear stress at the wall. Table 2.2 shows the z+
min and

z+
max for both cases and for each disk (the values in the brackets represent the rotor and
stator values). Two or three points for both cases have been introduced in the viscous

1https://www.centaursoft.com/
2www.cerfacs.fr/avbp7x/hip.php
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Case 1 Case 2
δ [m] 5.65× 10−4 7.91× 10−4

z1 [m] 3.90× 10−4 5.14× 10−4

Nlayers 91 70
Nnodes 4.7× 106 5.5× 106

Ncells 9.2× 106 10.8× 106

∆t [s] 7.1× 10−7 7.6× 10−7

z+
min [0.321, 0.153] [0.975, 1.1]
z+
max [2.79, 5.79] [2.87, 5.45]

Table 2.2 – Mesh characteristic parameters of the two rotor/stator cavities shown in Fig. 2.1.

sublayers (usually defined as z+ ' 11 (Schlichting & Gersten (2001); Sagaut (2006)) as
recommended for wall resolved LES (Sagaut (2006)).

Figure 2.4 – Sector of the 360 3D mesh of the annular cavity of Tuliszka (Case 2).

2.4.2 Numerical Scheme
LES described in this chapter have been performed with the AVBP (Gourdain et al.
(2009)) code. This code has been widely used for many well known industrial and aca-
demic configurations (Seguí et al. (2018)) and especially highly unsteady flows. It solves
the filtered compressible Navier-Stokes equations and can be used on massively paral-
lel machines. For the configurations of interest, the TTGC (Two-Step Taylor Galerkin)
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scheme (Colin & Rudgyard (2000)) based on finite elements is used. This centered scheme
is an explicit two time step integration with low dissipation and dispersion properties.
It is third order accurate in time and space making it suitable for LES of compressible
flows. As introduced in Sec. 2.2.1, the subgrid model used is the WALE model (Nicoud
& Ducros (1999)). Its construction makes it more suitable than a classical Smagorinsky
model (Smagorinsky (1963)) to wall bounded flows since adapted for scaling laws near
walls.

2.5 LES results and discussion
The LES results for the two cavities are presented in this section. After an evaluation of
the mean flow against the literature in Sec. 2.5.1, the flow activity is extracted through
Power Spectral Density (PSD) and Dynamic Mode Decomposition (DMD) (Schmid
(2010)) in Sec. 2.5.2.

2.5.1 Mean flow validation
For the time-dependent solutions, the computing time is determined by the largest char-
acteristic time in rotating flows, i.e.

Note that the wall resolved LES computations have both been conducted until
at least t̃ = t F0/G ≈ 1350 (with Ω = 2πF0) so as to be coherent with the viscous
time-scales (largest characteristic time in rotating flows) of the problems that can be
expressed as G2Re/Ω (Serre et al. (2001a)). Once the statistically stationary state of
the flow is reached, data and statistical analysis of the flows is produced. In this case
and to enhance statistical convergence, mean flow quantities are obtained thanks to a
temporal and azimuthal average of the LES variables thereafter denoted by 〈·〉.

Figure 2.5 presents the averaged radial component of velocity for (a) Case 1 and (b)
Case 2 respectively. Note that the 2D cuts presented through sketches in these figures
will be used all along this work. In both figures, the radial velocity component has been
normalized by its ∞-norm, i.e. 〈ur〉/max(〈ur〉), where the maximum is taken over the
whole (r, z) domain of definition. Note that to improve the readability of the figures, the
axial coordinate has been transformed using the following ad-hoc iso-parametric function
to thicken artificially the boundary layers on the disks: arctanh ((2z/zmax − 1)(1− ε))
with ε = 0.08. This transformation will be used in all the chapters of this manuscript.
Although the spatial evolution of both top, bottom and outer wall flows are clearly
similar, differences appear as expected in the central region. Indeed, the presence of
the wall connecting the top and bottom flows via the central part of the cylindrical
cavity induces the generation of an additional wall flow which can not establish in the
annular cavity. This flow redirection introduces a direct communication between the top
and bottom wall flows accompanied by strong flow streamline curvatures near the top
and bottom central connecting regions. This specificity explains the noted differences
of flow boundary layer thicknesses in this region. It is indeed clear from Fig. 2.5 that
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Figure 2.5 – Contours of the averaged radial component of velocity normalized by its ∞-norm, 〈ur〉 /
max (〈ur〉) with (a) Case 1 (a) Case 1 and (b) Case 2. Note that these specific 2D cuts will be used
all along this work. The stator is located at the top and the rotor at the bottom. Axial coordinate is
transformed to thicken artificially the boundary layers.

Case 1 boundary layer is thinner in the central region. This feature plays a significant
role in the development of the flow turbulence and hence the modal distribution of each
configuration. Such differences have however already been evidenced and discussed in
Bridel-Bertomeu et al. (2016). They are here also identified as a potential reason for
the two different flow limit-cycles and energetic contents as briefly recalled in the coming
discussion.

To validate both LES results, the radial and azimuthal mean velocity profiles have
been extracted and compared to the literature in Fig. 2.7 and Fig. 2.6 respectively for
Case 2 and Case 1. The axial velocity component, being negligible compared to the two
other ones, this latter is not analyzed here. Note that both components are normalized
by rΩ. Case 2 configuration was chosen for the exhaustive study realized by Séverac
et al. (2007) and as shown in Fig. 2.7 a good agreement is found with this experimental
study. Furthermore, a comparison with the auto-similar solution of Rogers & Lance
(1962) shows that despite retrieving the rotation core rate and the rotor boundary layer,
confinement plays a main role on the stator boundary layer dynamics. For Case 1, one
of the objectives is to evaluate the impact of the hub on the annular cavity dynamics. To
do so, the exact same Reynolds number and aspect ratio were picked up for this cylindral
cavity. However, no precise experimental results at Case 1 operating point could be
obtained. When compared with Itoh et al. (1992) results (Re = 106, G = 0.08), one
can see that the rotation rate speed is retrieved as well as the rotor boundary layer but
discrepencies are present in the stator boundary layer. In fact, in Case 2, the stator
boundary layer is in a transitional state while in Itoh et al. (1992), it is fully turbulent.
Finally, by comparing Case 1 results with Rogers & Lance (1962) auto-similar solution,
a better agreement is found here contrary to Case 2 due again to the presence of the
hub.
In the next section, an analysis of both flow cavity dynamics is presented and the pressure
band phenomenon extracted thanks to dedicated post processing tools.
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Figure 2.6 – Case 1 base flow at r/R1 = 0.4 : Dimensionless mean radial velocity (a), azimuthal
velocity (b) with current LES results ( ), Itoh et al. (1992) experiment ( ) and Rogers & Lance (1962)
( ) auto-similar solution.

Figure 2.7 – Case 2 base flow at r/(R1 +R0) = 0.5 : Dimensionless mean radial velocity (a), azimuthal
velocity (b) with current LES results ( ), Séverac et al. (2007) experiment ( ) and Rogers & Lance (1962)
( ) auto-similar solution.
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Figure 2.8 – Three-dimensional iso-contour of the axial velocity fluctuations ufz = uz−〈uz〉 of (a) Case
1 and (b) Case 2 complemented by a two-dimensional colour-mapping in a plannar slice at θ = 0 with
associated colorbar.

2.5.2 Flow activity
Instantaneous views of the flow organization for the two limit-cycles are provided
on Fig. 2.8 through the use of the three-dimensional velocity fluctuations (noted as
uf = u − 〈u〉). To do so, the time-dependent fluctuations are computed at specific
instants t̃k and the average flow solutions are taken out of multiple instants t̃p . . . t̃n,
where t̃n, t̃k � t̃p with t̃p ≈ 200 for both Cases 1 & 2. This procedure is chosen because
when instability arises (refer to e.g. Smith, 1947; Gregory et al., 1955; Faller, 1963), the
base flow is known to depart from a purely parallel flow and the perturbations can be
measured by the magnitude of the axial velocity fluctuations which then vary around a
zero mean Lopez et al. (2009); Serre et al. (2001b). Figure 2.8 are representations of the
major features present in Case 1 and Case 2 respectively, based on three-dimensional
iso-contours of the axial velocity fluctuations ufz . In both considered cases, the stationary
disk boundary layer shows evidence of instability patterns. The rotating disk boundary
layer on the other hand displays instabilities as strong as the statoric ones only in
the presence of an inner hub (Case 2) and a spiral-like perturbation with a very low
magnitude in Case 1. Aside from the viscosity-driven boundary layers, it is of note that
the homogeneous core flow also exhibits characteristic patterns and a coherent azimuthal
organization. In addition it is also noted that the fluctuations in Case 2 have much
stronger amplitudes than in Case 1 confirming the effect of the geometry.

In Case 1, Fig. 2.8(a), the colour-mapped slice reveals that the perturbations are
strongest in the stationary disk boundary layer and in the inviscid-like core, whereas the
rotating disk boundary layer displays a very weak spiral instability. The major feature
of the flow is a spiral-like structure located in the upper stationary disk boundary
layer. The vortices are contained within a fixed radial range r ∈ [0.025, 0.14] m,
out of which the flow is either laminar (close to the z-axis) or interactions with the
outer cylindrical boundary layer lead to a loss of coherence. From the analysis of
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Figure 2.9 – Locations of the numerical probes in the cavity associated with Case 2 at θ = 0. The
bottom disk, the homogeneous core and the top disk have been instrumented, the radial positions of the
probes being referenced through the use of the colour code.

Fig. 2.8(a), an azimuthal number of m = 28 is found for r ∈ [0.09, 0.128] m. As
the radius decreases, the number of arms of the spiral structures tends to be difficult
to define. However, at the axis of the cavity for r ∈ [0.0, 0.059] m an azimuthal
number of m = 8 has been clearly identified. The buffer zone between those two
types of structure can be due to an interaction of azimuthal modes or even the
presence of an other type of mode. The large-scale structure visible in the inviscid-like
core of the flow is also noteworthy, as it appears to exist up to a greater radial
location than the statoric spiral’s limit and presents a radically different azimuthal
organization. Finally, the spiral confined in the rotor boundary layer exists mostly
close to the outer cylindrical boundary layer and seems to exhibit approximately 12-arms.

In Case 2, Fig. 2.8(b), it appears that the presence of the rotating hub has a deep
impact on the organization and dynamics of the rotor/stator flow. Like Case 1, the
stationary disk boundary layer features a 29-arms spiral structure existing at high radii
r > 0.12 m. However for r < 0.12 m, the cylindrical boundary layer present along
the hub induces the dislocation of the spiral into a quasi-concentric annular structure.
Finally, it is noteworthy that with a hub, the rotating disk boundary layer also becomes
unstable and displays spiral-like macro-structures (see Fig. 2.8(b)) that are clearly
connected to the upper disk boundary layer structures through the inviscid-like core.

The purpose of this investigation was first of all to extract the driving modes of the
cavities and their constituent frequencies. To do so, numerical probes have been placed
in both cavities to analyze the temporal dynamics of these flows. Figure 2.9 gives a
representation of the probes distribution at θ = 0 for Case 2. Note that three range of
probes have been used: mid-cavity (z = h/2), stationnary disk (z = h− δ2) and rotating
disk (z = δ).

Thanks to these temporal series, Power Spectral Density (PSD), Fig.2.10, have been
extracted from both LES limit-cycles and reveal the presence of:

Case 1 : Throughout the cavity, one major peak is identified at a frequency of 3.55F0 indi-
cating that the flow oscillates as a whole (where F0 stands for the rotor frequency).
Two more peaks appear at mid-height and in the stator layer at frequencies 3.27F0
and 3.85F0 respectively but their amplitude is significantly lower than the main
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(a) (b)

Figure 2.10 – Power Spectral Densities (PSD) of the fluctuations of axial velocity ufz at mid-height of
the two cavities and different radial locations for (a) Case 1 and (b) Case 2. In all cases, darkest to
lightest shades, respectively, correspond to an increasing radial position of the probe as identified in the
simulations.

identified one and will therefore not be addressed hereafter. From the PSD and
the isocontours of Fig. 2.8, one can deduce that this cavity has the particularity
to exhibit different m azimuthal wave number modes synchronized at a unique
frequency.

Case 2 : The annular cavity displays a much richer spectral content. Throughout the
cavity, three main frequencies can be identified, i.e. 0.35F0, 3.24F0 and 3.61F0, all
other peaking frequencies being either harmonics or linear combinations of these
three frequencies. Similarly to Case 1, the magnitudes of the peaks at different
radial locations are coherent with the location of the three-dimensional structures
in the cavity. Typically, the stator boundary layer appears disturbed only close to
the hub and up to r ' 0.18 m.

Dynamic Mode Decomposition (DMD)

PSD enabled to distinguish through probes oscillating phenomena in both cavi-
ties. One particular drawback of this tool is that it doesn’t enable to retrieve the
spatial distribution of each modes. From all available data-based analyses or modal
decomposition methods (Taira et al. (2017)), DMD (Schmid (2010)) is one of the most
widely used in the CFD community today. On top of giving access to the mode spatial
distribution of each modes, a spectrum of all the flow frequencies and their growth rate
associated can also be retrieved.

DMD has been therefore applied to both Case 1 and Case 2. Their respective
spectra (not shown) confirm the PSD findings. For Case 1, a unique frequency is
retrieved at F = 3.55F0. For Case 2, as for its PSD, the DMD spectrum is much
richer and complex. In fact, five frequencies are found common with the PSD :
F = 0.35F0, F = 3.24F0, F = 3.6F0, F = 6.5F0 and F = 6.84F0. Only the three
first modes will be taken into consideration for the rest of this PhD work, other lo-
cal maxima being attributed to noise or lack of snapshots for the adequate decomposition.
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Figure 2.11 – Axial velocity DMD in a (r, θ)-cut at z = 0.035: Case 1 (a) F/F0 = 3.55 and Case 2
with (b) F/F0 = 3.24 (m = 0), (c) F/F0 = 0.35 (m = 12), (d) F/F0 = 3.6 (m = 29).

Figure 2.12 – Axial velocity DMD of Case 1 in a (r, z)-cut of F/F0 = 3.55.

The main benefit of DMD is the possibility to access the spatial distribution obtained
for each modes. As stated in Sec. 2.8, for Case 1, instantaneous fields of axial velocity
enabled to point out different azimuthal wave numbers at different regions of the cylin-
drical cavity. DMD confirms here these observations and highlights that those different
azimuthal wavenumbers are synchronized at a unique frequency. As one can see from
Fig. 2.11(a), DMD enables also to refine the regions where each azimuthal wave number
is dominant: for r > 0.10, m ' 30 is present. For r < 0.05, a unique azimuthal wavenum-
berm = 8 is observed. Finally between 0.05 < r < 0.1, coherent structures with the same
order of amplitude as the low and high radii ones are observed but with no characteristic
wavenumber. As shown in Fig. 2.12, this mode is generated around the stator boundary
layer. A more detailed analysis of this complex mode is provided in Sec. 4.4.2.

For Case 2, the three dominant frequencies observed in the DMD spectrum have
respectively a unique azimuthal wavenumber. As shown in Fig. 2.11(b), the first mode
considered as an annular shape (m = 0) with a frequency F/F0 = 3.24 mainly present
around the hub and the stator disks (see Fig.2.13(a)). Finally, two spiral modes m = 12
and m = 29 respectively given in Fig. 2.11(c) and in Fig. 2.11(d) are observed around
the rotor and the stator disks (see Fig.2.13(b)-(c)). For the aspect ratio and Reynolds
number of the present configuration, these three specific modes and shapes are in good
agreement with the transition diagram presented in Fig. 2.3.
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Figure 2.13 – Axial velocity DMD of Case 2 in a (r, z)-cut with: (a) m = 0, F/F0 = 3.24 (b) m = 12,
F/F0 = 0.35 (c) m = 29 F/F0 = 3.6.

2.6 Conclusion
This first investigation focused on Large Eddy Simulations, realized with AVBP, for
two rotor/stator cavites: an annular and cylindrical shapes. These configurations are
indeed a first order representation of more complex turbomachinery cavities and enable
to study the activity and modes that dictate the unstable regime of such flows. First, the
mean velocity profiles are detailed and validated against literature (Schouveiler (2001);
Lopez et al. (2009)). These are indeed of first importance for the next stability study
of Chap. 4. The activity of the flows is then studied thanks to Power Spectral Density.
and the results show that Case 1 exhibits a unique mode present everywhere in the
cavity. At the opposite, Case 2 reveals a richer spectrum with three dominant modes.
Even though, LES enables to obtain a full description of the annular rotor/stator cavity
and DMD allows to extract the coherent structures, deeper understanding of these mode
origins and interactions still needs to be acquired to eventually produce control strategies.
In the next chapter, a new tool is proposed to do so. The objectives are indeed through
numerical control to investigate how the modes interact with each other so as to identify
which mode is to be controlled first. Note that for this specific investigation only Case
2 will be directly addressed.
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Mode interaction is a complex phenomenon particularly difficult to predict
and model. In the previous chapter, three modes with distinct frequencies have been
found to constitute the global activity of the annular rotor/stator cavity. From this
observation, non linearities can be suspected to generate interactions between these
modes and in particular a dominant mode can create low frequency modes. To eval-
uate such a specific property of an oscillating flow, a new method named Dynamic
Mode Tracking/Control (DMT/DMTC) is proposed. Based on temporal filters, DMT
is constructed so as to track flow features on the basis of LES. The benefit of this
new method is to extract "on-the-fly" flow coherent structures with a given frequency
saving simulation time and memory compared to more classical post processing tech-
niques. Furthermore, augmenting the Navier-Stokes equations with a relaxation term
coupled to DMT, DMTC allows to control and follow the evolution of a controlled
mode as well as non controlled ones and thereby observe interactions. Thanks to
such numerical experiments, one can access to mode dominance of an established
limit-cycle. This last strategy is therefore applied here to the annular rotating cavity
and shows that the low frequency mode is as assumed generated by a dominant mode.
This information will then be used to guide the design of physical control strategies
aiming at damping the whole pressure band phenomenon.

3.1 Introduction
Theoretical as well as experimental or numerical works on turbulent flows have very
early evidenced the presence of coherent structures (Davies & Yule (1975); Pope (2001)).
Although not clearly defined, these structures have been extracted thanks to different
methods taking advantage of a spatial or temporal analysis of flow features even in in-
dustrial applications. From the review of Taira et al. (2017), those mathematical tools can
be classified in two categories: operator-based or data-based analyses. Operator based
analyses such as global stability analysis have recently gained interest (Theofilis (2011))
and will be evaluated in Chap. 4. At the opposite, data-based analyses or modal decom-
position methods are widely used in flow dynamics, most of the time as post processing
tools which impose the saving and manipulation of a large amount of data. A typical
example has been presented in Sec. 2.5.2 with DMD. For this technique, one requires
access to a spatial and temporal representation of an entire flow field (set of snapshots)
to obtain a complete set of modes with indications of frequency, growth rate and their
specific spatial distribution. In opposition to the more classical Proper Orthogonal De-
composition (POD) (Lumley (1967)), DMD gives a decomposition on a non-orthogonal
spatial basis which results in a more meaningful representation of the flow dynamics. In
the previous chapter this tool typically enabled to extract the pressure bands phenomenon
in an annular rotor/stator cavity and showed that three main modes with three specific
azimuthal wave numbers m = 0, m = 12 and m = 30 were driving this academic cavity.
For future control purpose, the question remaining as shown in the scheme of Fig. 3.1 is
how does these modes interact ? Unfortunately such a question can not be answered
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today in the context of LES and AVBP or through the use of data-based analyses

Figure 3.1 – Schematic of mode interactions studied during this chapter

In this chapter, as a first attempt to answer this question, a new tool called Dynamic
Mode Tracking (DMT) is presented to address this problem. Since one knows that track-
ing and damping structures can be linked to spatial and temporal filtering techniques
and have been widely used in the context of CFD. One of the most known application
of such tools remains indeed LES where the large scales of motion are resolved and the
small ones filtered with a low pass linear filter allowing coarser meshes while alleviating
the weight of turbulence modeling in the flow prediction. Likewise, Localized Artificial
Dissipation (LAD) is also a well known example which uses spatial filtering to prevent
wiggles emergence and smooth large gradients Mathew et al. (2006, 2003). In an other
context, the Selective Frequency Damping (SFD) (Åkervik et al. (2006)) was created
to compute a steady state flow by filtering the unstable temporal frequencies, essential
to conduct linear stability analysis. Following this latter method, DMT is proposed to
identify dynamically with band pass filters, a mode with a given frequency so as to have
access to its spatial as well as temporal evolution in a non-linear context. Contrary
to other typical data-based analyses like DMD or POD, this ”on-the-fly” method does
not require to save data, hence saving non negligible memory. Once validated, such an
information can then be used as a support to actively control a mode by adding a relax-
ation term in the CFD solver, as done with SFD. This simple strategy, named hereafter
Dynamic Mode Tracking and Control (DMTC), hence allows to follow the evolution
of a controlled mode as well as non controlled modes and thereby observe the interactions.

The chapter is organized as follows: SFD method is recalled first in Sec. 3.2 followed
by the mathematical formulation of DMT/DMTC in Sec.3.3. The capacity of this new
approach is not detailed here but can be retrieved from App.B where three types of flows
are opposed (1D cavity with 3 acoustics eigenmodes, a cylinder wake and an academic
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premixed swirl burner). Instead, DMT/DMTC are exploited on the enclosed annular
cavity in Sec. 3.5 to give a first answer on how the three main modes interact.

3.2 Selective Frequency Damping (SFD)
Being in the context of fluid dynamics, the original set of governing equations are the
non-linear compressible Navier-Stokes (NS) equations symbolically expressed by,

q̇ = F (q), (3.2.1)

where F corresponds to the non-linear NS operator and q stands for the state vector of
the conservative variables: i.e. q = (ρ, ρui, ρE) with i ∈ [1, 2, 3] for a fully 3D problem
where ρ is the fluid density, ui are the velocity components and E is the total energy.
In the following, notations are such that for any quantity X, dependent of time, t, the
notation Ẋ refers to as the derivative of X with respect to time and X̂ stands for its
Fourier transform,

X(t) =
∫ ∞
−∞

X̂(ω)exp(iωt)dω, (3.2.2)

where ω is a pulsation.

With this formulation, the SFD method (Åkervik et al. (2006)) seeks a steady state
flow solution relying on the application of a low-pass filter noted T in the time domain to
suppress high frequencies related to flow instabilities. The transfer function Ĥ associated
to this low pass filter T in the Fourier space usually reads,

Ĥ(ω, δ) = 1
1 + iωδ

. (3.2.3)

where δ is the characteristic filter width as represented on Fig. 3.2. Applying this fil-
ter yields the filtered variables, usually denoted by q̄(t), and is obtained thanks to a
convolution product of q̂ with Ĥ.

ˆ̄q(ω) = Ĥ(ω) ∗ q̂(ω), (3.2.4)

An inverse Fourier transformation can then be applied to yield the temporally dependent
filtered signal,

q̄(t) =
∫ ∞
−∞

Ĥ(ω)q̂(ω)exp(iωt)dω. (3.2.5)

It results that in the spectral domain, Ĥ corresponds to the ratio ˆ̄q/q̂ and that by differ-
entiating Eq. (3.2.4) and using the Fourier transform properties, one can show that the
last expression satisfies an ordinary differential equation of the form,

˙̄q = q − q̄
δ

. (3.2.6)
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Thanks to this property, the filtering operation is equivalent to solving the above ordinary
equation in time. The main benefit of using this specific equation is that it allows working
directly in the time domain rather than in the frequency domain and back. It can also be
easily implemented in a time stepping code giving access to q̄(t) for a given or observed
q(t).

SFD has been at the origin of many different applications. For example, Garnaud
et al. (2012) have shown recently that it is possible to solve an eigenvalue problem in a
specific range of frequencies by replacing the low pass-filter of SFD by a band-pass filter,
saving computational time and memory. Jordi (2015) has also shown that it is possible to
find optimal SFD parameters with successive stability analyses using partially converged
base flows.

As detailed in the introduction, an extension of SFD called DMT/DMTC is presented
in this chapter to extract a mode with a given frequency. The next paragraph is dedicated
to the mathematical formulation of this new method.

3.3 Dynamical Mode Tracking (DMT)
The extension proposed here consists in taking a classical second order band-stop filter
Tsf with a transfer function Ĥsf of the form,

Ĥsf (ω, ω0, β) =
ˆ̄q
q̂

= ω2
0 − ω2

ω2
0 + iβω − ω2 , (3.3.1)

where β is defined as the filter width, f0 the central frequency so that ω0 = 2πf0 and
ω a pulsation. A band-stop filter has the benefit of passing all the frequencies with
the exception of a band of frequencies limited by the so called cutoff frequencies noted
respectively f− and f+. As shown in Fig. 3.2, the bandwidth is a crucial parameter as it
dictates the selectivity of the filter but also the attenuation / gain of the output variables.
Small values of β, for which the band-stop filter is referred to as a Notch filter (thin line
in Fig. 3.2) are recommended to capture a given feature or mode at a given frequency.

As for the original approach, the filtered variables q̄ can be expressed as a convolution
product,

q̄(t) =
∫ ∞
−∞

Ĥsf (ω)q̂(ω)exp(iωt)dω, (3.3.2)

which then becomes solution to a second order ordinary differential equation only function
of time,

¨̄q − q̈ + β ˙̄q + ω2
0(q̄ − q) = 0. (3.3.3)

The main benefit of this method comparatively to SFD is to be able to dynamically
track a given feature at a given pulsation ω0 thanks to Eq. (3.3.3). The counterpart of
having access to q̄: i.e. the flow without the frequency ω0/2π, is that one can easily access
q − q̄ which is the flow response at ω0 as time evolves. Contrary to the new approach
proposed, most known methods available to compute modes are used as post processing
tools.

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



40 Chapter 3 : Mode dominance and interactions

𝑓" 𝑓#𝑓$

β
(𝐵𝑎𝑛𝑑𝑤𝑖𝑡ℎ)

𝐺𝑎𝑖𝑛

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

0𝑑𝐵

−3𝑑𝐵

−𝑑𝐵

𝑃ℎ𝑎𝑠𝑒

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

+90°

−90°

0°

(𝑎) (𝑏)

𝑓$

𝑓"

𝑓#

𝛿

Figure 3.2 – Ideal filters characteristics: (a) Gain and (b) Phase as functions of frequency for a classical
band-stop filter ( ), a narrow band-stop filter also referred to as a Notch filter ( ) and a low pass
filter ( ).

They can be sensitive to noise and memory demanding. In the following, the proposed
solution will be referred to as Dynamic Mode Tracking (DMT) and will correspond to
the NS system augmented by a set of second order ordinary differential equations whose
inputs are the instantaneous NS solutions provided by the CFD solver and (ω(n)

0 , β(n))
values for each equations if multiple modes are to be retrieved (for example Nmodes). The
final CFD solver hence will solve,

q̇ = F (q),
For n = 1...Nmodes

¨̄q(n) − q̈ + β(n) ˙̄q(n) + (ω(n)
0 )2(q̄(n) − q) = 0.

(3.3.4)

Just like for SFD, critical parameters that define the filtering process are for DMT:
(ω0; β). To help understanding the impact of these parameters, the filter equation,
Eq. (3.3.3), is rearranged into,

¨̄q + β ˙̄q + ω2
0 q̄ = q̈ + ω2

0q. (3.3.5)
With this form, one notes that the original system corresponds to a forced oscillator
problem for which the solution q̄ can be expressed as the sum of a homogeneous solution
q̄h and a particular solution q̄p. The exact solution of the homogeneous equation is well
known and can be compared to a classical mass-spring-damper model where the speed
of convergence is directly associated to the coefficient β. In this context, if one defines
τ90% the time for the mode/feature to be converged to 90% of its final amplitude, then
the following approximation holds,

1− exp−βτ90%/2 = 0.9, (3.3.6)
so that,

τ90% = −2 ln(0.1)/β. (3.3.7)
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This last expression confirms that the larger β is, the quicker the convergence toward
the final mode amplitude is. It also demonstrates that τ90% is independent of the filter
frequency f0. Equivalently, the above analysis also indicates that for a system with
activity nearby f0, β needs to be chosen carefully so as to be selective enough and retrieve
exactly the good amplitude of the features under study otherwise bias may be introduced
due to the spurious forcing of the dynamic system used for identification. In the particular
case of single frequency flows, β can be taken very large to obtain a fast convergence of
the time filter making DMT suitable to capture accurately mode amplitude variations.

3.4 Dynamical Mode Tracking and Control (DMTC)
One interest behind the above data-based approach aside from having a quick and efficient
access to given flow dynamics is that it also allows to actively control the flow so as to
avoid the establishment in a solution of the identified activity. In that respect, the initial
need for SFD was to force the flow to be steady: i.e. F (q(t)) → F (q̄) along with the
constraint ˙̄q = 0 or q(t) = q̄. To do so a relaxation term is added to the momentum and
energy NS-equations to yield,

{
q̇ = F (q)− χ(q − q̄),
δ ˙̄q = q − q̄,

(3.4.1a)
(3.4.1b)

where χ is the relaxation coefficient with the dimension of a frequency. With the same
objective but with the purpose of avoiding dynamics at given frequencies, a generalized
relaxation term can be introduced in the NS operator, Eq. (3.3.4), for the control of
specific modes as identified by DMT. The benefit of this frequency dependent feedback
control loop is to keep the unsteady solution of the flow while avoiding the presence of
specific flow instabilities which is well adapted for linear problems. For more complex
flows, such a loop provides access to more understanding of mode coupling in multi
modal systems or limit cycles. This variant of DMT will be referred to as Dynamic Mode
Tracking and Control (DMTC) and corresponds to the following system,

q̇ = F (q)−
Mcontrolled modes∑

m

χ(m)(q − q̄(m)),

For n = 1...Nmodes

¨̄q(n) − q̈ + β(n) ˙̄q(n) + (ω(n)
0 )2(q̄(n) − q) = 0.

(3.4.2a)

(3.4.2b)

3.4.1 Implementation and effect of DMTC
For all the cases studied hereafter, DMT as well as DMTC have been implemented in the
fully compressible Navier-stokes solver AVBP Gourdain et al. (2009) by use of second or-
der finite difference operators. Note that for linear problems, the authors have been able
to demonstrate the efficiency of DMTC for acoustic phenomeca (see Ãpp. A.2.1). How-
ever for hydrodynamics instabilities or strongly non-linear flows, damping a dominant
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frequency of a system will only shift the operating point of the problem. The new state
generated by the artificial control can be predicted by analyzing the eignmodes associated
to the DMTC system, Eq. (3.4.2), in the spectral domain. The analysis presented here
is inspired by the study of Garnaud et al. (2012) who proposed a method to com-
pute modes of a system only in a specific frequency band through linear stability analysis.

For that case, L is the operator associated to the linearized Naviers Stokes equations, and
x the set of coordinates. By decomposing the flow fluctuations as q̇′(x, t) = q̂(x)exp(iωt),
the linearized version of Eq (3.2.1) can be expressed as,

iωq̂ = Lq̂. (3.4.3)
By defining Ω, the eigenvalues obtained after activation of DMTC, Eq. (3.4.2) can be

written in the spectral domain introducing the operator L′ whose associated eigenvectors
Q̂ satisfy,

iΩQ̂ = L′Q̂. (3.4.4)
The key point is then to note that the filtered variables ˆ̄q and the conservative variables

q̂ are linked by the filter transfer function,

ˆ̄q = ω2
0 − Ω2

ω2
0 + iβΩ− Ω2 q̂. (3.4.5)

This expression can thus be introduced in Eq. (3.4.2a) to finally obtain,

f(Ω)q̂ = Lq̂, (3.4.6)
with f(Ω) = iΩ + χ(1− ω2

0−Ω2

ω2
0+iβΩ−Ω2 ).

This expression shows that the new eigenvalues generated by DMTC can be retrieved
by solving a problem of the form,

f(Ω) = ω. (3.4.7)
Corresponding to a 3rd order polynomial with 3 roots associated to the new potential

modes issued by the control of the initial ω mode. An application on the cylinder wake
of this analysis can be found in App. A.2.2.

In the next section, DMTC is applied to the annular cavity already studied in
the previous chapters to extract information about the mode interactions present in this
specific flow problem.

3.5 Enclosed annular rotor/stator cavity: Mode in-
teractions

From the previous chapter, DMD showed potential mode feedbacks. Indeed, as already
pointed out by Serre et al. (2001b) and retrieved by Bridel-Bertomeu (2016) through
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LES, the mode m = 12 is fully expressed in the limit cycle in the rotating disk, it could
come from the stator boundary layer and could be amplified though the hub boundary
layer. However, the true origin of mode m = 12 is therefore particularly difficult to
explain. For example, Bridel-Bertomeu (2016) who studied the exact same cavity,
mentioned that mode m = 29 was the possible source of mode m = 12. This section aims
at verifying this hypothesis thanks to the new tools introduced in the previous section.
To do so, one offers a direct view of the total flow and its reaction when the different
modes are controlled one by one and on-the-fly. Note that thereafter and throughout the
study, the modes m = 29, m = 12 and m = 0 will be respectively called stator mode,
rotor mode and annular mode.

The section is organized as follow: First, DMT is used to retrieve the shape of the
three main modes driving the annular cavity. Note that in this case; it will correspond to
the modes expressed in the fully developed limit cycle of the configuration in opposition to
the linear modes computed with a linear stability approach. To obtain these results, only
one simulation is conducted. In Sec. 3.5.2, DMTC is then applied to understand mode
dominance and potential interactions as produced by LES. In particular, the interest is
here to evidence the link between the rotor mode and the stator mode. For this study, two
different simulations are presented and both are initialized with the simulation results
obtained with DMT. Each simulation corresponds to the control of one mode and a
direct evaluation of the reaction of the non controlled modes. The stator mode control is
first analyzed followed by the control of the rotor mode.

3.5.1 Mode Tracking (DMT)
DMT is first used along with LES to track the three main modes of the cavity with a
narrow bandwidth: β = 20Hz. The trace of the three modes axial velocity component
captured by DMT are displayed in Fig. 3.3(a)-(c), respectively for the stator, rotor and
annular modes, all taken in a plane located in the stator boundary layer at z = 0.034m
for three different instants. To complement this spatial vision of the modes, the temporal
signal of a numerical probe placed around the location of the axial velocity fluctuation
maximum for each mode is displayed in Fig. 3.3(d)-(f) respectively for the stator, rotor
and annular mode. Clearly, DMT retrieves here the characteristic spiral patterns with
29−arms for the stator mode, 12−arms for the rotor mode and the annuli of the annular
mode. Note that each feature requires only 3 periods of oscillation to yield an accurate
shape of the mode. Furthermore, as shown in Sec. 3.3, a time τ90% = −2 ln(0.1)/β = 0.23
s is necessary to retrieve 90% of each mode amplitude. In this particular study, a limit
of the method can be observed with the annular mode. As shown by Fig. 3.4, the same
DMT filters have been taken for the annular and stator mode extraction. Both modes
having a frequency very close, DMT captures for both modes approximately 5% of the
other mode. However, the stator mode having an amplitude 40% higher than the annular
mode, it is not unexpected that the DMT results of this latter mode are marked by the
spirals of the stator mode. The snapshot of Fig. 3.3(c)I indeed shows residues of the
spiral mode m = 29 marking the annular mode spatial distribution. A narrower bandpass
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filter width could be taken to avoid such bias but would also involve longer convergence
time (See Eq. (3.3.7))
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Figure 3.3 – Axial velocity perturbation: 3 instantaneous at t = [0.02s, 0.06s, 0.24s] are displayed for
the stator mode in (a), the rotor mode in (b) and the annular mode in (c) in a plan located at z = 0.034m.
Axial velocity perturbation at the probes (r,θ,z) = (0.16,0,0.0352), (r,θ,z) = (0.225,0,0.001) and (r,θ,z)
= (0.08,0,0.0352) is also plotted for respectively the stator mode in (d), the rotor mode in (e) and the
annular mode in (f).

