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I. Introduction 

In order to target biological barriers such as the blood brain barrier (BBB) it is crucial 

to understand its behavior and its function. This cumbersome task would be easier if we had 

more knowledge about its physicochemical and mechanical properties. In my thesis I 

demonstrate the possibility to utilize optical tweezers-based (OT) micromanipulation 

techniques to obtain information on BBB constituent endothelial cells. For this, I introduce a 

new measurement technique that utilizes tailor-designed, task-specific microtools as probes, 

fabricated with two-photon polymerization (TPP) and actuated with optical tweezers as well as 

cells cultured on vertical surfaces. The use of microtools provides various advantages over 

simple trapped microbeads, for instance of preventing the cells from photodamage. 

 First, I demonstrated that the optically actuated microtools can help measure the 

Young’s modulus as a physical characteristics of living hCMEC/D3 human brain endothelial 

cells with high precision. I have found that the OT-based method is especially suitable for 

measuring the elastic properties of the cell membrane without any viscous effects, and that the 

obtained Young’s modulus values are highly comparable to those published in the literature. 

 Second, I investigated the binding efficiency of the highly effective nanoparticle 

targeting ligand glutathione onto the surface of endothelial cells with simple two-photon 

polymerized microstructures and I measured its adhesion force with more complex 

micromanipulator structures on live hCMEC/D3 cells and primary rat brain endothelial cells 

(RBEC). We validated our OT-based cell adhesion results with parallel AFM experiments. 

In the following sections I introduce the materials and techniques I used throughout my 

work, such as the SU-8 photopolymer and the functionalization possibilities including our 

method, the optical tweezers, and the cells that we tested with the introduced methods. 
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1. SU-8 photopolymer 

SU-8 (Microchem ltd.) is a negative tone photoactive polymer, which is biocompatible, 

chemically inert and has high refractive index and relatively high mechanical strength (the 

Young’s moduli of SU-8 vary between 0.9 to 7.4 GPa (J. Gao, 2010)), what makes it ideal for 

optical trapping applications. The resist composed of 3 major ingredients: monomers, 

photoinitiator, these two are shown on Figure 1., and solvent.  The solvent component serves 

(gamma-butyrolactone), as a thinner what makes easier to coat glasses, but it must be 

evaporated from the thin layer to make solidified SU-8 (this process called soft-bake). There 

are several series of SU-8 (e.g., SU-8 2000, 3000, 6000 series) the major difference between 

them is dry matter content.   

An SU-8 monomer unit is composed of four bisphenol-A derivative scaffold, where one 

epoxy-ring is connected to each phenol ring. The SU-8’s photoinitiator is triarylsulfonium 

hexaflouroantimonic acid’s (sodium) salt, is containing a large number of delocalized 

electrons, thus has high photon-absorption capability. When it absorbs UV-photons it will turn 

the molecule to excited state which can form epoxonium-radicals from nearby monomer’s 

epoxy groups in SU-8. The polymerization occurs only when a local threshold intensity (Teh, 

Dürig, Drechsler, Smith, & Güntherodt, 2005) is reached via the used light source, which can 

already activate the photoinitiators in that volume thereby creating monomer radicals. If the 

threshold intensity is not reached then the solute oxygen species in the photopolymer could 

deactivate the activated initiators through a process called oxygen scavenging (Kawata, Sun, 

Tanaka, & Takada, 2001); the same reaction could happen if the polymerization is too close to 

Figure 1. Process of polymerization and the constituents of the SU-8 resin: 

photoinitiator (up), an SU-8 monomer (lower left), and the cross-linked 

polymer (lower right) 
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air-SU-8 interface. If the intensity is enough to excite the photoiniciators, they can transfer their 

energy to form epoxonium-radicals. These radicals will start the photopolymerization-chain 

reaction when enough activation energy is available; this step would be realized in the thermal 

treatment called post exposure bake (PEB) after the illumination. The polymerization process 

ends when there is no more free polymer end or available monomers nearby. So, this reaction 

would only be accomplished at illuminated and baked areas. After the polymerization, all the 

unpolymerized SU-8 can be removed from around the polymerized structure; this step, called 

development, is carried out with propylene glycol methyl ether acetate (PGMEA) washing. 

Further information of SU-8 thin layer processing and development are in the protocol section 

(protocol no. 4). 

2. SU-8 surface modification possibilities and applications 

There are several possibilities to obtain modification of the surface of SU-8 either to 

tune its own physical characteristics (wettability, surface charge,) or to bind polymers, 

nanoparticles or even with proteins to it. Since SU-8 is highly inert in most applications an 

aggressive treatment has to be done to achieve covalent modification of its surface. 

In the following section I present the modification methods most relevant for my work 

through applications and solutions found in the literature. Usually, the functionalization begins 

with an oxidative treatment to open the surface epoxy-rings. These could be oxygen plasma 

treatment (Tseng, Lin, Hsu, & Chieng, 2004); concentrated acid treatment or nitration 

compound (Lu, Wu, Peng, & Wu, 2008). If the epoxy ring is opened, a linker molecule can 

bind to it covalently.  The linker’s other, unanchored end can be tailored to the target molecule 

of interest to connect covalently. These covalent modifications can be applied in MEMs, in 

microfluidic systems or in optical tweezer measurements. 

In the first example Tao and his coworkers demonstrated amine-groups can generated 

on SU-8 surface with 3-aminopropyltriethoxy silane (APTES) treatment. As a first step they 

applied hot sulfuric acid to form hydroxide-groups on SU-8 which followed by the silanization 

~APTES can bind to surface-OH groups (Tao, Popat, & Desai, 2006), thus an aminated surface 

were made. The importance of this research was that the authors showed the possibility of 

immobilization a variety of molecules: based on a wide spectrum of commercially available 

silane-compounds. Similar method was used in the following work, where the authors were 

able to immobilize antibody on SU-8 surface covalently (Joshi, Pinto, Rao, & Mukherji, 2007); 
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furthermore, silicon-based AFM cantilevers can be functionalized this way (Andrade, et al., 

2020). 

Not only silane compounds can be used as linker molecule but various polyethylene 

glycol (PEG) derivatives as well. In the following example the authors used hot sulfuric acid 

treatment, followed by PEGylation step. Here PEG-silicate (PEG-O-SiCl3) was bond to SU-8, 

wherewith the SU-8’s surface -OH-groups could react with it to form, O-Si-O bonds (Tao S. , 

Popat, Norman, & Desai, 2008). Similarly, to the silane compounds a very wide variety of PEG 

linkers are available as linker molecules: homo- or hetero-bifunctionalized ones or with more 

than two arms.  

In the experiment of Yeh and co-workers, the main goal was to demonstrate that SU-8 

can be combined with dimethylpolysiloxane (PDMS) to fabricate microfluidic channels; the 

ulterior is a material commonly used as structural element of microfluidic channels. In some 

cases, protein can bind to native SU-8 in a non-specific manner; to avoid this effect an 

appropriate surface treatment has to be done. As a first step, 3-aminopropyltrimethoxysilane 

(APTMS) treatment was applied on the PDMS surface to achieve good adhesion between the 

SU-8 and PDMS elements of the microfluidic channel by adding primary amine-groups on the 

surface of PDMS. This step was crucial in order to create a closed microchannel system. Then, 

already inside the microfluidic channel, the authors applied ethylene diamine (EDA) treatment 

to create a confluent amine-functionalized layer on the SU-8 as well.  It was followed by a 

mPEG-N-hydroxysuccinimide (mPEG-NHS) immobilization with peptide bonds on both 

constructive layers of the channel. The authors showed that if the whole inside surfaces of the 

microchannel is PEGylated this way, the nonspecific adhesion of bovine serum albumin (BSA) 

can be decreased by ~60% relative to the case when PEG was not present on the surface (Yeh, 

Zhang, Lin, & Cao, 2012). In recent years, our laboratory has developed a number of methods 

for coating SU-8 surfaces, which have greatly expanded the possibilities of using SU-8 

microdevices. I also became involved in this work, and I would present the main results of 

these works: 

In almost all of our microstructure coating protocols we use nitration compound 

treatment to open the epoxy rings formed by nitric acid and cerium ammonium nitrate (CAN) 

as catalyst, instead of the other type of ring opening methods mentioned before. The reason for 

this is that our preliminary experiments showed that sulfuric acid treatment has a greater 

damaging effect on the fine, sub-micrometer sized details of SU-8 microstructures. 
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It is possible to immobilize gold nanoparticles (AuNP) to SU-8’s surface with strong 

electrostatic interaction. The driving force of this reaction is that the AuNP’s has a negatively 

charged surface that can bind to a positively charged surface generated by amino groups. To 

cover SU-8’s surface with primary amines either 3-Aminopropyl-triethoxysilane (APTES) 

(Aekbote, et al., 2012) or PEG-bisamine can be used on preliminary CAN-treated samples. 

When a AuNP-covered microtool is positioned near to fluorescent streptavidin coated glass, 

the intensity of the fluorescence increased 6 times; this method enables the observation of 

weakly fluorescent signals difficult to image otherwise  (Aekbote, Schubert, Ormos, & 

Kelemen, 2014). 

Furthermore, our research group showed that it is possible to cover SU-8 surfaces with 

silver nanoparticles (AgNP) in a localized manner via photoreduction from silver-nitrate 

solution. For this, the substrate holding the SU-8 microtools was immersed into the silver 

nitrate solution where the focused beam of a 532 nm laser illuminated a well-localized part of 

each structure. The AgNP-coated part of the microtools, in combination with the surface-

enhanced Raman scattering (SERS) technique, was used to detect ~µM concentrations of 

emodin molecules in an aqueous solution. Only when the Raman excitation laser were 

positioned onto an AgNP coated area, was the emodin spectrum clearly measurable, because 

of the presence of the plasmonic amplification (Vizsnyiczai, et al., 2015).   

Our laboratory elaborated a method to immobilize whole living cells to SU-8 

microtools for indirect optical micromanipulation (Aekbote, et al., 2016). Thus, the target cell 

could be held far away from the trapping beams with the proper design of the 

micromanipulator, which avoids the potential photodamage. To obtain a linkage between the 

cell and the manipulator, an adequate functionalization has to be made, which starts with 

opening the epoxy-rings with CAN-treatment, followed by a PEG-bisamine linker forming a 

peptide-bond between them. Afterwards a sulfo-NHS-biotin linker is bound to the PEG-linkers 

free amine group via amide-bond. This step makes it possible to anchor streptavidin (STA) as 

a final step of the microstructure functionalization protocol ([strept]avidin-biotin linkage is one 

of the strongest noncovalent bonds in nature ~200 pN/bond (Piramowicz, Czuba, Targosz, 

Burda, & Szymoński, 2006)) With this protocol the preliminary sulfo-NHS-biotin 

functionalized cell can be attached to a STA coated microstructure. The only drawback of this 

method; the cells must be treated with sulfo-NHS-biotin to obtain streptavidin-biotin linkage.  

In our micromanipulation article published in 2020, I modified this protocol to save the cells 

from the extra stress caused by the biotinylation (Vizsnyiczai, et al., 2020). This modification 



 

6 

 

was inspired by a method used in atomic-force microscopy (AFM) where the whole cells were 

attached to silica nitride cantilevers (Végh, et al., Adhesion and stress relaxation forces between 

melanoma and cerebral endothelial cells, 2012). As a last step, biotinylated-ConcanavalinA 

(bConA) was deposited on the STA coated SU-8 microstructures. ConA is a lectin what can 

bind -D-glucosyl/mannosyl (Brewer, Brown, & Koenig, 1983) sugars which are present in 

eukaryote cell’s glycocalyx. In both the streptavidin based and the ConA based applications 

the binding force between the cell and the micromanipulator is greater than the trapping forces 

achievable in our system, so the cell cannot be removed via optical forces from the SU-8 

structures.  

3. Two-photon-polymerization (TPP) 

Lithography techniques were developed with the increasing need of fast PCB and 

microelectronic device fabrication. The key component of this method is a light sensitive 

photoresist which contains monomers and photoiniciators, which hardens if illuminated with 

UV-light, based on single-photon absorption (SPA) by the initiator. In mask lithography, a 

fine-detailed 2-dimensional light pattern can be transferred onto the photoresist-coated wafer 

(substrate) with a photomask which hardens the photopolymer within its overall thickness. 

There was a need to realize lithography in 3 dimensions, with lithography using SPA only 

relatively thin layer can be solidified precisely at once, which means that the structures have to 

be built up layer by layer similarly to the recently popular Fused Deposition Modeling (FDM) 

(Crump, 1989) or resin based stereolithography (SLA) (Kodama, 1981) type 3D printing 

techniques. To obtain complex fine-detailed photoresist microstructures in 3 dimensions, a 

two-photon polymerization technique was developed (TPP) (Cumpston, et al., 1997) which 

eliminates the aforementioned problems. The method is based on two photon-absorption (TPA) 

where two near infrared (NIR) photons are absorbed nearly at the same time to activate the 

photoiniciators in the illuminated volume. Thus, the NIR photons’ wavelength should be twice 

as the linear excitation wavelength of the initiator, to provide similar amount of energy than 

one UV-photon. TPA requires the spatial and temporal focusing of the photons, therefore high 

NA objectives are used to focus the illuminating laser beams into a spot smaller than a 

micrometer, and at the same time only lasers operating in ultrashort-pulsed mode (pulse length 

~ 100 fs) can provide high enough photon flux in each pulse for the simultaneous absorption 

in the focal spot. TPP eliminates the basic problem of SLA technique, since the polymer being 

only in the focal volume is polymerized during or after the illumination. The smallest 
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polymerizable unit is called voxel, which is usually shaped like an ellipsoid; the voxel typically 

has ~100 nm lateral and ~500 nm axial size. The simplest number to describe the voxel is its 

aspect ratio, which is the longitudinal length divided by the axial length; it typically has a 3-

5:1 value (Sun, Tanaka, & Kawata, 2002). There are several possibilities to decrease the aspect 

ratio, thereby to increase the resolution along the optical axis, for instance with the use of higher 

numerical aperture objectives or with photoinhibition. In the latter case a special, so-called 

Laguerre-Gaussian beam is used for the depletion of the excited electronic state of the initiator 

together with the excitation beam to decrease the activated volume (Wollhofen, Katzmann, 

Hrelescu, Jacak, & Klar, 2013). Thus, there is a possibility to reach 1:1 aspect ratio.  The feature 

size of the polymerized structures can be influenced by several process parameters, but for 

practical reason the exposure time and laser intensity are the most common ones to control the 

voxel’s size. To fabricate 3 dimensional micro-objects, either the focal spot of the polymerizing 

beam can move relative to the stationary sample or vice versa like in the predecessor technique, 

the micro-SLA. The focal spot scanning can be realized with reflective (Obata, El-Tamer, 

Koch, Hinze, & Chichkov, 2013) or refractive (Vizsnyiczai, Kelemen, & Ormos, Holographic 

multi-focus 3D two-photon polymerization with real-time calculated holograms, 2014) optical 

elements. The 3D sample translation is carried out with piezo or air-bearing stages (Ricci, et 

al., 2017). It’s worth noting that the technique of TPP became popular enough in the laser 

microfabrication field during the last decade that commercial systems can already be purchased 

(Nanoscribe GmbH).  

Microstructures fabricated with TPP can be used in a wide spectrum of fields. The 

following are just a few examples: there is a possibility to use TPP made photopolymer 

structures for master replica molding (LaFratta, et al., 2004) or micro-Transfer Molding (TM) 

(Busche, Starke, Knickmeier, & Dietzel, 2020) techniques. With these two techniques it is 

possible to reproduce a design for several tens of times via molding, therefore they are widely 

used for instance in the production of microfluidic systems. Furthermore, with TPP one can 

produce even moving microfluidic devices such as micron sized pumps (Maruo & Inoue, 

2006), or bacteria powered micromotors  (Vizsnyiczai, et al., 2017). In addition, periodically 

repetitive structures can be made via TPP, like photonic crystals (Haske, et al., 2007), but 

micro-electronical devices such as micro wires, resistors or inductivities (LaFratta, Fourkas, 

Baldacchini, & Farrer, 2007) can also be fabricated.  

In Figure 2. additional examples, made with TPP are shown: part a) the structure is made 

of polyethylene-glycol diacrylate (PEGDA), which is a soft biocompatible  polymer whereby 
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hydrogel cell-scaffolds can be made from it to form tissues from cell cultures (Accardo, et al., 

2018); part b) shows a biomimetic device inspired by the blood-brain barrier (BBB), and it is 

possible to grow co-cultured cells both in and outside of the vessel-like structure (Marino, et 

al., 2018); part c) shows an innovative idea to polymerize soluble supports for delicate objects 

similar to the 3D printing fields so more complex objects can be prepared (Gross & Bertoldi, 

2019).  

4. Optical Traps and applications 

A: Optical traps 

If a laser beam is focused down with a high numerical aperture objective, small 

dielectric particles can be trapped in the focal spot. The first optical trap was developed by 

Arthur Ashkin (Ashkin, Dziedzic, Bjorkholm, & Chu, 1986), who observed that a few 

micrometer-sized particles, which have greater refractive index than the surrounding media and 

negligible absorption at the applied laser wavelength, can be immobilized by the focused laser 

beam. In midst of trapping, the object is held by the focal spot and stabilized by the sum of 

gradient and scattering forces. The gradient forces, that originate from the momentum change 

of the beam due to its refraction on the trapped object itself, are pushing the object towards the 

focal volume, whereas the scattering forces push the particle away from the focus due to the 

radiation pressure, usually parallel with the direction of the beam. In order to obtain solid 

trapping, the gradient forces must be grater then the scattering forces. As a result, the particle 

 Figure 2. Examples for two-photon polymerized microstructures. a) PEGDA tissue scaffold, b) micro vessel, as part of a 

biomimetic device, c) supported flower with soluble supports, d) developed flower without supports, a state-of-the-art 

example for multi-material TPP 

(b) 
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is fixed in the trapping beam’s focus with dampened Brownian fluctuation (K. C. Neuman, 

Optical Trapping, 2004). The force F, acting on the trapped object when moved out of the focus 

with x is proportional to this displacement, with the coefficient called trap stiffness (k): F = -

kx. In most of the cases, the optical force is larger for displacements perpendicular to the 

optical axis (lateral force) than along the optical axis (axial force). 

Optical traps can be built in several different ways, the most common being the single 

beam trap, where the objective focuses only one beam. It is also possible to build a counter-

propagating trap with two slightly divergent beams emerging from two opposing optical 

elements (fibers or objectives) (Guck, et al., 2005), where the lateral stabilization is due to the 

gradient forces and in the axial direction the counter-balancing scattering forces stabilize the 

object. Also, there are possibilities to generate multiple focal spots, for instance with a spatial 

light modulator (SLM) (Leonardo, Ianni, & Ruocco, 2007), digital light processors (DLP) 

(Palima, et al., 2012) or acusto-optical deflectors (AOD) (Brouhard, Schek, & Hunt, 2003). 

With these instruments the focal spot’s position can be manipulated in two (DLP and AOD) or 

even all three dimensions (SLM). The SLM stands out in terms of flexibility from these pieces 

of equipment. The trapping method based on the SLM is called holographic optical tweezers, 

or HOT. In a HOT optical system, the SLM acts as a diffractive optical element, which can 

introduce phase shift to the trapping laser beam, similarly to a grating or a lens, but the SLM 

can do it in a reconfigurable way. Without going into details, the SLM can easily create multiple 

beams and it can steer or even focus them. In our HOT system we use an SLM which can 

change its refractive pattern (the hologram) with 60 Hz refresh rate and split the beam into 

dozens of foci via altering the hologram displayed on its reflective surface. 

In all the above arrangements, it is crucial to know the optical traps stiffness in order to 

be able to measure optical forces. There are two popular techniques to measure them; one is 

based on the Brownian-fluctuation where the position of the trapped object is recorded 

preferably with a few nanometer precision, and the trap stiffness k is calculated from the 

variance <x2> of the displacement from the equilibrium position: ½ kBT = ½ k<x2>, where 

kB is the Boltzmann constant and T is the absolute temperature. The other is a Stokes drag-

based method when a trapped object is moved in the surrounding medium with a stationary 

speed and the object displacement from the focus will be proportional with the drag force which 

exerted on the trapped object. 
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B: Optical traps applications 

The optical traps have a broad range of application possibilities exploited in several 

disciplines, and numerous articles have been published about this method. In the following I 

introduce some that are relevant to the work described in my thesis.  

The precision of positioning of the optically trapped object allows for position and force 

determination related to biological materials or processes at the nanometer and pico Newton 

levels. One of the most studied biological molecules is DNA: the stretch modulus of a single 

strand was measured to be 800 pN also the persistence length was determined by (Smith, Cui, 

& Bustamante, 1996). With a similar arrangement, where an actin filament was extended 

between two optically trapped beads and brought to the proximity of a myosin coated, bigger, 

surface-attached bead, the step size of myosin and their interaction forces were determined to 

be 11 nm and 3-4 pN respectively (Finer, Simmons, & Spudich, 1994). Even DNA motion-

sequencing is possible with lower than resolution 4 Å (base pair distance in DNA); this was 

based on that the polymerase has distinguishable transcriptional position versus time behavior 

on the different nucleotides (Greenleaf & Block, 2006). 

Especially relevant to my work is that of Phillips and co-workers, who showed that, with 

optically trapped complex microtools, it is possible to measure surface topology in 3 

dimensions with ~100 nm resolution  (Phillips, et al., 2012). The method was enabled with the 

precise measurement of the 3-dimensional position of the extended tool, carried out with a 

stereo-observation method. In the case of an extended microtool, the trap stiffness becomes a 

matrix instead of a single number, where the matrix elements describe the translational as well 

as the rotational stiffness of the trapped tool. 

Trapping live cells has also been carried out with optical tweezers in the past for simple 

translocation purposes (Wang, et al., 2011) or to investigate cell-cell interactions (McNerney, 

Hübner, Chen, & Huser, 2010). From the point of view of direct cell trapping it is important, 

that water has relatively small absorption in the NIR region. Since biological samples consist 

high amount of water, in order to protect the cells from photodamage, usually NIR-emitting 

lasers are used.  Since the trapping force is highly dependent on the refractive index difference 

between the trapped object and the surrounding solution, the direct trapping of cells of high-

water content can be realized with only small trap stiffness. In order to achieve stiffer trapping, 

it can be useful to attach transparent intermedier objects, such as polymer beads to the cells, 

with much greater refractive index and trap them as handles for the cells (indirect trapping) 

(Lim, Dao, Suresh, Sow, & Chew, 2004). Our research group has extended the indirect cell 
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manipulation technique, when we used laser-microfabricated, functionalized 

micromanipulators as handles to actuate k562 cells (Figure 3.) in order to observe the 3D 

structure of its mitochondria with multiview microscopy. The manipulator consisted of two 

main functional parts: three spheres of about 4 m diameter to be trapped by the focused laser 

beams, and a dish-like part to which the cell can be attached; it also consisted of rods connecting 

these parts. The manipulator served two major purposes: one was to manipulate the attached 

cell with 6 degrees of freedom (translation along 3 axes and rotation around 3 axes), and 

secondly, the shape of the tool prevented the cell from the possible photodamage during the 

measurement, keeping the trapping beams more than ten micrometers away from the probed 

cell (Vizsnyiczai, et al., 2020). Figure 3. shows the main steps of the cell manipulation for the 

multiview microscopy. 

