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ABSTRACT  

The practical exploitation of SDI (Spatial Data Infrastructures) raises number of issues as far as it 
grows. Among them is the heterogeneity of data sources and thus the difficulty for GIS users not to 
depend on the data source format and of course to learn different systems. This a major flaw with respect 
to reuse and data sharing. The purpose of our work is to propose a new semantic layer derived from the 
SQL language that is independent of the underlying data source. This layer, called GDMS (Generic Data 
source Management System) can first be seen as an abstraction layer between data sources and the SDI 
tools. We will also show how this layer extends both SQL and spatial semantics and improves the 
exploitation of the SDI, by providing feedback both in terms of work and data reuse. A simple example 
mixing heterogeneous data sources will be presented. 

INTRODUCTION 

Recently, attention has been focused on the development of Spatial Data Infrastructures at different 
levels (local, national) and for various policy areas and priority of actions such as social, economic, and 
environmental issues (Clinton, 1994, INSPIRE 2007). All of them share the same goal: maximize user’s 
access to spatial data, minimize the redundancy of efforts and investments (Nebert, 2004). To implement it 
in European states, the INSPIRE directive defines a set of rules and specifications and some basic 
components (figure 1).  

Theoretically, data is stored on distributed repositories (Database Management Systems that are 
extended with the capability of manipulating georeferenced data in most cases). A set of tools is coming in 
between the repositories and the user applications such as GIS applications or thin web clients. These tools 
provide the user with an access to a set of services like catalog, geoprocessing, dispatcher that permit to 
view, query or plan advanced analysis. The interoperability of the system is guaranteed by several 
standards for data exchange and processing (GML, WFS, WMS, WPS) (Smits, 2002).  

In practice, the development and exploitation of an SDI is complex and faces many difficulties. Unlike 
the web client side of an SDI, the server side and desktop clients still deal with the complexity due to the 
multiple data sources types (WFS, spatial databases, local files...) of typical SDI scenarios. Additionally, 
this complexity leads to an increasing difficulty to reuse work between the users of the SDI. Finally, there 
are human factors (new practices) (Rajabifard 2004, de Oliveira, 1996) that reduce SDI acceptance by the 
users.  

 



  

Figure 1: Architecture reference model for the INSPIRE directive (INSPIRE, 2007) 

 
This paper is focused on improving the exploitation of SDI through a semantic layer between data 

sources and desktop applications. This layer will allow the users to work independently of data source 
types in the SDI and will let them reuse the semantic functionalities of some other users through a SQL 
derived language. The goal of this language is to be simple and powerful so that the users can manage the 
SDI independently of the repositories complexity.  

After presenting the aims of the work we will describe the architecture of the solution and its internal 
model. Finally we will show the semantic layer in action in a theoretical use case of classifying watersheds 
by its runoff risk. 



 
Figure 2: GDMS ability to access Data and Semantic repositories 

RELATED WORK  

The questions of spatial query language, process layer and spatial semantic repositories have been 
thoroughly studied over the last years. As reviewed by (Lopes de Oliveira, 1996), the need for spatial 
query formalism has been clearly identified by and answered in (Egenhofer, 1988a,b), (Güting, 1988), 
(Goh, 1989), with GEOQL (Ooi, 1990), with DML (Calcinelli, 1991), with SQL (Svensson, 1991), GPL 
(Egenhofer, 1991), Spatial SQL  (Egenhofer, 1994), geoPOM (Nittel, 1997), GeoSQL (Wang, 2000). And 
there are already several efficient and industrial implementations that spatially enable Relational 
DataBases Management Systems (such as the PostGIS, a geographic extension for PostgreSQL).  

Spatial and alphanumerical data may be located on volatile memory or persistent storage devices. As 
for databases, common geographic software applications require, in order to be considered usable, 
implementing a minimum set of features: ability to Create new entries, as well as to Read, Update and 
Delete existing entries. The Structured Query Language (SQL) is a world famous declarative 
programming language dedicated to CRUD data from Relational DataBase Management Systems 
(RDBMS). Beyond this, it is a data-oriented programming and query language that consists of three more 
command subsets:  

• A standard Data Definition Language (DDL) with CREATE, DROP, ALTER common 
command,  

• A standard Data Control Language (DCL) with GRANT, REVOKE common commands,  

• A Transaction Control Language (TCL).  