3.5.2 Mode Control (DMTC)
Thanks to DMT "on the fly" capacity, one uses in the following DMTC to analyse mode
interactions. In that case and to evaluate the temporal response of the system, one defines
Em
v the kinetic energy associated to the mth mode over the domain,

Em
v =

∫
V
ρ

(u− ū(m))2

2 dv m = 0, 12, 29 (3.5.1)

which is then followed in time.

In the next paragraphs, two separated simulations are conducted both from the con-
verged results of DMT. First, the stator mode is suppressed with DMTC while following
the three modes of the system with DMT. This investigation enables to see the reaction
of the rotor mode to the suppression of the stator mode. To ensure the dominance of the
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Figure 3.4 – Axial velocity on a probe and the time filters used on the annular mode (F/F0 = 3.24)
and stator mode (F/F0 = 3.6).

stator mode over the rotor mode the inverse simulation is also realized: i.e the suppression
of the rotor mode and the investigations of the two remaining mode reactions.

Stator mode control

As said, only the stator mode is controlled using a relaxation coefficient of χ = 50.
Figures 3.5(a)-(c) display respectively the non dimensional energy Em

v /E
m
max, where

Em
max is the converged kinetic energy of a mode m obtained with DMT; i.e. either of the

stator, rotor and annular modes (the two lattest being not controlled).

Three instantaneous axial velocity fields in Fig. 3.5(d)-(f) have been extracted
from the simulation to visualize respectively the stator, rotor and annular modes as
they evolve in time. As seen, the stator mode is damped really quickly: i.e after 3
transitional growths Fig. 3.5(a). The corresponding instantaneous field, in Fig. 3.5(c),
shows that only residues of the mode are present after a long simulation time. At the
same time, the rotor mode is also progressively suppressed. The response of this mode
is however slower than the stator mode. Indeed, as shown in the instantaneous fields of
Fig. 3.5(e), the mode is progressively altered and becomes disymmetric, indicating that
the rotor mode can not exist without the stator mode. This observation is in adequacy
with Bridel-Bertomeu (2016) hypothesis.

The feedback of the annular mode to the stator mode damping can be observed in
Fig.3.5(c). Even though the annular mode is impacted, no clear link between these two
modes can be effectively highlighted. Indeed, the results show that the mode amplitude
is decreased by a half but remains and tends to reach a stable state. As evoked in the
previous section with Fig. 3.4, this effect is more likely due to the bandwidth of the filter
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Figure 3.5 – Kinetic energy (Eq. (3.5.1)) of (a) the stator mode (m = 29), (b) the rotor mode (m = 12)
and (b) the annular mode (m = 0) obtained with the DMTC. 3 axial velocity fields at t = [0.25s, 0.3s, 0.8s]
are displayed for the stator mode in (d), the rotor mode in (e) and the annular mode in (f) in a plan
located at z = 0.034m.

chosen. Since the annular mode is marked by the spiral of the stator mode, by controlling
the latter, one expects to observe an impact on the annular mode amplitude.

Rotor mode control

In this second study, the rotor mode is damped while the stator and annular mode
remain uncontrolled. Figure 3.6 presents the assocaited results associated following the
organization of Fig. 3.5. As one can see, the stator mode is not really impacted by the
rotor damping while the rotor mode disappears as time progresses. These results confirm
that the stator mode is at the origin of the rotor mode which agrees also with the
sensitivity analysis to be conducted in Chap. 4. In case of the annular mode, no impact
is observed as the mode rotor disappears. Those observations are also in adequation
with Serre et al. (2001a) who studied a similar configuration. He indeed showed that
the stator-layer instabilities are convected along the hub and induce disturbances in
the rotor layer triggering first axisymmetric (annular mode) and later three-dimensional
convective modes characterized by an opposite angle spiral (rotor mode).
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Figure 3.6 – Kinetic energy (Eq. (3.5.1)) of (a) the stator mode (m = 29), (b) the rotor mode (m = 12)
and (b) the annular mode (m = 0) obtained with the DMTC. 3 axial velocity fields at t = [0.25s, 0.3s, 0.8s]
are displayed for the stator mode in (d), the rotor mode in (e) and the annular mode in (f) in a plan
located at z = 0.034m.

3.6 Conclusions

The main goal of this chapter was first to study mode interactions of the enclosed
rotor/stator annular cavity and in particular point out the link between the dominant
mode and low frequency modes. In fact, in order to set up a control system to damp
a multi-frequency phenomenon, strategies need to be chosen. To find answers to this
problematic, a new tool called Dynamic Mode Tracking/Control (DMT/DMTC) was
introduced to track dynamically modes or flow features thanks to time filters. Contrary
to classical flow feature analyses, DMT has the benefit of being easy to implement in
a Navier-Stokes solver and gives a direct possibility to visualize a mode evolution over
time. Furthermore, by computing a mode on-a-fly, DMT also offers gain in memory and
time of computation compared to classical post-processing methods like DMD. With
DMTC, modes can also be artificially controlled thanks to a relaxation method. A
complete set of test cases with parameter sensitivity analyses was proposed (see App. B)
to validate this two new methods.

Whenever applied to the annular rotor/stator cavity, DMT is able to retrieve the
spiral and annular patterns of the DMD analysis. In its DMTC version, the method
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is also shown to enable the control of individual modes as desired. In this context,
damping the rotor mode proves to have no effect on the stator nor the annular modes.
On the contrary, suppressing the stator mode induces the rotor mode to be progressively
attenuated, signifying that it can not live without the stator mode. The link between
the annular and the stator mode is however particularly difficult to analyse through this
method. Indeed a significant decrease of the annular mode is observed when the stator
mode is controlled: the gap between the mode frequencies being very narrow, one can
directly conclude that this damping is due to a too wide DMT filter. Conclusions could
be obtained by reducing the filter width but would involve longer time convergence.
At the end, this study still highlights that to stabilize the whole cavity, controlling
the stator mode would be the more efficient. Finally, even though a first insight on
the mode organization has been highlighted through their interactions, a complete
understanding of their sources and mechanisms still needs to be produced. As evoked in
the introduction of this chapter, one of the widely used method to analyze an unstable
flow is linear stability analysis. In the next chapter, this specific method is developed to
investigate each mode separately and to set up control strategies.
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Although rotating cavity flows are essential components of industrial appli-
cations, their dynamics is still largely misunderstood. From computer hard-drives
to turbo-pumps of space launchers, designed devices often produce flow oscillations
that can either destroy the component prematurely, produce disturbing noise or unde-
sired operating modes of the system. Fundamentals of encountered static and rotating
flow boundary layers have evidenced, a long time ago now, the presence of specific
boundary layer instabilities and structures for low Reynolds numbers. For higher
Reynolds numbers and fully enclosed systems, features are however more complex
with the apparition of multi-frequency oscillations populating the entire cavity limit
cycle. Large Eddy Simulation (LES) has illustrated in Part 2 its capacity of reproduc-
ing these features and limit cycles. Complemented by the developed approaches that
are DMT/DMTC, mode dominance could also be identified thanks to LES. However,
identifying the origin and region within these flows that are responsible for mode se-
lections remains difficult if not impossible using such Computational Fluid Dynamics
(CFD) tools. The present chapter evaluates a global stability analysis framework to
identify the potential mechanisms responsible for the observed limit-cycle in the an-
nular cavity. In parallel, a study of the cylindrical rotor/stator cavity is also realized
to shed some light on the impact of a central body (or hub) and the instability selec-
tion. Results issued by the conjunct use of Global Linear Stability Analysis (GLSA)
and sensitivity analysis confirm the observed LES dynamics and DMD/DMT results.
Most importantly GLSA gives access to the triggering mechanisms at the root of the
limit-cycle expression as well as hints on the mode selection. In that respect, the
cylindrical cavity is shown to sustain more complex features than the annular cavity
because of an enhanced flow curvature near the central hub.

4.1 Flow instabilities
In fluid mechanics, flow transition from laminar to turbulent has been a complex

subject of studies for more that 150 years. In this context, hydrodynamic stability theory
has been a key to explain this phenomenon that was first studied by Reynolds with the
famous "Reynolds experiments" (Reynolds (1883)). As a follow up to this experiment,
many famous scientists have attached their names to various instabilities. For instance,
Kelvin for the Kelvin-Helmhotz instabilities has highlighted how two fluids flowing at
different velocities can create a shear velocity responsible of instabilities. Figure 4.1(a)
gives an example of such a process with the formation of typical cloud patterns formed
between two layers of air traveling at different speeds. Likewise, the Rayleigh-Taylor in-
stabilities Rayleigh (1883) occur between two fluids but for two different densities. All of
these instabilities appear in a number of different situations and can be easily evidenced
for instance by dropping coloured oil into water, creating tiny upside-down mushroom
clouds as shown in Fig. 4.1 (b). Less known, but still very complex, the Rayleigh-Bernard
instabilities happen inside a fluid confined between two infinite horizontal planes at dif-
ferent temperatures (see Fig.4.1 (c)). For more details on the occurence and specifities of
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instabilities, interested reader can refer to Drazin & Reid (2004) for a complete review.

(a) (b) (c)

Figure 4.1 – 3 examples of instabilities: (a) Kelvin-Helmotz (b) Taylor-Rayleigh instability, source :
experiment of James Riodon, AIP (c) Rayleigh-Benard instability, source: The Parabolic Press. Van
Dyke, M., 1982

In the specific context of rotating flows over disks, complex three-dimensional insta-
bilities have been observed and studied for more than a century with the first studies
being carried out by Ekman (1905) and his attemps to understand how Earth rotation
influences wind-driven ocean currents. Rotating flows over disks are still today a subject
of interest of many industrial applications (atmospheric and oceanic flows, rotating cavity
flows, centrifugal separator process, computer storage devices, chemical vapor deposition
(Lingwood & Henrik Alfredsson (2015)) and in particular in turbomachinery devices. In
the two previous chapters, LES helped capturing the pressure band phenomenon in the
boundary layers of the annular and cylindrical cavity disks. Furthermore, DMT/DMTC
gave a first information on the m = 29 and m = 12 link. However, the precise origins
and mechanisms of these modes could not be identified especially for the annular mode
m = 0. This chapter introduces a linear stability analysis framework and details their
application on academic rotating cavities to find answers to this problematic. In a first
section, features of infinite rotating disks similar to the one found in enclosed rotor/stator
cavities are presented. In Sec. 4.3, a complete description of the stability analysis prin-
ciple and the associated tools are provided. Finally, the results from dedicated stability
analyses on the cavities are detailed and discussed in Sec. 4.4.

4.2 Rotating boundary layers and cavity flows
Over the years, many academic rotating flows have been studied. A classification of these
flows has hence been realized by introducing on top of the Reynolds number, the Rossby
number Ro which characterizes the ratio of advection to the Coriolis effect:

Ro = U

LΩ , (4.2.1)
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where U , Ω and L refer respectively to the velocity of the fluid, the rotation rate of
the rotating parts and the length scales which will vary depending on the rotating flow
studied. Note that in the particular case of a flow induced by a rigid-body in rotation
over a disk, one can define Ωf , the rotation rate of the homogeneous core of fluid, Ωd

the rotation rate of the disk (if rotating) and δ the viscous characteristic length usually
defined as δ = (ν/Ωd)1/2 with ν the kinematic viscosity of the fluid. Based on this new
reference numbers and lenght-scale, Faller (1991) suggested a more relevant definition
of non-dimensional numbers relating the rotating boundary layer to the Reynolds and
Rossby numbers, so that:

Reδ = (Ωf − Ωd)rδ
ν

= r

δ
Ro, (4.2.2)

and where
Ro = ∆Ω

Ω̃
, (4.2.3)

for which Ω̃ = (Ωf +Ωd)/4+ ((Ωf +Ωd)2/16+ (Ωf −Ωd)2/2)1/2, r is the radial coordinate
and ∆Ω = Ωf − Ωd.

From the above new definitions, one can define three types of rotating boundary layers
induced by the differential rotation of a rigid rotating inviscid flow over a disk:

• Ekman (1905) and Von Kármán (1921) flows: In Ekman and Von Kármán rotating
boundary layers, the flows are radially thrown outwards because of the centrifugal
force and create a downward axial flow. This effect is illustrated in Fig. 4.2(a) where
U ,V and W denote respectively the mean radial, azimuthal and axial velocities.
These two types of flow can be distinguished by the behavior of their homogeneous
core of fluid:

– Ekman (1905) flow: Ekman was the first to describe rotating boundary layers
by setting a theory on the influence of the Earth’s rotation on ocean currents.
More generally, the Ekman layer occurs when a disk and fluid rotate with
approximately the same angular velocity, i.e, Ω̃ = Ωf = Ωd and Ro = 0.

– Von Kármán (1921) flow: A few years later, Von Kármán formulated the
similarity equations giving the exact solution to the Navier-Stokes equations
for a laminar flow over an infinite disk spinning in an unbounded fluid at rest
sufficiently far above the disk, i.e, Ωf = 0, Ω̃ = Ωd and Ro = −1.

A complete review on these specific rotating boundary layers can be found in Ling-
wood & Henrik Alfredsson (2015).

• Bödewadt (1940) flow: Much later, Bödewadt studied the flow produced over an
infinite stationary plane in a fluid rotating with a uniform angular velocity at an
infinite distance from the plane, i.e, Ωd = 0, Ω̃ = Ωf and Ro = 1. Much less
studies have however been realized on this type of boundary layer flow because of
the difficulty to reproduce it experimentally. The Bödewadt layer contrary to the
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first boundary layer flows corresponds to an equilibrium between the centrifugal,
Coriolis forces and the radial pressure gradient forces in the core flow. The viscous
dissipation and the radial pressure gradient flow yield therfore an inward axial flow
close to the disk, Fig.4.2(b). Batchelor (1951) showed that the ratio of the fluid
and disk rotation velocities are sufficient to characterize the steady laminar flow
over an infinite disk.

z

U(z)
V(z)

W(z)

z

U(z) V(z)

W(z)

Figure 4.2 – Flow behaviour of a fluid initially at rest put in motion by a rotating disk (a) and a
rotating fluid over a stationary disk (b). From Schlichting & Gersten (2001).

Note that, by adopting a dimensionless form of the continuity and momentum equa-
tions in cylindrical coordinates for axisymmetric steady flows (Lingwood (1995)), these
three specific flows can be generalized and are usually referred to as the BEK (Bödewadt
Ekman Kármán) family .

BEK Characteristic instabilities

It is now well known that the above discussed undisturbed boundary layer flows
become unstable when Reδ exceeds a critical value. Table 4.1 from Crespo del Arco et al.
(2005) sums up these different critical values for the different types of rotating boundary
layers. Many stability studies on the BEK model have therefore been realized during the
last decades and have permitted to classify the different instabilities of rotating flows
apt to support the laminar/turbulent transition in 3 types:

• Cross flow Instability, referred to as Type-1: This type of instability has been first
discovered by Smith (1947) and occurs if the mean velocity component profiles
are inflectional. Gregory et al. (1955) observed experimentally that this instability
occurs in the case of the Von Kármán and Ekman boundary layers which was
confirmed a few years later by Faller (1991). These specific instabilities mark the
flow as 3D spiral patterns .

• Convective instability, referred to as Type-2: Malik (1986) extended the work of
Gregory by computing the neutral curves for stationnary disturbances. He con-
firmed the existence of the Type-1 instability and showed an additional mode. This
last one is due to the viscous part of the flow and comes from the Coriolis forces
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Figure 4.3 – The 3 types of responses of a perturbation: (a) Stable, (b) Convectively unstable, (c)
Absolutely unstable.

which curve the flow streamlines. Contrary to Type-1, these specific instabilities
appear as annular patterns.

• Absolute instabilities. Lingwood (1996) pointed out a third instability called abso-
lute instabilities first described in Huerre & Monkewitz (1990). This specific insta-
bility differs from the convective instability by the way it propagates and grows in
the system. As shown in Fig. 4.3, if the flow is convectively unstable, a spatially
unstable wavepacket is typically advected away from the source and let it eventually
undisturbed. On the other hand, if the flow is absolutely unstable, the unstable
wavepacket surrounds the source and eventually contaminates the whole medium.
Absolute instabilities can be also seen as an over production of fluctuations com-
pared to their transport. Contrarily, for a convective instability, the transport of
fluctuations will be dominant. The absolute instabilities are known to be responsi-
ble for the laminar-turbulent transition and the onset of the nonlinear behavior of
the flow. More details on these instabilities are given in Sec. 4.3.1.

Rossby
number Type II Type I Neutral stability for

stationary waves
Absolute
instability

Ro = −1
(Von

kármán)
69.4 285.3 290 507

Ro = 0
(Ekman) 54.3 113.1 116.3 198

Ro = +1
(Bödewadt) 15.1 [15.1; 25] 27.4 21.6

Table 4.1 – Critical Reynolds numbers Reδc obtained by stability analysis for the three basic types of
rotating boundary layer flows by Faller (1991) and Lingwood (1996).

Local stability analyses (see Sec. 4.3.1 for more details) were at the root of the discov-
ery of the different instabilities that can trigger the flow of the BEK family. It futhermore
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enabled to discover the convectively unstable mode (Type-2) of the Von Kármán bound-
ary layer (Faller & Kaylor (1966)). The same authors also confirmed that this instability
is also present in the Ekman boundary layer, dominates at low Reynolds numbers and
becomes stable in the inviscid limit. Both Type-1 and 2 instabilities are unstable to
stationnary disturbances and also to disturbances traveling relative to the disk surface
but with different critical local Reynolds numbers (See 4.1). Traveling Type-2 distur-
bances were observed in expermients (Faller (1991); Tatro & Mollo-Christensen (1967))
and theoretically studied for the Ekman boundary layer by Lilly (1966).

From local to global instabilities

For the specific Von Kármán boundary layer, local absolute instabilities corresponding to
disturbances growing in time at fixed radial postions (see Sec 4.3.1 for more information)
were found by Lingowood through a spatio-temporal linear stability analysis (Lingwood
(1996)) and for Reynolds numbers much higher than the Type-1 and Type-2 instabilities
(See 4.1). These specific instabilities were obtained in a local context and are often
associated to the transition to turbulence but their link to the global beahviour of the
flow is still an open subject of research. However, Davies & Carpenter (2003) showed
through linearized Navier–Stokes equations submitted to a specific impulse excitation
that local instabilities do not produce global linear instabilities. Their link with a global
mode (real self-sustained oscillation oberved in experiments) were only clarified by Pier
(2003, 2007) through non linear stability analyses. He indeed showed that the primary
local absolute instabilities are unstable to secondary absolute disturbances generating
disorder and triggering global modes. This type of mode has then been referred to as an
elephant mode in the litterature Pier et al. (1998); Pier (2007). Besides the Von Kármán
boundary layer, from the author’s knowledge, only a few studies focusing on the two
other flows of the BEK family and on the mechanisms triggerring a global mode have
been realized. One can site at least the study of Davies & Thomas (2016), who used a
global stability framework to evidence that the BEK family is globally linearly stable.
However, only Rossby numbers in the range −1 ≤ Ro ≤ 0.6 were studied. When it
comes to the Bódewadt boundary layer (Ro = 1), it was not investigated due its highly
unstable nature.

4.3 Linear Stability Analysis (LSA) of Rotating flows
Stability analyses can be used in many different fields from the simple stability of a tree
in a windstorm James et al. (2016) to the complex studies of the evolution of a star
structure Chandrasekhar (1984). In fluid dynamics, a "base flow" can be said stable in
the sense of Lyapunov (1992), if an infinitesimal perturbation of this base flow stays
infinitesimal over time or if the perturbed flow stays around the base flow. In addition of
telling us if a flow is stable or unstable, the main goal of a linear stability analysis is to
give the physical features of the response of a little perturbation around the base flow:
frequency, amplification rate (also called growth rate), spatial and temporal evolution.
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This section intends to descibe how this method works in details in the particular
case of a rotating flow. The interested reader can find more information about this
theory in the book of Drazin & Reid (2004).

Base flow versus Mean flow

From theory, all linear analysis has to be done around a base flow solution of the
Navier Stokes equations that can be stationnary or time-periodic. For simple cases,
one can use analytical solutions as done for a simple rotating disk (see Sec. 4.2). For
complex configurations, recent methods were developped to construct a base flow from
unsteady simulations (Selective Frequency Damping (SFD) Åkervik et al. (2006); Jordi
et al. (2015)). For limit-cycle studies, non linearities can become predominant and
cause a so called base flow distorsion. This last phenomenon can make difficult the use
of such framework especially of one intends to retrieve the good frequencies resulting
of non-linear processes (like the frequencies observed in experiments or numerical
simulations of high Re cases ). For such complex flows, the mean flow is usually taken
after manipulation (time-averaged solution typically) and can be obtained thanks to
CFD for example. This last choice is however still a great subject of debate, Beneddine
et al. (2016). Indeed, even if the mean flow is most of the time not a fixed point of the
Navier-Stokes equations, it still enables to take into account a part of the non linearities
of the flow. For example, in the case of a flow around a cylinder, Pier (2002) showed very
good predictions of the vortex shedding frequency, even far from the critical Reynolds
number by using its mean flow. A good review of the mean flow properties and its
impact on linear stability analysis can be retrieved in Turton et al. (2015) and Bengana
et al. (2019).

Governing equations

One describes here the construction principle of the governing equations for an
axisymmetric rotating flow. In the following, p and u = (ur, uθ, uz)T represent respec-
tively the pressure and velocity perturbations while U = (Ub, Vb,Wb)T stands for the
base flow solution of the steady Navier-Stokes equations.

After linearization of the Navier-Stokes equations around the base flow, the fol-
lowing first order system of equations in the cylindrical-polar coordinates (r, θ, z), are
obtained:

1
r

∂(rur)
∂r

+ 1
r

∂uθ
∂θ

+ ∂uz
∂z

= 0, (4.3.1)
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∂ur
∂t

+ ur
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∂z
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∂ur
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∂uθ
∂t

+ Ub
∂uθ
∂r

+ ur
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∂uθ
∂r
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)
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(4.3.3)

∂uz
∂t
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∂uz
∂r

+ ur
∂Wb

∂r
+Wb

∂uz
∂z

+ uz
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∂z
+ Vb
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∂uz
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∂z2 + ∂2uz

∂r2 + 1
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∂uz
∂r

+ 1
r2
∂2uz
∂θ2

)
.

(4.3.4)

This set of equations can be reformulated in the following matrix system:

B
∂q

∂t
= Jq (4.3.5)

for which q = (ur, uθ, uz, p)T is the perturbation vector and J the Jacobian of the
Navier-Stokes equations.

Stability analysis around the base flow is then given by the spectrum of eigenval-
ues of the matrix J . Depending on the nature of the base flow (parallel, weakly
non-parallel, two or three-dimensional flow), different types of analyses can be realized:

• Local stability analysis: Simple flows with the parallel flow assumption (reduced
system of equations),

• Global stability analysis: More complex flows with a non parallel assumption (full
set of equations).

In the following two sections, the local and global methods are described and applied
to enclosed cavities.

4.3.1 Local Stability
Flow instabilities were particularly difficult to study in the past because of the lack

of computational resources or even analytical tools. Most of the investigations therefore
assumed that the wavelength of the underlying instability mechanism is short compared
to the typical scale over which the flow develops in the streamwise direction. Under such
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an assumption, parallel base flow rotating around an axis z has the form:

U = (Ub(z), Vb(z),Wb(z))T ,
P = Pb(z).

(4.3.6)

By imposing perturbations of the form [ui, p] = [ur(r, θ, z, t), uθ(r, θ, z, t),
uz(r, θ, z, t), p(r, θ, z, t)] on the base flow with the following global decomposition: U(r, θ, z, t) = Ui(z) + ui(r, θ, z, t),

P (r, θ, z, t) = Pb(z) + p(r, θ, z, t),
(4.3.7)

the set of Eqs. (4.3.1)-(4.3.4) can be simplified and becomes separable in r, θ and t.
The perturbations can hence be represented with a normal mode formulation so that:

[ur, uθ, uz, p]T = [ûr, ûθ, ûz, p̂]T (z) exp[(i(αr +mθ − ωt)] (4.3.8)

In this case, a given mode is said normal because it is considered independent of
the other modes of the systems. Each mode can hence be represented by a pair of
parameters (α, ω) with α a complex wavenumber α = αr+ iαi and ω a complex frequency
ω = ωr + iωi. With this notation, αr = Re(α) corresponds to the real wavenumber of the
perturbation and αi = Im(α) is the amplification rate in space of the mode. A similar
physical interpretation of ω can be given i.e, ωr = Re(ω) represents the real frequency
and ωi = Im(ω) is the amplification rate in time of the mode. Finally m represents the
azimuthal wavenumber. In case of a rotating cavity, modes corresponding to m = 0
will be axisymmetric and for (|m| > 0,|α| > 0), modes will show spiral patterns with
m−arms.

By introducing the normal modes in the linearized equations, Eqs. (4.3.1)-(4.3.4), one
can formulate a dispersion problem which reads

DL(ω, α,m, q̂) = 0, (4.3.9)

where DL denotes the problem dispersion relation of a general local stability analysis.
(The detailed equations of this problem can be retrieved in App. A.1). Thanks to this
dispersion relation, several types of analysis can be done as detailed hereafter.

Temporal analysis:

The temporal analysis purpose is to find the complex frequency ω by fixing a real
wavenumber (α ∈ R). In other words, find the response of the flow to an α given
spatial excitation. The dispersion problem of Eq. (4.3.9) is in such a case reduced to the
following eigenvalue problem (EVP) :

Aq̂ = ωBq̂, (4.3.10)
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with q̂ = [ûr, ûθ, ûz, p̂]T

The growth of the infinitesimal perturbations q̂ is then governed by Im(ω) = ωi (the
imaginary part of ω):

• if ωi > 0: The base flow is said linearly and locally unstable. The perturbation
grows exponentially with time,

• if ωi < 0: The base flow is said linearly and locally stable. The perturbation decays
exponentially with time,

• if ωi = 0: The base flow is said neutrally stable and the perturbations do not change
with time. Deeper investigation is necessary usually using a non-linear analysis.

Note that it is possible to simplify the system of Eq. (4.3.10) by introducing the
stream function φ of the perturbations. This operation yields the famous Orr-Sommerfeld
equation (Orr (1907); Sommerfeld (1908)).

Temporal analyses are well suited for bounded flows for which located perturbations
can not spatially grow. However, even if this type of analysis can give the evolution of
perturbations in time, it does not enable to access a global mode.

Spatial analysis:

In this case the unknown is the wavenumber α. One looks for the response of
the flow to time periodic oscillations. Hence, ω ∈ R is fixed. The set of equations,
Eqs. (1.1.1)-(1.1.4), bring out quadratic terms in α and the eigenvalue problem can be
formulated as:

Aq̂ = αBq̂ + α2Cq̂. (4.3.11)
Given that p̂ does not have a term with α2, taking φ = αûi one can recast the problem

into: A 0
0 I

q̂
φ

 = α

 B C

−I 0

q̂
φ

 (4.3.12)

or,
A

′
q̃ = αB

′
q̃ (4.3.13)

with q̃ = [q̂, φ]T .

The spatial analysis has proven to be very efficient for open flows. The main benefit
over the temporal analysis is that it enables to reconstruct a 2D global shape of a global
mode. Many studies have been done with this type of analysis during the last decades.
One can cite the work of Lesshafft et al. (2006) on hot jets, Oberleithner (2012) on
swirling flows under vortex breakdown or more recenlty the work of Lacassagne (2017)
on the stability of corner shedding vortices in solid-propellant rocket.
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Spatio-temporal analysis

In the last section, two types of analysis have been presented, one for bounded
flows and one for open flows. In some cases, some spatially developing flows can sustain
self-excited global modes without external forcing. These are in general characterized by
a dominant frequency ωG. Huerre & Monkewitz (1990) have shown that a global mode
comes from a region of what is usually called ’absolute instabilities’.
In that case, to find such particular instabilities, a spatio-temporal analysis is performed
to study the local group velocity of the flow. An absolute instability indeed corresponds
to a perturbation moving with zero group velocity and is marked by a saddle point of
ω in the complex α-plane. In other word, for this type of study, the wavenumber is
taken complex (α ∈ C) and one tries to find an eigenvalue ω0 solution of the following
eigenvalue problem: 

Aq̂ = ω0Bq̂,

c = ∂ω

∂α

∣∣∣∣∣
ω0

= 0.
(4.3.14)

The sign of the resulting ω0 gives the behavior and evolution of the local perturbation
as shown in Fig. 4.3(b)-(c):

• ω0 < 0 : The perturbation is amplified and is convected away from its source. The
base flow is convectively locally unstable.

• ω0 > 0 : The perturbation expands around its local source and perturbs all the
flow. The base flow is absolutely locally unstable.

Enclosed cavities stability analysis

For a few years, the BEK family has been studied through local stability analyses
and a review can be found in App. A. However, due to their industrial relevance,
stability of an enclosed rotor/stator cavity has been rapidly a subject of interest. From
an experimental point of view, the complete study of Schouveiler (2001) or Lopez et al.
(2009) can be read to discover the different transition scenarios possible as a function
of the aspect ratio G and the Reynolds number Re. From the linear stability analysis
point of view, the first studies were done between two infinite disks. In that cases, auto
similar Batchelor profiles were used in Itoh (1991) for the base flow. However for the
rotating-disk boundary layer, Healey (2007) showed that confinement has a singular
effect on waves that both propagate and grow in the cross-stream direction. Tuliszka
confirmed this phenomenon by extending the work of Itoh (1991) and Lingwood (1996)
to an enclosed cavity (Tuliszka et al. (2002)). Good agreement was found in that
case between a DNS and a local stability analysis. Finally, they confirmed the exis-
tence of the spiral paterns and travelling circular waves as described in Schouveiler (2001).

Following these studies, the local stability framework is retrieved in this work to
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study enclosed cavity. The principle to obtain the set of equations associated to these
specific systems is similar to the one presented in Sec. 4.3.1 and will not be more
discussed here but can be retrieved in App. A.3.

AVLP: Local stability Solver

The linear local stability solver used for the configurations of interest in this PhD
work, is called AV LP and has been developped by Bridel-Bertomeu (2016) in collab-
oration with CNES and ArianeGroup. This code has been implemented in Python,
is massively parallel and enables to solve the linearized incompressible Navier-Stokes
equations. Due to its efficiency in the context of stability analysis, a spectral collocation
method has been used based on Chebyshev polynomials. Different types of stability
analysis can be realized thanks to this solver: spatial (fixed ω unknown α) and temporal
(fixed α unknown ω). Options also enable to track absolute and convective instabilities
and allow reconstruction of the 2D global modes. Routines from ARpack and LAPack
librairies are used to resolve the various eigenvalue problems. A full description of the
code, solving parameters, and all its capabilities can be found in Bridel-Bertomeu (2016).

4.3.2 Global Stability

The analysis introduced so far relied on the parallel flow assumption. Unfortunately
for many applications such a hypothesis does not hold. To overcome this problem, the
weakly non-parallel flow theory has been created (Monkewitz et al. (1993)) and as an
example, the Parabolised Stability Equations (PSE) proved to be efficient to capture
simple boundary layer flows. However, the resulting method is not powerful enough to
capture the effect of recirculations and boundary layer detachment situations. It is only
in the 1980s, with the progress in computing science and the increase of computing power
that the local stability theory has been extended to two dimensional base flows. The first
global stability analysis was performed by Pierrehumbert, R & Widnall (1982) based on
the solution of the eigenvalue problem pertaining to the essentially 2D basic states of a
shear layer. As a result, many applications appeared and interested reader can refer to
Theofilis (2011) for a complete review of the existing global stability methods.

Governing equations

This section describes the main steps to obtain the governing equations of a global
stability analysis for any azimuthally periodic flows. The steps are organized as in the lo-
cal stability section for the reader to precisely see the difference between the two methods.

By assuming infinitesimal perturbations evolving onto strongly non parallel two
dimensional flows, the following base flow form is retained:
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U = (Ub(r, z), Vb(r, z),Wb(r, z))T ,
P = Pb(r, z).

(4.3.15)

By introducing perturbations of the form [ui, p] = [ur(r, θ, z, t), uθ(r, θ, z, t),
uz(r, θ, z, t), p(r, θ, z, t)] above a base flow following the global decomposition: U(r, θ, z, t) = Ui(r, z) + ui(r, θ, z, t),

P (r, θ, z, t) = Pb(r, z) + p(r, θ, z, t),
(4.3.16)

the set of equations Eqs. (4.3.1)-(4.3.4), can be simplified and becomes separable in
r, θ and t. The perturbations can then be represented using a normal mode formulation
following:

[ur, uθ, uz, p]T = [ûr, ûθ, ûz, p̂]T (z) exp[(i(mθ − ωt)]. (4.3.17)

The same description as for the local stability analysis of Sec. 4.3.1 can be done here
for m and ω. However, in that case the frequency ωr and the growth rate ωi correspond
directly to the global characteristics of a given global mode. The second main change
compared to the local stability analysis is the loss of radial wavenumber. The direct
consequence is that a spatial analysis is impossible with a global approach.

Introducing the normal modes in the linearized Naviers-Stokes equations, Eqs. (4.3.1)-
(4.3.4), one obtains a dispersion problem of the form:

DG(ω,m, q̂) = 0, (4.3.18)

where DG denotes the problem dispersion relation of a global stability analysis (the
detailed equations of this problem can be retrieved in App. A.4). Note that this set
of equations, at the opposite of the local approach, enables to simulate any kind of
axysymmetric base flow and is not restricted to enclosed cavities. No assumption being
realized, the size of the problem is also considerably larger.

Thanks to the resolution of this specific dispersion problem, the stability behavior
of fluid systems can be characterized. However, a simple global analysis is usually not
enough to describe the full dynamics of a flow and its origin. In fluids dynamics, adjoint
approaches are often used for optimal design methods. It gives indeed new insight in the
flow and can be interpreted as a measure of its sensitivity, qualifying its robustness to
changes, an information of importance to design passive control strategies for example.
To address these issues in the context of the above dispersion problem, Eq. 4.3.18, two
concepts are detailed. These are receptivity and structural sensitivity.

Receptivity:
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This flow characteristic has been introduced by Hill (1992). It is usually defined
as the response to additive changes to the governing equations, i.e modeling external
sources of influence (such as free-stream turbulence, wall roughness, harmoning forcing,
etc) or the optimal initial condition which will excite the most a global mode.

In such a context, the direct global modes are first obtained as described before by
discretizing the system in space and solving the matrix eigenvalue problem corresponding
to Eq. (1.4.1). For the purpose of the discussion, this latter is reformulated as:

Lq̂ = ωq̂. (4.3.19)
The adjoint global mode q̂+ also referred as the receptivity of a mode q̂ will be then

solution of the problem:

L+q̂+ = ω∗q̂+, (4.3.20)
where L+ is the adjoint operator of L and ω∗ = Re(ω)− iIm(ω).