5. Measuring cells mechanical properties and membrane adhesion 

with AFM and OT 

From diagnostic point of view, it can be important to better understand the cell’s 

mechanical properties since the cellular activities/functions can be coupled, for example with 

the elasticity of the cell’s membrane. The elasticity can provide information about the 

membrane composition or the cytoskeleton’s structure. These properties, among others, could 

Figure 3. Indirect cell manipulation with optically actuated microtools. The process of cell attachment to a 

microtool: (a) image of the three trapping foci and one untrapped microtool, (b) the microtool trapped and 

oriented with its disk towards the cell, and (c) the cell is attached to the microtool and elevated from the 

supporting glass surface. (d) The indirectly trapped cell is rotated by 90 degrees relative to its earlier orientation 

on panel c. (e) The insert shows the positional distribution of a given point on a fluctuating trapped cell. 
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be investigated with microprobes provided by atomic force microscopy (AFM) or optical traps. 

The AFM is capable of measuring forces from several ~pN up to the ~nN regime, while with 

optical traps the range is ~fN to several hundreds of pN; consequently, the two technique can 

complement to each other. The work of Nawaz and co-workers (Figure 4.) is quite unique, 

since they directly compared the two techniques with the observation of the rigidity of 3T3 

mouse fibroblast cells (Nawaz, et al., 2012): in case of the AFM measurements, they attached 

a 2 m diameter bead to AFM cantilever’s end and pushed it against the cell and retracted, 

while recording the applied force and the indentation of the cell. With the optical tweezers they 

trapped an ~0.8 m diameter bead and pushed to cell’s surface and retracted, and the bead 

position was determined with a position sensing diode, thus the applied force could be 

calculated. Their AFM results showed that when grater forces are applied, a hysteresis-like 

difference is present between the indentation and the retraction curves. With AFM the maximal 

pushing force was almost 600 pN, while with optical tweezer just 10 pN. From their 

observations it was concluded that if the applied indentation force was small, then the Young’s 

modulus, which determines the cell’s stiffness, was around ~100 Pa, determined with both 

techniques (Figure 4.). In case of higher applied indentation forces or faster pushing speeds 

with AFM, the intracellular viscosity and the cytoskeletal rigidity are authoritative.   

The adhesion of simple- or macromolecules or nanoparticles (NP) to the cell membrane 

can also be characterized with AFM or OT. For this, the AFM tip or the trapped object needs 

to be previously functionalized with these molecules or NPs (Lamprecht, Hinterdorfer, & 

Ebner, Applications of biosensing atomic force microscopy in monitoring drug and 

 Figure 4. Indentation force effect on cell stiffness measurement; AFM indentation (black) and retraction curves 

(grey); (A): the indentation force was limited to 140 pN; (B): indentation force was limited to 75 pN; (C): the 

applied force was minimalized to 25 pN; (D): optical measurement with less than 10 pN applied force, red curve is 

the indentation, and the orange cure is for the retraction. (Nawaz, et al., 2012) 
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nanoparticle delivery, 2014).  Such measurements find especially interesting application in 

drug research, where the drug is encapsulated into NPs that are labeled with targeting molecules 

that facilitate the NP uptake by the cells. In the literature the binding force between the targeted 

NPs or ligands and the cell surface is observed in the regime of 20-60 pN (Oliveira, et al., 

2011), (Gomes, et al., 2017). Again, OT can measure adhesion forces in a lower regime more 

reliably, as shown by Shergill and co-workers with cells expressing Delta-like1 receptors and 

beads covered with the ligand of this receptor and pushed against the cell membrane (Shergill, 

Meloty-Kapella, Musse, Weinmaster, & Botvinick, 2012). 

As I detailed above, OT techniques can serve with valuable information about the cell 

membrane properties, either mechanical or biochemical. In the vast majority of these cases 

however, surface-adhered cells are measured with microbeads manipulated with the optical 

trap in the axial direction, because the apical membranes are perpendicular to the optical axis, 

since the cells are cultured on a adhesion promoter coated glass substrate (Nawaz, et al., 2012), 

(Vargas-Pinto, Gong, Vahabikashi, & Johnson, 2013). However, the optical forces are usually 

about a factor of 5 times minor in the axial direction relative to the ones in the lateral direction 

(K. C. Neuman, Optical Trapping, 2004). Partly to overcome this, and to avoid the illumination 

of the investigated, horizontal cell layer on the substrate with the trapping beam, we modified 

this arrangement by introducing vertical walls into the sample chamber and culture the cells on 

these walls. Our new experimental arrangement, which is in the center of my presented work, 

makes it possible to measure mechanical and adhesion forces on living cells still perpendicular 

to their membrane, but at the same time with the optically manipulated microtool moving 

perpendicular to the optical axes (Grexa, et al., 2020), (Fekete, et al., 2021). In both type of 

measurements, the technique allows us to exert greater optical force on the microtool and a 

more precise position determination. 

6. Blood-brain barrier targeting 

A. Structure and function of blood-brain barrier 

In our body one of the most important barrier protecting the central nervous system (CNS) 

is the blood-brain barrier (BBB), that helps to sustain the brain’s microenvironment (Abbott N. 

, 2002), and keeps pathogens, toxic compounds out of the brain. BBB is one of the tightest 

barriers in the vascular system, formed by brain capillary endothelial cells which are connected 
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with junction proteins forming the tight junctions (TJ). TJ are closing tightly the paracellular 

gaps and linked to the actin cytoskeleton (Haseloff, Dithmer, Winkler, Wolburg, & Blasig, 

2015). The BBB’s endothelial cells are highly interacting with astrocytes and pericytes, via a 

shared basal lamina; this formation is called the BBB (Figure 5/A.). Only small lipophilic 

molecules such as sugars, nicotine, or blood gases can pass the BBB without carrier via 

transcellular lipid-mediated diffusion. In contrast, most polysaccharides, peptides, or proteins 

are blocked from CNS by the BBB; apart from the BBB, the negatively charged glycocalyx 

also participates in the exclusion of many molecules (Lockman, Koziara, Mumper, & Allen, 

2004).  

The most important ways for naturally occurring molecules to pass through BBB with 

carriers are the following. Solute carriers (SLCs) are membrane coupled proteins (Tihanyi, et 

al., 2018),  which can facilitate bi-directional transport of minerals and nutrients (exchangers 

or ion-coupled transporters) (Campos-Bedolla, Walter, Veszelka, & Deli, 2014). Also, there 

are co-transporters such as 2 Na+ / hexose (glucose in most case) which can sustain gradient-

dependent bidirectional transport (César-Razquin, et al., 2015). Vitamins, amino-acids, 

proteins can pass the BBB in ATP dependent ways via vesicular transcytosis, or receptor 

mediated endocytosis.  

From therapeutic point of view, BBB means a burden for many drug molecules trying to 

reach the CNS, but there are three mayor ways to facilitate the transport of these molecules 

through BBB: modification of BBB’s functions, circumvention of BBB, or modification and 

encapsulation of the drug molecules. For my thesis, the method of drug encapsulation with 

nanoparticles (NPs) is relevant, so in the next chapter I describe it shortly. 

A) B) 

Figure 5. (A) illustration of BBB, (B) several types of possible BBB targeting nanoparticles. 
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B. Approaches to target BBB 

 The field of nanomedicine can supply several types of NP shown in Figure 5/B. (Carthy, 

Malhotra, O’Mahony, Cryan, & O’Driscoll, 2015); these colloidal systems cover a very broad 

range both in terms of size (1-1000 nm) and composition. The NPs can carry imaging 

compounds as well as therapeutic agents; if they deliver both, they are called theranostics 

(Saraiva, et al., 2016). The most important required properties of these NPs are 

biocompatibility, and biodegradability, but they have to have the capability of loading with or 

coupling to hydrophilic or lipophilic molecules (Kreuter, 2014). 

In terms of composition/formulation, NPs can be classified into two major types: a solid 

nanoparticle (SNPs) and vesicular NPs. Three of the most described solid NPs are made from 

gold, semiconductor nanocrystals (quantum-dots, QDs) and plastic. Gold NP-s have 

plasmonic-resonance, which feature makes them ideal for imaging, and at the same time, their 

surface can be easily conjugated with oligonucleotides or antibodies (Yeh, Creran, & Rotello, 

2012). The QDs (<50 nm) can be separated into 3 groups based on composition: core-type, 

shell-type, and alloyed core-shell-type. They are ideally used as fluorescent labels, based on 

their great photostability, and broad absorption spectra  (Probst, Zrazhevskiy, Bagalkot, & Gao, 

2013). QDs are often used for visualizing cellular uptake in real time. On the other hand, the 

applications are controversial because, in most of the cases those are composed of toxic heavy 

metals (Te, Cd, Zn, As) (Lim, Shen, & Gao, 2015). A great variety of biocompatible plastics 

are used to form NPs, such as polystyrene (PS) (Loos, et al., 2014), polylactic acid (PLA), 

polylactic-co-glycolic acid (PLGA), or even gelatin; the latter three are also biodegradable. 

These polymers can be mixed with therapeutics or imaging compounds to form a polymer 

matrix. 

One of the most studied NPs are the lipid-based vesicular ones. Their biggest advantage is 

that they can deliver hydrophilic molecules in an aqueous core, and lipophilic ones in their 

membranes, what can be uni-, bi- or multilamellar. The composition and size can vary a lot 

between hundreds of nanometers (Bragagni, Mennini, Ghelardini, & Mura, 2012), (Woods, et 

al., 2020), In most cases they contain cholesterol because sterol derivatives are stabilizing the 

integrity of the membrane (Masserini, 2013). Another important type of vesicular NPs are made 

from non-ionic surfactants, and named niosomes. They are more stable than the conventional 

lipid vesicles, also keeping their advantages even, the production is cheaper (Gharbavi, Amani, 

Kheiri-Manjili, Danafar, & Sharafi, 2018). This uni or multilamellar niosomes are usually 
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made from fatty acid ester or ethers such as Span or Tween (Abdelkader, Alani, & Alany, 

2014).  

Our collaborator used alanine, glucopyranose and glutathione mono/bi-functionalized 

niosomes to increase their uptake for them in BBB (Mészáros, et al., 2018). They encapsulated 

Evans-blue coupled albumin (EBA) in their inside hydrophilic cavity to visualize their 

permeability on BBB model via fluorescent microscopy. The glucopyranose and alanine 

decorated one’s uptake could be facilitated via SLC transporters GLUT1 (SLC2A) and 

SLC38A/SLC1A, the latter one can also transport other neutral amino acids like serin and 

cysteine. Unfortunately, the GSH’s carrier didn’t discovered yet, but the two abovementioned 

transporter families could facilitate the uptake (SLC38A/SLC1A), in addition GSH contains a 

glutamate part which has also dedicated transporters. The main goal was to demonstrate that 

all the three targeting ligands increase the mono-functionalized niosomes uptake, nevertheless 

the combination of those ligands could increase further the engulfed EBA’s permeability.  
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II. Aims of my study 

In my thesis I demonstrate the possibility to utilize optical tweezers-based (OT) 

micromanipulation techniques to obtain information on BBB constituent endothelial cells. For 

this, I rely on tailor-designed, task-specific microtools as probes, which I fabricated with two-

photon polymerization (TPP) and actuated with the optical tweezers. 

1. First, I measure the Young’s modulus of living human cerebral microvascular endothelial 

cells (hCMEC/D3) with high precision and examine that the OT-based results are 

comparable to those published in the literature. 

• Designing a task-specific microtool for cell indentation experiments 

• Creating an arrangement for the measurements where the cells located on a vertical wall 

• Determination the Young’s moduli for hCMEC/D3 cells with our new OT-based 

measurement method using optically actuated microtools 

 

2. Second, I investigate the highly effective nanoparticle targeting ligand glutathione adhesion 

force onto the surface of living endothelial cells  

• Creation of an effective PEG-meditated functionalization protocol to immobilize GSH 

on SU-8 surfaces 

• Determination of the GSH coverage with fluorescent microscopy 

• Characterization of binding probability of GSH-functionalized, optically trapped 

microstructures to four different types of cells 

• Measuring adhesion forces of GSH-covered SU-8 surface towards endothelial cells via 

our new OT-based method 
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III. Materials and methods 

1. SU-8 structures and TPP 

A: Preparation of SU-8 thin layers 

I used thin SU-8 layers to fabricate SU-8 structures, both with UV mask lithography and 

two-photon polymerization where the thickness of the prepared SU-8 layer depends on the 

structure’s height. In all cases, first I cleaned 24x40 mm soda-lime glass coverslips (Type 1#, 

Techlab France ltd.) which acted as a substrate for the microstructures. The choice of the type 

of the glass was important in order to obtain a good adhesion between the fabricated objects 

and the substrate. I cleaned the coverslips with a two-step procedure: first, Cr2O12 
2- -ion 

treatment was applied, to remove most of the oxidable contaminations; then, an aqua-regia 

bath was used which cleans all remaining contaminations and etch the surface of the glass 

which improves the adhesion of the polymerized microstructures (Wilmad-LabGlass, 2008). 

Next, I baked the substrates for 10 minutes at 110 C° to remove the surface adhered water 

molecules. This step was followed by the spin-coating of the substrate with SU-8 (for details 

see Protocol 4.). After the coating, a pre-exposure bake is applied, which removes the solvent 

from the resin. After this step, the SU-8 layer was illuminated either with UV light or with the 

ultrafast laser, as described below. 

B: Preparation of cell-growing SU-8 walls 

In order to grow cells vertically for our side-approached optical micromanipulation 

method mentioned in the Introduction, I used a supporting wall for both the cell stiffness and 

the adhesion force measurements. I prepared approximately 100 m tall, 50 m, wide and 10 

mm long SU-8 walls with UV mask lithography on the center of a circular, 24 mm diameter 

cover slip out of SU-8, formulation 2075 resin. The illumination was carried out through a 

chromium mask with the transparent region same as the size of the required wall size using a 

photolithography flood exposure source (λ=365 nm, dose: 5000 mJ/cm2, model 97435, 

Newport, USA).  After illumination, a two-step post-exposure bake (PEB) was used in order 

to reduce the development of thermally-induced stress inside the long walls: the sample was 

heat-treated on a hot plate for 10 minutes at 70 ℃ followed by another 10 minutes at 105 ℃; 

after baking, the substrates were allowed to cool to room temperature naturally on top of the 
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hotplate to further reduce the chance of stress development. Finally, the walls were developed 

with a 2 times 5 minutes bath in PGMEA, washed with ethanol thoroughly and were eventually 

dried with a nitrogen blow. 

After developing, these coverslips were bond to the bottoms of Petri dishes with 

Norland 68 optical glue (NOA68, Thorlabs Inc. USA); the dishes were previously drilled to 

have an approximately 20 mm opening in their centers. Also, I glued a 10 mm inner diameter 

and 10 mm tall acrylic tube insert around the SU-8 cell growing walls before adding the cells 

to decrease the final volume of the culturing media. During the adhesion force experiments it 

also helped the micromanipulators to stay nearby the cells. We had to prepare each Petri dish 

in the according to the abovementioned protocol, because of the PGMEA, the developer of the 

SU-8 attacked the polystyrene (PS) material of the commercially available glass bottomed Petri 

dishes. Until usage of the dishes those were kept in 70 % ethanol. 

 In case of stiffness measurements, similarly made smaller cell-growing walls were 

erected and used, the main difference was the size of those: 5 mm long and 100 µm 

respectively. 

C: SU-8 microstructures for optical tweezers measurements: 

All the following microstructures were made into an approximately 20 m thin SU-8 

(formulation 2007) layer with our TPP system described in the next chapter. The post process 

of the TPP made microstructures detailed in the protocol section (protocol 4.). 

 To prove that GSH can be bond covalently onto an SU-8 surface, I polymerized two 

different types of test blocks: the small type was 25 by 25 by 5 m without frame, the other 

type was 60 by 60 by 5 m with additional 5 m tall frames. The first kind was used for the 

fluorescent microscopy measurements, the framed one was designed for confocal imaging. The 

frames on the second type served to distinguish the bottom and the top surface of the structure 

in confocal microscope and provided extra mechanical stability. The disadvantage of 

fabricating these microstructures with TPP is that it is a much slower process than mask-

lithography, but it would provide a much more homogenous surface (Aekbote, et al., 2012). 

These test blocks were functionalized with GSH using the same protocol as either the ellipsoid 

or the micromanipulators (detailed in chapter 2). After the GSH layer, an extra fluorescent dye 

is linked to it that refers to the amount of GSH attached to the surface.  
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To obtain the binding probability in the preliminary GSH-driven adhesion experiments, 

I polymerized simple SU-8 ellipsoids (short axis 2 m and long axis 10 m) and functionalized 

them with only the PEG linker and with GSH. These ellipsoids were trapped individually and 

moved over the cell layers with the optical tweezers. I measured the number of binding and 

non-binding events of the functionalized ellipsoids on four different cell types (primary rat 

brain astrocyte, pericyte, endothelial cell, and human hCMEC/D3 cell line cells). 

For the cell stiffness and binding-force measurements, I prepared very similar 

microtools that were different only in their probe parts. These purpose designed 

micromanipulators had two main functional parts: the first, consisted of 4 spheres, each for 

being trapped by one of four optical traps; the spheres were arranged on a 14 m side length 

square’s corner points. The spheres were connected to each other with holder rods forming an 

X-shape, to minimize interference with the optical fields. The rods were made with a small 

offset between the plane of the spheres and the probe’s plane. The force measurement relies on 

the precise determination of the structure’s position, which is determined from the position of 

the spheres. This offset provides in the video recordings of the experiments, that the connecting 

rods were always out of focus, allowing a more precise position determination for the spheres 

which were always kept in focus.  

The second functional part was the probe of the microtools which had a different shape 

for the cell stiffness and for the adhesion force experiments. For the cell stiffness measurements 

microtool was equipped with a probe forming a pointy tip  (Grexa, et al., 2020) showed on 

Figure 6/c. For the adhesion-force measurements the probe part provided the contact area 

between the cells and the tool in the form of a flat sheet perpendicular to the manipulators’s 

frame, having an ~15 m2 surface area as shown on Figure 6/b. (Fekete, et al., 2021). The 

trapped spheres of both type of the micromanipulators were more than ten micrometers away 

from the probe part of the microtool, which ensured that the optical field did not cause 

photodamage to the investigated cells even if it was scattered on the spheres. 

c 

Figure 6. Scanning electron microscopy images of the micromanipulators. (a) View of four individual micromanipulators 

used for the adhesion force measurements; scalebar: 10 µm.  (b) Parameters/Dimensions of the contact surface of the 

structures shown in panel a. scalebar: 1 µm. (c) Pointy ended microtool's tip used for cell stiffness measurement; 

scalebar: 100 nm 
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D: Our TPP system 

The most essential part of our TPP system (Figure 7.) is an ultrashort-pulsed laser (C-Fiber 

A, Menlo Systems, Germany, λ = 795 nm, 100 fs pulse length, 100 MHz repetition rate). The 

beam of the laser is directed onto a Spatial-Light-Modulator (Holoeye, Pluto NIR-II), which is 

capable to generate several focal spots, so increasing the production rate of fabrication.  

Afterwards, the beams were focused into an ~20 m thick SU-8 layer supported by a 24*40 

mm coverslip (type #1, soda-lime glass, RS-France) with a focusing objective (100X Zeiss 

Achroplan, oil immersion, NA 1.25). The precise 3D movement of the sample is guaranteed 

with a piezo-electric stage (Physik Instrumente GmbH, Germany) which provides us 300 by 

300 m polymerization field and nanometric translation precision. When the piezo stage’s field 

was filled with the structures a motorized stage moved the sample in the lateral direction (L-

step, Marzhauser Wetzlar Gmbh. Germany) to polymerize in another adjacent 300 by 300 m 

field. To set the needed polymerization laser intensity we used a polarization beam splitter cube 

coupled with a half-wave plate (Thorlabs Inc., USA). A mechanical shutter (VS14S2ZM1, 

Vincent Associates, USA) was used to let the laser beam onto the sample when required. The 

piezo and motorized stages and the shutter were controlled by a computer through a home-

made software written in Labview environment. The coordinate points of the structures to be 

polymerized were read by the program and it directed the piezo stage through these points 

during the illumination of the sample by the focused laser beam, opening and closing the shutter 

at pre-defined positions. 

 Figure 7. Schematic of our TPP system 
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2. Functionalization of microstructures  

A: GSH functionalization of SU-8 

In order to measure binding force between the cells and the optically manipulated 

structures, I had to functionalize the TPP fabricated objects with the ligand of interest, 

glutathione (GSH) (Figure 8.). First, I show how the GSH can be linked on the SU-8 surface 

covalently according to Protocol 1. (See Appendix). First the surface epoxy-rings were opened, 

for what I used a nitration mixture (Lu, Wu, Peng, & Wu, 2008) which is made of Ammonium-

cerium(IV)-nitrate (CAN, Sigma-Aldrich Kft.) and nitric acid (Molar chemicals Kft.) (acid-

treated sample). This treatment leaves -nitrato-alcohols on the surface, what turns into 

activated carboxyl-groups when NO2 dissociates from the group (Step I.). In the following 

step, we react the carboxyl on the SU-8 with the free primary amine-groups of the amino-PEG-

maleimide (MW = 2000, Nanosoft polymers ltd.) linker to form pseudo-peptide bond (Step 

II.) (Yeh, Zhang, Lin, & Cao, 2012). I chose this specific linker because of the experiments 

testing of the uptake of targeted NPs on endothelial cells ~our collaborator used DSPE-PEG-

maleimide to bind GSH to the NPs. In my experiments the PEG-maleimide part was similar as 

to theirs (Mészáros, et al., 2018) and furthermore, that length of PEG-linker had particularly 

low affinity to bind biomolecules nonspecifically (Prime & Whitesides, 1993). The surface 

treated until this step was later used as one of the controls, and we refer to it as a PEGylated 

surface. Another, positive control for GSH binding was prepared with PEG-bisamine instead 

of amine-PEG-maleimide. In this case, in Step II., the sample was incubated with PEG-

bisamine (cat. no. 753084, Sigma) to produce amine groups on the surface, onto which the 

amine-reactive dye (see below) can bind (PEG-bisamine treated sample). To cover the surface 

of PEGylated sample with GSH I simply used a slight alkaline (7.4 pH) PBS solution of 100 

Figure 8. Significant steps of GSH functionalization protocol 

GSH control 
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mM GSH; the thiol-group of this ligand molecule reacts with the maleimide part of the linker 

to form oxime-ether connection (PEG-GSH sample) (Martínez-Jothar, et al., 2018) (Step III.). 