The SQL language has already been spatially enabled and extended by the Open Geospatial 
Consortium in the OpenGIS ”Simple Features Specification for SQL“ (Herring 2006a,b). Indeed, this 
specification defines a spatial object model and fundamental geometric functions, including:  

• Spatial predicates (based on the DE-9IM model),  

• Overlay functions (intersection, difference, union, symmetric difference),  

• Buffer,  

• Convex hull,  

• Area and distance functions.  

It proposes a standard SQL schema that supports storage, retrieval, query and update of simple 
geospatial feature collections but adapted to RDBMS (Herring 2006a,b). For example, the following query 
returns a new geometry defined by buffering a distance d around geometry object, where d is in the 
distance units for the Spatial Reference of geometry.  

SELECT Buffer(geometry, d) FROM roads;  
In this case roads is a table stored in a Relational DBMS and geometry is a column that contains the 

value encoded in Well Known Binary format (Herring 2006a). 

GDMS (Anguix, 2005) is related with a similar layer used in the gvSIG project to manage the 
alphanumeric access. This layer is called gdbms and can only used for alphanumeric purposes. The work 
presented here is a general refactoring that mainly adds spatial functionalities and a more powerful SQL 
processor to GDBMS. 

Motivations 
Frequently, the heterogeneity of source types makes difficult the reuse of algorithms that are tightly 

coupled with the specified file format, database vendor, etc. With an intermediate layer between the user 
and the information source, the work developed by the former will not be coupled with the specificities of 
each format but with the intermediate layer itself, letting the work to be reused in a much more wide set of 
scenarios and of course simplify the learning curve for new developers. 

One of the problems that such a layer arises is that it has to be able to access any potential source type 
. As the current number of source types is huge (ESRI Shapefile, spatial postgis, oracle spatial, WFS...) 
and can grow indefinitely, the user has to be able to extend the access capabilities of the layer. By 
introducing the concept of driver, GDMS intends to potentially fit any situation, even if the types of 
sources are not well known or currently the layer does not have the driver to access it.  

The development of an abstract layer to manipulate spatial data in SQL is not a recent innovation. 
Several vendors like Esri with ArcSDE or MapInfo with SpatialWare proposed such a middleware. 
However, these systems have some limitations, due to: 

• Interoperability across data repositories and spatial extensions of database technology 

• Interoperability about SQL semantics. MapInfo used the User DefinedTypes (UDT) 
framework to build SpatialWare while ArcSDE used Abstract DataTypes (ADT). 
Practically, it has an impact on SQL syntax. For example, with ADTs to compute the area of 



a geometry the user writes "select geometry.area() from mylayer" while with UDTs he write 
"select area(geometry) from mylayer". 

• Complexity of the their installation (need server like SQL Server 2000). 

With GDMS, the idea is to postpone these problems by developing a high flexible and portable tool to 
build SQL queries. Currently, GDMS is dedicated for GIS clients but in the future it will be also a 
software component for SDI to process spatial data according to Web Processing Service. 

GDMS provides an API that lets the user operate independently of source type. However, this API is 
not friendly enough for an end user and reduces the acceptance of the solution by final users. With the 
purpose of simplifying both access and manipulation of data sources, GDMS provides a SQL processor 
that lets the execution of the common Data Manipulation Language statements against any source mapped 
by a driver. To avoid introducing a new grammar, GDMS fully preserves the SQL-92 grammar and adds 
to this standard geometric concepts and spatial functions as in OGC simple features SQL specification. As 
an analogy to spatial SQL for RDBMS, GDMS provides an extended SQL query language on 
heterogeneous data types.   

It is the main purpose of GDMS to improve data creation and sharing. As in an SDI the consumption 
of data is as important as the production and sharing of data, the SQL processor in GDMS allows data 
feedback as if they were new data sources (materialized views). This means that the result of SQL queries 
can easily be integrated into the SDI as a new data source. Those data will be ready to be used by further 
SQL statements as any other existing data source (figure 3). 

