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1 INTRODUCTION 

1.1 Devastating forest pathogens from the Armillarioid clade cause root rot 

disease 

Armillaria and Desarmillaria species (Physalacriaceae, Basidiomycota), representing 

two separate genera within the Armillarioid clade (Kedves et al., 2021) are globally 

fungal plant pathogens varying in host range and pathogenicity (Baumgartner et al., 2011; 

Chen et al., 2019). They cause white rot, a severe destructive disease (also known as 

Armillaria root rot) on a wide range of woody hosts growing in managed plantations, natural 

forests, orchards and amenity plantings in urban areas, and their impacts often lead to 

devastating forest damages and immense economic losses (Sipos et al., 2018). Armillaria 

colonies are spread in the soil by root-like rhizomorphs which can attack host trees through 

root contacts, and then the penetrating hyphae colonize heartwood and invade the cambium as 

mycelial fans (Sipos et al., 2017; Chen et al., 2019). In general, Armillaria root disease results 

in reduced forest productivity due to direct mortality or permanent non-lethal infections 

affecting the health and growth of the trees (Ross-Davis et al., 2013; Chen et al., 2019). 

There has been a long history of great interest in exploring the ecology of Armillarioid 

species throughout the Northern Hemisphere (Shaw and Roth, 1976). The distribution of 

Armillaria and Desarmillaria (tabescens) species varies generally based on the tree species as 

well as on their stumps or dead substrates. Here, we focus on five common Armillarioid 

species, D. tabescens, A. ostoyae, A. cepistipes, A. mellea and A. gallica, which differ in 

virulence, geographical distribution and host range (Kedves et al., 2021).  

 

1.1.1 Host preference 

It is well-known that most Armillaria species exhibit preference towards either 

coniferous or broadleaf environment and hosts (Lushaj et al., 2010). Although native 

coniferous forests in the Northern Hemisphere are predominantly inhabited by A. ostoyae and 

A. cepistipes, various oak and other broadleaf species are mostly exposed to A. mellea, A. 

gallica and D. tabescens (Keča et al., 2009). Investigation of the host preference in the case of 

Armillaria species revealed that A. ostoyae exhibited more virulence towards coniferous 

species than deciduous hosts, while A. mellea showed higher pathogenicity towards broadleaf 

species than conifer hosts (Omdal, 1995; Sicoli et al., 2003). It was confirmed that the 

deciduous flowering plant aspen (Populus tremuloides) was significantly more tolerant to A. 

ostoyae infection than the tested conifers including ponderosa pine (Pinus ponderosa), white 
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pine (Pinus strobiformis), lodgepole pine (Pinus contorta), white fir (Abies concolor), blue 

spruce (Picea pungens), Douglas-fir (Pseudotsuga menziesii) and western larch (Larix 

occidentalis) (Omdal, 1995). Another convincing evidence came from pathogenicity tests for 

A. ostoyae, A. mellea and A. gallica on different oak trees (Sicoli et al., 2003). The result 

indicated that A. mellea and A. gallica were significantly more virulent on seedlings and 

young trees of five tested Quercus species than A. ostoyae. It was also inferred that the 

coniferous species were more resistant to A. mellea infection than A. ostoyae, based on the 

comparative observation that A. ostoyae penetrated faster to cell layers in depth of unwound 

root bark of sitka spruce (Picea sitchensis)(Solla et al., 2002). One more vital clue came from 

plant polyphenols, the secondary metabolites acting as the primary chemical defense to inhibit 

the parasitic fungal growth by restricting the production of cell wall degrading enzymes 

(Brazee et al., 2011). Hydrolyzable tannins as one type of plant polyphenols are most 

abundant in the wood, bark and leaves of Quercus species. In contrast to A. ostoyae, A. gallica 

proved to be good at oxidizing and metabolizing polyphenols (Brazee et al., 2011). 

 

1.1.2 Distribution characteristics 

Species of Armillaria are widely distributed in a variety of forest types. Interestingly, 

pathogenic species of Armillaria frequently co-exist with less pathogenic but more 

saprotrophic Armillaria species in the same forest stands. A. mellea was reported to share 

many forest types in common with A. gallica. For example, it was observed that A. mellea and 

A. gallica had overlapping geographic ranges in central North America, the main reason of 

which probably was that both of the two species favor similar hosts, especially various oak 

and broadleaf plant species (Baumgartner and Rizzo, 2001a; Mihail et al., 2002). There are 

evidential phenomena from previous reports that sympatric genets of A. mellea and A. gallica 

were found to form mosaics within the forest floor in the field (Luisi and Lerario, 1996; 

Bruhn et al., 2008). Species of A. ostoyae and A. cepistipes are also efficient colonizers and 

frequently occur in the same forest types. It was reported in Serbia, that the two cohabitating 

species were observed in the cold tolerant conifer forest type dominated with plant species of 

silver fir (Abies alba) and Norway spruce (Picea abies) (Keča et al., 2009). 

During a long co-evolution history, different Armillaria species probably have achieved 

a neutralistic or even harmonious coexistence by exploiting different strategies to compete for 

survival resources. As illustrated by an experimental study conducted in a managed Norway 

spruce forest, A. ostoyae and A. cepistipes were found to co-occur at the same site as efficient 

stump colonizers, but due to a mutual effect by interspecific competition, A. ostoyae 
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rhizomorphs were relatively more frequent on spruce stumps than in soil, while A. cepistipes 

rhizomorphs were relatively less frequent on stumps than in soil (Prospero et al., 2006). 

Sophisticated developmental changes especially regarding the morphology and function 

of rhizomorph systems may give a good explanation for their cohabitation (Smith et al., 1992). 

More parasitic Armillaria species such as A. ostoyae and A. mellea equipped with 

dichotomously branched rhizomorphs proved to be more aggressive in killing seedlings than 

monopodially branched species such as A. cepistipes and A. gallica (Morrison, 2004). 

Moreover, rhizomorphs of facultative parasitic species reinforce their foraging efficiency by 

developing significantly more growth tips to increase their competitiveness in soil when 

confronted with the larger rhizomorph systems of saprotrophic species (Mihail and Bruhn, 

2005). However, rather than causing lethal diseases, the more saprotrophic species prefer to 

derive nutrition from rotten wood or humus in the soil; their rhizomorphs, through 

non-invasive physical contacts, may also share nutrient resources with potential symbiotic 

plant partners (Guo et al., 2016). The interspecific interactions of Armillaria species as well 

as their impacts on hosts give better understanding of their co-occurrence and provide 

important information about the disease spread.  

 

1.1.3 Pathogenicity variation 

A. ostoyae and A. mellea are generally considered to be primary necrotrophic parasites, 

whereas A. cepistipes and A. gallica are weakly secondary pathogenic on tree species 

(Baumgartner and Rizzo, 2001b; Bendel et al., 2006; Metaliaj et al., 2006; Heinzelmann et al., 

2017). In a field study, A. ostoyae showed more virulence on spruce seedlings half year after 

cutting, the stumps colonized by A. ostoyae reached to a higher level than by A. cepistipes 

(Heinzelmann et al., 2017). The attached rhizomorphs of A. ostoyae on the root surface 

caused significantly more lesions (Prospero et al., 2004). A. mellea was found more 

aggressive and pathogenic than A. gallica. Mycelial fans of A. mellea were frequently found 

on living roots. A. gallica also had the ability to attack live host, but more frequently occurred 

on living roots as epiphytic rhizomorphs (Baumgartner and Rizzo, 2001b). During the long 

history of cohabitation, Armillaria species somehow coevolve to reach a mutually benefical 

relationship, in which less pathogenic species prenferentially attack the weakened plants after 

primary infections caused by the more pathogenic species such as A. ostoyae (Bendel et al., 

2006). However, past observations have suggested that not only the species A. mellea but also 

A. gallica can be highly aggressive and pathogenic, and become a major threat resulting in the 

decline and loss of native tree species (Kim et al., 2010). Under increasing stress such as 
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drought and climate change, the isolates of A. gallica from declining stands were found highly 

pathogenic, and turned out to be a contributing factor to forest decline in some areas on the 

island of Hawaii (Kim et al., 2010). Similar observation was made in the declining oak trees 

in Southern Italy: due to the remarkable weakness of the oak woods under drought condition, 

instead of A. mellea, A. gallica dominated in the oak stand and became the primary mortality 

factor (Luisi and Lerario, 1996). 

Pathogenic Armillaria species induce different patterns of structural and biochemical 

responses such as cambial damage and xylem compartmentalization in susceptible hosts 

(Cleary et al., 2012b). The fate of individuals of various host species upon Armillaria 

infection is probably determined by the tolerance and resistance patterns expressed at lower 

stem or root. Structural responses to A. ostoyae in the roots of three different conifer species 

including western hemlock (Tsuga heterophylla), Douglas-fir and western redcedar (Thuja 

plicata) indicated that A. ostoyae could induce greater resistance response in western redcedar 

(Cleary et al., 2012a). Lesions bounded by necrophylactic periderms with multiple phellem 

bands were more frequently observed on roots of western larch (Larix occidentalis) infected 

by A. ostoyae than on Douglas-fir roots (Robinson and Morrison, 2001). On the other hand, 

there was a trend of infection occurrence inversely related to stand age class among 

coniferous species, such as slash pine (Pinus elliottii), Khasi pine (P. kesiya), Caribbean pine 

(P. caribaea) and patula pine (P. patula); a higher frequency of roots decayed and killed by A. 

ostoyae was observed in juvenile plantations (Lundquist, 1993). Mortality rate declining with 

increasing plantation age was supposed to be associated with increasing host resistance. In the 

conifer stand of Douglas-fir, a decline in mortality caused by A. ostoyae usually began after 

15-18 years (Morrison, 2009). 

 

1.1.4 Damages caused by Armillaria 

Armillaria species frequently observed in disease centers causing gradual, multiyear 

reduction of growth and yield of healthy trees (Baumgartner and Rizzo, 2001b; Bendel et al., 

2006; Metaliaj et al., 2006; Heinzelmann et al., 2017). Original forests usually establish a 

more adaptive or even harmonious relationship between plants and plant pathogens. Plant 

species in natural forests were generally considered to be less susceptible to Armillaria 

infection (Rizzo et al., 1995; Chapman et al., 2011). However, they still can be compromised 

by various kinds of impact factors such as natural hazards and animal attacks and cannot 

escape Armillaria infection, not even to mention the less stable managed forests. Plantation 

forestry is of growing economical importance world-wide. With the plantation increasing, the 
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threat of Armilaria root disease to these new timber resources is also increasing. Tree 

mortality caused by Armillaria frequently occurs in discrete disease centers and forest land 

occupied by Armillaria pathogens is usually unavailable for fiber production (Labbé et al., 

2015). 

As plants die, the Armillaria inocula incubate on their root systems, then spread and kill 

surrounding trees resulting in large scale tree mortality and formation of canopy gaps (Bendel 

et al., 2006). Disease centers sometimes may not only limit to a few trees but encompass 

several hectares. Gaps associated with root disease can enlarge triggered by coalescence of 

multiple smaller gaps (Rizzo and Slaughter, 2001). Among all the factors predicted to directly 

affect canopy gap size in a pristine ponderosa pine stand in the Black Hills of South Dakota, 

Armillaria root disease seems to have the most considerable overall impact, followed by other 

small-scale disturbances (bark beetles, weak pathogens, ice/snow damage, lightning and 

wildfires) (Lundquist, 2000). In the Swiss National Park, A. ostoyae, A. cepistipes and A. 

borealis were identified from recently dead or dying mountain pine (Pinus mugo) from 42 

canopy gaps; among them, A. ostoyae proved to be the dominant Armillaria pathogen 

accounting for 72% of all Armillaria isolates (Bendel et al., 2006). In south-western Australia 

it was estimated that a total of 125 susceptible plant species collected from the disease centers 

were killed by the infection of A. luteobubalina in coastal dune vegetation (Shearer et al., 

1998). In Yosemite valley, California, canopy gaps caused by A. mellea occupied a total area 

of 4.1 ha (Rizzo and Slaughter, 2001). A. mellea also caused chronic root disease on 

grapevines. The expansion of dying and dead grapevines caused by A. mellea was the 

contributing factor to the formation of disease centers in the commercial vineyards of 

California (Baumgartner and Rizzo, 2002).  

Loss of tree growth and the presence of dead trees are common inside a disease center 

(Mallett and Volney, 1998). Above-ground symptoms that are suggestive of an already 

impacted root and vascular system associated with Armillaria infection are wilting, premature 

defoliation, dwarfed or downward-hanging foliage, foliage yellowing, dwarfed fruit, resinosis, 

stunted shoots, stand-structural changes, lower-stem deformations, down-wood accumulations, 

crown thinning, branch dieback and premature death in the case of conifers as well as nut and 

fruit crops (Gutter et al., 2004; Baumgartner and Rizzo, 2006; Skovsgaard et al., 2009; 

Lehtijärvi et al., 2012; Chandelier et al., 2016). Diseased trees infected with Armillaria are 

generally smaller than healthy trees for all measured variables, in respect of diameter, height, 

sapwood area at the base of live crown, crown width and length (Cruickshank and Filipescu, 

2012). As compared to uninfected trees, symptomatic trees were tested to experience a 



 10 

sustained 5 to 15 years decline in basal area before death in upland black spruce (Picea 

mariana) forests (Westwood et al., 2012). A research trial (Kimberley et al., 2002) indicated 

that a significant wood volume yield reduction occurred in first rotation stands of Monterey 

pine (Pinus radiata) in many parts of New Zealand because of the widespread of root rot 

disease caused by A. novae-zelandiae and A. limonea.  

Symptoms and signs related to Armillaria root disease were observed, as shown in some 

vivid pictures from previous studies (Figure 1). In the partially decayed woods, Armillaria 

was discovered to produce thick, white mats of mycelial fans beneath the bark of infected 

basal stems and roots or intercalated within multiple bark layers, which was a diagnostic 

feature of Armillaria root rot disease (Klopfenstein et al., 2009). They also formed 

rhizomorphs attached to the infected roots and further extended to the surface of uninfected 

roots (Tsykun et al., 2012). However, sometimes rhizomorph is considered a poor indicator of 

A. mellea or A. ostoyae infection (Redfern, 1973), because the rhizpmorphs formed by more 

saprotrophic species such as A. cepistipes and A. gallica were generally more extensive and 

common than those of A. mellea or A. ostoyae in natural environments (Guillaumin et al., 

1993), whereas the mycelial fans of more pathogenic species such as A. mellea or A. ostoyae 

are usually more frequent in roots than mycelial fans of A. gallica or A. cepistipes 

(Baumgartner and Rizzo, 2001b; Lygis et al., 2005; Marçais and Bréda, 2006; Bendel and 

Rigling, 2008; Ford et al., 2017). 

The presence of characteristic mycelial fans under the bark of the basal trunk indicated 

that A. ostoyae already occupied the root systems (Roth et al., 1980). Invasion by mycelial 

growth along stems was observed from the indigenous stands of rimu (Dacrydium 

cupressinum, Podocarpaceae) by A. novae-zelandiae in the southern Westland of New 

Zealand (Hood, 2012). They can expand into the inner bark of both the roots and trunk and 

subsequently cause root lesions and basal canker at trunk bases known as collar rots or foot 

rots (Shaw, 1980). The decayed wood is often stringy or spongy and sometimes wet 

(Aguín-Casal et al., 2004). Internal decays including spongy rot and heart rot in black alder 

(Alnus glutinosa) stands of central-eastern Latvia were primarily caused by Armillaria species 

and Inonotus radiatus (Arhipova et al., 2012). Basal resinosis and dead cambium caused by A. 

ostoyae were frequently observed in resinous species such as ponderosa pine, mountain pine 

(P. mugo ssp. uncinata), Norway spruce and Douglas-fir (Sicoli et al., 2003; Bendel and 

Rigling, 2008). 
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Figure 1. Symptoms and signs of Armillaria root rot disease: (a) Lesion (thick arrow) on decayed oak 

root in association with Armillaria mycelium (thin arrow) (Lee et al., 2016a); (b) Heart-rot in black alder 

stem caused by Armillaria sp. (Arhipova et al., 2012); (c) Basidiome formation of A. gallica (A) and 

Rhodophyllus abortivus (B and C) on a decaying stump (Cha and Igarashi, 1996; Coetzee et al., 2001); (d) 

Mushroom gills of A. mellea on citrus tree horizontally lying on the ground (Munnecke et al., 1981); (e) 

Example of Armillaria rhizomorph (root-like structure) following bark fissure observed on oak stumps in 

Missouri clearcuts (Lee et al., 2016a); (f) Mycelial fans of A. mellea (white and thick fungal tissue) 

underneath the bark of affected vine root (Vitis vinifera) (Baumgartner and Rizzo, 2006); (g) 2.5-year-old 

maritime pine (Pinus pinaster) tree colonized by A. ostoyae with white mycelia and rhizomorphs indicated 

by arrows underneath the stem (Solla et al., 2011). 
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1.1.5 The spread of Armillaria root disease 

Short distance infection caused by physical root contact plays an important role in the 

spread of Armillaria species, since some virulent species form much less rhizomorphs in soil, 

whereas others such as A. cepistipes and A. gallica easily spread by the explorative 

rhizomorphs (Prospero et al., 2006). The infection caused by the elaborate mycelial structures 

including mycelial fans and rhizomorphs penetrating the host tissue and contaminating the 

surrounding soil are supposed to be the predominant mode for the clonal local spread of 

Armillaria root rot disease (Solla et al., 2002; Marcais and Caël, 2006). In northern Turkey, as 

multilocus genotyping indicated, a single genet of A. ostoyae at least 0.2 ha in size was 

identified from the disease center associated with the dying 60-year-old Scots pines (Pinus 

sylvestris) in a naturally regenerated forest (Lehtijärvi et al., 2012). 

Rhizomorphs appear on the infected host tissues and further extend into soil to travel 

between host plants (Solla et al., 2002). They breach mechanical obstacles and may function 

as an organ system where absorption and transportation occur and facilitate underground 

spread (Cairney et al., 1988; Pareek et al., 2001; Yafetto et al., 2009). Air pores developed in 

Armillaria mycelium associated with a complex system of gas channels conduct oxygen into 

rhizomorphs. This complicated aerating system facilitates efficient oxygen diffusion and 

aeration for Armillaria, probably contributing to a broader and deeper spread of the inoculum 

into low oxygen environments such as a depth of more than 16 cm in soil (Pareek et al., 2006). 

These beneficial features of rhizomorphs have resulted in the devastating expansion of 

Armillaria species such as A. ostoyae, A. mellea, A. gallica and A. cepistipes over vast 

territories (Smith et al., 1994; Marçais and Bréda, 2006; Chandelier et al., 2016). 

At the larger regional scale, Armillaria species probably spread by the way of dispersion 

of basidiospores (Dutech et al., 2017). Although the fruiting bodies of Armillaria release huge 

quantities of basidiospores, usually leaving dense local spore prints behind or occasionally 

dispersing at regional scale by wind, haploid mycelia germinating from the spores and 

causing plant infection appear fairly unobservable in nature (Hood et al., 2002; Hood et al., 

2008). As a possible explanation, the haploid mycelia and germinating basidiospores could 

either become dormant or be short-lived, and also their infectious ability are largely relied on 

the opportunities to mate with another compatible propagule (basidiospore or haploid 

mycelium) and generate a new diploid mycelium (Heinzelmann et al., 2018). Actually, in an 

outdoor inoculation experiment, the isolates of haploid A. ostoyae could form mycelial fans 

on dead woods, but failed to invade seedlings and saplings of Norway spruce, and only 

diploid mycelia could be recovered from the infected plants (Heinzelmann and Rigling, 2016). 
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New genotypes from basidiospores would favor colonization on clear-cutting or the planting 

of new conifer stands (Legrand et al., 1996). Sexual spore dispersal may be more efficient at 

fine spatial – for example, a few kilometers – in contrast to larger spatial scales (Travadon et 

al., 2012; Dutech et al., 2017). 

 

1.1.6 The potential Armillaria inoculum 

Root fragments, woody debris and small woody plants provide nutrition for the survival 

of Armillaria; these survival substrates serve as potential sources of root disease inoculum 

(Reaves et al., 1993). Thus, pre-existing forests are supposed to act as sources of pathogen 

inoculum leading to the colonization of Armillaria on newly planted stands and spreading 

around the vicinity of afforested areas (Lung-Escarmant and Guyon, 2004). For example, 

pre-exsiting A. ostoyae inoculum in the maritime pine forest of the Landes de Gascogne 

(France) caused heavy infection and tree mortality: the tree mortality increased after planting, 

and from the third year on, newly dead pines served as secondary inoculum and played an 

increasing role along with time, not even to mention that the contribution of the primary 

inoculum was still essential (Lung-Escarmant and Guyon, 2004). White root rot in vineyards 

was primarily caused by A. mellea, and the low frequency of the disease incidence caused by 

A. cepistipes and A. gallica was probably just due to the fact that the vineyards were located 

on cleared forestry sites (Aguín-Casal et al., 2004). The mortality rate increased as the 

distance between the colonized stumps and the healthy trees decreased. 

An expanding list of non-woody plants susceptible to A. mellea suggested more 

widespread infection of herbaceous species than currently acknowledged (Ford et al., 2017). 

Some non-woody plants may also serve as a potential inoculum (Klein-Gebbinck et al., 1993; 

West et al., 2000). The lodgepole pine seedlings inoculated with root segments of fireweed 

(Epilobium angustifolium) colonized by A. mellea were infected and killed. Hence it was 

suggested that fireweed may serve as a potential inoculum reservoir for the spread of A. 

mellea in the pine forest (Klein-Gebbinck et al., 1993). A. ostoyae artificially inoculated to 

herbaceous plants under field condition resulted in infection, therefore A. ostoyae was also 

supposed to have the potential ability to infect herbaceous plants (West et al., 2000). However, 

there were no infection symptoms on lodgepole pine seedlings inoculated with fireweed 

colonized by A. ostoyae (Klein-Gebbinck et al., 1993). 
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1.2 Chemical and silvicultural means of Armillaria control 

The serious economical and ecological damages triggered by pathogenic Armillaria 

species require robust control strategies. Armillaria species as wood decay fungi usually hide 

beneath the infected root bark to decompose wood and cause damages in plant tissues (Figure 

1). Besides, even after hosts die, they still survive in soil saprotrophically for decades. 

Therefore, control of Armillaria becomes even more challenging than we expected (Smith et 

al., 1992). What, if anything, could or should be done with the productive growing sites for 

various coniferous or broadleaf species that are progressively dying from root rot disease 

caused by Armillaria pathogens? 

