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A laminar-turbulent transition model is presented. The model accounts for longitudinal

transition mechanisms (i.e. Tollmien-Schlichting induced transition) and was calibrated using

stability computations on similar boundary layer profiles at Mach number ranging from zero to

four both on adiabatic and isothermal walls. The model embeds the so-called “C1-criterion” for

transverse transition mechanisms (i.e. cross-flow waves induced transition).Finally, the model

accounts for separation-induced transition by means of the Gleyzes criterion. The transition

model is written under a transport equation formalism. Validations are performed on three-

dimensional configurations and comparisons against results from a transition database method

for natural transition, exact linear stability computations and experimental data are shown.

I. Nomenclature

α = Angle of attack

δ = Boundary layer thickness

δ1 = Boundary layer displacement thickness

γ = Intermittency

β0 = Angle between the wall friction vector and the velocity vector at the boundary layer edge

Λ2 = Pohlhausen parameter Λ2 =
θ2

νe

dUe

ds

ν = Kinematic viscosity

θ1 = Boundary layer momentum thickness

H = Boundary layer shape factor H = δ1/θ1

Ĩ = Curvilinear coordinate measured from the transition location

M = Mach number

N = N factor of the envelope

Reδ1 = Displacement thickness based Reynolds number
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Reδ2 = Transverse displacement thickness based Reynolds number

Reθ = Momentum thickness based Reynolds number

s = Curvilinear coordinate

Tu = Turbulence intensity

U = Velocity vector field

yn = Wall normal coordinate

Subscript

e = Boundary layer edge value

ǫ = Extracted around boundary layer edge using a blending function for added transported variables

i = Incompressible

cr = Critical point of the boundary layer

GL = Gleyzes criterion triggered

tr = Transition location

∞ = Free-stream

II. Introduction

Accurate computation of transport aircraft drag strongly relies on laminar-turbulent transition prediction capabilities.

As Computational Fluid Dynamics (CFD) is now a major component of industrial processes, it is necessary to develop

accurate transition prediction techniques for RANS solvers both for aerodynamic performance prediction and for design

of future laminar transport aircraft concepts.

The development of transition prediction methods compatible with CFD is a major research topic. The notion of

compatibility corresponds to the consistency in term of implementation with the global architecture of a CFD solver. A

quite recent approach consists in using methods based on Partial Differential Equations (PDE). This approach consists

in solving additional transport equations governing the dynamics of quantities that are related to a transition model. A

very popular PDE-based method is the “γ − Reθ” approach of Langtry and Menter [1] based on phenomenological

reasoning. This method has demonstrated success on many configurations and has been extended to handle cross-flow

transition [2, 3] as well. The Amplification Factor Transport (AFT) method was derived more recently by Coder

and Maughmer [4]. This promising method consists in writing under a transport equation the eN -based approximate

envelope method [5, 6] of Drela and Giles [7]. The AFT method was recently extended to include an intermittency

variable [8] and cross-flow transition by Xu et al. [9]. The γ − Reθ and AFT methods are said to be “local” in the sense

that the additional transport equations associated to transition only involve values available at RANS computational
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points. This property significantly reduces the implementation effort in a RANS solver. To do so the boundary layer

variables required to trigger transition are obtained through correlations. As a consequence the application of the

model may be restrained by the validity domain of the correlations considered.

In order not to rely on correlations accuracy and validity extent, boundary layer variables can be extracted from the

flow thanks to wall-normal integration [10–12] and distributed to computational points via wall-normal communication.

An accurate evaluation of the boundary layer integral quantities opens the way to other transition models such as the

N-σP(NSP) model [13] based on the parabola method [14] and sensitive to small variations on integral quantities.

This paper presents a transport equation transition prediction and modeling approach incorporating the ONERA

transition criteria (denoted AHD and C1). This paper is an extended version of the conference paper [14]. A similar

method (restricted to the AHD and Gleyzes criteria) is proposed in Refs. [15, 16] where non local variables are

approximated by means of local correlations. The transition criteria are presented in section III while section IV deals

with their implementation in a RANS solver. Numerical results and validation are presented in section V.

III. Choice of the underlying transition criteria

Several physical mechanisms can lead to boundary layer transition. Each of them can be modeled individually by

a dedicated criterion. Three different criteria have been selected and incorporated into the proposed model, taking

advantage of their complementarity. The first one is the Arnal-Habiballah-Delcourt (AHD) criterion [17] derived for

streamwise natural transition. The second one is the Gleyze criterion [18] for separation-induced transition. The third

one is the C1 criterion [19, 20] for cross-flow induced transition. These criteria have already been detailed in the

litterature, yet their expression are given again below to guide the reader through the modeling approach proposed.

A. AHD criterion

The Arnal-Habiballah-Delcourt (AHD) criterion [17] was derived by performing linear stability analysis on two-

dimensional incompressible self-similar Falkner-Skan profiles. The criterion is given as a threshold on the momentum

thickness Reynolds number and reads:

Reθ,tr = Reθ,cr + A(Me) exp(B(Me, Λ̄2)Λ̄2)
(
ln(C(Me)Tu) − D(Me)Λ̄2

)
. (1)

where Reθ,cr corresponds to the Reynolds number at the critical point which is defined as the location from which

Tollmien-Schlichting waves are unstable and is given by:

Reθ,cr = exp
(
G(Me)/Hi

2
+ E(Me)/Hi − F(Me)

)
. (2)
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This value needs to be available downstream of the critical point so to evaluate the threshold value Reθ,tr along the

boundary layer. In the context of RANS solvers based on PDE, the idea of using a transport equation to have this value

transported by the flow is quite natural.