To visualize the presence and to quantify the coverage of GSH on SU-8 surface I used the 

amine-reactive fluorescent CY-5-ester dye (Cyanine5 NHS ester, cat. no. ab146454, Abcam) 

what had bound to the primary amine of the GSH molecule. The CY-5 staining was carried out 

after all three functionalization steps on the TPP-made blocks, as well as on the PEG-bisamine-

coated sample and were observed with a Nikon (Eclipse Ti, Japan) wide-field fluorescent and 

an Olympus (Fluoview FV 1000, Japan) confocal microscope. This staining step was carried 

out as described in Protocol 2. (see Appendix). 

B: determination of SU-8 surface coverage of GSH 

The measurement of the GSH surface coverage on the SU-8 blocks was based on the 

comparison of the integrated intensity of a single CY-5 dye molecule and of the uniformly 

fluorescent CY-5 layer formed on the GSH which is covering the SU-8 surface. As a first step, 

we imaged single CY-5 molecule by dropping 1.5 L of very dilute, 1 ng/mL aqueous solution 

of the dye onto an ethanol cleaned cover slide and covered with another slide. With this method 

the dye molecules were separated enough on the bottom glass to image them individually. Both 

these single fluorophores and those covered uniformly functionalized SU-8 surfaces were 

imaged with wide-field fluorescent microscopy. The setup used the same illumination and 

observation conditions: as a light source a metal halide lamp (Lumen 200S, Prior Scientific, 

Inc., USA) was used with a CY-5 filter set (cat. no. 49006, Chroma Technol. Corp.), and we 

made the recordings with a CMOS camera (ORCA-Flash4.0 V3, type num.: C13440-20CU, 

Hamamatsu Corp., Japan). The number of fluorescent molecules over a unit area was 

determined by dividing the integrated intensity of the uniformly fluorescent layer over the unit 

area with the single CY-5 dye’s integrated intensity. The measured intensity over the 

PEGylated surfaces were used as a background, and it was subtracted from the intensity of the 

GSH coated layers. Supposing that every GSH molecule binds a fluorescent dye molecule, the 

amount of the corrected sum intensity of the CY-5 yields the surface coverage of GSH. The z-

stacked confocal imaging of the CY-5-stained blocks revealed that it is indeed only the top 

layer of the blocks that became fluorescent, therefore the wide-field fluorescent intensity, used 

for the quantification originates only from this single layer.  
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For the fluorescent images made just to visualize GSH presence on top of SU-8, and to 

prove the immobilization was most likely covalent: I used 10% intensity of the mercury-vapor 

lamp without any OD filters, in combination with an CY-5 dichroic cube. For exposure time I 

used 100 s on the Qimiging camera with 3800 EM gain. In case of the confocal image sets 

they were excited with  = 650 nm fiber laser at 15% intensity.  

3. Cell cultures 

In all experiments, we used cells which are composing the blood-brain barrier: primary rat 

brain astroglia, pericyte, and endothelial cells, as well as cultured hCMEC/D3 cell-line’s cells. 

To help cell adhesion to the SU-8 walls and the glass substrate, we tried several adhesion 

promoters such as: Matrigel (Sigma ltd.) which is secreted by Engelbreth-Holm-Swarm (EHS) 

mouse sarcoma cells, rat tail collagen and poly-L-lysin (Sigma ltd.); the first two had an 

advantage of containing growth factors which help the cells to reach a confluent layer faster 

(Vukicevic, et al., 1992). The choice of adhesion promoters had no effect on the cell adhesion 

to the SU-8 walls. In the following, I shortly review the applied cells: 

hCMEC/D3: human cerebral microvascular endothelial cell line, which was originated 

from cerebral micro vessel endothelial cells by transduction of lentiviral vectors; it is one of 

the most commonly used cells to study BBB’s behavior. Morphologically these cells show a 

lot of similarities with primary endothelial cultures: they are spool-shaped, elongated, and 

when a confluent layer is formed, contact inhibition takes place. These cells also express 

proteins which are representative for brain endothelial cells such as: tight and adherence 

junction proteins, ABC transporters (Weksler, et al., 2005). 

RBEC: primary rat brain endothelial cells; they are not immortalized as hCMEC/D3 cells 

but always need to be freshly isolated from the animals. These cells are also often used as 

model cells. Several types of techniques can be tested with them, such as monolayer uptake for 

pharmacons or well plate with inserts for co-culturing with other neuronal cells, to improve 

their biomimicking of BBB. They are isomorphic with hCMEC/D3 cells, the only difference 

is that they have an orderly rhomboid shape, when reach total confluency. In a confluent layer 

they express junctional proteins, ATP-binding cassettes (ABC) and solute carrier (SLC) 

transporters. 

We used also primary rat pericytes and astrocytes for the ellipsoid binding experiment, to 

prove that our functionalization protocol can be used on more type of cells, but in the adhesion 



 

25 

 

force experiments these cells were not used. The main reason for this is that they do not form 

a flat cell layer but tend to grow in 3D, which made the adhesion experiments extremely hard 

to execute. It was almost impossible to approach those cells through this 3D structure with a 

trapped micromanipulator since, the time window was quite narrow before the cells started 

engulfing our GSH-coated manipulators or started to exfoliate from the SU-8 walls surface.  

4. Holographic optical tweezer 

For the cell stiffness measurement as well as for the binding and adhesion force 

experiments, I used our Holographic optical tweezer (HOT) setup shown on Figure 9. In the 

binding probability experiments with ellipsoids, I was using just one focal spot, but for the 

adhesion force and the cell stiffness measurements I had to create 4 focal spots for the 

microtool, what could be manipulated with high precision and accuracy. The focal spots, that 

trap the manipulators’ spheres are generated similarly as in our TPP system, with a similar 

SLM (Holoeye, Pluto NIR-II). The HOT system is built around a Nikon (Eclipse TI) inverted 

fluorescent microscope with a continuous-wave infrared laser as light source (=1070 nm, 

THFL-1P400-COL50, BKtel Photonics). In the microscope I used an Olympus water 

immersion objective (UPlanSApo 60X, NA=1.2) as a focusing element and a motorized stage 

which provided the translation of the sample (ProScan, Prior Sci., U.K).  The total amount of 

laser intensity at the entrance of the objective pupil was 270 mW which, considering the 

approximately ~50% transmittance of the objective at 1070 nm, resulted in ~34 mW power for 

each optical trap. The images of the micromanipulators were obtained with an EMCCD camera 

(Rolera EMC2, Qimaging, Canada). Moreover, a home-made sample holder was used with a 

PID-controlled heater element to guarantee the 37 ℃ for the cells under the measurements. 

 

Figure 9. Schematic of our HOT system and the heated sample holder 
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5. Optical trap-based measurements 

A: Stiffness calibration of the micromanipulators 

For the calculation of the cells’ Young’s modulus the force that the microtool exerts on the 

cells surface creating an indentation must be known. Similarly, in the case of the cell 

membrane-GSH adhesion measurements, the force the tool exerts at the moment of its 

detachment from the cell has to be determined. The force in both cases is calculated from the 

microtool’s displacement from the equilibrium position multiplied by the trap stiffness. The 

trap stiffness kstr for the microtools was determined by an indirect method, where the microtool 

was pushed against a 9 µm polystyrene bead (cell indentation microtool) or a 6 m bead 

(adhesion force-measuring microtool) which has a known stiffness (kbead), and the 

displacement of the microtool was compared to that of the bead (Figure 10.). At first, the kbead 

was measured by holding a bead alone in an optical trap and using the following equation: 

1

2
kBT=

1

2
kbead‹x

2›;     eq. 1. 

where the ‹x2› is the variance of the bead’s fluctuation measured by video tracking (exposure 

time: 0.5 ms), kB is the Boltzmann constant (K. C. Neuman, Optical Trapping, 2004) and 

T=295 °K. By pushing the tool against the trapped bead with 50 nm steps, kstr was calculated 

from the measured displacements (∆Xbead and ∆Xstr) with the following equation:   

      

kbead * ∆Xbead = kstr * ∆Xstr.   eq. 2. 

Figure 10. Trap stiffness calibration for the cell indenter microtool. Panel (a) shows the optical microscopic 

image of the tool (left) and the 9 μm bead (right) during the calibration experiment. The yellow crosses show 

the positions of two optical traps, one holding one of the spheroids of the microtool, the other holding the 9 

μm bead. The red crosses show the center of one of the spheroids on the microtool and that of the bead. The 

distance between the crosses gives the displacement values plotted on (b). In case of the adhesion force-

measuring microtool, the arrangement was the same, but a 6 m bead was used. 
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For this measurement we used a flat ended microtool instead of a sharp tipped one, but this 

slight modification of the probe part did not affect the trap stiffness values determined by the 

trapping spheres’ geometry. 

Based on the equation 1., the stiffness values of the beads are:  kbead9µm = 4.5 pN/µm and 

for the smaller one kbead6µm = 4.9 pN/m. The trap stiffness of the indentation experiment’s 

microtool was 16.49±2 pN/µm and that of the adhesion force measurements was 25.8±2 

pN/m. The deviation between the two kinds of manipulator stiffnesses originates from the 

slightly different diameter of the trapping spheres of the two manipulators.  

B: Cell indentation experiments 

In these experiments I used only hCMEC/D3 cells that were grown on the SU-8 walls, and 

the microtools approached the cells in a perpendicular direction. Figure 11. depicts the sample 

arrangement and the microtool alignment procedure. As a first step, the microtools were 

collected with a pipette from their cover slide (whereat they were polymerized) and placed into 

the well containing the cells (Step 1). In the well, the hCMEC/D3 cells were immersed in ~200 

L of Leibovitz’s L-15 medium (Sigma Kft.) which helped them being vital without CO2 

incubation for about 2 hours. At this point, the microtools were randomly scattered nearby the 

supporting walls. An individual tool was trapped with the optical tweezer and elevated from 

the horizontal glass substrate by about ~10 µm moving the trapping microscope objective. At 

this height the trapping foci would not be distorted by the presence of the wall when it is 

approached by the microtool. Then, the microtools were aligned in such a way that the plane 

of their four spheres were perpendicular to the optical axis, and with stationary optical traps 

the sample stage was moved to approximate a cell to about 1-2 µm (Step 2). Then with a fixed 

stage the microtool was turned towards the target cell by rotating the optical traps, until the 

tool’s tip pointed towards the supporting wall (Step 3). At this point, a fine tuning of the tool’s 

 Figure 11. Schematic of the indentation experiment: Microtools being pipetted into the sample well (Step 1) their alignment 

towards the target cell; yellow crosses mark the trapping beams positions, blue arrows indicate sample stage translations 

(Step 2) and green arrows the optical trap actuations (Step 3-4) 
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position was executed: the cell’s silhouette was brought into focus together with the 

manipulator’s tip by moving the focusing objective. At Step 4 the indentation experiment was 

performed by moving the held structure with only the HOT by an average speed of 0.05 µm/s 

and with 10 nm steps toward the cells, and in every step a bright field image of the manipulator 

was recorded. Before the tool’s tip made a contact with the cell or the wall (in the control 

experiments), the position of the microtool’s spheres and that of the optical traps were 

coincided, but when the tip reached the target, the movement of the trapping beams continued 

for about another 1 µm and the tool’s position was retarded relative to them. 

 To determine the cells’ Young’s modulus, the force that pushes the microtool to the target 

cell and the cell’s indentation need to be measured; for both values, the tool’s position has to 

be determined precisely. The force was calculated from the displacement of the microtool 

relative to the trapping foci. The indentation was determined from the difference of the 

microtools’ position when they were pushed against the cells and against an uncovered SU-8 

wall. The difference in the movements in these two instances provided the indentation value as 

described later (Results and discussion chapter 1.). 

C: Adhesion force measurements  

 The cells we used for binding force measurement were also grown on a wall-like scaffold 

similar to that in the previous experiment; in this case, however, we used two types of cells. 

The procedure of the experiment is described below (its main stages are shown in Figure 12.). 

As a first step, the micromanipulators were collected and placed in the petri dish which already 

contained the cells in growth media with 1% PDS (plasma derived serum). After the 

Figure 12. Image sequence from a record of a typical adhesion experiment (the retraction process). The red crosses 

show the trap positions, and the blue dots mark the centers of the micromanipulator’s spherical handles; scale bar: 

5µm. Below each image a corresponding schematic side view drawing shows the relative positions of the trapping beam 

and the manipulator. The dark red line shows trap position (T), the black dotted line that of the manipulator sphere’s 

center (M). 
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manipulator’s contact surface was aligned with the cell, the same way as in Figure 11. Steps 

1-3, it started approaching the cell with 100 nm steps.  

When it touched the cell, which was determined visually from the weak reflection of the 

trapping beams, the manipulator was pushed further against it by less than a micrometer. We 

paid attention to push the manipulator to the cell’s surface with about a few tens of pN pushing 

force. When the micromanipulator is pushed to the chosen cells surface, ∆𝑋 (the difference 

between the T trap position and M center of mass of the trapped sphere) is regarded negative 

(Figure 12.). After 10 seconds of waiting, we pulled the structure backwards with 250 nm or 

50 nm steps which resulted in retraction speeds of 0.5 m/s and 0.1 m/s, respectively. 

At the beginning of the retraction, the micromanipulator does not move but the still negative 

ΔX slowly increases. If there is no adhesion between the manipulator and the cell, ΔX first 

becomes zero, then the manipulator detaches from the cell and follows the trapping foci (ΔX 

does not increase any more, Figure 14/a.). If there is any cellular interaction, ∆X becomes 

positive, and a considerable pulling force is exerted on the micromanipulator by the optical 

tweezer. Eventually, when the optical force becomes greater than the adhesion force, the 

manipulator separates from the cell’s surface and the centers of the trapped spheroids return to 

the trap positions (∆X becomes zero, Figure 14/b.). Next, either the same manipulator was used 

to test another cell (maximum of 3 measurements per manipulator) or another microtool was 

used on the following cell. All the experiments were repeated at least two times on different 

days and on different cell cultures and the number of parallel measurements in each experiment 

was 6-10.  

6. AFM measurements 

The AFM measurements with functionalized tips were carried out to validate the optical 

trap-based adhesion force measurements. Endothelial cells were cultured on a circular 24 mm 

diameter cover slip, previously coated with Matrigel, for 2 days in their respective media. The 

serum content of the media was reduced to 1% 2 hours prior to the start of the AFM 

measurement. The cover slips containing the cells were mounted inside of a lid of Petri dish 

for support. A drop of respective media was placed onto the cell layer and the AFM cantilever 

was immersed into it. All experiments were made with an Asylum Research MFP-3D head and 

controller in contact mode (Oxford Instruments Asylum Research), and the driver program 

(version 16.12.214) was used written in IGOR Pro Software (version 6.38B01, Wavemetrics) 
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which served also for the data analysis of the recorded data. The parameters for both the sharp-

tipped and for the colloidal probes were the following: the typical dwell time before retraction 

(contact time) was 1s, the loading force was 100 pN and the retraction speed was varied 

between 0.5-5 µm/s. The spring constant for each cantilever were determined by the thermal 

fluctuation method (Hutter & Bechhoefer, 1993), (Butt & Jaschke, 1995). 

A: Cell-binding measurements with sharp tipped cantilevers 

As a preliminary experiment we carried out adhesion probability measurements on 

hCMEC/D3 cells with simple sharp silica tipped cantilevers (Bruker, MSCT-D) which has a 

nominal spring constant of 30 pN/nm. We took care of using similar protocol as we used for 

functionalizing the SU-8 structures with GSH. In the first step the probes were incubated in 2% 

(v/v) APTES (Sigma-Merck Kft.) dissolved in isopropanol (Molar Chemicals Kft.) for 1.5 

hours at room temperature to form free amine-groups on their surfaces (Ebner, Hinterdorfer, & 

Gruber, 2007), (Riener, et al., 2003). This was followed by a 1% solution of glutaraldehyde 

(Molar Chemicals Ltd.) incubation in water for 5 minutes (Wildling, et al., 2011) which 

enabled us to crosslink the APTES`s amine with the PEG-linkers free amine. Afterwards, the 

cantilevers were incubated in amino-PEG-maleimide linker solution of 10 mg/mL in ethanol 

for 20 minutes. The AFM tips coated up to this point were used as a negative control and 

referred as PEGylated. To demonstrate the effect of GSH with AFM the PEGylated cantilevers 

were immersed into freshly made 100 mM GSH in PBS buffer for 20 minutes.  

B: Adhesion force measurements with colloidal probes 

 To have comparable results to our microtool-based adhesion force measurements, we 

used 10 µm diameter, functionalized borosilicate colloidal probes; these were mounted on 

triangular cantilevers with a nominal spring constant of 10 pN/nm (NovaScan, USA) and 

provided similar contact area as the microtools. The functionalization of these spherical-tipped 

cantilevers was carried out by the same protocol as described in the previous section. Both type 

of endothelial cells (hCMEC/D3 and RBEC) were investigated with this AFM method. 
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7. Evaluation of the obtained data 

A: Cell stiffness measurements evaluation 

 The position of the microtool on every video frame recorded during the approximation 

of the endothelial cells was determined with a correlation-based method where the reference 

was the image taken at the first position. The evaluating program was implemented in Matlab 

and the script used its built-in image processing and 2D cross-correlation features. The four 

spheres’ positions were determined independently, by choosing a template image for each 

spheres which was a cropped image of the chosen sphere on the very first frame; this chosen 

reference image was then compared to the image of the same sphere on all other frames of the 

recording. The function resulted in a correlation matrix corresponding to each sphere at every 

frame of the recording. The correlation matrix has a maximum at the vicinity of the location of 

the sphere, but it is determined only with one pixel precision (which is in our case 120 nm). To 

obtain sub-pixel precision position for the spheres, the neighborhood of the matrices’ maximum 

was fitted with a 2D Gaussian function. Afterward, the position of the microtool’s tip was 

determined from the spheres’ position data with simple geometric considerations assuming a 

rigid structure. The main reason why not the tip itself was monitored is that after tip had made 

a contact with the cell’s surface its image became distorted, and it was impossible to apply 

cross-correlation on it. Finally, the position of the tip was calculated for all the images and was 

plotted as a function of the trap position. With this cross-correlation method, using a surface 

mounted, non-moving structures the tip position could be determined with 5.5 nm precision.  

 Only those measurements were used in the analysis where the tip’s movement 

perpendicular to the direction of the approach was negligible after the contact (less than 50 

nm). The evaluation resulted in a tip position vs. the trapping focus position traces for every 

indentation experiment, having two distinguishable ranges as demonstrated on Figure 13/c.: 

the first describes the movement before the contact happens between the microtool and the 

surface; in this range the microtool follows the trap position continuously, and its slope is 1. 

After the tool made the contact, it lags the traps position so the slope in this range is less than 

1. Since the breakdown at the point of contact happened always at different trap position in the 

consecutive measurements, the traces had to be aligned with a separate procedure. We had two 

distinct set of traces, one for the cell indentations and another for the wall approach 

experiments. In the alignment procedure of both set of traces a reference trace was selected 

(usually the firstly made one) and the other traces were aligned to it. The alignment procedure 
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was determining the variance of the difference of two traces while one of them (Figure 13/c. 

red curve) was moved stepwise (in 10 nm steps) in relation to reference one (Figure 13/c. blue 

curve). The minimum of the variance curve gave the amount of shift used for the alignment 

procedure. In Figure 13/c. the inset displays three of such traces: the dark blue line has the 

smallest variance while the other two has almost 3 times greater.  

After the alignment of the cell indentation and the wall approach measurements, the traces 

from the latter ones were averaged (n=9), while the cellular experiments were used individually 

further on to determine the microtool’s displacements and the indentation of the cells. 

B: Adhesion force measurements evaluation 

The recorded image sets were analyzed by a Matlab program for the adhesion-force 

measurements as well, but this time with a different algorithm. At all images from one adhesion 

force measurement, the program fits a circle for all four spheres of the used micromanipulator, 

and the centers of these circles are considered as the trapping sphere centers. The average 

position of the four centers of the spheres was then calculated and its coordinate along the 

direction of the movement of the optical trap was plotted as the function of the holding trap`s 

position. The micromanipulator position was plotted against the trap position only during the 

 Figure 13. cell indentation experiments and the resulted traces of the microtool’s tip. Typical images of 

the cell indentation (a) and the wall approaching experiments (b), white arrows show the direction of 

the microtool movement during the approximation. The tip position was determined by determining the 

positions of the four handle spheres on the image series taken during the indentation measurements. (c) 

displays tip positions from two cell indentation measurements as a function of the trapping beam 

position (solid blue and solid red traces). It also shows the result of the trace alignment when the red 

trace is aligned to the blue one with the alignment procedure (dashed red). The inset in (c) shows 

differences of the red and blue traces during the alignment. 
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retraction process (Figure 14/c. grey dots). While the manipulator was still in contact with the 

cell during the retraction, its position was constant. After the detachment of the 

micrmanipulator from the cell in each individual measurement, the averaged sphere center 

position coincided with that of the trapping beams and grows linearly with it according to a 

slope of 1. In the following step, a straight line was fitted to this linearly rising section, which 

was extrapolated to zero trap position and the averaged sphere position was subtracted from it, 

resulting the X values (Figure 14/c. red dots).  

The optical force was simply calculated by multiplying the X values with the previously 

measured stiffness of the micromanipulator (kstr = 25.8± 2 pN/m). The adhesion force is the 

amplitude of the sudden drop of the optical force which is the result of the rupture in the 

adhesion between the manipulator and the cell`s surface (Figure 14/b.). Statistical analyses 

were performed using GraphPad Prism 8 software (GraphPad Software, USA). Values were 

compared using ANOVA followed by Bonferroni posttest. Differences were considered 

statistically significant at p < 0.05.  

 

  

a b c 

Figure 14. (a) and (b) shows a typical adhesion force measurement plots for (a) a PEGylated and / control functionalized (b) 

GSH-coated micromanipulator on D3 cells with 50 nm stepsize which shows a strong cellular interaction, part (c) Illustrates 

the determination of X from the manipulator position as the function of the trapping focus position (0 refers to the start of the 

pulling of the manipulator). Grey circles show modelled micromanipulator positions along the direction of the retraction in 

the image coordinate system. In this example, in the 0-3 m trap position ranges the manipulator does not move due to its 

adhesion to the cell`s surface. At 3 m it detaches from the cell and above 3 m it precisely follows the trapping beam. The 

green line is the fit to this last, 3-5 m section. X is calculated by subtracting the microtool positions from the fitted line. 



