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ABSTRACT

In this study, the hysteresis nonlinearities of a piezotube ac-

tuator are investigated under different levels of surrounding tem-

perature. The experimental results show that increasing of the

surrounding temperature contributes to an increase in the output

displacement of the piezotube actuator under the input range that

is considered in the experimental tests. In this study, we develop

a hysteresis model integrates the dead-zone operator with El-

man Neural Network (ENN) to model the temperature-dependent

hysteresis nonlinearities. The simulation results show that the

proposed temperature-dependent hysteresis model accounts for

the temperature effects on the voltage-to-displacement hysteresis

nonlinearities. The results show that the proposed model can

characterize the voltage-to-displacement hysteresis loops over

different levels of surrounding temperature.

1 Introduction
Piezoelectric material-based actuators can perform nanome-

ters resolution displacements at high excitation frequencies with

microseconds time constant. Positioning systems driven by

piezoelectric material-based actuators have been developed for

several micro-and-nano positioning applications and some of

them are now commercially available [1–6]. However, these

systems show hysteresis nonlinearities that affect the position-

ing accuracy of these applications. Most of the available studies
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on modeling hysteresis of piezoelectric material-based actuators

evaluate the hysteresis properties under different input amplitude

voltages and frequencies [8–11]. However, these studies ignore

the temperature effects on the voltage-to-displacement hysteresis

loops. Characterization and modeling of hysteresis nonlinearities

under different levels of temperature facilitate the implementa-

tion of the piezoelectric material-based actuators in environments

that experience steep temperature variations. Such development

in hysteresis modeling is mandatory to synthesize an advanced

control systems that can reduce the positioning errors over dif-

ferent input voltages and temperature levels.

A number of recent studies have shown that output displace-

ment of a class of piezoelectric material-based actuators is sen-

sitivity to the variation of the surrounding temperature [12, 13].

Such temperature variation can be due to the heating of the sur-

rounding setup (e.g. voltage amplifier) and to the lights that are

used to illuminate the tasks [13–15]. However, the effects of

the surrounding temperature on the voltage-to-displacement have

been ignored. Feedback control systems were designed to re-

duce the temperature effects under certain conditions in the out-

put of the piezoelectric material-based actuators, see for exam-

ple [14, 16]. However, it is essential to propose a hysteresis

model that considers the temperature effects on the voltage-to-

displacement loops. This will develop the model-based control

techniques and inverse-based control techniques to compensate

for the hysteresis nonlinearties over different temperature levels.

Recently, artificial intelligent algorithms such as Evolution

Algorithms, Swarm Algorithms and Neural Network have been

widely used for nonlinear systems identification and modeling

in science and engineering problems [17–19]. Neural Networks



have been combined with a number of hysteresis models to char-

acterize the output displacement of a class of smart material-

based actuators over different operating conditions. Neural Net-

work with a special operator and transformation was introduced

to describe the change tendency of the hysteresis with regard to

its input [20,21], hysteretic Recurrent Neural Networks was used

to model polycrystalline piezoelectric actuators [22]. Prandtl-

Ishlinskii model was combined with neural network to present

a hybrid model for hysteresis compensation in piezoelectric ac-

tuator [23] and for modeling the hysteresis of magnetostrictive

actuator [24]. Beyond neural network modeling, neural network

was also used to identify parameters of differential-based and

operator- based hysteresis models, see for example [25–29].

An experimental study is first conducted to investigate the

effects of the input temperature on the hysteresis nonlinearities

of a piezoelectric actuator having tube structure (piezotube). The

experimental results are subsequently analyzed to construct an

appropriate model that characterizes the hysteresis nonlinearities

under different levels of input temperature. This model employs

the deadzone operator with the Elman Neural Network (ENN).

Then, the proposed model is developed based on the experimen-

tal observations. Finally, the model is validated with additional

experimental tests. In this study, Section 2 presents a description

of an experimental study that was carried out to explore the hys-

teresis nonlinearities over different levels of environment tem-

peratures. The proposed hysteresis model using the deadzone

operator with ENN and the proposed training algorithm are for-

mulated in Section 3. The structure of ENN for proposed hys-

teresis model and model validations are introduced in Section 4.

Finally, the conclusions and future work are presented in Sec-

tion 5.