The derivation of equation (1) and the coefficients are given in appendix A.

This criterion accounts for the flow history through Λ̄2 (spatial average of the Pohlhausen parameter), for receptivity

through Tu and for compressibility through Me. Another advantage of transport equations is their integration ability

along streamlines. The spatial averaging can be done with two more transport equations: one for the integration of

Λ2 downstream of the critical point, and another for the integration of the curvilinear coordinate necessary for the

averaging.

As this criterion is derived for natural transition, it should not be used for Tu > 1%. Moreover, this criterion

accounts for effects of wall temperature [21, section V].

B. Gleyzes criterion

Like the AHD criterion, Gleyzes criterion [18] was derived from linear stability computations on Falkner-Skan

self-similar boundary layer profiles. However, Gleyzes et al. [18] considered separated boundary layer profiles and

therefore the derived criterion is to be used to predict the transition onset in short laminar separation bubbles. This

criterion assumes that in the neighbourhood of and within the separated region, the growth rate of Tollmien-Schlichting

waves is almost independent of the frequency. Therefore dN

dReθ
depends only on the incompressible shape factor and is

expressed as:

dN

dReθ
=

−2.4

B(Hi)
(3)

The term B(Hi) is given in appendix B.

Since both the AHD criterion and the Gleyzes criteria are based on modeling dN/dReθ , they can be combined to

extend the range of application of the AHD criterion to separated flows [12]. In spite of the fact that the Gleyzes criterion

was derived for incompressible flows, the combination of both criteria was successfully applied on compressible

configurations [22–24].

Following the work of Cliquet et al. [12], the use of Gleyzes criterion is triggered when Hi > 2.8 in order to account

for higher pressure gradient than can lead to flow separation. Let sGL be the curvilinear coordinate from which the

Gleyzes criterion is triggered. Likewise, NGL , Λ̄2,GL and Reθ,GL correspond to values at sGL . According to Eq. (3)

The N-factor downstream of sGL is simply:

N = NGL +

∫
Reθ

Reθ,GL

−2.4

B(Hi)
dR. (4)
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Let N̂ be the N-factor according to the AHD criterion (see appendix A) corresponding to a fictitious flow where Λ̄2

remains Λ̄2,GL downstream of sGL (Λ̄2 = Λ̄2,GL for s ≥ sGL):

N̂ = a(Λ̄2)
(
Reθ − Reθ,cr + ∆Reθ,cr (Λ̄2)

)
= NGL + a(Λ̄2,GL)(Reθ − Reθ,GL).

(5)

Substituting NGL from Eq. (5) into Eq. (4) yields:

N = a(Λ̄2)
(
Reθ − R̂eθ,cr + ∆Reθ,cr (Λ̄2)

)
, (6)

which corresponds to the standard form of the AHD criterion Eq. (22) (see appendix A) where the critical Reynolds

number Reθ,cr has been replaced by

R̂eθ,cr = Reθ,cr +

∫
s

sGL

(
2.4

a(Λ̄2,GL)B(Hi)
+ 1

)
dReθ

ds
dξ . (7)

.

Eq. (1) can then be applied by replacing Reθ,cr by R̂eθ,cr to combine both AHD and Gleyzes criterion. The

subsequent change on Reθ,tr models the effect of higher pressure gradient and flow separation on boundary layer

stability. The Gleyzes criterion can be introduced as a correction of the AHD criterion. In the proposed model it will

be accounted for using the same transport equations as the AHD criterion.

Following Ref. [7],
dReθ

ds
can be approximated by the following correlation:

dReθ

ds
=

1

2θ

(
0.058

(Hi − 4)2

Hi − 1
+

6.54Hi − 14.07

H2
i

− 0.068

)
. (8)

C. C1 criterion

The C1 criterion [19, 20] is used to predict natural transition induced by cross-flow instabilities. Contrary to the

AHD criterion, the C1 criterion does not rely on linear stability computation but is based on wind tunnel experiments.

Therefore, it embeds both steady and unsteady cross-flow waves. As a result, it might be too conservative when applied

in flight conditions [25].

The criterion defines the transition point as the location where the transverse incompressible displacement thickness
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Reynolds number Reδ2i equals a threshold given by:

Reδ2,i,tr =




150 Hi ≤ 2.31

300
π

arctan

(
0.106

(Hi − 2.3)2.052

) (
1 +

γ − 1

2
M2

e

)
2.31 < Hi < 2.65

(9)

The criterion should not be applied for Hi > 2.65. As this criteria does not require quantities to transport nor to

integrate along the flow, no additionnal transport equation is needed to its incorporation in the model.

D. Parabola method as a reference

The so-called parabola method [26] is a database method which gives the growth-rate of longitudinal and transverse

instabilities for a given velocity profile at a much lower computational effort than exact local linear stability analysis.

Although this method is not incorporated in the proposed model, it was shown to agree well with exact local linear

stability analysis [22, 26] and will therefore be considered as a reference for validation when experimental data is

lacking.