 

 
Figure 3: Data sources feedback after processing: implementation of materialized views 

  Finally, to improve further code reuse, GDMS introduces the concept of semantic repository. GDMS 
allows an extension to the semantics of the SQL language in terms of functions and custom queries. 
Functions and custom queries are artifacts that contain the implementation of some operations on the data 
and can be reused just by referencing its name into an SQL statement. This way, some user can implement 
a buffer operation and other can reuse it just by calling buffer in an SQL query: select buffer(the_geom, 
20) from mydata. The collection of all this artifacts is the semantic repository. The purpose of GDMS is to 
maintain such a repository and encourage the feedback of new artifacts from the user to make it a growing 



knowledge base (figure 4). The semantic repository is more than a library of functions that can be 
extended by new user-defined add-ons; we aim to go a step further with this concept. Indeed, the goal is to 
provide a high level of spatial semantics: 

• checking: a « just in time » validation process of input data type, range... made by a dedicated 
spatial SQL pre-processor 

• sharing:  Future releases will embed network-groupware capacity because user needs also to 
share spatial process and not only geographic data 

• interoperability: The GDMS core is fully OGC compliant, so it is possible to copy and paste 
spatial SQL scripts from/into PostgreSQL/PostGIS. 

At last, our semantic repository provides not only spatial functionalities but also description and 
(sometimes) useful use-cases for each of them. 

 

 
Figure 4: Feedback into the semantic repositories 

IMPLEMENTATION DETAILS  

Architecture  
 

GDMS has a layered architecture (figure 5) where the upper layer contains the SQL interface and the 
semantic repository and the lower one is the driver layer. It contains details that are specific to each the 
source types. In case of the ESRI Shapefile driver, it contains implementation details to open files, decode 



the information and transform the contents into the GDMS internal model. PostgreSQL drivers will open 
the connection and will transform the information of the table into the internal model. This layer also 
provides extensibility to GDMS in terms of data source supported types. It is possible to create a driver to 
support potentially any type of data source.

 

 
Figure 5: GDMS layered architecture 

In spite of its extensibility, the driver layer is absolutely heterogeneous and building a SQL processor 
on top of such a layer would be very complicated. To solve this problem we place the Datasource layer on 
top of the drivers one. The main responsibility of this layer is the creation of a common API to manage all 
source types. 

The SQL processor is built on top of this Datasource layer so it uses the common interface it provides 
to access any of the available data source types. Consequently it is possible to mix different types of data 
sources in the same SQL statement. For example it is possible to join a shapefile with a CSV file and a 
PostgreSQL table in one single SQL query. To reference the sources in a SQL statement it is necessary to 
map a name to each involved data source before. Here we have associated a Shapefile with 'shape', a 
PostgreSQL table with 'postgres' and a coma separated values file with 'csv'. Note that the associated name 
is the last argument of each "select register..." statement. Sources are referenced with those names in the 
'from' clause of the last statement. 

SELECT REGISTER ('postgresql','localhost', '5432', 
'mygisdb','postgres','postgres','watershed', 'postgres'); 
SELECT REGISTER ('/tmp/waternetwork.shp','shape');  
SELECT REGISTER ('/tmp/codes.csv','csv');  
SELECT s.the_geom FROM shape s, postgres p, csv c WHERE s.id = p.id AND 
p.id = c.id AND c.code = 3 AND p.code = 4; 

On top of the stack there is the semantic repository that provides a functional package ready to be 
reused in new queries by the SQL processor. 



Data Model  
We have seen that the Datasource layer deals with the heterogeneity of the drivers and provides a 

common interface to the upper layers. We will now focus on the data model that is used to implement all 
features. It consists of one main entity called DataSource. A DataSource is an abstraction that allows the 
management of one unique data source. This means that it is necessary to have as many DataSource 
instances as the number of sources to be accessed.  

This abstraction has a typical tabular structure that uses rows to store each of the elements of the data 
source. This structure is close to the JDBC standard, where each row consists of a set of fields with a 
common structure for all rows in the DataSource. It is possible to see a relationship between this model 
and the GeoAPI model (currently being standardized in ISO19123) where FeatureCollection and Feature 
respectively match DataSource and its rows. Finally the field values of each row match the attribute 
values of a Feature. 

