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ABSTRACT 27 

On-site and Earth observation (EO) data are used for the calibration of the Natural 28 

Resources Conservation Service-Curve Number (NRCS-CN) value in a hydrological simulation 29 

model. The model was developed for La Muga catchment (Eastern Pyrenees) highly vulnerable 30 

to flood and drought episodes. It is an integral part of a regional reservoir management tool, 31 

which aims at minimizing the flood risk, while maximizing the preservation of water storage. The 32 

CN values were optimized for five recorded events for the model to match the observed 33 

hydrographs at the reservoir, when supported with the measured rainfall intensities. This study 34 

also investigates the possibilities of using antecedent moisture conditions (AMC) retrieved from 35 

satellite data to inform the selection of the NRCS-CN losses parameter. A good correlation was 36 

found between the calibrated CN values and the AMC obtained from satellite data. This 37 

correlation highlights the interest in using EO data to update NRCS-CN estimates. This advances 38 

in hydrologic-hydraulic coupled modelling combined with new remote sensing datasets present 39 

valuable opportunities and potential benefits for flood risk management and water resources 40 

preservation. 41 
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1. INTRODUCTION47 

Droughts and floods are recurrent situations in Mediterranean catchments. In this semi-48 

arid region, streams are characterized by intermittent flows due to the irregularity of rainfall and 49 

to the seasonal temperature variability. In a large portion of the Mediterranean region, the 50 

highly-urbanized areas and the population seasonality due to tourism, increase the water 51 

demands and at the same time the flood risk. Periods of water scarcity alternate with periods of 52 

frequent flooding that are becoming more severe under the influence of climate change (Arnell 53 

1999; IPCC 2014a; Lehner et al. 2006). The management of water resources in these water-54 

stressed areas is therefore complex. 55 

Floods are the most catastrophic natural hazard around the world (Fonseca et al. 2018; 56 

ISDR 2009; Kron 2005). In the Mediterranean region, according to the EM-DAT (2019) Disaster 57 

Database, floods are around 30 % of the natural disasters that occurred in the 20th century. On 58 

the other hand, droughts are a cyclic phenomenon in the Mediterranean region. Their 59 

management is a challenge for water administrations, especially during the summer season with 60 

its higher demand for water resources. The vulnerability of the Mediterranean area to droughts 61 

and floods is continually increasing due to the high economic dependency on water resources 62 

and to the possible consequences of climate change (GECCC 2016; IPCC 2014b). 63 

In this context, dams and reservoirs are essential elements for providing protection 64 

against flooding and ensuring the water supply year-round. The complexity of water resources 65 

and dam management requires the integration of several disciplines (meteorology, hydrology, 66 

hydraulics, etc.) and a deep knowledge of the system characteristics (catchment), inputs 67 

(rainfall) and outputs (demands). The use of realistic modelling that considers all these factors 68 

can lead to more effective predictions and more effective hazard mitigation. 69 

At present, several modelling tools integrate two-dimensional hydraulic modelling with 70 

distributed hydrological modelling (Anees et al. 2017; Caro 2016; Cea et al. 2010; Kim et al. 2012; 71 
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Roux et al. 2011; Viero et al. 2014; Yu and Duan 2017). Integrated or coupled modelling can 72 

better represent the real hydrologic and hydraulic processes than using these models 73 

independently. Nevertheless, models depend on a large number of parameters (e.g. soil and 74 

land characteristics, underground fluxes, etc.) as well as on expertise in their implementation 75 

for risk and water resources management applications. The calibration and use of these tools 76 

can be complex, as the number of the required parameters depends often on limited data or on 77 

data with inadequate quality, and are not always directly physically measurable. 78 

In this context, this paper first presents the results of the implementation and calibration 79 

of a coupled hydrological and hydraulic model. This model was used as a tool to define and 80 

implement management strategies for the Boadella Dam, located in the upper part of La Muga 81 

catchment (NE of Spain). This model belongs to a series of methods developed under the PGRI-82 

EPM project (Forecasting and management of flood risk in the Pyrenees-Mediterranean 83 

Euroregion) for the operational management of reservoirs in the region (Roux et al. 2020; Sanz-84 

Ramos et al. 2018). The designed management method is mainly based on modelling in a 85 

cascade of the involved processes (short-term precipitation forecast and coupled hydrologic and 86 

hydraulic processes). The objective is to minimize the flood risk and, at the same time, to 87 

maximize the preservation of water resources during the management of extreme events. 88 

The main factors that influence flood generation are related with the rainfall 89 

characteristics and the physical and hydrological characteristics of the catchment. The losses, 90 

mainly by infiltration and interception, are a determining factor in the rainfall-runoff 91 

transformation process. One of the most extended methods for losses estimation is the Soil 92 

