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Abstract. XYZ is a distributor of various consumer goods products. The company plans its 

delivery routes daily and in order to obtain route construction in a short amount of time, it 

simplifies the process by assigning drivers based on geographic regions. This approach results 

in inefficient use of vehicles leading to imbalance workloads. In this paper, we propose a 

combined method involving heuristic and optimization to obtain better solutions in acceptable 

computation time. The heuristic is based on a time-oriented, nearest neighbor (TONN) to form 

clusters if the number of locations is higher than a certain value. The optimization part uses a 

mathematical modeling formulation based on vehicle routing problem that considers 

heterogeneous vehicles, time windows, and fixed costs (HVRPTWF) and is used to solve 

routing problem in clusters. A case study using data from one month of the company’s 

operations is analyzed, and data from one day of operations are detailed in this paper. The 
analysis shows that the proposed method results in 24% cost savings on that month, but it can 

be as high as 54% in a day. 

Keywords: nearest-neighbor heuristic; vehicle routing problem; heterogeneous vehicles; time 

windows; consumer goods distributor. 

1.  Introduction 

Logistics operations are oriented toward the fulfillment of customer needs from the point of origin to 

the point of consumption. One mode of operation in this field is the vehicle routing problem (VRP) 
that has received considerable attention from academics and practitioners, mainly due to its relevant 

applications that are often encountered in real world. Being a popular routing model in logistics 

studies, a number of variants have been developed, tested, and applied. These variants follow the 
characteristics of the problem being studied, e.g. VRP with time windows (VRPTW) [1], VRP with 

pickups and deliveries [2], or more specific variants such as VRPTW with evolutionary algorithm [3], 

VRP with split deliveries [4], or VRP with multiple objectives [5]. More recent VRP studies include, 

e.g. VRPTW with probabilistic travel times [6], green VRP [7], or VRP in maritime logistics [8]. 
VRP literature grew exponentially with an annual rate of 6.09% between 1956 and 2005, and the 

period between 1985 and 2006 recorded 918 published VRP articles [9]. This trend continued with 

277 articles appeared between 2009 and 2015 as cited in the latest survey [10]. Despite the massive 
amount of literature described above, heterogeneous VRP (HVRP) is rarely studied due to its 

increased complexity compared to the basic capacitated VRP (CVRP). While reduced complexity 

http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
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allows more in-depth study of the problem on hand, it deviates from reality in industrial applications. 

In contrast to the number of general VRP articles cited in [9], only 22 articles related to HVRP were 

published between 1984 and 2007 [11]. In this particular area where analytical approach is hardly 

efficient, metaheuristics spur as sensible substitute in dealing with complex VRP problems. A few 
successful examples worth mentioning are record-to-record [12], scatter search [13], genetic algorithm 

[14], variable neighborhood search [11], multi-start adaptive memory programming [15], iterated local 

search [16], and tabu search [17]. 
This paper demonstrates the application of HVRP in a consumer-goods distribution company 

operating in Surabaya, Indonesia. Being a large city, there are hundreds of wholesalers and retailers in 

Surabaya served by the company. The complexity of the problem arises both from the number of 

customers and the heterogeneity of vehicles (in terms of capacity and fixed cost) that the company 
uses. Time windows are also demanded by the customers. Thus, the model is called HVRP with time 

windows and fixed costs (HVRPTWF). Routing of distribution is planned on a daily basis therefore 

computation time has a higher priority than optimality of the solution. To address the problem 
complexity, an approach integrating the classical time-oriented, nearest neighbor (TONN) heuristic 

[18] and optimization via mathematical programming is proposed. This integration is a necessity since 

mathematical programming alone will clearly be impractical as it will suffer from long computation 
time on complex problems. The proposed model will be compared to the method that the company 

applies in its daily operations. 

Given the above background, the objectives of this paper are twofold: 

 To develop an integrated model combining heuristic and optimization in solving routing 

problem that considers heterogeneous vehicles and time windows. 