 

34 

 

IV. Results and Discussion 

1. Endothelial Cells Young’s Modulus 

The endothelial cells Young’s modulus was calculated based on the Hertz model with the 

following equation used in the literature for AFM and OT indentation experiments: 

𝐹(𝑑𝑧) =
4𝐸

3(1−𝑣2)
𝑅𝑏
1/2

𝑑𝑧
3/2

; 

In the equation F is the force which acted on the cell when the microtool was pushed against 

it, E is the Young’s modulus, Rb is the indenter tool’s surface radius, dz is the occurred 

indentation and v is the Poisson number, what we selected to be 0.5 based on other experiments: 

AFM (Vargas-Pinto, Gong, Vahabikashi, & Johnson, 2013), OT (Dy, Kanaya, & Sugiura, 

2013). The forces and the indentation were determined from the microtool’s position as the 

function of the trapping beams position. The raw microtool tip positions, measured during the 

cell indentation experiment are shown on Figure 15/a. before the alignment procedure (see 

Figure 13/b.). Three individual traces illustrate the movement of the microtool changes sturdily 

after the microtool contacted with the cells: microtool’s movement does not stop completely 

but the tool’s position tails away from the trapping beams position. After the contact, the 

movement continues to be primarily a linear function of the trapping beams’ position for at 

least another 500–800 nm of trap movement; in this regime, the tip moves less than 150 nm. 

Infrequently, the tip slips sideways on the cell membrane even by about 100 nm (Figure 15/c.). 

Traces from approximations of the SU-8 scaffolds with no cells on them (control experiment, 

Figure 15. Tip position traces for the calculation of endothelial cell’s Young’s modulus.  (a) Representative raw tip 

position traces as the function of the trap positions before alignment. (b) Tip position traces after the alignment procedure:  

the wall approach experiments were averaged for background (red curve), while the cell indentation traces were used 

individually (one representative trace: green curve). Panel (c) shows a tip position movement parallel (blue) and 

perpendicular (orange) to the trap movement during the tool being pushed against a hard wall 
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red curve) and one aligned tip position trace when pushed against a cell (green curve) are shown 

in Figure 15/b.  

Since the tip can slip sideways, the tip position is mainly meaningful in the first 400 nm 

after the contact point, where this effect is negligible. When a tip was pushed against the hard 

SU-8 wall, it had a residual forward movement after the contact point, which was attributed to 

its small sideway movement. Since this may also happen in the cell experiments, the observed 

extra forward movement at the walls was used as a correction in the cell indentation 

measurements (the tip positions of the cell experiments were compared to this “baseline”). A 

representative experimental result of an approximation of a hard wall is shown in Figure 15/c. 

It demonstrates that the tip moved forward a few tens of nanometers during the first 400 nm 

beyond the contact, while it slipped about 50-80 nm sideways. In Figure 15/b. two position 

traces are shown which were used to determine the indentation and the pushing force in the 

Hertz model for each individual measurement. The difference between the tip position when 

approaching the wall and when approaching the cell gives the indentation. A straight line was 

fitted to the linearly increasing part of the cell approach trace (Figure 15/b. cyan dashed line) 

and the difference between this and the tip position trace after the contact point was used to 

calculate the displacement. The cell indentation and the microtools displacement as a function 

of trap position is displayed on Figure 16/a. The indentation force was determined from the 

displacement by multiplying it with the stiffness of the microtool (kstr); the resulted force 

ranged between 1-5 pN, which transcends the AFM precision. Both the indentation and the 

Figure 16. Measured indentation and displacement data and the Young’s modulus calculated from them. The indentation 

(blue line) and displacement (red line) data on panel (a) are calculated from the aligned traces; the error bars represent 

SD. The shaded area highlights the reliable range for the two quantities. The inset shows the individual displacement (red) 

and indentation traces (blue) calculated separately for the 19 experiments. The Young’s modulus as the function of 

indentation over the values highlighted in (a) is shown in panel (b). The blue dots represent all the approximately 800 

individual point pairs (40 trap positions × 19 experiments), while the red circles are their averages in 60 regions over the 

0–0.09 μm indentation range. 
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displacement traces have a break point between 2.4 and 2.5 m, but about 400 nm beyond the 

contact point they produce large errors. Therefore, the Young’s modulus could be obtained 

reliably from the range of 2.5–2.9 µm. Figure 16/b. shows that the obtained values range from 

220 Pa up to 1500 Pa, but between 2.5-2.6 µm trap positions (indentation between 0.01 m 

and 0.02 m) the determined values have significant noise. The obtained data was recorded 

with 4 microtools on 6 cells, altogether 19 measurements was carried out. 

These measured values are parallel with those determined by AFM-based methods on 

endothelial cells from pulmonary artery with a modulus of 400–1500 Pa (Pesen & Hoh, 2005) 

on bovine aortic endothelial cells with 700-2700 Pa (Ohashi, Ishii, Ishikawa, Matsumoto, & 

Sato, 2002) on human umbilical vein endothelial cells (HUVEC) with 350-4000 Pa (Vargas-

Pinto, Gong, Vahabikashi, & Johnson, 2013) or on the same type of cells with an another 

technique based on magnetic tweezers with 400 Pa (Feneberg, Aepfelbacher, & Sackmann, 

2004). Interestingly those values which were achieved with AFM, the moduli can vary an order 

of magnitude for the same type of cell in the literature. The most possible reason for this broad 

range could trace back to the measurement conditions: the rate and amount of indentation and 

the indenter tool’s shape. In the literature it was demonstrated that the indentation rate increases 

the Young’s modulus mainly due to viscous effects and that about 0.25 µm/s probe velocity 

was the lower limit of viscous dissipation (Mathur, Collinsworth, Reichert, Kraus, & Truskey, 

2001). The AFM measurements’ loading rate has a wide span from ~100 pN/s to hundreds of 

nN/s (Coceano, et al., 2016)). Our OT-based measurements take about one minute each, and it 

is only about the last tenth of the measurement, where the tip reaches and indents the cell with 

about 60 nm; by the end of this period, the force increases to about 6 pN, what corresponds to 

1 pN/s loading rate and the indentation rate of 0.01 µm/s which is much smaller than those for 

AFM. In our experiments due to the low indentation rate, we consider the viscous effects 

negligible in measuring the Young’s moduli. 

Furthermore, when the amount of indentation is too large, the intracellular actin network 

/cytoskeleton could spoil the measurement of the elastic properties of only the cell membrane. 

The relatively large noise observed for small indentation values were very likely produced by 

the thermal fluctuation of the trapped microtool, when small indentations and forces are 

applied. In addition, the indenter tool’s shape and surface area also plays a role: as an example, 

AFM tips with radii of 20 nm and 5000 nm in the indentation experiments of Vargas-Pinto and 

co-workers yielded Young’s modulus values of 3.8 kPa and 350 Pa, respectively, on the same 

cell type (Vargas-Pinto, Gong, Vahabikashi, & Johnson, 2013). Other experiments 
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demonstrated that colloidal probes (r = 7.5 µm) measured half the value on a same MDCK cell 

as the pyramidal tipped cantilevers: 400 Pa versus 800 Pa (Harris & Charras, 2011). Similar 

result was observed when mouse fibroblast cells were analyzed by pyramidal, flat topped and 

colloidal probes (Chiou, Lin, Tang, Lin, & Yeh, 2013). Our indenter tool’s tip has ~300 nm 

radius, which is much larger than the conical AFM probes and rather comparable to those what 

were used in arrangements using optical tweezers. With our method, it is possible to measure 

the moduli in the lower hundreds of Pa range. Although the optical force of our presented 

experiments together with the 300 nm tip radius of the microtool yielded the indentation values 

of up to 90 nm, our operating range can be easily increased to greater values with higher 

trapping laser intensity and smaller trapping sphere diameters.  

2. Preliminary experiments for adhesion force measurements 

A: Visualizing and calculating the surface coverage of GSH 

  In order to properly interpret the adhesion force measurements carried out on different 

types of cells with covalently immobilized GSH on SU-8 surface, as described in chapter 5C 

of Methods, I had to prove that the GSH molecule is detectable on this kind of surface. The 

rational choice was to use fluorescent dye to visualize the GSH presence on top of SU-8. For 

that purpose, I chose an amine reactive stain, because the GSH is containing one primary amine 

group per molecule. The amine-reactive CY-5 staining was performed after the three main 

steps of Protocol 1, as detailed below, and after a PEG-bisamine treatment: 

• CAN: acid treatment only, Protocol 1, steps 1-2  + amine reactive dye 

• Linker: acid + amino-PEG-maleimide treatment, Protocol 1, steps 1-4,   

         + amine reactive dye 

• PEG-bisamine: acid + PEG-bisamine treatment, Protocol 1, steps 1-4, but instead of 

amino-PEG-maleimide, PEG-bisamine is used,   + amine reactive dye 

• GSH: acid + amino-PEG-maleimide treatment + GSH treatment, Protocol 1, steps 1-7

         + amine reactive dye 

CAN: this layer works as one of the negative controls for nonspecific association of the 

amino-reactive dye upon the polymer surface. 
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PEGylated: this functionalization was applied for all the following GSH adhesion 

experiments as a negative control, since here only the terminal GSH is missing. It also worked 

as one of the two negative controls for the CY-5 fluorescence experiments. 

PEG-bisamine: this PEG-linker has primary amine-groups on both ends, so I used this 

as a positive control to confirm that CY-5 indeed binds to primary amine groups, found on 

GSH. 

GSH: the PEGylated surface’s maleimide group forms an oxime-ether bond with the 

thiol-group of the GSH molecule. The primary amine on the GSH binds the reporting amine-

reactive CY-5.  

First, I applied carboxyfluorescein staining to visualize the coverage. That turned out 

have two major drawbacks: it provided very low fluorescence intensities even if overnight 

incubation were used, and the autofluorescence of SU-8 is considerably at the excitation 

wavelength of dye (FITC excitation center wavelength  = 475 nm). After some endeavoring, 

we purchased an another amino-reactive dye which was CY-5-ester based fluorophore. The 

excitation wavelength of this dye ( = ~650 nm) is far enough not to excite SU-8. Further 

advantage was, that for the amine-reactive CY-5 much shorter incubation time was sufficient. 

In Figure 17. functionalized and fluorescently stained SU-8 blocks can be seen; in all 

images CY-5-ester dye was used with 30 minutes incubation time, both for fluorescence and 

confocal microscopy. The fluorescent intensities were measured in the central region of each 

 Figure 17. CY-5 stained, and differently functionalized SU-8 blocks. Wide-field fluorescent (a-d) and confocal (e-h) 

microscopy images of the functionalized SU-8 blocks. 
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square, and in the case of the wide-field microscopy the intensity, measured on the glass surface 

adjacent to the squares, was subtracted as background. For confocal microscopy it was not 

necessary since the glass surface was not imaged for it situated a few micrometers below the 

focal plane. At all samples, the resulted intensities were normalized with/to the positive 

control’s values. At all types of samples at least 10 TPP fabricated blocks were imaged and 

evaluated to obtain the normalized average shown in the lower left corner of the corresponding 

image. With both microscopy method I demonstrated that the GSH-functionalized SU-8 blocks 

have greater fluorescence than in case of the negative controls. I concluded that GSH can be 

immobilized with covalent bonds to SU-8.  

To obtain the surface coverage of GSH on SU-8, first we determined the integrated 

fluorescence intensity of single CY-5 molecules (Figure 18/a.) with the methodology detailed 

in subsection Methods 2B. The integrated fluorescent intensity of the image of a single CY-5 

fluorophore molecule was measured to be 200±39 pixel intensity unit (n=71) (Figure 18/b.). 

The determined average fluorescence intensity for each pixel (where a sample area of 100 nm 

x 100 nm was imaged) on the GSH functionalized sample was 6727±349 (n=7) and on the 

PEGylated sample 1794±224 (n=21). The difference of pixel intensity values between the GSH 

functionalized and the PEGylated one was integrated over one m2 and the result was divided 

by the integrated intensity of a single CY-5 molecule, what gave us 2464±770 molecule/m2 

surface coverage value (~25 GSH molecule/ 100 by 100 nm).  

 Figure 18. The integrated intensity determined from the fluorescent images of single CY-5 fluorophore molecules 

(a) were used to calculate the surface coverage of CY5 on the homogeneously coated layers (the colorbar shows 

fluorescent intensity in pixel count units). The intensity of the single dye molecules was quite uniform, giving a 

well-defined average integrated intensity value (b) (N=71). 

  

b a 
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Supposing that each GSH binds one fluorophore molecule, this results in approx. 2500 

GSH molecules on every square micrometer on the surface of the SU-8 structures. 

B: Binding probability on 4 types of cells with ellipsoids 

Before we made the binding measurements, I had done preliminary experiments with 

simple microstructures (ellipsoids) made by TPP fabrication on 4 types of cells: primary rat 

brain endothelial cells (RBEC), human endothelial cell line (hCMEC/D3), primary rat brain 

astrocytes and pericytes to shed light on the binding probability between them and PEGylated 

and PEG-GSH functionalized SU-8 surfaces. We expected that the GSH coated ellipsoids can 

reach a better binding ratio than the control functionalized ones on the different cells. We 

carried out these measurements on our HOT setup, where the cells were grown on a horizontal 

glass surface instead of a vertical wall, with the addition of a temperature-controlled sample 

holder which was able to provide 37 C° for the whole time of the experiments. For each cell 

type we made at least 2 series of binding attempts on different cultures and days.  

A binding attempt was carried out as follows: an individual, previously functionalized 

(either PEGylated or PEG-GSH) ellipsoid was picked up by the optical tweezer, and then it 

was pushed to the cell’s surface nearby the nucleus cell by cell, where a planar surface was 

expected. It was pushed against the cell for 10 seconds and after that the optical tweezer was 

slowly moved upwards to remove the ellipsoid from the cell. This could end with binary output: 

if there was not enough adhesion between the cell and the ellipsoid, then it could be removed 

Figure 19. Ellipsoid binding experiments on four different cells. On the left side the PEGylated ellipsoids binding probabilities 

are show, ant the right the same for PEG-GSH functionalized ones 

14.4% 12.2% 16.7% 13.5% 93.8% 65.4% 65.6% 81.1% 

      Bound event          Non-bound       Bound event          Non-bound 
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from the cell membrane (non-bound event); if there was enough adhesion, the microstructure 

could not be removed by optical forces (bound event).  

At Figure 19. the ellipsoid binding experiments’ results are shown, whit the 

representing element number and the binding probability in terms of percentage (bound events 

divided by all) at the top of each column. A clear distinction could be observed between the 

binding probabilities of the PEG-GSH functionalized ellipsoids relative to the PEGylated 

(control) ones for all 4 cell types. When GSH was present on the surface, the ellipsoids bound 

to primary endothelial cells with 81% probability as compared to 14% in the absence of it. 

Similar results were observed with hCMEC/D3 cells where GSH-coated ellipsoids reached 

93% binding probability versus only 12% in the control functionalized ones where the GSH 

missing. 

After these experiments I was convinced, that in the final adhesion force measurements 

pericytes and astrocytes cannot be used, because they grew in a random 3D structure which 

would make it very hard to reach them on the SU-8 walls. The other two endothelial cells have 

more 2D shapes flattened to the surface of the substrate, therefore they can be approached 

easier with the microtools. 

 In our Institute, my co-workers carried out binding probability measurements with 

functionalized AFM tips on hCMEC/D3 cells as support experiments to my optical trap 

measurements (experiment carried out by Zsolt Szegletes). Figure 20. shows that the 

PEGylated sharp tipped cantilevers would not bound to the surface of the cells at all, while the 

GSH-functionalized ones achieved 94% 

binding probability (NPEG = 42, NPEG-GSH 

= 124). These results indicate that the surface 

of the applied cells preferentially binds to GSH-

covered surfaces. The increased binding can 

explain the greater cellular uptake and 

transcytosis trough the BBB where the GSH is 

present in the niosomes’ outer membrane, as 

others and our colleagues observed in uptake 

experiments of PEGylated and GSH 

functionalized niosomes (Geldenhuys, 

Wehrung, Groshev, Hirani, & Sutariya, 2015), (Porkoláb, et al., 2020). 

 Figure 20. AFM binding probability measurement 

with sharp silica tip on hCMEC/D3 cell, with 

control (left) and GSH-functionalized (right) 
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3. Adhesion force measurements 

After presenting that the GSH can greatly increase the binding probability of SU-8 

microstructures and sharp silica tipped AFM cantilevers to brain endothelial cells, we 

performed adhesion force measurements with our HOT system to quantify this force. I used 

for these measurements TPP-made and optically manipulated micromanipulators with flat 

contact surface, where the cells were cultured on a vertical scaffold-like supporting wall. I 

carried out at least two individual measurements with each cell type and functionalization 

parameters on different cultures and days. The retraction of the micromanipulators in a well-

controlled manner by stepping the trapping foci after they were pushed against the cell’s 

surface has a capital importance in these measurements. These retractions were made with two 

different step sizes, namely 50 and 250 nm which represents the following retraction speeds: 

0.1 m/s and 0.5 m/s respectively; this way we could check if the speed has any influence on 

the adhesion force. Because the SLM has a fixed refresh rate the time between the steps was 

kept constant. 

Figure 21. Optical force curves from all experiments on (a, b) rat brain endothelial cells (RBEC) and on (c, d) human 

cerebral microvascular endothelial cells (hCMEC/D3) made with 250 nm stepsize 
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 In Figure 21. and 22., significant difference can be observed between those traces which 

were recorded with GSH-functionalized manipulators and those obtained with the control ones. 

Also, both aforementioned figures display that the micromanipulators are pushed against the 

cell with a few tens of pN optical force at the beginning of the retraction process (trap position 

= 0 m), which then linearly decreases (in terms of absolute value) when the tool is pulled 

backwards. If there was adhesion between the micromanipulator and the cell, the pushing force 

switches to pulling during the retraction, otherwise the manipulator detaches from the cell 

membrane and no pulling force acts on it. In case of adhesion, the cell membrane was pulled 

by the micromanipulator up to a particular trap position, where the bond between the two 

surfaces ruptures and they detach from each other, returning the optical force to zero. The 

optical force at the rupture position defines the adhesion force. Curiously, we did not find any 

correlation between the initial pushing force and the magnitude of the adhesion force.  

When I averaged the adhesion forces for each individual group (Figure 23/a, b.), I observed 

that the means of the adhesion forces were always significantly greater when GSH was present 

than when it was omitted, and the ratio of the average measured adhesion forces between the 

Figure 22. Adhesion force curves from all experiments on (a, b) rat brain endothelial cells (RBEC) and (c, d) on human 

cerebral microvascular endothelial cells (hCMEC/D3) made with 50 nm stepsize 
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two functionalization groups could be as high as eight. In case of the GSH-coated structures, 

the difference between the 50 nm stepsize values and those recorded with 250 nm stepsize was 

not found to be statistically significant. With 250 nm stepsize, we measured 9 ± 6.6 pN 

adhesion force for RBEC cells and 16.4 ± 6 pN for hCMEC/D3 cells when the targeting ligand 

GSH was present, while for PEGylated micromanipulators the adhesion forces were only 2.2 

± 3 pN for RBEC and 2 ± 4.3 pN for hCMEC/D3; the element numbers are shown on the graphs 

of the individual force curves (Figure 21.).  

When the smaller stepsize was used, the average adhesion force for GSH functionalized 

micromanipulators was 12.1 ± 9.5 pN on RBEC cells and 10.2 ± 7.2 pN on hCMEC/D3 cells, 

whereas in case of the PEGylated manipulators, our control group, it was 3.4 ± 4.9 pN RBEC 

and 3.8 ± 3.2 pN for hCMEC/D3 (Figure 22.). In case of D3 cells, when the slower speed was 

applied, we observed large plateau like curves. We hypothesize that it can be explained by 

pulling short tethers formed by the cells or the micromanipulator was attached to cell’s primary 

cilia (Lim, McGlashan, Cooling, & Long, 2015). 

We performed experiments with similarly GSH functionalized colloidal AFM cantilevers 

where a 5 µm radius spherical bead was attached at the tip of it (Figure 23/c, inset); we chose 

this special cantilever because it had a comparable contact surface with our manipulator. The 

 Figure 23. Summary of the adhesion forces obtained with the GSH and with the PEGylated microtools on 

brain endothelial cells using two step sizes indicated in (a) and (b). (c) Adhesion forces between PEG-GSH 

functionalized colloidal tipped cantilevers and the surface of endothelial cells, as measured with the AFM. 

Red circles represent individual measurements, blue squares are their means, blue whiskers are SD. 
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AFM measurements resulted in 3-6 times greater adhesion forces than those obtained with the 

HOT method both for RBEC cells (38±18 pN), and for hCMEC/D3 cells (57±28 pN) (N=247 

for both cases). The most possible reason why the AFM measurements showed much larger 

adhesion forces is that the AFM probe was pushed against the cell with 100 pN which is almost 

an order of magnitude higher than in the HOT measurements (there we used only 10-30 pN) 

what could generate higher number of bonds. On the other hand, the AFM’s detection level is 

around 10 pN, so only those measurements were taken into account which resulted in higher 

adhesion force than this limit. 

Similar interaction forces (20-60 pN, depending on the loading rate) were measured by AFM 

between T24 cancer cells and folic acid targeted carbon nanotubes, which corresponded to our 

values (Lamprecht, et al., 2014). The fact that the optical trapping-based method yields 

adhesion force values in the same range as the more standard AFM, reassured us that it is an 

effective tool to characterize ligand binding to cell membranes. The OT based method has an 

additional advantage over the AFM: it has higher sensitivity, since it can measure from tenth 

of pN up to some tens of pNs. From technical point of view, it is interesting to consider the 

surface roughness of the SU-8 polymerized structures. We believe that it does not play a role 

in the observed adhesion forces, because the peak-to-valley height difference on the “rough” 

SU-8 surface is less than 10 nm, as measured earlier with AFM (Aekbote, et al., 2012). 

Furthermore, this minor variation takes place over a few hundreds of nanometers in the lateral 

direction on the surface of the polymerized object, resulting in a low steepness. In this series 

of experiments, we used 2000 g/M PEG-chain which has around 15 nm length in total, 

considering that one PEG-unit length is in the regime of 0.26-0.36 nm (Oesterhelt, Rief, & 

Gaub, 1999). Based on these data, if the PEG-linker coupled GSH is sitting on the bottom of 

one of the ‘valleys’, the GSH can still reach out from there. 