Conservation Service Curve Number method (SCS-CN; NRCS 2004), also referred as the NRCS-93 

CN method after the Agency was renamed as the Natural Resources Conservation Service. The 94 

fact that requires only one parameter for modelling losses has contributed to its success. In the 95 

NRCS-CN method, the Curve Number parameter (CN), although not physically-based, is a 96 
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quantitative descriptor which embodies the complex physical characteristics of the soil type, 97 

antecedent soil moisture conditions (AMC), and land use and cover (LULC) in a catchment. 98 

Hence, a proper choice of the CN value is essential to achieve realistic rainfall-runoff simulations. 99 

The determination of the AMC and thus of the CN value can be improved with the use of 100 

remote sensing techniques. These techniques provide spatially distributed retrievals for a wide 101 

variety of hydrological parameters (Estévez et al. 2014; Marti-Cardona et al. 2013; Martí-102 

Cardona et al. 2010; Ramos-Fuertes et al. 2013; Torres-Batlló et al. 2019; Wu et al. 2018), 103 

including surface soil moisture (SM). Also, remote sensing is a powerful tool for the observation 104 

of the hydrological processes and a relevant source of information for the calibration of 105 

numerical models describing such processes (Li et al. 2019; Ramos-Fuertes et al. 2013). The 106 

hydrological modelling community is progressively benefiting from the incorporation of spatial 107 

soil moisture measurements, with a varied degree of success (Brocca et al. 2017). Remote 108 

sensing has been used for indirect estimation of the CN value by obtaining land use information 109 

from satellite images (Tirkey et al. 2014), but also for the adjustment of loss parameters 110 

(Silvestro et al. 2015). Rajib et al. (2016) explored the usage of spatially distributed remotely 111 

sensed soil moisture in the calibration of a hydrological model. 112 

Against this background, this work aims at showing the relevance of remote sensed soil 113 

moisture data for the CN estimation within a coupled distributed hydrologic-hydraulic model 114 

procedure oriented at water reservoir management. This main objective is achieved through 115 

three secondary goals applied on a case study: (i) set up and calibration of the hydrological 116 

model; (ii) analysis of the variability of the CN within several registered events and (iii) 117 

identification of a relationship between the calibrated CN values and the estimated SM data 118 

from EO. The application of this technique in the study case is intended to provide better 119 

information for integrated flood risk and water resources management in continuous modelling. 120 
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2. STUDY AREA 121 

2.1. SITE AND CATCHMENT CHARACTERISTICS 122 

La Muga is a cross-border basin of 961 km2 located at the northeast of Catalonia 123 

(northeast Spain) that drains from the south-east Pyrenees to the Mediterranean Sea (Fig. 1a). 124 

The basin is partially regulated by the Boadella Dam (182 km2), at the upper-part of the 125 

catchment, with 62 hm3 of storage and a regulating capacity of 15 hm3. The basin, which includes 126 

some highly developed tourist areas at its lower part (Costa Brava), is highly vulnerable to 127 

drought due to excessive water demand (agriculture and human consumption) and to flooding 128 

(ACA 2007). 129 

The topography of the study area ranges from mountains to lowlands (Fig. 1a) and the 130 

rainfall regime in the catchment is significantly influenced by the Mediterranean Sea. The 131 

average annual rainfall ranges from 550 mm near the coast to 1200 mm in the upper part. Heavy 132 

rainfall episodes tend to concentrate in late summer, autumn and spring, lasting from several 133 

hours up to a few days. The variable rainfall frequency and long dry periods cause the area to 134 

suffer from severe water scarcity (Llasat and Rodriguez 1992; Martín-Vide 1994). 135 

This work focuses on the upper part of La Muga basin, upstream of the Boadella Dam, 136 

where there is a single rainfall gauge and one water level gauge (Fig. 1a). The study area has an 137 

extension of 181 km2 and is mainly characterized by large-forest coverage (above 90 %, Fig. 1b), 138 

low permeability and low ground storage capacity (ACA 2007). The reservoir is included in the 139 

hydrological analysis and modelling, and it has been calibrated with the measures of water level 140 

and their variations during extreme rainfall events. 141 

2.2. DATA SET 142 

Rainfall and water level 143 

A detailed analysis of extreme rainfall events was performed within the PGRI-EPM project 144 

(Sanz-Ramos et al. 2018) through which more than 60 significant rainfall episodes registered 145 

during the last 100 years were evaluated. From the results of that analysis, five extreme rainfall 146 
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events were selected for calibration of the proposed model (Table 1). The selected events, 147 

occurred between March 2011 and March 2015, are labelled with the starting date and the 148 

duration in days. The selected episodes have all mean rainfall intensities above 20 mm/h in 149 

5 minutes, and total precipitation volumes over 120 mm in periods between 2 and 4 days. 150 