As far as longitudinal instabilities are concerned, the growth rate of a wave is given as a function of the angle φ

between the wave vector and the streamline at the boundary layer edge, its frequency f and the following parameters

of the boundary layer profile: the displacement thickness δ1, the unit boundary layer Reynolds number Re∗ = Ue/νe,

the incompressible shape factor Hi and the Mach number at the edge of the boundary layer Me.

In the model for travelling and stationary crossflow, the growth rate of a wave is given as a function of its angle φ,

its frequency f (only for traveling crossflow instabilities) and the following quantities characteristic of the boundary

layer profile: the displacement thickness δ1, the transverse displacement thickness δ2, the unitary Reynolds number

and the characteristics of the generalized inflection point.

The NSP model [13] mentioned in the introduction is the implementation of this parabola method by means of

transport equations.

IV. Building the transport equations

Evaluating eqs. (1) and (9) requires the knowledge of boundary layer variables Reθ , Reδ2 , Me, etc . . . . As for

approaches presented in Ref. [1] and [4], some of these variables can obtained through correlations to keep the model

"local". For accuracy purpose, a prefered way is to compute these quantities through wall-normal integration. Moreover

the proposed model takes advantages of wall-normal communication to store and call data shared by volume cells with

common corresponding wall interface.

The detection of the leading edge stagnation line location is computed automatically by following the method

proposed by Kenwright et al. [27] in order to perform specific operations in its neighborhood. This method, based on
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phase plane analysis, only requires a local analysis of the friction vector field at the wall.

The proposed transition model is based on transport equations which ensures that transition criteria are evaluated

along streamlines. The method shares similarities with the NSP transition model of Bégou et al. [13] [28] who

proposed an implementation of the ONERA parabola method based on the equation transport concept as it enables

either to transport or to integrate quantities along streamlines very easily. This previous modeling experience was of

great help in the design of the proposed model. In the previous section, the incorporation of the AHD criterion in

the model was shown to require the addition of three transport equations: one to transport the Reynolds number from

critical point downwards the stream, and two more to integrate both the Pohlhausen parameter and the curvilinear

asbscissa downstream of the critical point enabling the estimation of an averaged value of the Pohlhausen parameter.

Both Gleyzes and C1 criteria were shown to be integrable with no need for more transport equations. If the three

forementioned equation enable to evaluate the transition criteria along the flow, they will only allow to detect the

transition onset location. The model will be completed by a fourth transport equation to account for the progressive

rise of the intermittency downstream of the transition onset location.

A. Momentum-thickness Reynolds number

The first prerequisite to estimate the transition threshold Reθ,tr following eq. (1) is to know the value of the critical

Reynolds number. The latter corresponds to the value of Reθ at the critical location (where Reθ reaches Reθ,cr given

by Eq. (2)) of the current boundary layer edge streamline. We introduce variable R̃eθ,cr that will be transported by the

flow to access to the needed value of Reθ,cr by first writing the following evolution equation for R̃eθ,cr :

∂t

(
ρR̃eθ,cr

)
+ νcr∇ ·

(
ρR̃eθ,crU

)
= SReθ,cr (10)

where νcr is a trigger defined for each cell depending on the state of the corresponding wall interface:

νcr =




0. if Reθ < R̃eθ,cr,ǫ

1. else

(11)

and the source term:

SReθ,cr = ΓR̃eθ,cr (1 − νcr ) Γδ

(
R̃eθ,cr − Reθ,cr

)
(12)

where Reθ,cr is given by Eq. (2) and where Reθ is computed following its exact definition by means of wall-

normal integration. νcr equals zero at the leading edge attachment line and in the subcritical region defined as where
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Reθ < R̃eθ,cr,ǫ . This boundary layer edge value R̃eθ,cr,ǫ is obtained from the transported variable R̃eθ,cr using a

pondering function defined at wall interfaces for any tranported variable X̃ as:

X̃ǫ =

∑
X̃w

w
w =

����δ/A

d∗

����
α

d∗
= max

(
δ

A
, |ym − δ |

)
(13)

with constant A and α arbitrarily set to 10. and 4. respectively. As the function X̃ǫ is defined at wall interfaces, the

sum in the first equation is performed on all cells associated to a given wall interface.

In the region downstream of the critical point, defined as Reθ ≥ R̃eθ,cr,ǫ , the trigger νcr is set to one. As a

consequence, as long as the boundary layer is not critical (νcr = 0) the source term forces R̃eθ,cr to equal Reθ,cr with

help of a parameter Γ
R̃eθ,cr

typically set to 1.1 for stationary flow convergence speed up. If the boundary layer becomes

critical (νcr = 1) R̃eθ,cr is simply convected. The source term impact is limited to an area surrounding the wall by Γδ

defined by:

Γδ = exp

(
−

(
yn

4δ

)4
)
. (14)

To account for the Gleyzes criterion for separation induced transition, SReθ,cr is completed with another source

term triggered by νGL . Eq. (12) is modified:

SReθ,cr = ΓR̃eθ,cr (1 − νcr ) Γδ

(
R̃eθ,cr − Reθ,cr

)
+ νGLΓδρ| |U | |

(
2.4

a( ˜̄
Λ2)B(Hi)

+ 1

)
dReθ

ds
. (15)

Following the work of Cliquet et al. [12], νGL is set to one if Hi > 2.8. Moreover, it is here chosen to set νGL to

one if β0 > π/2, which is a condition sufficient for a boundary layer profile to be separated.
dReθ

ds
is given by Eq. (8).