Chemical fungicides, such as paclobutrazol, fenpropidin, flutriafol, hexaconazole, 

cyproconazole, methyl bromide, vapam, carbon disulfide, chloropicrin and vorlex showed 

their efficacy in fungal growth inhibition and some of them proved to be effective for 

reducing the progress of Armillaria root disease (Filip and Roth, 1977; Turner and Fox, 1977; 

Adaskaveg et al., 1999; Jacobs and Berg, 2000; Aguin et al., 2006; Thomidis and 

Exadaktylou, 2012; Chen et al., 2021). However, several problems appeared during the 

application of chemicals. Eradicating Armillaria pathogens from a living host can be of lower 

efficiency due to failing to deliver a fungicide directly to the infected roots. Chemicals like 

fumigants do not penetrate the soil deeply enough to kill all Armillaria inocula in soil or from 

the infected roots, thus can not guarantee long-term control (Munnecke et al., 1981; Appel 

and Kurdyla, 1992; Adaskaveg et al., 1999; West and Fox, 2002; Amiri et al., 2008). 

Moreover, the use of chemicals caused a lot of environmental concerns and faced several 

safety and health issues for worker and farmer, and it is also very costly and labour intensive 

(Robinson and Smith, 2001). 

On the other hand, it remains unclear what roles the silvicultural treatments are playing 

in disease development in the forested landscapes, since Armillaria infection seems unlikely 

to be reduced by some sivilcultural managements such as clearcutting and replantation or 

thinning, which provide new stumps, roots and wood debris suitable for vegetative 

colonization or basidiospore dispersal (Morrison et al., 2001; Oliva et al., 2008; Chapman et 

al., 2011; Lee et al., 2016a). Although the inoculum removal measures such as stump or root 

removal reduced the level of Armillaria root rot disease (Sturrock, 2000; Baumgartner, 2004; 

Vasaitis et al., 2008; Schnabel et al., 2012), it reoccurred over a period of time (Cleary et al., 

2013). Thus, silvicultural practices do not seem to guarantee a long-term controlling effect 

and these approaches are also time consuming and costly. 
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1.3 Biological control of Armillaria 

Concerning the environmental threats posed by chemical fungicides as well as the 

unstable and undurable control efficacy of silvicultural practices, biological control strategies 

are considered as alternatives (Kedves et al., 2021). The emergence of potential biocontrol 

microorganisms can serve plant protection purposes or even do better (Moraes Bazioli et al., 

2019). It is full of benefits to our environment with no pesticide residue or pollution and is 

conducive to the safety of animals and humans. It can promote plant growth and effectively 

protect plants from various pathogen-induced diseases, resulting in increased harvest and 

production (Syed Ab Rahman et al., 2018). Biological control emphasizes on environment 

protection and ecological sustainability usually by the exploitation and employment of 

beneficial microorganisms, especially some free-living soil fungi (Knudsen and Dandurand, 

2014). The use of naturally occurring antagonistic fungi (e.g., certain Trichoderma species) 

and bacteria (e.g., Bacillus and Pseudomonas species) has uncovered great potential to 

successfully reduce the pathogenic activities of Armillaria. Particularly, native 

microorganisms isolated from soil, rhizosphere or directly from plant roots usually have a 

better adaptation to that specific soil and plant environment, and thus can display more 

efficient control of diseases than introduced exotic microorganisms (Weller, 1988). 

 

1.3.1 Potential biocontrol of Armillaria by bacteria and saprobic basidiomycetes 

Potential biocontrol bacteria showed their efficacy to control some fungal pathogens of 

agronomic crops (Olanrewaju et al., 2017); however, their applications in Armillaria control 

are still waiting for investigation. Antagonistic bacteria isolated from native soil environments 

such as Pseudomonas spp. (e.g., Pseudomonas fluorescens), Bacillus spp. (e.g., Bacillus 

simplex), Serratia spp., Enterobacter spp., Rhizobium radiobacter (formerly Agrobacterium 

radiobacter), Erwinia billingiae, actinobacteria as well as Streptomyces spp. (e.g., 

Streptomyces aurantiacogriseus, S. jumonjinensis, S. kasugaensis and S. setonensis) proved to 

show antagonistic interactions with several Armillaria spp. (e.g., A. ostoyae) along with the 

reduction of their pathogenic effects (Dumas, 1992; Vasconcellos and Cardoso, 2009; 

DeLong et al., 2011; Zagryadskaya et al., 2015; Mesanza et al., 2016; Kedves et al., 2021). 

Some saprobic basidiomycete fungi (e.g., Hypholoma fasciculare) as effective 

competitors of pathogenic Armillaria species were proven effective to restrict colonization of 

dead or dying trees by Armillaria and reduce Armillaria viability and growth through 

competitive spatial exclusion of Armillaria from stumps and roots (Chapman and Xiao, 2000). 

The wood decay saprophytic fungi including Rigidoporus concrescens, Hypholoma acutum, 
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Hypholoma australe, Sistotrema brinkmannii, Phlebiopsis gigantea, Phanerochaete 

filamentosa, Stereum sanguinolentum, Resinicium concrescens and Resinicium bicolor 

showed their biocontrol potential against Armillaria novae-zelandiae and A. luteobubalina 

(Pearce and Malajczuk, 1990; Pearce et al., 1995; Hood et al., 2015). The investigation of the 

biocontrol potential of eight common saprophytic fungi on newly cut stem segments of 

Monterey pine revealed that Ganoderma mastoporum and Rigidoporus catervatus evidently 

reduced colonization by Armillaria pathogens, but comparing to those competitive 

basidiomycete antagonists, species of Trichoderma displayed markedly more antagonism to A. 

limonea and A. novae-zelandiae (Li and Hood, 1992). 

 

1.3.2 Potential biocontrol of Armillaria by Trichoderma species 

Species of the soilborne genus Trichoderma have been explored as biocontrol agents 

(BCAs) against Armillaria (Kedves et al., 2021). Examples of Trichoderma BCAs for 

controlling Armillaria pathogens are shown in Table 1. Soil isolates of T. atroviride and T. 

harzianum were frequently under investigation for their biocontrol potential against A. mellea 

and other Armillaria species. The high efficacy of using Trichoderma BCAs to overcome the 

Armillaria challenge has resulted in increased investigations and explorations for unveiling 

their antagonistic strategies and interaction mechanisms. Several studies indicated that the 

antagonistic Trichoderma species affected Armillaria species through antibiosis reflected by 

growth inhibition of Armillaria, by competition for nutrients and space, and most importantly 

through direct mycoparasitic action (Table 1). 

Antibiotic metabolites of Trichoderma inhibited the mycelial growth as well as 

rhizomorph formation of Armillaria (Reaves et al., 1990; Tarus et al., 2003). For instance, 

diffusible compounds from T. citrinoviride were proven responsible for the strong inhibition 

effect on colony growth and rhizomorphs production of A. solidipes (Reaves et al., 1990). 

These antifungal compounds were metabolites but not enzymes, as they still had inhibitory 

effect on Armillaria after the denaturation of all proteins in the Trichoderma filtrates by 

autoclaving (Reaves et al., 1990). The metabolite 6-n-pentyl-α-pyrone isolated from the 

fermentation broth of T. longibrachiatum and T. harzianum showed significant activity on 

several tested bacteria and fungi, and also showed complete growth inhibition of A. mellea 

colonies at a concentration of 200 ppm (Tarus et al., 2003). However, not all the antibacterial 

and antifungal metabolites from Trichoderma showed activity on Armillaria. For example, 

sorbicillin had antifungal activity on the fungi Paecilomyces variotii and Penicillium notatum 

but showed no activity on A. mellea (Tarus et al., 2003). 
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The mycoparasitic process of biocontrol against Armillaria was observed and 

investigated under light and scanning electron microscopy; this process included colonization 

and penetration of rhizomorphs by Trichoderma hyphae, sporulation of Trichoderma on the 

surface of rhizomorphs, as well as lysis and degeneration of rhizomorph tissue along with 

discharge of rhizomorph content (Asef et al., 2008). The mycoparasitic interaction process 

was further investigated by monitoring active degradation and metabolic assimilation through 

isotope ratio mass spectrometry during physical contact by dual-culture tests (Pellegrini et al., 

2012). During the direct physical interaction with 
13

C-labeled A. mellea, the 
13

C content in T. 

atroviride mycelia increased substantially by absorbing some leaching exudates and 

metabolites secreted by the labeled pathogen, mostly assimilating through proactively 

parasitizing the pathogen (Pellegrini et al., 2012). A similar experiment using the same method 

was also carried out on a strain of T. harzianum, since it suppressed A. mellea development 

with a growth inhibition rate of 80 ± 0.19% (Pellegrini et al., 2013). During mycelial contact 

with 
13

C-labelled A. mellea, 
13

C values detected in T. harzianum mycelia significantly 

increased to a higher level than the absorbtion of 
13

C values in two tested antagonistic bacteria 

Rhodosporidium babjevae and Pseudomonas fluorescens, and the mycoparasitic activity of T. 

harzianum on the labeled A. mellea maintained for one month in dual culture (Pellegrini et al., 

2013). 

The introduced Trichoderma establishes to survive and disperse in a new environment 

adapting as an integrant part of the native microbial community. The exotic T. atroviride SC1 

was able to survive and colonize the rhizosphere and also dispersed to the leaves of grapevine, 

even one year after soil treatments it could still persist and be recovered from the inoculation 

sites (Longa et al., 2009). Long-term maintenance of the biocontrol effects on pathogenic 

Armillaria species in field largely rely on the environmental adaptation of Trichoderma 

species. Therefore, the investigation of the environmental impacts resulting from long 

persistence and rapid spread of Trichoderma was required. As suggested, the introduction of 

T. atroviride SC1 posed a risk but a lot lower than other abiotic environmental factors to 

non-target native communities of fungi and bacteria in the soil of a vineyard; the strain SC1 

had only slight influence on the biodiversity and composition of local soil microbiota 

(Savazzini et al., 2009). Further investigation into the influences of T. atroviride SC1 

introduction on local microorganisms was conducted at the transcriptional level. It was found 

that T. atroviride SC1 was recognized specifically; resistance mechanisms and defence 

reaction processes were activated in a simplified soil microcosm from a combination of 11 

soil microorganisms. In response, biocontrol mechanisms of T. atroviride SC1 were already 
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activated by the soil microcosm even before A. mellea introduction, probably in order to 

competitively occupy niches (Perazzolli et al., 2016). 

 

Table 1. Trichoderma species used as biocontrol agents against pathogenic Armillaria species 

 

Trichoderma 

strains 

Pathogenic 

Armillaria  

Biocontrol efficacy References 

T. citrinoviride 

T. harzianum 

A. ostoyae Reduction of Armillaria mycelial growth and rhizomorph 

formation on solid media amended with Trichoderma 

filtrates 

(Reaves et 

al., 1990) 

T. koningii 

T. harzianum 

T. longibrachiatum 

Armillaria spp. Armillaria growth inhibition (Onsando 

and Waudo, 

1994) 

Trichoderma spp. A. luteobubalina Significant reduction of root colonization along with an 

adverse effect on the fruiting of Armillaria by inoculation 

of five combined isolates of Trichoderma spp. into stumps 

of karri (Eucalyptus diversicolor) 

(Nelson et 

al., 1995) 

T. harzianum Armillaria spp. Significant reduction of the viability of Armillaria in the 

plant materials and failure to colonize and invade the 

stem sections that had already been occupied by 

Trichoderma 

(Otieno et 

al., 2003a; 

Otieno et al., 

2003b) 

T. harzianum 

T. longibrachiatum 

A. mellea Complete growth inhibition of A. mellea by the antifungal 

metabolite 6-n-pentyl-α-pyrone from Trichoderma at a 

concentration of 200 ppm 

(Tarus et al., 

2003) 

T. hamatum Thaml 

T. harzianum Th23 

T. viride Tv3 

A. mellea Protection from Armillaria infection resulting in increased 

survival rate of the potted strawberry plants and healthier 

plants developing more leaves when inoculated with 

Trichoderma 

(Raziq and 

Fox, 2004; 

Raziq and 

Fox, 2005)  

T. virens 

T. harzianum 

A. mellea Inhibition of mycelial growth and rhizomorph formation 

of A. mellea by the volatiles from Trichoderma and the lysis, 

discharge and degeneration of rhizomorph tissue caused 

by penetration of Trichoderma hyphae 

(Asef et al., 

2008) 

T. harzianum A. mellea Root collar excavation by air-spading followed by T. 

harzianum inoculation as a joint cultural/biocontrol 

strategy to eradicate A. mellea from infected strawberry 

plants 

(Percival et 

al., 2011) 

T. atroviride SC1 

T. harzianum 

A. mellea Dissolution of Armillaria cell wall and membrane followed 

by metabolic assimilation by Trichoderma during 

aggressive mycoparasitic interaction 

(Pellegrini et 

al., 2012, 

2013) 

T. atroviride SC1 A. gallica Long period protection of strawberry plants from A. gallica 

infection by a bark mixture pre-inoculated with T. 

atroviride SC1 

(Pellegrini et 

al., 2014) 

  



 19 

1.4 Trichoderma species as powerful biocontrol agents 

Biocontrol mechanisms of Trichoderma BCAs acting on pathogenic Armillaria species 

still remain unclear and need further exploration. However, there is no doubt about the great 

potential of Trichoderma to control Armillaria. The biocontrol abilities of Trichoderma 

strains are based on a wide arsenal of various antagonistic mechanisms (Sood et al., 2020). 

Understanding the mode of action of Trichoderma BCAs is essential for plant disease control. 

Mycroparasitism appears to be the most outstanding strategy, which involves the production 

of a series of extracellular fungal cell wall hydrolytic enzymes. Antibiosis to inhibit pathogens 

by the release of antimicrobial volatile and nonvolatile secondary metabolites, competition for 

space and nutrients as rapid colonizers, plant growth promotion as well as inducing plant 

defence reactions as avirulent plant symbionts are also among the most excellent biocontrol 

strategies deployed by Trichoderma BCAs (Sood et al., 2020). 

 

1.4.1 Mycoparasitic activity of Trichoderma species 

The outstanding mycroparasitic potential of Trichoderma species was proved to be a 

very complex process comprising the differentiation of mycelial structure and several 

successive steps ((Kubicek et al., 2008; Inbar and Chet, 1996). Shortly, actively branching 

mycelia of Trichoderma parasitize or even kill plant pathogens through robust physical 

penetration and assimilation, thus reducing their inoculum size in the rhizosphere. The 

destructive parasitic process initiates with the recognition and attachment of Trichoderma to the 

cell wall of the plant pathogenic hosts (Kubicek et al., 2008), followed by the degradation of 

host hyphae by a variety of lytic enzymes, finally, concluding with the uptake and assimilation 

of the host’s cellular content (Inbar and Chet, 1996). In addition, the hyphae of Trichoderma 

form appressoria during their extension towards the host mycelia and grow on the surface of 

the host. Conidia of Trichoderma adhere to the hyphae of the host pathogens and germinate on 

them after attachment. The young germinated hyphae parasitize the host mycelia again (Lu et 

al., 2004). 

The specific mycoparasitic behavior shown by certain Trichoderma stains or isolates 

plays a role in their biocontrol performance. Significant strain-specificity in photoconidiation 

and mycoparasitism was reflected by two strains of T. atroviride during confrontation with 

the tested phytopathogen Fusarium oxysporum. T. atroviride isolate IMI 206040 failed to 

fully overgrow and lyse F. oxysporum, while T. atroviride P1 was more active and able to 

fully mycoparasitize the host fungus (Speckbacher and Ruzsanyi, 2020). The mycoparasitic 

behavior of Trichoderma was influenced during the interaction with different hosts. Taking 
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one strain of T. atroviride as an example, before contact with the pathogen Rhizoctonia solani, 

the Trichoderma mycelium formed a cluster of branches approaching towards the host hyphae; 

subsequently, they aligned with the hyphae of the pathogen and caused breakage. Whereas 

different mycelial performances were observed during parasitism on Pythium ultimum, the 

mycoparasite grew alongside the host hyphae, coiled around them, and at the same time, 

branched towards adjacent hyphae (Lu et al., 2004). Different performances of parasitic 

hyphae were also observed in T. citrinoviride when confronted with several different ginseng 

pathogens. After the mycoparasite unrestrictedly grew along the host hyphae in the contact 

area, T. citrinoviride coiled around, but failed to penetrate Rhizoctonia solani and Botrytis 

cinerea hyphae. However, the hyphae of Trichoderma directly penetrated Phytophthora 

cactorum and Alternaria panax hyphae without coiling. In addition, appressorium formation 

of T. citrinoviride was observed without coiling or penetration on Pythium spp. and 

Cylindrocarpon destructans (Park et al., 2019). 

Mycoparasitic interactions and their efficiency in biocontrol can be easily monitored in 

dual cultures between Trichoderma and its hosts, or directly observed through light and 

scanning electron microscopy (Asef et al., 2008), therefore it is one of the most important 

parameters for screening Trichoderma BCAs. For example, by observation in two dual culture 

bioassays, candidate biocontrol fungi were screened based on the ability to reduce apothecium 

production and degrade sclerotia of Sclerotinia sclerotiorum; therefore T. hamatum was 

selected as the best biocontrol agent to control carpogenic infection in cabbage caused by S. 

sclerotiorum (Jones et al., 2014a). 

 

1.4.2 Extracellular enzymes of Trichoderma species 

The extracellular enzymes produced by Trichoderma species have exposed great 

biocontrol potential against phytopathogens (Sharma et al., 2003). Host specific detection and 

penetration during the process of mycoparasitsm stimulate biosynthesis and secretion of a set 

of extracellular enzymes and mycotoxic secondary metabolites. Transcriptional regulation of 

genes encoding extracellular enzymes was proven to be controlled by an array of 

transcriptional factors. Several transcriptional activatiors including ACE3, XYR1 (Zhang et 

al., 2019a), RXE1 (Wang et al., 2019a), ACEII (Aro et al., 2001) and CLP1 (Wang et al., 

2019b) and fungal transriptional repressors (Rce1 (Cao et al., 2017) and ACEI (Aro et al., 

2003)) play important roles in controlling expression of cellulases, xylanases and other lytic 

enzymes. In T. atroviride, the repressor of cellulase expression I (ACE1) was responsible for 

the biocontrol potential during the antagonistic action on plant pathogens R. solani and F. 
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oxysporum through controlling the expression of polyketide synthase (PKS) and the activities 

of cell wall-degrading enzymes (CWDEs) including β-1,3-glucanase, chitinase, protease, 

cellulase, galacturonase and xylanase (Fang and Chen, 2018). 

Direct mycoparasitism is closely associated with the production of CWDEs playing an 

important role in the degradation of the cell wall and the penetration into the host hyphae 

(Sharma et al., 2003; Gajera and Vakharia, 2012). Such a strategy was common in 

Trichoderma species during antagonistic interaction with soil plant pathogens. As clearly 

observed through high-resolution scanning electron microscopy, T. harzianum actively 

attached to the mycotoxin-producing and plant-pathogenic Aspergillus species and caused 

substantial enzymatic lysis of host mycelial filaments (Braun et al., 2018). Antifungal activity 

of hydrolytic enzymes from Trichoderma species can be strong and highly efficient. For 

example, 60 U/mL of chitinase obtained from T. asperellum PQ34 nearly completely 

supressed the growth of Sclerotium rolfsii and Colletotrichum sp. and prevented anthracnose 

on chilli fruits and mango infected with Colletotrichum sp. Besides, chitinase at 20 U/mL 

significantly reduced the S. rolfsii infection incidence in peanut plants (Loc et al., 2019). 

β-1,3-glucanase and β-1,4-N-acetylglucosaminidase (NAGase) activities showed a significant 

increase on Trichoderma biocontrol effectiveness in reducing apothecium density of S. 

sclerotiorum with a consequent reduction in disease severity on common beans (Geraldine et 

al., 2013). 

Trichoderma species are also excellent competitors for space and nutrients. Their 

extracellular polysaccharide-degrading enzyme systems including cellulases (e.g., 

endocellulases, cellobiohydrolases and β-glucosidases) and xylanases (e.g., endoxylanases 

and β-xylosidases) enable the efficient utilization of plant polysaccharides (Monfil and 

Casas-Flores, 2014). Polysaccharide-degrading enzymes in Trichoderma species contribute to 

their success as saprotrophic competitors of soil-borne plant pathogens. 119 Trichoderma 

isolates originating from decaying wood samples and belonging to 12 species or species 

complexes were examined and screened for their ability to produce xylanolytic and 

cellulolytic enzymes; all of the isolates were able to degrade birch wood xylan and cellulose, 

however, the levels of xylanase and cellulase activities were varying among different species 

and isolates (Blaszczyk et al., 2016). Other extracellular enzymes involved in saprotrophism 

of Trichoderma were also considered to be responsible for biocontrol abilities, such as 

NAGase; its deficiency in T. hamatum GD12 significantly reduced the fitness of the strain as 

a biocontrol agent of S. sclerotiorum in soil and also impaired saprotrophic competitiveness 

when confronted with R. solani (Ryder et al., 2012). In conclusion, Trichoderma species 
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originating from forest soil and equipped with a wide arsenal of extracellular 

polysaccharide-degrading enzyme systems are usually excellent saprotrophs on woody debris. 

Thus, detection and characterization of enzymes such as β-glucosidase, cellobiohydrolase, 

β-xylosidase as well as other enzymes such as phosphatase in Trichoderma species are also 

considered important in screening for good candidates of Trichoderma BCAs from native 

forest soils. 

Acid phosphatases produced by Trichoderma play a specific role in acquisition, 

mobilization and scavenging of phosphate, therefore enhancing plant growth and soil fertility. 

The production of phosphatases can be induced by cell walls of plant pathogens (Qualhato et 

al., 2013). Trichoderma strains isolated from the Amazon rainforest were screened for their 

ability of solubilizing phosphate. 19.5% of the Trichoderma strains were able to solubilize or 

mineralize soil phosphate with the efficiency of phosphorus uptake up to 141% and also 

showed significant promotion of soybean growth up to 41.1% (Bononi et al., 2020). 

Extracellular enzymes of Trichoderma have provided plenty of evidence not only for 

their biocontrol roles as mycoparasitic factors, but also as elicitors of plant defense responses 

against bacterial and fungal pathogens (Dean and Anderson, 1991). During interaction with 

plant roots, two endopolygalacturonase genes were expressed in T. virens I10; further 

experiments indicated that constitutive production of endopolygalacturonase in tomato 

(Lycopersicon esculentum) could induce systemic resistance to infection caused by B. cinerea 

(Sarrocco et al., 2017). The xylanases secreted by T. asperellum also proved to be good 

candidates for plant resistance induction and improving plant immunity against pathogens 

(Wu et al., 2017). When interacting with tobacco (Nicotiana tabacum) leaves, T. viride 

secreted xylanase proteins and caused tissue necrosis. Further studies suggested that xylanase 

induced systemic resistance in the plant by stimulating the ethylene biosynthesis pathway 

(Dean and Anderson, 1991). 