The data of precipitation and water level in the reservoir were provided by the Servei 151 

Meteorològic de Catalunya (SMC) and the Agència Catalana de l’Aigua (ACA) respectively. They 152 

consisted of 5-minute hyetographs recorded at the Boadella dam station; rasters of 1x1 km 153 

spatially distributed hourly rainfall derived from radar (Bech et al. 2005; Corral et al. 2009); and 154 

the evolution of the water level in the reservoir (5-minute resolution). 155 

Digital terrain model (DTM) and land uses 156 

Topographical data were derived from a high-resolution 2x2 m DTM provided by the 157 

Institut Cartogràfic i Geològic de Catalunya (ICGC). The DTM includes the bathymetry of the 158 

reservoir above 145.0 m.a.s.l. (below the minimum water level during the events). 159 

Land use data, obtained from the CORINE project (EEA 2007), was used for the 160 

implementation of the surface roughness coefficient (n Manning coefficient). Additional details 161 

regarding these data can be found in Table 2. 162 

Soil Moisture Data 163 

Soil moisture data were obtained from the European Space Agency Climate Change 164 

Initiative for Soil Moisture (ESA CCI SM) (Liu et al. 2011, 2012; Wagner et al. 2012). The combined 165 

product version 4.2 (ESA et al. 2018) was obtained for the periods covering the selected rainfall 166 

events and for some days prior to their onset, with a maximum of 50 days. The product consists 167 

of daily rasters of volumetric soil moisture for the soil´s top 20 mm. The rasters are provided 168 

with a spatial resolution of 0.25º degrees, which for the study area corresponds to 169 

approximately 27.5 km. 170 



7 

 

La Muga catchment is encompassed by two resolution cells of the ESA CCI SM product. 171 

85 % of the catchment area overlays a raster cell entirely located on the southern Pyrenees, 172 

while the remaining 15 % falls within a cell mainly covering the northern Pyrenean side. Moisture 173 

data from both cells exhibit a markedly distinctive behavior, as expected from the different 174 

precipitation regimes on either side of the mountain range. Since the study catchment belongs 175 

to the southern Pyrenees, only the ESA CCI SM moisture records from the southern cell were 176 

used, assuming that they would better represent the catchment moisture status than a 177 

weighted average of both cells. 178 

3. METHODS 179 

The cascade workflow presented herein is as follows: 1) building-up a coupled 180 

hydrological-hydraulic numerical model balancing the computational cost and the results 181 

accuracy; 2) calibrating the numerical model (CN and n) with on-site data, first with rain gauges 182 

and then fine-tuning with radar data; and 3) relating the CN values with EO data (SM) aiming to 183 

obtain the information needed to continuously support the numerical model for the reservoir 184 

management in future events. 185 

3.1. NUMERICAL MODEL 186 

The coupled distributed hydrological and hydraulic numerical tool Iber (Bladé et al. 2014b; 187 

Cea and Bladé 2015) was used for both rainfall-runoff transformation and flow characterization. 188 

Iber is based on the dynamic wave solution of the Shallow Water Equations (SWE) with the finite 189 

volume method (Cea et al. 2016; Toro 2009), and it includes a specific numerical scheme for 190 

overland flow named Decoupled Hydrologic Discretization, DHD (Cea and Bladé 2015). After it 191 

was released in 2010, Iber has undergone several improvements. These enhancements allow 192 

the model to consider precipitation and losses varying in time and space and improved mesh 193 

definition for very shallow flows (i.e. a fill-sinks-option) (Bladé et al. 2014a; Caro 2016; Cea et al. 194 

2015; Cea and Bladé 2015; Juárez D. et al. 2014). 195 
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Additionally, Iber implements a specific drying method for hydrological computations, 196 

which handling the transition from wet to dry conditions, and vice versa. Briefly, a wet-dry limit 197 

(εwd) is used to define the water depth threshold below which a cell is considered to be dry. For 198 

drying cells, the scheme uses an adaptation to finite volume numerical schemes of the method 199 

used in LISFLOOD (Bates and De Roo 2000), in order to guarantee mass conservation. This 200 

method reduces numerical instabilities during simulation and ensures that all mesh cells have a 201 

zero or positive depth. 202 

3.2. MODEL SETUP 203 

The study area was spatially discretized using an irregular triangular mesh of 204 

approximately 50,000 elements of area from 150 m2 (in rivers) up to 200,000 m2 (in hillslopes) 205 

(Fig. 2). This discretization is a compromise between accuracy of the results and computational 206 

time. The DTM was treated using a Fill sinks algorithm, based on the algorithm proposed by 207 

Wang and Liu (2006) to ensure a good definition of the flow path removing unreal depressions 208 