Although it might be already the case, νcr is set to one if νGL equals one.

B. Pohlhausen parameter averaging

The second prerequisite to compute the transition threshold Reθ > Reθ,tr following eq. (1) is to compute the value

of Λ̄2. As the variable Λ̄2 corresponds to an integration performed along the streamline at the boundary layer edge, a

transport equation is introduced for a variable ˜̄
Λ2 and another for a variable s̃:

∂t

(
ρ˜̄Λ2

)
+ ∇ ·

(
ρ˜̄Λ2U

)
= νcrΓδ

ρ| |U | |

s̃

(
Λ2 −

˜̄
Λ2

)
+ Γ˜̄
Λ2
(1 − νcr )Γδρ(

˜̄
Λ2 − Λ2) . (16)

∂t (ρs̃) + ∇ ·
(
ρs̃U

)
= νcrΓδρ| |U | | − Γsρ (1 − νcr ) s̃ . (17)
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where s̃ corresponds to the curvilinear coordinate measured from the critical point. Upstream of the critical location

(νcr = 0), the second terms of the right-hand side of Eq. (16) and (17) act as forcing terms toward the local value of the

Pohlhausen parameter Λ2 and to zero respectively. This enables to start the integration of the Pohlhausen parameter

from its value at the critical point on the one hand, and to start from zero the curvilinear coordinate from this same

location on the other hand. Both conditions are necessary to estimate properly the averaged Pohlhausen parameter over

the critical region. The boundary layer shielding is made using Γδ . Parameters Γ˜̄
Λ2

and Γs are set to 1.1 for the same

reasons as for Γ
R̃eθ,cr

. Downstream of the critical location (νcr = 1), the first terms of the right hand sides of Eq. (16)

and (17) correspond to the integration of Λ2 along a streamline (see appendix C.2 for the mathematical proof) and

the integration of a curvilinear coordinate along the same path (see the mathematical proof in appendix C.1) from the

critical point.

To account for the Gleyzes criterion, these equations have to be modified to ensure that Λ̄2 keeps the value of Λ̄2,GL

downstream of sGL (see section III.B). This is done with the trigger νGL to activate the Gleyzes criterion by adding

(1 − νGL) in factor of the first terms of the right-hand side of Eq. (16) and (17):

∂t

(
ρ˜̄Λ2

)
+ ∇ ·

(
ρ˜̄Λ2U

)
= νcr (1 − νGL)Γδ

ρ| |U | |

s̃

(
Λ2 −

˜̄
Λ2

)
+ Γ˜̄
Λ2
(1 − νcr )Γδρ(

˜̄
Λ2 − Λ2) . (18)

∂t (ρs̃) + ∇ ·
(
ρs̃U

)
= νcr (1 − νGL)Γδρ| |U | | − Γsρ (1 − νcr ) s̃ . (19)

C. C1 criterion and transition onset

The transition threshold on Reθ given by Eq. (1) can then be evaluated from ˜̄
Λ2,ǫ and R̃eθ,cr,ǫ obtained by

extracting ˜̄
Λ2 and R̃eθ,cr at the edge of the boundary layer (see Eq. (13)) since the AHD criterion is to be evaluated

along streamlines at the boundary layer edge. A new trigger νtr is used for transition onset. Its value is set to

zero at the leading edge and as long as the transition threshold of the AHD criterion Eq. (1) is not reached. If the

transition threshold is reached, νtr is set to one. Due to the simplicity of the C1 criterion, its implementation is quite

straightforward. It consists in setting νtr to one if Reδ2, i reaches the threshold given by Eq. (9).

D. Intermittency raise and coupling with turbulence models

Finally, a last equation is added to transport downstream the information that transition has been triggered. It is

chosen to introduce a new variable Ĩ that corresponds to the curvilinear coordinate measured from the transition point.

The purpose of this curvilinear coordinate is to be able to control the extent of the transition region and the raise of an
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intermittency fuction over this region. Variable Ĩ is governed by the following transport equation:

∂t

(
ρĨ

)
+ ∇ ·

(
ρĨU

)
= νtrΓδρ| |U | | − ΓI ρ (1 − νtr ) Ĩ . (20)

Eq. (20) is very similar to Eq. (17) where νcr is replaced by νtr . Thus, while s̃ is the curvilinear coordinate

measured along a streamline from the critical location, Ĩ is the curvilinear coordinate measured along a streamline

from the transition onset location. The intermittency is evaluated from the value of Ĩ at the boundary layer edge Ĩǫ

according to:

γ(Ĩǫ ) = 1 − exp
©­«
−5

(
Ĩǫ

ltr

)2ª®¬
. (21)

Eq. (21) is derived from Ref. [29, Eqs. (1,6)].

In the current implementation, the intermittency is defined at a wall interface and set constant in the whole boundary

layer profile by means of wall normal communication.

The coupling with the turbulence model such as Spalart and Allmaras [30] and Menter [31] consists in multiplying

the Reynolds stress tensor by the intermittency in momentum equations of the mean flow. The production term of the

turbulence model of Spalart and Allmaras and the production on the ω-equation of the Menter turbulence model are

multiplied by the intermittency.

At the current stage of development, the streamwise length ltr of the transition region is implemented as a user input.