Note that if one considers a discrete linear operator L, then the corresponding adjoint
operator L+ is defined as the conjugate transpose of L, i.e. L+ ≡ LH . It can furthermore
be shown that the adjoint global modes q̂+ are simply the left eigenvectors of L (when
transposed and conjugated). The computation of the adjoint global modes is therefore
implicit from the resolution of the linear system expressed by Eq. (1.4.1).

Structural sensitivity:
In opposition to receptivity, the structural sensitivity describes the response to structural
changes in the governing equations, while modelling the internal sources of influence (such
as base-flow modifications or changes in geometry). As originally described by Hill (1992),
this information is given by the dyadic product of the direct and adjoint solution vec-
tors of the linear problem, that is û(û+)H where û represents the velocity solution vector.

Following the definition given by Giannetti & Luchini (2007) based on Hill (1992), this
resulting tensor shows how feedback between the components of the linearized velocity
vector affects the growth rate Im(ω) and frequency Re(ω) of a global mode. Finally,
Giannetti & Luchini (2007) showed that by taking the norm of the dyadic tensor, it
becomes possible to identify where a modification in the linearized equations produces
the greatest drift of the eigenvalue:

S(r, z) = ‖ û
+ ‖2‖ û ‖2

|< û+, û >|
, (4.3.21)

where < ·, · > denotes the inner product defined as < a, b >=
∫
a∗b dS and ‖ · ‖2

stands for the Frobenius-norm.

The location of maximum structural sensitivity will therefore correspond to the great-
est drift of the eigenvalues for a given modification of the system. This maximum is
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usually defined as the trigger of a global mode and can be assimilated to the notions of
wavemaker described in the local stability approach. Receptivity and structural sensitiv-
ity are applied on the two academic rotating cavities in Sec. 4.4 two shed some light on
each mode mechanism and to give first insight on how one can control them.

GIFIE: global stability solver

To compute linear global modes with a global stability approach, the solver called
GIFIE has been developed and used in this PhD work. Its implementation started with
Bridel-Bertomeu during his post-doc at CERFACS and resumed in the present PhD.
Thanks to this solver, Eqs (1.4.1) are discretized using the Finite Element Method
(FEM). Since the pressure fluctuations are expected to be continuous over the domain,
one solves the problem on Taylor-Hood elements (Taylor & Hood (1973)), i.e. a standard
P2 quadratic approximation of the fluctuation velocity components and a standard linear
P1 approximation of the pressure on a partition of triangles (Rannacher (2000)). To
assemble the FEM matrices, Freefem++ (Hecht (2012)) is used for its ease in defining
variational formulations. The implementation of the equations using FEM has been
validated using reference cases from the literature. The size of the eigenproblems are
undoubtedly substantial and a note has to be made about computational cost. In the
global stability framework, the matrices involved in the eigenproblem are very large:
they scale like (NL + 3NQ)2, where NL and NQ are respectively the linear and quadratic
number of elements. Fortunately, the differentiation operators yield by the FEM on
P2/P1 mixed elements (Taylor & Hood (1973)) are very sparse, leading to assembled
matrices with a level of sparsity as high as 99 %. To take advantage of this specific
aspect, the linear solver PETSc (Balay et al. (2019)) is preferred to manipulate the
sparse matrices and the massively parallel librairy SLEPc (Roman et al. (2019)) is used
to solve the eigenproblems with a shift-and-invert spectral transformation. Note that
GIFIE was actually developed to compute multiple types of incompressible equations:
2D/3D cartesian and 2D periodic in azimuth. As explained above, from a discrete linear
operator the adjoint modes are straight forward to obtain from the direct problem and
can be also treated with GIFIE.

When it comes to the use of the local stability analysis, only a part of the annu-
lar cavity dynamics observed in Chap. 2 could be retrieved with this method. In fact,
the dominant mode and the low frequency mode respectively referred to as m = 29 and
m = 12 in Chap. 2 were found by LSA and were both in good agreement with DMD
results. However the annular mode, m = 0, could not be retrieved due to the parallel
flow assumption. Furthermore, the local approach failed to retrieve the unique mode
driving Case 1: i.e. the cylindrical cavity. Such limitations were not observed when
using GIFIE so, in the following, only the results obtained with the global approach
will be presented. Note that a complete comparison of the two methods for Case 2
has however been obtained and published during this PhD (Queguineur et al. (2018)).
These comparisons can be retrieved in App. E.
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4.4 Enclosed rotor/stator cavities global stability
analysis

The modes driving the enclosed rotor/stator cavity dynamics of the configurations
presented in Sec. 2.3 were identified in Sec 2.5.2 through DMD and DMT. In particular,
the conjunct use of LES and DMD enabled to highlight that the cylindrical cavity,
referred to as Case 1 is composed of a unique mode synchronized around a unique
temporal frequency composed of multiple azimuthal wave numbers m. At the opposite,
the annular cavity, referred to as Case 2 and taken at the same operating point,
exhibits 3 independent modes with for each a unique temporal frequency and azimuthal
wave number. Even though LES/DMD enabled to capture these peculiar modes, their
mechanism and origins still need to be clarified.

The following discussion has therefore three purposes: First the global linear stability
analysis (GLSA) is applied to both cases and results are compared to DMD results to
avaluate such a tool capacityto retrieve identified modes. Receptivity and structural
sensitivity are also obtained to produce more information on the source of each modes.
Finally, comparing both configurations also helps us discussing the impact of the hub
on the dynamics of a rotor/stator system. Note that the following results have been
published in Queguineur et al. (2019).

4.4.1 Mesh and cost of the global analysis
Prior the presentation of the results of both Case 1 and Case 2, it has to be noticed
that whenever performing a global stability analysis, the homogeneity and the level of
mesh refinement have an impact on the found eigenvalues and associated eigenvectors.
As a consequence, for the global approach, the maximum edge length was fixed at
4× 10−4 m and the cell-to-cell aspect ratio at 1.1, which is sufficient for the eigenvalues
to change by only O(10−6) when the resolution is increased. The characteristics of the
corresponding 2D meshes are summarized in Table 4.2.

The main consequences of these choices for the cases considered, is that the size
of the eigenproblems is undoubtedly substantial and a note has to be made about the
computational cost of the investigation presented here. As explained in Sec 4.3.2, in a
global stability framework, the matrices involved in the eigenproblem are very large and
scale like (NL + 3NQ)2, meaning for Cases 1 & 2 O(1011) elements.

All eigenproblems are solved using the shift-and-invert spectral transformation to
compute the eigenvalues, which yields an overall cost of approximately 2800 sCPU for one
problem on an Intel Xeon (E5-2605, 2.45GHz) core. An exhaustive study of the possible
global linear modes of Cases 1 or 2 thus requires about 90 such computations (Adjoint
modes, direct modes), hence a total CPU time per case of approximately 70 hCPU. The
solver is however massively parallel and scales like SLEPc (Roman et al. (2019)), meaning
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Case 1 Case 2
Number of triangles 88 041 93 404
Number of vertices 44 555 47 238

Linear d.o.f NL 44 555 47 238
Quadratic d.o.f NQ 175 016 185 739

Matrices size (NL + 3NQ)2 (569 603)2 (604 455)2

Table 4.2 – Summary of the finite element meshes characteristics used for the global stability analysis
of Case 1 and Case 2. Acronym "d.o.f" stands for degrees of freedom.

Global Stability Local Stability
Number of elements O(600 0002) O(1 0002)(one radius)
Sparsity > 99 % > 99 %
Resolution of 1 eigenproblem 2800 sCPU 1200 sCPU
Number of resolution for 1 case 90 −
Time for 1 case and 1 mode wavemaker 1.5hCPU 12hCPU
Overall time for 1 case 70, hCPU 37hCPU

Table 4.3 – Summary of computational time data for the linear global analyses based on Intel Xeon
E5-2605 cores at 2.4Ghz.

that the total computational time per case can be decreased to 2.8 h when the solver runs
on 25 cores.
To obtain the global modes of a system through a local approach a complex process needs
to be followed (see Sec 4.3.1). The method being 1D and spectral elements being used,
the local approach eigenvalue problem is far smaller than the global stability approach
(around 1000 nodes for a radius) and for a unique eigenvalue resolution only 1200 sCPU
is necessary. However, for a temporal analysis, 3 parameters need to be varied to map
all the possible existing modes of such a system: radius r, radial azimuthal wave number
α, and azimuthal wave number m and absolute/convective instabilities also need to be
computed. For a configuration like Case 2, an estimated overall time simulation of
37hCPU is hence necessary to retrieve all the wavemakers of the possible eignemodes and
their corresponding global reconstruction. All above-discussed details are summarized in
Table 4.4.1. As one can see, the local approach even though based on 1D simulations
needs to follow a complex process to obtain the wavemakers.
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4.4.2 Note on the projected dynamic mode decomposition
Although DMD is widely used in Computational Fluid Dynamics (CFD) to extract full
3D modes of a simulated limit cycle, the current analysis will rely on the azimuthal peri-
odicity of the problem and flow, a fundamental property of Navier-Stokes for the problems
at hand. As a consequence all quantity of interest can be decomposed in a contribution of
a mean axisymmetric stationary flow obtained by temporally and azimuthally averaging
the flow realization within the limit cycle. Deviations from such a mean can then be
further decomposed into azimuthally periodic contributions specified by their azimuthal
wave numbers m. In that case, the previously discussed decomposition ensures an un-
ambiguously characterized mode consistent with the global stability analysis (as detailed
thereafter Sec. 4.3.2). As a consequence and instead of doing a conventional use of a
DMD decomposition on the basis of the full 3D data basis, the following procedure is
proposed.
First, all fluctuation fields q′ = (u′, p′) (with u′ and p′ respectively the velocity vector
and pressure fluctuations) are first Fourier decomposed in azimuth so that,

q′(r, θ, x, t) =
∑
m

φm(r, x, t)cos(mθ) + ψm(r, x, t)sin(mθ), with m=0, ±1,±2,.. (4.4.1)

with φm and ψm the associated Fourier coefficients:

φm(r, x, t) = 1
2π
∫ 2π
0 q′(r, x, θ, t)cos(mθ)dθ,

ψm(r, x, t) = 1
2π
∫ 2π

0 q′(r, x, θ, t)sin(mθ)dθ.

(4.4.2)

DMD can then be applied to the φm and ψm 2D fields to extract the frequencies and
reconstruct the spatial distribution of each mode ζ given an azimuthal wave number m
through,

ζ(r, θ, x,m) = Re {φm(r, x)DMD} cos(mθ) + Re {ψm(r, x)DMD} sin(mθ), (4.4.3)

where φm(r, x)DMD and ψm(r, x)DMD are respectively the 2D DMD modes obtained
from the time series φm(r, x, t) and ψm(r, x, t)

Note that a direct consequence of the above described strategy is that a DMD mode
is now uniquely characterized by its complex frequency (oscillation frequency and growth
rate) and wave number, a feature that conventional DMD cannot produce since modes
are only qualified by their frequency and spatial structure which is a priori arbitrary.

4.4.3 Case 1: Cylindrical shape cavity
The first case under study is the cylindrical rotor/stator cavity. As shown in Sec. 2.5.2,
this system is synchronized around a unique frequency composed of multiple m azimuthal
wavenumbers along the radius. In order to clarify these different zones an azimuthally
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Figure 4.4 – Contours of the averaged radial component of velocity normalized by its ∞-norm, Ub /
max (〈Ub〉) in Case 1. The stator is located at the top and the rotor at the bottom. Axial coordinate
is transformed to thicken artificially the boundary layers.

projected DMD is first presented to ease its comparison with the stability analysis. Note
that, the local stability analysis failed to reproduce these projected modes and will hence
not be discussed here. Finally, the mean flow obtained by LES in Sec. 2.5.1 is used
here for the global stability analysis as the fixed point of the Navier-Stokes equations.
Figure 4.4 gives a reminder of the specific shape of this mean flow. One retrieves here
the characteristic boundary layers of Bödewadt and Von Kármán respectively on the
stationary disk and the rotating disk.

Mode maps

Resolution of the direct global stability problem provides access to a discrete set
of eigenmodes (frequency and growth rates) and associated eigenvectors (spatial evo-
lution) representative of perturbations potentially carried by the mean flow. First, a
view of Case 1 eigenvalues is detailed as a function of the azimuthal wave number
m in Fig. 4.5. For the representation, the frequencies (m,Re(ω)) and growth rate
(m, Im(ω)) planes are respectively provided in Fig. 4.5(left) and Fig. 4.5(right). Each
curve represented by a specific symbol/color corresponds to a stability branch. Note
that, all modes belonging to a specific branch, share a physical feature: i.e. a common
spatial structure. In our configuration, the branches differ by the number of lobes along
the radial direction, i.e. the intersections of the spiral arms of the modes with a x − r
plan (see Fig. 4.6(c) as an example).

From the amplification rate results (right column), it appears that Case 1 mean flow
is capable of sustaining unstable modes at high azimuthal wavenumbers m ≥ 10 and the
most amplified mode is identified at m = 30. Although it is commonly stated in the
literature dealing with stability analyses (see e.g. Meliga et al., 2009; Qadri et al., 2013;
Chomaz, 2005) that only the most unstable mode is of interest to define the stability of the
base flow, non linearities allow for mode interactions and operating conditions that can
sustain multiple modes at once, some of which are not necessarily coinciding with the most
amplified mode. Figure 4.5(left) exhibits eigenfrequencies for Case 1 with very similar
behaviors and convergence of all branches indicative of a potential synchronization of all
the branches. Based on this spectral vision, one can identify a correspondence between the
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Figure 4.5 – Scatter plot of the frequency (left) and amplification rate (right) versus the azimuthal
wavenumber of the linear global modes obtained of cylindrical cavity . The ordinates have been normal-
ized by the pulse of the rotor, i.e. 2πF0. Different branches are represented by distinct color/symbol
pairs.

Case 1 DMD GLSA
Mode m = 28 3.55 3.6

Table 4.4 – Sum up of the modes frequency obtain by stability analysis compared to DMD for Case
1. The results have been normalized by F0

eigen-frequencies and positive values of the growth rates of GLSA with peak frequencies
registered in the LES (see the Table 4.5). The mode m = 28 is also seen to have a
good agreement with the LES which dominates this cylindrical cavity. Furthermore, this
linear analysis indicates that the other modes observed in the LES: i.e. m = 8, comes
from non linear interactions that cannot be captured by the global stability analysis. In
the following, all branches remaining very similar in terms of frequency, only the mode
m = 28 with the highest growth rate will be retained for the discussion around Case 1.
Table 4.4 sums up the different frequencies obtained for both methods

Comparison of the global mode shapes

Figure 4.6 presents a comparison between the real part of the fluctuations of the
axial velocity u′z generated by the DMD mode (top part of the figure) and obtained by
use of the spatial Fourier decomposition for m = 28 along with the mode obtained by
global linear stability analysis (bottom part of the figure). This specific comparison
supports the conclusion that the global mode indeed matches the high radius part of the
DMD mode for Case 1, both analyses displaying the same radial overall distribution
with a maximum amplitude spanning the range r ∈ [0.1, 0.13] m. All these spatial traces
also generate spiral structures in the stationary disk boundary layer that has 28 arms
for r & 0.09 m.

Structural sensitivity and receptivity analysis

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



4.4 Enclosed rotor/stator cavities global stability analysis 73

Figure 4.6 – Case 1, comparison between the axial velocity fluctuations ufz/max(|ufz |) of the m = 28
component of the decomposition of DMD in Fourier series (top) and the global mode issued by the
linear analysis (bottom). Note that the axial coordinate has been transformed as in Fig. 2.5 to thicken
artificially the boundary layers.

Corresponding adjoint axial velocity fluctuations ũ+
z are shown on Fig. 4.7. The

adjoint mode results from the resolution of Eq. (4.3.20) for the base flow of Case 1
and represents the receptivity of the direct mode to external forcing. It can also give
as stated by Chomaz (2005), an indication on the initial condition that most optimally
excites the direct mode. In the present case and for the first selected mode at m = 28,
the adjoint expresses mostly in a region localized close to the top-right corner, i.e. at the
intersection between the external stationary shroud and the upper stationary disk. Note
also that, direct and adjoint modes do not coincide spatially, which is indicative of a
flow with convective non-normality (Chomaz, 2005), i.e. a flow in which the streamwise
advection of the perturbations by the flow is not negligible. Interestingly, this is a
feature that is often referred in the literature as a characteristic of open flows (see e.g.
Chomaz, 2005; Qadri et al., 2013), and insofar and to the authors knowledge, has never
been mentioned or evidenced for an enclosed flow. Based on (Chomaz, 2005), the region
that is crucial in determining the global mode frequency, i.e. the wavemaker region,
corresponds to the region where the direct and the adjoint modes overlap. This specific
notion is detailed in the following subsection along with a discussion on the potential
coupling and initiation mechanisms behind the expression of the various identified modes.

Mode origin and sensitivity tensor

As indicated above, the notion of wavemaker is coincident with the construction
of the structural sensitivity; Eq. (4.3.21) for the mode issued by the linear analysis.
Such maps are shown for the modes of interest in Fig. 4.8. For the most unstable direct
mode, the sensitivity of Fig. 4.8(a) & (b) shows that the region of most amplification is
located around r ' 0.13 m, above and slightly upstream of the recirculation region as
confirmed by Fig. 4.8(b) that is a zoom of Fig. 4.8(a) complemented by streamlines of
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Figure 4.7 – Case 1, adjoint axial velocity fluctuations ũ+
z /max(|ũ+

z |) m = 28 (see Fig. 4.6(bottom) for
the corresponding direct mode). The axial coordinate has been transformed to highlight the structure
of the modes within the boundary layer.

(a)

(b)

Figure 4.8 – Case 1, mode m = 28 (a) structural sensitivity map as defined by Eq. (4.3.21); (b) same
as a, zoomed in and with the base flow (Fig. 2.5) streamlines. Axial coordinate has been transformed.
Isocontours at ±20%, ±40%, ±60%, ±80% and ±100% of the absolute maximum (solid lines are positive
values and dotted lines are negative values).

the corresponding mean base flow.
To understand the physical mechanism(s) by which the mode can be triggered, one

can consider the nine components of the structural sensitivity tensor rather than just its
trace (as shown on Fig. 4.8(a)-(b)). Indeed, according to previous investigations (see e.g.
Chomaz, 2005; Giannetti & Luchini, 2007; Qadri et al., 2013), these different components
provide a measure of the influence on the eigenmode of the feedback between the three
components of ũ and the three components of the linearized momentum equations. The
maps of the absolute values of the different tensor components are shown on Fig. 4.9.
Following Qadri et al. (2013), these frames can then be compared to the nine components
of the strain tensor of the mean flow εij = ∇〈u〉+(∇〈u〉)T , shown in Fig. 4.10. The three
frames on the main diagonal represent the radial εrr, azimuthal εθθ and axial εzz strain
components respectively, whereas the other frames represent the shear components (note
the symmetry of the frames issued by the symmetry of the tensor).

First, along both disks, the θ − z shear component is strong, with local maxima
at the intersections between the disks and the outer shroud. Second, the middle row
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Figure 4.9 – Case 1, mode m = 28. Absolute value of the components of the sensitivity tensor, with
the shading on all the plots scaling from 0 (light) to 1 (dark). Axial coordinate has been transformed as
aforementioned. Isolevels at 20%, 40%, 60%, 80% and 100% of the maximum.

Figure 4.10 – Case 1, components of the rate-of-strain tensor εij = ∇〈u〉 + (∇〈u〉)T for the base
flow 〈u〉. The shading on all the plots scales from −1 to 1. Axial coordinate has been transformed as
aforementioned. Isolevels at ±20%, ±40%, ±60%, ±80% and ±100% of the absolute maximum have
been added for clarity (solid lines are positive values and dotted lines are negative values).
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Figure 4.11 – Contours of the averaged radial component of velocity normalized by its ∞-norm, 〈ur〉
/ max (〈ur〉) in Case 2. The stator is located at the top and the rotor at the bottom. Axial coordinate
is transformed to thicken artificially the boundary layers.

of Fig. 4.9 shows that the uθu+
r , uθu+

θ and uθu
+
z components, which correspond to the

influence of the azimuthal velocity, have high amplitudes in the region in which there
is a strong θ − z shear component. Similarities with the behavior of a fully parallel
azimuthal shear layer flow leads the authors to believe that both the non-zero azimuthal
and radial velocity components are responsible in equal parts for the behavior of the flow
in this region and for this specific mode. A small perturbation advected by the rotor
flow and moving towards the stationary disk within the outer shroud boundary layer
will be amplified when it reaches the top-right corner and enters a region of very strong
azimuthal shear. The centripetal statoric motion then participates in the advection of
the corresponding structure away from the corner and exclusively within the top-disk
boundary layer since 〈ur〉 is null in the quasi-inviscid core of the cavity. These remarks
explain why the wavemaker region (see Fig. 4.8(b)) is located upstream of the direct mode
structure and in close proximity to the secondary recirculation bubble representative of
the non-zero shear components. Those observations can be linked to previous studies
(Poncet et al. (2009); Crespo del Arco et al. (2005)) where the spiral instabilities of such
a cavity is identified as the Type I instability Lingwood & Henrik Alfredsson (2015) found
in simple rotating disk boundary layer. Also known as crossflow instability, one retrieves
here the effect of the centripetal forces and even the inflectional characteristic profile in
Fig. 4.10(εzr).

4.4.4 Case 2: Annular shape cavity

This second case concerns the annular rotor/stator cavity. The mean flow used in the
present global stability analysis was obtained with LES as Case 1 in Chap. 2 and is
showed here as a reminder in Fig. 4.11. The characteristic boundary layers presented in
Sec. 4.2 are retrieved here with the Bödewadt boundary layer on the statioannary disk
and Von Kármán on the rotating disk.

As shown in Sec. 2.5.2, this system presents three distinct modes F/F0 = 0.35, F/F0 =
3.24 and F/F0 = 3.6 with respectively an azimuthal wave number of m = 12, m = 0 and
m = 29. As a reminder, this second cavity has been taken with the same aspect ratio
G = 0.2 and the same global Reynolds number Re = 105 as for Case 1 to put in parallel
the activity of both cavities and highlight the role of the hub into the dynamics of the
present case.
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Figure 4.12 – Scatter plot of the frequency (left) and amplification rate (right) versus the azimuthal
wavenumber of the linear global modes obtained of cylindrical cavity . The ordinates have been normal-
ized by the pulse of the rotor, i.e. 2πF0. Different branches are represented by distinct color/symbol
pairs.

Mode maps

Following the presentation of Case 1 results, the spectrum obtained by use of
the global stability analysis for azimuthal wavenumbers from m = 0 to m = 40 is
displayed in Fig. 4.12 for Case 2. Note that the same representation as in Fig. 4.5
is adopted. From the amplification rate results (Fig. 4.12(right)), one can observe
that Case 2 mean flow is capable of sustaining unstable modes at high azimuthal
wavenumbers m ≥ 10 as Case 1 and the entire range of m including the m = 0 value.
As observed for Case 1, the most amplified modes are identified for m ≈ 30 for Case 2.

A more detailed analysis of both spectra evidences first hand differences. Fig-
ure 4.5(left) exhibits eigen-frequencies for Case 1 with very similar behaviors and conver-
gence of all branches indicative of a potential synchronisation of all the branches. On the
contrary, the spectrum of Case 2, Fig. 4.12(left), exhibits three seemingly independent
unstable branches:

• a set of unstable branches at high values of azimuthal wavenumber m� 10 similar
to the branches obtained in Case 1,

• an unstable branch spanning over the medium values of azimuthal wavenumber,
8 < m < 25 and,

• an unstable branch at very low azimuthal wavenumbers, m < 5.

Based on this spectral vision, one can identify a correspondence between the eigen-
frequencies and positive values of the growth rates of GLSA with peak frequencies reg-
istered in the LES (see the Table 4.5). Therefore, for Case 2 the most unstable modes
with m = 0,m = 12 and m = 29 are found to match closely the spectral content of the
LES as well as the corresponding DMD decomposition.
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Case 2 DMD GLSA
Mode m = 0 3.24 3.1
Mode m = 12 0.35 0.31
Mode m = 29 3.61 3.7

Table 4.5 – Sum up of the modes frequency obtain by stability analysis compared to DMD. The results
have been normalized by F0

Figure 4.13 – Case 2, comparison between the axial velocity fluctuations ufz/max(|ufz |) of the m = 29
component of the DMD decomposition in Fourier series (top) and the global stability analysis (bottom).
The axial coordinate has been transformed as in Figs. 2.5 to thicken artificially the boundary layers.

Comparison of the global mode shapes

The correspondence between the DMD and the direct mode spatial structures issued
by a global approach is detailed for the three modes selected above. As done for Case 1,
a spatial Fourier decomposition is applied for each DMD mode in order to be consistent
with the global stability approach. Figure 4.13 shows iso-contours of the axial velocity
fluctuations of the m = 29 mode identified either by the projected DMD Fig. 4.13(top)
or global stability analysis Fig. 4.13(bottom). Clearly similar spatial organizations are
retrieved and just like for Case 1, the structure appears to exist mainly in the neighbor-
hood of the inner cylindrical hub.

For this second case, it is found that the instability mechanism in the stationary disk
boundary layer and for the apparition of the spiral structure therein is similar to the
one described in Sec. 4.4.3 for the cylindrical cavity. In fact, mode m = 28 of Case
1 was found to be sensitive only in the external part of the cavity and coming from
perturbations amplified at the shroud. By modifying only the central zone (addition of
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Figure 4.14 – Case 2, comparison of the m = 0 component of the DMD decomposition in Fourier
series and global stability analysis (see Fig.4.13 for the full caption details).

the hub), this high azimuthal mode is naturally expected to persist as confirmed here.
This stationary disk instability of Case 2 will therefore not be further developed in this
section.
The next modes produced by the global linear stability analysis and of interest in this
investigation are: the m = 0 & 12 modes. The results are shown and compared to the
projected DMD in Figs. 4.14 & 4.15 respectively for m = 0 and m = 12. Note that, as
said in the end of Sec. 4.3, no result was found for m = 0 using local stability analysis.
For both modes, the agreement between the spatial organization of the linear mode from
the global approach and projected DMD is remarkable. Such spatial agreements come as
a complement to the observation that the pulsation of all identified paires do correspond.
Similarly to the m = 29 mode, the structure of the m = 12 mode expresses mainly in
the neighborhood of the inner cylindrical hub. The flow being particularly not parallel
around this region can explain why no result could be obtained at low radii for this
mode with a local stability approach (see App. E). According to the projected DMD, the
vortices along the rotor and along the stator of the m = 12 mode have approximately the
same magnitude, when stability analysis yields a mode that is strongest in the inner top
corner between the rotor and the hub. The structures in both frames are however very
similar near the intersection between the hub and the stator as well as at the edge of the
rotor.

Structural sensitivity and receptivity analysis

As discussed before in Sec. 4.4.3 forCase 1, there is a non-negligible interest in looking
at the adjoint modes. Figure 4.16(a) presents the adjoint axial velocity fluctuations ũ+

z

for the m = 0 mode and (b) for the m = 12 mode. The m = 0 adjoint mode, Fig. 4.16(a),
has two distinct local extrema, one located in the upper disk boundary layer while the
other is found in the inner hub cylindrical boundary layer, both being of the same order
of magnitude.

One can also note that the direct, Fig. 4.14, and adjoint modes, Fig. 4.16(a), coin-
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Figure 4.15 – Case 2, comparison of the m = 12 component of the decomposition of DMD in Fourier
serie and global stability analysis (see Fig.4.13 for the full caption details).

(a)

(b)

Figure 4.16 – Case 2, adjoint modes of (a) the m = 0 direct mode and (b) the m = 12 direct mode
(see Fig. 4.15).
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cide spatially, implying that contrary to the mode present in the stator boundary layer
(common to Case 2 and Case 1 as discussed before), the perturbations at m = 0 are
less susceptible to mean flow advection.

For the m = 12 mode, the conclusions are somewhat different. Figure 4.16(b)
shows that the adjoint mode expresses mainly in the stationary disk boundary layer
for r > 0.12 m, i.e. this location not coinciding with the direct mode, Fig. 4.15. The
situation is therefore similar to the case of the m = 28 mode of the cylindrical cavity
(see section 4.4.3), which points to the fact that the m = 12 mode is affected by the
base flow convection. This convective non-normality is here even more marked given
that the direct mode has two local extrema, one being at the edge of the rotor disk, i.e.
very far downstream of the adjoint maximum. There is however a reason for the vortices
on the rotor to have a non-zero magnitude only at high radial locations: it is indeed
well documented in the literature (see e.g. Daily & Nece, 1960; Lingwood, 1995; Séverac
et al., 2007; Appelquist et al., 2015) that the rotating disk boundary layer is sensitive
to any external excitation and is capable of sustaining coherent macro-structure for
Reynolds numbers r2Ω/ν & 5× 104.

Structural Sensitivity

As discussed before in section 4.4.3, structural sensitivity maps help gathering
more information about the modes’ triggering mechanisms. Figure 4.17 presents such
maps for (a) the m = 0 mode and (b) the m = 12 mode of Case 2.

The structural sensitivity map of the m = 0 mode confirms that contrary to the mode
m = 28 present in the stator boundary layer of Case 1 (and Case 2 as discussed before),
the perturbations at m = 0 are less susceptible to base flow advection. Furthermore
and as a consequence of the presence of both the direct and adjoint modes in the hub
boundary layer, this region becomes crucial in determining the global mode behavior as
supported by the high levels of sensitivity shown in this specific flow region. It is also
noted that Fig. 4.17(a) confirms that the mechanisms behind the existence of the m = 0
are exclusively related to the boundary layers along the cavity walls. This latter could
explain why the local stability approach could not retrieved the wavemaker and mode
m = 0 2D shape.

For the m = 12 mode, the structural sensitivity map, Fig. 4.17(b) shows that the
wavemaker region is here mainly located in the stationary disk boundary layer around
r ' 0.13 m, in a zone where the effects of confinement due to the presence of the inner
hub start to be non-negligible. A second highly localized peak appears also in the lower
right corner near the junction between the rotating disk and the external static hub. To
conclude this discussion, recall that by nature the adjoint mode represents the initial
condition that most optimally excites the corresponding direct global mode (Chomaz,
2005). It is therefore natural that the region of highest sensitivity be correlated to the
region where the amplitude of the adjoint mode is also close to a maximum (here the hub
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(a)

(b)

Figure 4.17 – Case 2, structural sensitivity maps of (a) the m = 0 and (b) the m = 12 modes as
defined by Eq. (4.3.21).

and hub boundary layers). This feature is however complemented by the appearance of
a second maximum located in the stator boundary layer for both modes, 0.12 m . r .
0.20 m. It is indeed remarkable that this second spot matches exactly the region where
the statoric constituent m = 29 mode is the strongest. Perturbations generated this way
are hence amplified so the mode becomes globally unstable. The mechanism by which
the perturbations get amplified by the presence of the hub will be discussed later in this
section.

Mode origin and sensitivity tensor

The only question left aside for Case 2 deals with the triggering mechanism of
the m = 0 and m = 12 modes. As mentioned in the introduction of section 4.4.4, the
mechanism behind the spiral m = 29 mode present in the stator boundary layer is found
to be similar to what is described in section 4.4.3. To support this observation, one
presents in Fig. 4.18 the nine components of the strain tensor of the base flow εij as
we did in section 4.4.3 for Case 1. Contrary to the maps of the corresponding flow
(Fig. 4.10), Case 2 features strong θ − r shear close to the hub due to the cylindrical
boundary layer and the necessity for the flow to adapt to the rotation speed of the hub,
other regions remaining highly similar.

Similarly to the discussion about the cylindrical cavity, the components of the strain
tensor are compared to the components of the sensitivity tensor, exhibited in Fig. 4.19
for the m = 0 mode and in Fig. 4.20 for the m = 12 mode. For the m = 0 mode,
the uθu+

r , uθu+
θ and uθu

+
z components, corresponding to the influence of the azimuthal

velocity, are the only non-negligible components and have very high amplitudes in the
region where εθr is strong. Similarly to the analysis conducted in Sec. 4.4.3, it seems
reasonable to conclude that the perturbations related to the cylindrical shear layer close
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Figure 4.18 – Case 2, components of the rate-of-strain tensor εij = ∇〈u〉 + (∇〈u〉)T for the base
flow 〈u〉. The shading on all the plots scales from −1 to 1. Axial coordinate has been transformed as
aforementioned. Isolevels at ±20%, ±40%, ±60%, ±80% and ±100% of the absolute maximum have
been added for clarity (solid lines are positive values and dotted lines are negative values).

to the hub play an important role. In fact, they amplify the infinitesimal perturbations
coming from the stator boundary layer (where the adjoint is maximum), thus triggering
the strong downstream vortices located at the corner between the hub and the rotor seen
on Fig. 4.14. The second feature to consider is the high value of the uθu+

r component in
a region where, from Fig 4.18, no component of the base flow shear tensor is large. It has
already been mentioned in the literature (e.g. Leibovich & Stewartson, 1983; Gallaire &
Chomaz, 2003; Qadri et al., 2013), for flows with a strong swirl component, conservation
of angular momentum in some regions of the flow can be the cause of an instability
which can then trigger global instabilities. In the present case, this conservation of
momentum could potentially help explaining the origin of the mode m = 12 in the region
just upstream of the hub in the stator layer.

Indeed, considering a fluid particle centripetally displaced in the stationary disk
boundary layer where it possesses a weak azimuthal velocity, as it gets closer to the
hub, it is suddenly accelerated in the azimuthal direction and entrained by the rotating
cylindrical wall. At the same time, its radial velocity is markedly reduced and axial
velocity increased to follow the stream. As a consequence, the fluid particle is strongly
compressed in the radial direction and stretched in the azimuthal and axial directions.
By conservation of angular momentum, the vorticity in the azimuthal and axial directions
is bound to increase while the vorticity in the radial direction decreases. Vorticity is, in
turn, increased. As the perturbation reaches the cylindrical boundary layer, it is then
amplified (peak of sensitivity in this region, see Fig. 4.17) so vortices are generated and
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advected by the base flow along the rotor. In summary, it is the belief of the authors
that in the specific case of the m = 0 mode, both a mechanism based on conservation
of momentum and a Kelvin-Helmholtz like instability are active and both are due to the
presence of the hub. This new approach can be related to the convective instability of
simple rotating disk boundary layer also known as Type II (Lingwood & Henrik Alfreds-
son (2015)). In fact, as shown above, the streamline-curvature plays a main role in the
destabilization of Case 2 hub.

Figure 4.19 – Case 2, mode m = 0, absolute value of the components of the sensitivity tensor, with
the shading on all the plots scaling from 0 (light) to 1 (dark). Isolevels at 20%, 40%, 60%, 80% and
100% of the maximum.