2 Experimental Study of Piezotube Actuator

2.1 The Experimental Setup

This section presents a description of the experimental plat-

form that is used to explore the effects of temperature on the

voltage-to-displacement hysteresis loops of a piezoelectric actu-

ator. The main objective is to investigate the effects of the tem-

perature levels on the magnitude of the voltage-to-displacement

hysteresis loop and the sensitivity of the actuator. The proposed

piezoelectric actuator is a piezotube that is classically employed

in atomic force microscopy (AFM) [30] and in micro-assembly

and micro-manipulation [13]. It is a PT230.94 from PI (Physik

Instrumente) company and has 27mm of active length, 5mm of

diameter, and 3mm of inner diameter. The actuator can con-

tribute displacements along two horizontal axes (bending along x

and y) and along one vertical axis (expansion along z). The out-

put displacement of the actuator in the y-axis is only considered

in this study.

A heater resistor, controlled by an electrical current iT , is

used to control the surrounding heat of the actuator and there-

fore to vary its ambient temperature. An optical sensor is placed

in front of the extremity of the actuator to measure its bending

along the y-axis. The sensor is a LC-2420 from Keyence com-

pany with a precision of a hundred nanometers and 10kHz band-

width. The probe of a thermocouple sensor is integrated inside

the heater resistor in order to measure the temperature T assumed

to be uniform in the vicinity of the actuator. Finally, a computer

with the MATLAB-Simulink software is used to generate all the

input signals (u and iT ) and to acquire the measurements temper-

ature T and displacement y. The computer includes an acquisi-

tion board dS1103 (from dSPACE) with digital-analog convert-

ers (ADC and DAC). Since the generated excitation input signals

of the voltage and current from the computer are limited to ±10

V and to ±20 mA due to dSPACE requirement, a high-voltage

(HV) amplifier of (up to ±200 V) and a power amplifier of (up

to 4 A) are placed between the dSPACE and both the actuator

and heater respectively. The data acquisition system sampling

time is set to ts = 0.2ms. Figure 1 displays a schematic of the

experimental platform that is used to obtain the measured data.

2.2 Temperature-Dependent Hysteresis Characteriza-

tion

The hysteresis nonlinearities of the piezotube actuator are

characterized by applying a harmonic input voltage of u(t) =
200sin(2π f t) V with excitation frequency f = 0.1 Hz at differ-

ent environment temperatures of T = 23oC, 29oC, 33oC, 35oC,

and 39oC. The responses of the actuator to these inputs are illus-

trated in Figure 2. The figure shows that increasing the environ-

ment temperature yields an increase in the global gain (displace-

ment per voltage) of the actuator within the temperature levels

considered during the experimental tests. This gain is evalu-

ated using the slope of the best linear model (H) as illustrated

in Figure 3 (a). The sensitivity of the actuator are calculated

as 0.1509 µm/V , 0.1523 µm/V , 0.1606 µm/V , 0.1627 µm/V ,

and 0.1735 µm/V at environment temperatures T = 23oC, 29oC,

33oC, 35oC and 39oC, respectively. Figure 3 (b) presents the sen-

sitivity as a function of environment temperature that is applied

to the actuator. The figure illustrates that increasing the environ-

ment temperature contributes an increase in the sensitivity of the

actuator within the selected input temperature levels.

3 Hysteresis Modeling of Piezotube Actuator

3.1 Formulation of the Temperature-Dependent hys-
teresis model

The proposed Temperature-Dependent hysteresis model for

describing the nonlinearities properties of piezotube actuators

under the effect of different environment temperatures combines

the dead-zone operator with Elman Neural Network (ENN) as

the weighting constants. The proposed hysteresis model is illus-



(a)

(b)

FIGURE 1. The experimental platform: (a) PT230.94 piezotube actu-

ator, and (b) PT230.94 piezotube actuator with the displacement sensor,

heater resistor, thermal sensor probe, power amplifier, and dSpace card.

trated by the block diagram in Figure 4 (a). For the monotone

input u(t) over each sub-interval [ti−1, ti] defined over the inter-

val [0, T ] with N samples and based on the structure of ENN

in Figure 4 (b), the output of the proposed hysteresis model at

iteration k is formulated as [31]

C(k) = H(k−1)+αC(k−1) (1)

H(k) = f (WhiΦ(k)+WchC(k)) , (2)

Yest(k) = g(WohH(k)) , (3)

where Φ with size [n×N] is the output of deadzone operator and

represents the input of neural network, C with size [h×N] is the

output of the context layer, H with size [h×N] is the output of

the hidden layer, and Yest with size [1×N] is the output of the

hysteresis model. The activation functions are f (x) = 1/(1+ex)
and g(x) = x, the connecting weights are Whp, Wch and Woh are

weights that are identified through the training algorithm. The

output of the deadzone operator for input u and threshold rm,
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FIGURE 2. Measured voltage-to-displacement hysteresis loops of the

piezotube actuator by applying a harmonic input voltage of u(t) =

200sin(2π f t) V with the excitation frequency f = 0.1 Hz under dif-

ferent levels of environmental temperature of T = 23oC, 29oC, 33oC,

35oC, and 39oC.
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FIGURE 3. (a) The slope of the best linear model of hysteresis loop,

and (b) The calculated sensitivity of the piezotube actuator under dif-

ferent levels of environmental temperature of T = 23oC, 29oC, 33oC,

35oC, and 39oC.