Choosing a too short length might result in convergence issues [29]. ltr can be chosen from a priori knowledge or can

be manually computed from correlations, see for instance Ref. [29]. On going developments aim at implementing such

correlations in order to remove this user-dependent modeling parameter.

V. Validations

The proposed transition model has been implemented in the elsA [32] CFD software. The latter solves the

compressible 3D Navier-Stokes equations on multi-block structured meshes. Cell-centered finite volume method is

used to solve the system of equations. Both upwind and classical second order spatial discretization schemes are

available. Implicit backward Euler technique is usually used for time integration. The elsA software features a large

number of turbulence models.

Evaluating eqs. (1) and (9) requires the knowledge of boundary layer variables Reθ , Reδ2 , Me, etc . . . . Contrary

to the approaches presented in Ref. [1] and [4], the present implementation does not rely on correlations based on

local variables. Non local variables are evaluated and made available at each cell point in elsA thanks to the fact

that it is possible to: i) get for a cell in the volume the associated wall interface (if there is any) and ii) know which

cells in the volume form the mesh line normal to a given wall interface. Therefore, it is then possible to access the
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flow profile along the wall normal and compute the boundary layer thickness δ [12, section II-B], the boundary layer

integral quantities (e.g. δ1, θ) by wall-normal integration and the values at the boundary layer edge (e.g Me, νe) by

interpolating a quantity at yn = δ.

Two three dimensional configurations have been chosen to validate the prediction method. elsA computations are

performed with a second order Roe spatial scheme and a backward Euler time scheme. In the following, only the

Menter-SST turbulence model [31] is used.

In the following, “transition line” denotes the location where the intermittency γ starts to grow.

A. Nacelle transition prediction

While numerical validations of transition models in CFD are usually made on wings, numerical results on the

XRF1 nacelle configuration of Airbus are shown in this section. XRF1 is a test case provided by Airbus to collaborate

with external partners. A cut view of the geometry and of the surface mesh is shown in Fig. 1. In the following, for the

sake of visibility, both sides are “unrolled”: the contours are shown in a plane (x, ψ) where ψ ∈ [0, 2 π] is defined as

tan(ψ) = z/y (see Fig. 1 for the definition of the mesh axes).

Fig. 1 Cut view of the XRF1 nacelle (mesh #1). Pressure boundary condition is imposed on the black surface.

Computations were performed on four meshes in order to evaluate the grid convergence. The approximate number

of cells contained in the boundary layer thickness in the laminar region is given in Tab. 1 together with the number

of elements along the chord and the total number of cells in the whole mesh. The four meshes were built with 100

elements in the azimuthal direction.

The turbulence level is set to Tu = 0.1%. This value corresponds to the upper bound of the turbulence level in

flight conditions. The flow conditions are imposed with α = 1.1o and M∞=0.6. The transition length ltr is set to 5%

11



Table 1 XRF1 nacelle - Mesh refinement

Number of cells

In the boundary layer thickness (laminar) In the streamwise direction In the whole mesh

Mesh #1 10-20 120 3 × 106

Mesh #2 40-60 120 4.9 × 106

Mesh #3 60-80 120 6.5 × 106

Mesh #4 60-80 226 12.1 × 106

of the nacelle length.

1. Grid convergence study

Figures 2(a,b) show the transition lines computed for the four meshes on both sides. The transition lines computed

for mesh #2, #3 and #4 agree very well. A slight deviation is observed on the inner side near ψ = 0 and ψ = π (these

two regions are further investigated in the next section). The transition lines computed for the mesh #1 agree quite well

except on the upper part of the outer side and near ψ = 0 and ψ = π on the inner side.

(a) (b)

Fig. 2 Transition line computed on mesh #1 (dash-dotted line), mesh #2 (dotted line), mesh #3 (dashed line) and

mesh #4 (solid line) at the outer (a) and inner (b) sides of the nacelle. Black cones depict ψ ∈ {0, π/2, π, 3π/2, 2π}.
The flow goes from left to right.

2. Validation of the implementation by means of transport equations

As no experimental results are available on this geometry, comparisons are made against results obtained by means

of the boundary layer equations solver 3C3D [33]. The latter requires as input the velocity at the edge of the boundary
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layer, extracted here from a full turbulent computation performed with elsA on mesh #4. In 3C3D, transition is accounted

for by means of the parabola method both for longitudinal and crossflow transition. The N-factor transition threshold

NCF,tr = 7 has been arbitrarily chosen for cross-flow transition. This value is comparable to the value chosen for

instance by Kruse et al. [34] and NTS,tr is deduced from the turbulence level using Mack’s law [35]. Moreover, a

full laminar computation is performed with 3C3D. Exact local linear stability computations are then performed on the

obtained boundary layer profiles at ψ = {0, π/2, π, 3π/2} both at the inner and outer sides.

Comparison between the elsA computation, the 3C3D computation and exact local linear stability analysis is plotted

on Figs. 3(a,b) on the outer and inner sides of the nacelle. As expected from the authors experience, the parabola

method agrees very well with exact local linear stability analysis both at the inner and outer side. According to the

parabola method and exact local linear stability analysis, transition is only triggered by Tollmien-Schlichting waves.

