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Linear stability analysis in rotating frames and its application
to fan blade transition prediction
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ONERA/DMPE, Université de Toulouse - F-31055 Toulouse - France

R. Barrier†, G. Billonet‡, J. Marty§
ONERA/DAAA, Université Paris-Saclay - F-92190 Meudon - France

A linear stability solver has been extended to rotating frames. The theoretical details of

linear stability theory in rotating frames are given. Validation is performed by comparing

against the well-known Ekman layer case. Moreover, two new compressible validation cases

are proposed for which very good agreement is as well obtained. Linear stability analysis

is then performed on a rotating fan blade with incoming flow, obtained by means of RANS

computation. By neglecting or taking into account rotation in the linear stability equations, the

effect of rotation on transition mechanisms is investigated. Moreover, N-factors are computed

for transition prediction. The present results show that rotation hardly modifies the growth-

rate of Tollmien-Schlichting instabilities. However, rotation destabilizes stationary cross-flow

waves but not enough to trigger transition.

Nomenclature

α = Streamwise wave number

β = Transversal wave number

β0 = Angle between the wall friction vector and the velocity vector at the boundary layer edge

ω = Angular frequency

Ω = Rotation vector

ψ = Angle between boundary layer edge streamline and wave vector

a0 = Sound speed

s = Curvilinear abscissa

x = (x, y, z) = Local stability frame

x = Coordinate oriented along the streamline at the boundary layer edge

y = Wall normal coordinate
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I. Introduction
Natural transition prediction on wings and nacelles has received much attention over the past years as it has a

significant impact on wall friction and heating. Linear stability analysis has been extensively used to study boundary

layer instabilities at the origin of laminar to turbulent transition, namely Tollmien-Schlichting and cross-flow waves.

The eN method [1] and all its derivatives, that are based on linear stability theory, are commonly used for transition

prediction on wings and nacelles for instance.

As far as flows around rotating geometries are concerned (wind turbines, helicopter and fan blades, etc . . . ), laminar

to turbulent transition has been experimentally studied for decades, see for instance the work of Mc Croskey [2] (for

helicopter blades) or the quite recent papers of Schülein et al. [3] and Lang et al. [4]. Linear stability theory has

been applied for simple geometry in rotating frame: disks [5, 6], cones [7–9] and flat plates [10]. However, little is

known about the impact of rotation on transition mechanisms on rotating blades. In reference [4], eN is used to predict

transition on a rotor blade and Gross et al. [11] performed stability analysis of the flow over a wind turbine blade. But in

both studies, the authors did not account for the additional terms related to centrifugal and Coriolis accelerations in the

linear stability equations. Weiss et al. [12] studied the effect of rotation on transition on helicopter blades. They found

that transition location can be predicted by two-dimensional numerical methods based on local linear stability theory

without accounting for the additional terms associated with rotation.

This paper presents the details for extending the instability analysis program MAMOUT [13] to rotating flow

(section II). In particular, test cases are provided to validate the implementation of the additional terms appearing in the

linear stability equations for compressible flows over arbitrary geometries because, as stated by Dechamps and Hein

[14], “only very few test cases combine rotation with compressibility in the literature”. The solver MAMOUT is then

applied to investigate the effect of the terms associated to rotation in the linear stability equations for the case of a fan

blade flow (section III).

II. Extension of a linear stability solver to flows over rotating geometries

A. Local linear stability equations

Linear stability equations (see for instance reference [15] for comprehensive details for incompressible flows) are

obtained by considering the Navier-Stokes equations applied to a flow Q(x, t) (of velocity vectorU and density ρ) divided

into a steady mean-flow Q0(x) (of velocity vector U0 and density ρ0) and an unsteady perturbation term q′(x, t) (of

velocity vector u′ and density ρ′). If the perturbation term q′ is assumed to be of small magnitude, the terms nonlinear

with respect to q′ can be neglected. Under the parallel flow assumption, the equations are further simplified and the

perturbation is written under the wave Ansatz q′(x, t) = q̂(y) exp (i(αx + βz − ωt)). The resulting set of equations is

called in the following "linear stability equations". Spatial local linear stability analysis [1] consists finally in fixing β



Fig. 1 Schematic diagram of a rotating fan blade

and ω and solving the resulting eigenproblem of eigenvalues α. The growth rate of a wave of streamwise wavenumber α

is then given by −=(α).