where m = 1, . . . ,n, where n is a positive integer as

Φrm [u] =







max{u− rm,0} for rm > 0,
u for rm = 0,

min{u− rm,0} for rm < 0,
(4)

3.2 Training Algorithm

The ENN structure, presented in Figure 4 (b), shows that the

neurons in the layers are connected through the weights Whp, Wch

and Woh. The sub-indices p indicates the input layer, o indicates

the output layer, h indicates the hidden layer, and c indicates the

context layer. We define the error between the measured dis-

placement and the output of the hysteresis model as

Σ[ti] =
1

2
(Ymes[ti]−Yest [ti])

2 , (5)



(a)

(b)

FIGURE 4. (a) Block diagram representation of the proposed hys-

teresis model, and (b) Feedforward structure of Elman Neural Network

(ENN) for the proposed hysteresis model model.

where Ymes[ti] is the sample of the measured displacement, and

Yest [ti] is the output of the hysteresis model with sample index of

i = 1,2, . . . ,N. The proposed hysteresis model was obtained by

updating the weights Whp, Wch and Woh of ENN to minimize the

error in Equation (5) using the Back propagation algorithm [31].

The training algorithm is implemented according as in Figure 5.

The following sub-sections present the details.

3.2.1 Dead-zone operator output: In this step, the

output of the deadzone operator Φrm [u] in Equation (4) is ob-

tained for each input data u j and using specific threshold number

n. The measured data at environment temperatures Tj is pre-

sented using j-data sets as Γ j, where Γ j = [Y T
mes j

ΦT
j ], where

Ymes j
is the measured displacement with size [1×N] at environ-

ment temperature Tj. In this study we consider five tested en-

vironment temperatures of Tj = 23oC, 29oC, 33oC, 35oC, and

39oC, then there it will be five sets of data ( j = 5).

3.2.2 Data preparing: The data sets Γ j from the pre-

vious step are scaled to be in range of [0,1]. Then, the selected

data sets for training process are segmented using specific win-

dow size Ns as shown in Figure 6. The segmented data are sep-

jjj

j

mr
u

j

est j
Y

m es j
Y

FIGURE 5. Flow chart of training algorithm for proposed hysteresis

model.

arated into training data and testing data. The training data with

size NT of 75% of the original samples N are used for training

ENN and the testing data of 25% of the original samples N are

used for the validation process of ENN. In this study, we use data

samples of N = 750.

FIGURE 6. Segmentation of data sets using window size Ns.

3.2.3 Elman Neural Network (ENN): This step con-

sists of two algorithms: (i) the feedforward algorithm to ob-

tain the estimated output of proposed hysteresis model, and (ii)

the back propagation algorithm to update the weights of ENN.

The structure of ENN is determined by selecting the number

of neurons in input layer, hidden layer, context layer, and out-

put layer. For the proposed hysteresis model, the number of

neurons in the input layer is the threshold number n of dead-



zone operator. In hidden and context layers, the number of neu-

rons can be n or 2n. The output layer is one neuron. The im-

plementation steps of ENN can be summarized as follows: (i)

the values of connecting weights Whp[h × n], Wch[h × h], and

Woh[1×h] are selected randomly then set specific value for learn-

ing factor α , (ii) Select the training data set (Γ j), (iii) apply the

Input Φ[n×NT ] to the ENN, (iv) obtain the estimated output

Yest [1×NT ] based on the feedforward algorithm in Equations (1-

3), (v) calculate the error between the estimated output and mea-

sured output using Equation (5), (vi) apply the back propagation

algorithm to update values of connecting weights at the current

iteration k based on the following equations ∆Woh = αζoH(k),

∆Whp = αζhΦ(k−1), and ∆Wch = αζoWoh
∂H(k)
∂Wch

, where α is the

learing factor, ζo =(Ymes(k)−Yest(k))g(.)
′
, ζh =(ζoWoh) f (.) and

∂H(k)
∂Wch

= f (.)H(k−1)+β
∂H(k−1)

∂Wch
where 0 < β ≤ 1. More details

can be found in [31], and (vii) Check if MSE (mean square error)

∆ j of current data sets is less than a specific threshold ε1, where

∆ j =
1
N ∑

N
i=1(Ymes[ti]−Yest [ti])

2. If YES go to the next step, If NO

go to step (iii) for next iteration. (viii) Check if all j-data sets are

trained. If YES go to validation and calculate the MSE of all data

sets Θ, If NO go to step (ii) and select the next data set, where

the MSE for all data sets is calculated by Θ = 1
j ∑

5
j=1 ∆ j.