(a) (b)

Fig. 3 Intermittency contours computed on mesh #4 with elsA by means of the AHD and C1 criteria for

transition prediction (light and dark shading corresponds respectively to γ = 0 and γ = 1) at the outer (a) and

inner (b) sides of the nacelle. The black line depicts the transition location predicted by 3C3D and the black

squares correspond to exact linear stability computations. Black cones depict ψ ∈ {0, π/2, π, 3π/2, 2π}. The flow

goes from left to right.

The model proposed in this paper gives a transition line in good agreement with the parabola method on both inner

and outer sides.

Transition is mostly triggered by the AHD criterion. The C1 transition threshold is reached only in two small

regions near ψ = 0 and ψ = π. Since the angle of attack is non-zero, a locally higher cross-flow velocity component is

here expected. Figure 4(a) (respectively 4(b)) shows a zoom of extent π/6 near the transition line at ψ = 0 (respectively

ψ = π). The circles depict the locations where the C1 transition threshold is reached. The squares depict the most
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upstream location where the AHD transition threshold is reached (downstream of this location, Reθ is everywhere

greater than this threshold). The scenario observed is quite pathological in the sense that the C1 transition threshold

is only locally reached and transition is not fully triggered by the C1 criterion. The cross-flow N-factor computed by

means of the parabola method goes up to 5 in this region (not shown in the paper). This indicates that cross-flow waves

are indeed unstable but their amplification remains too low to trigger transition. This deviation between the parabola

method and the C1 criterion can be explained by the fact that the latter is based on wind-tunnel measurements and may

in some cases be too conservative [25].
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Fig. 4 Intermittency contours computed on mesh #4 with elsA by means of the AHD and C1 criteria for

transition prediction (light and dark shading corresponds respectively to γ = 0 and γ = 1) near ψ = 0 (a) and

ψ = π(b) on the inner side of the nacelle. The flow goes from left to right.

3. Langtry-Menter transition model

For the sake of comparison, the results obtained with the transition model of Langtry and Menter [1] (without

crossflow extension [2]) are plotted on Fig. 5 for mesh #2. Contours of incompressible shape factor are plotted,

turbulent flow corresponds here to Hi ≈ 1.5 and laminar flow to Hi >∼ 2.2. Contrary to the results obtained with the

proposed model, the intermittency γ is not directly available with the γ − Reθ model. Therefore the incompressible

shape factor has been chosen to indicate the transition onset. In order to validate this choice of transition onset indicator,

the incompressible shape factor contours obtained with the proposed model is plotted figure 6.

Langtry-Menter model agrees fairly well with the parabola method even though it systematically precedes the

transition location, especially for ψ ≈ π/2 at both the inner and outer sides. In these two regions, the pressure gradient

is favorable and therefore the Langtry-Menter model is likely to underestimate Reθ,t [36].

In order to compare more in details the proposed model and the Langtry-Menter model, the log files of about fifty

computations on mesh #2 for each model have been post-processed. The computation time per iteration is found to

be 1.43 higher with the proposed model. This value is comparable to the ratio of the number of equations to solve
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11/9 = 1.22 The ratio of the total memory allocated is 110% higher with the proposed model.

(a) (b)

Fig. 5 Incompressible shape factor Hi contours computed with elsA by means of the Langtry-Menter model

for transition prediction at the outer (a) and inner (b) sides of the nacelle. The solid line depicts the transition

location predicted by 3C3D by means of the parabola method. Black cones depict ψ ∈ {0, π/2, π, 3π/2, 2π}. The

flow goes from left to right.

(a) (b)

Fig. 6 Incompressible shape factor Hi contours computed with elsA by means of the AHD and C1 criteria for

transition prediction at the outer (a) and inner (b) sides of the nacelle. The solid line depicts the transition

location predicted by 3C3D by means of the parabola method. Black cones depict ψ ∈ {0, π/2, π, 3π/2, 2π}. The

flow goes from left to right.
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Table 2 Flow cases

Re α

Case A 2.75 × 106 −2.6o

Case B 4.5 × 106 −2.6o

Case C 4.5 × 106 −0.3o

Case D 2.75 × 106 6.0o

B. TU Braunschweig Sickle Wing

The last validation case is the TU Braunschweig Sickle Wing [34, 37]. This configuration is an interesting validation

case since “the sickle-shaped planform with distinct kinks creates spanwise gradients, and the assumptions of linear

local stability theory are therefore challenged” [37]. Kruse et al. [34] measured the transition location by means of

infrared thermography.

Computations are performed for the four flow cases defined and made available for the "AIAA Applied Aerody-

namics CFD Transition Modeling and Predictive Capabilities Special Session" held at the AIAA SciTech 2018, see

Table 2. Transition line prediction by means of linear stability analysis was given by Kruse et al. [34] for all four cases

and on both sides. They found overall good agreement with the experimental results.

An overset technique is used to mesh the wing within the wind tunnel. The mesh contains 48 × 106 cells among

which 5.7 × 106 are in the overset block containing the wing. The latter is meshed with 230 elements along the chord

on each side. The unswept segment at the root is meshed with 60 elements along the span while each swept segment

is meshed with 120 elements along the span. The transition length ltr is set to 10% of the wing reference chord length.

For all four cases, between 40 and 60 cells are contained within the boundary layer thickness. For all four computations,

the flow is forced to be turbulent at the root of the wing on both sides as in Ref. [34]. In the experiments, this region is

expected to be turbulent because of the contamination from the turbulent flow on the wind tunnel wall.