Focusing on the components of the sensitivity tensor for the m = 12 mode, Fig. 4.20
again points to the importance of the azimuthal velocity as the source of production of
this mode. In this case, one can also note the influence of the radial velocity as well, given
the top frames of Fig. 4.20 which show strong magnitudes for uru+

r and uru+
θ . If linked

to Fig. 4.18, these high amplitude regions correspond to regions of mild shear, making it
difficult to conclude on the underlying mechanisms. Nonetheless, it is still of importance
to consider other features. First, paying attention on the adjoint base of the m = 12
mode, the vortices visible bear a striking resemblance to the vortices generated by the
direct m = 29 mode shown on Fig. 4.13. This leads to the thinking of a sequentiality
process, where the m = 12 mode is linked to the m = 29 mode. Following this line of
thought, it has been said that the mechanism behind the m = 29 mode is the same as the
mechanism behind the modes of Case 1, i.e. a strong amplification of any perturbation
reaching the shroud/stator corner in that region. All this being considered, the m = 12
mode may also be linked to that same mechanism. Second, because the direct and adjoint
bases do not coincide, the m = 12 mode is subject to convective non-normality (Chomaz,
2005), which is known to lead to extreme sensitivity to forcing. In other words, even
though the probability of a perturbation triggering the mode is high, if it is active in
the wavemaker region (see Fig. 4.17(b)), a perturbation can become active in any region
where S is non zero and can be enough to initiate that mode. Finally, it was noted

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



4.5 Conclusion 85

that on Fig. 4.17(b) or Fig. 4.20 (uθu+
r ), the region close to the hub and also a small

region at the edge of the rotor exhibit a positive sensitivity. In both regions, strong shear
due respectively to the cylindrical boundary layer and the rotor boundary layer serve as
amplifiers for any perturbation passing through, promoting the apparition of the m = 12
mode. In summary, we find that for m = 12 there is no evident mechanism of instability
contrarily to the m = 0 mode or the stator spiral found in Case 1. One conclude
simply that when it comes to the triggering of this mode, perturbations generated by the
apparition of the statoric spiral m = 29 mode may be influenced by three regions of the
flow acting as amplifiers and therefore promoting the m = 12 mode. Likewise any source
of oscillation equivalent to an external forcing can explain the appearance of this specific
mode. Note finally that these results match the observations given in Chap. 3 with the
mode interactions study obtained with DMTC for which damping the dominant mode
m = 29 proved to also suppress the low frequency mode m = 12.

Figure 4.20 – As Fig. 4.19 for m = 12 and levels from 0 (light) to 1 (dark).

4.5 Conclusion
This chapter introduced a global stability analysis framework to extend the investigation
of the pressure band phenomenon in rotating cavities realized with LES in Chap.2. This
latter enabled to extract the driving modes of two types of academic cavities: A cylindrical
and an annular rotor/stator cavity but could not explain the mechanism and origin of
each mode. Global stablity analysis is well known to provide such efficient tools to
study unsteady phenomena and their origin through adjoint/sensitivity analyses and was
applied here on both configurations of interest. Particular attention was dedicated to the
annular cavity which comparatively to the cylindrical cavity, allows to expose the impact
of a hub on rotating cavity instabilities, a known interest to industrial problems. The
three modes driving the annular cavity already capture by DMD in Chap.2 are retrieved
trough a global stability analysis contrary to a local stability approach. A very good
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agreement is found in terms of mode spatial distribution but also in terms of frequencies.
However, this investigation was conducted before everything else to shed some light on
the mode mechanisms of the annular cavity. Sensitivity analysis pointed that the origin
of each modes is in the stationnary boundary layer. In particular, one showed that the
dominant mode of the annular cavity is purely due to perturbations generated in the
external parts of the rotor and amplified along the shroud to finally be advected by
the centripetal forces of the stator. Furthermore, one showed through sensitivity tensor
analysis that the unique mode of the cylindrical cavity is only sensitive to perturbations
in the external part of the stator boundary layer. This observation explains why adding a
hub at low radii does not damp this particular mode and is hence retrieved in the annular
configuration. For the two other modes of the annular cavity, the triggering mechanisms
are linked to the boundary layer around the hub. The annular modem = 0 comes directly
from small perturbations generated at the corner between the stator and the hub. These
vortices are also amplified to finally be advected along the rotor. The mechanism linked
to the mode m = 12 is however not clearly identified. The sensitivity tensor analysis
points out different possibilities. The first one is similar to the one identified for the
mode m = 0 while the second one directly links the existence of mode m = 12 to the
presence of the m = 29. Although not demonstrated, the similarities between the adjoint
of the mode m = 12 (optimal forcing of the mode) and the direct mode of m = 29 is
clearly observed. Cumulated to the fact that the non-normality property of mode m = 12
makes it very sensitive to external forcing and hence to perturbations generated by mode
m = 29. This second possibitity was found in good agreement with the results obtained
through DMTC in Chap. 3 where one observed that suppressing the dominant mode
m = 29 cancels at the same time the low frequency mode m = 12.
This chapter enabled to shed some light on the different mode origins and confirmed that
to control the overall pressure band phenomenon a focus on the m = 29 mode damping
should be realized. However, concrete and physical control actuators still need to be set
up and will be the subject of the next chapter.
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This chapter proposes to set up control strategies to stabilize the modes driving
the pressure band phenomenon in the enclosed annular rotor/stator cavity. The previ-
ous chapters indeed helped capturing the dynamics of this system while understanding
the mode interactions and dominance. However, no physically implementable solu-
tion could be proposed to control this flow with the tools and analyses proposed. To
overcome this problem, the GLSA framework is further developed here to make use of
the sensitivity to a base flow modification, first introduced by Marquet et al. (2008).
Contrary to the wavemaker obtained through structural sensitivity analysis, the sen-
sitivity to a base flow modification enables to point out the exact location where a
given mode should be modified to shift its frequency or growth rate. In this context,
this method provides a first order tool to set up a passive controller. After a brief
introduction of the rotating flow control studies, the principle and the steps to obtain
the base flow sensitivity are detailed. Thanks to this analysis, the conjunction use
of LES and GLSA shows to be a promizing method to suppress the pressure band
phenomenon thanks to very low amplitude injection/suction controllers to be added
to the original cavity at locations indicated by the base flow sensitivity tool.

5.1 Introduction
In the previous chapters, the pressure band phenomenon was reproduced by LES and
analyzed through GLSA for an academic annular rotor/stator cavity. These different
tools shed light on the different origins of the three main modes driving this cavity and
how they interact. In this chapter, a control framework still based on GLSA is proposed
to overcome this pressure bands problem of the annular academic cavity. To do so, a
review of the control systems and studies realized first in the general context of rotating
boundary layers are provided in Sec. 5.1.1 while Sec. 5.1.2 details the work specifically
dedicated to enclosed cavities.

5.1.1 Rotating boundary layer control
Turbomachine efficiency has always been optimized by controlling its inner flow and
many passive or active actuators have been developed in the last decades to delay or
promote the transition to turbulence (Lord et al. (2000)). One can cite for example fluid
suction/injection methods of Lee & Greitzer (1990), vortex generators by Chima (2002)
or riblets. A review of this latter system can be found in Koepplin et al. (2017). Among
all possible solutions present today, boundary layer control is a well known concept
(Prandtl (1904)) and blowing or suction devices have already proved to delay separation
and are still in use today in the area of supersonic inlets Caraballo et al. (2009) for
example.

For rotating disks, the main control system studied over the years has been grooves
(roughness), suction/blowing devices but also magnetic fields. The latter will not be
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detailed in this introduction but the last progresses can be retrieved from Thomas &
Davies (2013). Spatial inhomogeneities of rotating disk effects have been particularly
studied by Davies & Carpenter (2003). In this specific work, the authors showed that
grooves affect directly the global response of this locally absolute unstable flow. From
these observations, grooves or specific surface roughness have been specifically investi-
gated for the Von Kármán boundary layer to study the laminar to turbulence transition
but also in the long term to set up drag reduction systems. For example, partial
slip boundary conditions were used in Cooper et al. (2015) to approximate roughness
(grooves) of small scales compared to the boundary layer thickness. In this context,
they used the approach to analyze the Type-I (spiral shape) and II (annular shapes)
instability behavior. It was found that the groove organization plays a main role in the
stabilization of these modes. In effect, even though Type-I instability can be stabilized
for any kind of grooves, more complex behaviors were found for the viscous Type-II
instability and this latter is still a source of debate (Garrett et al. (2016); Stephen (2017)).

The second most common control systems encountered are suction devices and were
used early on in the experiments of Gregory & Walker (1960). The results of this study
showed that the greater the suction amplitude is the higher will be the critical Reynolds
number of the transition to turbulence. This is however not in agreement with Stuart
(1954) who suggested through a linear stability analysis that suction had a little effect
on the flow stability. The first investigation of suction device effects on the absolute
instabilities of the Von Kármán boundary layer was obtained in Lingwood (1997). In
particular and using LSA with a parallel flow assumption, they showed that suction
has a stabilizing effect for all Type-I modes as well as for the stationnary Type-II
modes. In agreement with Gregory & Walker (1960), they also proved that the critical
Reynolds number associated to the appearance of absolute instabilities increases with
suction. A decade latter, Thomas & Davies (2010) showed also through LSA that using
a suction system on the Von Kármán boundary layer, the absolute instability will be
transformed into a global instability. This observation was supported by Ho et al. (2016)
experimentally.

For the Bödewadt boundary layer, much less control studies have been conducted.
However, based on the work of Cooper & Carpenter (1997) and Cooper et al. (2015),
Alveroglu et al. (2016) was able to demonstrate using a local stability analysis and an
integral energy balance that the Type-I instability is stabilized for isotropic grooves and
destabilized for the anisotropic roughness (radial grooves). On the contrary, the same
authors showed that in case of the Type-II instability, radially anisotrpic grooves have
a destabilizing effect contrary to isotropic and azimuthally anisotropic grooves which
are stabilizing. Venkatachala & Nath (1980) then studied the bahavior of the Bödewadt
boundary layer with suction/injection. In that case, and with high levels of injection, they
found that the inflow is destabilized due to an inversion of the axial velocity direction.
Suction showed however to be stabilizing. This last result was confirmed by Lingwood &
Garrett (2011) who extended Lingwood (1997) LSA to the BEK family.

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



90 Chapter 5 : Control of a rotor/stator cavity flow

5.1.2 Enclosed rotor/stator cavity control
The system of interest to the present work deals with enclosed rotor/stator cavities as
introduced in Chap. 2. However, due to the complex nature of the 3D flow coming with
such a configuration, little literature exists on their control.
Özkan et al. (2017) showed through experiments and simulations that changing the
geometric characteristics of a cylindrical rotor/stator cavity has the same effect as
adding roughness on the rotor disk. Wilson & Schryer (1978) showed that by activating
a suction device on the rotating disk, both rotor and stator boundary layer thicknesses
were decreased. The same author also showed that by increasing the suction mass flow
amplitude, the stationary boundary layer becomes more and more unsteady. One major
benefit of suction when applied to the rotating disk is that it offers the possibility to
synchronize the rotating core speed with the rotating disk speed and hence suppress its
boundary layer.

Effectively, multiple ways to control a rotating flow is possible although most of
the studies focused on the control of the rotating boundary layer. Furthermore, no
argument was really given for such a specific choice rather than the control of the
stationary disk. In this chapter, the GLSA framework is once again probed to find
the optimal position for the introduction of a passive control device that can stabilize
an annular rotor/stator cavity. To do so, the sensitivity to base flow modification is
introduced in Sec. 5.2 and applied in Sec. 5.3. After setting the strategies taking into
account all the studies described in the previous chapters, a relevant controlled system:
i.e. that could be implemented in an experiment, is tested through LES in Sec. 5.4.

5.2 Sensitivity to base flow modifications
In Chapter. 4, a complete framework was developed to extract and understand the
dynamics of an annular rotor stator cavity. In addition to the wavemaker analysis also
known as structural sensitivity, the eigenvalue sensitivity to a perturbation of the base
flow defines another important quantity which provides physical insight on the instability
mechanism, especially for control purposes. Indeed, it provides a useful tool to predict
how the mean flow should be varied by a passive controller so it significantly affects the
leading global mode. First introduced by Marquet et al. (2008), this analysis enabled to
explain the experimental results obtained by Strykowski & Sreenivasan (1990) for which
small cylinders where postionned to remove the vortex shedding of a classical cylinder
wake. Since its first use, this type of analysis has been applied to many configura-
tions: D-shape cylinder (Carini et al. (2017)), open cavities Mettot et al. (2014) and so on.

As done in Chap. 4, the base flow is hereafter defined as Q = [U, P ] with U and P
respectively the velocity and pressure base flow. Each mode under study will be qualified
by their complex eigenvalue ω for which ωr = Re(ω) and ωi = Im(ω) are respectively
the mode frequency and growth rate.
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The main steps to obtain the sensitivity to base flow modifications ∇Qω of a given
mode are as follows. For a base flow modification δQ = [δU, δP ], the eigenvalue shift,
denoted δω, will result from the expression,

δω =< ∇Qω, δQ >, (5.2.1)

where < ·, · > corresponds to the inner product < a, b >=
∫
a∗ · b dS with a∗ the

conjugate of a. Note that the sensitivity ∇Qω is a complex vector, which is decomposed
into a real and an imaginary part corresponding respectively to the frequency sensitivity
∇Qωr = Re(∇Qω) and the growth rate sensitivity ∇Qωi = −Im(∇Qω) or,

δωr =< ∇Qωr, δQ > , δωi =< ∇Qωi, δQ > . (5.2.2)

The sensitivity to a base flow modification computation corresponds in the end to
an optimal control problem where Q is the control function, Eq. (4.3.19) the eigenvalue
problem to solve (a constraint), (ω, q̂) the state function and ω is the cost function that
one wants to maximize (the most sensitive parts correspond to the highest variation of
ω). To solve this optimal problem, the Lagrangian functional L (Airiau et al. (2003)), is
introduced so that,

L(ω, q̂, q̂+, Q) = ω− < q̂+, D({ω, q̂}, Q) >, (5.2.3)

where D is a reformulation of the direct eigenvalue problem expressed by Eq. (4.3.19)
so that D({ω, q̂}, Q) = L(m,Q)q̂ − ωq̂ and q̂+ is the adjoint mode here defined as the
Lagrange multiplier. Cancelling the gradient functional with respect to the state variable
(ω,q̂), the multiplier q̂+ and the control variable Q enable to retrieve respectively the
direct eigenvalue problem, Eq. (4.3.19), the adjoint eigenvalue problem, Eq. (4.3.20),
and the expression of the sensitivity to base flow modifications. The latter can thus be
formulated as,

< ∇Qω, δQ >=< ∂L

∂Q
, δQ >= δω. (5.2.4)

Note that, one can show that this sensitivity for incompressible flow is independent
of the pressure base flow modification and can therefore be expressed by,

∇Uω = −(∇û)H · û +∇û+ · û∗. (5.2.5)

The first term on the right hand side of Eq. (5.2) is usually interpreted as the
sensitivity to a base flow transport (advection) modification and is usually denoted
∇UT

ω. The second term in such a case is the sensitivity to a base flow production
modifications and is usually referred to as ∇UP

ω. The investigation of both terms can
be useful to deeply investigate the source of a given mode which can then be opposed to
the convective/absolute instability notions of a local stability analysis.
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In order to validate the sensitivity to a base flow modification as implemented in
our global stability code, a cylinder wake has been simulated and compared to the results
of Marquet et al. (2008). Good agreement was found and details of this test case can be
retrieved in App. C.

5.3 Application to the annular rotor stator/cavity
The dynamics of an annular rotor/stator cavity has been deeply investigated in the pre-
vious chapters. In particular, DMTC showed that the m = 12 mode is generated by
the dominant mode (m = 29) of the system which therefore needs to be suppressed if
one wants to control the overall pressure band phenomenon. The sensitivity to a base
flow modification based on the GLSA framework introduced in the previous chapter is
applied here to define a physical control system that could stabilize or at least shift the
frequencies of the observed pressure bands.

5.3.1 Control strategies
Figures (5.2) and (5.1) show respectively the results obtained for the magnitude of the
frequency sensitivity to a base flow modification ∇Uωr and the magnitude of the growth
rate sensitivity to the same base flow modification ∇Uωi for each modes present in the
cavity of interest: i.e. Case 2 of Chap. 4. In each case, the results are normalized
by their infinity norm ( ‖∇Uωr‖∞ for the frequency sensitivity and ‖∇Uωr‖∞ for the
growth rate sensitivity). For any given mode, the same regions of the cavity are globally
sensitive to changes, either for the frequency or the growth rate. Table (5.1) gives the
location of maximum sensitivity found for each component and each mode. The stator
and rotor modes are clearly more sensitive in the Bödewadt boundary layer which was
also found to be the source of these modes (Queguineur et al. (2018)). Note finally that
the annular mode has a particular spatial distribution of sensitivity similar to its adjoint
mode computation (see Fig. 4.16(a)).

‖∇Uωr‖∞ ‖∇Uωi‖∞
Stator mode (0.19 m, 34.9 mm) (0.20 m, 34.9 mm)
Annular mode (0.13 m, 33 mm) (0.13 m, 32.4 mm)
Rotor mode (0.12 m, 34,8 mm) (0.13 m, 34,8 mm)

Table 5.1 – (r, x) Position of maximum sensitivity for each modes

The purpose of the upcoming discussion is to investigate base flow sensitivity maps
in more details so as to identify strategies to control this rotating cavity flow. Two
ways can be taken: For an industrial purpose, the first one would be to apply a base
flow modification susceptible to shift the frequency in order to establish a new limit-
cycle less dangerous for the integrity of the whole system. The second one would be to
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Figure 5.1 – Spatial distribution of the growth rate sensitivity to base flow modification: The magnitude
of ∇Uωi is represented with (a) the stator mode (m = 29) (b) the annular mode (m = 0) and (c) the
rotor mode (m = 12).

suppress the modes by decreasing their growth rate until they become stable. From these
results, the Bödewadt boundary layer (stator) needs to be thickened or reduced to alter
the dominant mode appearance. As said previously, global stability analysis has been
successfully used in previous studies to control unstable boundary layers (Carini et al.
(2017)) with suction/injection slots. In the present case the whole dynamics of the system
is concentrated around the two boundary layers of the disks and hence the more efficient
way to control the modes would be to change the structure of the flow near the disk
walls. The questions remaining are, where should one put a flow controller and which
type should be used? Grooves showed to be an efficient tool but would be difficult to
link in terms of physics with the sensitivity flow analysis. At the opposite, low amplitude
suction/injection can be directly linked to the local velocity base flow modification δU
introduced in Sec. 5.2 or at least the local thickness of the above boundary layer. These
latter actuation systems are therefore chosen for the configuration studied here.
To set up such a control system, Fig. 5.3 and Fig. 5.4 provide views of the axial component
respectively for the growth rate sensitivity to a base flow modification and the frequency
sensitivity to a base flow modification. Thanks to these results, if one takes a purely axial
velocity modification, the expression behind Eq. (5.2) can give us directly the sign of the
mode eigenvalue shift. If the main purpose of the controller is to stabilize the dominant
mode (stator mode), Fig. 5.3(a) shows that one can add a suction device (δU > 0)
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Figure 5.2 – Spatial distribution of the frequency sensitivity to base flow modification: The magnitude
∇Uωr is represented with (a) The stator mode (m = 29) (b) The annular mode (m = 0) and (c) The
rotor mode (m = 12).

between r ∈ [0.195 m, 0.21 m] on the stator disk. According to Eq. (5.2) one will obtain
a negative growth rate shift. For this exact same device, Fig. 5.4(a), shows that a positive
shift of the frequency will be obtained which can be also an interesting approach if one
purpose of the controller system is, for example, to avoid a resonance of the flow with
the structure. Note that this solution will however not guarantee an optimal shift of the
frequency. In fact, the maximum of axial frequency sensitivity to a base flow modification
is found around 0.1925m. Note also that the growth rate sensitivity has a sign change
around r = 0.19m, the diameter of the suction device needs therefore to be precisely
adapted to fulfill all the wanteed conditions and avoid a destabilization of the dominant
mode. The last benefit of the position and orientation of the proposed control device is
that it doesn’t impact directly the other modes. Indeed the growth rate sensitivity of the
rotor and annular modes in the range r ∈ [0.195 m, 0.21 m] are almost equal to zero, so,
any modification δU of the boundary layer should not change their properties. However,
as demonstrated in Chap. 3 and by Bridel-Bertomeu (2016), the stator mode was found
at the origin of the low frequency rotor mode; a reaction of this mode is hence expected
with the activation of the controller.

The drawback with the proposed suction actuator is that even if used with a low
total mass flow rate, the operating point of the system will be changed which may not be
acceptable for an industrial case. To overcome this problem, a second actuator oriented
inward (injection slot) with an appropriate section is necessary. The first possibility is

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



5.3 Application to the annular rotor stator/cavity 95

to simply place this second actuator in the external part of the cavity (r ∈ [0.24 m, 0.25
m]) where the sensitivity of the flow is almost equal to zero for all modes. The second
possibility is to position it near the hub, also on the stator disk around (r ∈ [0.12 m, 0.13
m]). Indeed, the latter would directly stabilize the annular and rotor modes.

Figure 5.3 – Spatial distribution of the growth rate sensitivity to base flow modification: The axial
component ∇Uωi · x is represented with (a) the stator mode (m = 29) (b) the annular mode (m = 0)
and (c) the rotor mode (m = 12). The red arrows represent the injection and the green one the suction.
Note that the exact surfaces for each actuators is displayed. The growth rate shift generated by the
controllers are also displayed for each modes.

5.3.2 Effect of a flow modification: transport and production
mechanisms

The sensitivity to a base flow modification can be linked to the local stability approach.
In fact, as described in Sec. 5.2, the sensitivity gradient can be decomposed into a
production and a transport term. As introduced by Huerre & Monkewitz (1990), a global
mode comes from the competition between production and advection of fluctuations
by the base flow. When the production (respectively the transport) dominates, the
flow is said locally absolutely (respectively convectively) unstable. A region of absolute
instabilities is necessary to generate a global mode and can be retrieved in the present
sensitivity analysis. Figure 5.5 presents the results of this decomposition with the growth
rate sensitivity to a base flow production/transport modification for the stator mode
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Figure 5.4 – Spatial distribution of the frequency sensitivity to base flow modification: The axial
component ∇Uωr ·x is represented with (a) the stator mode (m = 29) (b) the annular mode (m = 0) and
(c) The rotor mode (m = 12). The red arrows represent the injection and the green one the suction. Note
that the exact surfaces for each actuators is displayed. The frequency shift generated by the controllers
are also displayed for each modes.

m = 29. The production ∇U,Pωi is represented in Fig. 5.5(a) and the transport ∇U,Tωi in
Fig. 5.5(b). The magnitude is provided for each plot and a zoom in the zone of interest
is also performed to visualize the orientation of the sensitivity gradients using arrows.
Both magnitudes have been normalized by max(‖∇U,Tωi‖∞, ‖∇U,Pωi‖∞). As one can
see, higher values of sensitivity are generally observed for production than for transport.
This indicates that to change the stator mode stability properties, a modification of
the base flow production mechanisms would be necessary in the zone r ∈ [0.175 m, 0.21 m].

Note that the orientation of both sensitivities is interesting to understand the mecha-
nisms at the source of the mode stability. In Fig. 5.3(a), a sign inversion has already been
noted around r = 0.19 m, this is due to a complete inversion of the sensitivity to the base
flow production orientation in this zone as shown in Fig. 5.5(a). However, the transport
sensitivity stays oriented downward in all the zone of high sensitivity. In the previous
argumentation, a suction device has been chosen to be located around r ∈ [0.19 m, 0.21
m] to stabilize the mode (negative shift of the growth rate). One can see that the small
base flow modification generated by this controller (δU > 0) is almost oriented in the
opposite direction to the transport sensitivity and hence generates a δωi < 0. Contrarily,
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the production sensitivity is almost completely orthogonal to δU and hence generates a
δωi ' 0. One can conclude that the stabilization of this mode for the chosen control
system comes from the transport mechanism which is in agreement with the fact that
to suppress an absolute instability region, one needs to balance the excess of fluctuation
production compared to the fluctuation transport (see Sec. 4.2 for more details about
absolute/convective instabilities).

Finally, the global stability analysis gave the structural sensitivity of each mode
(wavemaker) but no direct comparison could be done with the notion of absolute
instabilites of the local approach. In Fig. 5.5(c), the convective/absolute nature of each
instabilily for all radial positions found with a local stability analysis of (Queguineur
et al. (2018) and Bridel-Bertomeu (2016) are displayed and compared with the sensitivity
to the base flow production/transport modification of Fig. 5.5(a)-(b). In these results,
the region of absolute instabilities (defined for a positive growth rate) is found quite
larger than the present analysis where production of perturbations dominates transport
of perturbations. These observations highlight again the limit of the local stability
approach and the better precision of the global approach. However, for both approaches
the wavemakers were found at similar radial locations (see Queguineur et al. (2018)).

In the next section, the control strategy developed previously is effectively tested so
that expected results presented here can be validated. To do so, LES of the exact same
cavity studied in Chap. 2 augmented with the control devices are produced and analyzed.

wavemaker

Figure 5.5 – Stator mode mechanisms: Spatial distribution of the growth rate sensitivity to base
flow modification of (a) Production ‖∇U,Pωi‖ (b) Transport ‖∇U,Tωi‖. For each case, a zoom between
x ∈ [28, 35mm] displays their orientation with arrows. The radial distribution of the growth rate obtained
for the stator mode with a local approach is displayed in (c) (Bridel-Bertomeu (2016)).
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5.4 Validation of the control strategy through LES

This section intends to confirm the sensitivity to base flow modification results while
validating the control strategies proposed in the previous section. To do so, a LES as
described in Chap. 2 is repeated taking into consideration the identified suction and as-
piration actuators. After a brief description of the numerical set up, results for different
suction/injection mass flow rates are presented. Then an investigation of the mode evo-
lutions is provided for one specific mass flow rate that was found optimal. Finally, a
stability analysis of the controlled system is analyzed to show the evolution of the linear
global modes and the new flow state.

5.4.1 Numerical set up

The numerical parameters used for the present validation are taken from the uncon-
trolled case introduced in Sec. 2.4. The following paragraph details the meshing strategies
adopted to incorporate the two new controllers and a description of the specific boundary
conditions used.

Mesh

As a reminder, the original mesh of the uncontrolled configuration introduced in
Sec. 2.4 was constructed from a 2D fully triangular mesh and extruded along the rotation
axis. In order to add the two new boundary conditions following the control strategies
developed in the previous section, the original mesh needed to be modified. To be
consistent with the previous mesh, the same extrusion method is applied. To do so,
five 2D annuli have been meshed and extruded as presented in Fig. 5.6 (small sector in
gray). The resulting annular rotor/stator cavity is thus obtained by assembling all five
3D annuli with HIP while maintaining the two surfaces acting as controllers (injection
and suction devices respectively represented in red and green in Fig. 5.6).

Boundary conditions

To set up the suction and blowing controllers, the multiperforated boundary con-
dition available in AVBP are used (Mendez et al. (2006)). In its actual version, two
types of these specific boundary conditions exist: injection side wall-model and suction
side wall-model for multiperforated walls. The benefit of these boundary conditions is
that they both allow to impose a mass flow even in the case of a suction which is difficult
to do with a classical outlet boundary condition. To stay coherent with the control
strategies, a porosity (ratio of the holes surface over the total surface) has been set to 1
and the orientation of the corresponding perforated holes is supposed to be orthogonal
to the direction of the main flow.
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Figure 5.6 – Controlled system mesh: The 5 rings forming the mesh is represented by an exploded
sector. The red ring corresponds to the suction actuator and the green one the injection actuator.

5.4.2 Results
In this section, the results of the controlled annular cavity are presented for different suc-
tion amplitudes. In the literature on rotating flow control, the parameter a = −Ux/

√
νΩ

where Ux is the wall-normal velocity at the disk surface of the injection/suction controller
is usually used (Stuart (1954), Ho et al. (2016)). Note that a > 0 will denote suction
while a < 0 for an injection control.

Mass flow rate effect

To stay in the linear assumption usually needed for the analysis used to design
the controllers, low suction parameters are necessary. However, fixing a limit is impos-
sible so seven values ranging from a = 0.001 to a = 0.2 have been tested. First, the
convergence of the flow kinetic energy Ēk integrated over the domain and normalized
by the uncontrolled cavity kinetic energy in its limit cycle ĒkNC

is shown in Fig. 5.7.
This figure presents the results obtained for an increasing suction parameter going from
a = 0.001 to a = 0.2 with an increasing shading: (light) for low values to (dark) for
high values. Time is normalized such that t′ = t F0 and one can see that a stable state
is obtained for each case after t′ = 20. From this result, one can also notice that the
overall kinetic energy of the controlled system is decreased by 1 to 2% compared to the
uncontrolled case and this level decreases with an increasing suction parameter.

The new limit cycles obtained are analyzed in the following through pointwise power
spectral density of the axial velocity component. Note that the same probe notationas
in Chap. 2 is resumed here. Figures 5.8(a)-(e) give the PSDs obtained as a function
of a respectively for probes with an increasing radial position going from r = 0.08
m to r = 0.24 m, the position of the probes being reminded in Fig. 5.8(f). Finally,
the results obtained for the uncontrolled cavity are added in black in each plot for
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Figure 5.7 – Convergence of the kinetic energy Ēk. Each curve corresponds to a given suction parameter
scaling from a = 0.001 (light) to a = 0.2 (dark). The results are normalized by the uncontrolled cavity
kinetic energy ĒkNC

. t′LC is the time at which the 2D shape of each final limit cycles obtained for each
parameter a will be displayed in Fig. 5.9. ∆t′PSD is the time range on which PSDs will be applied on
each limit cycles.

reference. For all cases, the exactly same range of time ∆t′PSD = 32 (see Fig. 5.7) has
been taken to rigorously compare the different results. From a general point of view,
one can see that for all suction parameter values, it is really difficult to distinguish a
global frequency. When one looks closely, 3 regions can however be identified: For very
low suction, no global frequency is distinguished but the overall PSD level is increased
by about 20% around the controllers (see Fig. 5.8(d)-(e)). The PSD level is however
not impacted between the two controllers (see Fig. 5.8(b)-(c)) where the dominant
mode was initially observed in the uncontrolled case. Increasing the suction parameter
values results in an overall level decrease and for the highest suction values, a new
limit cycle is detected with new frequencies: F/F0 = 1.18 and F/F0 = 2.2 at low radii
as shown in Fig. 5.8(a)-(b). However compared to the uncontrolled case, one can see
that these modes are not advected all around the cavity and the actuators can be seen
as perturbation transportation absorbers. Note that these observations can also be
retrieved by analyzing the PSD of probes located in the middle of the cavity as well as
for probes around the rotor. Interested reader can refer to App. D for these specific results.

The evolution of the controlled cases compared to the uncontrolled one can also be
retrieved in Fig. 5.9 with instantaneous field of axial velocity taken in a plane around the
stator boundary layer at z = 0.035m for all suction parameters and the non controlled
case at t′LC (see Fig.5.7). In Fig. 5.9(a), one can see that the annular and the spiral
patterns are retrieved here with the new mesh. With the activation of the controller, all
the patterns are broken leaving only turbulence even for the smallest suction parameter.
For a = 0.004, new spirals at high radii start to appear locally and grow inward if
increasing a. For a = 0.108, a new pattern arises to appear around the hub and a
clear azimuthal wavenumber m = 14 is observed for a = 0.2. Note that the frequencies
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C6

C7

C8

C9

C10

C6 C7 C8

C9 C10

Figure 5.8 – Probes Axial velocity PSD of the controlled cavity function of the suction amplitude a in
the stator disk: (a) probe C6 (r = 0.08) (b) probe C7 (r = 0.12) (c) probe C8 (r = 0.16) (d) probe C9
(r = 0.20) (e) probe C10 (r = 0.24) . In each plots the black contour represent the results obtained for
the non controlled cavity. (f) Schematic of the probes C6 to C10 probes.

observed in the PSDs of this last case must be linked to the patterns described here.
This behavior is in agreement with the theorical results of Venkatachala & Nath (1980)
for which the Bödewadt boundary layer was found destabilized by flow injection and
stabilzed for suction. However, the present study shows that contrary to Venkatachala
& Nath (1980) low values of suction/injection are sufficient to stabilize the boundary layer.

The effect of the controllers on the mean flow is described in the following set of
figures. Figure 5.10 gives first the velocity profiles for 3 radial positions : r′ = 0.3
(injection device position), r′ = 0.5 (mid-cavity) and r′ = 0.65 (suction device position)
respectively given in columns (left), (middle) and (right) where r′ = r/(R0+R1). For these
three positions, the three velocity components Ur, Uθ and Ux are provided respectively
in rows Fig. 5.10(a)-(c), Fig. 5.10(d)-(f) and Fig. 5.10(g)-(i). From the radial velocity
profiles, one can note that the suction device has a direct impact on the stator boundary
layer thickness (as expected) and this latter keeps shrinking when increasing the controller
strength (see Fig. 5.10(c)). One can also note that the flow injection at r′ = 0.3 creates
locally a negative azimuthal velocity around the stator disk which is increasing with a
as shown by Fig. 5.10(d). From Fig. 5.10(i), one can see that the suction device inverts
locally the axial velocity component but more importantly reduces the inflection nature
of the mean flow profile. Finally, it is noted that activating the suction changes the core
flow. In fact, this latter has, in the uncontrolled case, a negative and constant axial
velocity due to the pumping effect of the rotor. However, In the controlled cases, the
sign of the axial speed changes at mid-height of the cavity. At the opposite location,
at the injection device location (r′ = 0.3) and for relatively low mass flow injections,
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Figure 5.9 – Limit cycles: Instantaneous axial velocity in a plan at x = 0.035 in at t′LC (see Fig.5.7):
(a) a = 0, (b) a = 0.001, (c) a = 0.004, (d) a = 0.013, (e) a = 0.019, (f) a = 0.108, (g) a = 0.154, (h)
a = 0.2.

Fig. 5.10(g) shows that the mean flow profile is not perturbed and it is only for a = 0.108
that strong axial velocity around the stator starts to deform the uncontrolled mean flow.
This last observation could be linked to the new limit-cycle appearing above a = 0.108
and particularly active around the hub. Finally, at r′ = 0.5, Fig. 5.10(h), low suctions
affect more the core flow axial velocity of the system than high suction. For example,
for a = 0.001, the axial velocity core flow is increased by about 36% compared to the
uncontrolled case. Concerning the Bödewadt boundary layer, one can see that this rotor
boundary layer is not impacted at all in the region where the dominant mode m = 29
is particularly marked in the uncontrolled cavity. This ensures that the stabilization
mechanism of this mode is not linked to a modification of the mean flow around r′ = 0.5.

Detailed study of the flow limit-cycle for a = 0.004

The results obtained for a very low mass flow injection and suction: i.e., a = 0.004 are
particularly detailed thereafter. First, three instantaneous axial velocity fields taken at
t′ = 0, 25 and 38.7, where t′ = F0t are given in Fig. 5.11. Note that for this specific
case, less than 10 periods are necessary to retrieve a stable state of the system as seen
in Fig. 5.7. As shown by Fig. 5.11(c), when ce limit cycle is reached, no clear structures
can be identified. The spirals corresponding to the dominant mode appear here broken
showing a purely turbulent flow.

To visualize the evolution of the three characteristic modes found previously in
Chap. 2, DMT is activated during the simulation starting from the activation of the
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Figure 5.10 – Mean flow velocity profiles of the controlled cavity: (a)-(c) Radial velocity component (d)-
(f) azimuthal velocity component (g)-(i) axial velocity component. The three components are normalized
by rΩ and are displayed for the radii r′ = 0.3 (injection device position), r′ = 0.5 (mid-cavity) and
r′ = 0.65 (suction device position) respectively in columns (left), (middle) and (right).