We can conclude that the GSH could be an effective BBB targeting ligand in NP carrier-

mediated drug uptake, but unfortunately very few details of the mechanism of GSH-aided NP 

adhesion to the cell membrane are clear. There are further OT-based technics which served 

information about ligand-receptor binding forces. As an example, ligand-binding domain of 

Notch1 protein were immobilized on the surface of microbeads to measure adhesion force on 

Dll1-expressing cells. In these experiments the authors measured rupture forces in the range of 

0-40 pN and determined that the single bond can be broken with an average of 19 pN force 

(Shergill, Meloty-Kapella, Musse, Weinmaster, & Botvinick, 2012). Also, adhesion forces 

between claudin-3, -4 and -7-expressing epithelial-like human breast adenocarcinoma (MCF-

7) cells and its ligands were investigated similarly with microbeads. The ligand c-CPE-coated 
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(enterotoxin of Clostridium perfringens) microbeads were held a few micrometers above the 

glass substrate and attachments were made in lateral directions towards the tested cells; the 

measured forces were between 5-30 pN (Riesenberg, et al., 2020). 

The results of the GSH-coated adhesion force measurements on endothelial cells are in the 

same range as those of the previously mentioned OT-based experiments. The resulted 10-15 

pN adhesion force in case of GSH-coated micromanipulators suggests that it could be a single 

bond rupture event. Also, the interaction of GSH with the cells seems to be specific, because 

without it the adhesion was just 2-4 pN. As for the molecular background of the GSH binding 

to the cells, we believe that the middle cysteine’s thiol group of GSH tripeptide is not playing 

a role in the adhesion because it was used to connect GSH covalently to the PEG-linker’s 

maleimide-group.  

GSH binding could be further investigated by applying neuraminidase on the target cells to 

eliminate their glycocalyx and expose their transporter receptor proteins in higher number and 

more reachable. Furthermore, we could shed light on the importance of the cell’s surface 

charge. We know from previous lab-on-a-chip experiments that the endothelial cell’s surface 

charge has a large effect on BBB’s permeability (Kincses, et al., 2020); also, it was 

demonstrated in our Institute, that when the overall charge of the cell membrane was tuned to 

more positive with neuraminidase treatment, the niosomes could reach significantly higher 

uptake (Mészáros, et al., 2018).  

If we combine this surface charge modification treatments with our newly developed 

adhesion force measurement setup in a future experiment, the number of bonds is expected to 

be presented in larger number, and perhaps the applicable optical forces may not be strong 

enough to rupture them. So, in this case the functionalization protocol or the 

micromanipulators’ contact surface should be fine adjusted. Furthermore, with small changes, 

our proof-of-concept measurement method could be extended to study dozens of ligands or 

chemoattractant molecules thanks to a diverse range of functional PEG-linkers. 
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V. Conclusion 

In my thesis I demonstrated that optical tweezer-based techniques are capable to 

explore living cells’ physical and biochemical properties. First, the measurement of Young’s 

modulus of endothelial cells can be carried out with precisely manipulated two-photon 

polymerized, purpose designed microtool. Furthermore, the stiffness measurement technique 

could give very different results depending on the parameters of the experiment: if the pure 

linear elasticity of the cell is the topic of interest, it is believed that use of indentation surfaces 

with large radius of curvature and small loading rates with small forces is more potent to 

examine specifically that. Our method is perfectly capable to operate in this regime.  

In our other work/publication we reported for the first time GSH adhesion forces to 

brain endothelial cells (D3 and RBEC) using our novel holographic optical tweezer-based 

binding force measurement technique. In those series of experiments, I used similar SU-8 

micromanipulators as in the previous work which could prevent the cells from photodamage. 

The laser microfabrication made it possible to easily change the geometry of the 

micromanipulator’s probe as the experimental methodology required. In both type of 

measurement arrangements, we used a cell culturing method where the cells were grown on 

mask-lithography made walls, which were parallel to the optical axis what enabled us to 

measure the adhesion force and the stiffness in a direction perpendicular to the cell membrane 

by approximation of the cell via lateral movement of the trapped micromanipulator.  

We measured adhesion forces in the regime of 10-15 pN when the GSH was present 

that indicates a specificity towards glutathione: when void of the targeting ligand (PEGylated 

structures) we observed 3-8 times smaller forces. The adhesion forces what we observed 

coincide with those what could be found in the literature for other receptor ligand pairs also 

measured with optical trap-based methods. Our method could be extended in the future to 

differentiate between multiple and single binding events, to characterize other BBB targeting 

ligands with the adhesion force on living cells or even to select novel targeting molecules. The 

functionalization protocol could be easily adapted to immobilize those molecules with covalent 

bonds, thanks to the variety of PEG-linkers. 
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Appendix I. 

Protocols 

1. Functionalizing structures with PEG-maleimide and GSH 

1. Hard bake the SU-8 samples on a hot plate at 110 C° for 10 min. Wait for the sample 

to cool down with the plate. 

2. Acid treat them for 30 min at room temperature. For 5 mL acid solution, add 265 mg 

of Cerium-ammonium nitrate and 0,35 mL of 65% HNO3 to 4,65 mL H2O. (acid 

treatment step) 

3. Wash the sample with de-ionized water (DI-water) in a clean Petri dish twice, for 10 

min each. 

4. Solubilize 1 mg of PEG-maleimide in 4:1 mixture of MeOH:H2O and cast it on the 

dried structures in small droplets. Keep the PEG-maleimide on the structures for 45 min 

at room temperature. (PEGylation step) For PEG-bisamine treated SU-8 surface, use 

PEG-bisamine instead of PEG-maleimide the same way. 

5. After the PEG-maleimide or PEG-bisamine treatment, rinse the sample with DI-water 

in a clean Petri dish twice, for 10 min each. Dry it with a gentle nitrogen steam. 

6. Place 3 mL of 100 mM GSH (reduced) in PBS on the PEGylated sample for 1 hour at 

4 C° in a Petri dish. (GSH treatment step) 

7. Wash the sample with DI-water once for 10 minutes, and then in PBS for 10 minutes. 

As a last step, wash it with DI-water and dry it with nitrogen steam. 

2. Staining functionalized SU-8 surfaces with CY-5 amine reactive dye 

Apply the following steps on acid-treated, PEGylated, PEG-bisamine treated and GSH-

treated SU-8 samples. 

1. Prepare a 0.1 mg/mL stock solution of the CY-5 amine reactive dye in 1:1 DMSO:H2O 

mixture. 

2. For staining, dilute the stock solution to 0.01 mg/mL with 1:1 DMSO:H2O mixture. 

3. Place 100 L of staining solution on the sample and incubate it for 30 minutes at 4 C°. 
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4. Rinse the sample with DI-water, then wash it in a 1:1 mixture of DMSO:H2O for 10 

minutes and in 5% DMSO for 10 minutes. 

5. As a last step wash the sample with DI-water and dry it under nitrogen steam 

Important: all these steps should be carried out in dark to avoid bleaching of the 

dye. 

3. Cleaning the glasses 

Clean the soda-lime glass coverslips or Petri dish bottoms with solutions prepared freshly 

before use: 

1. Add one gram of K2Cr2O7 to 150 mL of DI-water. When it is completely solvated, 

immerse the glasses in this solution. 

2. Slowly add 1 mL of 20-35% H2O2 to it. Caution: It is a highly corrosive solution, do 

not drop any kind of organic compound in it. 

3. When the solution finished bubbling oxygen and turned back to orange, repeat step 2 

for 2-3 times depending how scabious are the glasses. 

Important: too many repeats can cause Cr2O3 nanoparticle deposition on the glass 

surface (it could be noticeable by a slight greenish color).  

4. Wash the glasses with DI-water and dry with N2 steam. 

5. Before spin coating, use a freshly made Aqua Regia solution  

6. Wash the cleaned glasses with DI-water thoroughly and then rinse them with acetone 

to ease the drying. Place them on 110 C° hotplate to evaporate the water monolayer 

from the glass. 

7. After 2-3 minutes of baking let them cool to room temperature, and immediately spin-

coat SU-8 onto the sample. 

 

4. Spin-coating and processing SU-8 layers for microstructures 

To make SU-8 micromanipulators and blocks the obtained layer should be at least 16 m tick. 

For that purpose, we use SU-8 2007 photoresist. 

 

1. Using a pipette tip, smear about 100 mL of SU-8 on the cleaned glasses. 
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The spin-coating process could be decomposed to two steps: 

2. The first spin-coating step is the dissipation of the resist on the glass:  spin the glass 

with the photoresist on it at low, 500 RPM for 5 seconds with 100 RPM/sec 

acceleration. 

3. In the second spin-coating step, spin the glass at 700 RPM for 30 seconds this results 

in the final 16-17 m tick SU-8 layer. 

4. After spin coating, bake the layers for several minutes at 95 C° to evaporate the great 

portion of solvents. 

5. The layers should bake for several hours at least at 70 C° to evaporate the residual 

solvents.  

6.  The solidified layers can be manufactured with either TPP or mask-lithography  

7. After illumination baking the sample for a 10-minute at 100 ℃ to complete the 

photopolymerization-chain reaction 

8. When the sample cooled down to room temperature the development succeed as 3 

washing step in PGMEA for 10 min and after 3 washings in 1:1 EtOH:H2O mixture 

9. The developed samples dried under N2 steam 

5. Spin-coating SU-8 layers for cell walls 

To make 80-100 m tall SU-8 walls SU-8 2075 photoresist was used which is a more 

viscous resin. 

1. First, place a pea sized bead of SU-8 at the center of the round glass Petri dish bottom 

and disperse it with a pipette tip. 

2. Spin the glass at 500 RPM for 5 seconds with 100 RPM/sec acceleration. 

3. Spin the glass for 30 seconds at 2500 RPM. This yields in an ~90 m thick layers. 

4. Bake the layers for at least 24 hours at 70 C° to evaporate the solvents of SU-8 
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Abstract: A cell elasticity measurement method is introduced that uses polymer microtools actuated
by holographic optical tweezers. The microtools were prepared with two-photon polymerization.
Their shape enables the approach of the cells in any lateral direction. In the presented case,
endothelial cells grown on vertical polymer walls were probed by the tools in a lateral direction.
The use of specially shaped microtools prevents the target cells from photodamage that may arise
during optical trapping. The position of the tools was recorded simply with video microscopy and
analyzed with image processing methods. We critically compare the resulting Young’s modulus
values to those in the literature obtained by other methods. The application of optical tweezers extends
the force range available for cell indentations measurements down to the fN regime. Our approach
demonstrates a feasible alternative to the usual vertical indentation experiments.

Keywords: cell elasticity; endothelial cells; optical micromanipulation; holographic optical tweezers;
two-photon polymerization; image processing

1. Introduction

Autonomous microrobots and microactuators have gained attention recently due to their ability
to perform complex tasks on biological targets inside microfluidic environments (channels, reservoirs)
without the administration of external physical tools. The targets of these manipulations include
protein [1], DNA [2], their association [3] or single cells [4,5]. Furthermore, microtools have been
developed to control the flow of the solvent that carries these biological objects [6,7] or to characterize
their composition [8]. The complexity of microrobots spans from simple microspheres [1,9] to
complex tailor-made microstructures [4,10–12], and sometimes a group of such structures is needed to
perform specific tasks [13,14]. Most often, these microtools are actuated and guided by optical means,
but magnetic [15,16] or acoustic [17] controls are also applied.

Since the size of these microrobots can range from sub-micrometers to a few hundreds of
micrometers, they can be easily optimized for the manipulation of single cells. A broad range of tasks
can be performed: cells can be actuated with the tools, which includes their simple translation or
rotation either on a hard surface [4,5] or in 3D [11,18]; the tools can enhance imaging of cells [12];
the internal structure of the cells can be altered by punching holes in them with the tools [19]; and such
microtools have a great potential even in performing cell-to-cell interaction experiments with high
precision and selectivity.
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In this work, we report on a method that uses tailor-made microtools for the mechanical
characterization of single cells. We use optically actuated microtools to make nano-indentations on the
cell surface, thereby determining its elastic properties. In order to measure cell membrane elasticity,
one needs to realize a small indentation on it with a known radius of curvature of the indenter and a
known force; the Young’s modulus then can be calculated from the measured indentation and these
parameters [20,21]. In the literature, there are many works reporting on the viscoelastic properties
of cells measured by atomic force microscopy (AFM). While AFM can perform this task using forces
typically higher than 10 pN, the great benefit of optical manipulation is that the achievable forces
complete the range of AFM reaching down to even a few tenths of a pN. Optical tweezers have been
applied successfully earlier to measure cells’ Young’s modulus by trapping microbeads of various
diameters and pushing them against the cells in an axial direction [20,22–24]. These cell indentation
experiments use optical forces of less than 10 pN combined with a larger contact surface radius than a
typical AFM tip (r ≈ 1 µm vs. r ≈ 10 nm), which allows only small indentations, and consequently only
smaller Young’s moduli can be measured. The smaller force and larger radius of the indenter enable
the optical trap-based methods to give a more precise evaluation of the elasticity of softer cells. It is an
additional aspect that in the case of the large indentations of AFM, especially if it is coupled with high
indentation rates, not only elasticity but also viscosity contributes to the results [20].

On the other hand, in the arrangement where the movement of the optically actuated bead is
perpendicular to the surface supporting the cells and parallel to the optical axis, the measurement of
bead position is somewhat less accurate. Further, in these situations, the trapping beam illuminates the
bead through the cells themselves with such high intensity that it may pose a risk of photodamage
on them [25–27]. Our approach aims to overcome these drawbacks: the microtool is pressed to the
cell in a lateral direction, i.e., perpendicular to the optical axis and to the cell surface that allows for
measuring its position and therefore the indentations more precisely, and due to the extended shape
of the tool, the trapping foci are micrometers away from the living cells under study posing no risk
to them. Our microtool has two functional parts: one that interacts with the optical trapping beams
and one that consists of the probe that creates the indentation on the cell surface. Its optical actuation
was achieved with holographic optical tweezers (HOT) able to move the structure with 6 degrees of
freedom (translations and rotations) with a precision of a few tens of nanometers. The tool can be
transported anywhere in a microchannel environment and its tip can be oriented towards any lateral
direction so the direction of attack can be freely selected. The probe part in the presented experiments
was a tip with a few hundreds of nanometers radius, but the fabrication method allows one to freely
change the radius above this value. We performed the indentation experiment on adherent endothelial
cells that were cultured on a hard vertical surface that is parallel to the optical axis and formed a
confluent layer. Our results demonstrate that the microtool-based method provides a Young’s modulus
that fits in the range reported in the literature on this cell type.

2. Materials and Methods

2.1. Microtool Design and Fabrication

The microtools, shown in Figure 1, have two functional parts. The first is used to interact with
the optical field and consists of four spheres, arranged at the corners of a square with a side length of
14 µm; these spheres are to be trapped with the HOT. The second is the probe part that creates the
indentation on the cells surface. This part is a rod of 2 µm length, created in the plane of the spheres
14 µm away from them; we minimized the diameter of its apex for maximal sensitivity. The rods
connecting the spheres and the tip formed an X-shape to minimize interference with the optical field
and were slightly offset from the plane of the spheres and the tip. This offset ensured that in the
recordings of the experiments these rods were out of focus, and therefore did not add extra features to
the image processing when determining the precise position of the structure.



Micromachines 2020, 11, 882 3 of 13

Micromachines 2020, 11, x 3 of 12 

 

 
Figure 1. The polymerized microtool used for cell indentation experiments and the sample 
arrangement. Scanning electron microscopic images of the microtools: (a) side view and (b) top view 
(scale bars: 5 μm). It is visible that the tip together with the trapping spheres are at a different plane 
to the rods connecting them. The insert in (b) shows the side view of the microtool’s tip (scale bar: 1 
μm). (c) 3D schematic view of the experimental arrangement: cells are grown on a vertical wall 
polymerized from SU8 as well as on the glass substrate forming a confluent layer; the microtool (red 
structure) that is trapped and actuated with the optical tweezers (red cones) is approaching the cells 
on the wall with a translation that is perpendicular to the optical axis of the system. Panel (d) 
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crosses mark the trap beam positions, dashed blue arrows indicate sample stage movements (Step 2) 
and dashed green arrows the optical trap actuations (Steps 3 and 4). 
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microscope cover slide (type #1, 24 mm × 40 mm, Menzel-Glaser, TS Labor Kft, Budapest, Hungary); 
the focusing objective was a 100X Zeiss Achroplan, oil immersion (NA 1.25, Carl Zeiss Technika Kft, 
Budaörs, Hungary). The 3D scanning of the focus within the photoresist layer was carried out by a 
piezo stage (P-124 731.8L and P-721.10, Physik Instrumente GmbH, Karlsruhe, Germany). The 
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at 95 °C for 10 min, development in mr-Dev 600 for 5 min 3 times, rinsing in ethanol for 5 min 3 times 
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Figure 1. The polymerized microtool used for cell indentation experiments and the sample arrangement.
Scanning electron microscopic images of the microtools: (a) side view and (b) top view (scale bars:
5 µm). It is visible that the tip together with the trapping spheres are at a different plane to the rods
connecting them. The insert in (b) shows the side view of the microtool’s tip (scale bar: 1 µm). (c) 3D
schematic view of the experimental arrangement: cells are grown on a vertical wall polymerized from
SU8 as well as on the glass substrate forming a confluent layer; the microtool (red structure) that is
trapped and actuated with the optical tweezers (red cones) is approaching the cells on the wall with
a translation that is perpendicular to the optical axis of the system. Panel (d) illustrates the sample
assembly process with the microtools (red structures) after being pipetted into the sample well (Step
1) and their alignment towards the target cell (for details see Section 2.4); yellow crosses mark the
trap beam positions, dashed blue arrows indicate sample stage movements (Step 2) and dashed green
arrows the optical trap actuations (Steps 3 and 4).

The microtools were made of the photoresist SU-8 (formulation 2007) purchased from Micro
Resist Technology GmbH (Berlin, Germany) together with the SU-8 developer (mr-Dev 600,
Micro Resist Technology GmbH, Berlin, Germany). Their microfabrication was performed with
two-photon polymerization (TPP) with the system described elsewhere [28]. Shortly, the beam of an
ultrashort-pulsed laser (C-Fiber A, Menlo Systems GmbH, Martinsried, Germany, λ = 795 µm, 100 fs
pulse length, 100 MHz repetition rate) was focused into a 20 µm thick photoresist layer supported by a
microscope cover slide (type #1, 24 mm × 40 mm, Menzel-Glaser, TS Labor Kft, Budapest, Hungary);
the focusing objective was a 100X Zeiss Achroplan, oil immersion (NA 1.25, Carl Zeiss Technika
Kft, Budaörs, Hungary). The 3D scanning of the focus within the photoresist layer was carried
out by a piezo stage (P-124 731.8L and P-721.10, Physik Instrumente GmbH, Karlsruhe, Germany).
The illuminated SU-8 layers were processed with the standard protocol: post-exposure bake carried out
at 95 ◦C for 10 min, development in mr-Dev 600 for 5 min 3 times, rinsing in ethanol for 5 min 3 times
and finally drying with a stream of nitrogen. The microtools were removed from their support before
the experiment by mechanical means in the aqueous solution of 0.5 m/m% bovine serum albumin;
they were then pipetted together with this liquid and transferred to the sample containing the cells.

2.2. Cell Culturing

The cells were grown on vertical polymer surfaces (walls), which were parallel to the optical
axis, as shown in Figure 1c. The walls were polymerized into SU-8 layers of about 50 µm thickness,
supported by cover slides (type #1, 24 mm × 40 mm, Menzel-Glaser) using UV mask lithography.
The UV light source was the 365 nm line of a mercury lamp (flood exposure source, model 97435,
Newport, Irvine, CA, USA, dose: 340 mJ/cm2). The such-created walls were ~5 mm long and 100 µm
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wide, positioned at the center of the cover slides. A glass ring of 10 mm height was mounted around the
walls using Norland optical adhesive, thereby creating a well for cell culturing. The hCMEC/D3 human
microvascular cerebral endothelial cells were grown in this well, which was tilted 45 degrees to promote
cell adhesion on the vertical parts of the walls. The cells were cultured in EBM-2 medium (Lonza,
Switzerland) supplemented with EGM-2 Bulletkit (Lonza, Basel, Switzerland) and 2.5% fetal bovine
serum (Sigma, St. Louis, MO, USA) for 3 days before the indentation experiments. The structures,
removed from their support, were pipetted in between these walls into the cell culture medium
together with about 5 µL liquid that did not alter the composition of the growth medium significantly.
The focused beams (red cones in Figure 1c) for the optical trapping passed into the well through its
cover slide support.

2.3. HOT Setup

The cell stiffness was measured with the tailor-made microtools described above. The microtools
were actuated with a holographic optical trap (HOT) system that can create multiple trapping foci
and move them in 3D with high precision, as demonstrated in [12]. In the present experiments, we
created 4 trapping foci forming a square of 14 µm side length and moved them with their mutual
positions unchanged. The HOT system is built on an inverted Nikon microscope (Eclipse TI, Nikon,
Tokyo, Japan) with a continuous-wave fiber laser (λ = 1070 nm, THFL-1P400-COL50, BKtel Photonics,
Lannion, France) as a light source, an Olympus water immersion objective (UPlanSApo 60X, NA = 1.2)
as a focusing element, a motorized microscope stage (ProScan, Prior Scientific, Fulbourn, UK) for
sample translation and a spatial light modulator (PLUTO NIR, Holoeye, Berlin, Germany) to generate
the multiple traps. The total optical power at the entrance of the objective pupil was 270 mW, which,
considering the approximately 50% transmittance of the objective at 1070 nm, resulted in ~34 mW
power for each trapping beam. The sample was observed with an EMCCD camera (Rolera EMC2,
Qimaging, Surrey, BC, Canada).

2.4. Cell Indentation Experiment

The experimental arrangement is depicted in Figure 1c,d. Figure 1c shows the cells grown on
the vertical wall polymerized onto a glass substrate, and the microtool approaching the cells in the
direction which is perpendicular to the wall surface, to the cells surface and to the optical axis of
the trapping objective, and parallel to the supporting glass surface. Figure 1d illustrates the sample
assembly and microtool alignment procedure with the cells already present on the SU8 walls. First,
the microtools, which were collected from their polymerization glass support, were pipetted into the
well containing the cells (see Section 2.2). In the well, the cells were immersed in about 200–300 µL of
Leibovitz’s L-15 medium (Sigma) that kept them vital without CO2 incubation for the approximately
2-h duration of the experiments. At this stage, the structures were scattered randomly on the bottom of
the sample well.