The computed intermittency is plotted on Figures 7, 8, 9 and 10 together with the experimentally measured transition

locations.

For case A (Figure 7), very good agreement is obtained on the pressure side, where transition is exclusively triggered

by the combination of the AHD and Gleyzes criteria except at the kinks where transition is triggered by the C1 criterion.

As far as the suction side is concerned, transition is triggered by the C1 criterion between the two dashed line,

elsewhere the combination of the AHD and Gleyzes criteria triggers transition. Overall, the model agrees well with

the experiments. Near sections A and B and above section C, the model is not able to reproduce the experimental

results. However, the computed transition line near section B and at the tip agrees qualitatively well with the exact

linear stability computations performed by Kruse et al. [34].
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Fig. 7 TU Braunschweig Sickle Wing, case A - Contours of γ compared to the experimentally measured

transition locations at the suction (left) and pressure (right) sides.

Fig. 8 TU Braunschweig Sickle Wing, case B - Contours of γ compared to the experimentally measured

transition locations at the suction (left) and pressure (right) sides.
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In case B (Figure 8), the C1 criterion triggers transition between the two dashed curve on the upper side and above

the solid line on the pressure side. Elsewhere, the transition is triggered by the combination of the AHD and Gleyzes

criteria. The computed transition location agrees quite well with the experiments. On the pressure at section B, the

transition line computed by the proposed model is slightly too far upstream compared to the experiments and the linear

stability computation of Kruse et al. [34, Figure 11].

Fig. 9 TU Braunschweig Sickle Wing, case C - Contours of γ compared to the experimentally measured

transition locations at the suction (left) and pressure (right) sides.

As far as case C is concerned, the transition onset is due to the C1 criterion between the two dashed lines while

elsewhere the transition onset is due to the combination of AHD and Gleyzes criteria on both sides. The model yields

quite good agreement with the experiments. As observed already in case A, the model is not able to reproduce the

trend measured experimentally and computed by means of linear stability analysis by Kruse et al. [34] on the suction

side near the span section B.

Fig. 10 TU Braunschweig Sickle Wing, case D - Contours of γ compared to the experimentally measured

transition locations at the suction (left) and pressure (right) sides.

The transition model yields a quite good agreement with the experiments in case D (see Figure 10). Compared

to the experiments, the model slightly delays the transition onset location on the suction side, especially near the first

kink. Above the span section C on the pressure side, the model does not agree very well with the transition location
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experimentally measured but is qualitatively in good agreement with the transition line predicted by means of linear

stability computation [34, Figure 13]. Transition is here triggered by the C1 criterion between the two dashed lines on

the suction side and between section A and the dashed line and above the solid line on the lower side. Everywhere else,

transition is triggered by the combination of the AHD and Gleyzes criteria.

VI. Conclusion

An implementation of the stability based AHD criterion by means of transport equations is presented. This criterion,

valid for Mach number up to M = 4 and for heated and cold wall, is combined with the C1 and Gleyzes criteria to

account for cross-flow transition and transition in separation bubbles.

The implementation by means of transport equations and the accuracy of the model were validated for M ≤ 0.6

by comparing with results obtained by means of both approximated and exact linear stability analysis on the XRF1

nacelle. Comparisons with the experiments were performed for four flow cases on the TU Braunschweig Sickle Wing

geometry. The obtained results ranged from good to excellent agreement with the experiments.

Compared to the transition model of Langtry and Menter [1], the proposed model is more expensive on a numerical

point of view as more transport equations have to be solved and wall normal communication is required. However,

those additional equations were introduced in order to embed more physics and therefore the proposed model may be

applied on a wider range of Mach number. If even higher accuracy is required and having a higher computational cost

is affordable, the method of Bégou et al. [13] can be used since this method gives a close matching to exact linear

stability computations. The method of Bégou et al. [13] complements well with the method presented in this paper as

it can be used in more advanced design stages.
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Appendix

A. AHD criterion

As explained in Ref. [38], the N-factor envelope is approximated by linear functions of the momentum based

Reynolds number Reθ where the two coefficients of the linear approximation depends on the Pohlhausen parameter

Λ2 = θ
2/νe

dUe

ds :

N = a(Λ2)(Reθ − Reθ,cr (Λ2) + ∆Reθ,cr (Λ2)) (22)
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where: 


a(Λ2) =
2.4

A
exp(−BΛ2)

∆Reθ,cr = −
2.4

a(Λ2)

(
8.43

2.4
− log(C) + DΛ2

)

Reθ,cr = exp (E/Hi − F)

(23)

with A = −206, B = 25.7, C = 16.8, D = 2.77, E = 52 and F = 14.8. Reθ,cr is the Reynolds number at the

critical point, i.e. the location from which Tollmien-Schlichting instabilities start to grow. The dependency on Λ2 is

replaced by a dependency on Hi as there exists a bijective relationship between both. ∆Reθ,cr < 0 corresponds to an

approximation error.

To apply Eq. (22) on spatially evolving flows,Λ2 is replaced by Λ̄2 which corresponds to its averaged value between

the critical point of curvilinear coordinate scr and the current location of curvilinear coordinate s (measured along the

streamline at the edge of the boundary layer):

Λ̄2 =
1

s − scr

∫
s

scr

Λ2(ξ)dξ.