In a rotating frame, two new terms appear in the Navier-Stokes momentum equations: the Coriolis acceleration term

2ρΩ ∧U and the centrifugal acceleration term ρΩ ∧
(
Ω ∧ r(M)

)
where M is the current point and r(M) is the vector

from the projection of the point M on the rotation axis to M (see Figure 1). As a result, the following term is added on

the right-hand side of the linear stability equations:

2ρ0Ω ∧ u′ + 2ρ′Ω ∧U0 + ρ
′
Ω ∧

(
Ω ∧ r(M)

)
. (1)

B. Implementation and validation

The additional terms associated to rotation given in Eq. (1) have been added in the linear stability solver MAMOUT

[13].

The solver features the possibility to consider only one of three new additional terms. In the following three sections,

the implementation of each term is validated independently. The second and third configurations are not physically

relevant but are just constructed for the sake of validation of the implementation of the compressible terms.



1. First Coriolis acceleration term

The implementation of the term 2po.Q A�, is validated on the incompressible Ekman layer flow. This configuration

has been extensively studied, see for instance Ref. [16]. In the latter reference are given eigenvalues. ln particular 

the first line of Ref. [16, Table I .] is considered and compared against results of MA MOUT in figure 2 (eigenvalues 

are plotted in terms of phase velocity c4> = w/a). Avery good agreement is obtained both for incompressible and 

compressible linear stability computations. Moreover, MAMOUT catches the continuous spectrum, see Ref. [17]. 
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Fig. 2 Incompressible (D) and compressible (0) spectra, eigenvalue given in Ref. [16] (x), continuons spectrum 
(Ref. [17]) ( - - -). 

2. Second Coriolis acceleration term

ln order to validate the term 2p'.Q A Uo, a configuration has been made up. It consists of a channel uniform flow of

Mach number Mx = Uo/ ao and Mz = Wo/ ao along x and z respectively. The upper and lower bounds of the channel 

are located at y = H and y = 0 respectively. The viscosity is set here to zero and the governing equat.ions of the 

perturbations are reduced to the standard linearized Euler equations enhanced by the term 2p'.Q A Uo. For given values 

of w and /3, the wavenumber along x of the acoustic mode of order 1ml > 0 along y is given by: 

(2a) 

where 
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Fig. 3 Numerical spectrum (0) and analytic wavenumber given by eq. (2a) (x) for 1ml E ŒI, lOD. 

On Fig. 3 are compared the wavenumbers obtained numerically and analytically for Mx = 0.4, M
z 

= 0.3, 

DH /ao = (1, 2, 3), f3 = 1/H and w = O. lao/H. A very good agreement is observed (the relat.ive deviation is between 

10-5 and 10-3 for 1ml E ŒI, JOD).

3. Centrifuga[ acceleration term

As in the previous section, the configurat.ion considered here is quite unrealist.ic but may be used to validate

the implementat.ion of the term p'f) A (DA ,jM)). The same base flow is considered but here D = Q ey (therefore 

!_(Q) • ey = 0 and V Q !_(Q) = !_( 0). Solving analytically the linearized Euler equations enhanced by p'f]: A (D A !_(M)) 

for a given couple (w,/3) yields the following streamwise wavenumber: 

(3a) 
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Fig. 4 Numerical spectrum (0) and analytic wavenumber given by eq. (3a) (x) for 1ml E Œ0, lOD. 

The comparison between the analytical and numerical wavenumbers is displayed on Fig. 4. The parameters are

Mx = 0.4, Mz = 0.3,g = 2ao/H
f!J

,!.(Q) = 5Hex + 3H�, w = 0.3ao/H and fJ = 1/H. For 1ml E U0, lOU, the relative

deviation is at most 4.5 x 10-5.

III. Application to fan blade transition prediction

Stability of a boundary layer over a fan blade is analyzed in this sect.ion. The primary object.ive is to investigate

how rotat.ion might modify the transition mechanisms. As the latter are strongly related to linear instabilities, this is

achieved by comparing linear stability results obtained by neglecting the rotation terms (eq. (1)) with linear stability

computations accounting for the rotation terms.

A. Flow computation

The mean-flow on which linear stability analysis is performed corresponds to the laminar region of a RANS field

obtained with the elsA software (ONERA-Airbus-Safran property) [18]. elsA computation was run with second order

Roe's spatial scheme. Transition was accounred for by means of ONERA transition criteria (AHD-Gleyzes criterion see

below section ill.A.l, Cl criterion) and Roberts criterion (with Tu= 0.50/o), see Ref. [19] for more details.

The configuration considered corresponds to the flow over a fan blade. The latter was designed in the ASPIRE

project [20] and is representative of croise flight. At the inflow, the inlet Mach number is set to 0.61. The relative tip



Mach number is 1.