 

1.4.3 Metabolites produced by Trichoderma against fungal plant pathogens 

Biocontrol activities of Trichoderma by directly weakening and inhibiting pathogens 

through antifungal compounds were commonly observed (Nagamani et al., 2017). For 

example, volatile metabolites from T. viride were effective in reducing sclerotium production 

and mycelial growth in the plant pathogens S. sclerotiorum and S. rolfsii (Amin et al., 2010). 

Trichoderma isolates from chickpea rhizosphere soil, with highly efficient non-volatile and 

volatile compound production, were proved to have high growth inhibition efficacy against 

the pathogens F. oxysporum, Rhizoctonia bataticola and S. rolfsii (Nagamani et al., 2017). 
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Volatile-mediated battle between plant pathogens and biocontrol agents was investigated. 

Trichoderma species significantly increased the activity or the amount of antifungal volatiles. 

In response to Trichoderma invasion, F. oxysporum also immediately sensed and recognized 

volatiles from Trichoderma by producing its own volatiles to inhibit Trichoderma growth (Li 

et al., 2018). To better understand the characteristics of antimicrobial metabolites related to 

the biocontrol capability of Trichoderma antagonists, metabolite analyses were conducted 

using analytical techniques such as spectrophotometry, nuclear magnetic resonance 

spectroscopy, liquid chromatography, gas chromatography, mass spectrometry, etc. 

Trichoderma metabolite databases have been constructed (Khan et al., 2020). 

Antifungal secondary metabolites including pyrones, polyketides and non-ribosomal 

peptides play important roles in the antibiotic effects of Trichoderma strains against fungal 

plant pathogens (Monfil and Casas-Flores, 2014). In a recent review, 390 non-volatile 

metabolites from 20 known Trichoderma species included amides, cyclopentenones, lactones, 

pyranone derivatives, peptides, pyridines, polyketides, peptaibols, steroids, terpenes, and 

tetronic acid derivatives (Li et al., 2019). Some compounds exhibited important biocontrol 

activities during the mycoparasitic process; those antifungal secondary metabolites included 

peptaibols, pyrones, epipolythiodioxopiperazines, butenolides, pyridones, azaphilones, 

koninginins, steroids, anthraquinones, lactones, trichothecenes, etc. (Khan et al., 2020). The 

antifungal compounds obtained from T. viride and T. harzianum achieved high growth 

inhibition on Alternaria alternata; they were identified as 17-octadecynoic acid (36.23%) and 

6-O-α-D-galactopyranosyl-D-glucose (38.45%) (Meena et al., 2017). Some non-volatiles such 

as azaphilone and harzianopyridone obtained from fungal culture filtrates of T. harzianum 

inhibited the growth of Phytophthora cinnamomi, Leptosphaeria maculans and B. cinerea 

even at low dose (1-10 µg per plug); while some metabolites required higher dose (>100 µg 

per plug) for inhibition, such as butenolide and harzianolide (Vinale et al., 2009). The organic 

extracts of T. harzianum P11, T. afroharzianum P8, T. gamsii IT-62 and T. erinaceum IT-58 

contained high amounts of polyphenol and flavonoids and significantly suppressed the 

mycelial growth of Pythium myriotylum (Tchameni et al., 2020). The minimal concentrations 

for pathogen inhibition were 10 μg/μL, 20 μg/μL, 40 μg/μL and 80 μg/μL for extracts 

obtained from P11, P8, IT-62 and IT-58 respectively. There was strong correlation between 

the antagonistic effects of the examined Trichoderma strains on the pathogen and the 

production of total amounts of polyphenolic compounds and flavonoids (Tchameni et al., 

2020). 

Diverse volatiles secreted by Trichoderma BCAs showing antagonistic effects on a wide 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nuclear-magnetic-resonance-spectroscopy
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nuclear-magnetic-resonance-spectroscopy
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/mass-spectrometry
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range of plant pathogens were identified and assigned to the classes of acids, alkanes, alcohols, 

furanes, ketones, esters, mono- and sesquiterpenes and pyrenes (Stoppacher et al., 2010). 

Most of the volatiles are species-specific. In the study from several Trichoderma species, the 

only alcohol emitted by T. virens was 3-methylcyclopentanol, while T. harzianum produced 

several alcohols, such as 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol, 2-methyl-1-propanol, 

2-phenylethyl alcohol and 3-methyl-1-butanol. It was also proved that T. virens emitted more 

sesquiterpenes than T. harzianum. The compounds secreted from both species are acetic acid, 

1-octen-3-ol and 3-octanone (Li et al., 2018). A strong correlation was found between the 

antagonistic ability of Trichoderma BCAs in vitro and the production of 6-pentyl-α-pyrone; 

results showed that this compound not only caused growth reduction of R. solani and F. 

oxysporum, but also completely inhibited the germination of Fusarium spores (Scarselletti 

and Faull, 1994). The production of volatiles with fungistatic activity such as 

6-pentyl-2H-pyran-2-one and (E)-6-pent-1-enylpyran-2-one from T. atroviride was suspected 

to be regulated by the NADPH oxidase Nox2 (Cruz-Magalhães et al., 2019). There seems to 

be a vast diversity of metabolites related to the biocontrol potential Trichoderma, the 

examples related with antifungal volatiles and nonvolatiles discussed above may just be the 

tip of the iceberg. 

 

1.4.4 Effects of Trichoderma species on plants 

Besides the direct mechanisms of antagonism on plant pathogens, the ability of 

Trichoderma to promote plant growth through phosphorous mobilization, extracellular 

phosphatases, the production of siderophore and indole-3-acetic acid (IAA) derivatives and 

induction of systemic resistance in the plant should also be considered when screening for 

biocontrol agents (Monfil and Casas-Flores, 2014; Kumar et al., 2017). The antagonistic 

behavior of some Trichoderma species resulted from the interaction with plant roots, leading 

to promotion of plant growth and improvement of tolerance to abiotic stresses as well as 

resistance to diseases (Contreras-Cornejo et al., 2014). 

When Trichoderma species competitively colonized the plant rhizosphere, deposition of 

lignin and callose was enhanced in specialized plant cells in protecting the vascular system in 

shoots, roots and leaves against pathogen infection, which contributed to better hydration and 

nutrition of plants (Nawrocka et al., 2018a). Protection of plant was mostly resulted from 

enhanced activity of defense enzymes. T. tomentosum reduced disease severity and activated 

protective antioxidant responses by promoting significant increase in catalase, superoxide 

dismutase as well as flavonoid and glutathione enzymes in wheat plants infected by Bipolaris 
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sorokiniana (Pittner et al., 2019). Protection activities triggered by Trichoderma might also 

rely on accumulation of salicylic acid derivatives as well as volatiles in plants. These volatiles 

played an important role in the upregulation of the PR4 gene in induced systemic resistance as 

well as the PR1 and PR5 genes in systemic acquired resistance (Nawrocka et al., 2018a). In 

the closed-chamber experiments with Arabidopsis thaliana seedlings, the plant experienced 

an increase in shoot and root biomass induced by a blend of several volatile organic 

compounds of T. atroviride. The plant growth promotion effects from these volatiles tended 

to be regulated by the membrane-bound NADPH oxidases NoxR and Nox1 (Cruz-Magalhães 

et al., 2019). In previous studies, more than 141 unique volatiles including several unknown 

terpenes were identified from 20 strains of Trichoderma representing 11 species. The type and 

abundance of species- and strain-specific volatiles were also dependent on the age of the 

fungal cultures and the plant, as well as external environmental conditions such as 

temperature and nutrition (Lee et al., 2015; Lee et al., 2016b; Gonzalez et al., 2018). 

The production of the auxin phytohormone IAA in Trichoderma is strain specific and 

depends on diverse external stimuli. Trichoderma species such as T. atroviride, T. asperellum 

and T. virens that had the ability of IAA production functioned as root growth promoters 

(Nieto-Jacobo et al., 2017). Auxins released by the biocontrol agent T. harzianum Th5cc to 

the rhizosphere was suggested to be involved in overcoming the nitrate-inhibition of soybean 

nodulation, which indicated that soybean plants coinoculated with N2-fixing Bradyrhizobium 

japonicum E109 and T. harzianum Th5cc might benefit from biocontrol process against plant 

pathogens, as a result, contributing to nitrogen preservation in soil (Iturralde et al., 2020). The 

IAA production and the increased 1-aminocyclopropane-1-carboxylate-deaminase 

(ACC-deaminase) activity in T. longibrachiatum strain TL-6 effectively enhanced wheat 

growth and improved plant tolerance to NaCl stress by regulating transcriptional expression 

of IAA and ethylene synthesis genes in roots of wheat seedling under salt stress (Zhang et al., 

2019b). 

Production of siderophores by Trichoderma species is also one of the important 

contributors to plant growth promotion due to their high affinity to iron (Fe). T. stilbohypoxyli 

LBM 120 and T. atroviride LBM 112 were tested positive on phosphate solubilization as well 

as hydrolytic enzyme and siderophore production, thus they showed high biocontrol efficacy 

and plant growth promotion properties to improve yerba mate (Ilex paraguariensis St. Hil) 

yield (López et al., 2019). The siderophores produced by T. asperellum Q1 were suggested to 

stimulate the conversion of insoluble iron, thereby contributing to the accumulation of IAA in 

roots and promotion of A. thaliana seedlings growth (Zhao and Wang, 2020). Besides, the 
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intracellular siderophore in T. virens was proven to be associated with growth, conidiation, 

the biosynthesis of gliotoxin and systemic resistance induction in maize against Cochliobolus 

heterostrophus (Mukherjee et al., 2018). 

 

1.5 High-throughput sequencing technologies for studying Armillaria and 

Trichoderma  

The availability of whole-genome sequences for an increasing number of Armillarioid 

species (Sipos et al., 2017) and the identification of species-specific pathogenicity factors will 

further contribute to the development of more efficient root rot control strategies. 

Comparative transcriptome analysis to identify biocontrol factors from plant beneficial fungi 

such as Trichoderma species will continue providing molecular insights into mechanisms that 

play a crucial role in fungal interaction and plant protection. So far, molecular repertoires, 

particularly those required for the function and regulation of antagonistic secondary 

metabolites and cell wall degrading enzymes, have been revealed by genomics and 

transcriptomics studies between Trichoderma and R. solani (Halifu et al., 2020), whereas, the 

interaction between Trichoderma and Armillaria is yet to be explored. Therefore, extensive 

and comprehensive gene expression analyses are needed to examine the gene repertoires 

involved in their multilevel interactions. 

 

1.5.1 Genome sequencing of Armillaria species 

Our understanding of root rot fungal pathogens is improving with the increasing 

availability of genome sequence data for several Armillaria species. To date, the genomes of 

six Armillaria species, A. ostoyae (Sipos et al., 2017), A. solidipes (Sipos et al., 2017), A. 

mellea (Collins et al., 2013), A. gallica (Zhan et al., 2020), A. cepistipes (Sipos et al., 2017) 

and A. fuscipes (Wingfield et al., 2016) have been sequenced and released. As reported, the 

draft genome of A. cepistipes and A. gallica differed greatly from A. solidipes, A. ostoyae, A. 

mellea and A. fuscipes in terms of genome size (53-85Mb) and the number of predicted genes 

(14473-26261). The number of protein coding genes of A. mellea and A. fuscipes was at 

similar level but much less than that identified in A. solidipes, A. ostoyae, A. gallica, and A. 

cepistipes. However, comparison regarding intron length, exon length, number of exons per 

gene and average gene length revealed similar results for all sequenced Armillaria species 

(Collins et al., 2013; Wingfield et al., 2016; Sipos et al., 2017). The diversified genomic 

structures and genetic diversity among the Armillaria species may explain their varying 

morphologies, differing pathogenic activities and host specificities.  
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Comparative genomics including 22 Agaricales genomes indicated the expansion of gene 

repertoires in the genomes of A. ostoyae, A. solidipes, A. gallica and A. cepistipes. The 

genome expansion in Armillaria species is mainly associated with lineage-specific genes for 

rhizomorph morphology and function, diverse extracellular functions such as 

lignocellulose-degrading enzymes and several pathogenicity-related genes (Sipos et al., 2017). 

Interestingly, the genome of an A. gallica strain, isolated as a Gastrodia elata symbiont, 

showed contracted numbers of gene families associated with pathogenic activities, including 

various hydrophobins, AA3 carbohydrate-active enzymes and cytochrome P450 

monooxygenases (Zhan et al., 2020). Such alterations in the genome of a plant symbiont 

Armillaria isolate may prevent invasive interactions in the symbiotic relationship (Zhan et al., 

2020). 

 

1.5.2 Transcriptome profiling of various Armillaria activities 

The increasing number of available Armillaria genomes paves the way to genome level 

comparative transcriptome analyses. Up to now, several transcriptome analyses were carried 

out on some primary pathogenic species, A. ostoyae (also A. solidipes) (Ross-Davis et al., 

2013), A. mellea (Mesanza et al., 2016), A. sinapina (Fradj et al., 2020) and on the 

opportunistic pathogen A. cepistipes (Sipos et al., 2017). The transcriptome of an A. ostoyae 

strain isolated from host-pathogen interface was analysed to screen candidate genes 

responsible for host substrate utilization and to investigate the specific transcriptome profile 

during plant infection and wood degradation (Ross-Davis et al., 2013). A specific 

transcriptome reprogramming of A. sinapina was induced by betulin of white birch bark; 

enzyme transcripts associated with the redox reaction of betulin into betulinic acid, an 

anti-inflammatory and anticancer drug, were identified (Fradj et al., 2020). 

The expanded genomes of Armillaria species equipped with a full complement of cell 

wall degrading enzymes not only give them easy access to plant wood but also a strategy to 

out-compete other microbes (Sipos et al., 2017). Only a few studies on the expression patterns 

of Armillaria triggered by other soil microorganisms were conducted for the investigation of 

antimicrobial activities. Thirty proteins identified in A. mellea including attack-type, 

redox-active and degradative proteins were suggested to be associated with the antifungal 

activity during co-culturing with Candida albicans (Collins et al., 2013). By transcriptome 

analysis, A. mellea was proved to be a non-competitive intruder in the soil ecosystem. As 

compared with T. atroviride as a biocontrol agent and an aggressive intruder for other 

microbes, the expression of genes encoding toxic secondary metabolites and lytic enzymes 
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was underrepresented in A. mellea. Moreover, genes in A. mellea implicated in carbohydrate 

and energy metabolism as well as sugar transport were downregulated in the presence of T. 

atroviride, possibly caused by the inhibition of A. mellea growth in response to the biocontrol 

agent. Likewise, genes responsible for cell wall reinforcement and signal transduction (a 

Ras-related protein and a calmodulin) were downregulated in A. mellea in the presence of T. 

atroviride in the simplified soil microcosm (Perazzolli et al., 2016). 

 

1.5.3 Genome expansion in biocontrol Trichoderma species 

Genome sequencing of Trichoderma species revealed an expansion of genes with 

possible relevance to mycoparasitism, which revealed the wealth of genes closely related to 

their biocontrol potential (Kubicek et al., 2019). The carbohydrate active enzymes (CAZymes) 

of Trichoderma mycoparasites appear to be well adapted to degradation of fungal cell wall of 

plant pathogens (Kubicek et al., 2011). As a prominent example, the glycosyl hydrolase (GH) 

family associated with the hydrolysis of β-1,3 glucan and chitin/chitosan are expanded in 

mycoparasitic Trichoderma species including T. atroviride and T. virens (Kubicek et al., 2011). 

The GH family expanded in mycoparasitic Trichoderma species was associated with better 

capability of fungal cell wall degradation in comparison with T. reesei (Kubicek et al., 2019). 

Likewise, proteases have also expanded in T. atroviride and T. virens, supporting the 

hypothesis that protein degradation is a significant trait of mycoparasites (Kubicek et al., 

2011). 

The huge diversity of secondary metabolites expanded in mycoparasitic Trichoderma 

species such as T. atroviride and T. virens may contribute to their excellent biocontrol 

properties. The T. atroviride genome was predicted to contain genes for 14 terpenoid synthase 

domains, 18 PKSs, 14 NRPSs and a single NRPS-PKS hybrid (Schmoll et al., 2016). Besides, 

T. atroviride has further enhanced its antibiotic arsenal with expanded arrays of cytochrome 

subfamilies and soluble epoxide hydrolases, genes for cytolytic peptides and a higher 

complexity of small secreted cysteine-rich proteins (SSCRPs) (Kubicek et al., 2011). Some 

SSCRPs from T. hamatum expanding the SSCRPs repertoire are likely to function as potential 

effector molecules that are involved in plant growth promotion and biocontrol of pathogens 

(Shaw et al., 2016). 186 and 158 predicted transporters were found in the mycoparasitic 

species T. virens and T. atroviride, respectively (Schmoll et al., 2016). The strong expansion 

of genes encoding for fungal transporters is speculated to support the successful adaptation of 

Trichoderma to harsh environments and competition in natural habitats (Kubicek et al., 2011). 

 



 29 

1.5.4 Transcriptional reprogramming in Trichoderma species induced by plant 

pathogens  

Different patterns of transcriptional reprogramming towards biocontrol were observed in 

Trichoderma species (Guo et al., 2020). In a comparative transcriptomics study of T. virens, T. 

atroviride and T. reesei confronted with R. solani, the three Trichoderma species showed 

dramatically different transcriptomic responses already before hyphal contact with the 

pathogen; T. virens and T. atroviride changed gene expression towards an attack upon sensing 

the alien hyphae, whereas, T. reesei attempted to outcompete the invader by faster nutrient 

acquisition (Atanasova et al., 2013). A large percentage of the predicted secretome that 

collaborated in biocontrol of S. sclerotiorum was found to be unique to T. hamatum strain 

GD12 (Ding et al., 2020). Key lytic enzymes, enzymes for biosynthesis of antifungal 

metabolites and transporters involved in the production of antifungal molecules potentially 

implicated in biocontrol of A. mellea were already activated in T. atroviride by the simplified 

soil microcosm, but they were not further modulated or enhanced by the introduction of A. 

mellea (Perazzolli et al., 2016). The above examples implied that the strongly mycoparasitic 

Trichoderma species differed in the strategies that were deployed for compromising, 

predating and killing their host fungal pathogens. It also indicated that not only the 

availability of specific mycoparasitic genes, but also the regulation of gene expression may 

contribute to a more refined transcription expression pattern for successful antagonism and 

mycoparasitism. 
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2 AIMS OF THE STUDY 

The frequent emergence of Armillaria root rot disease in forests and its severe economic 

consequences often led to the use of environmentally harmful, polluting fungicides. Above 

and beyond their commercial values, woody plants are essential components of wildlife 

habitats worldwide. Although Armillaria species are regular, natural components of the 

forests, under extreme biotic and abiotic conditions leading to loss of resistance of their 

woody host plants, Armillaria may become a dominant factor in the forests and cause severe 

diseases leading to compromised trees and seedlings. Although Trichoderma formulas have 

been applied broadly as important biocontrol agents for controlling a variety of plant 

pathogens, the experimental investigation of the efficiency of Trichoderma species for the 

biological control of Armillaria species still has a long way to go. 

Commercial products based on Trichoderma have been available on the market for plant 

protection. However, isolating and screening for antagonistic Trichoderma strains from 

diverse populations distributed at different geographic regions may be more helpful for 

developing efficient biocontrol agents against a broad range of pathogens from the genus 

Armillaria. Therefore, we focused on isolation and charaterization of Trichoderma and 

Armillaria strains from forest soils, as well as on the examination of the biocontrol efficiency 

of various Trichoderma isolates. The best biocontrol agents could be applied for Armillaria 

biocontrol and further field applications.  

The aims of this work were: 

1) To isolate and identify Trichoderma as well as Armillaria strains from soil samples 

collected in both healthy and Armillaria-damaged forests 

2) To screen for potential biocontrol candidates among the identified Trichoderma 

isolates using in vitro dual culture assays and assessing the antagonistic activities, as 

well as by detecting extracellular enzyme production and plant growth-promoting 

traits 

3) To determine the biocontrol potential of a selected Trichoderma strain when 

confronted with both diploid and haploid isolates of A. ostoyae 

4) To capture the relevant points of time for adequately assessing the characteristic 

interaction stages between Trichoderma and Armillaria mycelia and to investigate 

the dual RNA-Seq profiles, assess the molecular background of metabolite-level and 

mycoparasitic (physical) interactions, and dissect the molecular interaction dynamics 

by time-course transcriptome analyses.  
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5) To analyze the mycoparasitism-related genes in the examined Trichoderma strain for 

the identification of biocontrol factors 

6) To analyze the possible defence mechanisms of A. ostoyae for the identification of 

defence factors 

7) To determine the potential of selected biocontrol candidate Trichoderma strains to 

control Armillaria in the field  
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3 MATERIALS AND METHODS 

3.1 Screening for biocontrol candidates from Trichoderma strains 

3.1.1 Isolation of Armillaria and Trichoderma strains 

Samples of bulk soil (soil outside the rhizosphere), upper rhizospheric soil, Armillaria 

rhizomorphs and their surrounding soil, as well as Armillaria fruiting bodies were collected 

from a heavily Armillaria-damaged oak stand (Keszthely Hills, Hungary) and healthy native 

spruce forests (Rosalia, Austria). The rhizomorph samples were taken as aliquots of the soil 

pools associated with the collected rhizomorphs. The Roth and Shaw medium (Shaw and 

Roth, 1976) supplemented with 15 mg/L benomyl and 250 mg/L streptomycin was applied for 

Armillaria isolation from the field samples. For Trichoderma isolation, 1 g of fresh soil per 

sample was suspended in sterile 0.9% NaCl solution, diluted serially (10
−1

, 10
−2

 and 10
−3

 

dilutions) and spread on Trichoderma-selective media. The composition of the media for 

selectively isolating Trichoderma strains was 10 g/L glucose, 5 g/L peptone, 1 g/L KH2PO4, 

0.5 g/L MgSO4 × 7H2O, 20 g/L agar, amended with 0.25 mL/L 5% Rose-Bengal in water, 0.5 

mL/L 0.2% dichloran in ethanol, 0.01% streptomycin, 0.01% oxytetracycline and 0.01% 

chloramphenicol (King et al., 1979). After 3 days of incubation at 25±0.5 °C, fungal colonies 

including Trichoderma were detected and transferred onto potato dextrose agar (PDA). 