By combining Eqs. (22) and the transition threshold NT given by the Mack’s law [35] (NT = −2.4 ln(Tu) − 8.43),

the AHD transition criterion can be expressed as a threshold on Reθ :

Reθ,tr = Reθ,cr + A exp(BΛ̄2)
(
ln(CTu) − DΛ̄2

)
. (24)

In its compressible extension [21], the variables A, B,C,D, E and F are functions of Me, B depends as well on Λ̄2

and Retheta,cr depends on an additional coefficient G:

Reθ,cr = exp
(
G(Me)/Hi

2
+ E(Me)/Hi − F(Me)

)
.

The coefficients are given below:

A(Me) =




−236.7 + Me(117.16 + Me(−356.47 + 98.65Me)) if Me ≤ 1.8

2582 + Me(−3911 + Me(1527 − 188Me)) if 1.8 < Me ≤ 2.8

−2558 + Me(1644 + Me(−431.4 + 37.36Me)) if 2.8 < Me ≤ 4

B(Me, Λ̄2) = 22.04 + Me(9.8252 + Me(−3.0243 + 0.2952Me)) + Λ̄2B2(Me, Λ̄2)
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where if Λ2 ≤ −0.0001

B2(Me, Λ̄2) =



−111.54 + Me(284.73 + Me(504.39 + Me(−1175 + Me(653.79 − 112.94Me)))) if Me ≤ 2.5

−9626.3 + Me(7357.6 + Me(−1841.4 + 169.25Me)) if 2.5 < Me ≤ 4

and else

B2(Me, Λ̄2) =



−113.4 + Me(17.47 + Me(279.45 − 26.73Me)) if Me ≤ 3

1614.1 + Me(1730 − 565.02Me) if 3 < Me ≤ 4

C(Me) =




22.56 + Me(−6.096 + Me(31.2 + Me(−54.63 + Me(49.54 + Me(−19.72 + 2.749Me))))) if Me ≤ 2.5

273.7 + Me(−206 + Me(55.76 − 4.99Me)) if 2.5 < Me ≤ 4

D(Me) = 12 − 0.5Me

E(Me) =




51.904 + Me(0.167 + Me(−0.7379 + 0.6711Me)) if Me ≤ 1.1

−641.04 + Me(313.04 − 40.471Me) if 1.1 < Me ≤ 4

F(Me) =




14.6 + Me(−0.1745 + Me(0.0083 + Me(0.3232 + Me(−0.7061 + 0.3016Me)))) if Me ≤ 1.1

−114.6 + Me(56.54 − 7.561Me) if 1.1 < Me ≤ 4

G(Me) =




0 if Me ≤ 1.1

928.12 + Me(−427.97 + 53.192Me) if 1.1 < Me ≤ 4

B. Gleyzes criterion

The term B(Hi) of the Gleyzes criterion (Eq. (3)) is:

B(Hi) =




−
162.11093

H1.1
i

3.36 < Hi

−73 exp (−1.56486(Hi − 3.02)) 2.8 < Hi < 3.36

−103 exp (−4.12633(Hi − 2.8)) Hi < 2.8.

(25)
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C. Integration by means of transport equations

In the following sections, we show that solving Eqs.(17) and (16) corresponds to computing s and Λ̄2 by means of

transport equations.

1. Transport equation to compute s

Let s be the curvilinear coordinate at (x, t). At t + ∆t, the new location is x + ∆x = x + U∆t and the curvilinear

coordinate is s(x + ∆x, t + ∆t) = s(x, t) + ∆t‖U‖. A Taylor expansion yields:

s(x + ∆x, t + ∆t) � s(x, t) + ∇s · U∆t + ∂t s∆t (26)

which implies that:

∂t s + ∇s · U = ‖U‖. (27)

Combining Eq. (27) with the continuity equation of the Navier-Stokes equation yields:

∂t (ρs) + ∇ · (ρsU) = ρ‖U‖. (28)

2. Transport equation to compute Λ̄2

Let Λ̄2 be the average Pohlhausen value at (x, t). At t + ∆t, the new location is x + ∆x = x +U∆t and the average

Pohlhausen value is

Λ̄2(x + ∆x, t + ∆t) =
sΛ̄2(x, t) + ∆t‖U‖Λ2

s(x + ∆x, t + ∆t)
(29)

.

A Taylor expansion yields:

Λ̄2(x, t) + ∇Λ̄2 · U∆t + ∂tΛ̄2∆t �
sΛ̄2(x, t) + ∆t‖U‖Λ2

s(x, t) + ∇s · U∆t + ∂t s∆t
(30)

which can be combined with Eq. (27):

(
Λ̄2(x, t) + ∇Λ̄2 · U∆t + ∂tΛ̄2∆t

) (
s(x, t) + ∆t‖U‖

)
= sΛ̄2(x, t) + ∆t‖U‖Λ2 (31)

Neglecting O(∆t2) terms yields:

∂tΛ̄2 + ∇Λ̄2 · U =
‖U‖

s

(
Λ2 − Λ̄2

)
. (32)
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Combining Eq. (32) with the continuity equation of the Navier-Stokes equation yields:

∂t (ρΛ̄2) + ∇ · (ρΛ̄2U) = ρ
‖U‖

s

(
Λ2 − Λ̄2

)
. (33)
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