All the information about field types is stored into a Metadata object that contains all field names, 
field types and restrictions for the types, such as length for string values, and coordinate reference system 
for spatial types. The model in this point allows a wide range of types for the fields that are compliant with 
the JDBC standard for alphanumeric types or with the OpenGIS Simple Features Specification for spatial 
types. Also note that there is no restriction in field types for a DataSource, it can have zero or more fields 
of any type so it is as possible to have several spatial fields as to have just alphanumerical. 

The major components of the GDMS data model are shown in figure 6.  

 

Figure 6: GDMS data model   

EXAMPLE CASE STUDY 

The result of our development is the explained semantic layer. It's an open source project that can be 
easily embedded in third party applications. Since the usage of the GDMS layer would be difficult without 
a user-friendly interface, GDMS is part of a broader GIS and SDI project named OrbisGIS (Leduc, 2007). 
As the rich client application of our SDI, OrbisGIS allows executing one or more queries and permits the 
presentation of the geometry of the data source and the visualization of issues that are related to spatial 



objects. For non-spatial features, the user can display the result into tables. In this section we will 
demonstrate how various SQL expressions can be applied including heterogeneous data source and 
different kinds of processing: spatial and non-spatial. We suppose a theoretical example where the aim is 
to classify watersheds comparing to runoff risk. The watersheds are classified on the basis of one arbitrary 
criterion: The percentage area of cereals being less than 20 meters away from a river network.  

Data and processing schema  
 

Three vector spatial data sources are considered: watershed, waternetwork and landcover2000.  They are 
described in table 1. 
 

Name Geometry Description Data repository 

watershed polygon A set of 3 watersheds used to compute 
density. PostGIS table 

waternetwork  linestring Ditches and rivers in Sterenn watershed. Esri Shapefile 

landcover2000  polygon Land cover classification in 2000. Esri Shapefile  
Table 1: Input data sources 

 
The example is divided in the 6 steps illustrated in figure 7. 
                 1. Accessing data, 
                 2. Filtering data, 
                 3. Identify the parcels that are located less than 20 meters away from a river feature, 
                 4. Extract the parcels that are intersected with watershed, 
                 5. Aggregate all parcels by watershed to compute the total area, 
                 6. Compute density.



Figure 7: Data processing sequence  

Application with GDMS 
First, to start processing, the user must associate a name with all the input data sources. 

SELECT REGISTER ('postgresql','localhost', '5432', 
'mygisDbName','postgres','postgres','watershed', 'watershed'); 
SELECT REGISTER ('/temp/waternetwork.shp','waternetwork');  
SELECT REGISTER ('/temp/landcover2000.shp','landcover2000');  

The data are loaded in the OrbisGIS graphical environment and represented with specific colors and 
symbols (see Appendix for graphical results).



 
The first step of the methodology (step 2 in figure) involves restricting the data area. The user 

identifies and displays only the parcels where landcover type is equal to 'cereals' and only the 
waternetwork where the type is 'rivers'. 

SELECT REGISTER ('/temp/rivers.shp','rivers');  
SELECT REGISTER ('/temp/cereals2000.shp','cereals2000'); 
CREATE TABLE rivers AS SELECT * FROM waternetwork where 
type_axe='rivers'; 
CREATE TABLE cereals AS SELECT * FROM landcover2000 where 
type='cereals';  

The second step uses two spatial functions (Buffer and Intersects) to select the parcels that are less 
than 20 meters of river features. 
SELECT REGISTER ('/temp/cerealsLess20.shp','cerealsLess20'); 
CREATE TABLE cerealsLess20 AS SELECT a.the_geom FROM cereals AS a, 
rivers AS b WHERE Intersects(Buffer(b.the_geom, 20), a.the_geom);

The third step calculates the spatial intersection between cerealsLess20Intersects and the watersheds. 