(Fig. 2). The DHD scheme was used with a wet-dry limit threshold of 10-4 m. 209 

The current set-up configuration allowed the simulation of events that last from 2 to 4 210 

days with a computational time between 1 and 3 hours using 1 CPU core (i7 fourth generation 211 

to 3.5 GHz). It is worth mentioning that after the end of the project there have been substantial 212 

improvements in the computational time of Iber by using Graphics Processing Unit (GPU) 213 

computing techniques (García-Feal et al. 2018). With this novelty, the presented simulations 214 

would run in about 1 minute, achieving speed-up up to 100. 215 

There is only one initial condition imposed to the model which is the water level in the 216 

reservoir at the beginning of the simulation events. The river was assumed to be dry at the 217 

beginning of the simulations, which is an acceptable assumption as normal discharges are 218 

negligible when compared with flood discharges. No boundary conditions were imposed as 219 

there are no streams flowing into the study area. Rainfall intensities were applied on the 220 
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corresponding mesh element. Manning coefficients (n) were associated with each element, 221 

based on their land use according to the CORINE map (EEA 2007) (Fig. 1b). 222 

The NRCS-CN method was used to evaluate the losses in the rainfall-runoff process. For 223 

its application, the initial abstraction (Ia) was linked to the soil potential retention (S) through a 224 

0.2 factor (Ia = 0.2·S) as proposed by USDA (1986) and Ponce and Hawkins (1996). Due to the 225 

homogeneity of the land uses, soil type and AMC conditions in the study site, where over 90 % 226 

of the area corresponds to forest coverage (Fig. 1b), a single value of CN was used for the whole 227 

basin. The value of CN was later adjusted within the calibration process. 228 

3.3. RELATING CN TO EARTH OBSERVATION SOIL MOISTURE DATA 229 

ESA CCI SM data provide information of the soil moisture in the top 20 mm layer of the 230 

soil. These measurements are well-correlated with previous rainfall days but might not be 231 

representative of the AMC, which have a relevant influence on the CN value. In this study, it was 232 

assumed that the evolution of daily surface moisture over several days before the onset of the 233 

rainfall event could inform of the water content in deeper soil layers, and hence it could be used 234 

as a proxy of the AMC and CN. In order to explore this relationship, daily SM values were 235 

averaged for periods ranging from 2 to 40 days before the beginning of the analyzed rainfall 236 

event. Then, a correlation between the averaged SM and the calibrated CN values was 237 

established. 238 

4. RESULTS AND DISCUSSION 239 

4.1. HYDROLOGICAL MODELLING AND CALIBRATION STRATEGY 240 

The purpose of the calibration process is the adjustment of the values of CN and the 241 

terrain roughness (n). The CN mainly influences on the mass balance of the whole event, while 242 

the n coefficient is expected to have an effect on the water front propagation and the water 243 

elevation evolution. 244 

A sensitivity analysis of the Manning’s roughness coefficient was carried out. The 245 

reference values for the n coefficients were determined following the recommendations from 246 
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the USGS Guide (Arcement and Schneider 1989). A 0.11 value of n was assumed for the dense 247 

forest land use that represents around 75 % of the study area (Fig. 1b). As a result of the analysis, 248 

no significant influence on the model response in terms of water front and water elevation in 249 

the reservoir was observed under n variations in a range of ±20 %. Hence, it is assumed that CN 250 

is the main calibration parameter. Results obtained by using the dense forest land use data for 251 

the n sensitivity analysis are shown in Fig. 3. 252 

The CN was adjusted during calibration process to properly represent the evolution of the 253 

water stored in the reservoir during the events. For events 20110313_4d and 20130304_3d, rain 254 

data were available only from the rain gauge source. For events 20131116_3d, 20141129_2d 255 

and 20150320_3d, both data from rain gauges and radar were available and used in the 256 

calibration process. For these last three events, the gauge data are used for a first estimation of 257 

the CN value and what we called CNrg. This value of CN was later fine-tuned with the radar 258 

information calling it CNr. 259 

Table 3 shows the CN value that best fit for all five events taking into account each data 260 

source. A seasonal trend could be inferred from these values, with higher values of CN during 261 

spring and moderate during autumn, though the number of events is not large enough to take 262 

more quantitative conclusions of seasonal variations. 263 

In the study area, there are two alternative sources of information for the CN values: 264 

CEDEX (2003) and ACA (2019). Both are georeferenced databases available online and provide 265 

values of the initial abstraction from which the value of CN can be derived. According to CEDEX 266 

the mean CN value for the study area is 64.9 ± 7.6 (standard deviation) while according to ACA 267 

it is 62.0 ± 12.8 under so-called normal catchment conditions (neither wet nor dry). If possible 268 

variations due to AMC are considered according to NRCS (2004), the CN values can be updated 269 

and varies in a range from 44.5 to 81.1 (initial CN from CEDEX database) and from 41.5 to 79.1 270 

from ACA information. Thus, the CN values obtained from the calibration process for this study 271 
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area and rainfall events are within the limits of values that would be obtained from these data 272 

provided by the public administration. However, it should be noted that the CN values provided 273 

by the mentioned public entities may be based on an outdated topographic base (Campón et al. 274 