 

3.1.2 Identification of Armillaria and Trichoderma isolates 

One hundred mg of fresh mycelia from each fungal isolate was collected for DNA 

extraction following the manufacturer’s instructions of the E.Z.N.A. ® Fungal DNA Mini Kit 

(Omega Bio-tek, USA). The Internal Transcribed Spacer (ITS) region of the nuclear 

ribosomal RNA gene cluster was amplified using the ITS4 and ITS5 universal primers for 

fungi (Supplementary Table 3) (White et al., 1990). The PCR reactions were carried out in a 

final volume of 25 μL consisting of 2.5 μL 10× DreamTaq Buffer with 20 mM MgCl2, 2.5 μL 

of 2 mM dNTP mix, 0.1 μL of 5 U/μl DreamTaq DNA Polymerase (Thermo Scientific), 0.5 

μL of each primer (10 μM), 18 μL bidistilled water and 1 μL template DNA. Amplifications 

were performed in a Doppio Thermal Cycler (VWR, Hungary). Thermal cycling parameters 

were as follows: initial denaturation at 94 °C for 5 min; 35 cycles of DNA denaturation at 

94 °C for 30 s, primer annealing at 50 °C for 30 s, elongation at 72 °C for 50 s; and a final 

elongation step at 72 °C for 7 min. For amplification of a translation elongation factor 1-alpha 

gene (tef1α) fragment, reaction mixtures were the same as described above, but with universal 

primers TEF-LLErev and EF1-728F (Supplementary Table 3) (Oskiera et al., 2015) and the 
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thermal cycling program with an initial denaturation at 94 °C for 5 min; 40 cycles of DNA 

denaturation at 94 °C for 45 s, primer annealing at 57 °C for 30 s, elongation at 72 °C for 90s ; 

and a final elongation step at 72 °C for 7 min. The amplicon quality was detected by 1% 

agarose gel electrophoresis of 4 µl samples from the reaction mixtures. Direct sequencing of 

the unpurified PCR products was performed by the sequencing platform of the Biological 

Research Centre, Szeged. The resulting sequences were analyzed by TrichOkey 2.0 

(Druzhinina et al., 2005), TrichoBLAST (Kopchinskiy et al., 2005) and NCBI Nucleotide 

BLAST. The isolated and identified Armillaria and Trichoderma strains were deposited in the 

Szeged Microbiology Collection (SZMC, www.szmc.hu), Szeged, Hungary, whereas the 

sequences were submitted to the GenBank Nucleotide database (ncbi.nlm.nih.gov) under the 

accession numbers listed in Supplementary Table 1. 

 

3.1.3 Antagonistic activity assessment in vitro by dual culture assay 

Trichoderma isolates were screened for their antagonistic abilities against Armillaria 

isolates in vitro using dual-culture confrontation test. During the experiments, Armillaria 

isolates were confronted with Trichoderma isolates on PDA plates. Armillaria strains were 

inoculated with agar plugs (5 mm in diameter, cut from the edge of 14-days-old colonies) 1.5 

cm from the center of PDA plates. After 14 days, the Trichoderma isolates were inoculated in 

a similar way, 1.5 cm from the center of PDA plates in the opposite direction, resulting in a 

distance of 3 cm between the two inoculation positions. After a further 5 days of incubation, 

image analysis of plate photographs was performed by ImageJ. Biocontrol Index (BCI) values 

were calculated with Microsoft Excel 2010 according to the formula: BCI = (area of 

Trichoderma colony / total area occupied by the colonies of both Trichoderma and the plant 

pathogenic fungus) × 100 (Szekeres et al., 2006). All confrontation tests were repeated three 

times under the same experimental conditions. Values were recorded as the means with 

standard deviations for triplicate experiments. 

 

3.1.4 Extracellular enzyme activity measurements 

Conidiospores (2 × 10
5 

/ plate) of Trichoderma strains were transferred into Petri-plates 

(9 cm in diameter), each containing 3 g spelt bran and 10 mL distilled water. After 9 days of 

incubation at room temperature, the enzyme extraction was carried out in 25 mL distilled 

water at 5 °C for 3 hours, followed by filtering through gauze to remove fungal hyphae and 

spelt bran, and centrifugation of the crude extract in a Heraeus Multifuge 3SR (Thermo Fisher 

Scientific, Hungary) at 4300 g for 10 min. One mg/mL stock solutions were prepared from 
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chromogenic substrates in distilled water. β-glucosidase, cellobiohydrolase, β-xylosidase and 

phosphatase enzyme activities were measured with p-nitrophenyl-β-D-glucopyranoside, 

p-nitrophenyl-β-D-cellobioside, p-nitrophenyl-β-D-xylopyranoside (all from Sigma-Aldrich, 

Hungary) and p-nitrophenyl-phosphate, respectively. One-hundred microliters of substrate 

solution, 25 µL 10-fold diluted culture supernatant and 75 µL distilled water were mixed in 

the wells of a microtiter plate. After 1 h of incubation at room temperature, 50 µL 10% 

Na2CO3 was added to stop the reaction. The optical densities were measured with a 

Spectrostar Nano microplate reader (BMG Biotech) at 405 nm. Background values of the 

crude extract and the value resulting from the self-degradation of the substrate were 

subtracted from the optical density of the enzymatic reactions. The U/ml values were 

calculated according to the formula ((A / ε × l) × 10
6
) / 60, where "A" is the absorbance of the 

solution at 405 nm, "ε" is the molar extinction coefficient (for p-nitrophenol: 1.75 × 10
4
 M

-1
 

cm
-1

) and "l" is the pathlength of the light in the solution. All measurements were carried out 

in three biological replicates. 

 

3.1.5 Quantitative analysis of indole-3-acetic acid production 

IAA production of Trichoderma isolates was analyzed by colorimetric analysis using 

Salkowsky’s reagent (Gordon and Weber, 1951) with some modifications. The isolates were 

inoculated into 20 mL tryptone-soy broth (TSB) (15 g/L tryptone, 5 g/L peptone from soy, 5 

g/L NaCl, 1 mg/mL tryptophan) and incubated for 7 days at 25ºC with shaking at 150 rpm. 

After the incubation period, 2 mL of each culture was centrifuged in a Heraeus Fresco 17 

Microcentrifuge (Thermo Fisher Scientific, Hungary) at 5000 g for 15 min. The supernatant 

was preserved and 100 µL was mixed with 200 µL of Salkowski’s reagent (300 mL H2SO4 

(98%), 15 mL FeCl3 (0.5 M), 500 mL distilled water) and incubated at room temperature in 

the dark for 1 h. The optical density (OD) was measured at 530 nm with a Spectrostar Nano 

microplate reader (BMG Labtech, Germany) after 30 min. The IAA concentration was 

determined using a calibration curve of standard IAA solutions. All measurements were 

carried out in three biological replicates. 

 

3.1.6 Siderophore production 

Siderophore production of Trichoderma isolates was determined by using a modified 

chrome azurol S (CAS) agar test (Milagres et al., 1999). One half was CAS blue agar and the 

other half was an iron-free medium in 9-cm-diameter Petri plates. The CAS agar was prepared 

according to Schwyn and Neilands (Schwyn and Neilands, 1987). The iron-free medium was 
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MEA agar medium (10 g/L glucose, 12.5 g/L yeast extract, 5 g/L malt extract, and 20 g/L 

agar). A fungal mycelial disc (4 mm) of active culture was transferred to the plates with 

iron-free medium. Orange and purple halos around the colonies on the blue medium were 

indicative of siderophore production. All measurements were carried out in three biological 

replicates. 

 

3.2 Transcriptome analysis of the interaction mechanisms between 

Armillaria ostoyae and Trichoderma atroviride 

3.2.1 Strains and culture conditions 

Trichoderma atroviride SZMC 24276 was isolated from a soil sample collected in a 

native spruce forest located in Rosalia, Austria (Supplementary Table 1). The diploid strains 

of A. ostoyae SZMC 24128, SZMC 24129 and SZMC 24130 were isolated from collected 

samples of Armillaria fruiting bodies or rhizomorphs obtained from the Rosalia forest 

(Supplementary Table 1). The diploid strain C18 of A. ostoyae is a field isolate from 

Switzerland (Prospero et al., 2004), while the haploid derivatives of A. ostoyae (C18/9, C18/2, 

C18/3 and C18/4) were derived from C18 as single spore isolates. Strains of Trichoderma and 

Armillaria were all deposited in the Szeged Microbiology Collection (SZMC, www.szmc.hu), 

Szeged, Hungary. For A. ostoyae strains C18, C18/9, C18/2, C18/3 and C18/4, their 

corresponding SZMC numbers are SZMC 23083, SZMC 23093, SZMC 27047, SZMC 27048 

and SZMC 27049 respectively. All those fungal strains were cultured on PDA medium (VWR, 

Hungary). 

 

3.2.2 Transcriptome analysis of Trichoderma atroviride – Armillaria ostoyae dual cultures 

3.2.2.1 Experimental design, sample collection and total RNA extraction 

For the time-course analysis of the Armillaria-Trichoderma interaction, PDA plates were 

first inoculated with the haploid derivative A. ostoyae SZMC 23093 and grown for 21 days at 

26℃. Then, on the 22
nd

 day, plates in parallel were co-inoculated with the T. atroviride 

SZMC 24276 biocontrol isolate pregrown on two-day-old PDA plates. Inoculations were 

always carried out using agar plugs (5 mm in diameter) with fungal mycelia. Armillaria 

colonies were inoculated to a position about 2 cm near the Petri plates' edge, and then, after 

21 days, the Trichoderma colonies were inoculated 3.5 cm from the edge of the Armillaria 

colonies, and the co-inoculated plates were incubated further at 26℃. The interactive fungal 

mycelia from both sides were harvested 53, 62 and 105 hours after Trichoderma inoculation, 
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representing non-physical (or metabolite-level), physical (or mycoparasitic) and 

post-mycotrophic (or post-necrotrophic) interaction stages, respectively (Supplementary 

Figure 1). While Trichoderma and Armillaria mycelia were separately harvested at the 

metabolite stage (53 hours), the physically interacting mycelia were co-scrapped from the 

mycoparasitic (62 hours) and post-mycoparasitic settings (105 hours) (Supplementary Figure 

1). Three biological replicates were considered for each time point, including individually 

growing, non-interactive cultures (the 21-day-old Armillaria and two-day-old Trichoderma 

colonies) as the controls (Supplementary Figure 1). All collected mycelial samples were 

immediately frozen in liquid nitrogen and stored at -80℃. 

Four conditions were established and analysed: 0
th

 hour/Control samples (Armillaria and 

Trichoderma grew separately on PDA media); 53
rd

 hour/Metabolite Interaction stage samples 

(considering the impact of various metabolites between Trichoderma and Armillaria before 

physical contact); 62
nd

 hour/Mycoparasitic Interaction stage samples (mycoparasitic stage 

once Armillaria and Trichoderma started to contact); 5
th

 day post interactive stage (when the 

Armillaria colony was entirely covered with mycelia and conidia of Trichoderma). Details 

about the culturing of fungi for the collection of mycelia are provided in Supplementary 

Figure 1. 

Total RNA extraction from the mycelial samples was carried out with the E.Z.N.A.® 

Plant RNA kit (Omega Bio-tek) according to the manufacturer’s extraction protocol with 

minor modifications. Briefly, mycelia were transferred into an autoclaved mortar and frozen 

under liquid nitrogen, and then immediately grinded with an autoclaved pestle before samples 

thawed. Degrading RNA content was first estimated using 2% agarose gel electrophoresis. 

RNA concentration and quality were monitored using the Tapestation 2200 analyzer (Agilent 

Technologies, Santa Clara, CA, USA). 

 

3.2.2.2 cDNA library preparation, sequencing and data analysis 

Sequencing libraries were prepared for the transcriptome samples using the TruSeq RNA 

Library Prep Kit v2 (Illumina). Paired-end fragment reads were generated on an Illumina 

NextSeq sequencer using TG NextSeq® 500/550 High Output Kit v2 (300 cycles). Primary 

data analysis (base-calling) was carried out with the “bcl2fastq” software (v2.17.1.14, 

Illumina). The quality of the raw reads obtained from the sequencing company were analyzed 

using FastQC (Andrews S, 2010) and low quality bases (Q score < 20) were trimmed using 

Trimmomatic v0.39 (Bolger et al., 2014). Salmon v1.1.0 (Patro et al., 2017) was used to 

quantify the transcripts and generate count matrix. Time course analysis was performed using 
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TCSeq (Wu M, 2020) R-package in Rv3.5.1 environment with generalized linear model 

(GLM) +and clustered using the Fuzzy cmeans clustering method (K=3 for A. ostoyae and T. 

atroviride) based on log2FC compared to first timepoint (log2FC>|0.5| & adj.pvalue <0.05). 

From the clusters, we filtered and grouped the genes according to their expression trends 

(upregulation/downregulation) at different stages. Downtrend genes included those set of 

genes from Cluster 1 which specifically showed continous downregulation in either AO or 

TA whereas Metabolite and Mycoparasite cluster genes are those genes from clusters 2 and 3 

which showed the highest upregulation in the Metabolite (53 hours) or the Mycoparasite stage 

(62 hours). 

Amino acid sequences from Armillaria ostoyae 

(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/157/425/GCA_900157425.1_version_2/G

CA_900157425.1_version_2_protein.faa.gz) and Trichoderma atroviride 

(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/171/015/GCF_000171015.1_TRIAT_v2.0

/GCF_000171015.1_TRIAT_v2.0_protein.faa.gz) were used for secretory protein prediction. 

The pipeline used for predicting classically secreted proteins, i.e., proteins having signal 

peptides and cleavage site at the N-terminal is shown in Supplementary Figure 2A and the 

other group of secretory proteins which do not contain signal peptide and are generally 

referred to as proteins secreted using unconventional pathway (UPS proteins) were predicted 

using the pipeline shown in Supplementary Figure 2B. 

We used the Pannzer2 (Törönen et al., 2018) server for the gene ontology (GO) 

annotation and InterproScan v5.38 (Jones et al., 2014b) for functional characterization of 

proteins. CAZy annotation was performed using dbCAN2 (Zhang et al., 2018) and proteases 

were identified using Diamond Blast against the MEROPS database (Rawlings et al., 2014). 

The NetGPI (Lawn, 2005) online server was used for GPI anchor prediction. Secondary 

metabolite gene/protein prediction was performed using SMIPS (Wolf et al., 2016). KEGG 

annotation was performed using KofamKoala (Aramaki et al., 2020) and transporter proteins 

were predicted using the TCDB database (Saier et al., 2021). GO enrichment analysis was 

performed in Cytoscape v3.7.2. (Shannon et al., 2003) using BiNGO (Maere et al., 2005) 

v3.0.3 and enrichmentMap v3.3.1 (Merico et al., 2010) plugins (adjusted p value < 0.05). We 

used Clusterprofiler R-package (Yu et al., 2012) for KEGG and Interpro enrichment analysis. 

All images were generated using the ggplot2 (Wickham, 2016) R package. 

 

3.2.2.3 Quantitative real-time reverse transcription PCR (qRT-PCR) 

For qRT-PCR analysis, total RNA samples were extracted using the E.Z.N.A.® Plant 
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RNA kit (Omega Bio-tek) according to the manufacturer’s extraction protocol. The quality of 

each RNA samples was checked in 2% agarose gel. cDNA synthesis was performed by using 

Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Scientific). Oligo (dT)18 and 

random hexamer primers were used in the reaction mixture according to manufacturer’s 

instructions. 

The qRT-PCR experiments were performed in a CFX96 real-time PCR detection system 

(Bio-Rad) using the Maxima SYBR Green qPCR Master Mix (Thermo Scientific) and the 

primers presented in Supplementary Table 3. The reaction was carried out using the following 

conditions: denaturation at 95 °C for 3 min, followed by 40 cycles of amplification (95 °C for 5 

s, 60 °C for 30 s and 72 °C for 30s). The relative quantification of gene expression was carried 

out by the 2-ΔΔCt method (Livak and Schmittgen, 2001) using the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (gpd, ARMOST_14637) or actin 

(ARMOST_03733) for A. ostoyae and the tef1α gene for T. atroviride. For each sample, two 

technical replicates of the qRT-PCR assay were used with a minimum of three biological 

replicates (except for samples for the Mycoparasite stages which only contained two biological 

replicates). Data analysis and graph plotting were performed using Excel 2017 and GraphPad 

Prism 8. 

 

3.3 Field study in the Keszthely Hills 

A field study was set up on the 13
th

 of April 2017 in the Keszthely Hills, in a forest 

clearing surrounded by a 2-meter-high fence, located in the central part of a heavily 

Armillaria-damaged Turkey oak (Quercus cerris) stand. A total of 235 two-year-old, bare 

rooted seedlings of Q. cerris from the nursery of the Bakonyerdő Ltd. forestry company with 

a stem length of 10-52 cm, a main root length of minimum 25 cm and a stem base diameter of 

minimum 6 mm, were planted. Before planting, 10 L plastic buckets were used to soak the 

roots of 115 seedlings for at least 2 h in tap water (control group), whereas the roots of the 

other 120 seedlings were soaked in tap water containing conidia of T. virens SZMC 24205 

and T. atrobrunneum SZMC 24206, both at a concentration of 10
6
 conidia per mL (treated 

group) for at least 2 h. The seedlings were planted in groups of 40 into parcels of 6.4 × 6.3 m 

resulting in a density of 1 seedling per m
2
. The allocation of the parcels was random in a 

block design of 3 × 4 parcels, with 3 parcels treated, 3 parcels untreated (control), and 6 

parcels left empty, to cover a larger area for balancing the eventual differences in soil quality 

and distribution of potential Armillaria inoculum in the soil. Seedlings were planted into 20 

cm deep holes made with 10 cm wide drain spades. Seedling stem height (in mm) and stem 



 39 

base diameter (in mm with one decimal precision) were recorded individually for each tree 

with measuring tape and slide calipers, respectively. From the recorded values a biomass 

index (BMI) was calculated for each seedling according to the following formula: (BD / 2)
2
 × 

π × L, where BD is the stem base diameter and L is the stem length. The area received no 

further treatment. Half a year later, on the 17
th

 of October 2017, the seedlings were evaluated 

for survival, their L and BD values recorded again, and the BMI values calculated. A seedling 

was recorded as “dead” if it was degraded or showed a dry brown appearance without any 

leaves, and it was not possible to excoriate the surface around the stem base with the orifice of 

a 1 ml plastic pipette tip. Stem height extensions (dL), stem base diameter extensions (dBD) 

and BMI changes (dBMI) were calculated. Seedlings with green leaves and an increase in 

biomass production were taken as “growing” live plants. All other seedlings without a 

significant biomass extension but with stems still green under the bark and slightly damp to 

the touch were considered “surviving” ones. In the end, after the second round of the 

measurements, size values lower than the ones measured directly after planting were 

considered as the result of measurement error and were removed from the total pools. The 

percentage of dead and surviving seedlings was calculated for each parcel, and their total 

numbers were compared between the control and treated groups by testing “independence” 

with the aid of the χ
2 

test with Yates’s correction. 
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4 RESULTS 

4.1 Screening for biocontrol candidates from Trichoderma strains against 

Armillaria species  

4.1.1 Diversity of the genera Armillaria and Trichoderma in healthy and 

Armillaria-damaged forests 

Armillaria and Trichoderma strains were isolated from different locations of healthy and 

Armillaria-infested forests. The sampling sites were two different regions, one in Northwest 

Hungary (Keszthely-hills) and one in Northeast Austria (Rosalia Mountains) (Supplementary 

Table 1). Four Armillaria species could be identified by the sequence analysis of a fragment 

of the tef1α gene: the conifer-specific species A. cepistipes (2 isolates) and A. ostoyae (3 

isolates) were abundant in the neighboring Rosalia spruce forest stands, whereas the presence 

of A. mellea (18 isolates) and A. gallica (4 isolates) was revealed in the Keszthely oak stand 

(Supplementary Table 1). 

A total of 64 strains showing typical morphology of Trichoderma were also isolated from 

soil, rhizosphere or Armillaria rhizomorph-associated samples collected in the two examined 

forest areas (Supplementary Table 1). Forty-two and 22 isolates were collected from the oak 

stand near Keszthely (Hungary) and the spruce forest at Rosalia (Austria), respectively. As the 

ITS sequences did not enable an exact, species-level identification in the case of many 

Trichoderma isolates, the species identification was set up based on the sequence of a tef1α 

gene fragment. The isolates proved to represent 14 Trichoderma species: T. simmonsii (17), T. 

koningii (11), T. virens (8), T. atroviride (8), T. atrobrunneum (7), T. asperellum (3), T. 

hamatum (2), T. citrinoviride (2), T. tomentosum (1), T. paratroviride (1), T. crassum (1), T. 

guizhouense (1), T. paraviridescens (1) and T. longipile (1) (Supplementary Table 1). The 

diversity of Trichoderma species showed a difference between the two forests. Only two 

species – T. atroviride and T. simmonsii-were isolated from both locations. The species T. 

virens, T. atrobrunneum, T. citrinoviride, T. hamatum, T. tomentosum, T. paratroviride and T. 

crassum were only isolated from the oak stand near Keszthely (Hungary), whereas T. koningii, 

T. asperellum, T. guizhouense, T. paraviridesens and T. longipile were only found in the 

spruce forest at Rosalia (Austria) (Supplementary Table 1). Eleven samples revealed isolates 

from a single species. A frequent species pair detected in Rosalia samples was T. koningii – T. 

asperellum, whereas in the Keszthely samples, the co-occurrence of T. simmonsii – T. virens 

and T. virens – T. atrobrunneum. Communities consisting of more than 2 species in the same 

sample were T. guizhouense – T. paraviridescens – T. simmonsii (Rosalia), T. paratroviride – 
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T. citrinoviride – T. simmonsii (Keszthely) and T. atrobrunneum – T. simmonsii – T. crassum 

– T. virens (Keszthely). 

 

4.1.2 In vitro antagonism of the isolated Trichoderma strains towards Armillaria species 

All 8 isolates of T. virens, and some isolates of T. simmonsii, T. atrobrunneum, T. 

guizhouense, T. atroviride, T. citrinoviride, T. paratroviride, T. hamatum, and T. tomentosum 

proved to be highly effective against the 25 examined Armillaria isolates. A representative set 

of plate photographs was taken during the in vitro antagonism experiments (Figure 2). 

Supplementary Figure 3 reflects all species combinations of Trichoderma and Armillaria. In 

many cases, antagonistic Trichoderma isolates were able to overgrow Armillaria colonies and 

intensely produce conidia on their surface, thereby potentially restricting Armillaria growth. 

Isolates of T. virens, such as SZMC 24205, SZMC 24294, SZMC 24303, SZMC 24293 and 

SZMC 26774, proved to be the best in vitro antagonists with BCI values above 80 for more 

than 17 out of 25 Armillaria strains (Supplementary Table 2). Isolates of T. simmonsii showed 

high in vitro antagonistic activities with BCI values above 80 for more than 15 out of the 25 

tested Armillaria isolates, whereas the T. koningii, T. asperellum, T. paraviridescens and T. 

longipile isolates had the lowest BCI values against almost all of the tested Armillaria isolates. 