The mesh is built to be orthogonal to the blade in the boundary layer. The grid points spacing at the wall is

∆y/L = 2.4 × 10−6 where L is the chord length at the root of the blade and the ratio of the geometric progression is set

to 1.1 As a result, there are about 50 cells in the boundary layer thickness in the laminar region. Such parameters are

known to be reasonable good for transition prediction in elsA . They correspond to minimal requirements for exact

stability analysis. Along the chord, the blade is meshed with about 230 distributed elements following a bigeometric law

of ratio 1.2 in order to refine both the leading and trailing edges.

Post-processing of the elsA computation shows that transition is only triggered by the AHD-Gleyzes criterion i.e.

according to elsA transversal transition mechanisms associated to stationary cross-flow waves (modeled in elsA by the

C1 criterion) do not trigger transition: transition is only due to longitudinal mechanisms.

1. AHD and Gleyzes transition criteria

Both the AHD and Gleyzes transition criteria are based on the approximation of the N-factor envelope obtained by

means of local linear stability computations on incompressible self-similar boundary layer profiles. The AHD criterion

was derived from computations on Falkner-Skan self-similar boundary layer profiles while Gleyzes et al. [21] performed

computations on separated boundary layer profiles.

To derive the AHD criterion, Habiballah [22] proposed the following linear approximation of the N-factor envelope:

N = a(Λ2)(Reθ − Reθ,cr (Λ2) + ∆Reθ,cr (Λ2)) . (4)

To account for the spatial evolution of the flow, the Pohlhausen parameter Λ2 = θ
2/νe

dUe

ds
is replaced in Eq. 4 by its

averaged value Λ2 taken along a streamline between the critical location and the current location. The critical point

is defined as the location from which the Tollmien-Schlichting waves are unstable and corresponds to the Reynolds

number modeled by Habiballah [22] as:

Reθ,cr = exp(52/Hi − 14.8) (5)

where Hi is the incompressible boundary layer shape factor. By then combining Eq. (4) with the Mack’s law [15]

NT = −8.43 − 2.4 ln(Tu) (6)

the following transition threshold on the momentum thickness based Reynolds number is obtained:

Reθ,tr = Reθ,cr − 206 exp(25.7Λ2)
(
ln (16.8Tu) − DΛ2

)
. (7)



The AHD criterion has been extended to compressible flow by Perraud and Durant [23].

Gleyzes et al. [21] proposed to approximate the N-factor envelope of separated flows as:

dN
dReθ

= −
2, 4

B(Hi)
(8)

where

B(Hi) =



−
162.11093

H1.1
i

3.36 < Hi

−73 exp (−1.56486(Hi − 3.02)) 2.8 < Hi < 3.36

−103 exp (−4.12633(Hi − 2.8)) Hi < 2.8.

(9)

Since both the AHD and Gleyzes criteria are based on the approximation of the dN/dReθ , they can be combined

[24, 25]. The implementation of these transition criteria in a CFD solver by means of transport equations is given by

Pascal et al. [25]

B. Flow topology

In order to highlight regions subject to boundary layer separation on both sides, friction lines are plotted in

figures 5(a,c) together with regions where |β0 | > π/2 (which corresponds to a sufficient condition for separation).

Transition location (i.e. where the intermittency starts to grow) is plotted as a thick pink line. At the suction side, leading

edge separation occurs from the hub up to approximately mid span and near the tip. This separation triggers laminar to

turbulent transition. From about 50% to 75% of the blade span, the flow exhibits a laminar zone. A quite significant

laminar zone is observed at the pressure side.

Streamlines at the boundary layer edge at the suction side (respectively pressure side) are plotted in figure 5(b)

(respectively figure 5(d)). They are basically oriented along the chord like the friction lines, which shows that the

cross-flow is weak which is consistent with the fact that C1 criterion does not trigger transition.

C. Linear stability analysis

1. Analysis at a given location

Before integrating the growth rate (−=(α)) to get N-factors, stability analysis is performed at three locations P1, P2

and S1 (depicted with black squares on figures 5(a,c)). At each location, linear stability computations are run over

a wide range of transverse wavenumbers β and angular frequencies ω. By running two sets of computations, one

where rotation terms are accounted for and one where they are neglected, the effect of rotation on linear instabilities is

investigated. The computed contours of =(α) are plotted figures 6(a-f). From a qualitative point of view, the rotation

does not seem to affect much the value of the growth rate.



(a) (b) (c) (d)

Fig. 5 (a) and (c): Friction lines at suction (a) and pressure (c) sides. The grey regions show where |β0 | > π/2.
(b) and (c): streamlines at suction (b) and pressure (d) sides and pressure contours. On all four figures, the
thick pink line shows predicted transition locations in elsA.