 To compare the solution from the proposed model with the actual routing obtained from the 

company’s operations. 

2.  Methodology 

We first described in this section the background of the company in our case study. The company 
XYZ was founded in 1995 as a distributor of consumer goods products serving mainly the Eastern part 

of Indonesia. The products varied from toiletries (shampoo etc.) to foods (snacks etc.) and the 

customers also varied from small retailers to giant hypermarkets. XYZ’s fleet of vehicles comprised 
more than 300 trucks/vans and 100 motorcycles, operating from 85 branch offices and 25 warehouses 

in Indonesia. Orders were received daily from sales force then processed by the planning department 

to produce delivery plan for the next day. In our study, we focused on Surabaya office (the company’s 

headquarters) and the foods division. 
XYZ’s customers were classified in three groups: small, large, and super stores. The small stores 

were served between 8.00 and 13.00, and in Surabaya they were clustered into six areas where each 

was visited weekly on different days. The large stores were served between 9.00 and 14.00 and 
clustered into three areas that could be visited every day based on the orders placed. The super stores, 

given their large demand, had no regular service hours and clusters, and could be served any time 

within XYZ’s working hours. This clustering was the basis of XYZ in making its daily distribution 

plan. Since drivers were already assigned areas of operations, it was possible that two vehicles depart 
to two different stores, adjacent on the map but on different distribution areas, without maximizing the 

vehicle capacity (not fully loaded). Often it was possible for these stores to actually be served by the 

same vehicle, but the drivers who were used to work in specific areas found it uncomfortable to go to 
different ones. In addition, the planning department only provided the list of stores to be visited 

without route and rely on the drivers’ experience to plan their own routes every day. All this led to 

inefficiency in the operations which was visible from the uneven workload of vehicles where some 
returned after 12 hours but some did after 18 hours. 

To solve this problem, an integration model utilizing a time-oriented, nearest-neighbor heuristic 

and mathematical programming was proposed. The TONN heuristic was used to cluster the number of 
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drop points if they exceeded a certain number that prevented the mathematical model HVRPTWF to 

be run in an acceptable time. Figure 1 shows the path of solution in the methodology. 

Start

Drop 

points > n?

Yes

Apply TONN heuristic 

for clustering

Cluster(s) with 

drop points > n?

Yes

Use the result of 

TONN, subject to 

capacity constraints

Use HVRPTWF

End

No

No

 

Figure 1. Solution path in proposed methodology. 
 
Figure 1 is explained as follows. First, customers are grouped into drop points because the number 

of drop points is what affects the routing instead of the number of customers. If there are less than n 

drop points to be served on a particular day, HVRPTWF is applied. If there are more, TONN heuristic 
is executed to form the clusters and sequence of visit in each cluster. If, after the heuristic, there are 

still clusters with more than n drop points, the sequence produced by TONN will be used as the route 

for vehicles serving that route, subject to capacity constraints. It is possible at this stage to divide a 

TONN cluster into smaller sub-clusters if vehicle capacity is not sufficient to serve all drop points in 
that cluster. If the heuristic produces clusters with less than n drop points, HVRPTWF is applied in 

each of such clusters. 

The TONN heuristic is explained with the following example. Suppose 𝒩is the set of all nodes 

(locations) including node 0 as depot and𝒞 is the set of drop points or  𝒩 ∖ {0}. Given 𝑖 visited 

exactly prior to 𝑗, 𝑠𝑖 and 𝑠𝑗  are the arrival times at nodes 𝑖 and 𝑗, respectively, 𝑝𝑖 is the service time at 

node 𝑖, and 𝑡𝑖,𝑗  is the travel time from 𝑖 to 𝑗, then the relationship between 𝑠𝑖 and 𝑠𝑗  is formulated as 