Figure 5.11 – 3D instantaneous axial velocity with (a) t′ = 0, (b) t′ = 25 and (c) t′ = 38.7.

actuators. Axial velocity profiles are displayed on Fig. 5.12 for the modes m = 29, m = 0
and m = 12 at the same characteristic times as the ones used in Fig. 5.11 for the plane
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positioned in the stator boundary layer at z = 35.7 mm. With DMT, one retrieves ini-
tially the annular and spiral modes that are then progressively broken to finally display
all selected frequencies an almost purely incoherent flow.

Figure 5.12 – Modes controlled: evolution of the modes driving the uncontrolled cavity dynamics with
(a) m=29 , (b) m=0 and (c) m=12. each mode can be visualized at the three characteristic times: t′ = 0,
t′ = 25 and t′ = 38.7 in a plane located in the stator boundary layer at z = 35.7 mm.

Finally, PSDs of the axial velocity in the stationary disk are again used to evaluate the
evolution of the fluctuation levels. As one can see in Fig. 5.13(a), the uncontrolled cavity
initially displayed a spectrum concentrated around three main modes. From Fig. 5.13(b),
the PSD level of the controlled cavity has increased due to the controllers but no mode
can be truly distinguished. Only a few peaks can be observed around the periphery of the
cavity (probe C9) for F/F0 = 7.0. This wave stays however local and no clear global mode
seems to appear. The −5/3 slope relevant to the inertial range of a Kolmogorov spectrum
in a fully turbulent flow Pope (2001) is also present for both cases, thus supporting the
turbulent LES flow in the stator boundary layer that are not yet fully turbulent but rather
in a transitional state. Higher dispersion can however be observed for high frequencies of
the controlled cavity compared to the uncontrolled cavity.

Stability analysis of the controlled cavity for a = 0.004

The purpose hereafter is to investigate the modal content generated by the mean
flow of the controlled cavity for a suction parameter a = 0.004. To do so, stability anal-
ysis is produced and results are compared to the sensitivity to a base flow modification
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Figure 5.13 – Axial velocity PSD comparison between (a) the uncontrolled cavity (a = 0) and (b) the
controlled cavity (a = 0.004). All the probes from C6 to C10 are localized in the stator boundary layer.

analysis described in Sec. 5.3.1.

First, Fig. 5.14 gives a direct comparison of the radial velocity component of the
controlled cavity (Fig. 5.14(a)) and the uncontrolled one (Fig. 5.14(b)). As one can see,
no impact can be observed on the rotor flow. Around the suction actuator, no significant
changes is also identified. This is explained by the low axial velocity introduced by
the actuator system as already observed from the velocity profiles, Fig. 5.10. This last
observation is important, in the sense that the main purpose of these control systems
is to suppress the main mode, preserving the operating condition of the cavity and
without disturbing the flow around the hub. Note however that, at the periphery of the
cavity, the stator boundary layer is locally decreased by 10% around the suction controller.

In the following, the eigenvalue spectrum issued by the linear stability analysis of
the controlled cavity is compared to the uncontrolled case. Figure 5.15 gives the results
associated with (a) the amplification rate and (b) the frequency. The first observation
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Figure 5.14 – Comparison of the radial velocity component: (a) Controlled case (a = 0.004) (b)
uncontrolled case (a = 0). The red arrows represent the injection and the green ones the suction. Note
that the exact surfaces for each actuator are displayed. Both plots have been normalized by the maximum
radial velocity of the uncontrolled case.

that can be made is that no physical mode could be retrieved form = 12 as expected since
one showed that by controlling the mode m = 29, the mode m = 12 should disappear
(see Chap. 3).

The second point concerns the annular mode m = 0. As one can see, even though,
LES results predict that this mode is totally damped, LSA predicts only a slight decrease
of its amplification rate. This result validates one of the main purpose of the control
strategy which was to suppress the dominant mode without impacting the other ones.
Furthermore, what is suspected here is that the specific mode around the hub, that can
be well observed on Fig. 5.9(h) (for a = 0.2), is linked to the annular mode which had
a very similar shape around the hub at the mid-height of the cavity in the uncontrolled
case. In other words, the mode seen on Fig. 5.9(h) can be the annular mode amplified
after the suppression of the m = 29 mode. One can also note that the new m = 0 mode
found by LSA is very close in terms of frequency to the one found in the PSDs for high
suction amplitude with LES (F/F0 = 2.2).

Finally, interesting results are found for the modem = 29. Even though not observable
in the LES, the frequency of mode m = 29 issued by LSA has been increased thanks to
the controller systems as expected by the sensitivity analysis and the control strategy
set up. However, despite the observation that LES confirmed that control the dominant
mode is fully stabilized, from a linear stability point view a large amplification of this
mode is obtained. This type of result was already observed in Leu & Ho (2000) where
the global mode of a plane wake was indeed eliminated thanks to suction which shrinked
the region of absolute instability. But this control also caused at the same time a steep
rise of the mode absolute amplification rate.
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Figure 5.15 – Scatter plot of the controlled cavity stability analysis spectrum: (a) The amplification
rate and (b) the frequency versus the azimuthal wavenumber m with a = 0 (black square) and a = 0.004
(red circle). The coordinates have been normalized by the pulse of the rotor, i.e., 2πF0. The gray
markers represent numerical modes (ωr < 0).

Interesting information can finally be obtained by looking at the mode shapes obtained
by LSA. Figure 5.16 presents the m = 0 and m = 29, 2D axial velocity fields post
control. Note that, LSA results giving only negative frequencies for m = 12, the 2D
shape associated to this mode corresponds effectively to purely numerical noise. As
expected from the last comments, the m = 0 mode (Fig. 5.16(a)) is not impacted at all
but highest amplitudes compared the uncontrolled mode Fig. 4.14 are found in the stator
boundary layer. Finally, even though an increase of the amplification rate was found for
the m = 29 mode, LSA predicts a mode with a very different shape. One can see that the
mode is confined between the shroud and the suction controller which suggests that, due
to the centripetal forces, the perturbations can be absorbed by the controllers leaving the
rest of the cavity unperturbed.
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Figure 5.16 – Axial velocity modes of the controlled cavity (a = 0.004) with (a) m = 0 and (b) m = 29,
both obtained through linear stability analysis.

5.5 Conclusion
In order to improve our understanding of the pressure band phenomenon and set
up control strategies, the annular stator/rotor cavity is investigated in this chapter
thanks to global stability analysis. In the previous chapter, the studies were focused
on structural sensitivity analyses to point out the origin of each global mode in this
cavity, whereas the present study develops the notions of sensitivity to base flow
modifications to analyze how the activity of the cavity would evolve under specific base
flow changes. For the three modes driving the cavity, the Bödewadt boundary layer
(stator) shows to be the most sensitive zone of the cavity according to the frequency
and growth rate sensitivities. The sensitivity axial components are then used to set
up control strategies. To shift the dominant mode frequency and stabilize it at the
same time, activating a suction slot on the stationary disk around r = 0.20 m proves
to be the best way contrary to the literature where most of the studies focus on the
rotating disk. Since to preserve the operating point, an injection actuator is also
needed, two different positions of this second controller have been proposed. The first
one is identified where a zero sensitivity is noticed for the three modes. This latter
would allow to suppress the dominant mode independently from the other modes. The
second possible position is a location in the cavity where the two remaining modes
are particularly sensitive. Only the first strategy is evaluated though LES in the last
section of this chapter. In that case, one shows that for a very small injection/suction
mass flow, the three modes can be suppressed leaving a flow purely turbulent with
an overall fluctuation level far lower than the uncontrolled cavity. Finally, a stability
analysis of the controlled case helps understanding that the annular mode of the sys-
tem can become predominant as observed for higher level of injection/suction parameters.
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To conclude, the conjunction use of LSA and LES shows to be a promising method to
construct physical controller and impact directly the pressure band phenomenon. Based
on such observations and successes, the tools developed and validated in Part I and II
are evaluated on a space turbopump cavity to give more insight on the pressure band
phenomenon occurring in these complex systems.
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The previous chapters have highlighted the capacity of Large Eddy Simulation
(LES) to capture the pressure band phenomenon in academic cavities while global
stability analysis allowed to point out the origin of each modes. In the present chap-
ter, the same strategy is applied for the cavities of a space turbopump turbine where
high Reynolds numbers and large scale dynamics have been observed. The primary
goal of this investigation is to evaluate the capacity of LES to retrieve the modal
content of the system. Known to be very sensitive to geometrical parameters, the
pressure band phenomenon is studied in a second step by addressing a new config-
uration which includes the blades of the stator. In order to shed some light on the
retrieved flow dynamics, the global stability framework is once again applied here to
highlight the source of the self-sustained oscillations. In particular, receptivity and
structural sensitivity analyses are conducted to identify strategies to delete or at least
shift the modes of the observed limit-cycles.

6.1 Introduction
Space engine design still remains challenging for researchers and engineers today. Indeed,
each phenomenon and component need to be precisely analysed to produce reliable
design which is particularly difficult due to the complexity of the fluid dynamics that
operates such devices. For example, experimental campaigns have often evidenced
unsteady phenomena around the cavities of space turbopump turbines which is still
misunderstood and can be a real source of problem during launches. As introduced in
Chap. 1, this PhD focuses on the ’Pressure band phenomenon’ corresponding to purely
hydrodynamic flow instabilities. This phenomenon has been named as such because
of frequencies which can be measured everywhere in the cavity and mark pressure
probes. Furthermore, these self-sustained oscillatory motions of the fluid can, under
certain circumstances, become dangerous if uncontrolled and potentially impact the
structural integrity of the engine. Deeper investigations have highlighted the sensitivity
of this unsteady flow to geometric changes but also to the thermal conditions of the
system and operation point. In that respect, the PhD work of Bridel-Bertomeu (2016)
enabled to shed some light on such devices as well as the origins of this phenomenon. In
particular, he proved that contrary to RANS, LES is capable of retrieving such modes.
The sensitivity to the thermal conditions and geometry changes evoked previously have
also been studied by the same author through three cases: Case (a), a full turbine stage
cavity with a cold leak at the hub; Case (b) a simplified geometry with a cold leak at
the hub and Case (c), a full turbine stage cavity with a warm leak. Through spectral
evaluations of the corresponding LES predictions, Bridel-Bertomeu (2016) proved with
Case (b) that suppressing the higher cavity (C5 in Fig. 6.2) acts as a band pass-filter of
the high frequencies. Likewise, the warm leak of Case (c) changed the overall dynamics
of the system proving the sensitivity of the system to its thermal operating condition as
well as its operating point.

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



6.1 Introduction 115

In aeronautical engine turbines, similar unsteady phenomena have been observed.
In fact, to avoid overheating the turbine disk, cooling systems are usually set up by
imposing a mass flow (or leak) in the wheel rotor-stator space as shown in Fig. 6.1. To
minimize the ingress of hot gas coming from the hot main annulus from entering the
wheel stator-rotor space, a rim seal which can take different shapes (Phadke & Owen
(1988)) is usually added. This specific part of the system creates three dimensional
and highly unsteady flows that have been studied for a long time theoretically (Owen
(2012)), experimentally (Phadke & Owen (1988),Daniels et al. (1992)) and numerically
(Pogorelov et al. (2018)). Over the years, two specific flow mechanisms have been linked
to this ingress/egress unsteady phenomenon. The first one, referred to as externally-
induced (EI) ingress (Owen (2011b)), corresponds to a non-axisymmetric distribution
of the pressure in the hub region between the stator blades and the wheel space. The
second one, usually called rotationally-induced (RI) ingress (Owen (2011a)) occurs for
an axisymmetric pressure distribution in the main annulus and with or without the
stator or rotor blades. This is due directly to the rotor disk pumping effect which creates
a pressure gradient between the wheel space and the main annulus. Depending of the
configuration studied a combinaison of both mechanisms can also be observed and is
usually named combined ingress (CI) (Owen (2011b)). A complete review of this specific
ingestion and blowing processes at rim seal interfaces can be read from Fiore (2019).

Figure 6.1 – Turbine cavities sketch with ingress/egress process at the rim seal

Folllowing these investigations, two new configurations called Case 1 and Case
2 are studied in the present chapter. For Case 1, the original geometry of Bridel-
Bertomeu (2016) is modified around the hub and a direct comparison with his Case
(c) will be made. Finally, since experimental observations showed that the pressure
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band phenomenon was not linked to the turbine blades, these were not considered in
Bridel-Bertomeu (2016). This specific point is however partially addressed through
Case 2 hereafter to confirm this finding. To do so, the same geometry as for Case 1 is
retrieved with the addition of the stator blades.

The chapter is organized as follows. First, the two configurations simulated by LES are
presented in details in Sec. 6.2 and comparisons with the one studied by Bridel-Bertomeu
(2016) are provided. The numerical parameters and meshes adopted to simulate such
geometries are then given. The modal behavior of all resulting predictions is then analysed
though power spectral analyses and modal decompositions. DMT is also used to evaluate
more precisely the characteristic azimuthal and axial wavenumber modes present in the
different cavities. Section 6.6 is finally dedicated to the stability analysis of Case 1 to see
if GLSA retrieves the observed modes for such a complex system. To finish, regions of flow,
where control could be envisioned, are looked for as done for the academic configuration
studied previously.

6.2 Turbompump configurations
The two configurations studied in this chapter are presented in Fig. 6.2 and will be
called respectively Case 1 (Fig. 6.2 (a)) and Case 2 (Fig. 6.2 (b)) throughout the
rest of the discussion. As stated in the introduction, Case 2 is very close to Case
1: it is in fact Case 1 augmented by the stator blades. Note that as shown in
Fig. 6.2(a)(upper) all considered computational domains correspond to 360◦ axisym-
metric simulations. Indeed, as observed for the academic cases, even though such
systems are geometrically simple, the structures appearing in the boundary layers are
complex and three dimensional imposing to take the full system in any CFD computation.

Figure 6.2(lower) represents (r, z)-cuts of the geometries allowing to see the differ-
ent parts of the systems. For both cases, the same nomenclature has been chosen to
identify the four different cavities present in the considered system:

• C1: Rotor/stator wheel space of the first rotor being marked by a red line

• C2: Main annulus corresponding to the main stream flow coming from the gas
generator,

• C3: Throat between the stator and rotor stage linking the C1 and C2 cavities,

• C5: High radius cavity with no specific function.

Note that C4 (not shown in Fig. 6.2) corresponds to the rotor/stator wheel space
of the second rotor and will not be taken into account in the present study. Finally,
the C3 cavity separating the main annulus from the rotor/stator wheel space of the first
rotor as a specific shape contrary to rim seal found in classic turbomachinery and will
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Figure 6.2 – 3D Configurations studied with (a) Case 1 (the orange dashed line represnet the only
diffenrece of the acual configuration with the one studied in Bridel-Bertomeu (2016)) (b) Case 2 same
configuration as Case 1 augmented by the stator stage blades. Note that the blades profiles have been
modified for confidentiality reasons.

be referred to as annular seal.

In order to compare these configurations with the previous academic cases, three
radial locations have been specifically chosen in the cavities C1 and C3. These regions
have the particularity to be between a relatively smooth rotor and stator disks. The
respective locations will be referred to as r′

1 = 0.35, r′
2 = 0.488 and r

′
3 = 0.72 where

r
′ = r/rmax as shown in Fig. 6.2(lower)(b). Note also that in the same figures, the axial
position for which 2D DMD cuts will be displayed is represented. Note finally that all
geometric values discussed in this chapter are normalized by the maximum radius of the
geometries for confidentiality reasons. The rotating parts will furthermore be marked by
a red solid line. To finish, for both cases and in all computations, the inlet of cavity C2
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injects hot combustion products coming from the gas generator driving the turbine stage.
The leak, located at the lowest radius injects a cold liquid.

6.3 Large Eddy Simulations
This section presents the numerical parameters and boundary conditions chosen for the
LES of the previous configurations as well as the meshing strategies adopted.

6.3.1 Boundary conditions
As described in Sec. 6.2, for both cases under study, two inlets (the main annulus and
the leak) for one outlet are present. Apart from the rotor, all other boundaries are
walls. The leak and the main annulus inlet of Case 1 have been treated the same
way by imposing the three cartesian velocity components (u, v, w), the Temperature
Ts and the species mass fractions Yspecies. A new boundary condition made available
during the second part of this PhD then enabled to impose total quantities (pressure
and temperature) and mass fractions (Odier et al. (2019)). Already known to be
more efficient for turbomachinery computations, this specific boundary conditions has
therefore been applied only for Case 2 and proved to accelerate convergence of the inlet
flow specifications to the expected mass flow. For both cases, only the static pressure
is prescribed at the outlet condition. The leaks, inlets and the oulet have finally been
all treated thanks to the Navier-Stokes Characteristic Boundary Conditions (NSCBC)
formalism Poinsot & Lele (1992) to avoid wave reflection.

When it comes to the walls of the main annulus extension (post C3 cavity), these are
set as no slip conditions while the rotor wall is defined by fixing its tangential velocity
as a linear function of its rotation speed Ω and the radial position along the wall. To
reduce CPU cost while capturing the good bahavior at walls, wall-laws are furthermore
imposed on the remaining conditions. The law from Coles & Hirst (1968) is in this case
prescribed so that,  u+ = n+ for n+ ≤ 11.445,

u+ = k−1ln(En+) for n+ > 11.445,
(6.3.1)

with k = 0.41, E = 9.2 and for which u+ = ū/v∗ and n+ = nv∗/ν are respectively the
normalized velocity and normal wall distance, v∗ being the wall-friction velocity defined
using the wall shear stress τw (v∗2 = τw/ρ) while ν is the kinematic viscosity of the fluid
and ρ is its density. The different boundaries are detailed geometrically in Fig. 6.3.

6.3.2 Meshes
The meshing strategies applied to the two configurations are described in the following.
Note that for both configurations, the meshes are composed entirely of tetrahedra.
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Figure 6.3 – Boundary conditions imposed for the LES of (a) Case 1 and (b) Case 2

Case 1:

A (r, z)-cut of the mesh is given in Fig. 6.4 and highlights the main regions of refine-
ment. At low radii, the mesh has been refined to recover the leak of H2 interacting with
the rotor. An important refinement has also been applied around cavity C3 where strong
mixing has been noted due to the interaction of the lower main annulus boundary layers
with the centrifugal flow generated by the rotor. A coarsen mesh is used near the outlet
to avoid any flow or numerical wave reflection. Note that, after numerical convergence
of the corresponding simulations, the wall coordinate n+ has been verified. Even though
some nodes can cross the recommendation of n+ = 30 (Sagaut (2006)) all nodes are found
to be within 1 < n+ < 30.

Case 2:

At first, Case 1 meshing strategy has been reused to mesh Case 2. In particu-
lar, the mesh in the cavities C1 and C5 is taken so as to be exactly the same as for
Case 1. This first resulting mesh has then been used to numerically converge the
simulation and reach the operating point of the system. From this converged result,
an automatic mesh refinement has been applied thanks to the library called mmg3D
(Dapogny et al. (2014)) developed at INRIA Bordeaux. The tool has been implemented
to adapt the mesh thanks to a given metric. In our case, the average viscous dissipation
given by AVBP and usually called LIKE (Loss In Kinetic Energy) (Daviller et al. (2017))
has been chosen to produce this metric based on which a second mesh was obtained
for Case 2. This quantity indeed provides a good sensor of the regions of the flows
with strong velocity and pressure gradients which is useful for Case 2 to refine the
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Case 1 Case 2 Case (C)
Number of cells (Ncells)[×106] 111 131 109
Number of node (Nnodes) [×106] 19 24 19
Minimum Cell volume (Vmin) [m3] 0.6× 10−13 0.1× 10−15 0.7× 10−13

Averaged wall normal n+
ave 40 100 35

Table 6.1 – Summary of the meshes characteristics of Case 1 and Case 2. Case (C) corresponding to
the Bridel-Bertomeu (2016) PhD configuration shown Fig. 6.2 is given for comparison.

blade boundary layers but also their wakes and shocks as seen in the resulting mesh,
Fig. 6.4(b). The normal wall coordinate n+ has again been checked a posteriori. The
lower and high radius cavities were not impacted by the automatic refinement and
similar n+ values are obtained as for Case 1 aside near the blades where an average n+

of 100 was found.

Note that, Tab. 6.1 sums up the charateristic values obtained for both meshes
along with the values reported for Bridel-Bertomeu (2016) (see Fig. 6.2) as reference.

Figure 6.4 – Configurations meshes: (a) Case 1 (b) Case 2. The cuts A-A and B-B show the mesh
refinements around the wake and the shocks respectively at r′ = 0.86 and r′ = 0.8. Note that the blade
shapes have been modified for confidentiality reasons.
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6.3.3 Numerics and LES modelling

In order to close the description of the numerical set up of these industrial configurations,
the main numerical parameters and adapted subgrid scale model are provided in this
section. First, the full compressible multi-species Navier-Stokes equations Solver AVBP
is used here. The convection scheme TTGC (Colin & Rudgyard (2000)) (Two-steps
Taylor Galerkin) based on finite element and following a cell-vertex formalism is preferred
for its low dissipation and dispersion properties (3rd order space and time accuracy).
Finally, the WALE subgrid scale model (Nicoud & Ducros (1999)) is chosen for its good
behavior in wall bounded flows.

In the particular configuration of Case 2, Localized Artificial Dissipation
(LAD)(Mathew et al. (2006, 2003)) is activated to help the system to numerically
converge. This tool has the benefit of using spatial filtering to prevent wiggles and
smooth large gradients making it very suitable to stabilize a simulation with shocks.
After 2 full rotations of the rotor, LAD which can be intrusive, is then replaced by
a Colin artificial viscosity (Colin & Rudgyard (2000)). Finally, to prevent artificial
reflections on the outlet, a numerical sponge layer is applied at the end of the main
annulus (C2).

To obtain a satisfying convergence and exploitation of the simulations, two main flow
features have been checked: the operating point and the full development of the flow
dynamics. To ensure the first criterion, mass flow at the inlet, outlet and leak have been
followed in time and are given in Fig. 6.5(a)(left) for Case 1 and Fig. 6.5(a)(right) for
Case 2. Inlet and outlet mass flows have been in both cases normalized by the inlet
expected mass flow noted here ṁ0. In case of the leak, the same approach is adopted,
the reference scale being noted ṁl. As one can see, for Case 1, the desired targets are
obtained quickly after 3 full rotations of the rotor disk and with a final error below 1%.
For Case 2, the system converges faster thanks to the interpolation of Case 1 results
which has been used as an initial guess for this case. For the inlet and the outlet, one
also retrieves a final error below 1%. The leak mass flow of Case 2 seems however more
difficult to retrieve. However, even though an error of 5% is found the leak mass flow
being very low (ṁ0 ' 103ṁ0), these results were considered acceptable.

Ultimately, the parameter which validates the operating point of such simulations is
the outlet pressure that is displayed on Fig. 6.5(c). Contrary to the mass flow, it is
particularly difficult to converge the outlet of Case 2 to the good static pressure noted
Pout. In fact, the blades of the stator generate wakes which produce shocks (see Sec 6.4)
that create an unsteady flow at the end of the main annulus. Nevertheless, to ensure a
good overall pressure in the entire domain, the NSCBC relax coefficient imposed at outlet
can be progressively adjusted to increase convergence as seen from Fig. 6.5(c)(b) through
the jumps of the convergence curves. In parallel to these verifications, the convergence
of the flow dynamics is obtained by looking at the kinetic energy integrated over the
entire domain as function of time. A limit cycle is clearly observed after only a complete
rotation for both cases and average values are all taken on the plateau noted Emax which
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has been used to normalize all associated plots.

Figure 6.5 – Simulations convergence of Case 1 (left column) , Case 2 (right column) with (a) the
inlet, outlet and leak Mass flow rate over time respectively in red, black and blue. The results have been
respectively normalized by ṁi, ṁi and ṁl , (b) the kinetic energy integrated over the domain normalized
by its ∞-norm and (c) The static pressure outlet normalized by Pout.

6.4 Overall flow analysis
In the present section, the three dimensional coherent structures resulting from LES
are presented for Case 1 and Case 2. To do so, Fig. 6.6 first depicts instantaneous
iso-surfaces of the Q-criterion (Jeong & Hussain (1995)) colored by the absolute Mach
number to evidence the vortical structures present in the complete flow field and
specifically in the wake regions of the stator blades. One also notes here that for Case
1, the flow in the main annulus (C2) is fully supersonic. Contrarily, the flow of Case 2
goes supersonic only due to the presence of the stator blades as in the real configuration.
Figure 6.6(c) also shows the interactions between the highly tangential wakes and the
shocks generated at the blade pressure side close to the trailing edge.

One particular interest behind these configurations is the flow activity appearing in the
cavity C3 which links the main annulus C2 to the rotor/stator wheel space C1. Figure. 6.7
shows a comparison of a radial velocity instantaneous of both configurations around this
specific region. Note that both results have been normalized by the absolute radial
velocity at the C3 − C2 connection of Case 1.

As one can see, in both configurations the egress/ingress phenomenon corresponding
to unsteady fluctuations of the radial velocity at the C2-C3 connection is observed in both
cases. For Case 2 (Fig. 6.7(b)), the stator blades have however a larger impact on the
flow feeding the rotor/stator wheel space C1. In fact, it has been noted that the ingress
magnitude in Case 2 can be increased by 20% to 30% when compared with Case 1.
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Figure 6.8 provides the same results in a (r, θ)-cut to show the change of the flow in
the azimuthal direction. The major consequence of the presence of the stator blades is
as expected an increased azimuthal heterogeneity of the flow dynamics. While Case 1,
Fig. 6.8(a), shows spiral patterns in C1, these seem absent in Case 2. Overall both
predictions seem to produce rather distinct flow organizations and limit-cycles although
more validations are required.

Figure 6.6 – Instantaneous iso-surfaces of the Q-criterion colored by the absolute Mach number: (a)
Case 1 full domain (b) Case 2 full domain (c) Case 2 in the stator hub region.

Figure 6.7 – Instantaneous radial velocity component in a (r, z)-cut: (a) Case 1 (b) Case 2. The
results have been normalized by |UrC3

| the absolute radial velocity at the C3−C2 connection of Case 1.

To do so, the following tends to validate the predictions obtained through LES by
comparing the flow in the cavities C1 of Case 1 and Case 2 to smooth academic rotor-
stator cavities as the ones studied in the previous chapters. Indeed, as demonstrated
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Figure 6.8 – Instantaneous radial velocity component in a (r, θ)-cut: (a)Case 1 (b)Case 2. The results
have been normalized by |UrC3

| the absolute radial velocity at the C3 − C2 connection of Case 1.The
dashed line highlights the C3 − C2 connection.

experimentally by Schouveiler (2001) and numercically by Serre et al. (2001a), the global
behavior of a rotating cavity is driven by its Reynolds number and its aspect ratio. In
this context, the C1 cavity characteristic Reynolds number evolutions are provided in
Fig. 6.9 as a function of the normalized radial coordinate r′ = r/rmax: i.e. for the
local radial Reynolds number Rer = r2Ω/ν̂, Fig. 6.9(a), and the axial Reynolds number
Reh = h2Ω/ν̂ Fig. 6.9(b). For each Reynolds number, the kinematic viscosity ν̂ has been
taken as the mean at each radial position so that ν̂(r′) =

∫ zmax
zmin

ν(r′, ξ)dξ/(zmax − zmin).
Note that ν is the time and azimuthal average of the kinematic viscosity in the cavity
C1 and zmax (resp. zmin) corresponds to the highest (resp. smallest) axial coordinate
at r′. The complex geometry of the cavity C1 makes both local Reynolds numbers vary
as much as an order of magnitude. Recall that in theory, for radial Reynolds number
below 106, a transitional cavity is expected similarly to the academic cases studied in
the previous chapters. One can also see that similar maps are obtained for both Case 1
and Case 2 since this part of the geometries does not change. The only impact to note
comes from the presence of the stator on the cavity C3, linking the main annulus and the
rotor/stator wheel space C1 around r′ = 0.72. From such views, three different regions
with approximately a constant axial Reynolds number can be highlighted. These regions
are represented by circles and correspond to the radial positions r′1 = 0.35, r′2 = 0.488
and r′3 = 0.72 (see Fig. 6.2 for more details).

Figure 6.10 shows the C1 axial profiles of the dimensionless mean radial U∗r = Ur/(rΩ)
and azimuthal U∗θ = Uθ/(rΩ) velocity components at the three locations of Fig. 6.2(b)
and for both configurations. As a complement, the auto-similar laminar solutions
from Rogers & Lance (1962) at the corresponding axial Reynolds number Reh are also
provided for comparison. Note that these last solution profiles were obtained for low
Reynolds numbers between smooth infinite stationary and rotating disks which hence
does not take into account the complex geometry effects like the ones present in the
studied turbopumps. Results need therefore to be taken with caution. However and as
shown by Daily & Nece (1960) through Fig. 2.2 of Sec. 2.1, rotating cavity flows can
be classify in four categories based on such findings. At the locations r′1 = 0.35 and
r′2 = 0.488, the rotating boundary layer and the stationary boundary layer can be well
distinguished from the rotating core and given their high Reynolds number and aspect
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Figure 6.9 – Evolution of the Reynolds number with the radial coordinate in the rotor/stator wheel
space C1: (a) Axial Reynolds Number Reh = h2Ω/ν̂ (b) Radial Reynolds number Rer = r2Ω/ν̂ with
ν̂ the kinematic viscosity defined as ν̂(r′) =

∫ zmax

zmin
ν(r′, ξ)dξ/(zmax − zmin). The radial coordinate has

been normalized by rmax.

ratio, these belong to category IV . Contrarly, the cavity C3, at r′3 = 0.72, should belong
to category IV of Daily & Nece (1960) classification but clearly shows merged boundary
layers. This difference can be explained by the side walls of the cavity where the C3−C2
connection effectively corresponds to a radial injection/ejection of fluid that can perturb
the mean flow as shown in the previous chapter with the axial injection/suction on
academic cases. One main difference compared to the auto-similar solution of Rogers
& Lance (1962) is also the boundary layer thicknesses. In fact, one expects turbulent
boundary layers to be thinner that the laminar ones. However this is not the case here
and this difference can be explained by the lack of mesh refinement around the wall
boundary conditions.

If looking at Fig. 6.10(f), one notes here that higher level of radial velocity is reached
in Case 2 compared to Case 1. One can see furthermore that a large ingress (negative
radial velocity) is found if compared to Case 1. This higher level of ingress is also
retrieved at mid cavity (r′2 Fig. 6.10(b) & (d)) where the centripetal force due to the
stationary disk imposes a negative radial velocity and a non zero azimuthal velocity
contrary to the academic cavities studied in the previous chapters. One finally notes
that for this particular region, the auto-similar solution of Rogers & Lance (1962) well
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predicts the boundary layer thicknesses, although the core rotating rate is increased due
the to flow ingress. Finally at low radius, the hub clearly affects the velocity profiles. In
particular the leak creates higher level of radial velocity in the rotating boundary layer.
These latter results are not unexpected and were already observed for the controlled
academic cavity under injection in Chap. 5.

Figure 6.10 – Normalized mean flow profiles: (a)-(c) Azimuthal velocity component and (d)-(f) Radial
velocity component. Each colums from left to right correspond respectively to profiles extracted at
r′1 = 0.35, r′2 = 0.488, r′2 = 0.72. The black, red and dashed curves correspond respectively to Case 1,
Case 2 and the auto-similar solution of Rogers & Lance (1962).

6.5 Modal analysis
The modal content of the two LES predictions is studied in this section. As done in
Chap. 2, a point-wise temporal analysis is first realized. To do so, a set of numerical
probes has been placed in all cavities as shown in Fig. 6.11. Note that this view and
associated probes are also replicated azimuthally every 6 degrees and the exact same
positions have been taken for Case 2. A PSD of the pressure is then computed for each
configuration as shown in Fig. 6.12 and Fig. 6.13 for Case 1 and Case 2 respectively.
Note that, frequencies have been normalized by the rotor frequency F0. For Case 2,
the precision of the spectrum ∆F/F0 (∆F/F0 = 0.12 ) is 6 times larger than Case 1
(∆F/F0 = 0.02 ) due to the higher cost of the simulation. The first observation that can
be made is that the overall pressure level of each probe of Case 2 is around 10 dB higher
than for Case 1. The dominant frequency in terms of amplitude appears for both cases
around F/F0 = 4.5 (4.85 for Case 1 and 4.35 for Case 2). Harmonics are also present
in both cases: i.e. 9.56 and 14.5 for Case 1 and 8.75 and 13.2 for Case 2. The last
common point between the two systems is the low frequency around F/F0 = 2. Indeed,
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 Benchmarketing campaings       
 probes

Additional probes

Figure 6.11 – Probes map at θ = 0◦.

F0 F1 F2 F3 F4 F5

Case 1 1.70 − 4.85 − 9.56 14.5

Case 2 1.90 2.90
(F2 − F0)

4.35 6.00
(F4 − F0)

8.75 13.20

Table 6.2 – Summary of the frequencies found through pressure PSD in Case 1 and Case 2.

a mode at F/F0 = 1.70 is dominant in cavity C1 for Case 1 and could be linked to the
cross flow instability identified in Fig. 6.8. A closer look at Case 2 shows that two new
low amplitude but perfectly distinguishable frequencies at F/F0 = 2.90 and F/F0 = 6.15
are present contrary to Case 1. These two specific frequencies are found to be a linear
combination between the dominant frequency ( F/F0 = 4.35), its harmonics and the low
frequency (F/F0 = 1.9).

By looking at the radial distribution of the main mode amplitudes Fig. 6.12(right)
and Fig. 6.13(right) for Case 1 and Case 2 respectively, the highest levels are all found
in cavity C5. Table 6.5 sums up the frequencies found in each configuration.

The previous analysis enabled through several probes to show that both configurations
have a rich and complex spectrum. Based on this frequency knowledge that composes
both limit-cycles, the extraction of the 2D modes from each flow, i.e., the large scales
driving the cavity of the turbopumps is analyzed in the following. To do so, DMD (already
presented in Chap. 2) is applied to the (r, θ)-cuts presented in Fig. 6.2. The decomposition
is realized on snapshots obtained with a sampling rate of ∆tsampling = 10−4 s for Case
1 and Case 2 and a duration of 4.6 · 10−3 s. As listed in Fig. 6.14 and Fig. 6.15, good
agreement is found between DMD frequencies and the one obtained with the local PSDs.
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Figure 6.12 – Power Spectral Densities (PSD) of the pressure fluctuations in Case 1 (left) and radial
evolutions of the amplitudes of the dominant frequencies (right).

A maximum frequency difference of 1.4% for F/F0 = 9.7 has been observed by comparing
both methods. Analyzing the pressure phase contours associated to each main mode
found by DMD, one can see that the azimuthal wavenumbers of both cases are ranging
from m = 1 to m = 12 and are not linked to the Blade Passing Frequency (BPF) of
24. Furthermore, the addition of the stator blades decreases the azimuthal wavenumbers
found in Case 1 of m = 4, 8 to m = 2, 4 in Case 2. It is also of note that this range
of wavenumbers were also obtained in previous studies for similar configurations (Bridel-
Bertomeu (2016), Pogorelov et al. (2018)). Finally, these modes have all the features
associated to the phenomenon introduced Sec. 6.1 called rotationally-induced (RI) ingress.
In fact, as stated by Owen (2011a), one retrieves that the azimuthal wavenumbers are
not linked to the BPF and that the mean pressure in the stator-rotor wheel space is
axisymmetric (not shown here). Comparing both cases, one also retrieves that this specific
phenomenon appears with or without the stator blades.