The distribution of antagonistic Trichoderma species with higher BCI values showed a 

geographical pattern. Except for the two species - T. simmonsii and T. atroviride, isolated 

from both the oak stand in Keszthely - and the spruce forest in Rosalia, having relatively high 

antagonistic activities, species that were only isolated from the Keszthely Hills, including T. 

virens, T. atrobrunneum, T. hamatum, T. citrinoviride, T. paratroviride and T. tomentosum, 

exhibited good in vitro antagonistic abilities against most of the tested Armillaria isolates. All 

isolates of T. koningii, T. asperellum, T. paraviridescens and T. longipile, which seem to 

dominate in the soil of the Rosalia forest, showed lower BCI values against most Armillaria 

isolates. 
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Figure 2. Example plate photographs of in vitro antagonism of Trichoderma strains against Armillaria 

strains. The plates are marked with N: no inhibition; W: weak inhibition; S: strong inhibition; C: complete 

overgrowth of Armillaria by Trichoderma. BCI values were recorded as the means with standard deviations 

for triplicate experiments. 

 

4.1.3 Extracellular enzyme production of the Trichoderma isolates 

The extracellular enzyme measurements revealed that isolates of the same Trichoderma 

species have similar enzyme activity values (Supplementary Figure 4). Altogether, most of 

the isolates could be characterized with high β-glucosidase (Supplementary Figure 4a) and 

phosphatase (Supplementary Figure 4d), but lower cellobiohydrolase (Supplementary Figure 

4b) and β-xylosidase (Supplementary Figure 4c) activities. The 11 T. koningii isolates along 

with T. asperellum SZMC 24288, SZMC 24280 and T. paraviridescens SZMC 24282, 

showed high β-glucosidase and β-xylosidase activities. Among them, T. paraviridescens 

SZMC 24282 had high phosphatase, whereas T. koningii SZMC 24286 and SZMC 24270 

showed high cellobiohydrolase activities as well. The examined T. virens, T. atrobrunneum, T. 

simmonsii and T. atroviride isolates showed lower activity levels for all enzymes tested, 

except for T. atroviride SZMC 26780 which had a very high β-xylosidase activity.  

 

4.1.4 Potential plant growth-promoting traits of the isolated Trichoderma strains 

All of the examined isolates from T. atrobrunneum, T. simmonsii, T. hamatum and T. 

citrinoviride, along with the single isolates of T. tomentosum, T. longipile, T. paratroviride 

and T. guizhouense proved to be IAA producers, whereas the T. atroviride isolates, as well as 

the examined single isolates of T. paraviridescens and T. crassum were unable to produce this 

metabolite (Figure 3). Both producers and non-producers were found among the examined 

isolates of T. virens, T. koningii and T. asperellum. The highest amounts of IAA were 

detected in the case of the isolates of T. tomentosum, T. citrinoviride, T. hamatum as well as 

certain isolates of T. atrobrunneum, T. simmonsii and T. koningii. 
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Figure 3. Indole-3-acetic acid production of Trichoderma isolates derived from forest soil samples. 
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All the Trichoderma isolates tested were able to produce siderophores, which was 

indicated by the change of the colour of blue to orange or purple (Figure 4). The different 

colors of the medium suggested that the produced siderophores were structurally different. 

There are two major groups of siderophores, known as catechol-type and hydroxamate-type 

(Milagres et al., 1999). In the case of catechol-type siderophores the medium turns to purple, 

which was detected in the case of the T. atroviride, T. paraviridescens and T. koningii isolates, 

whereas the hydroxamate-type siderophores result in an orange color, as it was the case for all 

other examined species (Figure 4). The isolates of the species T. asperellum seemed to 

produce both types of siderophores (see plate 8 on Figure 4). 

 

 

 
Figure 4. Production of siderophores on modified CAS agar medium by forest-derived Trichoderma 

isolates belonging to different species. (1) T. atroviride SZMC 24275, (2) T. virens SZMC 24205, (3) T. 

hamatum SZMC 24410, (4) T. paraviridescens SZMC 24282, (5) T. koningii SZMC 24287, (6) T. 
citrinoviride SZMC 26776, (7) T. simmonsii SZMC 24431, (8) T. asperellum SZMC 24280, (9) T. 

atrobrunneum SZMC 24206, (10) T. guizhouense SZMC 24281, (11) T. tomentosum SZMC 24434, and (12) 

T. crassum SZMC 24300. 
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4.2 Molecular dynamics of the biocontrol interaction between T. atroviride 

and A. ostoyae 

4.2.1 Antagonistic effect of T. atroviride SZMC 24276 against A. ostoyae strains 

The T. atroviride SZMC 24276 was selected as a biocontrol agent for our transcriptomic 

study. After three weeks incubation at 26℃, all the diploid strains of A. ostoyae displayed 

typical Armillaria morphology with rhizomorph formation and mycelial growth on PDA. 

Aerial hyphae of diploid strains were significantly differentiated based on their morphological 

attributes which seemed to get darken, flatten and become crustaceous. By comparison, the 

mycelia of the haploid derivatives of A. ostoyae remained white and fluffy producing 

abundant aerial mycelia and did not turn crustose. During the 105 hours coincubation of dual 

cultures, T. atroviride SZMC 24276 showed a significant antagonistic effect against diverse 

diploid or haploid A. ostoyae strains (Figure 5, Table 2). T. atroviride grew fast toward the 

colony of A. ostoyae and gradually invaded the growth area of A. ostoyae strains. Obviously, 

on the 5
th 

day, haploid A. ostoyae derivatives were easier overgrown by T. atroviride and T. 

atroviride produced abundant green conidia and mycelia on the surface of the haploid A. 

ostoyae colony. For these reasons, one of the haploid derivatives of A. ostoyae (AO) SZMC 

23093 was selected for transcriptome analysis, together with T. atroviride (TA) SZMC 24276. 

 

 

 
Figure 5. Antagonistic effect of T. atroviride (TA) on various diploid (D1-D4) strains and haploid 

(H1-H4) derivatives of A. ostoyae 

 

 

 

 



 46 

Table 2. BCI values of the dual interaction tests with various diploid and haploid A. ostoyae 

 

Diploid SZMC 23083 (D1) SZMC 24128(D2) SZMC 24129 (D3) SZMC 24130 (D4) 

BCI 88.13±0.56 93.29±2.99 85.49±8.03 100.00±0.00 

Haploid SZMC 27047 (H1) SZMC 27048 (H2) SZMC27049 (H3) SZMC23093 (H4) 

BCI 99.40±1.04 99.55±0.77 99.37±1.09 98.46±1.83 

 

4.2.2 Time course analysis to understand the interaction dynamics between T. atroviride 

(TA) and A. ostoyae (AO) 

The dual co-culture method was employed to study the interaction between TA and AO 

at 3 different time points: 53, 62 and 105 hours after the inoculation of TA (Figure 6). The 

dual RNA-seq analysis of co-scrapped TA-AO samples at 105 hours did not show any 

transcripts for AO (0.3 % reads could be mapped) (Supplementary Figure 5) and since our 

main interest focused on understanding the metabolite-level and mycoparasitic interaction, we 

did not consider the 105 hour interaction sample in this study. On average, 17 million reads 

with mean read length of 150 bp were obtained for both TA and AO after quality trimming. 

We performed time course analysis of the transcriptome data and generated 3 significant 

clusters for TA and AO. From the clusters, we identified the genes which showed highest 

expression at the Metabolite and Mycoparasite stages (Figure 7, Table 3); and we also 

identified those genes showing continuous downtrend pattern in AO and TA (Figure 7, Table 

3). 

 

 

 
Figure 6. Time course interaction tests between A. ostoyae (AO) and T. atroviride (TA). (A) 

individually growing, non-interactive cultures; 53 hours (B), 62 hours (C) and 105 hours (D) after 

inoculation of TA.  

 

 

0 hours              53 hours           62 hours             105 hours 
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Figure 7. Identification of trends and gene clusters in gene regulation from the interaction transcriptome 

data of A. ostoyae (AO) and T. atroviride (TA) during TA invasion at 53h before mycelia contact with AO 

and 62 hours when the physical contact occurred. 

 

Table 3. Total number of genes grouped from cluster according to the stages where they show differential 

regulation in T. atroviride (TA) and A. ostoyae (AO) 

 

Organism Metabolite stage cluster 

genes 

Mycoparasite stage cluster 

genes 

Downtrend genes 

AO 250 1412 768 

TA 1024 985 747 
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4.2.3 Validation of differentially expressed genes using qRT-PCR 

To confirm the reliability of the RNA-Seq data, the transcriptional level of 10 unigenes 

was examined by qRT-PCR (Figure 8) including ARMOST_13362, ARMOST_03616, 

ARMOST_5857, ARMOST_18537, ARMOST_05856, ARMOST_05616, ARMOST_04226 

and ARMOST_18535 for A. ostoyae (AO), as well as XM_014093434.1 and 

XM_014092940.1 for T. atroviride (TA). All the 10 genes exhibited higher expression at the 

Metabolite and Mycoparasite stages in response to the biocontrol interaction before physical 

contact and during physical contact, respectively. Taken together, all of these unigenes were 

upregulated in comparison with the control, consistent with the RNA-Seq data, indicating that 

our experimental results were valid. 
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Figure 8. qRT-PCR validations of 10 genes that were differentially expressed in the A. ostoyae (AO) at 

the Metabolite stage and Mycoparasite stage respectively (A) and T. atroviride (TA) at the Metabolite stage 

and Mycoparasite stage respectively (B) during the biocontrol interaction process. For each qRT-PCR 

validation, the actin gene was used as internal control of ARMOST_13362, ARMOST_03616, 

ARMOST_5857, ARMOST_18537 and ARMOST_05856, the gpd gene was used as internal control of 

ARMOST_05616, ARMOST_04226 and ARMOST_18535, while the tef1α gene was used as the internal 

control of XM_014093434.1 and XM_014092940.1. Asterisks represent statistical significance (** p<0.01 

and * p<0.05). 

  

A 

B 
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4.2.4 Gene expression profiling of the major trends 

To analyze major gene expression trends, we considered TA-AO genes showing 

continuous downtrend patterns or genes exhibiting the highest upregulation at Metabolite or 

Mycoparasite stages (Figure 7, Table 3) for further analysis. 

 

4.2.4.1 Downtrend genes in T. atroviride (TA) and A. ostoyae (AO) 

We observed 768 and 747 downtrend genes in AO and TA respectively (Table 3). Gene 

ontology (GO) enrichment analysis of downtrend genes in AO showed enrichment of 14 

biological processes, 3 molecular functions and 20 cellular components (Figure 9). In AO, 

biological processes such as cell cycle, DNA replication, DNA dependent RNA replication, 

DNA repair, mitotic cell cycle, sterol metabolic/biosynthetic processes and cellular response 

to stress/DNA damage stimulus (Figure 9) were enriched. However, TA showed enrichment 

of 13 biological processes, 2 molecular functions and 5 cellular components in the Downtrend 

gene cluster. Biological processes enriched in TA included oxidation reduction activity, 

amino acid metabolic process, organic acid metabolic process, cellular ketone metabolic 

process and sulfur metabolic processes (Supplementary Figure 6). 
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Figure 9. AO_Downtrend: Enriched GO terms (A) and GO enrichment map (B) from the Downtrend 
cluster genes in A. ostoyae (AO). 
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4.2.4.2 The Metabolite and Mycoparasite interaction stages 

During the Metabolite stage, there were 1024 and 250 genes exclusively upregulated in 

TA and AO, respectively (Table 3). Functional analysis of those genes showed enrichment of 

interpro domains such as cerato-ulmin hydrophobin, chaperonin Cpn60/TCP-1, nucleoside 

phosphorylase, NWD NACHT-NTPase, glycoside hydrolase, condensation domain, NACHT 

nucleoside triphosphatase, heterokaryon incompatibility and ankyrin repeat in TA (Figure 10). 

Whereas, AO showed upregulation of cyanate lyase, glutathione peroxidase, indoleamine 

2,3-dioxygenase, C-terminal dimerisation domain of phenol hydroxylase, condensation 

domain, flavin-dependent halogenase, Ctr copper transporter, DAHP synthetase I/KDSA, 

Class I-like SAM-dependent O-methyltransferase (Figure 10), as well as SnoaL, where the 

overexpression of the genes ARMOST_05856 and ARMOST_05857 could also be validated 

by qPCR (Figure 8).  

In the Mycoparasite stage we identified 985 genes in TA and 1412 genes in AO that 

were specifically upregulated (Table 3). During that stage, gene families such as N-terminal 

of Pex, alpha crystallin/Hsp20 domain, CDR ATP binding cassette (ABC) transporter, 

thiolase, ABC-2 type transporter, NAD(P)-binding domain, cytochrome b5-like heme/steroid 

binding domain, NAD-dependent epimerase/dehydratase and short-chain 

dehydrogenase/reductase SDR were enriched in TA (Figure 10), whereas AO showed 

upregulation of domains like cellobiohydrolase, DSBA-like thioredoxin domain, C-terminal 

and N-domain of P-type ATPase, NmrA-like domain, malic acid transport protein, DJ-1/Pfpl, 

domain of unknown function DUF2235, N-domain of NADH:flavin oxidoreductase/NADH 

oxidase and voltage-dependent anion channel (Figure 10). 



 53 

 

Figure 10. Top Interpro domains enriched in the Metabolite and Mycoparasite cluster genes of A. ostoyae (AO) and T. atroviride (TA) 
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We also examined the secondary metabolite potential in TA which could be a 

representative of its mycoparasitism-related arsenal and contrasted it against AO. In TA, GO 

enrichment analysis showed that nine biological processes including sterol biosynthetic 

process, cellular alcohol biosynthetic process, phytosteroid biosynthetic process, cellular 

alcohol metabolic process, phytosteroid metabolic process, ergosterol metabolic process, 

nucleoside metablic process, nucleobase nucleoside and nucleotide metabolic process and 

carbohydrate metabolic process and four molecular functions including catalytic activity, 

phosphopantetheine binding, carbohydrate binding and ADP binding were enriched at the 

Metabolite stage (Figure 11).  

 

       

 
Figure 11. TA_ Metabolite: GO Enrichment map of the Metabolite stage cluster genes from T. 

atroviride (TA) 

 

During the Metabolite stage, TA showed upregulation of 7 genes related to 

non-ribosomal peptide synthetase (NRPS), 2 genes related to PKS and PKS-like each, and 1 

gene related to NRPS-like and NRPS-PKS hybrid. AO showed up-regulation of 2 genes 

related to PKS and 1 gene for each NRPS and NRPS-like proteins. During the Mycoparasite 

stage, TA showed 2 genes related to NRPS-like, 2 genes related to PKS, and 1 gene related to 

DMATS (dimethylallyltryptophan synthase). In AO, there were 2 genes related to DMATS 

and PKS, and 1 gene for NRPS-like (Figure 12). 

Biological process 
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function 



 55 

 

 

 
Figure 12. Secondary metabolite related gene count in A. ostoyae (AO) and T. atroviride (TA) in the 

Metabolite and Mycoparasite stages of the interaction process 

 

GO enrichment analysis of genes during the Metabolite interaction stage showed that the 

enriched biological processes including cellular amino acid metabolic process, carboxylic acid 

catabolic process, organic acid metabolic process, cellular ketone metabolic process, small 

molecule metabolic process, tryptophan catabolic process to kynurenine, indolalkylamine 

metabolic process, alpha-amino acid metabolic process and aromatic amino acid family 

metabolic process in AO (Figure 13A), GO enrichment results hinted the possibility of 

quinolinic acid (QA) production in AO to counter TA. To test the possibility of QA 

production, we checked the genes that were necessary in stepwise conversion of tryptophan to 

quinolinic acid using BLAST analysis (Supplementary Figure 7). We identified the following 

genes homologous to the BNA genes of Saccharomyces cerevisiae: ARMOST_04226 

(BNA2), ARMOST_13362 (BNA2), ARMOST_08419 (BNA7), ARMOST_03616 (BNA4), 

ARMOST_03615 (BNA5) and ARMOST_12859 (BNA1) (Supplementary Figure 7). All the 

BNA homologous genes in AO showed upregulation at the Metabolite stage (Figure 13B), 

which was also supported by the qPCR results for 3 genes tested (ARMOST_04226, 

ARMOST_13362 and ARMOST_03616, Figure 8). 
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Figure 13. (A) AO_Metabolite: GO Enrichment map of the Metabolite stage cluster genes from A. 

ostoyae (AO); (B) Upregulation of the pathway leading to quinolinic acid (QA) production in A. ostoyae 

(AO) at the Metabolite stage (based on yeast homologs, pathway shown in Supplementary Figure 7) 

A 

Biological process 

ARMOST_04226 

ARMOST_13362 

ARMOST_08419 

ARMOST_03616 

ARMOST_03615 

ARMOST_12859 

AO_Metabolite AO_Control 

1 2 3 1 2 3 
B 



 57 

 

GO enrichment analysis showed nine biological processes related to peroxisome 

including peroxisome organization, peroxisomal transport, transmembrane transport, protein 

transmembrane import into intracellular organelle, protein targeting to peroxisome, 

peroxisomal membrane transport, protein localization to peroxisome, protein import into 

peroxisome matrix and establishment of protein localization of peroxisome to be enriched in 

TA at the Mycoparasite stage. TA also showed GO enrichment of nine cellular components 

including peroxisome, microbody, microbody membrane, intrinsic component of membrane, 

integral component of membrane, membrane, peroxisomal membrane, intrinsic component of 

peroxisomal membrane and integral component of proxisomal membrane (Figure 14). 

 

 

 

Figure 14. TA_Mycoparasite: GO Enrichment map of the Mycoparasite stage cluster genes from T. 
atroviride (TA) 

 

During the Mycoparasite stage of interaction, AO showed GO enrichment of biological 

processes such as biological regulation, regulation of DNA-templated transcription, regulation 

of nucleobase-containing compound metabolic process, RNA biosynthetic process,  

regulation of nucleic acid-templated transcription, cell redox homeostasis, cellular 

homeostasis, regulation of cellular process, regulation of biological process, nucleic 

acid-templated transcription, regulation of RNA biosynthetic process, regulation of RNA 

Biological process 

Cellular component 
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metabolic process, DNA-templated transcription, and nucleoside bisphosphate metabolic 

process, purine nucleoside bisphosphate metabolic process, ribonucleoside bisphophate 

metabolic process and indole alkaloid metabolic process, indole alkaloid biosynthetic process, 

alkaloid metabolic process, alkaloid biosynthetic process and malate transport, malate 

transmembrane transport, C4-dicarboxylate transport, transmembrane transport, dicarboxylic 

acid transport and cellular response to chemical stimulus, response to chemical, cellular 

oxidant detoxification, detoxification, cellular detetoxification, cellular response to toxic 

substance, response to toxic substance (Figure 15).  

 

 

 
Figure 15. AO_Mycoparasite: GO Enrichment map of the Mycoparasite stage cluster genes from A. 

ostoyae (AO) 
 

Apotosis-related genes including ARMOST_18537, ARMOST_09700, 

ARMOST_18535, ARMOST_01402, ARMOST_12695, ARMOST_05616, 

Biological process 
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ARMOST_09409, ARMOST_09498 and ARMOST_08960 were all upregulated at the 

Metabolite stage and all the nine genes including ARMOST_18631 further reached a 

significantly higher expression in AO during the Mycoparasite stage of interaction with TA 

(Figure 16). These results were confirmed for the genes ARMOST_18537, ARMOST_18535, 

ARMOST_05616 also by qPCR analysis (Figure 8). 

 

 

 
Figure 16. Apoptosis-related genes showing highest expression in A. ostoyae (AO) during the 

Mycoparasite stage  

 

Our study on the transcriptional regulation of the secretory proteins revealed interesting 

differences between AO and TA at both stages of metabolic and mycoparasitic interaction. 

One of the most distinct differences between AO and TA was the percentage of small 

secretory proteins (SSPs) (classically secreted proteins < 300 amino acids). The percentage of 

SSPs in AO was 9.6% and 6.01% at the Metabolite stage and the Mycoparasite stage 

respectively, compared to TA where it was only 0.1% and 0.5% respectively. Majority of the 

secretory proteins in TA belonged to UPS with 9.6% and 11.6% at the two stages, 

respectively, while in AO, UPS secreted proteins only accounted for 4% and 4.6%. Secreted 

proteins reached higher level in AO during the Metabolite stage, especially the classically 

secreted proteins which accounted about 8.4% than 4.7% at the Mycoparasite stage (Figure 

17). 
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Figure 17. Upregulation of secretory proteins genes in the Metabolite and Mycoparasite stages of A. 

ostoyae (AO) and T. atroviride (TA) 

 

An interesting phenomenon on the dynamics of CAZymes was observed in the 

transcriptomes of TA and AO during their non-physical and physical interactions; there was a 

significantly differential expression pattern of CAZymes when TA and AO were confronted 

with each other. For example, only genes encoding 6 enzymes of AA1 (peroxidase), AA3 

(cellobiose dehydrogenase), AA7 (oligosaccharide oxidase), GH16 (xyloglucanase), GH18 

(chitinase) and GH128 (β-1,3-glucanase) were upregulated in both TA and AO either at the 

Metabolite or at the Mycoparasite stage. However, the upregulation of genes for biosynthesis 

of AA11 (lytic polysaccharide monooxygenases), CBM13 (xylanase), CBM50 (chitin 

binding), CH3 (xylane esterase), GH2 (β-glucosidase), GH3 (α-glucosidase), GH17 (glucan 

endo-1,3-β-glucosidase), GH27 (α-galactosidase), GH54 (α-L-arabinofuranosidase), GH55 

(β-1,3-glucanase), GH63 (α-glucosidase), GH65 (α,α-trehalase), GH71 (α-1,3-glucanase), 

GH72 (β-1,3-glucanosyltransglycosylase), GH92 (α-mannosidase) and GH105 

(rhamnogalacturonyl hydrolase) were only observed in TA; while AO showed a specific 

increase in the enzyme level of AA2 (versatile peroxidase), CBM67 (α-L-rhamnosidase), CE4 
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(chitin deacetylase), CE8 (pectin methylesterase), GH6 (1,4-β-cellobiohydrolase), GH12 

(endoglucanase), GH78 (α-L-rhamnosidase), GH79 (β-glucuronidase), GH152 

(β-1,3-glucanase) and PL3 (pectate lyase) at either metabolite and mycoparasite stage. Overall, 

the majority of the genes upregulated in TA belonged to the family of glycoside hydrolases 

(GHs), whereas in case of AO it was auxiliary activities (AAs) (Figure 18).
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Figure 18. Upregulation of secretory CAZyme genes at the Metabolite and Mycoparasite stages of the interaction between A. ostoyae (AO) and T. atroviride (TA) 
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At the Metabolite stage, genes related to serine peptidases (S08A, S08B, S09B, S09X, 

S12, S15, S33, S54) and metallo peptidases (M12A, M12B, M14A, M16A, M28E, M28X) 

were dominant in TA transcriptome; in contrast, AO showed lower number of 

peptidase-related genes including genes for two aspartic peptidases, four cysteine peptidases, 

one glutamic peptidase, one peptidase inhibitor, three metallo peptidases, two serine 

peptidases and one threonine peptidase. However, at the Mycoparasite stage, more types of 

peptidases were activated and the production of peptidases was dramatically inreased in AO; 

genes related to serine peptidases (S01A, S08A, S09B, S09X, S10, S12, S15, S28, S33, S53), 

metallopeptidases (M12A, M16A, M16B, M19, M20A, M20D, M36, M76), peptidase 

inhibitors (I29, I51, I63), cysteine peptidases (C02A, C12, C14B, C19, C48, C56, C110) and 

aspartic peptidases (A01A, A11A) were signifiantly upregulated in AO (Figure 19). TA 

showed similar level but differentially compensatory expression pattern of peptidase-related 

genes at the Mycoparasite stage compared with the Metabolite stage.
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Figure 19. Upregulation of secretory peptidase genes during the Metabolite and Mycoparasite stages of the interaction between A. ostoyae (AO) and T. atroviride (TA)
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4.3 Field experiment in a heavily Armillaria-damaged forest in the 

Keszthely Hills 

Two Trichoderma isolates - T. virens SZMC 24205 and T. atrobrunneum SZMC 24206 – 

were selected for a field experiment. Both strains were isolated from a Keszthely soil sample 

associated with decaying Armillaria rhizomorphs, which have not revealed any Armillaria 

growth upon isolation attempts; furthermore, both exerted very good in vitro antagonistic 

abilities towards the tested Armillaria isolates and were able to produce hydroxamate-type 

siderophores and IAA. The isolates were applied to Turkey oak seedlings as a root treatment 

before planting in the form of a conidial suspension. The total survival rates calculated after 6 

months for 120 treated and 115 control trees were 84.3% and 54.7%, respectively (Table 4), 

indicating that the applied treatment had a beneficial effect on the survival of oak seedlings 

planted into the soil of an Armillaria-infested forest area. 