𝑠𝑖 + 𝑝𝑖 + 𝑡𝑖,𝑗 ≤ 𝑠𝑗 , ∀𝑖, 𝑗 ∈ 𝒞. The lower and upper time windows at node 𝑖, 𝐿𝑖 and 𝑈𝑖, respectively, 

bound the arrival time 𝑠𝑖, or 𝐿𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖 , ∀𝑖 ∈ 𝒞. Table 1 exhibits distance matrix between all nodes 

and time windows in each node. The service time 𝑝𝑖 is set constant. Note that the distance matrix is 

symmetrical and also satisfies triangular inequality. 
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Table 1. Data for Time-Oriented, Nearest-Neighbor heuristic example. 

Distance matrix Time windows Service time 

𝑝𝑖  0 1 2 3 4 5 𝐿𝑖 𝑈𝑖 

0 -   5 10 13 10 14 - - - 

1   5 -   7 12 13 17   0 20   2 

2 10   7 -   8 14 14 10 30   2 

3 13 12   8 -   7   6 10 30   2 

4 10 13 14   7 -   5 10 30   2 

5 14 17 14   6   5 - 10 30   2 

 

Given the data in Table 1, the first cluster resulting from the heuristic and its sequence from depot 

is 0→1→2→3→0 and the second cluster and its sequence is 0→4→5→0. The heuristic only solves 
the clustering problem with respect to time windows and leaves the capacity allocation to the second 

part in methodology, i.e. mathematical programming with HVRPTWF. In Figure 1, the value of n will 

be determined after few trial runs of HVRPTWF to see at how many nodes the model becomes 
impractical with regard to computation time. In the above example, suppose it is found that n = 2 (this 

low figure is only for the sake of this example), then the first cluster will not be optimized with 

HVRPTWF and the heuristic result will be used with arbitrary vehicle assignment. 

For HVRPTWF, the mathematical model follows [19] with more specific elaboration on the lower 
time window (in [19] the model is applied on maritime logistics case and only the upper time window 

which reflects due date is used). The sets and equations are explained in the following. 

 
𝒱 Set of vehicles, indexed by 𝑣 
𝒜 Set of arcs (𝑖, 𝑗) denoting a flow from node 𝑖 to node 𝑗 
𝒩 Set of all nodes 𝒩 = {0,1, … , 𝑁}; 0 is depot 
𝒞 Set of droppoints𝒞 = 𝒩 ∖ {0} 

𝑓𝑣 Fixed cost of vehicle 𝑣 

𝑐𝑖,𝑗
𝑣  Variable cost of vehicle𝑣 if it goes from node 𝑖 to node 𝑗 

𝑡𝑖,𝑗
𝑣  Travel time of vehicle𝑣 if it goes from node 𝑖 to node 𝑗 

𝐶𝑣 Capacity of vehicle𝑣 

𝐷𝑖 Total demand at node 𝑖 

𝐿𝑖 Lower time window at node 𝑖 

𝑈𝑖 Upper time window at node 𝑖 

𝑝
𝑖
 Service time at node 𝑖 

𝑀 A large constant 

𝑥𝑖,𝑗
𝑣  Binary variables for vehicle 𝑣 in arc (𝑖, 𝑗); 𝑥𝑖,𝑗

𝑣 = 1 if the vehicle traverses arc (𝑖, 𝑗) and 

𝑥𝑖,𝑗
𝑣 = 0 otherwise 

𝑠𝑖
𝑣 Time window for vehicle 𝑣 at node 𝑖 

 

Minimize ∑ ∑ 𝑥𝑖,𝑗
𝑣 . 𝑐𝑖,𝑗

𝑣

𝑖,𝑗∈𝒜𝑣∈𝒱

+ ∑ ∑ 𝑓𝑣 . 𝑥0,𝑗
𝑣

𝑗∈𝒜𝑣∈𝒱

 (1) 

Subject to: 