For the measurement of the Young’s modulus, the force that pushes the microtool to the target
cell and the cell indentation need to be determined. For both values, the tool’s position needs to be
measured precisely. The force is calculated from the displacement of the microtool relative to the
trapping foci. The indentation was determined relative to the case when it is pushed against a hard
wall instead of a soft cell. The difference in the movements in these two cases provided the value
of indentation, as described below. In both cases, the microtool was translated in a well-controlled
manner: after taking hold of it with the optical trap, it was elevated from the substrate to about 5–15 µm
above it by defocusing the objective and aligning it with the plane of its four spheres perpendicular to
the optical axis. When elevated, the trap stayed fixed relative to the trapping objective and the sample
stage was moved until a proper target cell arrived in the field of view (sample movement is shown by
the blue dashed arrows on Figure 1d Step 2). Then, with a stationary sample stage, the microtool was
rotated towards the target cell by moving the trapping focal spots, until the microtool’s tip aligned
with the normal of the wall’s surface (with or without the cells on it) (Figure 1d Step 3 and Figure 2a,b).
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After the microtool was oriented towards the cell, selected upon visual inspection, the cell’s silhouette
was brought into focus together with the tool’s tip by the consecutive adjustments of the focusing
objective and the trap position along the optical axis; this ensured that the point of attack on the cell
was seen as a sharp contour. Then, the microtool approached the wall to about 2 µm, moving only
the microscope stage (rough approach), and stopped. In this moment, the tool was situated at about
5–15 µm height from the supporting glass, which ensured that the trapping foci were only minimally,
or not at all distorted by the bottom area of the cell-supporting wall. In step 4, the indentation
experiment commenced, when the optical trap was moved in 10 nm steps towards the wall, using only
the HOT (fine approach), and at each position a bright-field image of the microtool was recorded;
this process resulted in an average speed of 0.05 µm/s. The trajectory of the tip of the microtool was
parallel to the normal of the wall. Before making contact with the wall or the cell, the position of the
microtool and the trap coincided. When the microtool reached the wall, the movement of the trapping
foci continued as before for about an extra 1 µm, but the tool was retarded relative to the trap position.
This retardation provides a force by which the microtool is pushed against the wall or the cell surface.
Finally, the microtool was retracted and positioned to the next available cell. When more than one
indentation experiment was carried out on the same cell, we probed the cell at points that were a few
hundreds of nanometers away from each other. Altogether, 19 measurements were carried out on
6 cells with 4 manipulators.
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Figure 2. Cell indentation experiments and the resulted traces of the microtool’s tip. Panels (a,b)
show a typical snapshot of the cell indentation and the wall approaching experiments, respectively;
the optical axis is perpendicular to the plane of the figure, the white dashed arrows indicate the direction
of the microtool movement during the indentation experiment. The tip position was calculated by
determining the positions of the four handle spheres on the image series taken during the indentation
experiments. (c) shows tip positions from two cell indentation experiments as the function of the
trapping beam position (solid blue and solid red traces). It also shows the result of the trace alignment
procedure when the red trace is aligned to the blue one with the alignment procedure (dashed red).
The inset in (c) shows differences of the red and blue traces during the alignment procedure (see main
text).

2.5. Data Analysis

The position of each microtool during the approach of the cell was determined with a
correlation-based method where the reference was its image at the very first position. The script
was implemented in Matlab, using built-in image processing and 2D cross-correlation functions.
The positions of the four trapping spheres were determined independently. First, a template image
was chosen, which was the cropped image of the selected sphere on the very first frame. Then,
this reference image was compared to all consecutive frames using Matlab’s built-in normxcorr2
function. This function resulted in a correlation matrix for each frame with the same size as the frame
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itself. The maximum of this matrix provides the position on each frame where its similarity to the
reference image is the largest; in other words, this maximum is the new position of the sphere on the
frame. One must pay attention to the fact that normxcorr2 provides this position only to one pixel
size precision, which was 120 nm in our case. In order to find the position with sub-pixel precision,
the values around the correlation matrix maximum value were fitted with a 2D Gaussian function,
and the center of this Gaussian gave the new location of the sphere with sub-pixel precision. Next,
the position of the microtool’s tip was calculated from these sphere position data taking advantage
of the fact that the tool is a rigid structure and that it moves in the focal plane. The reason why the
image of the tip itself was not monitored is that after it makes a direct contact with the cell, the image
becomes distorted and it cannot be used for cross-correlation. At the end of this process, the position
of the tip was determined for all the frames and could be plotted as the function of the trap position,
which changes between frames by 10 nm.

The precision of the correlation-based position determination method was found to be 5.5 nm FWHM
as measured on surface-attached, non-moving microtools. For this, 2000 frames of the surface-attached
microtool was recorded and analyzed with the correlation-based method; in theory, the measured
positions of the four spheres should not change between frames. In reality, small fluctuations were
measured partly due to residual mechanical vibrations and to the imprecision of the calculation of the
correlation. The positions of the tip were determined along as well as perpendicular to the direction
of the optical trap movement; only those attempts were eventually used in the analysis where the tip
movement perpendicular to this direction is negligible (smaller than 50 nm) after the contact.

The result of the image processing is a microtool tip position vs. trapping focus position trace for
each indentation experiment. These traces have two distinct ranges as shown in Figure 2c: the first
one describes the movement before the contact the microtool makes with its target; in this range,
the microtool follows the trap position precisely, so its slope is 1 (reference trace before 2.42 µm in
Figure 2c). After the microtool makes contact with its target (a cell, a wall or a bead, see below), it lags
behind the trap, so the slope of this range becomes less than 1 (reference trace after 2.42 µm in Figure 2c).
Since the contact point did not fall to the same trap position in the consecutive experiments, the traces
needed to be aligned. The cell indentation experiment series and the wall approach experiments
resulted in two distinct sets of traces. The cell indentation traces were aligned to each other with one
alignment procedure, so were the wall approach traces with a separate procedure. In each procedure,
a reference trace was selected from the experiments (usually the first one), and the rest of the traces
were aligned to it. The alignment was based on calculating the variance of the difference of two traces
while one of them (red curve in Figure 2c) was shifted stepwise in respect to the other one that served
as a reference (blue curve in Figure 2c) (the step size was 10 nm). The minimum of the calculated
variances gave the amount of trace shift used for alignment. The inset in Figure 2c shows three of
such difference traces: the dark blue is the case of minimum variance, while the other two have a
variance 3 times larger. After aligning the cell and wall approach experiments, the traces from the wall
experiments were averaged (n = 9), while those of the cell experiments were used individually later to
calculate cell indentation and the displacement of the microtool.

2.6. Trap Stiffness Calibration

For the calculation of the Young’s modulus, the force that the microtool exerted on the cell creating
the measured indentation must be known. This force is calculated as the displacement of the microtool
from the equilibrium position multiplied by the trap stiffness. The microtool’s trap stiffness (km) was
measured with an indirect method. Here, the microtool was pushed against a trapped 9 µm polystyrene
bead of known trap stiffness (kb) and the displacement of the microtool was compared to that of the
bead (Figure 3). First, kb was determined by trapping the bead alone using the equation

1
2

kBT =
1
2

kb
〈
x2
〉

(1)
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where
〈
x2
〉

is the variance of the bead fluctuation determined by video tracking (using 0.5 ms exposure
time), T is room temperature (295K) and kB is Boltzmann’s constant [29]. Then, the microtool was
pushed against the trapped bead and the following equation resulted in the trap stiffness of the
microtool:

km = kb ×
∆xb
∆xm

(2)

where ∆xb and ∆xm are the displacements of the bead and the microtool, respectively. For this
measurement, the tip of the microtool was slightly modified: instead of a sharp tip, it had a flat one;
this modification was micrometers away from the trapped spheroids of the tool, so it did not affect the
trap stiffness.
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Figure 3. Trap stiffness calibration for the cell indenter microtool. Panel (a) shows the optical microscopic
image of the tool (left) and the 9 µm bead (right) during the calibration experiment. The yellow crosses
show the positions of two optical traps, one holding one of the spheroids of the microtool, the other
holding the 9 µm bead. The red crosses show the center of one of the spheroids on the microtool and
that of the bead. The distance of the yellow and red crosses gives the displacement values plotted on
(b).

3. Results

An example for the polymerized microtools we used for the cell indentation experiments is shown
in Figure 1. The four spheres used to hold the tool with the optical tweezers have 6.5 µm diameter and
their centers form a 14 µm × 14 µm square. The apex of its tip has an ellipsoid shape with the smallest
radius of 100 nm and a large one of 500 nm; this shape is inherited from the inherent shape of the basic
building block of TPP. In our calculations, we take an average radius of 300 nm for the microtool tip.
For the trap stiffness measurement, the tip was modified to a 2 µm × 2 µm flat end.

3.1. Trap Stiffness Calibration

In Figure 3a, the tip-modified microtool and a 9 µm bead are shown during the stiffness
measurement. When the microtool is pushed against the bead in 50 nm steps, both the microtool and
the bead are displaced from their equilibrium positions. Since the force that the microtool exerts on
the bead and that the bead exerts on the microtool is equal, Equation (2) can be used to calculate km.
Equation (1) resulted in a kb bead stiffness of 4.5 pN/µm. Figure 3b depicts the averaged bead and
microtool displacements as the function of the trap position. From these curves, km can be calculated
for a range that starts about 0.5 µm after the contact point (between 4 and 5 µm); the obtained microtool
stiffness value is 16.49 ± 2 pN/µm.
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3.2. Endothelial Cells Young’s Modulus

The Young’s modulus was calculated according to the equation used in the literature for indentation
experiments performed with AFM or optical tweezers (Hertz model):

F(dz) =
4E

3(1− ν2)
R1/2

b d3/2
z , (3)

where F is the force at which the indenter is pushed against the cell, E is the Young’s modulus, Rb is the
radius of the indenter surface, dz is the indentation and v is the Poisson number (we chose 0.5) [21,22].
The indentations and the forces (in the form of displacement) were calculated from the microtool
position traces as the function of the trap positions. Figure 4a shows representative raw microtool
tip positions during the cell indentation experiments before their alignment. The individual traces
illustrate that the microtools’ movement changes radically after they made contact with the cells:
they do not follow the movement of the trap but do not stop completely either. After the contact,
the movement continues to be primarily a linear function of the trap position for at least another
500–800 nm of trap movement; in this regime, the tip moves less than 150 nm. In a few cases, the tip
position suddenly increased after about 100 nm tip travel due to an occasional sideway slip on the cell
membrane. Figure 4b shows one aligned tip position trace when pushed against a cell (green curve)
and the average of the traces from the approaches of the hard SU8 walls (red curve). The tip position is
meaningful mainly in the first 400 nm beyond the contact point, where only negligible slipping took
place. In the case of the hard wall, the tips usually do not stop completely but a residual forward
movement remains, which is due to the small sideway movements of the tip on the surface. We believe
that these small slips also took place for the cell experiments, so the extra average forward movement
observed at the walls was used as a “baseline” in the cell indentation experiments: the tip positions
from the cell experiments were compared to this baseline. Figure 4c shows a typical experimental
result of an approach of the hard wall. It is visible that the tip continued to move forward about 20 nm
during the first 400 nm of trap position movement after the contact (between 2.43 and 2.83 µm), while it
slipped sideways at an average of 50 nm.

1 
 

 

Figure 4. Tip position traces for the calculation of endothelial cell’s Young’s modulus. Panel (a)
shows representative raw tip position traces as the function of the trap positions, before alignment,
obtained from individual cell indentation experiments. After the alignment procedure, the tip positions
(b) of the wall approach experiments were averaged for background (red curve), while the cell
indentation traces (an example is shown by the green curve) were used individually to calculate
indentation and displacement. The error bars on the red trace represent standard deviation. At each
trapping beam position, the cell indentation was calculated as the difference between the green and red
curves, and the microtool displacement as the difference between the green curve and the trapping
beam position (dashed light blue curve). Panel (c) shows a tip position movement parallel (blue) and
perpendicular (red) to the trap movement (that is, axis of the microtool) during the tool being pushed
against a hard wall. The inset displays the tip movement along the trap progression (blue line) and
perpendicular to it (red line).
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The two position traces illustrated in Figure 4b were used to calculate the indentation and force
values used in the Hertz model for each individual cell indentation experiment. The indentation is
simply the difference between the tip positions when approaching the cell and when approaching
the wall. The displacement was calculated by first fitting a straight line to the initial part of the cell
approach trace (light blue dashed line in Figure 4b) and then taking the difference between this line
and the tip position after the contact point. Figure 5a shows these two values, the cell indentation
and the microtool displacement as the function of the trap position. The applied force is calculated
from the displacement by multiplying it by the trap stiffness km. The displacement resulted in a force
ranging from 1 to 5 pN, which is below the precision of an AFM. Both traces have a break at the
contact point between 2.4 and 2.5 µm, but produce a large error of about 400 nm after the contact
point. The displacement and indentation values can be measured reliably in the trap position range of
2.5–2.9 µm, therefore the Young’s modulus can be regarded as reliable also only here. We obtained
values ranging from about 220 up to about 1500 Pa (Figure 5b), although between the 2.5 and 2.6 µm
trap positions (corresponding indentation: between 0.01 and 0.02 µm), the values could be determined
with significant noise.
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Figure 5. The measured indentation and displacement data and the Young’s modulus calculated from
them. The indentation (blue line) and displacement (red line) data on panel (a) are calculated from the
aligned traces of the 19 cell indentation experiments as shown in Figure 4b; the error bars represent
standard deviation. The shaded area highlights the reliable range for the two quantities. The inset
shows the individual displacement traces (red) and indentation traces (blue) calculated separately for
the 19 experiments. The Young’s modulus as the function of indentation over the values highlighted in
(a) is shown in panel (b). The blue dots represent all of the approximately 800 individual point pairs
(40 trap positions × 19 experiments), while the red circles are their averages in 60 regions over the
0–0.09 µm indentation range.

4. Discussion

We have designed an optical tweezers-operated microtool specifically to measure the elasticity
of adherent cells in closed microfluidic environments. In contrast to earlier optical trap-based cell
indentation experiments, this tool approaches the target cells laterally which makes the determination
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of its position easier even with simple bright-field video microscopy. In addition, in the trapped
parts of the structures, the four spheroids are more than ten micrometers away from the probe tip,
which ensures that the optical field does not cause photodamage to the cells. The analysis of the
microtools’ position during the indentation experiments revealed that they move in a straight and
continuous way after making contact with the cell, and their position values yield the indentation and
pushing force values in a straightforward manner. The sideways slip of the microtools’ tip in contact
with the cells could be readily detected and excluded from the evaluation based on its magnitude.
Residual sideways tip movements could be compensated for with a control measurement using a hard
wall without cells. The microtools were characterized with 16.5 pN/µm trap stiffness and pushing force
in the 1–5 pN range, comparable to other optical trap-based elasticity measurements but well below
that of an AFM. This force together with the 300 nm tip radius of the microtool yielded the measured
indentation values of up to 90 nm. The operating force range can be easily extended to higher values
with higher trapping laser power and smaller trapping sphere diameters.

We obtained Young’s moduli in the range between 220 and 1500 Pa, depending upon the position
of the trapping beam, consequently on the amount of indentation; the noise of the Young’s modulus,
however, remarkably increases with the decrease in the indentation. These values are comparable
to those measured by AFM on bovine aortic endothelial cells (700–2.7 kPa [30]), on pulmonary
artery endothelial cells (400–1500 Pa [31]), on human umbilical vein endothelial cells (HUVEC)
(350–4000 Pa [21]) or by magnetic tweezers on HUVEC (400 Pa [32]). It is noticeable that the values
for the AFM-derived Young’s modulus can easily vary an order of magnitude across the literature
for the same type of cell. For endothelial cells, values anywhere from ~200 to ~5000 Pa can be found;
our measured Young’s modulus falls to the lower regime with a few hundred Pa. The main reasons
for this broad range can be found in the measurement conditions: mainly in the rate and amount of
indentation, and in the shape of the object the indentation is realized with.

It was shown that increasing the indentation rate increases the apparent Young’s modulus due
primarily to viscous effects [20,33]. The typical loading rates used in an AFM measurement span from
100 pN/s [20] to tens [33] or hundreds of nN/s values (exerting 1 nN force with 0.5 kHz frequency of
the AFM cantilever [34]). Our optical tweezers approach experiment lasts about 60 s, where during
only the last 5–6 s does the tip actually hit the cell. Considering the averaged maximum of 60 nm
indentation and that by the end of this period the force increases to an average of 6 pN, it yields an
indentation rate as low as 0.01 µm/s and a loading rate of about 1 pN/s, which is orders of magnitude
smaller than those of AFM. For Mathur and co-workers, the lower limit for viscous dissipation was
at 0.25 µm/s probe velocity [33]. We are confident that at the observed low-indentation rate viscous
effects do not play any role in measuring the Young’s modulus in our experiments.

In the papers of Vargas-Pinto and Mathur [21,33], the authors also showed that the higher the
indentation, the lower the Young’s modulus, similarly to our results (Figure 5b). The amount of
indentation, which for us was up to 90 nm, is in the lower regime of what was obtained with AFM
or optical tweezers [21,24]; it is very likely that with this low value, we mainly measure the elastic
properties of the cell membrane and not the complex characteristics of the underlying actin network.
The measurement error of Young’s modulus increases significantly below 30 nm indentation. It is
believed that this noise is primarily due to thermal fluctuations and the increase in the relative error
when using small indentation and force values in Equation (3). However, the larger E for lower
indentations is elsewhere argued to originate from the nonlinear elasticity of the cell [33]; it is beyond
the scope of this paper to study the nonlinear phenomenon in detail. The third important parameter
is the shape of the intender. Vargas-Pinto et al. reported on using AFM tips with radii of curvature
from 20 nm to 5 µm for endothelial cell indentation [21]. They found that while the sharp tip yielded
a value of 3.8 kPa for the Young’s modulus, the 5 µm one yielded only 350 Pa for the same type
of cell. Similarly, Harris and co-workers found that pyramidal sharp tips can measure double the
Young’s modulus of that measured with spherical (r = 7.5 µm) tips (800 vs. 400 Pa) on MDCK cells [35].
Chiou and co-workers also observed a more than two-fold increase in the Young’s modulus value for
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mouse fibroblast cells when they compared sharp pyramidal tips with flat top (diameter of 1.8 µm)
and spherical (sphere r = 2.5 µm) tips [36]. The tip of our microtool has a radius of 300 nm on average,
which is much larger than that of the conical AFM (r ≈ 10 nm) tips and comparable to those used for
optical tweezers indentation (r = 0.4–1.5 µm); this size also points towards measuring Young’s moduli
in the lower few hundreds of the Pa regime with our microtool.

In conclusion, the measurement of a cell’s Young’s modulus requires a careful approach in order
to obtain reliable results. Even with one technique, one can measure very different values depending
on the measurement parameters. The solution probably lies in what one actually wants to measure.
If one is interested in the pure linear elastic properties of the cell, it is believed that the use of large
radius of curvature indentation surfaces, small indentations (with small forces) and small loading rates
is more appropriate to characterize specifically that. Optically micro-manipulated polymer structures
should ideally operate in this regime.
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ABSTRACT: Targeting nanoparticles as drug delivery platforms is crucial to
facilitate their cellular entry. Docking of nanoparticles by targeting ligands on
cell membranes is the first step for the initiation of cellular uptake. As a
model system, we studied brain microvascular endothelial cells, which form
the anatomical basis of the blood−brain barrier, and the tripeptide
glutathione, one of the most effective targeting ligands of nanoparticles to
cross the blood−brain barrier. To investigate this initial docking step
between glutathione and the membrane of living brain endothelial cells, we
applied our recently developed innovative optical method. We present a
microtool, with a task-specific geometry used as a probe, actuated by
multifocus optical tweezers to characterize the adhesion probability and
strength of glutathione-coated surfaces to the cell membrane of endothelial
cells. The binding probability of the glutathione-coated surface and the
adhesion force between the microtool and cell membrane was measured in a
novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same
time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic
force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be
suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements
in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of
nanoparticles initiating transcytosis and select ligands to target nanoparticles.

KEYWORDS: functionalized microtool, optical tweezers, targeted nanoparticle, brain endothelial cell, atomic force microscopy,
adhesion force, live cell measurements

■ INTRODUCTION

Functionalization of nanoparticles (NPs) with targeting ligands
is crucial to facilitate the tissue/organ-specific cellular entry of
these novel drug delivery platforms.1 Functionalized nano-
carriers are also protected against removal from the circulation
by the kidneys and the reticuloendothelial system of the liver
and spleen.2 The blood−brain barrier (BBB) is the major
obstacle that prevents potential neuropharmaceuticals to reach
their targets in the central nervous system.3 Thus, designing
targeted NPs to increase the brain entry of drugs across the
BBB, called as Trojan horse mechanism, was the main focus of
NP research in the last decade.4 A wide variety of ligands or
antibodies specific to BBB receptors5−9 or carriers10−13 were
tested on cell culture models and in animals as promising
targeting molecules to elevate the efficiency of BBB crossing.
Among them, the tripeptide glutathione (GSH) is one of the
most successful BBB-specific targeting ligands.14 The trans-
porter(s) of GSH at the brain microvasculature has not been

identified; it is assumed that it belongs to sodium-dependent
carrier-mediated transport systems.14 Liposomes targeted with
glutathione attached to a polyethylene glycol linker (PEG-
GSH) and loaded with doxorubicin15,16 and methylpredniso-
lone17 have been tested in pilot clinical studies.
Targeting ligands initialize the docking of NPs to the cell

surface, which is the first step of the endocytic mechanisms.18

Docking of NPs to the membrane of cells initiates dynamic
physicochemical interactions between the NPs and the cells.19

The adhesion of the targeting molecules on the surface of NPs
to their specific cellular receptors or carriers leads to
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conformational changes and invaginations in the plasma
membrane. These will lead to the formation of clathrin-,
caveolin-, or noncoated vesicles that help NPs enter the cells
via different endocytic pathways.20 The intracellular fate of
NPs will be determined by several biological factors and will
ultimately lead to (retrograde) exocytosis, degradation in
lysosomes, or transcytosis.21,22 Therefore, characterization of
this adhesion step is important for understanding how the
transcytosis of NPs begins, and measurements of this initial
docking can be novel tools to select ligands to target NPs.
The force that builds up during the adhesion step depends

on the type and properties of targeting ligands and the
characteristics of their interactions with their plasma
membrane receptors.23,24 The interaction between the NP-
targeting ligand and the cells is classically characterized with
atomic force microscopy (AFM).25 Here, either the AFM tip
itself (sharp or large diameter spherical) is labeled with the
targeting molecule, or functionalized NPs are attached to the
tip and adhesion is measured between the cell surface and the
functionalized tip. For targeted NPs, molecular recognition
force spectroscopy provides a tool to characterize the effect of
ligand type and density on the adhesion probability and
unbinding force between the targeted NPs and cells.25 In
general, the binding force between the ligand or targeted NPs
and the cells measured by AFM is in the range of 20−60
pN.26−28 It must be noted that the sensitivity of the AFM
technique limits it to measure forces above ∼10 pN,29 which
makes the force values close to this range less reliable and the
ones below it unmeasurable.
An optical trap (OT), on the other hand, can measure forces

in the 0.1−100 pN range with great accuracy,30 thus
completing the force range of AFM and allowing to observe
weaker interactions. OT has become an important tool in
single-cell studies, and various measurement arrangements are
used. The membrane properties of surface-adhered cells are
commonly probed with microbeads actuated with optical
tweezers in an axial direction since the apical membrane is
perpendicular to the optical axis of the system when the cells
are cultured on a glass substrate.31−33 The optical forces,
however, are about a factor of 5 times smaller in the axial
direction than in the lateral direction.30 Recently, we
introduced an alternative arrangement to probe cell elasticity
using task-specific complex microtools prepared by the
technique of two-photon polymerization and actuated by
holographic optical tweezers (HOT).34 The new experimental
arrangement enabled us to measure mechanical forces acting
on cultured live cells perpendicular to the cell membrane but
with the optical probe moving perpendicular to the optical axis.
The cells in this arrangement were grown on walls with
surfaces parallel to the optical axis (vertical walls) enabling
their approach in a lateral direction (Figure 1). The method
allows exerting higher optical force on the probe and a more
accurate position determination. Furthermore, using micro-
tools, we can keep the potentially harmful intense trapping
beam even tens of micrometers away from the probed cells, a
distance much larger than with microbeads. We successfully
used this arrangement to probe endothelial cell stiffness and
obtained Young’s modulus values comparable to those
measured with AFM and axially executed OT measurements.
Here, we report the application of this method to study the

adhesion force between brain endothelial cells and GSH, a
reference targeting ligand of vesicular NPs. We characterized
the binding of glutathione to living brain endothelial cells with

GSH-coated polymer microtools. We measured the binding
probability and the adhesion forces of functionalized micro-
structures to cultured human and rat brain endothelial cells.
We compared the results of the OT-based technique with
AFM measurements and found that the observed values are in
accordance with the force ranges reported in the literature for
ligand−receptor interactions.