2015). Thus, the values that can be obtained by an ad-hoc calibration using hydrological models 275 

and real rainfall data should generally provide more representative values of CN. 276 

Table 4 shows the total cumulated rainfall and the effective rainfall for each event from 277 

rain gauge data and radar data. For the events 20131116_3d, 20141129_2d and 20150320_3d, 278 

with radar dataset available, significant differences between the effective rainfall derived from 279 

gauge data and from radar were observed. The gauge station registered higher cumulative 280 

rainfall than values obtained from the radar source. Thus, in general, the estimated CNrg is 281 

smaller than the CNr in order to reach the same water level in the reservoir. For events 282 

20131116_3d and 20141129_2d, the differences between this two CN values can be considered 283 

reasonable. However, for the event 20150320_3d, this difference is significant (Table 3). 284 

Regarding this, it can be hypothesized that there may have been a highly non-uniformly 285 

distributed rainfall. The gauge station probably registered high intensities locally concentrated 286 

around the gage’s location, which were not representative of the global rain pattern in the 287 

catchment during the event. This situation can be corroborated from radar data which are 288 

analyzed below. 289 

The total rainfall cumulated at the end of the events 20131116_3d, 20141129_2d and 290 

20150320_3d is also represented in Fig. 4. The non-uniformity is easily observable in the rainfall 291 

spatial distribution recorded by the radar. For the event 20131116_3d, the maximum cumulated 292 

precipitation registered by the gage (123 mm) is close to the radar maximum (120 mm). 293 

However, this value is observed only locally at the south of the study area, and the average rain 294 

depth is lower for the radar source than from the gauge source. For this reason, the CNr is higher 295 

than the CNrg. For the event 20141129_2d, the distribution of radar rainfall shows high 296 
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accumulations at the east part of the study area (205 mm). However, the average values from 297 

gauge and radar are very similar (slightly higher for the rain gauge). Thus, the CNr for this event 298 

is also slightly higher than CNrg. Finally, for the event 20150320_3d the differences are the 299 

largest. In this case, the cumulated rainfall from the raingauge source is 200 mm while the radar 300 

does not exceed 80 mm (average value). As mentioned before, a high local rainfall was 301 

registered by the rainfall station, which is not representative of the rainfall pattern in the basin, 302 

which in turn could explain the large differences between the CNrg and the CNr. 303 

Based on what has been observed so far, the calibration process therefore focused on the 304 

adjustment of the CN value. The CNs finally selected by event showed in Table 3 were a 305 

combination of the calibration process according to the best statistical fitting (Table 5). Thus, 306 

the CNs value derived from the calibration process (CNselected) range between 55 and 94 (Table 307 

3). 308 

For the assessment of the fitting between observed and simulated results (water level at 309 

the dam) several indicators were used: mean absolute error (MAE); root mean square error 310 

(RMSE); and Nash-Sutcliffe model efficiency coefficient (NSE) (Nash and Sutcliffe 1970). Table 5 311 

summarizes the performance of the model for both rainfall data sources by event. In general, 312 

the simulations performed from radar (r) source data produce a better fit than those obtained 313 

with the gauge (rg) data in terms of water front evolution. This statement can be seen in Table 314 

5 through the smallest mean differences (MAE and RMSE) and highest values of NSE. 315 

Fig. 5 shows the performance of the model for both rain sources with the selected CN 316 

value. Events 20110313_4d and 20130304_3d, calibrated with rain gauge data, shown in general 317 

a good performance. The modelled water level rise in the reservoir is slightly delayed with 318 

respect to the observed data, and the water level at the end of the event was slightly higher 319 

than the observed one. A slightly overestimation of the water level was observed at the end of 320 

events 20131116_3d and 20141129_2d. For the event 20150320_3d instead, the water level 321 
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obtained from the rain gauge data rapidly increase exceeding the capacity of the reservoir 322 

(160 m.a.s.l), far from the prediction made with radar data. Regarding the inconsistencies using 323 

gage data in this last analyzed event, we refer to the non-uniform spatial distribution of the 324 

rainfall that may explain this result as was previously explained. 325 

It can be seen then that the availability of radar rainfall data can help to improve the 326 

hydrological model results since timely rainfall measurements, provided by a rainfall station, 327 

might be not enough representative of the complex spatial rainfall variation at the catchment 328 

scale. Moreover, rainfall data obtained from radar have a much higher spatial resolution (1 km2 329 

in this case) which allow a better spatial representation when modelling. 330 

Table 6 shows the results of the mass balance in the reservoir through the differences 331 

between observed data and simulation results. The differences in water level (WLstart and WLend) 332 

and stored volume (Vstart and Vend) at the start and end of the simulation period are shown for 333 

all the events. In general, good agreement between both observed and simulated results for the 334 

simulations performed with either data from the station or radar sources are observed. 335 