Even though DMD enables to give more information about the spatial distribution
of the modes in each configurations, a full understanding of their 3D composition is not
accessible due to a too high cost and memory need. To overcome this problem, DMT,
presented in Sec. 3.3, is applied here to obtain a full 3D cartography of the turbopump
modes. The input frequencies adopted to track the modes are the ones taken from the
PSDs and a bandwidth of 20 Hz is chosen for the DMT temporal filter. The results for
Case 1 and Case 2 are presented respectively in Fig. 6.16 and Fig. 6.17. Note that
for these figures, to help visualizing the evolution of the structures in the turbopumps,
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Figure 6.13 – Power Spectral Densities (PSD) of the pressure fluctuations in Case 2 (left) and radial
evolutions of the amplitudes of the dominant frequencies (right).

Figure 6.14 – Phase contours of the static pressure of the three main modes obtained through DMD
for Case 1.

the domain has been decomposed in 4 distinct parts: the upper cavity (C5), the main
annulus (C2), the throat (C3) and the rotor/stator wheel space (C1) as detailed on the
top of each figure.

• For Case 1: Similarities can be observed with the DMD results of Fig. 6.16. In
fact, the characteristic azimuthal wavenumbers m = 4 and m = 8 respectively for
F/F0 = 4.85 and F/F0 = 9.56 are again retrieved in the entire system. In the main
annulus, it is also possible with DMT to point out characteristic axial wave numbers:
k = 1 for F/F0 = 4.85 and k = 2 for F/F0 = 9.56. Finally, note that no coherent
structures are found in the connection cavity (C3) and the main annulus (C2) for
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Figure 6.15 – Phase contours of the static pressure of the four main modes obtained through DMD for
Case 2.

the low frequency mode at F/F0 = 1.7. In cavity C1, the modes are observed to
evolve in new specific structures. For example, the harmonic of the dominant mode
presents a high azimuthal wave number structure (m ' 30) in the boundary layer
of the stator. At the opposite, the low frequency F/F0 = 1.7 is particularly marked
by spiral structures with an azimuhtal wave number of m = 12. As one can see,
these two different azimuthal wavenumbers are relatively close to the ones found
for the annular cavity studied in the previous chapters. Such observations are not
so surprising since in this particular region, one finds Reynolds numbers and aspect
ratios close to the ones of the annular cavity and the mean flow profiles are also
found to be in good agreement with the auto-similar profiles of Rogers & Lance
(1962) (see Fig. 6.10).

• For Case 2: The spatial distributions of each mode are less complex. In fact, in
this case, the structures observed with the planar DMD are well identified here
in the different parts of the system. For the low frequency, as already observed
with DMD, no specific structure is observed. By analyzing the results in the main
annulus, one can see that the shocks are marking the modes without impacting their
characteristic azimuthal wavenumbers. Note also that no specific axial wavenumber
could be distinguished contrarily to Case 1 where clear helical structures were
present. Finally, the dominant mode expresses also in the cavity C1, featuring a
high azimuthal wave number around the hub.

To conclude on this first analysis, LES proves again to be a relevant candidate to
capture the pressure band phenomenon in complex rotor/stator cavities as the ones of a
space turbopump. In particular, for both cases studied, the multi-frequency feature of this
phenomenon and its nature to contaminate the entire system are retrieved. Comparing
both cases, it has been confirmed that the stator blades have a low impact on this flow
dynamics even though their insertion involves an azimuthal wavenumber shift of each
mode. To deeper investigate the mode mechanism of Case 1, the GLSA framework
is used again in the following section. Indeed, in Chap. 4, this tool proves to be an
efficient tool to extract the coherent structure driving the pressure band phenomenon
in an academic rotor/stator case and investigate their origin. However, in case of a
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Figure 6.16 – Dynamic Mode Tracking (DMT) of Case 1: The axial velocity of the three main
frequencies are represented separately from (left) to (right) in the upper cavity (C5), the main annulus
(C2) the throat (C3) and the rotor/stator wheel space (C1).

highly turbulent flow as the one present in the turbompump, the construction of a linear
stability model is still a great challenge for the scientific community. In the next section,
a recent stability approach will be introduced to model this complex system. Note that
the present LES results are of the utmost importance since the azimuthal wavenumbers
found will be taken as input information for the GLSA.
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Figure 6.17 – Dynamic Mode Tracking (DMT) of Case 2. The axial velocity of the three main
frequencies are represented separately from (left) to (right) in the upper cavity (C5), the main annulus
(C2) the throat (C3) and the rotor/stator wheel space (C1).

6.6 Stability analysis of the turbopump
Linear stability analysis (LSA) was originally derived to investigate the growth of in-
finitesimal perturbations on stationary laminar base flows. However, the results obtained
from this basic model can become innacurate when pertubations reach a finite size or
when turbulence is involved. To overcome this limit, linear stability analysis around a
mean flow proved to be a promising solution. In fact, as stated in Rukes et al. (2016),
this approach takes the nonlinear interaction between the coherent structure and the
flow implicitly into account. This model found a success for several applications (Barkley
(2006); Turton et al. (2015)) and enables also to retrieve the pressure band phenomenon
in simple rotating cavities of Chap. 4. Contrary to these academic cavities where the
flow was in a transitional state, very high Reynolds numbers are found in the turbop-
ump cavities. In this specific case, the stochastic fluctuation interactions can be of first
order and were not taken into account with the simple approach used in Chap. 4. To
overcome this limit, studies have recently developed a new model describing the coherent

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



6.6 Stability analysis of the turbopump 133

structure evolutions by using the triple flow decomposition of Reynolds (1883) instead of
a simple one as done in Chap. 4. The resulting equations contain new unknown terms
compared to the classical LSA model that correspond to oscillations of the background
Reynolds stresses caused by the organized wave. This approach first described in LSA
by Reau & Tumin (2002) found a recent success in different applications (Oberleithner
et al. (2014); Rukes et al. (2016); Kaiser & Oberleithner (2017); Tammisola & Juniper
(2016)). To complete, the investigation of the pressure band phenomenon through LES,
this new GLSA is here discussed and applied to Case 1 to shed some light on the mode
mechanism and origin. This section is organized as follows: First, the governing equa-
tions of the coherent perturbations are provided in details Sec. 6.6.1 and applied to Case
1. Finally, receptivity and sensitivity analysis, as done in the academic cases, will be
conducted to give more insight on the mode origins but also as a guiding tool to propose
first solutions to control such flows.

6.6.1 Coherent Stability equations
Contrarly to Chap. 4, a triple decomposition also known as the Reynolds decomposition
(Reynolds & Hussain (1972)) is used for all variables so that:

g = ḡ + g̃ + g′ (6.6.1)
where ḡ, g̃ and g′ denote respectively the mean flow, the coherent fluctuations and

the stochastic fluctuations of a variable g.

By introducing this decomposition in the full Navier-Stokes equations, one can obtain
the coherent fluctuation equations by subtracting the time-averaged equations of motion
from the phase-averaged equations,

∂ũi
∂xi

= 0

ũi
∂t

+ ūj
ũi
∂xj

+ ũj
ūi
∂xj

= − ∂p̃

∂xi
+ 1
Re

∂2ũi
∂xj∂xj

+ ∂

∂xj
(ũiũj − ũiũj)−

∂

∂xj
(< u′iu

′
j > −u′iu′j)

(6.6.2)

where ui is the velocity vector while xj and t stand for the spatial coordinates and
time respectively. Note that here, indices i and j follow the Einstein notation and rule of
summation. Likewise, < · > corresponds to the phase average operator so that for any
perturbation X of period T ,

< X >= X̃ +X ′ = 1
n

n−1∑
p=0

X(τ + pT ), τ ∈ [0;T ] (6.6.3)

In the following, the third term on the right hand side of the momentum equations,
Eq.(6.6.2), is neglected since one assumes here small perturbations. However, the fourth
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term which describes the stochastic-coherent interaction, can be of first order in turbu-
lent flows. As Reynolds (1883) or Paredes et al. (2016) commented, this term can be
understood as the change in Reynolds stresses during a period of the coherent fluctua-
tion. As for RANS or LES equations, a closure problem is therefore generated. Similarly
to Kaiser & Oberleithner (2017) and Paredes et al. (2016), a Boussineq approximation
can be used to relate the stochastic-coherent interaction to the coherent flow strain rates
S̃ij by introducing an eddy viscosity νe so that,

< u′iu
′
j > −u′iu′j = ũ′iu

′
j = νeS̃ij, (6.6.4)

and following Ivanova et al. (2012), an optimal representation of νe can be obtained
through a least-square fit over all resolved Reynolds stresses yielding:

νe =
(−u′iu′j + 2

3Kδij) · (
∂ūi
∂xj

+ ∂ūj
∂xi

)

(∂ūk
∂xl

+ ∂ūl
∂xk

) · (∂ūk
∂xl

+ ∂ūl
∂xk

)
, (6.6.5)

where K is the turbulent kinetic energy and δij the Kronecker delta.

In opposition to the most recent studies, the coherent viscosity νe is computed in
the following based on the available LES predictions and DMT. Indeed, to compute the
Reynolds stress tensor u′iu′j of Eq. (6.6.5), the coherent fluctuations ũi is first evaluated
summing the 4 main modes of the system obtained using DMT. Thanks to this knowledge,
simple difference with ui, gives access to the stochastic fluctuations, the cross products
(u′iu′j) and their averaged (u′iu′j). Note also that additionally to the molecular viscosity
νl and the eddy viscosity νe, the mean flow being extracted from a LES, the subgrid
viscosity noted νSGS, which models the interaction of the subgrid scale turbulence with
the resolved flow, needs also to be taken into account in the linear stability analysis. It
is therefore assumed here, that these three components add yielding a total Reynolds
number of the analyzed mean flow of the form,

Retot = U L

νl + νe + νSGS
, (6.6.6)

with U and L being the velocity and length scales used to nondimensionalize the
equations. In the next section, the corresponding linearized model is applied to Case 1
to shed some light on the modes driving this turbopump configuration.

6.6.2 GLSA Results
To apply the adapted model presented above, to the turbopump, the global stability
solver GIFIE is again used after adaptation for the study. First, a direct comparison of
the three viscosities obtained for Case 1 and needed to formulate the linearized system
is given in Fig. 6.18. The laminar viscosity variations are clearly weak and essentially
due to the temperature variations across the boundary layers and in the mixing regions,
Fig. 6.18(a). When it comes to the mean subgrid scale viscosity νSGS and eddy viscosity
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νe, both mark the upper boundary layer of the main annulus where there is a large flow
separation as well as strong velocity variations.

Figure 6.18 – Viscosity comparison: (a) Molecular viscosity νl, (b) Subgrid scale viscosity νSGS (c)
Eddy viscosity νe. All the results have been normalized by reference viscosity ν0 of the mixture at a
temperature and pressure (T0, P0)=(300K, 1.013 · 105 Pa).

In the previous section, DMT and DMD showed that m = 4 and m = 8 were the
two azimuthal wavenumbers marking respectively the dominant mode and its harmonic
for Case 1. The present stability analysis purpose being, beyond retrieving the mode
shapes, to shed some light on their origins, these two characteristic numbers are hence
taken as inputs in the present study. Indeed, due to the large size matrices involved, a
consequent number of eigenmodes, difficult to sort, are generated through the resolution
of the linear problem. By computing the eigenmodes for two different mesh sizes with
a small gap, a non negligible number of spurious modes can be highlighted and enables
hence to clean a part of the numerical modes from the physical ones. Figures 6.19(a)-(b)
show the corresponding clean spectra found respectively for m = 4 and m = 8 for
two sizes of mesh ∆h and ∆h + ε. As seen, even after cleaning, for both azimuthal
wavenumbers, a specific "arc" branch can be observed in each spectrum. As reviewed in
Lesshafft (2018), this specific branch is often linked to spurious modes that are robust
to refinement and other numerical parameter variations whenever conducting stability
analysis studies (Cerqueira & Sipp (2014); Heaton et al. (2009)). In such cases, the
modes with the highest amplification rates tend to be non physical. In fact, when
performing a stability analysis around a mean flow, one expects to obtain marginally
stable modes or at least modes with very low amplification rates (Barkley (2006)).
From the obtained spectra, one finds the modes (ω/(2πF0),m)=(4.79 + i0.09,4) and
(ω/(2πF0),m)=(9.72 + i0.03,8), highlighted by red circles in Fig. 6.19, to be in best
agreement with the previous studies and derived knowledge.

The spatial distribution of the modes corresponding to these two frequencies are
displayed in Fig. 6.20 where a direct comparison with the 2D shapes obtained with
DMT is realized. Note that as shown in Sec. 6.5, these two DMT modes have complex
structures and can also be composed of different azimuthal wave numbers. As done in
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Figure 6.19 – Case 1 spectrum for (a) m = 4 (b) m = 8. For each azimuthal value, two different mesh
size ∆h and ∆h + ε are displayed to filter spurious modes. Only positive amplification rate mode are
given.

Chap. 4, each mode has therefore been Fourier decomposed on an azimuthal basis with
m = 4 and m = 8 respectively for F/F0 = 4.85 and F/F0 = 9.56 to ease the comparison
with the present stability analysis. Note also that a none negligible improvement of the
GLSA mode shape prediction has been obtained when using the new stability approach
taking into account the coherent viscosity. A comparison between the current approach
with the one developed in Chap. 4 is proposed in App. F. For the two modes, the main
improvement is found in the main annulus where as shown by Fig. 6.18, the coherent
viscosity marks the most the system. Furthermore, and contrary to the classical method,
the two characteristic axial wavenumbers k = 1 and k = 2 respectively for the m = 4 and
m = 8 modes are here well retrieved. When it comes to GLSA results compared to DMT:

• m = 4 mode: When one looks closely to the dominant mode cavities by cavi-
ties, the highest amplitudes are found in the C5 cavity in agreement with DMT.
Furthermore, at lower radii, the separation of the top boundary layer of the main
annulus C2 as well as the C3 cavity behavior are well captured by GLSA. In cavity
C1, the generation of vortices due to the hub leak is also well predicted although
their magnitude is found higher with GLSA. Finally, high amplitude spiral struc-
tures can be noted in the GLSA results on the stator of cavity C1, these being not
present in the DMT results.

• m = 8 mode: The main harmonic of the dominant mode although more difficult to
obtain with GLSA is also investigated in the following. In fact, when one expected
this mode to be fully expressed in the main annulus, the highest amplitudes are
found in C1 where as shown with DMT almost no activity is found for m = 8.
This can be due to the mode complex structure with multi-characteristc azimuthal
wavenumbers that can mark the mean flow and mislead GLSA in recovering the
full mode spatial description. Despite this observation, a good dynamics of C5 is
retrieved. Likewise, near the large separation of the upper boundary layer of the
main annulus, the characteristic axial wavenumber k = 2 is also well captured as
well as the small structures in the lower boundary layer.
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Figure 6.20 – 2D shapes comparison: (a)-(b) DMT results and (c)-(d) global stability results with
(right) m = 4 mode (F/F0 = 4.79). and (left) m = 8 (F/F0 = 9.56).

Even though the construction of a linear stability model for such complex flow proves
here to be challenging, the two main modes of the system could be found with a good
agreement with DMT. As shown in the studies on the academic case Chap. 4, the real
contribution of GLSA compared to LES is its capacity to exploit adjoint methods to in-
vestigate each mode mechanism and set up control strategies. In the following paragraph,
receptivity and sensitivity analysis are hence applied to the turbopump, to shed some
light on the pressure band phenomenon origins.
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Structural sensitivity and receptivity analysis

As explained in Sec. 4.3.2, the adjoint mode results from the resolution of Eq. (4.3.20)
and represents the receptivity of the direct mode to external forcing. It can also give,
as stated by Chomaz (2005), an indication of the initial condition that most optimally
excites the direct mode. The adjoint axial velocity fluctuations for both identified modes
by GLSA are shown on Fig. 6.21. In the present case, both modes are not receptive at all
in the main annulus of the system where their direct mode axial velocities are maximal.
For the first selected mode, m = 4, the adjoint expresses mostly in the cavities C1 and C5.
One can also see that the fluctuations between the at C2−C5 connection are particularly
high in this zone and would explain why external forcing in this specific region would
help modifying this mode. The m = 4 mode is also seen to be receptive in the throat
(C3) of the system between the main annulus and the cavity C1. These results are not
surprising and were already observed in a previous study (Pogorelov et al. (2018)) where
the authors showed that the rim seal of a turbomachinery played a determining role to
damp modes of such systems and calibrates the exchanges between the main annulus and
the wheel space (C1). The last local maximum for this adjoint mode is found near the
leak on the stator side. These results can be linked to the one found in academic cavities
where an injection was added around the hub and for which a complete new dynamics
could be obtained with low amplitude inflows. In a similar industrial configuration,
Bridel-Bertomeu (2016) showed also that the leak has a major impact on the global
modes of the system in particular when it is cold. Finally, for the m = 8 mode, similar
conclusions can be derived as it is only receptive in the stator boundary layer of cavity C1.

Figure 6.21 – Axial velocity adjoint modes: (a) m = 4 (F/F0 = 4.79) and (b) m = 8 (F/F0 = 9.56).
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To complement these results and based on Giannetti et al. (2009), the spatial location
where a given mode is triggered, i.e. the wavemaker region, is evaluated here through the
structural sensitivity, Eq. (4.3.21). Such maps are shown for the two modes of interest
in Fig. 6.22. For the most unstable mode m = 4, the sensitivity in Fig. 6.22(a) shows
that the region of most amplification is located near the hub and more precisely at the
corner where the leak impacts the rotor. What is remarkable here is that the origin of
the mode is far from the main annulus C2 and cavity C5 where the mode amplitudes are
maximal. A second spot of sensitivity can be observed in cavity C3. This shows again
that this specific cavity plays a clear role in the amplification of the m = 4 mode.
For mode m = 8, the maximum is found on the stator at r′ = 0.3. It is however difficult
to validate this wavemaker as one showed that the GLSA overestimates the velocity
amplitude in this region for this specific mode.

To conclude, GLSA proves here to be a relevant candidate to point out the origin
of a complex unsteady phenomenon in an industrial case thanks to adjoint methods.
Even though the highly turbulent and multi-azimuthal nature of this specific flow make
the construction of a linear stability model a real challenge, first solutions could be
highlighted to suppress the pressure band phenomenon in agreement with the literature.
As a perspective for future studies on the same application with more robust stability
models, sensitivity to base flow modification could be analyzed, as done for the academic
cavity in Chap. 5, to set up a more precise control system.

Figure 6.22 – Structural sensitivity: (a) mode m = 4 (b) mode m = 8.
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6.7 Conclusion
This chapter dealt with the investigation of the pressure band phenomenon in a space
turbopump turbine. As a follow up from Bridel-Bertomeu (2016) work, the subject is
extended here by simulating first a new configuration called Case 1 where the leak or
at least the cavity aspect ratio around the hub is modified. It is shown that this hub
modification does not change the overall dynamics of the system. A second configuration
called Case 2 is then studied for which the blades of the stator are taken into account.
It is shown that the flow spectrum through this modification becomes richer and quite
complex. The main frequencies of Case 1 are however retrieved in Case 2 although
azimuthal wave number shifts are also observed. More detailed analyses of the mode
shapes in the low cavity of each system show that the harmonic of the system can present
multi-azimuthal wavenumbers similarly to the cylindrical academic cavity. Finally, Case
1 is studied further through linear stability analyses. The results show that, due to
the large matrix size involved, a very large number of modes can appear making its
exploitation difficult. However, a m = 4 and m = 8 mode can be identified since having
the expected frequencies and spatial distribution that are in a good agreement with
DMT fields. Complemented by receptivity and sensitivity analyses some light can be
furthermore be shed on both mode mechanisms. In particular, the leak and the annular
seal of the system, separating the main annulus from the rotor/stator wheel space, appear
to be the more receptive regions to an external forcing. One can therefore propose that a
modulated leak could be a way to control or at least shift the observed dominant mode.
The sensitivity analysis also shows that the modes despite fully expressed in the upper
cavities are generated around the hub/stator and are amplified by the annular seal. In
agreement with the literature, changing this region of the geometry can therefore be
another solution to suppress the pressure band phenomenon.
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Self-sustained oscillations of rotor/stator cavity flows are well known to industry. In
rocket engines, this unsteady phenomenon usually referred to as ’pressure band phe-
nomenon’ can be very dangerous and jeopardize the structural integrity of the entire
system by damaging turbomachinery components or turbopumps in the context of space
applications. Today, the origin of such a flow instabilities and resulting limit-cycle is not
well understood. Furthermore, due to the complex geometry of space turbopumps and
the highly turbulent flow presents in such systems, a numerical prediction of such phe-
nomenon is still difficult to obtain. The present work aims at capturing such phenomenon
but also shed some light on its origin and mechanism with dedicated tools. Finally, one
particular interest for the aerospace industry is also to find technical solutions to stablize
such an unstable flow.

To address these problematics, an annular rotor/stator cavity has first been inves-
tigated in this work as a first order representation of a space turbopump cavity. In
the literature, it is well known that despite the simplicity of this configuration, the
rotating boundary layers coming from the disks are complex, highly turbulent and three
dimensional. Past studies have shown that such flow can not be predicted through
Reynolds Averaged Navier-Stokes (RANS) simulations or even the Unsteady Reynolds
Averaged Navier-Stokes (URANS) approaches. In this work, Large Eddy Simulations
(LES) have been chosen for its well known capacity to simulate highly unsteady flows.
Complemented by dedicated tools such as Dynamic Mode Decomposition (DMD) or
Power Spectral Density (PSD), one shows that the annular rotor/stator cavity, of
interest to the present PhD work, is driven by three dominant modes with three distinct
azimuthal wave numbers producing well known spirals or annular patterns. Even though
LES proves here to be relevant tool to retrieve the pressure band phenomenon in an
academic cavity, no control strategies to suppress or damp this phenomenon could be set
up from these results. The first question coming from this latter problematic was how
can one control a flow composed of several frequencies ? To answer this question the
mode interactions needed first to be understood. To do so, a new tool called Dynamic
Mode Tracking and Control (DMT/DMTC) has been developed and implemented during
this PhD thesis. Through time filters, this approach enables to extract one or several
frequency 3D fields and if needed, through a relaxation term added to the momentum
equations, damps also one or several of these identified structures. This method has
been incorporated to the AVBP package and recently used on different applications such
as the control of numerical instabilities coming from an academic premixed swirl burner,
film cooling hole efficiency but also for the investigation of turbulence in the LS89
configuration high-pressure turbine blades. In rotating flow, this strategy enabled, by
controlling one by one each mode of the annular cavity, to show that a dominant mode
is at the source of the low frequency mode. This important result shows that to control
the pressure band phenomenon, one can focus only on the elimination of this dominant
frequency. From these results the remaining question was to find the appropriate device
to control the flow. To do so a deeper investigation on the mode mechanisms and origins
needed to be done. In this context, stability analyses around a mean flow, known to be
an efficient tool to analyse oscillating flows, is used on the annular cavity. The three
mode limit-cycle obtained through the LES predictions of this cavity is retrieved through
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a global stability approach thanks to the tool GIFIE created at CERFACS and further
developed during this PhD thesis. One shows in particular that this latter approach is a
relevant tool to overcome the limits of the local stabilty analysis studied in the previous
PhD of Bridel-Bertomeu (2016) on the same configuration. One of the argument
justifying the use of stability analysis is its capacity to investigate a mode mechanism
through adjoint methods. In this context, two specific tools are used: receptivity and
structural sensitivity analysis. When the first one points out the region of a given mode
most sensitive to harmonic forcing, structural sensitivity (wavemaker) gives the exact
region where a mode is triggered. One found in particular that the dominant mode and
the low frequency one depart from the stationary disk boundary layer. To complement
the information obtained on each mode’ mechanisms, an investigation of the sensitivity
tensor and a comparison with a cylindrical cavity flow highlights the fundamental role
of the hub on the mode selection. Even though the source of each modes could be
found, it is well known that modifying the flow around a mode wavemaker is not always
the most optimal way to control it. To define more precisely a device to control the
pressure band phenomenon, sensitivity to base flow modifications still obtained in the
global stability framework, is analyzed. This tool, implemented in GIFIE during this
work, enables to find the optimal location where the mean flow should be modified
to stabilized or at least frequency shift a mode. For the annular cavity the external
part of the stationary disk boundary layer is found to be the most efficient location to
suppress the dominant mode. The strategies and the results are finally validated through
a LES introducing suction and injection devices. These indeed enable to suppress
all three modes composing the initial limit-cycle thanks to a very low axial velocity,
yielding a purely turbulent flow with an overall pressure oscillation level highly decreased.

Regarding the application of such techniques to actual industrial turbine flows such
as the one in the space turbopump, several remarks can be made. Even though higher
Reynolds numbers, and level of unsteadiness could be noticed in the main annulus of
the system, spiral patterns and coherent structures are observed in the rotor/stator
wheel space as in the academic cavity. However the interaction of the main flow with
the cavity flow generates low azimuthal wavenumbers that are dominant in the whole
system. In order to investigate these latter modes, the GLSA framework is reused.
Due to the high turbulence level and the non linearities present in the cavities, the
classical model used on academic cavities could not be applied. To overcome this
limit, a work on the modeling of the equation term linked to the turbulence has been
done. An eddy viscosity approach has been proposed and showed an improvement
of the results compared to the ones with a classical approach. Furthermore, results
of structural sensitivity analysis, pointed out that the leak and the rim seal where
the sources of the global modes found in the turbopumps and could be modified to
suppress the pressure band phenomenon. Finally, the rim seal type and the presence
of the stator/rotor blades are known in gas turbine to play a main role in the ingress
of the main annulus flow in the rotor/stator wheel space and hence the generation of
hydrodynamic modes. The specific impact of the stator blades is studied in present
work. Results shows that even though similar spectrum is obtained for a configuration
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with or without blades an azimuthal wave number shift has been noted due to the blades.

From a perspective point of view, the results on the industrial cases showed that the
main annulus plays a non negligible role on the mode amplifications. An academic cavity
connected to an annulus flow or an academic cavity with a radial inflow at the shroud
could be useful to study the evolution of the three modes found in this present work in
the academic annular case. These configurations could be exploited to better understand
the industrial case and the interaction of the wheel space and the main stream of the
turbine.

From a GLSA point of view, one shows that the analysis of the coherent fluctuations
give an important improvement of the modes shape compared to classical model. How-
ever, the mean flow used for this GLSA comes from an LES with wall-law models. A
stability model taking into account this two specific features could be built to improve,
in particular, the detachment of each mode boundary layers in the main annulus. From
a numerical point of view, one of the main challenge found trough the resolution of large
eigenvalue matrices is the generation of spurious modes. Pseudo-spectrum could be a so-
lution to sort and extract the physical modes from the numerical ones. Finally, the flow
analyses were first conducted to capture the pressure band phenomenon. However the
main problem occurring in real cavities is the coupling of the flow with the turbopump
structure. To fully answer this problem a model of fluid-structure interaction (FSI) could
be set up. A classical global stability framework would be again one of the most promis-
ing method to retrieve a self-sustained fluid-structure instability (perturbation growing at
large time). In the specific cases of stable system (perturbation decaying at large time),
a resolvent analysis could also be studied to determine the optimal external excitation
that lead to the largest energetic amplification in the fluid-structure system.

From the different investigations realized during this Ph.D. work the following publi-
cations and conferences have been published

Ranked A papers

• Queguineur, M., Gicquel, L. Y. M., Dupuy, F., Misdariis, A., Staffelbach, G. Dy-
namic mode tracking and control with a relaxation method. Physics of Fluids,
2019

• Queguineur, M., Bridel-Bertomeu, T., Gicquel, L. Y. M., Stafflebach, G. Large eddy
simulations and global stability analyses of an annular and cylindrical rotor/stator
cavity limit cycles. Physics of Fluids, 2019

• Queguineur, M., T., Gicquel, L. Y. M., Stafflebach, G. Stability and control of an
annular rotor/stator cavity limit cycles. Physics of Fluids, 2020 (in preparation)
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• Queguineur, M., Bridel-Bertomeu, T., Gicquel, L., Staffelbach, G. Local and Global
Stability Analysis of an Academic Rotor/Stator Cavity. Proceedings of ASME
Turbo Expo, 2018, GT2018-750,

• Queguineur, M., Gicquel, L. Y. M., Stafflebach, G. Modes identification and interac-
tions in a rotor/stator academic cavity. 13th European Turbomachinery Conference
on Turbomachinery Fluid Dynamics and Thermodynamics, ETC, 2019,

• Queguineur, Gicquel, L. Y. M., Staffelbach, G., Control Strategies of an Academic
Rotor/Stator Cavity Through Sensitivity Analysis. Proceedings of ASME Turbo
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Appendix A

Local stability governing equations
of enclosed cavity

A.1 General Local stability equations
The general stability equations in cylindrical coordinate corresponding to the dispersion
problem Eq. (4.3.9) are:

(1
r

+ iα
)
ûr + mi

r
ûθ + û

′

z = 0, (1.1.1)

νû
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νû
′′

θ +
(
ωi− α2ν − Ubiα−

Ub
r
− Vbim

r
− m2ν

r2 + iαν

r
− ν

r2

)
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(1.1.4)

where ′ denotes the partial derivative with respect to z and ν the kinematic viscosity.
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A.2 Local stability equations of the BEK model
As stated Chap. 4, the stability of the BEK flows has always been an essential step
to understand more complex rotating flows like the one encountered in cavities. The
local stability analysis of the BEK family has received recently a particular attention in
Bridel-Bertomeu (2016). Even if the structures of boundary layers and its transition is
not perfectly understood yet, some studies try to find solutions to stabilize this kind of
flows. As an example, recently, Abdulameer et al. (2016) have investigated the stability
of the BEK boundary layer family under stationary convective disturbances for shear
thinning power-law fluids. They showed that this kind of fluid has a stabilizing effect on
both type I and type II instabilities. On the other hand, Alveroglu et al. (2016) looked at
the impact of the roughness (grooves) on the stability of the BEK family. He concluded
that the surface roughness is an effective passive flow control mechanisms for engineering
flows like rotor/stator systems.

Governing equations

This paragraph sums up the construction of BEK family equations with a local
stability approach. For the problem under consideration, the local Reynolds number
defined in Sec. 4.2 is needed and is usually constructed using :

Reδ = raRo (1.2.1)

where ra corresponds to the dimensionless radius where the local stability is applied.
The method described in the previous section is used here to compute the perturbation

equations of the BEK model. To do so, the dimensionless form of the mean flow velocity
[U∗, V ∗,W ∗] and pressure P ∗ profiles,



U∗(z∗) = U

r∆Ω = U

rΩ̃Ro

V ∗(z∗) = V

r∆Ω = V

rΩ̃Ro

W ∗(z∗) = W

L∆Ω = U

LΩ̃Ro

P ∗(z∗) = P

ρL∆Ω2 = P

ρLΩ̃2Ro2

(1.2.2)

where z∗ stands for the axial coordinate normalized by L = (ν/Ω)1/2.

are introduced in the momentum and continuity equations Eqs. (4.3.1)-(4.3.4) and
linearized around the base flow. To validate the separability of the equations in r , θ and
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t, the parallel flow approximation is applied. This assumption is equivalent to replacing
r by Reδ in the resulting equations and neglecting the Re−2

δ or smaller terms.
Finally, the normal mode formulation of (4.3.16) is introduced to obtain the following

set of equations:



(
iα + Ro

Reδ

)
ûr + βûθ − û

′
zi = 0,

û
′′
r − (α2 + β2 + iReδ(αUb + βVb)− iReδω +RoUb + T3) ûr −RoWbû

′
r

= i(2RoVb + Co+ T2)ûθ − iU
′
bReδω + iαReδp,

û
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ûz −RoWbû

′
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(1.2.3)

where β = m/Reδ and T1 = iα

Reδ
, T2 = −2im

Re2
δ

, T3 = 1
Re2

δ

− T1

Recent studies on rotating boundary layers coupled with stability analysis have been
able to find new properties and deeper understanding about turbulence transition. Davies
& Carpenter (2003) studied the effect of spatial inhomogeneity on the global response
of the locally absolutely unstable flow. They showed that for both the Von karman and
Ekman layers the laminar to turbulent transition obtained experimentally corresponds
to the onset of absolute instabilities with very close Reynolds Number.

However they have also demonstrated that convective behavior dominates at all
Reynolds numbers even for strong absolutely unstable regions and is the main source
of the global behavior.
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A.3 Local stability equations of an enclosed rotor/s-
tator cavity

For these specific cases, one defines the interdisk distance h as the reference scale and the
dimensionless radius ra = r/h the position where the local stability analysis is conducted.
The velocity scale will be raΩd, while the time scale is h/raΩ∗d and ρ∗r2

aΩ2
d is the reference

pressure. One recalls that in that case the local Reynolds number is defined as Re = ra =
r/h and the global Reynolds number is Reh. With these definitions, the system reads,
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∂zzûθ − (α2 + β2 + irReh (αUb + βVb)− irRehω +RehUb + T3) ûθ −
√
RehWb∂zûθ

= i(2RehVb − 2Reh + T2)ûr − ir∂zVbRehω + iβrRehp,

∂zzûz − (α2 + β2 + irReh (αUb + βVb)− irRehω +Ro∂zWb + T1) ûz −
√
RehWb∂zûz

= rRehp,

(1.3.1)
where β = m/Reδ, T1 = iα

r
, T2 = −2im

r2 and T3 = 1
r2 − T1. ∂z and ∂zz are respectively

the first and second derivative with respect to z.

Based on this local approach all reported mode features can be predicted as demon-
strated in Bridel-Bertomeu (2016) by all the couples (α, m) and for a fixed interdisk
Reynolds Number Reh.
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A.4 Global stability equations of an enclosed ro-
tor/stator cavity

Introducing the normal modes in the linearized Naviers-Stokes equations, one obtains a
dispersion problem of the form:



(
∂r + 1

r

)
ûr + i

m

r
ûθ + ∂zûz = 0,

(
−iω + Ub∂r + i

m

r
Vb +Wb∂z + ∂rUb −

1
Re

(
∂zz −

m2

r2 + ∂rr + ∂r
r
− 1
r2

))
ûr

+ 2m
r2Re

ûθ + ∂zUbûz + ∂rp̂ = 0(
−iω + Ub∂r + i

m

r
Vb +Wb∂z + ∂rUb −

1
Re

(
∂zz −

m2

r2 + ∂rr + ∂r
r
− 1
r2

))
ûθ

− 2m
r2Re

ûr + ∂rVbûr + ∂zVbûz + i
m2

r2 p̂ = 0(
−iω + Ub∂r + i

m2

r2 Vb +Wb∂z + ∂zWb + 1
Re

(
∂zz + m2

r2 − ∂rr + ∂r
r

))
ûz

∂rWbûr + ∂zp̂ = 0,
(1.4.1)

where ∂r and ∂rr, are respectively the first and second derivatives respectively with r.
This set of equations can be solved numerically as before.
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Appendix B

DMT/DMTC validations and
sensitivity analysis

A.1 Validation test cases of the Dynamical Mode
Tracking (DMT)

This section evaluates the efficiency of the method through different types of CFD ex-
amples. The first case is a 1D closed cavity within which 3 linearly independent (low
amplitude) acoustic eigenmodes are present. The purpose of this simple case is to show
the capability of DMT to identify these modes. The second example focuses on the vortex
shedding of a cylinder wake. The specific test is used to compared DMD and DMT. For
both cases, a sensitivity analysis to the bandwidth filter β is provided to illustrate its
impact on found features.