■ RESULTS AND DISCUSSIONS
Based on our recently developed optical tweezers method, the
major aims of this study were (i) to directly measure and
characterize the specific adhesion forces between the targeting
ligand GSH and the membrane of living brain capillary
endothelial cells via optically actuated microtools and (ii) to
compare the HOT method with AFM measurements. To
complement the biophysical measurements and validate the
efficiency of NP targeting, we also tested the uptake of NPs
labeled with PEG-GSH or PEG linker on cultured brain
endothelial cells.

Uptake of Targeted Vesicular Nanoparticles. We
prepared vesicular nanoparticles, the so-called niosomes,
from nonionic surfactants and cholesterol as detailed in our
previous investigations.11,12 Niosomes are biodegradable,
stable, and nonexpensive vesicular NPs with versatile
applications.35 Niosomes were functionalized with PEG-GSH
as a targeting ligand (Figure 2a). The PEG linker was used in
the control group. The cargo of the NPs was a fluorescent
biomolecule, bovine serum albumin labeled with Evans blue
dye (EBA; 67 kDa). The average diameters of the nanovesicles
were 100.97 and 122.80 nm for the control (N-PEG) and
targeted (N-PEG-GSH) groups, respectively. We measured a
relatively narrow size distribution by dynamic light scattering,
indicated by polydispersity index values below 0.18 in both
groups (Figure 2b). The zeta potential (characterizing the
surface charge density) of both groups was slightly negative,
with N-PEG-GSH nanovesicles displaying a more negative
value (−6.19 mV). These data indicate that our niosomes have
optimal physicochemical properties to facilitate brain drug
delivery.36

Figure 1. Schematic drawing of a novel method to measure the
adhesion force between living brain endothelial cells and artificial
surfaces of nanoparticles functionalized with the targeting ligand. The
cells are grown on the walls of a block polymerized out of SU-8
photoresist. The microtool (dark-gray structure) held and translated
with multibeam optical tweezers (represented as red cones) probes
the cells situated on the vertical walls. The axes of the cones are
parallel to the optical axis of the system.
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Using well-characterized culture models of the BBB,37 an
increase in the uptake of the targeted N-PEG-GSH niosomes
was seen in both primary rat brain endothelial cells (RBEC)
and human cerebral microvascular endothelial cells (hCMEC/
D3) (158 and 186%, respectively) compared to the non-
targeted N-PEG group (Figure 2c).
These results confirm that PEG-GSH is an effective targeting

ligand, which can significantly elevate cargo delivery in the
brain endothelial cells, in agreement with our previous
studies11,12 and literature data.38,39

Confirmation of the Presence of GSH on SU-8
Surfaces. The surface coverage of GSH on differently
functionalized SU-8 blocks was verified by fluorescence and
confocal microscopy (Figure S1). We used the amine-reactive
CY5 dye that can bind to the primary amine of GSH. Negative
controls were the PEGylated and acid-treated SU-8 surfaces;
positive controls were PEG-bisamine-treated SU-8 surfaces.
For all samples, fluorescence intensities were determined from
the middle, homogeneous section of each block image in the
field of view. The pixel intensity values on the wide-field
fluorescent images were first corrected with the background
intensity measured on the glass surface next to the SU8 blocks
and then averaged; the averaged intensities corresponding to
the same kind of treatment were normalized with the positive
control’s values. On the confocal microscopy images, the
background was negligible; so, the intensity values were just
averaged and normalized. With both microscopy methods, the
GSH-functionalized SU-8 blocks showed significantly higher

fluorescence than the acid-treated or PEGylated ones but
noticeably smaller than the PEG-bisamine-treated ones. The
positive control images indicate that the CY5 dye preferentially
binds to surface amine groups.
The integrated fluorescent intensity of the image of a single

CY5 molecule resulted in a 200 ± 40 pixel intensity unit (n =
71) (see Supporting Information, Figure S1j). The measured
fluorescence intensity for each pixel (imaging an area of 100
nm × 100 nm in the sample) on the GSH-coated layer was
6700 ± 350 (n = 7) and on the PEGylated sample 1800 ± 220
(n = 21). Integrating these pixel intensity values over a square
micrometer and dividing the result by the integrated intensity
of a single CY5 gives a surface coverage value of 2500 ± 770
molecule/μm2. Assuming that every GSH binds one CY5
fluorophore, this results in about 2500 molecules of GSH over
every square micrometer on the SU8 surface. The higher
fluorescence of the GSH-functionalized surfaces as compared
to the PEGylated ones demonstrates that GSH was
immobilized on the SU-8 surface with the PEG-maleimide
linker.

Binding of GSH-Functionalized Surfaces to the
Plasma Membrane of Living Brain Endothelial Cell
Monolayers. Before measuring the binding force between
PEG-GSH-functionalized surfaces and cell membranes, we
carried out experiments with simple polymerized ellipsoids on
two types of brain endothelial cell monolayers, the rat primary
RBEC and the human hCMEC/D3, to shed light on the
binding probability between the two functionalizations, namely

Figure 2. (a) Schematic drawing of PEGylated (N-PEG)- and PEGylated glutathione (N-PEG-GSH)-targeted vesicular nanoparticles loaded with
Evans blue-albumin (EBA) cargo. (b) Main physicochemical properties of nanoparticles. (c) Uptake of EBA-loaded N-PEG and N-PEG-GSH
nanoparticles in primary RBEC and hCMEC/D3. Values presented are means ± SD. Statistical analysis: ANOVA followed by Bonferroni posttest;
***p < 0.001; n = 6 for each group.

Figure 3. Binding probability of PEGylated (PEG) and glutathione-functionalized (PEG-GSH) SU-8 ellipsoids (a) to cultured primary RBEC and
(b) to hCMEC/D3 (NRBECPEG = 118, NRBECPEG‑GSH = 159, NhCMEC/D3PEG = 41, and NhCMEC/D3PEG‑GSH = 64). (c) Binding probability of sharp
functionalized atomic force microscope tip to hCMEC/D3 cells; NPEG = 42 and NPEG‑GSH = 124.
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PEG-GSH versus PEG (Figure 3a,b). The expected outcome
of this experiment was that PEG-GSH-coated SU-8 structures
bind to these cells with a significantly higher probability than
PEGylated ellipsoids. The probability was expressed as the
percentage of the number of binding events relative to the total
number of trials. We carried out these measurements with our
HOT setup, using cells grown on a horizontal glass surface
rather than on the vertical SU-8 walls, like in the adhesion
force experiments. For both cell types, we performed at least
two series of binding attempts on different cultures and
different days.
A clear distinction was observed between the binding

probabilities of the GSH-functionalized ellipsoids relative to
the control, PEGylated structures; in the case of primary
endothelial cells, when GSH was present, the ellipsoids bound
to the cells with 81% probability as compared to 14% in the
absence of the cell-targeting ligand. In the case of the hCMEC/
D3 cell line, the GSH-promoted binding event reached a 93%
probability compared to the 12% value in the control group
without GSH. Similar results were obtained with the AFM
measurements where PEGylated, sharp tip AFM cantilevers
showed no binding to hCMEC/D3 cells, while the GSH-
coated ones gave 94% binding probability (NPEG = 42,
NPEG‑GSH = 124). These results indicate that the surface of
both human and rat brain endothelial cells preferentially binds
GSH-coated surfaces. The increased docking may explain the
higher cellular entry observed in our present experiments
(Figure 2c) and uptake and transcytosis across the BBB
models.11,12,38

Adhesion Force Measurements. After we demonstrated
that the GSH-coating increased the binding probability of SU-
8 structures and sharp tip AFM cantilevers to brain endothelial

cells, we carried out adhesion measurements with our HOT
setup to quantify the binding force. For these tests, optically
actuated microtools with flat contact surfaces were used on
cells that were grown on vertical SU-8 cell-supporting walls. At
least two individual experiment series were run with each cell
type on different days and cell cultures. The key step of these
experiments is the retraction of the microtools by stepping the
trapping focuses after they were pushed against the cell surface.
These retractions were carried out with two different step sizes:
50 and 250 nm. The reason for this was to check if the
retraction speed has any influence on the adhesion force. The
time between the steps was kept constant due to technical
reasons [fixed spatial light modulator (SLM) frame rate].
Representative adhesion curves are shown in Figure 4, where

a significant difference could be observed between the traces
recorded with GSH-coated microtools and those obtained with
the PEGylated tools. It is clearly visible on the curves that at
the very beginning of the retraction (trap position = 0 μm), the
microtool is pushed against the cells with <30 pN optical force,
which slowly and linearly decreases as the microtool is pulled
back. At a certain trap position, the pushing force switches to
pulling force if adhesion is present (Figure 4b,d), otherwise the
microtool just detaches from the cell surface and no pulling
force acts on the cell membrane (Figure 4a,c). In the case of
adhesion, the cell membrane is pulled by the microtool up to a
certain trap position, where their bond ruptures and they
detach from each other returning the optical force to zero. The
adhesion force is defined as the optical force at the rupture
position. Interestingly, there is no apparent correlation
between the magnitude of the adhesion force and that of the
initial pushing force at zero trap position (see Figures S2 and
S3).

Figure 4. Representative optical force curves measured on brain endothelial cells with two kinds of surfaces. In the left column, force curves
obtained with PEGylated (PEG) microtools on (a) RBEC and (c) hCMEC/D3 cell monolayers are shown. In the right column, two curves
measured with glutathione-functionalized (PEG-GSH) microtools are shown for (b) RBEC and (d) hCMEC/D3 cells; all measurements were
done with 50 nm step size. Vertical dashed lines mark the trap position where the retracted structure detaches from the cell without adhesion (c)
and when the pushing force turns to pulling force in case of adherence (d). The graphs show a strong interaction between the microtool and the
cells when GSH was present.
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Figure 5 summarizes the adhesion forces obtained with the
peptide targeting-ligand-coated and with the PEGylated
microtools on brain endothelial cells using two step sizes.
The average adhesion force was always significantly higher
when GSH was present than when it was omitted, and the ratio
of the average measured adhesion forces between the two
functionalization groups could be as high as 8. In the case of
the GSH-coated structures, the difference between the 50 nm
step size values and those recorded with 250 nm step size was
not found to be statistically significant. When the smaller step
size was used (Figure 5a), the average adhesion force for GSH-
functionalized microtools was 12.1 ± 9.5 pN (N = 14) on
RBEC cells and 10.2 ± 7.2 pN (N = 17) on hCMEC/D3 cells,
whereas in the case of the PEGylated microtools, that is, our
control group, it was 3.4 ± 4.9 pN (N = 16, RBEC) and 3.8 ±
3.2 pN (N = 11, hCMEC/D3). With 250 nm step size (Figure
5b), we measured 9 ± 6.6 pN adhesion force for RBEC cells
(N = 18) and 16.4 ± 6 pN for hCMEC/D3 (N = 10) cells
when the targeting ligand GSH was present, while for
PEGylated microtools, the adhesion forces were only 2.2 ± 3
pN (N = 16, RBEC) and 2 ± 4.3 pN (N = 24, hCMEC/D3).
The large standard deviation values are due to the inclusion of
the zero adhesion force values in the overall calculation.
We also performed adhesion experiments with GSH-

functionalized AFM cantilevers where instead of a sharp tip,
a spherical probe with a 5 μm radius was attached to the end of
the cantilever (Figure 5c). The contact area of this probe is
comparable to that of our optically actuated microtool. The
applied loading force was 100 pN, the dwell time toward the
surface was 1 s, and the retraction speed was varied between
0.5 and 5 μm/s. The average of the adhesion forces measured
with AFM is 3−6 times larger than those measured with the
HOT (for RBEC: 38 ± 18 pN, for hCMEC/D3: 57 ± 28 pN,
N = 247 for both cases). The possible reasons for this could be
(i) that the larger force, almost an order of magnitude higher,

with which the sphere is pushed against the cell by the AFM
cantilever (10−30 pN for HOT, 100 pN for AFM) is
generating a larger number of bonds and (ii) that the detection
level of the AFM is about 10 pN and only those measurements
were taken into account, which resulted in an adhesion force
larger than this value. In accordance with our observations, an
interaction force of 20−60 pN was also measured by AFM
between the carbon nanotubes targeted with folic acid and T24
cancer cells, depending on the loading rate.27 The fact that the
optical trapping-based method yields adhesion force values in
the same range as the more standard AFM, reassures us that it
is an effective tool to characterize ligand binding to cell
membranes. Moreover, it has the additional benefit of higher
sensitivity, being capable of measuring in the 1−10 pN range.
Although, GSH proved to be an effective targeting ligand of

NP-aided drug uptake, little is known about the details of
GSH-aided adhesion to the cell membrane. To our knowledge,
our optical micromanipulation-based method is the first to
measure the adhesion force between a GSH-coated surface and
living brain endothelial cells. The optical trap has already
helped in measuring the ligand−receptor binding force on
cells, such as the Notch1 protein and Delta-like 1 (Dll1)
protein binding40 or claudin on epithelial-like human breast
adenocarcinoma MCF-7 cells and its ligand, Clostridium
perfringens enterotoxin (c-CPE).41 Shergill and co-workers
used Dll1-expressing cell lines and microbeads coated with the
ligand-binding domain of the Notch1 protein to measure the
adhesion force in an arrangement where the beads approached
the cells with a lateral movement a few micrometers above the
substrate. The measured typical rupture forces were in the
range of 0−40 pN, and it was determined that a single bond is
broken with 19 pN force on average. Reisenberg and co-
workers measured the adhesion between MCF-7 cells
expressing claudin-3, -4, and -7 and c-CPE-coated microbeads
held 10 μm above the glass surface with optical tweezers and

Figure 5. Adhesion force between the PEGylated (PEG) or glutathione-functionalized (PEG-GSH) surface of microtools and RBEC or hCMEC/
D3 measured with (a) 50 and (b) 250 nm step size. Values presented are means ± SD. Statistical analysis: ANOVA followed by Bonferroni
posttest; *p < 0.05; **p < 0.01; ***p < 0.001 compared to PEG groups in each column; for 50 nm step size: NRBECPEG = 16, NRBECPEG‑GSH = 14,
NhCMEC/D3PEG = 11, and NhCMEC/D3PEG‑GSH = 17 and for 250 nm step size: NRBECPEG = 16, NRBECPEG‑GSH = 18, NhCMEC/D3PEG = 24, and
NhCMEC/D3PEG‑GSH = 10. (c) Adhesion force between PEG-GSH-functionalized colloidal probes and the surface of RBEC or hCMEC/D3, as
measured with AFM. Red circles represent individual measurements (N = 247 for both cell types), blue squares are their means, and blue lines are
the SD.
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made lateral attachment tests on the cells; the measured
rupture forces fell between 5 and 30 pN. Our results for the
adhesion forces of the GSH-coated surfaces toward brain
endothelial cells are in the 10−15 pN range, which fits in the
force range of the above ligand-binding experiments.
Furthermore, the interaction was also shown to be specific
because without GSH, the average nonspecific adhesion force
was just 2−4 pN. This value of the adhesion force suggests a
single bond rupture event. In our functionalization protocol of
the SU-8 microtools, PEG-maleimide binds GSH covalently by
the thiol group of its cysteine. From this, we can assume that
the tripeptide’s cysteine is not playing a role in the adhesion
that precedes the uptake of the GSH-targeted niosomes.
The above ligand-binding OT experiments,40,41 similarly to

ours, used arrangements where the trapped probe beads move
laterally, which permits to achieve larger forces and the bead
position can be measured more precisely. In these experiments,
however, the cells extend several micrometers above the
substrate, which is necessary for being tested with the lateral
motion of simple microbeads. Our approach, with cells grown
on vertical walls and using extended microtools, involves two
main improvements: first, flat cells can also be measured with
the lateral movement of the microtool, and second, the intense
trapping laser focus can be moved away from the cells even by
tens of micrometers to prevent photodamage. Adhesion force
measurements are the most meaningful when the cell
membrane is approached from the direction of its normal,
which, in the case of flat cells, is the normal of the supporting
substrate too. Brain endothelial cells have a maximum of 1.5−2
μm thickness in the perinuclear region when cultured on a flat
substrate,42 which makes such an approach impossible with
lateral movement on a horizontal substrate. The requirement
to move the trapped microtool laterally and at the same time
along the normal of the support naturally suggested the
proposed arrangement with the endothelial cells cultured on a
vertical wall (parallel to the optical axis) and the microtool
moving horizontally toward this support. The presented
adhesion force measurement method can easily be utilized
for other types of cells with heights smaller than a few
micrometers or even for model membranes. The only
requirement is that the surface of the wall needs to be
biocompatible, which supports cell culturing.
A promising way to further investigate GSH binding in the

future is the removal of the cells’ glycocalyx to expose
membrane receptors or transporters in higher numbers, as well
as to study the importance of surface charge in the docking
process. We have successfully manipulated and measured the
negative brain endothelial surface charge on cell layers cultured
in a lab-on-a chip device,43 which is known to affect BBB
permeability. Indeed, we have demonstrated that making brain
endothelial surface charge more positive by neuraminidase
enzyme treatment or cationic lipid treatment increased the
targeted nanoparticle uptake.11 In these future experiments, the
number of bonds is expected to increase, and the optical forces
may not be strong enough to break them. If this happens, the
lower surface coverage of the ligand molecule needs to be used
or the interaction area of the probe part of the microtool needs
to be reduced with a minor structural modification to limit the
number of ligand−receptor bonds to only a few. Furthermore,
our proof-of-concept measurement method can be extended in
the future to increase the number of binding tests with the
modification of the measurement protocol without significantly
increasing measurement time. Finally, with the slight change of

the microtool coating protocol, namely using different
functional PEG linkers, a wide range of ligands can be
attached to it and characterized with the perspective of
interaction with live cells.

■ CONCLUSIONS
We reported for the first time GSH binding forces to brain
endothelial cells using a novel HOT-based adhesion force
measurement method. This method uses optically actuated
microtools prepared specifically for this task with two-photon
polymerization that are safer than trapped microbeads to use
on the tested cells. This laser microfabrication method allows
an easy way to change the geometry of the tool if the
measurement methodology changes. We used our special cell-
culturing method introduced earlier, where the tested cells
were grown on photopolymerized walls that are parallel to the
optical axis of the optical trapping system. This arrangement
allowed us to measure adhesion forces on flat cells by
approaching them with lateral movement of the trapped
microtool. The measured force values fall into the 10−15 pN
range and show definite specificity toward glutathione: without
GSH, the adhesion forces are significantly, 3−8 times, smaller.
These adhesion forces coincide with those found in the
literature for other ligand−receptor pairs measured reliably
with optical tweezers. The throughput of this novel measure-
ment can be extended in the future that may help differentiate
between single and multiple binding events and to select novel
BBB targeting ligands based on the strength of the binding
interaction.

■ MATERIALS AND METHODS
Materials and Reagents. All reagents were purchased from

Sigma-Aldrich Kft. Hungary (part of Merck Life Science), unless
otherwise indicated.

Preparation of Targeted Vesicular Nanoparticles. For the
synthesis of PEGylated glutathione (PEG-GSH), 13.5 mg of
glutathione (0.044 mM) was reacted with 100 mg of N-[(3-
maleimide-1-oxopropyl) aminopropyl polyethyleneglycol-carbamyl]-
distearylphosphatidyl-ethanolamine (DSPE-PEG-MAL, 0.035 mM,
SUNBRIGHT, NOF Europe, Belgium) in 0.1 M ammonium acetate
for a day under nitrogen.11 Vesicular nanoparticles, niosomes, were
prepared from nonionic surfactants as described in our previous
papers,11,12 with minor modifications. Nonionic surfactants Span 60
(sorbitane monostearate) and Solulan C24 (cholesteryl-poly-24-
oyxyethylene-ether, Chemron Co., USA), as well as cholesterol,
were dissolved in hot chloroform and ethanol (1:2) in a round-
bottom flask. In the case of targeted nanovesicles (N-PEG-GSH,
Figure 2a), PEG-GSH was added to the hot mixture at a
concentration of 5% (w/w) of the total lipid. For the control, that
is, PEGylated nanovesicles (N-PEG, Figure 2a), DSPE-PEG-MAL
was added to the lipid mixture [5% (w/w) of total lipid] before the
dissolving step. The removal of organic solvents from the samples by a
vacuum pump yielded a thin lipid-film layer. The dry lipid film was
hydrated with phosphate-buffered saline (PBS; KCl 2.7 mM, KH2PO4
1.5 mM, NaCl 136 mM, Na2HPO4 × 2 H2O 6.5 mM; pH 7.4)
containing Evans blue-bovine serum albumin complex (EBA, 67 kDa;
0.167 mg/mL EB, 10 mg/mL BSA). The mixture was heated at 45 °C
in a water bath and sonicated for 25 min. The suspension was forced
through a polycarbonate filter (Whatman filter, 13 mm, 100 nm pore
size) by the lipid extrusion technique (high-pressure thermobarrel
extruder, Lipex Biomembranes Inc. USA) to yield vesicles. The non-
entrapped cargo was removed by ultracentrifugation (123,249 g, 6 h,
4 °C); the pelleted nanoparticles were resuspended in phenol red-free
DMEM/HAM’s F-12 medium (Gibco, USA).