 
SELECT REGISTER 
('/temp/cerealsLess20Intersects.shp','cerealsLess20Intersects'); 
CREATE TABLE cerealsLess20Intersects AS SELECT Intersection(a.the_geom, 
b.the_geom) AS the_geom,  b.gid AS gid FROM cerealsLess20 AS a, 
watershed AS b WHERE Intersects(a.the_geom, b.the_geom) ;

Before computing the area we will group all the parcels that are in the same watershed keeping their 
spatial information with an aggregated function called GeomUnion that will compute the union of all 
geometries.

SELECT REGISTER ('/temp/cerealsUnion.shp','cerealsUnion'); 
CREATE TABLE cerealsUnion as SELECT GeomUnion(the_geom) as the_geom, 
gid FROM cerealsLess20Intersects WHERE the_geom IS NOT NULL GROUP BY 
gid; 
 
Finally, with the aggregated data the user can compute the  percentage area of cereals which is less than 20 
meters of a river network. 

SELECT REGISTER ('/temp/density.shp','density'); 
CREATE TABLE density as SELECT ((area(a.the_geom) / 
area(b.the_geom))*100) As density, b.the_geom as the_geom, gid FROM 
cerealsUnion AS a, watershed AS b WHERE a.gid = b.gid; 
 
The final result is a list of three watersheds with their corresponding cereals density that the user can 
display with a thematic map analysis. 

Extending SQL semantic is one of GDMS main purpose and ability. Indeed, as a matter of fact, one of 
the first use cases was to use it to produce morphological indicators. Among around ten indicators, 
compacity (Miguet, 2007) as the ratio between the exchange areas of the envelope and the floor area - has 



been implemented as a GDMS function. Compacity can be used to analyze landscape structuring with 
respect to current agricultural landcover changes. 

CONCLUSION AND FUTURE WORKS 

With the implementation of GDMS the exploitation of the SDI is improved in terms of usability due to 
the fact that a simple universal SQL interface is provided to the user to potentially manage all the sources 
in the SDI. This interface is as close as possible to the SQL-92 standard and to the "Simple Features 
Specification for SQL” (Herring 2006a,b) to guarantee a smooth learning curve. 

In spite of its simplicity from the user point of view, the SQL interface provided by GDMS allows the 
extension of the semantics of the SQL language. These extensions can be developed and easily reused by 
the users of the SDI. The set of all these extensions is called the semantic repository and it will improve 
the cooperation and the reuse of work between the users of the SDI. Additionally, we have seen that the 
SQL processor is able to execute queries to create data sources of different types. This will let the user of 
the SDI to enrich the set of sources it has providing a feedback in terms of data through the common SQL 
interface. 

As a further step in terms of simplicity for the user, we have planned to embed the GeoProcess tool. It 
is a graphic process builder that will let the user to create his own complex data processing sequence. The 
processes managed by this tool are composed of data sources and SQL scripts. GDMS has the ability to 
process both of them (execute script against data sources), so it is only necessary to link the inputs and 
outputs of the scripts between them. The input of the SQL scripts are the names of all data sources 
involved in the queries while the output results are the names of the produced data sources. As shown in 
figure 12, labeled rectangles correspond to data sources, while labeled circles correspond to the scripts. 
The directed edges that connect the nodes symbolize source dataflows. As an example, we provide the 
process diagram for the previous use case specified in figure 7, and represented in figure 8.

This user interface enhancement will not only simplify the definition and the implementation of 
complex process, but will also let the possibility to export this whole data processing sequence to the 
semantic repository. Thus, all this complex data processing sequence will be stored ("serialize") in order to 
be re-used as a "black box" in next processes ("unserialize"). This sequence of serialization and 
unserialization mechanism in a local or remote semantic repository, will be a new step towards reuse, 
workflow and even geoinformatic groupware. This will be step towards both data and methods sharing 
which is the ultimate goal of our scientific SDI. 



 
Figure 8: Use case translation in the graphic query builder context 

AVAILABILITY 

GDMS alpha version is available for public download at http://sourcesup.cru.fr/projects/orbisgis/
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APPENDIX: EXAMPLE RESULTS 

The following snapshots are the results of the SQL statements of the example: 
• up: initial data 
• left low: rivers and cereals2000 layer representation 
• center low: cereals2000 parcels close to the rivers 
• center right: cereals2000 parcels close to the rivers that intersect watershed 

 

   

 