In order to have a more quantitative point of view, =(α) is plotted in figures 7(a-f) as a function of ψ for ω = 0

and for the value of the angular frequency that leads to the highest growth rate when rotation is not accounted for.

The conclusions are quite the same at the three locations. The range of ψ and the value of ω̃ are characteristics of

stationary cross-flow (figures 7(a,c,e)) and Tollmien-Schlichting (figures 7(b,d,f)) instabilities. Stationary cross-flow

waves are destabilized by rotation but the growth rate achieved is one order of magnitude lower than the growth rate of

Tollmien-Schlichting waves. The latter are hardly affected by the rotation.

The fact that Tollmien-Schlichting instabilities are hardly modified is in agreement with results of Dechamps and

Hein [14] obtained for the flow along a flat plate with rotation. However, contrary to the aforementioned reference,

rotation has not been found to generate new types of instabilities. Dechamps and Hein [14] observed “the appearance of

a new region of instability at smaller αr [here<(α)] and higher β”. Such wavenumbers are characteristics of cross-flow

instabilities. Contrary to the configuration studied by Dechamps and Hein [14], the flow over a fan blade already

supports cross-flow waves even when rotation is not accounted for. Adding the rotation terms in the linear stability

equations is only seen to destabilize the already existing cross-flow waves. This result is in agreement with the work of

Garrett et al. [8] and of Hussain et al. [6]. These authors studied the stability of the flow on a rotating broad cone and

over a rotating disk respectively in an enforced axial flow. They found that cross-flow waves are destabilized when

increasing the ratio of the rotation speed over the incoming flow velocity.

2. Computation of N-factors

In order to evaluate a more global effect and to draw some conclusion on transition prediction, N-factors are

computed along the lines P1, P2 and S1 (depicted by blue lines in figures 5(a,c)). A first attempt has been made to 
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interpolate the field aJong streamlines but it yielded non-smooth boundary layer profiles. Therefore it has been chosen 

to approximate the streamlines by the taking closest cells œnters which actually corresponds to taking mesh lines. Sinœ 

both the flow and the mesh lines are oriented along the chord, taking the mesh lines seems to be ajustified approximation. 

The computation is performed foUowing the envelope method [l]: 

N = max 1 max-!J(a)ds. 
ùJ S<Sy:O fJ 

(JO) 

s is the curvilinear abscissa aJong the considered line and the range of integration is restricted to the lanùnar regions of 

the mean-flow field (corresponding to s < s
y
=-0). Please note that when transition is detected in elsA, the internùttency 

does not start immediately to grow for the sake of numerical stability [26]. The locations where transition is detected in 

elsA along lines Pl, P2 and SI are plotted as vertical dotted lines on figures 8(a), 9(a) and JO(a). 

N-factors for Tollnùen-Schlichting and cross-flow waves along line Pl are plotted on figure 8. As observed in

section III.C. l ,  accounting for rotation does not aftèct significantly Tollnùen-Schlichting instabilities. However rotation 

destabilizes cross-flow waves but the value of N achieved is too low to trigger transition (for instance a threshold value 

of7.6 is given in Ref. f27l). Sinùlar trends are observed along lines P2 and Sl. see figures 9 and JO. 
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and JO(a)). ln terms of transition prediction, elsA and exact stability computations are in good agreement along line P2. 

However, elsA slightly underpredicts the transition location along line Pl while aJong line S l the transition location is 
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found too far downstream which can be explained by the fact that the shape of the N-factor envelope (almost constant

for s ∈ [0.11, 0.16]m) is quite "pathological".

IV. Conclusion
A local linear stability solver has been extended to rotating frame by implementing terms corresponding to centrifugal

and Coriolis accelerations. Validation was made for the well-known Ekman layer configuration. Moreover, two new

validation cases are proposed to validate the implementation of compressible terms. This was motivated by the fact that

"only very few test cases combine rotation with compressibility in the litterature" as stated by Dechamps and Hein [14].

The stability solver has been subsequently applied to investigate the effect of rotation on the transition mechanisms

of the flow over a fan blade. This was achieved by comparing a set of stability computations accounting for rotation

with a set of computations where rotation terms are neglected. Tollmien-Schlichting are found to be hardly modified

by rotation while cross-flow waves are destabilised. These findings are in agreement with the work of Dechamps and

Hein [14], Garrett et al. [8] and Hussain et al. [6]. The N-factors reached by cross-flow waves are seen to be too low to

trigger transition which is rather due to the amplification of Tollmien-Schlichting waves. It can be concluded that, when

performing RANS computation over a fan blade, accounting for transition by means of longitudinal transition criteria

originally derived in stationary frame is justified.
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