3.2.4 Testing and Validating Model: In this step,

we use the updated weights Whp, Wch, Woh to obtain the estimated

output of the proposed hysteresis model and the errors ∆ j and Θ

are used to validate the model. If the error Θ is less than specific

threshold value ε2, the algorithm will be terminated, if not the

algorithm will start a new cycle of training.

4 Validation

The measured voltage-to-displacement hysteresis loops il-

lustrated in Figure 2 are used to predict the hysteresis model that

is represented using threshold number n = 9 for deadzone opera-

tors and ENN with the following structure: nine neurons in input

layer, five neurons in hidden and context layers, and one neuron

in output layer. The learning factor is selected as α = 0.000975.

Figure 7 presents a comparison between the measured voltage-

to-displacement hysteresis loop and the output of the proposed

hysteresis model. As the figure illustrates, the proposed hystere-

sis model can effectively predict the temperature-dependent hys-

teresis nonlinearities of the piezotube actuator at different levels

of temperature.
The characterization errors between the measured output dis-

placement and the proposed hysteresis model output, as shown

in Figure 8 (a), are bounded between [−2µm,2µm] in the range

of [−30µm,30µm] displacement. For validations, we obtain

the maximum characterization error, the MSE errors, and Roots

Mean Square Error (RMSE), where Ξ j(ti) =
√

∆ j(ti). As from

Figure 8 (b) the values of MSE and RMS errors are about 1.5µm
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FIGURE 7. Comparison between the measured voltage-displacement

hysteresis loop and the proposed hysteresis model voltage-displacement

hysteresis loop using threshold number of n = 9 at different environ-

mental temperatures: (a) T = 23oC, (b) T = 29oC, (c) T = 33oC, (d)

T = 35oC, and (e) T = 39oC.

and the maximum error is between 2µm and 3µm. In addition,

the proposed hysteresis model shows similar sensitivity to the

experimental observation. The model shows that the sensitiv-

ity increases when the environmental temperature increases, as

shown in Figure 8 (c).

Also, the hysteresis model is obtained using threshold num-

ber n = 5 for the deadzone operator and ENN with five neurons

in the input layer, ten neurons in hidden and context layers, and

one neuron in the output layer. In this case, the learning factor

is α = 0.001. The resulting error is illustrated in Figure 9. By

comparing the results in Figure 8 and the results in Figure 9, we

conclude that hysteresis model with n = 9 gives better charac-

terization in comparison with n = 5. During the training process

of the ENN, it was observed that selecting values of learning fac-

tor α and selecting number of neurons in ENN have an important

role for the algorithm convergence and obtaining better modeling

results.
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FIGURE 8. (a) Error signal between the measured output displace-

ment and the proposed hysteresis model output using threshold num-

ber n = 9 at different environmental temperatures, (b) Maximum error,

Mean square error (MSE) and Root mean square error (RMSE) for the

measured output displacement and the proposed model hysteresis out-

put, and (c) comparison of the sensitivity of the measured data and the

proposed hysteresis model.
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FIGURE 9. (a) Error signal between the measured output displace-

ment and the proposed hysteresis model output using threshold number

n = 5 at different environmental temperatures, and (b) Maximum error,

Mean square error (MSE) and Root mean square error (RMSE) for the

measured output displacement and the proposed hysteresis output,

5 Conclusions

The output displacement of a piezotube actuator was char-

acterized under different levels of environmental input temper-

ature. The results demonstrate that increasing the temperature

contributes an increase in the sensitivity of the actuator within the

operating range that was considered in the experimental study.

The proposed hysteresis model that integrates the dead-zone op-

erator with Elman Neural Network was formulated using the

experimental observations. The proposed hysteresis model was

able to describe the hysteresis nonlinearities under different lev-

els of temperatures that were imposed to the piezotube actuator.

The estimated output of the proposed hysteresis model and the

calculations of error show the validity of using this model to de-

scribe the hysteresis nonlinearities of piezotube actuator under

different levels of environmental temperatures.

The results of this study can be extended in the future

work to include modeling and experimental compensation of

temperature-dependent hysteresis properties of the actuator in

both horizontal and vertical axes. In addition to that, the pro-

posed Neural Network hysteresis model can be modified to ob-

tain the inverse of the hysteresis model for compensation of hys-

teresis nonlinearities in an open-loop and closed-loop manners.
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