∑ ∑ 𝑥𝑖,𝑗
𝑣 . 𝐶𝑣

𝑖,𝑗∈𝒜𝑣∈𝒱

≥ 𝐷𝑖 ∀ 𝑖 ∈ 𝒞 
(2) 

∑ 𝐷𝑖

𝑖∈𝒞

∑ 𝑥𝑖,𝑗
𝑣

𝑗∈𝒩

≤ 𝐶𝑣 ∀ 𝑣 ∈ 𝒱 
(3) 
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∑ 𝑥𝑖,𝑘
𝑣

𝑖∈𝒩

− ∑ 𝑥𝑘,𝑗
𝑣

𝑗∈𝒩

= 0 ∀ 𝑘 ∈ 𝒞;  𝑣 ∈ 𝒱 
(4) 

𝑥𝑖,𝑖
𝑣 = 0 ∀ 𝑖 ∈ 𝒩;  𝑣 ∈ 𝒱 (5) 

∑ 𝑥0,𝑗
𝑣 ≤ 1

𝑗∈𝒞

 ∀ 𝑣 ∈ 𝒱 
(6) 

𝐿𝑖 ≤ 𝑠𝑖
𝑣 ≤ 𝑈𝑖 ∀ 𝑖 ∈ 𝒞;  𝑣 ∈ 𝒱 (7) 

𝑠𝑖
𝑣 + 𝑡𝑖,𝑗

𝑣 + 𝑝
𝑖

− 𝑀(1 − 𝑥𝑖,𝑗
𝑣 ) ≤ 𝑠𝑗

𝑣 ∀ 𝑖 ∈ 𝒩; 𝑗 ∈ 𝒞;  𝑣 ∈ 𝒱 (8) 

𝑥𝑖,𝑗
𝑣 ∈ {0, 1} ∀ 𝑖, 𝑗 ∈ 𝒜;  𝑣 ∈ 𝒱 (9) 

𝑠0
𝑣 = 0 ∀ 𝑣 ∈ 𝒱 (10) 

𝑠𝑖
𝑣 ≥ 0 ∀ 𝑖 ∈ 𝒩;  𝑣 ∈ 𝒱 (11) 

 

In the above model, the objective function (1) minimizes total cost that consist both variable and 

fixed costs of using vehicles. Demand fulfillment is warranted by constraints (2) and vehicle capacity 
is observed by constraints (3). Constraints (4) balance the incoming and outgoing flows. Constraints 

(5) are loop prevention and constraints (6) regulate so that a vehicle can take only one trip. Constraints 

(7) set the lower and upper time windows for a vehicle at a node, while constraints (8) manage the 

arrival times 𝑠𝑖 similar to the explanation in the heuristic section. Sub-tour breaking constraints are not 

required due to constraints (8). Lastly, constraints (9)–(11) state the nature of decision variables 

involved:𝑥𝑖,𝑗
𝑣  are binary and 𝑠𝑖

𝑣 are continuous, thus the model falls in the category MILP problem. 

3.  Case study analysis 

Our first step in analysis was determining the threshold n to limit the number of drop points that 

HVRPTWF could still solve efficiently. Using a commercial solver and Intel Core i5 processor 
running at 2.2 GHz with 4GB RAM on Windows 10, we arrived at the results in Table 2. From this 

table it can be inferred that n should be set equal to 10. With more than 10 locations, the solver was 

still unable to find an optimal solution after more than 16 hours. 
 

Table 2. Computation time of HVRPTWF. 

n Average running time Status 

  6 1.5 seconds Global Opt. 

  7 7.5 seconds Global Opt. 

  8 33.5 seconds Global Opt. 

  9 21 minutes 54 seconds Global Opt. 

10 1 hour 5 minutes 4 seconds Global Opt. 