A.1.1 Case 1: 1D cavity problem
The test case corresponds to a 1D cavity where acoustic eigenmodes are added at initial-
ization and then left free to resonate into a closed domain. Here, Euler equations are used
in place of NS to comply with the original linear and isentropic assumptions: i.e. without
dissipation. For the CFD prediction, the cell centered scheme TTGC (Colin & Rudgyard
(2000)) (third order in time and space) is chosen to reduce numerical dissipation as much
as possible. For this specific numerical experiment, the length of the cavity is unity (l = 1
m) with no mean flow and a uniform mean atmospheric pressure. The modes initially
imposed are the cavity 1st, 3rd and 5th eigenmodes. They are initialized with the same
velocity amplitude p′

ρc
, where c stands for the speed of sound so that at t∗ = t c

l
= 0,

u(x) = p′

ρc
[sin(πx∗) + sin(π3x∗) + sin(π5x∗)] , (2.1.1)

with p′ = 10Pa the acoustic pressure fluctuations and x∗ = x
l
the 1D coordinate. For

this specific problem, the eigen frequencies follow,

f (n) = n c/2 l n = 1, 3, 5. (2.1.2)
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Figure B.1(a) shows the 3 mode velocity amplitudes imposed at t∗ = 0. The resulting
spectrum issued by the temporal recording of the flow issued by CFD at the probe SAC
(all mode common velocity antinode x∗ = 0.5 Fig. B.1(a)) is shown in Fig. B.1(b) for the
time duration t∗ = [0, 70]. All frequencies f ∗ ( f/f (1) ) between 0 and 5 are displayed
in this figure and the velocity has been normalized by the initial velocity amplitude p′

ρc

to ease the results visualization. The spectrum obtained confirms the expected results
and a low dissipation level of the CFD simulation. On this basis, DMT is first used to
extract the modes from the total field issued by the CFD simulation. To do so, a 2nd
order ordinary differential equation (Eq. (3.3.4)) is defined for each of the three modes
and simultaneously activated at t∗ = 0 for all points of the computational domain. In
this case, using Eq. (3.3.4), each parameter couple is set to (β(n) = 40, ω(n)

0 = 2π f (n)).

Figure B.1 – Modes description: (a) Spatial distribution of normalized initial velocity profile u∗ with
( ), the fundamental mode (f (1)), ( ), the 3rd harmonic (f (3)), ( ), the 5th harmonic (f (5)) and
( ), the total resulting velocity field. SAC corresponds to a probe located at the common mode antinode
x∗ = 0.5 (b) Fast Fourier Transform (FFT) at the probe SAC between t∗ = [0, 70].

Note that for this particular case where β(n) = 40, the frequency bandwidth of the
associated filter is 9.5Hz. Likewise, from Eq. (3.3.7), τ ∗90% = τ90%c/l = 26.2.

First the system response and convergence is illustrated on Fig. B.2 by showing the
differential system evolution as a function of time for the three modes. Here the diagnostic
relies on the evaluation of the non dimensionalized velocity fluctuation, u∗n = (u−ū(n))/ p′

ρc
,

at the probe SAC as a function of normalized time, t∗. For all three modes, associated
velocity fluctuations magnitude is in good agreement with the initialization, confirming
the capacity of DMT to recover the right modes in terms of amplitude as time advances.
In fact, τ ∗90% is found equal to 26.2 which is in agreement with the analytical expression
Eq. (3.3.7) (26.39). Fig. B.2 also confirms that the speed convergence is independent of
the frequency of the mode to be tracked. In terms of spatial shape, Fig. B.3, each mode
structure is captured in approximately 2 periods and can be compared at the limit cycle
of the differential systems, i.e: t∗ = 71.5 to the theoretical solution.
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Figure B.2 – Mode tracking: Evolution of the normalized fluctuating velocity profile u∗n over time of
(a) the fundamental mode (f (1)), (b) the 3rd harmonic (f (3)), (c) the 5th harmonic (f (5)), at probe SAC .

Figure B.3 – Retrieved spatial structure of the modes: Comparison between the exact solution (black)
and results of DMT (gray) at t∗ = 71.5. Adimensionlized fluctuating velocity profile over time of ( ),
the fundamental mode (f (1)),( ), the 3rd harmonic (f (3)), ( ) and the 5th harmonic (f (5)).

Again excellent agreement is found and differences can be attributed to the nature
of any numerical scheme or to the bandwidth of the band-stop filter as designed here.
Indeed, contrary to the ideal filter shown in Fig. 3.2, even far from the central frequency
f0 the gain of the filter is never equal to zero which can impact the amplitude of the
modes obtained. This impact is for example observed in Fig. B.2(b) where the envelop
of the reported signal is slightly modulated by the fundamental frequency.
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Concerning the associated CPU coast, the computation has been realized on a mesh
composed of 1998 cells (3000 nodes) using 2 Intel Xeon E5-2605 24 cores processors
running at 2.4Ghz. For 3 tracked frequencies, the overhead for this case is an increase
by 1.1% in comparison to the simulation without DMT. Naturally, the problem size is
reduced here which coincides with a low total cost. A more complex 2D flow problem is
addressed in Sec. A.1.2 in order to evaluate the method more significantly, as well as its
cost.

An explicit assessment of the effect of the filter bandwidth is investigated in the
following by systematically changing the value of β to be [10, 20, 40, 60, 100]. To evaluate
the temporal response of the system for all cases, one defines Ev(n) as the kinetic energy
of the nth mode,

Ev(n) =
∫
V
ρ

(u− ū(n))2

2 dv n = 1, 3, 5 , (2.1.3)

and is then followed in time where V is the "volume" of the computational domain. Note
that by construction, at t∗ >> τ ∗90%, all modes should have the same kinetic energy noted
hereafter Ev0.

The adimensionalized energy envelop Ev(n)/Ev0 is given in Fig. B.4 for 5 values of β.
As anticipated, the time needed to converge increases when reducing the filter bandwidth.
Note that in order to capture 90% of all mode amplitudes functions of β, simulations are
here 4 times longer than the one presented in Fig. B.2. From such a test, one can conclude
that, for high values of β [40, 60, 100], the three modes are well retrieved. Note that, the
drawback of using high β values is that non negligible gains for frequencies around the
one of interest exist. As a consequence, the tracked mode can be slightly modulated by
the surrounding frequencies if present.

Figure. B.4(a) and B.4(b) indicate that the amplitudes of the fundamental and the
3rd harmonic are not necessarily well retrieved. This is attributed to the fact that the
gain of the associated band-stop filters is not low enough around the frequency of interest.
Because the 5th harmonic has a frequency 5 times higher than the fundamental frequency,
it is easier to obtain a more precise estimate of its frequency through the use of a FFT
applied to the CFD prediction. The final shapes of the 3 different modes for all β are
displayed in Fig. B.5. Overall, all global shapes are well retrieved for all the cases, the
amplitude presenting potential discrepancies as detailed before.
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Figure B.4 – Impact of the bandwidth filter β: Normalized kinetic energy integrated over the domain
over time with (a) the fundamental mode (f (1)), (b) the 3rd harmonic (f (3)), (c) the 5th harmonic (f (5)).
5 values of β have been tested: β = 10 ( ), β = 20 ( ), β = 40 ( ), β = 60 ( ), β = 100 ( ).
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Figure B.5 – Impact of the bandwidth filter β on the final modes shape: Normalized velocity over the
domain with (a) the fundamental mode (f (1)), (b) the 3rd harmonic (f (3)), (c) the 5th harmonic (f (5)).
5 values of β have been tested: β = 10 ( ), β = 20 ( ), β = 40 ( ), β = 60 ( ), β = 100 ( ).
The maximum amplitude found after convergence of the filter is displayed for each mode.
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Figure B.6 – Flow domain and mesh used for the DNS flow prediction. Svs corresponds to a probe
used to evaluate the convergence of DMT.

A.1.2 Case 2: Cylinder wake flow instability

DMT is now applied to the fundamental flow dynamic problem that is the vortex shedding
of a cylinder wake. This system is still an open subject of research and often used as
a classical test for new modal analyses or flow control (Bagheri (2013); Marquet et al.
(2008)). Figure B.6 shows the computational domain and mesh used for the NS simulation
of the present problem. The Reynolds number is here defined as ReD = U0D/ν where ν
is the kinematic viscosity, U0 the undisturbed mean velocity and D the cylinder diameter.
The specific value of ReD = 56 is selected as it is close to the onset of instability and for
which a large amount of data is available in the literature (Kovasznay (1949); Paranthoën
et al. (1999); Williamson (1988)). Coordinates and time are normalized respectively by
D and U0/D so that (x∗, y∗) = (x/D, y/D) and t∗ = tU0/D.

Flow predictions obtained by use of DNS (without activation of DMT) are first com-
pared to the Kovasznay experiment (Kovasznay (1949)). Figure B.7 shows the comparison
of axial mean velocity profiles U(y∗) normalized by U0, i.e U∗(y∗) = U/U0 for several axial
positions: x∗ = 2, 3.5, 5, 8, 12, 20, 40. Good general agreement is found. Discrepancies
at x∗ = 40 are due to the fact that this axial coordinate corresponds exactly to the limit
of the domain where an interaction of the structures with boundary condition is present.
Similarly, the non-dimensionalized Root Mean Square (RMS), 100URMS/U0 noted u′∗,
are compared on Fig. B.8 with the same conclusion. Note that room for improvement
is noticeable but considered outside the scope of the present discussion. To complement
this finding, the Strouhal number of the vortex shedding defined as St(ReD) = fD/U0 is
reported in Table B.1 and compares within 1% to experimental findings. In this case, f
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Source St(56)

Present work 0.130
Williamson Williamson (1988) 0.1316
Kovasznay Kovasznay (1949) 0.1306

Table B.1 – Comparison of the Strouhal number St obtained with the present work and from literature.

is retrieved directly from the FFT of a numerical probe located in the cylinder wake and
noted Svs in Fig. B.6.

Figure B.7 – Mean axial velocity profile U∗ at x∗ = 2, 3.5, 5, 8, 12, 20, 40 with ( ) Kovasznay experi-
ments and ( ) present study.

Figure B.8 – RMS axial velocity profile u′∗ at x∗ = 2, 3.5, 5, 8, 12, 20, 40 with ( ) Kovasznay experi-
ments and ( ) present study.
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DMT is now applied for the reported Strouhal number along with β = 40 to evaluate
the capacity of the approach in retrieving this feature. Note that with these parameters,
the associated filter is selective enough to avoid capturing any harmonics of the primary
instability. The probe Svs is first used to analyse the filter convergence, Fig. B.9. The
axial velocity associated to the vortex shedding is defined as u∗vs so that u∗vs = u−ū

(u−ū)max
.

90% of the vortex shedding amplitude at this station is retrieved after a t∗90% = 187.5 which
is in good agreement with the expression derived in Sec. (3.3) which yields t∗90% = 191.9. In
parallel and for comparison, a series of flow snapshots extracted from the CFD simulation
are gathered and analyzed a posteriori with DMD. For this latter, only a small region
around the cylinder wake is retained to avoid any noise issues, a problem a priori not
present with DMT as parameterized here. Figure B.10 shows a comparison of the mode
shapes reported by DMD (that also finds the frequency contrarily to DMT) and DMT
with on the left, the axial velocity and on the right, the transverse velocity component.
Both velocity fields are for each case normalized by their respective peak values. Such
a comparison confirms that DMT and DMD are in full agreement when it comes to the
spatial capturing of the instability: i.e. the vortex shedding.

Figure B.9 – Mode tracking: Evolution of the normalized axial velocity u∗vs associated to the vortex
shedding frequency at the probe Svs.

In terms of added computational cost, contrarily to the previous case, the current
simulation is obtained with a highly refined 2D mesh composed of 159, 000 cells (90, 000
nodes). If simulated by use of 2 Intel Xeon E5-2605 24 cores processors running at
2.4Ghz, the total CPU cost obtained for the results exposed in Fig. B.10 is 4.3h−CPU .
Activating DMT with only one tracked frequency results for this problem into an 1.1%
increase of the total CPU cost. Just like for the acoustic cavity case, a sensitivity of the
mode amplitude and its convergence to bandwidth filter variations is realized. Results are
displayed in Fig. B.11 for 4 values of β [10, 40, 60, 100]. Note that for all these tests, the
simulation time prior to the activation of DMT has been long enough to obtain a precise
frequency of the vortex shedding and a well established limit cycle. As a consequence,
for any β the expected kinetic energy of the mode is retrieved. This flow has furthermore
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Figure B.10 – Contours of non dimensional velocity associated to the vortex shedding with on the left,
the axial and on the right, the transversal velocity components with (a)-(c), DMD and (b)-(d), DMT.
All fields are here normalized by their respective maximum velocity value.

the particularity of being single frequency for a large range of Reynolds numbers. A large
bandwidth filter can hence be taken to have a quick convergence of the tracking without
impacting the amplitude of the mode looked upon.

A.2 Validation test cases of the Dynamical Mode
Tracking and Control (DMTC)

As discussed earlier, one interest behind DMT and its "on-the-fly" ability to identify
modes is that it easily provides access to control strategies. To illustrate such features,
Case 1 is first addressed, a relaxation term being added to the F operator, Eq (3.2.1) in
complement to DMT. Then the same process is repeated for Case 2.

A.2.1 Case 1: Control of the 1D cavity problem
The problem at hand being totally linear (linear acoustics), no interaction between modes
is expected. DMTC is hence used to introduce the effect of the different parameters and
the behavior of the method. For the analysis, only the 3rd harmonic is intended to be
suppressed. For the exercise, the final state obtained with DMT at t∗ = 84.4 is taken as
the initial solution for the simulation with DMTC. Activating DMTC introduces a feeback
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Figure B.11 – Impact of the bandwidth filter β: Normalized kinetic energy of the vortex shedding
integrated over the domain over time with β = 10 ( ), β = 40 ( ), β = 60 ( ) and β = 100 ( ).

for NS equation and as such, a specific temporal evolution is expected. Figure B.12(a)
shows this evolution through the kinetic energy (Eq. (2.1.3)) of each mode. Note here that
due to the narrow filter bandwidth, the fundamental mode and the 5th harmonic energies
remain constant, in agreement with the intent of controlling only mode 3. Results are
here obtained with a small relaxation value, χ(3) = 20 and β(n) = 40. Contrary to DMT,
which is converged here, control or more precisely damping of the mode introduces an
additional time scale. One defines t∗10% the settling time, after DMTC activation, for
a controlled mode to decrease and remain under 10% of its initial amplitude (Ev0 in
Fig. B.12(a)). For the present case t∗10% is found for the 3rd harmonic equal to 79.3, i.e,
three times t∗90% (time required for DMT to recover 90% of the mode amplitude). After
convergence of the coupled system, an FFT of the signal recorded at SAC and issued by
the new CFD prediction Fig B.12(b), confirms that the 3rd harmonic has been completely
suppressed as desired. The spatial distribution of the modes after activation of DMTC are
displayed Fig. B.13 for 4 characteristic times A, B, C, D as defined in Fig B.12(a). The
different instants are chosen such that the three modes reached their highest amplitude.
The results previously described in terms of energy are retrieved here for the three mode:
i.e the 3rd harmonic is completely removed without affecting the two remaining modes.
Regarding CPU cost of this simulation, the computation has been again realized on the
same mesh composed of 1998 cells (3000 nodes) using 2 Intel Xeon E5-2605 24 cores
processors running at 2.4Ghz. The total CPU time obtained for the results exposed in
the Figs. B.12 and B.13 is 440 min, i.e, 2.2% higher than the basic case without DMTC
or DMT.

An explicit assessment of the relaxation coefficient effect introduced with DMTC
is investigated in the following by systematically changing the value of χ to be
[20, 40, 30, 60, 100, 500] for a fixed β = 40. The subsequent temporal evolution of adi-
mensionlized Energy Ev(n) is given in Fig. B.14. For all simulations presented for this
sensitivity analysis, DMT results at t∗ = 84.4 and obtained for β = 40 (Fig. B.2) are used
as input. As shown in Fig. B.14(a) and Fig. B.14(c), for all χ the non damped modes
amplitudes are well retrieved. Concerning the controlled mode (Mode f (3)) Fig. (B.14)b,
the speed at which this mode is damped appears to depend on χ but has an upper bound.
The other information provided by Fig. B.14(b) is that different temporal transients are
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A

B

C D

Figure B.12 – Mode damping: (a) Kinetic energy integrated over the domain over time Ev(n)/Ev0
(for a given mode n) with ( ) the fundamental mode (f (1)), ( ) the 3rd harmonic (f (3)), ( ) the
5th harmonic (f (5)). The evolution of the 3rd harmonic spatial distribution at characteristic instants A,
B, C, D is displayed on Fig. B.13. (b) FFT at probe SAC post damping for t∗ = [220, 320]. Parameters
of DMTC are β(n) = 40 and χ(3) = 20.

to be expected and these will be strongly dependent on χ and β. In that respect, for
χ > 30, transitional growths have been observed without affecting the results. More de-
tails on the sensitivity of the system response issued by the damping of the 3rd harmonic
to the bandwidth of the filter variations for a fixed relaxation coefficient are exposed in
appendix A.3.

A.2.2 Case 2: Control of the cylinder wake flow instability
The previous case was totally linear and hence easy to control. Hydrodynamic instabili-
ties like the vortex shedding studied previously is the result of a saturation process of a
linearly unstable mode among many that can interact and tend to different limit-cycles
depending on the initial base flow and external actions impairing the system. In this
context, studies have been dedicated to closed loop control to suppress or disphase
the vortex shedding. In most cases, this type of control enables to damp the main
frequency for a given Reynolds number but also the new generated states to finally
get a steady flow (Roussopoulos (1993); Park et al. (1994)). In comparison, DMTC
intends to suppress only one frequency for one state. An analysis of the state generated
after DMTC activation is conducted here in order to validate the theory exposed Sec. 3.4.

For that purpose, the results of DMT in Sec. A.1.2 are used here and DMTC is
activated at t∗ = 696, keeping β = 40 and using a relax coefficient χ = 40. Figure B.15(a)
displays the results of the velocity u∗ = u/U0 recorded at probe Svs and for which a post
damping FFT is presented in Fig. B.15(b) considering only the new converged limit cycle.

Results confirm that the signal is quickly damped and that the system converges
to a new state with another instability after a transitional phase. As introduced in
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Figure B.13 – Spatial distribution of the normalized velocity profile u∗n after DMTC with ( ), the
fundamental mode (f (1)), ( ), the 3rd harmonic (f (3)), ( ), the 5th harmonic (f (5)) at (a) t∗A = 72.5,
(b) t∗B = 110, (c) t∗C = 181 and (d) t∗D = 271.9 (See Fig. B.12).

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



184 Appendix B : DMT/DMTC validations and sensitivity analysis

Figure B.14 – Impact of the relaxation coefficient χ during the damping of the 3rd harmonic: Adi-
mensionlized kinetic energy integrated over the domain over time with (a) the fundamental mode (f (1)),
(b) the 3rd harmonic (f (3)), (c) the 5th harmonic (f (5)). 6 values of χ have been tested: χ = 20 ( ),
χ = 30 ( ), χ = 40 ( ), χ = 50 ( ), χ = 100 ( ) , χ = 500 ( ).

Figure B.15 – Damping of the vortex shedding: (a) Evolution of the axial velocity, (b) FFT of the
signal prior ( ) and post ( ) DMTC activation at probe Svs.
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Figure B.16 – (β,χ) Mapping of the three complex frequencies found after DMTC for St = 0.13: (a-c)
represents the Strouhal number (real part) and (d-f) the growth rate (imaginary part) normalized by
D/U0, for each eigenvalue. Op corresponds to the operating point of interest.

Sec. 3.4, eigenmodes of the new state can be predicted by finding the roots of the 3rd
order polynomial exposed in Eq. (3.4.7). To do so, one first assumes that ω = ω0 which
is equivalent to say that the real frequency of the initial system ω is known. For the
case under study, a first hand view of the effect of DMTC and the potential emergence
of a specific mode different from ω0 as a function of the (β,χ) couple can be obtained.
Figure B.16 shows such mappings for (β, χ) ∈ ([0, 100], [0, 100]) for a fixed Strouhal
number St = 0.13, i.e, a pulsation ω0 corresponding to the vortex shedding for Re = 56.
For that case, the real parts obtained for each eigenvalue normalized by D/U0 correspond
to the expected new Strouhal numbers issued by the activation of DMTC, Fig. B.16(a-c).
The imaginary parts, i.e the growth rate are also accessible and displayed in Fig. B.16(d-
f) with the same normalization. First, it is noted that the first eigenvalue, Fig. B.16(a),
has a negative Strouhal number and is hence not a possible solution of the new state.
The two remaining eigenvalues have a positive Strouhal number and a positive growth
rate for all the range of parameters studied. This latter information suggests that for
all sets of parameters (β,χ), two instabilities are prone to appear under the activation
of DMTC. For the specific case (β = 40, χ = 40) defined by Op in Fig. B.16, a Strouhal
number of 0.1321, Fig. B.16(b) and 0.127 Fig. B.16(c) are expected. One can notice here
that these specific values coincide with the bandwidth filter limits and a good agreement
is found between the third Strouhal number eigenvalue and our simulation (0.1265). Note
finally, that similar values of growth rates are found for both identified new eigenvalues:
0.97× 10−3 for the first eigenvalue and 0.95× 10−3 for the third.

The acoustic cavity and the cylinder wake were used to give better insight into
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DMT/DMTC and show the different parameters and their impact on the results. The
following section intends to demonstrate in a real case how this new tool could be applied
to analyze a complex system but also how it can be used to correct a wrong prediction
in a CFD simulation.

A.3 Sensitivity of DMTC to the bandwidth filter β
An explicit assessment of the filter bandwidth effect on the control of the 3rd har-
monic is investigated in the following by systematically changing the value of β to be
[10, 20, 40, 60, 100]. The envelop of the adimensionlized Energy Ev(n) is given in Fig. B.17
for 5 values of β. Since the time necessary to converge is reduced by increasing the band-
width, DMT has been first applied to our case from t∗ = 0 to t∗ = 338 in order to obtain
90% of the mode amplitudes for any bandwidth (see Sec. A.1.1). DMTC is applied from
t∗ = 338 on. Here again, for small values of β, transitional growth can appear. For the
5th harmonic, high dissipation can be observed: this is only due to numerical scheme and
the long simulation time. The same dissipation could be observed for the same simulation
time without DMTC. Contrary to the sensitivity to the relax coefficient χ, one can see
in Fig. B.17(b) that the time t∗10% defines Sec. A.2.1 constantly increases with β.
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Figure B.17 – Impact of the bandwidth filter β during the damping of the 3rd harmonic: Adimension-
lized kinetic energy integrated over the domain over time with (a) the fundamental mode f (1), (b) the
3rd harmonic f (3), (c) the 5th harmonic f (5). 5 values of β have been tested: β = 10 ( ), β = 20 ( ),
β = 40 ( ), β = 60 ( ), β = 100 ( ).

Limited Distribution CNES/AGS/INPT/MEGEP/JURY



188 Appendix B : DMT/DMTC validations and sensitivity analysis

A.4 DMTC Application example for complex flows
The last case studied here is a full 3D simulation of an academic premixed swirl burner.
The purpose of this case is to show how DMT helps analyzing a numerical prediction and
its limit-cycle in terms of composition and activity. DMTC is then used to deal with such
flow predictions exhibiting artificially induced instabilities so that a more relevant flow
is obtained. Note that all the details about this complex system, Fig. B.18(a), are not
provided here and can be retrieved in the paper of Merk et al. (2017). For this specific
burner, Large Eddy Simulation (LES) has been performed on the flow domain shown in
Fig. B.18(b) and the probe Sb located in the confinement chamber, Fig. B.18(b), is used
to evaluate the activity within the system. Note that such a flow is highly complex since
resulting of the use of complex configuration and complex physics. Indeed, the flow is
fully turbulent and reacting. The operating condition for this CH4/Air premixed flame
are displayed in Fig. B.18(c).

Figure B.18 – Presentation of the system: (a) Sketch of the experimental set up, (b) Cut of the flow
domain used for the Large Eddy Simulation (LES) with Sb a probe in the confinement chamber and (c)
Table of the main operating conditions of the system.

Due to the complexity of initializing such a complex flow problem, undesired steady
state solutions are often obtained for such simulation. In fact, acceptable states are
usually the result of expert choices either in guessing a suitable initial solution for the
simulation or through the used of guided boundary conditions settings, artificial damping,
coarse meshes, etc. For this specific case, first hand initialization of the simulation,
resulted in the triggering of a high frequency thermo-acoustic instability that appears
with a high amplitude, hence distorting the analysis of this known stable swirled flow
and flame.

This high frequency instability, corresponds to a transverse mode of the chamber and
can be retrieved with Helmoltz solvers. Note that, this physical mode of the system is
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Figure B.19 – Activity of the system: (a) Adimensionalized pressure, P/P0, over time with P0 the
atmospheric pressure (b) FFT on probe Sb (see Fig. B.18((b)))

not observed in practice in experiments due to the low pass nature of the flame, the
dissipation created by the vibrations of the chamber walls and the non reflective inflow
and outflow conditions at this frequency.

Figure B.19(a) illustrates the pressure signal recorded over time and adimensional-
ized by the atmospheric pressure P0 at probe Sb (Fig. B.19(a)) along with its FFT in
Fig. B.19(b). Note that only the limit-cycle is represented here and both time and fre-
quency have been adimensionalized by the frequency of the quarter wave mode fQW of
the configuration so that f ∗ = f/fQW and t∗ = t.fQW . The 1/4 wave mode is likely
to appear based on experimental findings and reported boundary conditions effects: i.e
depending on the exhaust lengthMerk et al. (2017). In fact, 1/4 wave mode is present in
the issued LES (first peak of Fig. B.19(b)) but the high frequency triggered mode with
a frequency f ∗ = 23 has an amplitude 10 times higher than the one of the quarter wave
mode precluding any analysis.

Use of DMT is first discussed and illustrated in this context. In that case, the un-
wanted frequency f ∗ = 23 being far from the ones representing the expected physics,
one can choose a very large filter bandwidth β = 1000 corresponding to a bandwidth
∆f ∗ = 0.795 around the tracked mode. Convergence of DMT of these settings is re-
ported on Fig. B.20. Due to the very large filter bandwidth, 90% of the mode amplitude
is obtained after only 17 periods or t∗90% = 58.76, which is in good agreement with the
time evaluated using Eq. (3.3.7) yielding t∗90% = 58.82. Equivalently to previous observa-
tions, the analysis of fields issued by (q− q̄) provides good information about the spatial
distribution of the mode in time.

For illustration, the adimensionalized total energy associated to this mode fluctua-
tions: i.e (ρE−ρE) noted ET/ET,max is shown at two instants in Fig. B.21. A longitudi-
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Figure B.20 – Mode tracking: Evolution of adimenzionalied energy ET /ET,max associated to the
unwanted mode at the probe. Spatial distribution at points a and b are displayed in Fig. B.21.

nal and a transverse cut are displayed to point out the rotating nature of the mode. Note
that the difference (ρE − ρE) is representative of the mode pressure fluctuation. The
nodal plane (in white in the Fig. B.21) positioned along the central axis of the burner
indicates that the flow feature looked for corresponds to the first transverse mode of
the chamber. From the longitudinal cut, one can also see that the mode expresses itself
everywhere in the combustion chamber. It also interacts with the flame, indicating a
potential thermo acoustic loop explaining the self sustained activity and presence in the
limit cycle . Note finally that the plenum, volume prior the combustor, is absolutely not
marked by the mode which confirms that the inlet boundary condition is not active for
that mode and changing its acoustic impedance will have no impact.

Cut A

A

A

Figure B.21 – Spatial distribution of the unwanted mode adimensionalized energy ET /ET,max on two
cuts at characteristic times t∗a = 59.68 and t∗b = 59.7 defined in Fig B.20.
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Figure B.22 – Damping of the main instability: (a) Adimensionalized pressure, P/P0, over time with
P0 the atmospheric pressure (b) FFT on probe Sb (see Fig. B.18((b)))

DMTC is then activated from the last solution at t∗ = 59.7 obtained with the DMT. A
high relaxation coefficient χ = 200 is used for this test in order to have fast convergence.
Following this activation, the adimensionalized pressure evolution over time is shown
Figure B.22(a). The results demonstrate again that after 2 periods of the 1/4 wave
mode, the high frequency is being damped. The FFT in Fig. B.22(b) of the pressure
spectrum recorded in the LES at probe Sb for the window of interest, shows that the
quarter wave mode amplitude is slightly affected and residues of high frequency activities
around the spurious mode are present.

Figure B.23 – Deactivation of DMTC: (a) Adimensionalized pressure, P/P0, over time with P0 the
atmospheric pressure (b) FFT on probe Sb (see Fig. B.18((b)))
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Finally, it is important to note that DMTC is a fully time dependent system which
provides the spatial map of a controlled oscillation as it evolves with time. Consequently
all the transient description is accessible. This property is demonstrated by Fig. B.24.
Starting with the instantaneous field of oscillations at t∗ = 59.68 as in Fig. B.21, the
level of spatial oscillations is rapidly seen to decrease to finally disappear at later instants
Fig. B.24(bottom).

Residues corresponding to the damped frequency can be observed around the flame.
This is explained by the broadband nature of combustion and to the fact that it responds
constantly at this frequency. Such results also confirm that even though frequencies
around the limits of the filter bandwidth could appear, it is not the case here and the
unwanted frequency has been completely removed. For this specific burner configuration,
since it is suspected beforehand that the high frequency oscillation was artificially trig-
gered by the numerical strategy adopted, it seems important to confirm that the newly
obtained limit cycle is stable. To do so, DMTC is switched off at t∗ = 64.2 to see how
the solution evolves. Results Fig. B.23 confirmed the finding and the unwanted mode
remained absent, allowing the analysis of the quarter wave mode without potential in-
terference. All discussed computations have been realized on a 3D mesh composed of 7.1
million cells (1.3 million nodes) with 15 Intel Xeon E5-2605 24 cores processors running
at 2.4Ghz. The total CPU time obtained for the results with tracking and control of only
one frequency is 2050h, i.e, 3.5% higher than the basic case without DMT or DMTC
activated.
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Figure B.24 – Mode energy: Instantaneous solution of ET /ET,max of the high frequency instability for
characteristic instants.
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Appendix C

Sensitivity to base flow modification
validations

A.1 Cylinder wake sensitivity to base flow modifica-
tion

This section evaluates the efficiency of the code GIFIE to give a sensitivity to base flow
modification map for a cylinder wake at a Reynolds nymber of Re = 47. Fig. C.1
compares the current results Fig. C.1 (left) with the results of the original paper on the
method (Marquet et al. (2008)) Fig. C.1 (right). Figure C.1 (upper) and Fig. C.1 (lower)
represent respectively the growth rate sensitivity and frequency sensitivity to a base flow
modification. The global map is well retrieved with also the local maxima. From the
growth rate sensitivity (Fig. C.1 (upper)), one retrieves that the flow can be stabilized
(δωi < 0) by taking a δU purely axial oriented downstream and applied in the the axis
of the bubble reciculation at (x, y) = (1.1, 0). For this same modification the frequency
sensitivity (Fig. C.1 (lower)) shows that the frequency shift will be positive and hence
the vortex shedding frequency will be increased.
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Figure C.1 – Sensitivity to base flow modifications of a cylinder wake at Re=47 with on (right) results
from Marquet et al. (2008) and (left) the current results. The (upper) and (lower) figures corresponds
respectively to the grow rate sensitivity and frequency sensitivity to a base flow modification. The
mgnitude is represneted in colors and orientation in colors. Note that the current results have been
normalized by its ∞-norm.
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Appendix D

Sensitivity to base flow modification
validations

A.1 Power Spectral Density of a control annular cav-
ity
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C11

C12

C13

C14

C15

C11 C12 C13

C14 C15

Figure D.1 – Probes Axial velocity PSD of the controlled cavity function of the suction amplitude a
in a mid cavity plan: (a) probe C11 (r = 0.08) (b) probe C12 (r = 0.12) (c) probe C13 (r = 0.16) (d)
probe C14 (r = 0.20) (e) probe C15 (r = 0.24) . In each plots the black contour represent the results
obtained for the non controlled cavity. (f) Schematic of the probes C11 to C15 probes.

C1

C2

C3

C4

C5

C1 C2 C3

C4 C5

Figure D.2 – Probes Axial velocity PSD of the controlled cavity function of the suction amplitude a
in the rotor disk: (a) probe C1 (r = 0.08) (b) probe C2 (r = 0.12) (c) probe C3 (r = 0.16) (d) probe
C4 (r = 0.20) (e) probe C5 (r = 0.24) . In each plots the black contour represent the results obtained
for the non controlled cavity. (f) Schematic of the probes C1 to C5 probes.
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ABSTRACT

Self-sustained oscillations of rotor/stator cavity flows are
well known to industry. This unsteady phenomenon can be very
dangerous and jeopardize the structural integrity of aeronauti-
cal engines by damaging turbomachinery components or tur-
bopumps in the context of space applications. Today, the ori-
gin of such flow instability and resulting limit-cycle is not well
understood and still difficult to predict numerically. In order to
have more insight of this phenomenon dynamic, an academic ro-
tor/stator cavity is investigated in the present paper. The main
motivation of this study is to highlight the benefit of conjunct nu-
merical strategies relying on Large Eddy Simulations (LES) and
flow stability analyses to understand driving instability mecha-
nisms. More specifically, results of a local and global methods
are devised and compared to a Dynamic Mode Decomposition
(DMD) of LES predictions. Good agreements between the sta-
bility methods studied and the present features in the LES limit-
cycle are found. On this basis, a sensitivity and receptivity anal-
ysis of the flow is realized to point the origin of the two most
unstable modes: i.e the position within the flow where the prob-
lem issues.

∗Address all correspondence to this author.