 

Table 4. Survival of Trichoderma-treated and control trees 6 months after planting into heavily 

Armillaria-infested soil 

 

Parcel Total 

No.  

1Dead 

No. 

2Growing 

No. 

3Survivor 

No. 

4FM 

No. 

5Corrected 

Total No. 

Dead 

% 

Growing 

% 

Growing + 

Survivor % 

1 (treated) 40 5 24 3 8 32 15.6 75.0 84.4 

2 (treated) 40 5 27 5 3 37 13.5 73.0 86.5 

3 (treated) 40 7 28 4 1 39 17.9 71.8 82.1 

Total 120 17 79 12 12 108 15.7 73.1 84.3 

4 (untreated) 40 23 5 2 10 30 76.7 16.7 23.3 

5 (untreated) 39 13 19 2 5 34 38.2 55.9 61.8 

6 (untreated) 36 7 24 0 5 31 22.6 77.4 77.4 

Total 115 43 48 4 20 95 45.3 50.5 54.7 

 

1
 already degraded/disappeared and dry seedlings; 

2
 positive biomass production; 

3
 still alive but no 

biomass production; 
4
 failed measurement (size values after 6 month lower than the ones measured directly 

after planting); 
5
 Total—FM. 
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5 DISCUSSION 

5.1 Different diversity pattern of Armillaria and Trichoderma species were 

discovered between the healthy spruce forest in Rosalia and the severely 

infected oak stand in Keszthely 

Armillaria fruiting bodies, rhizomorphs, and soil samples were collected at previously 

established study sites from both spruce and oak stands; all of them with abundant 

rhizomorph and mushroom production. The conifer sampling sites selected in Rosalia 

represented a native environment for Norway spruce with single clones of A. ostoyae and A. 

cepistipes colonies appearing only around relatively freshly cut trunks. All identified genets 

appeared non-damaging and tolerable by the surrounding live trees. In contrast, the Turkey 

oak stand from Keszthely, Hungary was a heavily infested area with multiple A. mellea and A. 

gallica clones merged to form a continuous coverage of the whole stand. All remaining 

standing trees were showing symptoms of Armillaria infections. The coexisting species of A. 

gallica and A. mellea in the heavily Armillaria-damaged oak stand competed for rotten 

hardwood substrates and the dominating A. mellea seemed to be the most virulent 

contributing factor for the oak decline (Baumgartner and Rizzo, 2001b). A lot more isolates of 

A. mellea from the heavily Armillaria damaged oak stand were found, whereas A. gallica was 

observed to occur less frequently (Supplementary Table 1), in agreement with the severely 

damaged condition of oak forests in Keszthely Hill caused by infection of the more 

pathogenic A. mellea. 

The exact, species-level molecular identification of isolated Trichoderma strains should 

be performed by the sequence analysis of a fragment of the tef1α gene fragment 

(Supplementary Table 1), as according to our recent knowledge about the taxonomy of the 

genus Trichoderma, ITS sequence analysis is not allowing an exact diagnosis in many cases 

(Overton et al., 2006). 

Bulk, rhizospheric and rhizomorph-associated soil samples were also subjected to 

Trichoderma isolation in a previous study (Jaklitsch, 2011). The reported diversity of 

Trichoderma had expanded to ~75 species in temperate Europe (Jaklitsch, 2009). Most of the 

Trichoderma species collected in this study from Keszthely and Rosalia (T. tomentosum, T. 

paratroviride, T. hamatum, T. citrinoviride, T. atrobrunneum, T. simmonsii, T. atroviride, T. 

koningii, T. guizhouense, T. paraviridescens, and T. longipile) had already been reported from 

Southern Europe (Jaklitsch and Voglmayr, 2015). Among them, the species T. citrinoviride, T. 

atroviride, T. koningii, T. paraviridescens, and T. longipile were also identified from Central 
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Europe (Blaszczyk et al., 2016). The T. harzianum species complex (also known as T. 

harzianum sensu lato) from the Harzianum clade of the genus Trichoderma was supposed to 

comprise at least 14 species (Chaverri et al., 2015), including the more recently described, 

biocontrol-relevant species of T. atrobrunneum, T. guizhouense, and T. simmonsii that were 

also found at both locations of our current investigation.  

 

5.2 Several Trichoderma species showed strong antagonistic abilities against 

Armillaria species 

The application of biocontrol agents as alternatives to chemical fungicides reduces the 

impacts and risks on human health as well as on the environment (Newitt and Prudence, 

2019). Trichoderma species as effective biocontrol agents against diverse genera of 

pathogenic fungi can be used for plant disease management, especially in the case of 

soilborne diseases. Strains of T. koningii, T. asperellum, T. atroviride, T. hamatum, T. virens, 

the T. harzianum species complex and other Trichoderma taxa have been officially registered 

and commercialized as crop protection products and microbial fungicides throughout the 

world, including European countries (Woo et al., 2014).  

Antagonistic activity assessment in vitro by dual culture assay revealed in this study that 

strains of T. virens were the most excellent biocontrol candidates against Armillaria species, 

indicated by their highest BCI values. Besides T. virens, T. atroviride, T. hamatum and the 

members of the T. harzianum species complex (T. simmonsii, T. atrobrunneum and T. 

guizhouense), strains of T. citrinoviride, T. paratroviride and T. tomentosum also proved to be 

effective in vitro antagonists of Armillaria species with the potential to be used as biocontrol 

agents against Armillaria root rot.  

In our study, a distinct geographical pattern was discovered from the distribution of 

Trichoderma species with different level of antagonistic abilities against Armillaria. Except 

for the two species of T. simmonsii and T. atroviride isolated from both locations of the oak 

stand in Keszhtely and the spruce forest in Rosalia and having relatively high antagonistic 

activities, the majority of species displaying good in vitro antagonistic abilities against 

Armillaria (such as T. virens and T. atrobrunneum) came from the heavily infested area of 

Keszthely Hills. It seems that native microorganisms isolated from soil, rhizosphere or 

directly from plant roots usually have a better adaptation and thus can display more efficient 

control of diseases than introduced exotic microorganisms (Weller, 1988). More antagonistic 

Trichoderma species dominated the severely Armillaria-infected soil, suggesting their great 
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potential to be selected as biocontrol agent providing guidance for the refinement of 

biocontrol approaches. 

On the other hand, certain species and strains of Trichoderma showed weak antagonistic 

abilities against Armillaria strains, reflected by low BCI values. For example, all the tested 

isolates of T. koningii and T. asperellum had lower BCI values than the isolates of T. virens, T. 

simmonsii, T. atrobrunneum, T. atroviride and T. hamatum. Previously, T. koningii and T. 

asperellum showed excellent antagonistic activities during the application against other plant 

pathogens. For instance, T. koningii showed the highest growth inhibition of Rhizoctonia 

solani causing root rot in cotton, followed by T. viride, T. harzianum and T. virens (Gajera et 

al., 2016). Similarly, T. asperellum was also frequently reported to be a strong necrotrophic 

mycoparasite parasitizing and feeding on a variety of fungal plant pathogens. For example, T. 

asperellum showed effective antagonistic activity against the white-rot fungus Phellinus 

noxius, the causal agent of an epidemic brown root rot disease of various coniferous and 

broad-leaved tree species (Chou et al., 2019). In a study report, T. longipile suppressed 

mycelial growth of Fusarium species, as well as their mycotoxin production. However, in our 

study, the strain of T. longipile showed weak antagonistic ability against all tested Armillaria 

isolates, as indicated by its lowest BCI values (Błaszczyk et al., 2017).  

 

5.3 Extracellular enzyme secretion, siderophore production and IAA 

production are important parameters during the screening for biocontrol 

agents among Trichoderma strains 

The Trichoderma isolates collected during this study were characterized for their 

abilities to produce polysaccharide-degrading enzymes of the cellulolytic (β-glucosidase and 

cellobiohydrolase) and xylanolytic (β-xylosidase) enzyme systems that are important for 

efficient competition in habitats rich of plant-derived polysaccharides, as well as acidic 

phosphatase playing a role in phosphorus mobilization. Interestingly, the isolates of species 

with the best in vitro antagonistic abilities against Armillaria (T. virens, T. atrobrunneum, T. 

simmonsii and T. atroviride) were among the worst producers of these extracellular enzymes 

and vice versa, suggesting that the main antagonistic mechanism of these Trichoderma 

species against Armillaria may be mycoparasitism of hyphae and rhizomorphs rather than 

competition for polysaccharides or increasing phosphorous availability to the tree roots. 

Certain Trichoderma species (e.g., T. reesei) can be characterized with a predominantly 

saprophytic behavior, while others (e.g., T. virens, T. atroviride and members of the 

Harzianum clade) are described as successful mycoparasitic species (Monfil and Casas-Flores, 
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2014). Extracellular hydrolytic enzymes are known as key players of both the saprophytic and 

the mycoparasitic behavior: the former is relying on the production of plant 

polysaccharide-degrading enzyme systems like cellulases or xylanases, whereas the latter is 

based on CWDEs targeting the cell wall of the fungal host (glucanases, chitinases, and 

proteases).  

Characterization and detection of siderophore production may also be an important 

parameter to screen biocontrol candidates and understand their rhizosphere competence. The 

competition for iron may also contribute to the anti-Armillaria activity of the examined 

Trichoderma iolates, as the production of siderophores proved to be a general feature among 

them. Previous studies reported that certain strains of T. asperellum, T. atrobrunneum, T. 

atroviride, T. gamsii, T. hamatum, T. harzianum, T. polysporum, T. reesei, T. virens, T. 

paratroviride, T. pyramidale, T. rufobrunneum, T. thermophilum, T. viridulum, T. 

guizhouense and T. simmonsii were mainly used as biocontrol agents due to their 

siderophore-producing abilities (Anke et al., 1991; Segarra et al., 2010; Lehner et al., 2013; 

Mukherjee et al., 2018; Wang and Zhuang, 2019). Wang and Zhuang firstly reported the 

siderophore-producing ability of T. guizhouense and T. simmonsii (Wang and Zhuang, 2019). 

To the best of our knowledge, the production of siderophores by T. citrinoviride, T. koningii, 

T. crassum, T. longipile and T. paraviridescens strains is firstly demonstrated in the present 

study.  

From the forest-derived Trichoderma isolates of our study, 40 were able to produce IAA 

with T. hamatum SZMC 24410, T. citrinoviride SZMC 26776 and T. atrobrunneum SZMC 

24206 producing the highest quantities (18.49, 16.198, and 15.64 µg/mL, respectively). Data 

in the literature about the IAA-producing ability of Trichoderma strains is limited. Chagas et 

al. investigated the IAA production of T. harzianum, T. pinnatum, T. longibrachiatum and T. 

asperelloides, as well as two strains of T. virens, and recorded production values of 2.9–3.2 

µg/mL (Chagas et al., 2016). In the present study, the detected values were in a wider 

concentration range (1.349–8.248 µg/mL). A previous study used a similar method to show 

that strains of T. atrobrunneum, T. guizhouense, T. paratroviride and T. simmonsii produce 

IAA at concentrations of 6.6, 10.3–21.8, 4.1–8.5, and 6.0–7.2 µg/mL (Wang and Zhuang, 

2019). In our study, the examined T. guizhouense and T. paratroviride isolates produced 

lower amounts of IAA. We also present the first data about the IAA production of T. koningii, 

T. longipile, T. tomentosum, T. hamatum, and T. citrinoviride.  

A comparison of the data about the in vitro antagonism and the production of 

indole-3-acetic acid, siderophores as well as extracellular β-glucosidase, cellobiohydrolase, 
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β-xylosidase, and phosphatase enzymes among the Trichoderma isolates mostly revealed very 

similar values for isolates deriving from the same sample and belonging to the same species, 

suggesting that the respective isolates are clonal and represent the same strain, which is, in 

many cases, also supported by identical sequences of the tef1α fragment used for species-level 

identification (Supplementary Table 1). Examples for probable clonality are the isolate groups 

T. koningii SZMC 24277/24278/24279, T. atroviride SZMC 24274/24275/24276 and SZMC 

24413/24414, T. simmonsii SZMC 24435/26771/24436/24403/24404 and SZMC 

26777/24412, or T. atrobrunneum SZMC 26772/24405. On the other hand, in certain cases, 

the differences in the physiological parameters or tef1α sequences clearly revealed the 

presence of multiple strains from the same species in the same sample, e.g., T. koningii SZMC 

2470/2471 vs. T. koningii SZMC 2472/2473, T. simmonsii SZMC 26770 vs. SZMC 

24429/24430/24431/24433, T. hamatum SZMC 24409 vs. SZMC 24410, or T. simmonsii 

SZMC 26773 vs. SZMC 24408 – the difference of the latter two isolates is also supported by 

a series of single nucleotide polymorphisms in the analyzed tef1α gene fragment 

(Supplementary Table 1). 

 

5.4 Growth regression of A. ostoyae (AO) was reflected by its transcriptome 

patterns and defence reactions were induced in A. ostoyae by T. atroviride 

(TA) 

T. atroviride was selected for our transcriptomic studies as it represents a well defined 

phylogenetic species (Dodd et al., 2003) and showed good in vitro antagonistic activities 

against diverse haploid and diploid strains of A. ostoyae (Figure 5, Table 2). Althought T. 

harzianum sensu lato is also a group of efficient biocontrol agents which were most 

commonly reported to be used in previous Armillaria biocontrol studies (Table 1), but it 

encompasses a complex of multiple cryptic species (Druzhinina et al., 2010).  

Biocontrol interaction between Trichoderma species and the target pathogen Armillaria 

were studied by dual culture assays (Pellegrini et al., 2012), but little is known about their 

intricate molecular interplay during the mycoparasitic process. Our results suggested that AO 

sensed and responded to the presence of the neighboring invader TA and altered its 

performance and behavior accordingly. The most obvious negative effect caused by TA was 

the growth inhibition of AO (Figure 5). Complex responses reflected by a downtrend gene 

cluster with the confrontaton time extended from 53 hours before physical contact to 62 hours 

during contact were found in AO. Go enrichment analysis of the downtend cluster genes in 

AO showed enrichments of genes related to cell cycle control as well as the supramolecular 
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structures (Figure 9). It suggested that the growth regression of AO occurred even before 

physical contact with TA. It seems reasonable to infer that AO was mycoparasitically killed 

by TA at the post-mycoparasite stage based on the mapping result which did not show any 

transcripts for AO (Supplementary Figure 5). Moreover, consistent downregulation of both 

the cell cycle and DNA replication (Figure 9) and the upregulation of several apoptotic genes 

of AO (Figure 16) may indicate that AO cells likely underwent necrosis resulting in an 

intense degradation of RNA. 

However, AO still struggled to survive and deployed several defence strategies against 

TA. At transcriptional level, the overall response of AO to TA revealed a defence reaction to 

an antagonistic biocontrol intruder, such as oxidation-reduction and defence processes and 

metabolism of toxic compounds. Specifically, the activation of genes implicated in 

oxidation-reduction and defence processes (high counts of genes responsible for glutathione 

peroxidase before contact, as well as DSBA-like thioredoxin domain and NADH:flavin 

oxidoreductase/NADH oxidase during physical contact were detected in AO), and 

transcriptional regulation (the transcriptional regulator NmrA-like domain protein was 

upregulated in AO at the Mycoparasite stage; it mediates the biotrophy to necrotrophy 

transition in Phytophthora capsici (Pham et al., 2018)) indicated recognition and reaction of 

AO to the biocontrol agent (Figure 10).  

Before physical contact, genes responsible for glutathione peroxidase expressed in AO 

(Figure 10) may be important for resistance to nitrosative and oxidative stress (Missall et al., 

2005), and could also be linked to the viability of AO. SnoaL-like domain and condensation 

domain for biosythesis of polyketides and non-ribosomal peptides were dominated in AO 

transcriptome before contact (Figure 10). SnoaL belongs to a family of small polyketide 

cyclases responsible for the biosynthesis of polyketide antibiotics (Supplementary Figure 8) 

(Sultana et al., 2004). Phenol hydroxylase hydroxylates phenol, a large group of plant 

secondary metabolites (Enroth et al., 1998). The synthesis of phenolic compounds in 

cucumber enhanced by the treatment with T. atroviride seemed to be strongly associated with 

the induction of systemic defence responses contributing to the protection of cucumber from 

R. solani (Nawrocka et al., 2018b). Genes for C-terminal dimerisation domain of phenol 

hydroxylase were abundant in AO (Figure 10), probably contributing to the virulence of AO. 

Futhermore, other genes possibly protecting AO from the biocontrol agent at the 

Mycoparasite stage were upregulated, such as a malic acid transport protein and 

voltage-dependent anion channel for the efficient production of malic acid (Figure 10), which 

was used as an antimicrobial agent inhibiting the growth of Listeria monocytogenes, 
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Salmonella enteritidis, Escherichia coli and Rhizopus nigricans (Raybaudi-Massilia et al., 

2009; El-Kadi, 2015; Cao et al., 2020). Malic acid was found to be the most abundant organic 

acid in A. mellea fruiting bodies collected from nature (Kostić et al., 2017). Indoleamine 

2,3-dioxygenase (IDO) was highly expressed in AO at the Metabolite stage (Figure 10); it is a 

tryptophan-degrading enzyme supplying nicotinamide adenine dinucleotide (NAD(+)) via the 

kynurenine pathway in fungi (Yuasa and Ball, 2011, 2013). Correspondingly, upregulation of 

the kynurenine pathway in AO probably leads to the production of an intermediate, the 

quinolinic acid (QA) at the Metabolite stage (Figure 13). The antifungal properties of QA 

such as inhibition of fungal mycelia and fungal cell wall alterations were comfirmed by 

testing on a hazardous fungal pathogen Ceratocystis fimbriata (Chen et al., 2021). However, 

the antifungal activity of QA on Trichoderma species still needs further investigation. 

 

5.5 Metabolite interactions were significantly induced  

Transcriptional changes of genes associated with complex metabolic pathways occurred 

in TA in the presence of AO. Metabolic activations were highlighted by genes implicated in 

the upregulation of condensation domain, SDR and NAD-dependent epimerase/dehydratase 

(Figure 10), which are possibly involved in fundamental metabolic processes and the 

production of extracellular enzymes (Persson et al., 2009; Islam et al., 2019). The biological 

processes like cellular alcohol metabolic process and molecular functions such as catalytic 

activity category were enriched in TA at the Metabolite stage (Figure 11). Non-ribosomal 

peptides play an important role during the interaction process of biocontrol fungi with plant 

pathogens, insects and plants (Niu et al., 2020). The genes predicted to be involved in 

secondary metabolite biosynthesis (NRPS, PKS-like, PKS, NRPS-PKS hybrid and NRPS-like) 

were highly expressed in TA at the Metabolite stage (Figure 12), suggesting that TA actively 

antagonized AO through the production of antimicrobial compounds, which was especially 

indicated by the signifiant expression of NRPS genes. These expression profiles indicated that 

the biocontrol processes were already activated by TA before physical contact with AO and 

AO consequently reacted by activating detoxification mechanisms and defence processes 

(Figure 10). On the other hand, the expression of genes encoding toxic secondary metabolites 

was underrepresented in AO as compared with TA at the Metabolite stage. Fungal ABC 

transporters (CDR ABC transporter and ABC-2 type transporter) which were 

well-characterized transmembrane proteins functioning in cellular detoxification were also 

detected to be expressed in the TA transcriptome during the Mycoparasite stage (Figure 10). 

In conclusion, genes encoding toxic secondary metabolites and ABC transporters possibly 
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implicated in the production of antifungal components and biocontrol molecules (Mukherjee 

et al., 2012) were highly expressed in TA when its mycelia gradually reached and physically 

contacted with AO.  

Peroxisome-related processes were activated in TA at the Mycoparasite stage (Figure 14). 

Peroxisomes are involved in lipid metabolism and implicated in a number of essential 

metabolic pathways and the homeostasis of reactive oxygen species (Peraza-Reyes and 

Berteaux-Lecellier, 2013). The peroxisome process also represents a type of defense systems 

that aims to protect the survival of the multicellular organism (Maruyama and Kitamoto, 

2013). It seems that peroxisomes play an essential role in the TA survival and growth process 

at physical contact with AO (Figure 14), possibly through the ability to prevent excessive loss 

of cytoplasmic constituents upon hyphal lysis. However, apoptotic-like cell death seemed to 

occur in AO, reflected by the significant upregulation of apoptosis-related genes once the TA 

physically contacted with AO (Figure 16). In fungi, apoptosis can be induced by exposure to 

toxic metabolites or other stresses (Sharon et al., 2009). To consistent with the apotosis 

induction, biological processes such as cellular response to chemical stimulus, cellular oxidant 

detoxification, and cellular response to toxic substance were enriched in AO at the 

Mycoparasite stage (Figure 15). 