11 16 hours 48 minutes 55 seconds Feasible 

 
Next, a sample of one-month company’s operation in the foods division was studied. In this 

section, we provided an example of one-day distribution and compared the results between the 

company’s method and our proposed methodology combining TONN heuristic and HVRPTWF 
mathematical programming. The chosen day consisted of 21 nodes (1 depot and 20 drop points) and 

the 21× 21 distance matrix (in km) was given in Table 3, including the demands (in m
3
), service times 

and time windows(in minutes) at the nodes. The service times were not correlated to the demands, but 

to the number of items which were not shown here. Data of vehicles are provided in Table 4. 
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Table 3. Distance matrix (km), demands (m
3
), service time and time windows (mins) of locations. 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Di pi Li Ui 

0 - 20.1 13.5 14.7 19.0 20.0 18.4 18.3 18.4 18.5 12.7 24.5 21.4 18.7 17.5 19.8 18.8 18.7 16.7 18.3 13.3 - - - - 

1  - 6.6 5.4 11.9 11.5 11.4 11.2 4.5 11.4 7.4 19.5 15.2 10.2 10.3 10.3 11.7 11.6 9.5 9.9 9.4 2.08 8.70 0 300 

2   - 1.7 15.5 14.0 15.1 14.9 5.2 15.1 4.2 22.0 17.6 12.7 14.0 12.7 15.4 15.3 13.2 12.4 10.5 0.23 25.00 60 360 

3    - 13.8 12.7 13.4 13.2 4.6 13.4 2.5 21.0 16.7 11.3 12.3 11.5 13.7 13.6 11.5 11.1 9.8 0.22 25.67 60 360 

4     - 3.4 2.5 2.3 14.4 2.5 13.7 10.5 6.5 3.7 1.6 3.1 2.8 2.7 2.4 3.3 5.7 0.07 7.37 0 300 

5      - 3.8 4.2 13.7 3.1 13.0 10.6 6.6 3.0 3.8 2.4 4.2 2.9 3.3 2.7 2.7 0.05 4.37 0 300 

6       - 1.5 15.1 1.7 14.4 8.6 4.6 4.4 2.4 3.8 0.4 1.8 2.1 4.1 6.0 0.04 2.37 0 300 

7        - 14.5 1.1 13.3 10.1 5.7 4.8 1.6 4.2 1.3 1.3 2.5 4.5 4.0 0.04 2.03 0 300 

8         - 13.4 5.7 21.3 16.9 12.0 12.9 12.0 14.7 13.3 13.0 11.6 10.8 0.03 17.67 60 360 

9          - 13.7 9.1 5.1 3.9 1.1 3.3 1.3 0.2 2.3 3.5 5.2 0.03 2.37 0 300 

10           - 21.2 16.9 11.7 12.6 11.7 14.0 13.6 12.3 11.4 8.8 0.02 17.67 60 360 

11            - 4.4 11.3 9.2 10.7 8.8 8.9 10.0 10.9 12.4 0.02 2.70 0 300 

12             - 7.4 5.7 6.9 4.9 4.9 6.7 7.1 8.2 0.02 2.03 0 300 

13              - 3.2 1.6 4.3 3.8 4.1 1.9 7.0 0.01 3.37 0 300 

14               - 4.2 2.0 1.3 2.9 4.5 4.8 0.01 2.03 0 300 

15                - 4.2 3.4 5.3 1.9 8.2 0.01 3.03 0 300 

16                 - 1.4 2.5 3.7 5.6 0.01 2.03 0 300 

17                  - 2.5 3.4 5.4 0.01 2.37 0 300 

18                   - 3.4 4.9 0.01 3.37 0 300 

19                    - 6.7 0.01 2.37 0 300 

20                     - 0.01 4.37 0 300 

 
 

Table 4. Data of vehicles. 