However, a significant difference is predicted for the event 20150320_3d. For this last event a 336 

252 % difference in stored volume can be observed from the simulations carried out using gauge 337 

data. As previously hypothesized, significant differences observed using raingauge data could be 338 

generated due to high localized rainfall near the gauge location. 339 

For event 20110313_4d, the obtained CN value is close to the highest value of the 340 

parameter, which would imply that the losses are minimal. This unusually high value can be 341 

explained by two possible reasons: 1) the limitations of working with only one gauge and 2) 342 

possible errors in the water level records in the reservoir (the water evolution during the days 343 

before the event or the lack of data). With respect to the first cause suggested, from the Fig. 5 344 

(Event 20110313_4d, dotted line) the water level in the reservoir increases during the first 345 

period while there is no rainfall registered by the gauge. This means that either it could have 346 
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rained heavily during the previous days, or there was rain in some parts of the basin that was 347 

not registered by the gauge. Additionally, some errors (lack of data and sudden steps) were 348 

detected on the water level records registered in the reservoir. It should be noted that the initial 349 

water level was 151 m (constant value during the firsts 3 hours of the simulation period) while 350 

after 10 min it increased to 152 m. This difference means 2.67 hm3 in terms of water volume in 351 

the reservoir, which is around 12 % of the volume stored during the event. These considerations 352 

are presented here as possible reasons that explain the high value for the CN calibrated for this 353 

episode. 354 

On the other hand, the estimated CN for the event 20130304_3d is 81 also using rain 355 

gauge data. As shown in Fig. 5, the delay in the arrival time of the water front into the reservoir 356 

is approximately 10 h, but there is a good adjustment in terms of water levels after that. For the 357 

mentioned episode, the difference in water level in the reservoir at the end of the episode is 358 

lower than 0.03 m. 359 

4.2. RELATIONSHIP BETWEEN EARTH OBSERVATION BASED SOIL MOISTURE DATA AND 360 

CURVE NUMBER 361 

Fig. 6 illustrates the relationship between the five calibrated CNs and the daily EO surface 362 

moisture values averaged for different periods prior to the five rainfall events. For clarity, not all 363 

analyzed periods are represented in Fig. 6. As the number of averaged days approaches 16, the 364 

relationship between CN and the averaged SM converges to a clear linear trend. 365 

Fig. 7 depicts the squared linear correlation coefficient between CN and the averaged 366 

surface moisture for all analyzed averaging periods and rainfall events. The best fit is achieved 367 

when 16 days prior to the rainfall onset are averaged, yielding a high R2 value of 0.96. The clear 368 

consistency in the correlation coefficient changes as the antecedent period is varied reinforces 369 

the validity of this result. 370 

The presented relationship between CN and EO based on surface moisture has been 371 

obtained for five rainfall events modelled in the small Boadella reservoir catchment. Despite the 372 
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limited representativeness of the presented case, the quality and consistency of the relationship 373 

strongly suggests the potential of EO data to provide updated estimates of the CN value. The 374 

accuracy in the estimation of this parameter has crucial implications in the volumes of runoff 375 

predicted by hydrological models and, hence, in the flood prevention measures taken by water 376 

resources managers. 377 

4.3. DISCUSSION: IMPACT OF FLOODING AND POTENTIAL BENEFITS OF MERGING REMOTE 378 

SENSING DATA IN WATER RESOURCES MANAGEMENT DECISION SUPPORT SYSTEMS 379 

Among the five events presented herein, the events 20110313_4d and 20130304_3d 380 

were the ones that caused more flood damages from an economic point of view. The economic 381 

evaluation of the flood risk associated to the released discharges, and of the water resources 382 

lost or preserved after the extreme rainfall episodes, are part of the outputs of the system 383 

developed under the PGRI-EPM project for the operational management of reservoirs in the 384 

region (Sanz-Ramos et al. 2018). The application of management measures obtained as outputs 385 

from the system for the aforementioned events, would have significant benefits in minimizing 386 

the flood risk and maximizing the preservation of water resources. For 20110313_4d for 387 

instance, the damages to property would have been reduced by 15 %, expected injury by 62 % 388 

and expected fatalities by 48 %, while a volume of 0.9 hm3 of water released from the reservoir 389 

would have been preserved. These values represent a reduction of the episode impact of 390 

approximately 3.3 M€. For 20130304_3d, material damages would have been reduced by 28 %, 391 

injury by 81%, expected fatalities by 58 % and 0.2 hm3 of preserved water volume. In this last 392 

case, the reduction of the impact would have been around 2.9 M€ (Bladé et al. 2018). 393 