 

5.6 CAZymes play an important role in the biocontrol process 

CAZymes in Trichoderma species are responsible for degradation of plant residues as 

well as hydrolysis of fungal cell wall during mycoparasitism (Kubicek et al., 2011). The 

different ecological behavior of the mycoparasites such as T. virens, T. abtrobrunneum and T. 

atroviride, compared to the industrially important cellulolytic T. reesei (with genome size of 

34.1 Mbp), is reflected by their expansion of the genome size that enables them to maintain 

genes implicated in mycoparasitism (Kubicek et al., 2011; Schmoll et al., 2016). In the 

expanded genomes of the mycoparasites such as T. atroviride IMI206040 (36.1 Mbp) and T. 

abtrobrunneum ITEM 908 (39.2 Mbp), a higher number of CAZyme domains was found 

(Fanelli et al., 2018). In our study, a focused investigation was performed on the CAZyme 

dynamics in the transcriptomes of AO and TA during the Metabolite and Myroparasite stages 

(Figure 18). In the transcriptomes of TA affected by AO, differential expression of CAZymes 

was found at both stages, including AAs of redox enzymes that act with CAZymes, 

carbohydrate esterases (CEs) that are responsible for the hydrolysis of carbohydrate esters, as 

well as GHs that are associated with the hydrolysis and/or rearrangement of glycosidic bonds. 

The family GHs containing the highest number of enzymes involved in fungal cell wall 
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degradation is strongly expressed in TA at the Metabolite stage, which may result in 

weakening AO. Among the different GHs-related families in TA, GH18 comprised chitinase 

proteins, which strongly bind to recalcitrant and insoluble substrates like chitin. High 

upregulation of such proteins increases the potential of TA to infect the cellular substrates of 

their host (Lienemann et al., 2009). In the plant cell wall, the major constituents are 

hemicelluloses, cellulose and pectins, while the main carbohydrates in the fungal cell wall are 

glucan and chitin; therefore, the activation of genes encoding chitinolytic enzymes and 

glucanases probably plays an important role in the mycoparasitism on AO and is also an 

essential part of the synergistic action with antifungal secondary metabolites that leads to the 

death of the host (Harman et al., 2004). However, as with extending incubation time, the 

expression of GHs in TA decreased significantly at the Mycoparasite stage, probably due to 

the saturation of these enzymes in the media. In the AO transcriptome, lower diversity and 

abundance of CAZymes were found before physical contact with TA; the expression of these 

CAZymes did not show significant change, except for the AAs of redox enzymes (AA1, AA2, 

AA3 and AA7) that were significantly up-regulated at the Mycoparasite stage, which might 

be essential for AO survival and substrate usage under the competitive stress of TA. 

 

5.7 Peptidase dynamics is a crucial defence response of A. ostoyae (AO) 

Since fungal cell walls contain proteins and lipids besides glucan and chitin, the 

involvement of peptidases and proteases in cell wall degradation seems to be necessary for 

Trichoderma mycoparasitism (Flores et al., 1997). This may be reflected by more abundance 

and more variation of peptidases induced in TA than in AO during the initial interaction stage 

before mycelial contact (Figure 19). As the incubation time was prolonged, genes related to 

the peptidase activities still dominated in the transcriptome of TA for further mycoparasitic 

interaction. However, considerable variations were found in the set of peptidases in TA 

expressed between the Metabolite and Mycoparasite stages (Figure 19). This variation in TA 

seems to be induced by the defence reaction from AO. Not only the possible contribution of 

proteases to the degradation of fungal cell wall during Trichoderma mycoparasitism, but also 

their putative involvement in the interactions with different organisms triggered great interest 

for investigation. For example, PapA, as one of the extracellular aspartyl proteases from T. 

asperellum had 58% similarity to PapA in T. harzianum (Viterbo et al., 2004). During 

challenging by the pathogen R. solani in plate confrontation tests, the encoding gene papA 

was found to be significantly upregulated (Viterbo et al., 2004). Moreover, peptidases also act 

as proteolytic inactivators of virulence enzymes or other pathogenic factors from pathogens. 
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Certain metalloendopeptidases, serine proteases and aspartic proteases were induced to 

coexpress in T. harzianum during in vitro nematode egg-parasitism of Caenorhabditis elegans, 

and revealed a major biocontrol role of these proteases in this function (Szabó et al., 2013). 

On the other hand, peptidase and protease function in the detoxification of toxic molecules 

was proven in the fungal plant pathogens A. niger and R. solani in response to bacterial 

biocontrol strains belonging to the genera Serratia and Bacillus (Benoit et al., 2015; Gkarmiri 

et al., 2015). The detoxification function of peptidases seems to be fully activated and put into 

effect in AO, as when the mycelia of TA extended towards interaction with AO, AO showed a 

dramatical reaction with a larger variety and more significant production of peptidases (Figure 

19), suggesting that the biocontrol agent TA activates a typical defence proccess in AO. 

 

5.8 Two selected biocontrol candidates showed promising biocontrol effect 

in a field experiment 

Only limited information is available in the literature about field studies evaluating the 

applicability of Trichoderma strains against Armillaria root rot of trees. Otieno et al. screened 

Trichoderma isolates for antagonism to Armillaria in tea stem sections buried in the soil and 

selected a T. harzianum strain, the wheat bran culture of which significantly reduced the 

viability of Armillaria in woody blocks of inoculum (Otieno et al., 2003b). The selected strain 

also exhibited high efficiency in the biocontrol of the destructive tree and bush pathogens 

from the genus Armillaria (Percival et al., 2011). Schnabel et al. applied biannual drenches of 

T. asperellum and T. gamsii, formulated as Remedier WP, onto peach trees planted in spots 

where a tree had declined from Armillaria root rot during the previous season, but did not find 

any statistical significance in survival between the treated and control trees (Schnabel et al., 

2011). However, the surviving Remedier WP-treated trees were found to have significantly 

larger tree trunks compared to control trees three and four years after planting at one of the 

two replant sites involved in the study. In another study, spraying a combination of T. 

harzianum and T. koningii at concentrations of 2 × 10
7
 CFU/mL and 3 × 10

7
 CFU/mL, 

respectively, into holes made in an avocado orchard previously infested with A. mellea did not 

increase the survival rates of grafted peach (Prunus persica) saplings (Downer and Faber, 

2019). The lack of Trichoderma effect on the survival of peach trees in the above studies may 

partly be due to the Trichoderma species applied: our study demonstrated that isolates of T. 

asperellum and T. koningii are not among the good in vitro antagonists of Armillaria species. 

Furthermore, the success of a tested control strategy may also rely on the thorough selection 

of the Trichoderma strains, which should also consider the origin of the isolates. The two 
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strains involved in the field test of our study were derived from a soil sample associated with 

Armillaria rhizomorphs which have not revealed any Armillaria growth, suggesting that the 

isolation of Trichoderma strains from naturally decaying Armillaria rhizomorphs and the soil 

surrounding them may increase the chances to find promising candidates for the successful 

biocontrol of Armillaria root rot. A similar strain isolation strategy from Armillaria 

rhizomorphs and soil samples around Armillaria-infected roots of cherry and almond trees 

revealed isolates of T. virens and T. harzianum sensu lato efficiently inhibiting both colony 

growth and rhizomorph formation of A. mellea (Asef et al., 2008). 

One of the limitations of Trichoderma application in forest stands is arising from the 

difficulties of delivery, as the regular treatment of large forest areas with a biocontrol product 

is not economically feasible. An obvious time point of intervention is the planting time of the 

seedlings, as their roots can be easily treated with microbial products by soaking. A further 

promising strategy could be the conditioning of the seedlings with microbial products before 

planting, which could be performed in nurseries under more controlled circumstances than the 

ones allowed by field conditions.  

The interactions of introduced Trichoderma strains with other beneficial microorganisms 

such as mycorrhizal fungi need further investigations, as they may represent both advantages 

and disadvantages to the host plant (Szczałba et al., 2019). Trichoderma may act negatively 

on mycorrhizal fungi via competition for the colonization sites and nutrients 

(Martínez-Medina et al., 2009), or via direct mycoparasitic attack, which, however, may also 

increase the uptake of phosphorous by the mycorrhizal fungus as the result of stress reaction 

(De Jaeger et al., 2011). Using beneficial fungi in forestry therefore requires the adjustment of 

Trichoderma–mycorrhizal fungus combinations to the host tree, as well as the optimization of 

the inoculation methods and the applied sylvicultural practices.   
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SUMMARY 

Armillaria species are among the economically most damaging soil-borne tree pathogens 

causing devastating root diseases world-wide. Bacterial and fungal biocontrol agents are 

promising environment-friendly alternatives to toxic chemicals to restrain and delimit the 

spread of harmful Armillaria activities in forest soils. Amongst the fungal biocontrol 

candidates, Trichoderma species, as mycoparasites, may efficiently employ diverse 

antagonistic mechanisms against fungal plant pathogens. In our current studies, a large-scale 

effort to screen, characterize and select Trichoderma strains with the potential to antagonize 

Armillaria species revealed promising candidates for direct field applications against 

advancing Armillaria infections. In addition, plate assays were used to perform dual 

confrontation tests between a haploid A. ostoyae isolate and our selected T. atroviride strain. 

Dual RNA-Seq based gene expression profiling was then used to evaluate the interactive 

activities between Armillaria and the mycoparasitc Trichoderma isolate.  

In our initial field studies, Armillaria and Trichoderma isolates were collected from soil 

samples of damaged Hungarian oak and healthy Austrian spruce forests and identified to the 

species level. While A. cepistipes and A. ostoyae were found in the Austrian spruce forests, A. 

mellea and A. gallica clones dominated the Hungarian oak stands. A total of 64 Trichoderma 

isolates belonging to 14 species were also recovered. Different composition of Trichoderma 

communities was found between the two forest areas. 

In vitro antagonism experiments were performed by dual culture assay to determine the 

potential of various Trichoderma strains in controlling pathogenic Armillaria isolates. Strains 

of Trichoderma that can be selected as excellent biocontrol candidates against Armillaria 

species were indicated by their high BCI values. Most of the Trichoderma strains isolated 

from the heavily Armillaria-infected areas proved to be effective in vitro antagonists of 

Armillaria species with the potential to be used as biocontrol agents against Armillaria root 

rot. On the other hand, certain species and strains of Trichoderma showed weak antagonistic 

abilities against Armillaria strains, reflected by low BCI values. Most of the weak 

antagonistic strains were isolated from the healthy forest areas. 

The Trichoderma isolates collected during this study were characterized for their abilities 

to produce polysaccharide-degrading enzymes of the cellulolytic and xylanolytic enzyme 

systems as well as acidic phosphatase playing a role in phosphorus mobilization. However, 

the isolates of species with the best in vitro antagonistic abilities against Armillaria were 

among the worst producers of these extracellular enzymes and vice versa, suggesting that the 

main antagonistic mechanism of these Trichoderma species against Armillaria may be 
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mycoparasitism of hyphae and rhizomorphs rather than competition for polysaccharides or 

increasing phosphorous availability to the tree roots. 

Characterization and detection of siderophore production was also an important 

parameter to screen biocontrol candidates and understand their rhizosphere competence. From 

the forest-derived Trichoderma isolates of our study, 40 were able to produce IAA. Most 

isolates of Trichoderma in our study showed siderophore-producing abilities. Several 

Trichoderma strains exhibited in vitro antagonistic abilities towards Armillaria species and 

produced siderophores and indole-3-acetic acid. 

A. ostoyae is a facultative necrotroph and one of the most destructive forest pathogens 

from the genus Armillaria, causing root rot disease on woody plants worldwide. However, 

effective control measures are currently still under investigation to limit the population of this 

underground pathogen. The biocontrol attributes of T. atroviride relying on its markedly rich 

and powerful genome, proteome and secretome imply a great potential as environmentally 

sustainable alternatives to chemical fertilizers and pesticides for control of plant disease and 

forest protection. T. atroviride SZMC 24276 (TA) showed high antagonistic efficacy on the 

haploid A. ostoyae derivative SZMC 23093 (AO). The results from dual culture assay 

indicated that the haploid A. ostoyae derivative SZMC 23093 is highly susceptible to the 

mycelial invasion of T. atroviride SZMC 24276. 

We analyzed the transcriptomes of AO and TA in vitro by dual culture assay for the 

investigation of their molecular interaction, using high-throughput next generation sequencing 

technology. During the pathogen–antagonist interaction on PDA media, different time points 

were captured for transcriptome analysis. We tried to reveal the dynamics of molecular 

interaction including the metabolite-level interaction before mycelia contact, 

mycoparasite-level interaction when TA mycelia physically contact with the colony of AO 

and post-mycoparasite interaction when TA overgrew on the surface of the colony of AO. We 

also intended to interprete the defence responses of AO at the transcriptional level triggered 

by the biocontrol invasion of TA, as well as the transcriptional responses of TA underpinning 

its biocontrol activities during the interaction with its host AO. Therefore, time course 

analysis, functional annotation, enriched pathways, analysis of differentially expressed genes 

including candidate biocontrol-related genes from TA and candidate defence-related genes 

from AO were operated.  

The transcriptome analysis of the biocontrol agent and fungal pathogen in vitro by dual 

culture confrontation assay proved to be a useful approach to model the complex molecular 

dynamics of fungal interaction. To our knowledge, this study was the first transcriptome 
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analysis of A. ostoyae infected with a biocontrol fungus, and it could give insights to plant 

pathogen-biocontrol agent interaction mechanisms. The results indicated that TA deployed 

several biocontrol strategies when confronted with AO and multiple defense mechanisms of 

AO were initiated to protect against the serious negative effects caused by fungal attack. 

The changes in the growing media environment caused by metabolites and other secreta 

from the confronted species and the challenges from physical mycelium invasion impact the 

transcriptome pattern of fungi. Multiple biocontrol mechanisms of TA were already activated 

even before physical contact. These included the production of hydrolytic enzymes and 

antibiotic secondary metabolites. On the other hand, the early transciptional impact of TA 

before mycelial contact on the target pathogen AO induced multiple defence reactions such as 

production of QA. After contact, more defence strategies were deployed, such as the 

overexpression of peptidases probably involved in detoxification. However, significant 

growth regression still occurred in AO as TA grew to contact with the pathogen. 

Overall, transcriptomic investigation of the fungal interaction revealed that the 

differential expression of defence genes enable AO to detect the metabolites or extracellular 

enzymes released from the biocontrol agent and somehow make an effort to defend from TA 

invasion. On the other hand, the transcriptomic reprogramming in TA induced by its host AO 

suggested a significant differential expression of the mycoparasitism-related genes which 

showed their great biocontrol potential to antagonize its host/prey AO. 

A field experiment was carried out by applying two selected Trichoderma strains on 

two-year-old European Turkey oak seedlings planted in a forest area heavily overtaken by the 

rhizomorphs of numerous Armillaria colonies. Oak seedlings treated with T. virens and T. 

atrobrunneum displayed better survival under heavily Armillaria-infested soil conditions than 

the untreated controls. In conclusion, selected native Trichoderma strains, associated with 

Armillaria rhizomorphs, which may also have plant growth promoting properties, are 

potential antagonists of Armillaria spp., and such abilities can be exploited in the biological 

control of Armillaria root rot. 
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ÖSSZEFOGLALÁS 

Az Armillaria fajok világszerte a fákat gazdaságilag leginkább károsító, talajban terjedő 

gombakórokozók közé tartoznak, melyek világszerte pusztító gyökérbetegségeket okoznak. A 

bakteriumokon és gombákon alapuló biokontroll ágensek a toxikus kémiai növényvédő szerek 

ígéretes, környezetbarát alternatívái a káros Armillaria fajok erdei talajban történő 

terjedésének megakadályozására. A biokontroll-jelölt gombák közül a Trichoderma fajok 

mikoparazitaként hatékonyan képesek lehetnek különféle antagonista mechanizmusokat 

alkalmazni a növénykórokozó gombák ellen. Munkám során az Armillaria fajok 

antagonizálására potenciálisan alkalmas Trichoderma törzsek szűrésére, jellemzésére és 

szelektálására irányuló nagyszabású erőfeszítések az Armillaria fertőzések elleni közvetlen 

szabadföldi alkalmazásokra ígéretes törzseket eredményeztek. Fentieken túl táplemezeken 

kettős konfrontációs teszteket hajtottunk végre egy haploid A. ostoyae izolátum és egy 

kiválasztott T. atroviride törzs között, majd kettős RNS-Seq-alapú génexpressziós profilozást 

alkalmaztunk az Armillaria és a mikoparazita Trichoderma törzs közötti kölcsönhatás 

értékelésére.  

Kezdeti terepmunkáink során Armillaria és Trichoderma izolátumokat gyűjtöttünk 

károsított magyarországi tölgy-, illetve egészséges ausztriai fenyőerdők talajmintáiból, majd 

az izolátumokat fajszinten azonosítottuk. Míg az ausztriai fenyvesben az A. cepistipes és A. 

ostoyae fajokat detektáltuk, addig a hazai tölgyállományban az A. mellea és az A. gallica 

klónok domináltak. A mintákból összesen 64 Trichoderma törzset is izoláltunk, melyek 14 

fajt képviseltek. A két erdőterületen a Trichoderma közösségek eltérő összetételt mutattak. 

Kettős tenyésztési tesztekkel in vitro antagonizmus-kísérleteket végeztünk a különböző 

Trichoderma törzsek patogén Armillaria izolátumok elleni védekezésre való potenciáljának 

meghatározására. Az Armillaria fajok ellen kiváló biokontroll jelöltként szelektált 

Trichoderma törzsek magas biokontroll index (BCI) értékeket mutattak. Az erősen 

Armillaria-fertőzött területekről izolált Trichoderma törzsek többsége az Armillaria fajok 

hatékony in vitro antagonistájának bizonyult, így felhasználható lehet az Armillaria által 

okozott gyökérrothadás elleni biológiai védekezés céljaira. Másrészről viszont egyes 

Trichoderma fajok, illetve törzsek gyenge antagonista képességeket mutattak az Armillaria 

törzsekkel szemben, melyet alacsony BCI-értékeik tükröztek. A legtöbb gyenge antagonista 

képessségekkel rendelkező izolátum az egészséges erdőterületekről származott. 

A munka során összegyűjtött Trichoderma izolátumok jellemzése során megvizsgáltuk a 

törzsek cellulóz- és xilánbontó enzimrendszerekbe tartozó poliszacharidbontó enzimek, 
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valamint a foszfor mobilizációjában szerepet játszó savas foszfatáz termelésére való 

képességét. Az Armillaria elleni legjobb in vitro antagonista képességgel rendelkező fajok 

izolátumai ezen extracelluláris enzimek legrosszabb termelői közé tartoztak, és fordítva, ami 

arra utal, hogy ezeknek a Trichoderma fajoknak az Armillaria elleni fő antagonista 

mechanizmusa a hifák és rizomorfák mikoparazitizmusa lehet, nem pedig a poliszacharidokért 

folytatott kompetíció, vagy a gyökerek foszfor-hozzáférésének fokozása. 

A sziderofórtermelés jellemzése és kimutatása szintén fontos paraméter a 

biokontroll-jelölt törzsek szűrése, illetve rizoszféra-kompetenciájuk megértésére 

szempontjából. Az erdei eredetű Trichoderma izolátumok közül 40 törzs volt képes 

indolecetsav (IAA) termelésére. A vizsgálatainkba vont Trichoderma izolátumok többsége 

sziderofórtermelő képességekkel is rendelkezett. Számos Trichoderma törzs az Armillaria 

fajokkal szembeni in vitro antagonista képessége mellett sziderofórokat és indol-3-ecetsavat is 

termelt. 

A fakultatív nekrotróf A. ostoyae az Armillaria nemzetség egyik legpusztítóbb erdei 

kórokozója, mely világszerte gyökérrothadási betegségeket okoz fásszárú növényeken. 

Jelenleg is folyik a hatékony védekezési intézkedések felmérése ezen földalatti kórokozó 

populációjának a korlátozására. A T. atroviride biokontroll tulajdonságai a faj genomjára, 

proteomjára és szekréciójára támaszkodva a műtrágyák és kémiai peszticidek környezetbarát 

alternatívájaként komoly potenciált jelentenek a növénybetegségek elleni védekezés és az 

erdővédelem területén. A T. atroviride SZMC 24276 törzs (TA) jó antagonista képességgel 

rendelkezett a haploid A. ostoyae SZMC 23093 törzzsel (AO) szemben. A kettős tenyésztési 

vizsgálat eredményei alapján az haploid A. ostoyae SZMC 23093 törzs nagyfokú 

érzékenységet mutat a T. atroviride SZMC 24276 micéliuma általi invázióval szemben. 

Az AO és a TA molekuláris kölcsönhatásainak vizsgálata céljából az in vitro kettős 

tenyésztésből kapott transzkriptomokat nagy teljesítményű, következő generációs 

szekvenálási technológia alkalmazásával elemeztük. A kórokozó -antagonista PDA táptalajon 

zajló kölcsönhatása során különböző időpontokat rögzítettünk a transzkriptomelemzés céljaira. 

Megpróbáltuk feltárni a molekuláris kölcsönhatás dinamikáját, beleértve a micéliumok 

egymással történő érintkezése előtti metabolit-szintű kölcsönhatást, a mikoparazita 

kölcsönhatást (amikor a TA micélium fizikailag érintkezik az AO telepével), valamint a 

poszt-mikoparazita kölcsönhatást (amikor a TA már ránövekedett az AO telepének felszínére). 

Szándékunk volt továbbá transzkripciós szinten értelmezni az AO esetében a TA biokontroll 

inváziója által kiváltott védekező válaszokat, valamint a TA biokontroll aktivitását 
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alátámasztó, az AO-val, mint gazdaszervezettel zajló kölcsönhatás során fellépő 

transzkripciós válaszait is. Ezért idősor-elemzést és funkcionális annotációt végeztünk, 

vizsgáltuk a dúsított útvonalakat, és elemeztük a differenciálisan expresszált géneket, 

beleértve a TA biokontrollal kapcsolatos, valamint az AO védekezéssel kapcsolatos 

génjelöltjeit. 