Type Units Capacity (m
3
) Cost/day (IDR) Cost/km (IDR) 

A 2 2.4 544,687 812.50 

B 1 5.6 502,526 812.50 

C 1 9.6 603,725 812.50 

 

Using the company’s method, three vehicles were used with the following routings: 

 Vehicle A1: 0→2→3→8→10→0 

 Vehicle A2: 0→20→6→7→9→16→4→14→17→5→13→15→18→19→12→11→0 

 Vehicle C: 0→1→0 

 
The above routing demonstrated inefficient use of vehicle C since, despite its large capacity; it was 

used to serve one particular store simply because that customer had regularly been served by vehicle C 

and its driver. This one-on-one relationship between customer and driver familiarized the driver with 

his region of operations. The driver’s knowledge on his region helped on some days and was justified 
when demand size matched vehicle capacity, but more often led to inefficiency as shown above. The 

routes constructed by the drivers also relied on their judgment and experience, but was proven 

Symmetrical 
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suboptimal compared to the output of heuristic and mathematical programming as outlined in the next 

section. 

4.  Results and discussion 

Applying the algorithm in Figure 1 yielded the following results. First, two clusters (instead of three) 
were formed. The first cluster consisted of 15 locations and the second cluster consisted of 5 locations. 

For the first cluster, total demand was 0.34 m
3
 so it could be served by vehicle A (time windows had 

already been taken care of by the heuristic). For the second cluster, HVRPTWF was applied, and it 
produced a different routing from the actual one by the driver. The routings in both clusters were given 

below: 

 Vehicle A1: 0→20→14→9→17→7→16→6→18→4→15→13→19→5→12→11→0 

 Vehicle B: 0→2→3→1→8→10→0 

 

It is worth to mention here that since we knew from the data that vehicle A could not be used due 
to its lower capacity (2.4 m

3
) than the second cluster’s demand (2.58 m

3
), and vehicle B’s daily cost 

was smaller than vehicle C’s, then vehicle B was a logical choice for serving the second cluster. 

Further, since time windows were no longer an issue as a result from the heuristic application, routing 
problem of the second cluster was actually reduced to a travelling salesman problem (TSP). This 

advantage, however, was not apparent on other cases in different days, so HVRPTWF formulation was 

still required. Besides, with less than 6 locations, HVRPTWF required not more than 1.5 seconds to 
solve. 

Next, we compared the total cost of actual operations and that of our proposed methodology. As 

shown in Table 5, the proposed method combining heuristic and mathematical programming was 

superior compared to the drivers’ assignment-based method from the company. The proposed method 
reduced the number of vehicles required that led to cost savings in fixed and variable costs. The cost 

savings in fixed cost, however, were only on paper since fixed cost was calculated based on 

depreciation, drivers’ salaries, etc., i.e. it would be incurred regardless of vehicle utilization. The 
savings in variable cost, on the other hand, were tangible. For this day only, the savings in variable 

cost were 53.60%. For the overall month, the company’s method yields IDR 2,406,548 whereas the 

proposed method did IDR 1,849,893 or equivalent to a 23.56% cost reduction. 
 

Table 5. Cost comparison of two methods. 

Vehicle 
Actual (IDR) Proposed (IDR) 

Fixed Cost Var. Cost Fixed Cost Var. Cost 

A1 544,687 31,038 544,687 34,125 

A2 544,687 65,894 Not used 

B Not used 502,526 35,344 

C 603,725 32,663 Not used 

Total 1,693,009 129,595 1,047,213 69,469 

5.  Conclusions and remarks for future research 

In this paper we have demonstrated an application of combined heuristic and optimization to solve 

practical routing problems in a distribution company. The company planned its delivery routes daily 
so a methodology that could arrive at good solution in an acceptable time would have a high practical 

value. Our proposed approach beat the company’s method that was based on drivers’ regional 

assignment by 24% on average but on certain days, such as one shown in the example, the savings 
could be as high as 54%. The only drawback from implementing this method was to reorient the 

drivers from their comfort zone serving only their regular customers in a particular region. 
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The comparison in this paper was only made against the actual routings used by the company. It is 

possible there are still better approaches, be they heuristics or optimization, which should be aimed as 

future research agenda. 
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