EO data represent a valuable source of information for hydrologic purposes and for water 394 

resources management, in general, through mapping water resources and monitoring 395 

hydrological parameters. Remote sensing techniques contribute to management systems 396 

modelling providing updated estimates of different parameters which can significantly improve 397 

the efficiency of such models and their robustness for forecasting. In this case, we focus 398 
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attention on the benefits that can be obtained in water management modelling through the 399 

updated assessment of the CN value after the consideration of remotely sensed soil moisture 400 

information as described in previous section 4.2. 401 

Once the numerical model is calibrated, the final system is supported up with only two 402 

sets of data: quantitative precipitation forecasts and soil moisture from EO. The model is 403 

executed continuously, updating the inputs with the last available ESA CCI SM data and 404 

precipitation forecasts (Roux et al. 2020). Threshold alerts and pre-established dam operation 405 

protocols are included in the model, though the protocols can also be manually adjusted for the 406 

assessment of different operations of the dam outflow systems. 407 

5. CONCLUSIONS 408 

On-site and Earth observation (EO) data were used for the calibration of the NRCS-CN 409 

parameter of an Eastern Pyrenees basin, as it is the most important parameter of the 410 

hydrological model when correctly assessing water balance so as to evaluate the basin 411 

hydrologic response. The model developed for this purpose consists of a coupled fully-412 

distributed hydrological and hydraulic model, which constitutes the central core of an 413 

operational system for the Boadella reservoir management. The main aim of the operational 414 

system is the prediction of flood risk and final water resources estimates associated to a 415 

forecasted extreme rainfall. The use of a distributed model integrating hydraulics and hydrology 416 

has been proven to be a robust tool so as to obtain in a single simulation, results of water 417 

resources (discharges, reservoir volumes) and flood hazard (depths, velocities). 418 

Solid correlations were found between the estimated moisture data and the CN value 419 

obtained through numerical modelling forced by ground data, suggesting the potential of 420 

available remote sensing data for the updating of the CN values in continuous hydrological 421 

models. The optimal averaging period for the SM was, for the present case, 16 days. It would be 422 

valuable to check the validity of this period in other basins, which is proposed for future work. 423 



17 

 

The relationship between CN and EO based on surface moisture has been obtained for 424 

five rainfall events modelled in the small Boadella reservoir catchment. The accuracy in the 425 

estimation of the CN parameter strongly affects the volumes of runoff simulated by the 426 

hydrological model and, consequently, the flood mitigation measures informed by those. 427 

Thanks to the SM-CN relationship, the information needed to continuously support the 428 

operational system for the reservoir management has been reduced to two sets of data: 429 

observed meteorological data in raster format, and the observed soil moisture. The consistency 430 

of the achieved SM-CN relationship strongly suggests the potential of EO data to provide 431 

updated estimates of the CN. 432 

The present results of the application to the case study suggest the usefulness of 433 

incorporating remotely sensed proxies. This work is a step towards physical descriptors of soils 434 

based on remote sensing and its integration in water resources management and flood 435 

forecasting systems, thus providing a beneficial direction for future work on optimized 436 

management strategies. 437 
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FIGURES & TABLES 622 

Fig. 1. Location and characteristics of the study area. (a) Topography of La Muga basin, extension 623 

of the study area and location of the Boadella Dam and rain gauge station. (b) Land use map of the study 624 

area. Source: Institut Geològic i Cartogràfic de Catalunya (a), CORINE (b) and own elaboration. 625 

Fig. 2. Computational mesh of the study area. 626 

Fig. 3. Sensibility analysis for the Manning coefficient (n) associated with forest-dense land use. 627 

Water level evolution for the events 20130304_3d and 20150320_3d. 628 

Fig. 4. Representation of a non-distributed (top: rain gauge registrations, triangle: rain gauge 629 

localization) and distributed (bottom: radar observations) rainfall records for events 20131116_3d, 630 

20141129_2d and 20150320_3d. 631 

Fig. 5. Evolution of the water level in the Boadella reservoir (dam point-check) for the observed 632 

data (dotted line) and the simulations (rain gauge: dashed line; radar: continuous line) using the selected 633 

CN. 634 

Fig. 6. Scatter plot of CNs calibrated for five events versus Earth observation based soil moisture 635 

measurements averaged for different antecedent number of days. 636 

Fig. 7. R2 coefficient of the linear correlation between the calibrated CNs and the Earth observation 637 

based soil moisture averaged for different antecedent periods. 638 

 639 

Table 1. Extreme rainfall events registered in the study area used for the model calibration. Rainfall 640 

information sources are identified as: (rg) for rain gauge, (r) for radar images.  641 