NOMENCLATURE
Acronyms

CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
DMD Dynamical Mode Decomposition
LES Large Eddy Simulation
LSA Linear Stability Analysis
T T GC Two-Step Taylor Galerkin C
WALE Wall Adaptative Local Eddy-viscosity

Greek letters
Ω Rotor rotation rate [rad.s−1]
δ Boundary layer characteristic scale [m]
ν Kinematic viscosity [m2s−1]
ω Complex frequency [−]
ω0 Absolute complex frequency [−]
α Complex wave number [−]
∇· Divergence operator [m−1]
∇ Gradient operator [m−1]
∇2 Laplace operator [m−2]
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Symbols
C Complex numbers set [−]
h Cavity height [m]
r Radial coordinate [m]
z Axial coordinate [m]
t Time [s]
R0 Internal radius cavity [m]
R1 External radius cavity [m]
G Aspect ratio [−]
Rm Curvature parameter [−]
ReG Global Reynolds number [−]
Re Local Reynolds number [−]
Reh Scale of boundary layers [−]
U Global velocity flow [m.s−1]
P Global pressure flow [kg.m−1.s−2]
Ub,i Base flow velocity components [m.s−1]
Pb Base flow pressure [kg.m−1.s−2]
p Pressure perturbations [kg.m−1.s−2]
ui Perturbations velocity components [m.s−1]
D Dispersion relation [−]
m Azimuthal wavenumber [m.s−1]
S Sensitivity [−]
F Frequency [Hz]
F0 Frequency of the rotor [Hz]
L Direct problem operator [−]

Subscript
〈·〉i Imaginary part
〈·〉r Real part
〈·〉0 Zero group velocity
〈·〉G Zero group velocity

Superscripts
〈·〉+ Adjoint

1 INTRODUCTION
Space engine design still remains a source of challenges for

researchers and engineers today. Each phenomenon and com-
ponents needs to be precisely analysed due to the complexity
of the fluid mechanisms that operate such devices. For exam-
ple, experimental campaigns have often evidenced undetermined
unsteady phenomena around the cavity of space turbopump tur-
bine. Some of them are called ’Pressure bands phenomenon’
are characterized by dominant frequencies which can be mea-
sured everywhere in the cavity. These self-sustained oscillatory
motions of the fluid can, under certain circumstances, become
dangerous and if uncontrolled, impact the structural integrity of
the engine. Although highly complex in the end application, this
specific phenomenon has recently been retrieved in academic ro-
tor/stator cavities as described by Bridel [3].This simple config-
uration is investigated again in the present paper .

Rotating flows over a single disk have been an interesting
subject for fundamental fluid mechanics but also for industrial
purpose for a long time [Ekman [10], Karman [34], Bodewadt

[2]]. Recent studies have been focused on enclosed rotor/stator
systems [Lingwood [19],Itoh [16] with a renewed interest. From
an experimental point of view, the complete study of Schouveiler
et al. [29] or Lopez [20] detail the different transitions scenario
possible as a function of geometrical parameters and Reynolds
number ReG. From the Linear Stability Analysis (LSA) point
of view, the first studies were done between two infinite disks.
In that cases, auto similar Batchelor profiles were applied for
the base flow [Itoh [16]]. However, for rotating cavity boundary
layer, Healey [12] has demonstrated that walls and hence con-
finement have a non negligible impact on the waves that grow and
propagate in the crosstream direction. Tuliszka [32] confirmed
this phenomenon by extending the work of Itoh [16] and Ling-
wood [19] to rotor/stator systems. In this specific analysis, good
agreement was found between a Direct Numerical Simulation
(DNS) and a local stability analysis. Finally, the existence of the
spiral paterns and travelling circular waves as descibed in Schou-
veiler [29] were confirmed. The present study follow on from
one of the most recent studies done by Bridel [3]. Based upon the
conjunct use of Large Eddy Simulations (LES)[Sagaut [26, 27]],
dedicated post processing techniques and local stability analysis,
Bridel et al. [3] managed to expand our understanding of the dy-
namics of such systems and highlight the potential sources at the
origin of the observed instabilities. To do so, first, Dynamical
Mode Decomposition (DMD) of Schmid [28] enabled to show
that the full dynamics of the flow can be linked to only three
dominant modes and that the fluctuations from the stationnary
disc is the source of the spiral patterns that cover all the inviscid
core flow which then reach the rotating disc boundary layer and
destabilize it. Second, local stability analyses based on the par-
allel flow assumption and realized on a 1D base flow were con-
ducted and helped identifying the location of the instability trig-
gering mechanism. Note that, although powerful, such analysis
can be restrictive for complex systems with, for example, recir-
culations or boundary detachment situations. With the increase
of computing power in the 1980s, global stability has offered the
possibility to extend the local approach to 2D base flows. This
paper intends to combine both stability methods to go deeper into
the understanding of the instability mechanisms occurring in an-
nular rotor/stator cavities. One of the main benefits of a global
approach is the possibility to conduct more easily receptivity and
sensitvity analysis as descibed first in Giannetti [11].Those tools
provide more information on the origin of the instabilities and
thereby select a control strategy to apply to the flow.

The document is organized as follows. The system configu-
ration is presented in Section 2. Linear stability analysis theory
with both local and global approaches are explained in Section 3.
Then, a description of the base flow obtained from LES is given
and discussed in Section 4. Stability results are analyszed in sec-
tion 5, starting with the local approach followed by the global
results to finally finish with the sensitivity/receptivity analyses
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2 CONFIGURATION OF INTEREST
The study is conducted on the same annular academic cavity

of Bridel et al. [3] originally introduced by Tuliszka [32]. Figure
1 represents this simple cavity with associated geometrical char-
acteristics. The upper disk is stationnary and the lower rotating at
the speed Ω. If one defines h the height of the cylindrical cavity,
R1 the external radius and R0 the internal radius, several charac-
teristic numbers are usually used to fully describe a rotor/stator
systems.

The aspect ratio, defined as G = h/R1, is the most im-
portant one. The curvature paramater defined as Rm = (R1 +
R0)/(R1−R0) has also been identified to be of importance. Fi-
nally, 3 Reynolds numbers need to be defined. The first one,
ReG = ΩR2

1/ν , will correspond to the classical Reynolds num-
ber of a system with ν the kinematic viscosity of the flow. The
second one, Reh = (h/δ )2, will be related to the boundary lay-
ers with δ = (ν/Ω)1/2. Finally, in order to apply local sta-
bility analyses a ’local Reynold number’ is usually introduced
(Bridel [3].Follwing the work of Itoh [16] and Tuliszka [33], let
r be the radius at which our local analysis will be applied. By tak-
ing h the reference length scale, rΩ the velocity scale, ρr2Ω2 the
reference pressure and the time scale h/rΩ, an artificial Reynolds
number can be simply reduced to Re = r/h. Table 1 sums up all
geometric and physical features of Tuliszka cavity.

Feature Symbols Value

Internal radius R0 71 mm

External radius R1 250 mm

Height h 35 mm

Aspect ratio G 0.2

Curvature Rm 1.8

Rotation rate Ω 315 rad/s

Global Reynolds number ReG 105

TABLE 1: Geometric and physical features of Tuliszka annular
cavity.

3 LINEAR STABILITY ANALYSIS
In fluid dynamics, a system can be said stable in the sense

of Lyapunov [21], if an infinitesimal perturbation on its ’base
flow’ stays infinitesimal over time or if the perturbed flow stays
around the base flow. In addition to telling if a flow is stable or
unstable, the main goal of a linear stability analysis is to give the
physical features of the response of a little perturbation around

FIGURE 1: Scheme of the academic annular rotor-stator cavity
of Tuliszka (Not to scale): rotating parts, stationnary
parts.

the base flow: frequency, amplification rate (also called growth
rate), spatial and temporal evolution. This section intends to in-
troduce the main stability notions and the two methods used in
this study in the particular case of a rotating flow. The interested
reader can find more information about this theory in Drazin and
Reid [9]. For both local and global approaches, one can define, p
and u = (ur,uθ ,uz)

T respectively the pressure and velocity per-
turbations. While U = (Ub,r,Ub,θ ,Ub,z)

T and Pb stand for the
base flow variables such that the global flow (U,P) can be recon-
structed as:

{
U(r,θ ,z, t) = Ub,i +ui(r,θ ,z, t),
P(r,θ ,z, t) = Pb + p(r,θ ,z, t). (1)

The stability of the base flow is obtain by resolving the incom-
pressible Navier-Stokes equations of the perturbation linearized
about the base flow. The perturbation evolution is therefore ob-
tained by solving the following differential equations in cylindri-
cal coordinates (r,θ ,z) :

∇ ·u = 0,
∂u
∂ t

+∇u ·Ub +∇Ub ·u+∇p− 1
ReG

∇2u = 0,
(2)

Where, ∇ ·x, ∇x and ∇2x denote respectively the divergence gra-
dient and Laplace operators in cylindrical coordinates.

Local stability analysis
Flow stability was particularly difficult to study in the past

because of the lack of computation resources or even analytical
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tools. Hence most of the investigations assumed that the wave-
length of the underlying instability mechanism was short com-
pared to the typical scale over which the flow develops along the
streamwise direction. Under such an assumption, usually called
’parallel flow’, a rotating base flow around an axis z will take the
form (Ub,i(z),Pb(z)).

Normal modes: The set of linearized equations corresponding
to eq. (2) are separable in r, θ and t. Hence the perturbations can
be represented with a normal mode formulation of the form :

[ur,uθ ,uz, p]T = [iûr, ûθ , ûz, p̂]T (z)exp[(i(αr+mθ −ωt)], (3)

where ûr, ûθ , ûz and p̂ stand for the eigenfunctions.

In this case, a given mode is said to be normal because it is
considered independent of the other modes of the system. Each
mode is hence represented by a pair of parameters (α,ω) with
α a complex wavenumber α = αr + iαi and ω a complex fre-
quency ω = ωr + iωi. With this notation, αr corresponds to the
wavenumber of the perturbation and αi the amplification rate in
space of the mode. A similar physical interpretation of ω can be
given i.e ωr represents the real frequency and ωi the amplifica-
tion rate in time of the mode. Finally m acts for the azimuthal
wavenumber. Modes corresponding to m = 0 will be axisym-
metric and for |m| > 0 modes will show spirals patterns with
m−arms.

By introducing this normal mode decomposition in the lin-
earized equations, we can obtain a dispersion relation expressed
as,

D(ω,α, q̂) = 0. (4)

From this expression three types of analyses can be conducted:

Temporal analysis: The purpose of this analysis is to find the
complex frequency ω by fixing a real wavenumber (α ∈ R). In
other words, find the response of the flow to an α given spatial
excitation. The dispersion problem issues by Eq. (4) can be
reduced to the following eigenvalue problem (EVP) :

Aq̂ = ωBq̂, (5)

where q̂ = [ûr, ûθ , ûz, p̂]T is the problem eigenvector.

The growth of the infinitesimal perturbation q̂ is then gov-
erned by Im(ω) = ωi (imaginary part of ω). Indeed for an

ωi > 0, the base flow is said linearly and locally unstable. The
perturbation grows exponentially with time and the contrary for
ωi < 0. In the particular case where ωi = 0, the base flow will
be said neutrally stable and the associated perturbations will
not change with time. Temporal analyses are well suited for
bounded flows for which located perturbations can’t spatially
grow. However, even if this type of analysis can give the
evolution of a local perturbation in time, it does not provide
information about the global behavior of the flows. The term
’global mode’, will be widely used in the next sections of this
study and is usually referred as a perturbation that evolves in
space and time to a point where it impacts the entire flow field
(non local).

Spatial analysis: In this case the unknown parameter is the
wavenumber α . We look for the response of the flow to time
periodic oscillations. Hence by fixing ω ∈ R, the dispersion re-
lation (4) becomes a eigenvalue problem with quadratic terms in
α formulated as:

Aq̂ = αBq̂+α2Cq̂. (6)

Note that for this specific problem the expression involving p̂
does not have terms in α2 so taking φ = α ûi we can formulate
the problem to obtain:

[
A 0
0 I

][
q̂
φ

]
= α

[
B C
−I 0

][
q̂
φ

]
(7)

or,

A
′
q̃ = αB

′
q̃, (8)

with q̃ = [q̂,φ ]T .

Spatial analyses have proven to be very efficient for open
flows. The main benefit over temporal analyses is that it enables
reconstruction of the a 2D global shape of a global mode. Many
studies have been done with this type of analysis during the
last decades. One can cite the work of Oberleithner [22] on
swirling jet and vortex breakdown or more recenlty the work of
Laccasagne [18] on the stability of corner shedding vortices in
solid-propellant rockets.

Spatio-temporal analysis: In the two last paragraphs , two
types of analyses have been presented, one for bounded flows
and one for open flows. In some cases, some spatially develop-
ing flows can sustain self-excited global modes without external
forcing and characterized by a dominant frequency ωG. Huerre
& Monkewitz [15] have shown that a global mode comes from a
region of what we call ’absolute instabilities’. In that case, in or-
der to find such particular instabilities, a spatio-temporal analysis
is performed to study the local group velocity of the flow.
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FIGURE 2: The 3 types of responses of a perturbation: (a) Stable,
(b) Convectively unstable, (c) Absolutely unstable

Absolute and Convective instabilites

An absolute instability corresponds to a perturbation
moving with zero group velocity and is marked by a saddle
point of ω in the complex α-plane. In other word, for this type
of study, the wavenumber is taken complex (α ∈ C) and here
again one tries to find an eigenvalue ω0 solution of the following
eigenvalue problem:





Aq̂ = ω0Bq̂

c =
∂ω
∂α

∣∣∣∣
ω0

= 0 (9)

The sign of the resulting ω0 will give the behavior and evolution
of the local pertubation as shown in the Fig. 2. In the partic-
ular case (b) for which ω0 < 0 , the perturbation is amplified
and is convected away from its source, the base flow is said con-
vectively unstable (locally). At the opposite, for ω0 > 0 (c), the
perturbation will expand around its local source and perturb all
the flow, the base flow is said absolutely unstable (locally).

Construction of a global mode:

The origin of the oscillation or in other words the per-
turbation which triggers a global mode is usually called the
wavemaker and is represented by ωg. The reconstruction of a
2D global mode is a complex process that can be summed up in
five steps:
1- Maximum temporal growth rate at X1: The first step is to
do a simple temporal analysis on an arbitrary slice X1 to find
the maximum growth rate ωmax,1. Chomaz et al. [6] showed
that this value will represent the upper part of the absolute
instabilities rate at this location.
2- Saddle-point at X1: The second step is to do a spatio-
temporal analysis to find the saddle point at the same slice X1.
3- Saddle-points at all X: From the saddle point found at X1,
it is possible to track all the saddle points at each X location.
The curve ω0(X) will represent all the candidates that can be the
wavemaker.

4 -Wavemaker ωs(Xs): The curve ω0(X) is usually fitted
around its maximum by a Padé polynomial and extended to the
complex X-plane. Cooper et al. [7] have shown that this type of
polynomial has a good behavior during their expansion in the
complex plane. Here again the wavemaker indeed corresponds
to the saddle point (Chomaz [6]) that is:

∂ω0

∂X
(Xs) = 0, (10)

with ωg = ω0(Xs)
5- Reconstruction: Finally a spatial analysis is realized at ω =
ωg and the global mode shape is reconstruced by applying the
following expression (Huerre et al [15]):

ui(r,θ ,x, t) =R

(
ûiexp

[
i
(∫ r

0
α(ξ )dξ +mθ −ωt

)])
(11)

with ui : [ur,uθ ,ux] and ûk the eigenvectors [iûr, ûθ , ûx] associated
to α(r)

Global stability analysis
The analysis introduced so far relied on the parallel flow as-

sumptions. Unfortunately for many applications such an assump-
tion does not hold anymore. Weakly non-parallel flow theory has
hence been created to go over this problem. As an example the
Parabolised Stability Equations (PSE) proved to be efficient to
capture simple boundary layers. However, the resulting method
was not powerful enough to capture recirculations and boundary
detachment flow situations. It is only in the 1980s with the ad-
vances in computing science and computing power that the local
stability theory has been able to be extended to two dimensional
base flows. Pierrehumbert & Widnall [25] performed the first
global stability analysis based on the solution of the EVP per-
taining to the essentially 2D basic states of shear layer vortices.
The interested reader can refer to Theophilis [31] for a complete
review of the global stability studies.

Governing Equations:
The construction principle of a global stability analysis re-

mains the same as the local approach. However, one assumes
here a 2D base flow such as:

U = (Ub,r(r,z),Ub,θ (r,z),Ub,z(r,z))T ,
P = Pb(r,z),

(12)

and a normal modes decomposition to read,

[ur,uθ ,uz, p]T = [ûr, ûθ , ûz, p̂]T (r,z)exp[(i(mθ −ωt)], (13)
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The 2D global modes are hence here obtained directly by resolv-
ing an eigenvalue problem. The main drawbacks of this method
are the loss of the notion of absolute instability and the possibil-
ity to conduct spatial stability analysis.

Boundary conditions: For the global approach as well as the
local one (but only at z= 0 and z= h) Dirichlet conditions are ap-
plied on the velocity perturbations ûi while Neumann conditions
are used for the pressure p.

Sensitivity and Receptivity
As described in the last section, fluid systems can be charac-

terized by their stability behavior. Nevertheless, a simple global
analysis is usually not enough to describe the entire flow. In
fluid dynamics, adjoint approaches are often used for optimal
design methods. It gives indeed new insight in the system and
can be interpreted as a sensitivity measure of the flow robust-
ness to changes, an information of importance to design control
strategies, for example. In such a context, the direct eigenvalue
problem can be reformulated as :

L q̂ = ω q̂, (14)

where L stands for the direct problem operator and q̂ the eigen-
value unknown vector. Adjoint modes are hence easily accessed
and satisfy the following relation:

L +q̂+ = ω∗q̂+, (15)

where L + is the adjoint operator of L and ω∗ = R(ω)−
iIm(ω) ,the complex conjugate of ω .
In stability analysis, the adjoint eigenmodes represent the recep-
tivity of the flow. This characteristic has been introduced by
Hill [14]. It is usually defined as the response to additive changes
to the governing equations, i.e modeling external sources of in-
fluence (such as free-stream turbulence or wall roughness) or the
optimal initial condition which will excite the most global mode.
This tool is hence essential for active control.

As a complement to receptivity, the structural sensitivity de-
scribes the response to structural changes in the governing equa-
tions, while modelling the internal sources of influence (such as
base-flow modifications or changes in the geometry). Following
the definition given by Giannetti [11], the structural sensitivity is
given as the overlap of the direct and adjoint modes:

S(r,z) =
‖ q̂+ ‖2‖ q̂ ‖2

|< q̂+, q̂ >| , (16)

where < ·, · > denotes the inner product defined as
< a,b >=

∫
a ·bdS and ‖ · ‖2 stands for the L2-norm.

According to Giannetti the location of maximum structural
sensitivity will correspond to the greatest drift of the eigenvalues
for a given modification of the system. This maximum is usually
defined as the trigger of a global mode and can be assimilated
to the notion of wavemaker described in the local stability
approach.

4 BASE FLOW
Large eddy simulations of the Tuliszka cavity have been

conducted recently by Bridel et al. in [4]. Self-sustained oscil-
lations of the fluids have been observed in the form of dominant
frequencies present in all the cavity. As shown by Arco [8], the
stationnary disc has been found unstable to spiral and circular
waves whereas the rotor only with the presence of a shaft. Fi-
nally, the dynamics of the fluid has been more deeply studied by
applying a Dynamical Mode Decomposition. Three main global
unstable modes have been observed to drive all the dynamics of
the flow. The most unstable mode is defined as the stator mode
because it is particularly marked around the boundary layer of
the stationnary disc (z = h). The second global mode is referred
as the rotor mode for the same reason. The last one is an ax-
isymmetric mode corresponding to an azimuthal wave number
of m = 0 and will not be studied in the present study. Stability
analyses are used here to go deeper in the mechanisms of these
instabilities and find its origin. As said previously, in linear sta-
bility theory, all analyses have to be done around a base flow
solution of the steady Navier Stokes equations. For simple cases,
analytical solutions are usually taken. However for more com-
plex flows, the mean flow has proved to be a good substitute to
the base flow(Pier [24]). This last choice is still a great subject of
debate (Beneddine et al. [1]) but out of the scope of the present
discussion. Indeed, even if the mean flow is, most of the time,
not a solution of the steady Navier-Stokes equations, it still en-
ables to take into account a part of the non-linearities of the flow
(Pier [24]).

FIGURE 3: 2D Base flow contours : Time and azimuthal av-
eraged LES radial velocity non-dimensionalized by its ∞-norm,
Ub,r/max(Ub,r)

Following the work of Bridel et al. [3], LES results have
been time and azimuth averaged to conduct the stability analysis.
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Figure 3 presents the 2D profile of the radial velocity that has
been used for the global approach. As shown in Figure 4 Good
agreement were found with the results of Severac [30] and the
auto-similar profile of Owen & Rogers [23].

FIGURE 4: Base flow at r/R1 = 0.5 : Dimensionless mean radial
velocity (left), azimuthal velocity (right) with our LES results
( ), Severac [30] experiment ( ) and Owen & Rogers [23] ( )

5 STABILITY RESULTS
Local stability

The local stability analysis has been conducted with the code
AVLP developed by Bridel [3] during his PhD at CERFACS. This
code has been implemented to study any kind of axisymmetric
flow where the assumption of parallel flow is reasonably valid.
The azimuthal numbers m = 29 and m = 12 have been taken as
inputs for the local stability analysis respectively for the stator
and rotor modes as evidenced by the LES analysis.

As described in section 3, to reconstruct a global mode with
a local stability analysis, 5 steps need to be followed. After find-
ing the maximum temporal growth at mid radius and then the
saddle point at the same location, all the saddle points have been
found for all radii of the cavity. Results of the intermediate steps
are displayed here only for the stator mode. We can note in Fig-
ure. 5 that the amplification rate is always greater than 0 which
denotes that the flow is absolutely unstable everywhere. At the
opposite, the rotor (not shown here) presents few regions of ab-
solute instabilities around the shroud. Following the method first
used by Chomaz [6], a Padé polynomial of the form P/Q with
P of degree n and Q n− 1 is used to fit the saddle point curve
around the maximum. The resulting red dashed curve in Fig. 5
is found for a degree n = 16 for the stator and n = 13 for the
rotor. Figure 6 corresponds to the expansion of those curves in

FIGURE 5: Stator mode: Radial evolution of the absolute (a)
Temporal amplification ω0,iRe (b) Temporal frequency −ω0,rRe

FIGURE 6: Stator mode: Isocontours of (a) absolute amplifi-
cation ω0,iRe, (b) absolute temporal frequency −ω0,rRe for the
continued function ω0(r) in the complex r−plane

the complex plane (see section 3) for the stator mode. In case
where several saddle points are found, Chomaz [6] shows that
the wavemaker will correspond to the eigenvalue with the real
part closest to the imaginary axis. This method has been vali-
dated by Juniper [17] and applied here for the stator mode. The
saddle point here at rs = r/R1 = 0.836 represents the wavemaker
location associated to the stator global mode. By taking F0 the
rotor frequency and by reporting this result on the Figure. 5, a
real frequency of F/F0 =−Re(ωGRe)/2πF0 = 3.85 and a global
growth rate of Im(ωGRe)/2πF0 = 0.218 are found at rs. The
DMD of Bridel [3] found a global frequency of the mode m = 29
equal to F/F0 = 3.6 which is in good agreement with the present
result.

The same process has been applied for the rotor mode. The
wavemaker has been identified at the position rs = 0.856 for a
global frequency of F/F0 = 0.34 and a growth rate of 0.086.
Here again a good agreement is found with the DMD frequency
of the mode m = 12 : F/F0 = 0.35.

Global Stability
The global stability analysis has been conducted with the

code GIFIE developed by Bridel et al. [3]. The eigenvalue prob-
lem is discretized using FreeFEM++ [13] an open source soft-
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ware tool solving differential equations and performs the finite
element method on triangle shaped elements in two dimensions.
The resolution of the eigenvalue problem is done with the pack-
aging SLEPc and PETSc. Any kind of incompressible base flow
can be studied with this solver and, as for AVLP, has the possi-
bility to run analyses in parallel.

Mapping of the unstable mode
All the azimuthal modes m between 0 and 40 have been com-

puted and analyzed in this first paragraph. Figure 7 (a) represents
the maximal growth rate found at each m and the frequency in
(b). Unlike the local analysis, the global approach finds an un-
stable mode for almost each azimuthal wavenumbers. However 3
different zones can be identified. The axisymmetric mode m = 0,
a peak at m = 11 and a bump around m = 30 which agree with
Bridel’s DMD (see Table 2). The most unstable mode is found
for m = 35 but those between 29 and 36 have almost the same
growth rate and, as the frequency is increasing linearly with m in
this region, we retrieve a 2D global mode with the same shape
but shifted in-space. From now, the study will therefore be con-
ducted only on the rotor mode m = 12 and m = 29 like the local
approach to ease the comparison between the two methods.

FIGURE 7: Mapping of all the most unstable modes at each az-
imuthal number m with (a) The temporal amplification ωi/2πF0
and (b) The temporal frequency ωr/2πF0

2D Global modes comparison: Figure 9 and 8 show the re-
sults obtained for the 3 methods in order DMD (upper), local
(middle) and global (lower) approaches respectively for the ro-
tor mode and stator mode. A good agreement is found between
the three cases for the stator. In case of the rotor mode, one
can see in the Figure 9 (middle) that the local stability result has
been voluntarily cropped around the hub for r ∈ [0,0.05]. In-
deed around this region a strong recirculation appears to drive
the main perturbations and the local approach is violated is this

zone. However the results of the rotor mode of the global stabil-
ity analysis and the DMD are in good agreement and the same
dynamics is retrieved. One can especially see that the perturba-
tions for this mode come from the stationnary disk to finally be at
its maximun next to the shroud on the rotating disk. This obser-
vation highlights that an interaction between the two main modes
is inevitable but will not investigated here.The limits of the local
approach to analyze complex flows have been made clear.

FIGURE 8: 2D shape of stator mode (m = 29): axial velocity
fluctuations for upper) DMD, (middle) Local stability, (lower)
Global stability

FIGURE 9: 2D shape of rotor mode (m = 12): axial velocity
fluctuations for upper) DMD, (middle) Local stability, (lower)
Global stability
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Receptivity and sensitivity Figure 11 (upper) presents the re-
sults of the adjoint eigenvalue problem for mode m = 12 while
Fig. 10 (upper) those of the stator. For both modes, the region
of maximum receptivity is not located at the same location of
maximum amplitude of the direct mode. This phenomenon has
been point out by Chomaz [5] and corresponds to a convective
non-normality effect. In other word the base flow advection can
have a non negligible impact on the modes shape and magnitude.

FIGURE 10: Stator mode , (upper) receptivity of velocity axial
fluctuation û+z (r,z), (lower) Structural sensitivity S(r,z)

At the end, the receptivity of the axial velocity of the stator
mode shows that to force or control a global mode at first order,
harmonic pulsations need to be introduced near the shroud on
the stationary disk. The analysis of the receptivity is done here
for the axial velocity but the same study could be realized on the
pressure and the others velocity components but are not treated
here.

Figure 11 (lower) and 10 (lower) present respectively
the structural sentivity of the rotor and the stator mode. The
sensitivity maximum for the rotor mode is unexpectedly located
on the stationary disk at (r,z) = (0.133,0.0345) whereas for
the stator mode, it is located not far from the shroud on the
stationary disk (r,z) = (0.195,0.034). The rotating disk seems
to be the source of the two main unstable modes and this result
tends to confirm the amplification of the rotor mode along the
hub before to reach its maximum amplitude in this limit cycle.

6 CONCLUSION
Flow instabilities can have a real impact in the structural in-

tegrity of turbomachinary components. Their control is a pri-
mary subject but a better understanding of how they work is first
mandatory. Our study was focused on ”the pressure bands ” phe-
nomenon which can be retrieved in academic annular cavities.
Through the now well known cavity of Tuliszka, this work aimed

FIGURE 11: Rotor mode , (upper) receptivity of velocity axial
fluctuation û+z (r,z), (lower) Structural sensitivity S(r,z)

GIFIE AVLP DMD

Mode Rotor Stator Rotor Stator Rotor Stator

ωrRe/(2πF0) 0.304 3.72 0.34 3.85 0.35 3.6

ωiRe/(2πF0) 0.070 0.740 0.086 0.218 not comparable

r/R1 at Smax 0.524 0.784 0.856 0.836 - -

TABLE 2: Sum up of the stability results compared to DMD.
Dimensionless frequency, amplification and wavemaker

to, first, compare local and global stability approaches but also to
improve our understanding of rotating flows on rotor/stator cav-
ity. Table 2 sums up the results obtained during our study and
good agreement between the local analysis, global analysis and
the dynamic mode decomposition of [3] are found. For the sta-
tor, the global 2D shape is well reproduced and the wavemaker
found in both stability analyses coincide precisely. In case of
the rotor, the two approaches have predicted a reasonably good
shape of the global mode near the shroud but the local approach
has naturally difficulties next to the hub where a recirculation of
the flow is present. The wavemaker has been localized near the
shroud whereas the global approach found it more near the hub.
The global approach has furthermore given new insight on the
source of the rotor mode by combining those results with sensi-
tivity analyses. At the end, the literature and our study on the
academic cavity have shown clearly the limits of a local stability
analysis. In fact, the parallel flow assumption does not enable to
retrieve exactly the shape of a global mode in zones where the
base flow is particularly complex. The two methods present two
different ways to find the trigger of a global mode. However, the
process in case of a local approach relies on complex mathemat-
ical concepts and needs rigorous attention to be able to retrieve
the good results. In terms of control, the receptivity and the sen-
sitivity analyses are clearly interesting tools. With the global ap-
proach, the results showed a good agreement with the literature
and confirmed that the global modes come from the boundary
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layers. However an adjoint mode with a local approach would
involve complicated mathematical concepts and so has not been
addressed in the present study. Finally if the global approach
seems to be the most promising method, the local approach can
not be forgotten. The notion of absolute instability gives indeed
a lot of physical insights that we can not retrieve with the global
approach.
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toulouse. PhD thesis, CERFACS, 2016.

[4] BRIDEL-BERTOMEU, T., GICQUEL, L., AND STAFFEL-
BACH, G. Large scale motions of multiple limit-cycle high
Reynolds number annular and toroidal rotor/stator cavities.
Physics of Fluids 29, 6 (2017).

[5] CHOMAZ, J.-M. Global instabilities in spatially develop-
ing flows: Non-Normality and Nonlinearity. Annu. Rev.
Fluid Mech. 37, 1 (2005), 357–392.

[6] CHOMAZ, J.-M., HUERRE, P., AND REDEKOPP, L. G. A
frequency selection criterion in spatially developing flows.
Stud. Appl. Math. 84 (1991), 119–144.

[7] COOPER, A. J., AND CRIGHTON, D. G. Global modes
and superdirective acoustic radiation in low-speed axisym-
metric jets. Eur. J. Mech. B/Fluids 19, 5 (2000), 559–574.

[8] CRESPO DEL ARCO, E., SERRE, E., BONTOUX, P., AND
LAUNDER, B. Stability , transition and turbulence in rotat-
ing cavities. In Instabilities of Flows, M. Rhaman, Ed. WIT
PRESS, 2005, pp. 141–195.

[9] DRAZIN, P. G., AND REID, W. H. Hydrodynamic stability.
2004.

[10] EKMAN, V. W. On the influence of the Earth’s rotation on
ocean currents. Ark. för Mat. Astron. och Fys. 2 (1905),
1–53.

[11] GIANNETTI, F., AND LUCHINI, P. Structural sensitivity of
the first instability of the cylinder wake, vol. 581. 2007.

[12] HEALEY, J. J. Enhancing the absolute instability of a
boundary layer by adding a far-away plate. J. Fluid Mech.
579 (2007), 29–61.

[13] HECHT, F. New development in freefem ++. Journal of
Numerical Mathematics 20, 3 (2012), 251–265.

[14] HILL, D. A theoretical approach for analyzing the resta-
bilization of wakes. 30th Aerospace Sciences Meeting and
Exhibit, April (1992).

[15] HUERRE, P., AND MONKEWITZ, P. A. Local and Global
Instabilities in Spatially Developing Flows. Conference on
Boundary Layer Concepts in Fluid Mechanics 22 (1990),
473–537.

[16] ITOH, M. On the instability of the flow between coaxial
rotating disks. In Bound. Layer Stab. Transit. to Turbul.
ASME FED (1991), vol. 114, pp. 83–89.

[17] JUNIPER, M. P. The local and global stability of confined
planar wakes at intermediate Reynolds number. J. Fluid
Mech. (2011), 218–238.

[18] LACASSAGNE, L. Simulations et analyses de stabilité
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Appendix F

Linear stability models comparison

Figure F.1 – Stability model comparison: (a) Mode F/F0 = 4.85 obtained with DMT (b) Mode
(F/F0,m) = (4.69, 4) ν = νl, (c) Mode (F/F0,m) = (4.53, 4) ν = νl + νSGS , (d) Mode (F/F0,m) =
(4.69, 4) ν = νl + νSGS + νe

This appendix presents a comparison of the 3 stability models tested on the turbop-
ump cavity. Only results of the m = 4 mode is presented here. DMT result obtained for
the frequency F/F0 = 4.85 presented Fig. F.1(a) is taken as the reference. Note that this
turbopump mode being complex the m = 4 contribution has been extracted from DMT
thanks to a Fourier decomposition as realized in Sec. 4.4.2. Fig. F.1(b) was obtained
with the exactly same model used for the academic cavity in Chapter 4, Fig. F.1(c) was
obtained with the same model as Fig. F.1(b) with the addition of the subgrid model
viscosity νt. Finally Fig. F.1(c) presents the last results obtained with the model intro-
duced in Sec.6.6.1. Contrary to the academic case the subgrid viscosity is none negligible
in the turbopumps LES. The addition of this component to the stability equations acts
as a numerical instabilities cleaner. However one can see even though the global mode
shape has been improved the highest amplitudes modes were retrieved in the low cavity
contrary to the DMT results. Furthermore the separation of rotating boundary layers in
the vein is still not well predicted. Finally, the addition of the coherent viscosity help
improving the ratio of amplitudes of the modes between the lower ccavity and the vein.
Furthermore as shown Fig. 6.18(c) this viscosity marked particularly the upper boundary
layer of the vein and as consequence help improving its separation shape.
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Résumé court

Cette thèse présente une étude détaillée sur le phénomène de ’bandes de pression’
connu pour être dangereux pour les turbopompes de moteur cryogénique. Ce phénomène,
particulièrement difficile à prédire numériquement, apparait en particulier dans les cav-
ités de type rotor/stator sous forme de spirales et d’anneaux dans les couches limites
tournantes. Dans ce travail, les avantages des Simulations des Grandes Echelles (SGE)
et Analyses Globales de Stabilité Linéaire (GLSA) sont utilisés pour mettre en avant
l’origine des oscillations de ces écoulements. Deux configurations sont présentement
étudiées : une cavité de type rotor/stator académique et une turbine de type industriel
de turbopompe. Dans les deux cas, la SGE munie d’outils de post-traitement adaptés, a
permis de retrouver les structures cohérentes de ces écoulements, aussi appelées modes
d’écoulement, dictant toute la dynamique de ces cavités. Dans le cas de la configuration
académique, la GLSA a permis de trouver l’origine de chaque mode ainsi que de proposer
des stratégies de contrôle de ces écoulements. L’utilisation de systèmes d’aspiration
et de soufflage se sont montrés être les solutions les plus optimales pour supprimer le
phénomène de bandes de pression et ont été validés à travers une SGE.

Short abstract

This thesis provides a detail investigation of the ’pressure band phenomenon’ known
to be dangerous for space turbopumps. This specific phenomenon appears in rotor/stator
cavities under the form of spiral or annular patterns in rotating boundary layers and is
difficult to predict numerically. In the present work, the conjunction of Large Eddy
Simulations (LES) and Global Linear Stability Analysis (GLSA) is used to give more
insight on these oscillatory motions of the flow. Two specific configurations are studied:
Academic smooth rotor/stator cavities and a real industrial turbine. In both cases, LES
with dedicated post-processing tools enables to retrieve the coherent flow structures also
referred to as flow modes driving each cavity. In case of the academic cavity, GLSA reveals
the origin of each mode and possible control strategies. Suction and injection through
the stationary disk show to be the more optimal solutions to suppress the pressure band
phenomenon and were validated through a LES.
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