A biokontroll ágens és a kórokozó in vitro kettős tenyészetben kivitelezett konfrontációs 

kísérletének transzkriptomelemzése hasznos megközelítésnek bizonyult a gombák 

kölcsönhatásának komplex molekuláris dinamikai modellezésére. Tudomásunk szerint ez az 

első transzkriptom-elemzési tanulmány biokontroll gomba által megtámadott A. ostoyae 

esetében, mely betekintést nyújthat a növényi kórokozó-biokontroll ágens kölcsönhatás 

mechanizmusaiba. Az eredmények alapján a TA számos biokontroll stratégiát alkalmazott az 

AO-val szembeni konfrontáció során, az AO esetében pedig számos védekezési mechanizmus 

indult be a gombatámadás okozta súlyos negatív hatások elleni védekezés érdekében. 

A táptalajkörnyezetben az egymással konfrontált fajok metabolitjai és más szekrétumai 

hatására bekövetkezett változások, valamint a fizikai micéliuminvázió okozta kihívások 

befolyásolják a gombák transzkriptom-mintázatát. A TA számos biokontroll mechanizmusa 

már a fizikai érintkezés előtt aktiválódott. Ezek közé tartozik a hidrolitikus enzimek és az 

antibiotikus hatású másodlagos metabolitok termelése. Másrészről a TA korai, a micéliumok 

érintkezése előtt az AO kórokozóra gyakorolt transzkripciós hatása számos védekezési 

reakciót, például a kinolinsav (QA) termelését indukálta. Az érintkezés után további 

védekezési stratégiák indukálódtak, például megemelkedett a detoxifikációban 

feltételezhetően szerepet játszó peptidázok expressziója. Az AO-ban ennek ellenére azonban 

jelentős növekedésgátlás következett be az irányába növekedő TA hatására. 

Összességében a gombák kölcsönhatásának transzkriptomikai vizsgálata alapján a 

védekező gének differenciális expressziója lehetővé teszi az AO számára a biokontroll ágens 

által kibocsátott metabolitok vagy extracelluláris enzimek érzékelését, illetve a TA inváziója 

elleni védekezés megkísérlését. Másrészt a TA-nak a gazdaszervezet (AO) által indukált 

transzkriptomikai átprogramozása az AO, mint gazda/zsákmány antagonizálása 

szempontjából jelentős biokontroll potenciállal rendelkező, mikoparazitizmussal kapcsolatos 

gének differenciális expressziójához vezet. 

Két kiválasztott Trichoderma törzs alkalmazásával szabadföldi kísérletet végeztünk 

kétéves európai tölgypalántákon, melyek egy, számos Armillaria telep rizomorfái által erősen 

fertőzött erdőterületre kerültek kiültetésre. A T. virens és T. atrobrunneum törzsekkel kezelt 
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tölgypalánták a kezeletlen kontrollokhoz képest jobb túlélést mutattak az Armillaria által 

erősen fertőzött talajban. Összefoglalva, az Armillaria rizomorfákról izolált, kiválasztott natív 

Trichoderma törzsek, melyek növénynövekedést elősegítő tulajdonságokkal is 

rendelkezhetnek, az Armillaria fajok potenciális antagonistáinak bizonyultak, ami 

kihasználható lehet az Armillaria gyökérrothadás elleni biológiai védekezésében. 

(Fordította: Dr. Kredics László) 
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1. Armillaria and Trichoderma isolates collected during the study 

 

Location GPS-N GPS-E Collection 

date 

Sample Isolate identifier Diagnosis ITS 

(GenBank) 

tef1α (GenBank) 

Armillaria isolates         

Rosalia, Austria 47° 41.649 16° 17.940 28.10.2016. fruiting body SZMC 24125 Armillaria cepistipes - MN580140 

 47° 41.640 16° 17.937 28.10.2016. fruiting body SZMC 24126 Armillaria cepistipes - MN580151 

 47° 41.628 16° 17.929 28.10.2016. rhizomorph SZMC 24128 Armillaria ostoyae - MN580144 

 47° 41.629 16° 17.964 28.10.2016. fruiting body SZMC 24129 Armillaria ostoyae - MN580139 

 47° 41.621 16° 17.948 28.10.2016. fruiting body SZMC 24130 Armillaria ostoyae - MN580142 

Keszthely, Hungary 46° 48.728 17° 16.992 20.07.2016 bulk soil SZMC 24095 Armillaria gallica - MN580162 

 46° 48.712 17° 16.994 20.07.2016 bulk soil SZMC 24098 Armillaria gallica - MN580163 

 46° 48.702 17° 16.987 29.10.2016. bulk soil SZMC 24099 Armillaria gallica - MN580160 

 46° 48.657 17° 16.954 29.10.2016. fruiting body SZMC 24131 Armillaria mellea MN585779 MN580137 

 46° 48.671 17° 16.959 29.10.2016. fruiting body SZMC 24132 Armillaria mellea MN585780 MN580159 

 46° 48.706 17° 16.949 29.10.2016. fruiting body SZMC 24133 Armillaria mellea MN585781 MN580138 

 46° 48.723 17° 16.974 29.10.2016. fruiting body SZMC 24134 Armillaria mellea MN585777 MN580152 

 46° 48.712 17° 16.978 29.10.2016. fruiting body SZMC 24135 Armillaria mellea - MN580145 

 46° 48.736 17° 16.992 29.10.2016. fruiting body SZMC 24651 Armillaria mellea - MN580153 

 46° 48.772 17° 16.992 29.10.2016. fruiting body SZMC 24136 Armillaria mellea MN585778 MN580155 

 46° 48.760 17° 16.982 29.10.2016. fruiting body SZMC 24137 Armillaria mellea MN585776 MN580154 

 46° 48.749 17° 16.936 29.10.2016. fruiting body SZMC 24139 Armillaria mellea MN585782 MN580158 
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    Supplementary Table 1 Cont.    

Location GPS-N GPS-E Collection 

date 

Sample Isolate identifier Diagnosis ITS 

(GenBank) 

tef1α (GenBank) 

 46° 48.720 17° 17.009 29.10.2016. fruiting body SZMC 24140 Armillaria mellea MN585783 MN580146 

 46°48.736 17°16.992 03.11.2016. fruiting body SZMC 24141 Armillaria mellea - MN580150 

 46°48.665 17°16.993 03.11.2016. fruiting body SZMC 24142 Armillaria mellea - MN580143 

 46°48.738 17°16.956 03.11.2016. fruiting body SZMC 24143 Armillaria gallica - MN580141 

 46°48.877 17°17.143 03.11.2016. fruiting body SZMC 24144 Armillaria mellea - MN580148 

 46°48.883 17°17.153 03.11.2016. fruiting body SZMC 24145 Armillaria mellea - MN580149 

 46°48.917 17°17.062 03.11.2016. fruiting body SZMC 24146 Armillaria mellea - MN580161 

 46°48.892 17°16.941 03.11.2016. fruiting body SZMC 24147 Armillaria mellea - MN580157 

 46°48.883 17°16.937 03.11.2016. fruiting body SZMC 24148 Armillaria mellea - MN580156 

 46°47.935 17°16.958 03.11.2016. fruiting body SZMC 24149 Armillaria mellea - MN580147 

Trichoderma isolates         

Rosalia, Austria 47° 41.649 16° 17.940 28.10.2016. bulk soil SZMC 24270 Trichoderma koningii MN516459 MN520036 

     SZMC 24271 Trichoderma koningii MN516460 MN520038 

     SZMC 24272 Trichoderma koningii MN516461 MN520042 

     SZMC 24273 Trichoderma koningii MN516462 MN520041 

 47° 41.640 16° 17.937 28.10.2016. bulk soil SZMC 24274 Trichoderma atroviride MN516463 MN520048 

     SZMC 24275 Trichoderma atroviride MN516464 MN520049 

     SZMC 24276 Trichoderma atroviride MN516465 MN520050 

 47° 41.618 16° 17.873 28.10.2016. bulk soil SZMC 24277 Trichoderma koningii MN516466 MN520033 

     SZMC 24278 Trichoderma koningii MN516467 MN520040 
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    Supplementary Table 1 Cont.    

Location GPS-N GPS-E Collection 

date 

Sample Isolate identifier Diagnosis ITS 

(GenBank) 

tef1α (GenBank) 

     SZMC 24279 Trichoderma koningii MN516468 MN520039 

     SZMC 24280 Trichoderma asperellum MN516469 MN520031 

 47° 41.629 16° 17.964 28.10.2016. bulk soil SZMC 24285 Trichoderma koningii MN516474 MN520034 

     SZMC 24286 Trichoderma koningii MN516475 MN520037 

     SZMC 24287 Trichoderma koningii MN516476 MN520035 

     SZMC 24288 Trichoderma asperellum MN516477 MN520032 

 47° 41.621 16° 17.948 28.10.2016. bulk soil SZMC 24289 Trichoderma asperellum MN516478 MN520030 

     SZMC 24290 Trichoderma koningii MN516479 MN520043 

 47° 40.896 16° 17.211 28.10.2016. bulk soil SZMC 24291 Trichoderma longipile MN516480 MN520056 

 47° 41.628 16° 17.929 28.10.2016. rhizomorph SZMC 24281 Trichoderma guizhouense MN516470 MN520084 

     SZMC 24282 Trichoderma paraviridescens MN516471 MN520044 

     SZMC 24283 Trichoderma simmonsii MN516472 MN520079 

     SZMC 24284 Trichoderma simmonsii MN516473 MN520078 

Keszthely, Hungary 46° 48.657 17° 16.954 29.10.2016. bulk soil SZMC 24429 Trichoderma simmonsii - MN520069 

     SZMC 24430 Trichoderma simmonsii - MN520071 

     SZMC 24431 Trichoderma simmonsii - MN520077 

     SZMC 26770 Trichoderma simmonsii - MN520072 

     SZMC 24433 Trichoderma simmonsii - MN520081 

 46° 48.671 17° 16.959 29.10.2016. bulk soil SZMC 24434 Trichoderma tomentosum - MN520066 

 46° 48.706 17° 16.949 29.10.2016. bulk soil SZMC 24435 Trichoderma simmonsii - MN520075 
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    Supplementary Table 1 Cont.    

Location GPS-N GPS-E Collection 

date 

Sample Isolate identifier Diagnosis ITS 

(GenBank) 

tef1α (GenBank) 

     SZMC 26771  Trichoderma simmonsii - MN520080 

     SZMC 24436 Trichoderma simmonsii - MN520068 

     SZMC 24403 Trichoderma simmonsii - MN520076 

     SZMC 24404 Trichoderma simmonsii - MN520082 

 46° 48.723 17° 16.974 29.10.2016. bulk soil SZMC 26772 Trichoderma atrobrunneum - MN520090 

     SZMC 24405 Trichoderma atrobrunneum - MN520091 

 46° 48.712 17° 16.978 29.10.2016. bulk soil SZMC 26773 Trichoderma simmonsii - MN520083 

     SZMC 26774 Trichoderma virens - MN520058 

     SZMC 24408 Trichoderma simmonsii - MN520067 

 46° 48.736 17° 16.992 29.10.2016. bulk soil SZMC 24409 Trichoderma hamatum - MN520028 

     SZMC 24410 Trichoderma hamatum - MN520029 

 46°48.772 17°16.992 29.10.2016. rhizosphere SZMC 26778 Trichoderma atroviride MN516444 MN520052 

     SZMC 26779 Trichoderma atroviride MN516445 MN520051 

     SZMC 26780 Trichoderma atroviride MN516446 MN520053 

 46° 48.769 17° 16.961 29.10.2016. bulk soil SZMC 24411 Trichoderma paratroviride - MN520045 

     SZMC 26775 Trichoderma citrinoviride - MN520054 

     SZMC 26776 Trichoderma citrinoviride - MN520055 

     SZMC 26777 Trichoderma simmonsii - MN520070 

     SZMC 24412 Trichoderma simmonsii - MN520074 

 46° 48.749 17° 16.936 29.10.2016. rhizosphere SZMC 24413 Trichoderma atroviride  MN520047 
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    Supplementary Table 1 Cont.    

Location GPS-N GPS-E Collection 

date 

Sample Isolate identifier Diagnosis ITS 

(GenBank) 

tef1α (GenBank) 

     SZMC 24414 Trichoderma atroviride  MN520046 

 46° 48.738 17° 16.956 20.07.2016. rhizomorph SZMC 24292    Trichoderma virens MN516447 MN520059 

     SZMC 24293    Trichoderma virens MN516448 MN520061 

     SZMC 24294    Trichoderma virens MN516449 MN520062 

     SZMC 24295    Trichoderma virens MN516450 MN520060 

     SZMC 24296    Trichoderma virens MN516451 MN520064 

 46° 48.758 17° 16.959 20.07.2016 rhizomorph SZMC 24297   Trichoderma atrobrunneum  MN516452 MN520087 

     SZMC 24298    Trichoderma simmonsii MN516453 MN520073 

     SZMC 24299    Trichoderma atrobrunneum  MN516454 MN520086 

     SZMC 24300    Trichoderma crassum MN516455 MN520057 

     SZMC 24301    Trichoderma atrobrunneum  MN516456 MN520088 

     SZMC 24302    Trichoderma atrobrunneum  MN516457 MN520089 

     SZMC 24303   Trichoderma virens MN516458 MN520063 

 46° 48.722 17° 16.993 20.07.2016 rhizomorph SZMC 24205 Trichoderma virens - MN520065 

     SZMC 24206 Trichoderma atrobrunneum MN516443 MN520085 
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Supplementary Table 2. In vitro antagonistic abilities of Trichoderma isolates towards Armillaria isolates 

 

Species Isolate 
number of tested 

Armillaria isolates 

BCI values 

≧80  

Percentage of 

BCI≧80 (%) 

T. tomentosum SZMC 24434 25 15 60.00  

T. paratroviride SZMC 24411 25 19 76.00  

T. crassum SZMC 24300 25 13 52.00  

T. hamatum SZMC 24409 25 9 36.00  

T. hamatum SZMC 24410 25 16 64.00  

T. citrinoviride SZMC 26775 25 12 48.00  

T. citrinoviride SZMC 26776 25 13 52.00  

T. virens SZMC 26774 25 24 96.00  

T. virens SZMC 24205 25 17 68.00  

T. virens SZMC 24292 25 22 88.00  

T. virens SZMC 24293 25 22 88.00  

T. virens SZMC 24294 25 23 92.00  

T. virens SZMC 24295 25 22 88.00  

T. virens SZMC 24296 25 22 88.00  

T. virens SZMC 24303 25 24 96.00  

T. atrobrunneum SZMC 26772 25 19 76.00  

T. atrobrunneum SZMC 24405 25 15 60.00  

T. atrobrunneum SZMC 24206 25 6 24.00  

T. atrobrunneum SZMC 24297 25 10 40.00  

T. atrobrunneum SZMC 24299 25 6 24.00  

T. atrobrunneum SZMC 24301 25 11 44.00  

T. atrobrunneum SZMC 24302 25 10 40.00  

T. simmonsii SZMC 24430 25 15 60.00  

T. simmonsii SZMC 24431 25 17 68.00  

T. simmonsii SZMC 26770 25 21 84.00  

T. simmonsii SZMC 24433 25 16 64.00  

T. simmonsii SZMC 24435 25 19 76.00  

T. simmonsii SZMC 24436 25 18 72.00  

T. simmonsii SZMC 24403 25 17 68.00  

T. simmonsii SZMC 24404 25 18 72.00  

T. simmonsii SZMC 26773 25 19 76.00  

T. simmonsii SZMC 24408 25 10 40.00  

T. simmonsii SZMC 26777 25 17 68.00  

T. simmonsii SZMC 24412 25 16 64.00  

T. simmonsii SZMC 24298 25 13 52.00  

T. simmonsii SZMC 24283 25 18 72.00  

T. simmonsii SZMC 24284 25 16 64.00  

T. atroviride SZMC 26778 25 12 48.00  

T. atroviride SZMC 26779 25 8 32.00  
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Supplementary Table 2 Cont. 

Species Isolate 
number of tested 

Armillaria isolates 

BCI values 

≧80  

Percentage of 

BCI≧80 (%) 

T. atroviride SZMC 26780 25 10 40.00  

T. atroviride SZMC 24413 25 16 64.00  

T. atroviride SZMC 24414 25 14 56.00  

T. atroviride SZMC 24274 25 14 56.00  

T. atroviride SZMC 24275 25 12 48.00  

T. atroviride SZMC 24276 25 10 40.00  

T. koningii SZMC 24270 25 9 36.00  

T. koningii SZMC 24271 25 9 36.00  

T. koningii SZMC 24272 25 9 36.00  

T. koningii SZMC 24273 25 7 28.00  

T. koningii SZMC 24277 25 9 36.00  

T. koningii SZMC 24278 25 7 28.00  

T. koningii SZMC 24279 25 10 40.00  

T. koningii SZMC 24285 25 7 28.00  

T. koningii SZMC 24286 25 8 32.00  

T. koningii SZMC 24287 25 7 28.00  

T. koningii SZMC 24290 25 10 40.00  

T. asperellum SZMC 24280 25 9 36.00  

T. asperellum SZMC 24288 25 7 28.00  

T. asperellum SZMC 24289 25 8 32.00  

T. guizhouense SZMC 24281 25 16 64.00  

T. paraviridescens SZMC 24282 25 6 24.00  

T. longipile SZMC 24291 25 6 24.00  
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Supplementary Table 3. Primers used in the present study 

Primers Sequence 5’-3’ Function of genes 

Primers for species identification 

ITS4 TCCTCCGCTTATTGATATGC ITS 

ITS5 GGAAGTAAAAGTCGTAACAAGG 

TEF-LLErev AACTTGCAGGCAATGTGG tef1α  

EF1-728F CATCGAGAAGTTCGAGAAGG 

Primers for qRT-PCR experiments 

Armillaria 

ARMOST_13362 Fw GACAACCTTCGCAGTCAG Quinolinic acid pathway 

ARMOST_13362 Rev CACCACGCAACTCCATAC 

ARMOST_03616 Fw ACGCCACGGCTAAGAAGAGG Quinolinic acid pathway 

ARMOST_03616 Rev CCCAAGCGAAGCGACAACAG 

ARMOST_04226 Fw CATAAATCCCGCACAACAGC Quinolinic acid Pathway 

ARMOST_04226 Rev ATGATCTGCAACGCCTCTAC 

ARMOST_05856 Fw AAGACGGCAACCAAGAAC SnoaL 

ARMOST_05856 Rev TTCGCCAAGGATTACCAC 

ARMOST_05857 Fw ACTGCTAACGTCGCTGTTAC SnoaL 

ARMOST_05857 Rev CGAAATTCGCCAAGGATTGC 

ARMOST_05616 Fw GACCGACGATAGCACCAATCC Apoptosis-related 

ARMOST_05616 Rev TCGTTTGTCCGCCATGTCC 

ARMOST_18535 Fw GATCATGCACCGTCGAAGAAG Apoptosis-related 

ARMOST_18535 Rev ACCGAGAACCGTCTCAATACC 

ARMOST_18537 Fw TGTCACCGTCGTCAGTAG Apoptosis-related 

ARMOST_18537 Rev TCAGCCTTCTCGTCCTTC 

ARMOST_03733 Fw2 TCCAAAGGTGAACAGGCAGAAG Actin  

ARMOST_03733 Rev2 TATCAAGTCGCCGTGTCAGATG 

ARMOST_14637 Fw CAAGGCGGGCATTCAACTCAAC gpd 

ARMOST_14637 Rev AGCGAACACCAAGAGGTCACAG 

Trichoderma 

XM_014093434.1 Fw TCTGGTCGCTGCATTTCC SnoaL 

XM_014093434.1 Rev GGAACTCGCCTTGATGAGTG 

XM_014092940.1 Fw CTGGAGCAATGAGTGAAGTG SnoaL 

XM_014092940.1 Rev TGAGTCTGCTAGACCTCAAG 

elF-4F GTCCAACTACGATGAGACTGTC tef1α 

elF-4R TCGTGGCCCTTGATAACAG 
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Control samples 

Before collection of mycelia  

0
th

 hour 

Metabolite stage 

53 hours 

Mycoparasite stage 

62 hours 

Post-mycoparasite stage 

105 hours 

Collection of AO mycelia Before collection of mycelia 

Collection of AO mycelia  Before collection of mycelia 

Before collection of mycelia Collection of TA mycelia 

Before collection of mycelia Collection of TA mycelia 

AO and TA mycelia collection 

Before collection of mycelia AO and TA mycelia collection 

Supplementary Figure 1. Experimental design and practical details of mycelia sample collection for RNA extraction 
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Supplementary Figure 2. Secretory protein prediction pipeline for AO and TA: (A) shows the pipeline 

and tools used to predict classically secreted proteins. SigalPv5 is initially used to predict the N-terminal 

signal and cleavage site followed by TMHMMv2.0 to predict the number of transmembrane domains 

(TMDs) and DeepLoc v1.0 and Wolf PSort to predict the subcellular localization signals present in the 

amino acid sequences. (B) outlines the pipeline followed for predicting proteins that are sorted to 

extracellular region but are without signal peptide at the N-terminal region, i.e. proteins secreted by 

unconventional pathway (UPS proteins). Besides Wolf PSort and DeepLoc, we also used Outcyte to predict 

UPS proteins. 

 

A 

B 
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Supplementary Figure 3. In vitro antagonism of Trichoderma strains from different species against 
Armillaria mellea, A. cepistipes, A. gallica and A. ostoyae. Example plates are marked with N: no inhibition; 

W: weak inhibition; S: strong inhibition; C: complete overgrowth of Armillaria by Trichoderma. 
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Supplementary Figure 4 Cont. 
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Supplementary Figure 4 Cont. 
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Supplementary Figure 4 Cont. 
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Supplementary Figure 4. Extracellular enzyme activities of Trichoderma isolates derived from forest 

soil samples: (a) β-glucosidase, (b) cellobiohydrolase, (c) β-xylosidase, and (d) phosphatase.
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Supplementary Figure 5. Mapping result at the post-mycoparasite stage (105 hrs): One hit means probably single copy gene; Multiple hits means probably multicopy gene; 

One genome means present in T. atroviride (TA) or A. ostoyae (AO) only; Multiple genomes means orthologous gene present in both TA and AO genome. 
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Supplementary Figure 6. GO molecular function enrichment map created based on the Downtrend cluster genes of T. atroviride (TA)  

 

 

 

Biological process 
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Supplementary Figure 7. Quinolinic acid synthesis pathway in yeast adapted from (Ohashi et al., 2013). A. ostoyae (AO) genes homologous to BNA genes involved in 

different steps of quinolinic acid synthesis are shown in the figure. 
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SnoaL 

Nogalonic acid methyl ester Nogalaviketone 

…..... 

Nogalamycin 

Supplementary Figure 8. Involvement of SnoaL in nogalamycin biosynthesis pathway adapted from (Sultana et al., 2004) 