Event ID Date season 
Source of 

data 

Total rainfall depth  Maximum intensity  

[mm] [mm/5-min] [mm/h] 

(rg) (r)* (rg)** (r)*** 

20110313_4d March 2011 spring (rg) 127 - 62 - 

20130304_3d March 2013 spring (rg) 181 - 30 - 

20131116_3d Nov 2013 autumn (rg), (r) 123 98 54 9 

20141129_2d Nov 2014 autumn (rg), (r) 151 132 61 13 

20150320_3d March 2015 spring (rg), (r) 197 77 67 9 

*Cumulated rainfall for the study area 
**Intensity registered in 5 minutes at the raingauge 

***Intensity registered in the study area 

 642 
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Table 2. Summary of the data used for the upper La Muga sub-catchment study case. 643 

Data type Characteristics Source Data description 

Digital Terrain Model 
(DTM) 

2x2 m ASCII raster 
file 

Institut Cartogràfic i Geològic 
de Catalunya (ICGC) 

Elevation data based on LIDAR 
(RMSE of 0.15 m) 

Land uses Shapefile converted 
into 2x2 m ASCII 

raster file 

CORINE Land Cover project 
(EEA 2007) 

Land uses classification and 
spatial representation for the 

year 2012 

Soil moisture (SM) 
0.25º degrees 

spatial resolution 

European Space Agency 
Climate Change Initiative for 
Soil Moisture (ESA CCI SM) 

ESA CCI SM 

Precipitation Rainfall intensities Agència Catalana de l’Aigua 
(ACA) and Servei 

Meteorològic de Catalunya 
(SMC) 

Rainfall intensities from 5-
minutal raingauge 

(hyetograph) and 1-hour radar 
(1x1 km ASCII raster file) 

Dam outlet / water 
level 

Discharges and 
water level 

Agència Catalana de l’Aigua 
(ACA) 

5-minutal series of the outlet 
hydrograph and the water 

level in the reservoir 

 644 

Table 3. CN values resulting from the calibration process. 645 

Event season CNrg CNr CNselected 

20110313_4d spring 94 * 94 

20130304_3d spring 81 * 81 

20131116_3d autumn 50 55 55 

20141129_2d autumn 60 65 65 

20150320_3d spring 50 85 85 

*No data available on this format 

 646 

Table 4. Cumulated and effective rainfall using the selected CN (Table 3) at the end of the event. 647 

Event 
Total rainfall [mm] Effective rainfall [mm] 

(rg) (r) (rg) (r) 

20110313_4d 127 * 109 * 

20130304_3d 181 * 125 * 

20131116_3d 123 98.3 16 12 

20141129_2d 151 132.3 59 49 

20150320_3d 197 76.7 152 41 

*No data available on this format 

 648 

Table 5. Model performance between observed and simulated flow and water balance using the 649 

corresponding CN for each rain source. 650 
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Event 

MAE 

(m) 

RMSE 

(m) 
NSE 

gauge radar gauge radar gauge radar 

20110313_4d 0.735 * 0.873 * ** * 

20130304_3d 0.261 * 0.389 * 0.987 * 

20131116_3d 0.193 0.152 0.209 0.172 0.637 0.754 

20141129_2d 0.770 0.371 0.948 0.532 0.518 0.848 

20150320_3d 0.383 0.242 0.432 0.260 0.861 0.941 

*No data available on this format 

**Statistic not applicable due to lack of data 
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Table 6. Mass balance at the end of the rainfall event using the selected CN (Table 3). 652 

Event 

GAUGE 

WLstart 

[m] 

WLend 

[m] 

Vstart 

[hm3] 

Vend 

[hm3] 

∆V 
(sim) 

∆V 
(obs) 

Difference 

[hm3] 

Difference 

[%] 

20110313_4d 151 158 36.9 60.2 23.3 22.2 1.1 4.9 

20130304_3d 147 156 26.7 51.8 25.1 25.2 0.1 0.4 

20131116_3d 151 152 37.0 40.2 3.23 3.07 0.16 5.2 

20141129_2d 149 152 31.1 41.2 10.1 10.0 0.1 1.0 

20150320_3d 155 163 48.5 80.2 31.7 9.0 22.7 252 

 

Event 

RADAR 

WLstart 

[m] 

WLend 

[m] 

Vstart 

[hm3] 

Vend 

[hm3] 

∆V 
(sim) 

∆V 
(obs) 

Difference 

[hm3] 

Difference 

[%] 

20131116_3d 151 152 37.0 40.2 3.23 3.07 0.16 5.2 

20141129_2d 149 152 31.1 41.0 9.87 10.0 -0.14 -1.4 

20150320_3d 155 157 48.5 56.8 8.24 8.95 -0.71 -7.9 
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