Characterization of Targeted Vesicular Nanoparticles.
Particle size, polydispersity index (PDI), and zeta potential of
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niosomes were measured by dynamic light scattering (Malvern
Zetasizer Nano ZS, UK). Before measurements, samples were diluted
in PBS to a final concentration of 2 mg/mL. Means were calculated
from the average of at least 3 × 13 measurements per sample.
Cell Culture. Primary Rat Brain Endothelial Cells. Isolation and

culture of primary RBEC were performed according to the method
described in our previous studies.44,45 After isolation, the brain
microvessels were seeded onto culture dishes (Corning Costar, USA)
coated with collagen type IV (100 μg/mL) and fibronectin (25 μg/
mL) and were cultured in DMEM/HAM’s F-12 (Gibco, USA)
supplemented with 15% plasma-derived bovine serum (PDS, First
Link, UK), 10 mM HEPES, 100 μg/mL heparin, 5 μg/mL insulin, 5
μg/mL transferrin, 5 ng/mL sodium selenite (ITS, Pan Biotech,
Germany), 1 ng/mL basic fibroblast growth factor (bFGF, Roche,
Switzerland), and 50 μg/mL gentamicin. During the first 3 days of
culture, the medium of RBEC also contained 3 μg/mL puromicin to
eliminate P-glycoprotein negative, contaminating cell types.37 After
the first 3 days of RBEC cultures, the amount of PDS was decreased
from 15 to 10% in the culture medium.

Human Cerebral Microvascular Brain Endothelial Cell Line. The
human brain endothelial cell line, hCMEC/D3, was purchased from
Merck Millipore (cat. no. SCC066). Cultures of hCMEC/D3
(passage number ≤35) were grown in MCDB 131 medium (Pan-
Biotech, Germany) supplemented with 5% fetal bovine serum (Sigma,
Darmstadt, Germany), GlutaMAX (100×, Life Technologies, USA),
lipid supplement (100×, Life Technologies, USA), 10 mM HEPES, 5
μg/mL insulin, 5 μg/mL transferrin, 5 ng/mL sodium selenite
supplement (ITS; 100×, Pan-Biotech, Germany), 100 μg/mL
heparin, 10 μg/mL ascorbic acid, 550 nM hydrocortisone, 1 ng/mL
bFGF (Roche, Switzerland), and 50 μg/mL gentamicin. Before each
experiment, the culture medium of the hCMEC/D3 cells was
supplemented with 10 mM LiCl for 24 h to improve barrier
properties.37

Cellular Uptake of Functionalized Nanovesicles. For
quantification of cellular uptake, RBEC and hCMEC/D3 cells were
seeded into 24-well plates (Corning Costar, USA) at the
concentration of 3 × 104 cells/well. Confluent monolayers were
treated with 10 mg/mL N-PEG or N-PEG-GSH nanoparticles diluted

Figure 6. (a) Scanning electron microscopy (SEM) image of the microtool used for the experiments. Scale bar: 1 μm. (b) SEM image of the
contact surface of the microtool. Scale bar: 1 μm. (c) Schematics of the sample used in the experiments and the sequence of microtool alignment
for adhesion measurement; for details, see main text. (d) Image sequence from the record of a typical adhesion experiment (the retraction process).
The red crosses show the trap positions, and the blue dots mark the centers of the microtool’s spherical handles; scale bar: 5 μm. Below each image,
a corresponding schematic side view drawing shows the relative positions of the trapping beam and the microtool. The dark red line shows trap
position (T) and the black dotted line that of the manipulator sphere’s center (M).
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in the respective culture medium of each cell type at 37 °C for 4 h.
After incubation, cells were washed 3 times with ice-cold PBS
supplemented with 0.1% BSA, once with an acid-stripping buffer
(glycine 50 mM, NaCl 100 mM, pH 3) to remove cell surface-
associated nanovesicles, and once with PBS. Finally, the cells were
lysed in distilled water containing 10 mg/mL Triton X-100 detergent,
and the fluorescent signal of EBA cargo was quantified with a
spectrofluorometer (Horiba Jobin Yvon Fluorolog 3, USA) at 584 nm
excitation and 663 nm emission wavelengths.
Preparation of Cell-Supporting Vertical Walls. To grow cells

on a vertical surface, we must use an appropriate supporting structure
and coat it with adhesion promoters to increase the cell density and
cell confluency. We used UV-mask-lithography to make approx-
imately 100 μm tall, 100 μm wide, and 5 mm long walls out of the SU-
8 photopolymer (MicroChem, USA) as supporting structures over the
center of a circular 24 mm diameter cover slip (VWR, USA)
according to the standard SU-8 process flow. An SU-8 layer was first
spin-coated onto the cover slip, which was then illuminated through
the mask with a UV photolithography flood exposure source (λ = 365
nm, dose: 5000 mJ/cm2, model 97435, Newport, USA) baked at 100
°C for 10 min and developed in PGMEA (Micro Resist Technology
GmbH, Germany). The coverslip with the SU-8 wall on it was
mounted onto a 35 × 10 mm cell-growing Petri dish (Greiner Bio
GmbH, Germany) that had a 20 mm hole at its bottom, using
Norland 68 (Norland Ltd, USA) optical glue. The Petri dish equipped
with the cover slide and the SU-8 walls (Figure 6c) was coated with
growth factor-reduced Matrigel (Corning Costar, USA). The RBEC
and hCMEC/D3 endothelial cells were seeded on and around the
wall region (1.5 × 105 cells/cm2) and cultured for 2 days in the
respective medium of each cell type.
Preparation of the SU-8 Microstructures. The following

structures were fabricated using our two-photon-polymerization
(TPP) system46 out of SU-8 photopolymer: (i) simple blocks of 60
μm by 60 μm by 5 μm to fluorescently visualize GSH immobilization
on SU-8 surface; (ii) ellipsoids (short axis: ∼4 μm, long axis ∼10 μm)
to functionalize them with the targeting ligand, GSH, and with PEG-
maleimide as the control to test our coating protocols with simple
binding experiments on different cell types; and (iii) purpose-
designed microtool with four spheres, a well-defined contact interface
with an area of approximately 15 μm,2 and their connecting rods for
the adhesion force measurements (Figure 6). The structures were
polymerized into an approximately 20 μm thick SU-8 layer covering a
glass cover slide. The illumination light source was an ultrashort-
pulsed laser (C-Fiber A, Menlo Systems GmbH, Martinsried,
Germany). After illumination, the structures were baked and
developed according to the standard SU-8 process flow. The blocks
were polymerized with 9 mW laser power, the ellipsoids with 6 mW,
and the microtools with 3 mW; the applied scan speed varied between
1 and 100 μm/s for various parts of the structures. After development,
the ellipsoids and the microtools were functionalized as described
below, removed from the substrate with gentle mechanical agitation,
collected from the surface with a pipette, and finally injected into the
sample space to the proximity of the cultured cells.
The ellipsoids and the microtools were actuated with HOT in the

sample. The ellipsoid requires one trapping focus to move, while the
microtool needs four of them, where each focus traps one of its
spheres. The microtool, when trapped, can be moved anywhere in the
sample space, and its contact interface can also be pointed toward the
required direction, preferentially the target cell. SU-8 was ideal for
optical manipulation because it has a relatively high refractive index
(1.59), ensuring strong trapping; it is biocompatible but it can be
functionalized with oxidative processes to coat its surface with
covalently bonded ligands of interest.
Functionalization of the SU-8 Microstructures. The covalent

modifications of the SU-8 surfaces were carried out by the following
steps. In the first acid treatment step, the substrate with the
microstructures was immersed into the aqueous solution of 0.1 M
ammonium-cerium(IV)-nitrate and 1 M HNO3 (AnalytiCals Ltd.) for
30 min at room temperature (RT), and then it was rinsed with MilliQ
water and dried. In the following PEGylation step, 100 μL of amino-

PEG-maleimide (Nanosoft polymers Ltd, USA) dissolved in ethanol
(0.1 mg/mL) was dropped onto the structures for a 45 min
incubation at RT. To coat the surface with GSH, we immersed the
PEGylated sample into a slightly alkaline (pH = 7.5) PBS solution of
100 mM GSH for 60 min at RT (GSH-functionalization step); the
tripeptide GSH binds to the maleimide on the PEG-maleimide linker
through its cysteine in the middle. We also coated some of the acid-
treated, 60 μm by 60 μm by 5 μm SU-8 blocks with PEG-bisamine
instead of PEG-maleimide; the treatment was carried out with the
same concentrations and incubation conditions as in the case of PEG-
maleimide. After GSH incubation, the samples were thoroughly
washed with PBS and kept in it until the start of the experiment,
which usually took place within less than 1 hour.

To visualize the presence of GSH on the functionalized SU-8
surface, we used an amine-reactive CY5 dye (Abcam Ltd, USA #
ab146454) that can bind to GSH through its primary amine group.
The sample with the 60 μm × 60 μm × 5 μm SU-8 blocks was
incubated with 150 μL of 0.01 mg/mL CY5 dye dissolved in a 1:1
mixture of H2O/DMSO for 30 min at 4 °C in the dark. Then, we
washed them in a 1:1 H2O/DMSO mixture for 5 min, in a 20:1 H2O/
DMSO mixture for the same time, and then in Milli-Q water, and the
blocks were finally dried. The fluorescence of the surface of the blocks
was observed with wide-field and confocal fluorescence microscopy.
The positive control for GSH staining was the PEG-bisamine-treated
surface since it has only amine groups on its surface, while the acid-
treated and the PEGylated samples were used as negative controls to
visualize the nonspecific staining of the CY5 dye.

The GSH surface coverage measurement was based on the
comparison of the integrated intensity of single CY5 molecules and
that of the uniformly fluorescent CY5 layer bound to the GSH on the
SU8 blocks. First, 1.5 μL of 1 ng/mL amine-reactive CY5 solution in
ultrapure water was dropped onto an ethanol-cleaned cover slide, and
the droplet was covered with another cover slide creating an about 5
μm thin liquid layer. From this very dilute solution, the molecules
adhered to the surface such that they were separated enough to be
imaged individually. The single CY5 molecules adhered to the clean
glass surface (see the Supporting Information, Figure S1i), and the
uniform CY5 layer bound to the functionalized SU8 surfaces (see the
Supporting Information, Figure S1a−d) were imaged with our wide-
field fluorescent microscopy setup, using the same illumination and
observation conditions: the light source was a metal halide lamp
(Lumen 200S, Prior Scientific, Inc., USA), and the images were
recorded with a CMOS camera (ORCA-Flash4.0 V3, type num.:
C13440-20CU, Hamamatsu Corp., Japan). The number of
fluorescent molecules over a unit area was calculated by dividing
the integrated intensity of the uniformly fluorescent layer over the
unit area with the integrated intensity of a single CY5 molecule. The
fluorescence measured over the PEGylated samples was used as the
background; the emission by CY5 on the GSH-coated samples was
corrected with this background value. Assuming that every glutathione
molecule binds a fluorophore, the corrected amount of CY5 directly
results in the surface coverage of the GSH.

Holographic Optical Micromanipulation Setup. Our HOT
system (see Figure S4) is built around a Nikon Eclipse TI
fluorescence microscope body. The trapping beams originated from
a continuous wave fiber laser (λ = 1070 nm, BKtel Photonics) and a
UPlanSApo 60X, NA = 1.2, a water immersion objective (Olympus)
was used to focus the trapping beams. For multiple focal spot
generation and their translation in 3D, a spatial light modulator
(SLM) (Pluto NIR, Holoeye) was included in the optical system.
This device splits the original laser beam into several beams and
individually manipulates the trapping foci with 6 degrees of freedom
in real-time.46 The microtools, prepared for the adhesion measure-
ments, were designed with four spheres on them; therefore, four
trapping foci at the corners of a square were generated with the SLM
and used to trap and maneuver the tool in the sample space. The
trapping beam power was 270 mW for the four beams measured at
the back aperture of the objective. The orientation toward the cells
and the precise movement of the microtool was observed and
recorded with an EMCCD camera (Rolera EMC2, Qimaging, Surrey,
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BC, Canada). The trapping experiments were carried out inside a
temperature-controlled sample holder, which was able to keep the
temperature at 37 °C for the whole duration of the experiments. The
serum content of the cell culture medium was decreased to 1% 2 h
before the start of the adhesion force measurements.
Ellipsoid Binding Experiments. The ellipsoid binding experi-

ments were carried out in Matrigel-coated Petri dishes with a glass
bottom (diameter: 3.5 cm; Greiner Bio-One, Germany). The RBEC
and hCMEC/D3 cells were seeded at the concentration of 1.5 × 105

cells/cm2 and were cultured for 2 days in the respective medium of
cell types. A cell-ellipsoid binding attempt was carried out as follows:
an individual ellipsoid was first picked up by the optical tweezers and
lifted to about 5 μm above the glass substrate. Then, the ellipsoid was
brought above a target cell by not moving the optical trap but
translating the microscope stage to locate the cell. Finally, the
ellipsoid was pushed toward the cell’s surface from above; with the
cells grown on a horizontal plane, the ellipsoids were pushed toward
the cells by translating the trap position downward along the optical
axis. After holding the ellipsoid in this position for 10 s, the trap
position was slowly moved upward to remove the ellipsoid from the
cell, during which the ellipsoid either could be detached from the cell
(no-binding event) or could not (binding event). Then, the numbers
of no-binding and binding events for the GSH-coated and PEGylated
structures were compared for the two cell types (Figure 3).
Stiffness Calibration of the Microtool. In order to measure the

binding forces FB with the optical trap, we had to determine the
stiffness of the trapped microtools (kstr) along their symmetry axis,
that is, the direction in which they exert force on the cells. During the
adhesion measurements, the displacement ΔXstr of the microtool from
the equilibrium trap positions is measured and from that FB can be
calculated: FB = kstr × ΔXstr. We determined the trap stiffness for the
microtool indirectly with 6 μm latex beads of known trap stiffness
(kbead). By pushing the microtool against the trapped bead, the
displacements of the bead and the microtool (ΔXbead and ΔXstr,
respectively) could be measured and kstr was calculated from the
following equation: kbead × ΔXbead = kstr × ΔXstr. The measured kbead
stiffness of the 6 μm bead was 4.9 pN/μm on average, which was
determined from its fluctuation within a single steady trap.30 This
value resulted in an average stiffness of kstr = 25.8 pN/μm for the
microtools.
Adhesion Force Measurements with the Microtool. The

procedure of the experiment is illustrated in Figure 6. The mutual
position of the cells and the microtools (Figure 6a,b) was changed
either by moving the microtool with the optical tweezers or by
moving the sample with the motorized microscope stage (Figure 6c).
First, the microtools were placed in the Petri dish, which already
contained the cells in growth media, and then the target cell was
localized. Next, a structure was picked up with the optical trap, carried
to the chosen cell by moving the sample stage, and then turned in
position by moving the optical traps: its contact surface and the cell
membrane were parallelized, and both were brought into focus. Next,
the microtool approached the cell by slowly moving it with the optical
tweezers until the contact surface touched the cell; this event was
determined visually by monitoring the faintly visible trapping focal
spots. Then, the microtool was pushed against the cell with about 10−
20 pN force by advancing the four trapping beams.
This was the point where the adhesion force measurement

procedure, illustrated in Figure 6d, actually began. When the
microtool was pushed to the chosen cell’s surface, the displacement
of the trapped sphere from its equilibrium position (ΔX) was
considered negative. After waiting for 10 s in this position, we pulled
the structure back by 5 μm with 50 nm or 250 nm steps with the
optical tweezers. During this retraction, a bright-field image was taken
of the microtool after each step, resulting in 100 and 20 images for the
50 and 250 nm step size, respectively. At the beginning of the
retraction, the microtool did not move but the still negative ΔX slowly
increased. If there was no adhesion between the microtool and the
cell, ΔX first became zero, and then the microtool separated from the
cell and followed the trapping foci (ΔX did not increase any more). If
there was any adhesion, ΔX became positive and a considerable

pulling force was exerted on the microtool by the optical trap.
Eventually, when the optical force exceeded the adhesion force, the
microtool separated from the cell and the centers of the spheres
returned to the trap positions (ΔX becomes zero). Next, either the
same microtool was used to test another cell (maximum of 3 cells per
microtool) or another microtool was trapped and used on the next
cell. All experiments were repeated at least 2 times on different days
and the number of parallel measurements in each experiment was 6−
10.

Atomic Force Microscopy Measurements. Brain endothelial
cells were seeded on a Matrigel-coated circular 24 mm diameter
coverslip for AFM measurements. The RBEC and hCMEC/D3 cells
(1.5 × 105 cells/cm2) were cultured for 2 days in their respective
culture media. The serum content of the culture media was decreased
to 1% 2 h before the start of the experiments. The coverslips with the
cells were mounted inside the lid of a Petri dish for support. A droplet
of the medium was placed over the cell layer, and the AFM cantilever
was immersed in it. All AFM measurements were carried out with an
Asylum Research MFP-3D head and controller in the contact mode
(Oxford Instruments Asylum Research). The driver program of MFP-
3D (version 16.12.214) was written in IGOR Pro Software (version
6.38B01, Wavemetrics). The typical dwell time before retraction was
1 s, the loading force was 100 pN, and the retraction speed was 0.5−5
μm/s. The actual spring constants for each cantilever in liquid were
determined by the thermal fluctuation technique47−49 after the
measurements. Data analysis was done using the IGOR Pro Software.

Cell-Binding Measurements with Sharp-Tipped Cantilevers. As a
preliminary experiment, we did adhesion probability measurements
with sharp silica-tipped AFM cantilevers with a nominal spring
constant of 30 pN/nm (Bruker, MSCT-D). The AFM probes were
incubated in 2% (v/v) APTES ((3-aminopropyl)triethoxysilan)
dissolved in isopropanol (Molar Chemicals Ltd.) for 1.5 h at room
temperature to create free primary amine groups on their surface.50−52

This was followed by glutaraldehyde incubation (1% in Milli-Q water,
5 min),53,54 which enables the binding of the PEG linker’s amine
group to the amine group of APTES. Afterward, the amino-PEG-
maleimide linker was attached to the AFM tip’s surface via incubating
the cantilevers in 10 mg/mL ethanol solution for 20 min; the AFM
tip, prepared up to this point, was used as a negative control and is
referred to as the PEGylated tip. As the last step, the cantilevers were
immersed in freshly made 100 mM GSH solution in PBS for 20 min
to obtain GSH-covered AFM tips.

Adhesion Force Measurements with Colloidal Probes. For force
measurements, borosilicate colloidal probes with 10 μm diameter
were used on triangular cantilevers with a nominal spring constant of
10 pN/nm (NovaScan). The functionalization of these spherical
tipped cantilevers was done by the same protocol as mentioned in the
previous section.

Statistical Analysis. The adhesion force data were calculated
from the images recorded during the optical tweezers experiments
with the following steps. First, on all images recorded during a single
adhesion experiment, a circle was fitted to all four spheres of the
microtool’s image, yielding the center for each sphere. The average
position of the four centers was then calculated, and its component in
the direction of the movement of the trap was plotted as the function
of the trapping focus position. After the detachment of the structures
from the cell in each individual experiment, the averaged center
position coincided with the trapping beam position and grew linearly
with it (gray dots in Figure S2e, Supporting Information). Next, a
straight line was fitted to this linearly increasing section, extrapolated
until the zero-trap position, and the averaged sphere positions were
subtracted from it, yielding the ΔX values (red dots in Figure S2e,
Supporting Information). The optical force was then calculated
simply by multiplying the ΔX values with the trap stiffness of the
microtool (25.8 pN/μm). The adhesion force is the amplitude of the
sudden drop in the optical forces graphs (Figure 4d). Statistical
analyses were performed using GraphPad Prism 8 software (Graph-
Pad Software, USA). Values were compared using ANOVA followed
by Bonferroni posttest. Differences were considered to be statistically
significant at p < 0.05.
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Hinterdorfer, P.; Peĝo, A. P. Atomic Force Microscopy as a Tool to
Assess the Specificity of Targeted Nanoparticles in Biological Models
of High Complexity. Adv. Healthcare Mater. 2017, 6, 1700597.
(29) Neuman, K. C.; Nagy, A. Single-Molecule Force Spectroscopy:
Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy.
Nat. Methods 2008, 5, 491−505.
(30) Neuman, K. C.; Block, S. M. Optical Trapping. Rev. Sci.
Instrum. 2004, 75, 2787−2809.
(31) Nawaz, S.; Sánchez, P.; Bodensiek, K.; Li, S.; Simons, M.;
Schaap, I. A. Cell Visco-Elasticity Measured with AFM and Optical
Trapping at Sub-Micrometer Deformations. Plos One 2012, 7,
No. e45297.

(32) Vargas-Pinto, R.; Gong, H.; Vahabikashi, A.; Johnson, M. The
Effect of the Endothelial Cell Cortex on Atomic Force Microscopy
Measurements. Biophys. J. 2013, 105, 300−309.
(33) Falleroni, F.; Torre, V.; Cojoc, D. Cell Mechanotransduction
with Piconewton Forces Applied by Optical Tweezers. Front. Cell.
Neurosci. 2018, 12, 130.
(34) Grexa, I.; Fekete, T.; Molnár, J.; Molnár, K.; Vizsnyiczai, G.;
Ormos, P.; Kelemen, L. Single-Cell Elasticity Measurement with an
Optically Actuated Microrobot. Micromachines 2020, 11, 882.
(35) Abdelkader, H.; Alani, A. W. G.; Alany, R. G. Recent Advances
in Non-Ionic Surfactant Vesicles (Niosomes): Self-Assembly,
Fabrication, Characterization, Drug Delivery Applications and
Limitations. Drug Delivery 2014, 21, 87−100.
(36) Saraiva, C.; Praca̧, C.; Ferreira, R.; Santos, T.; Ferreira, L.;
Bernardino, L. Nanoparticle-Mediated Brain Drug Delivery: Over-
coming Blood-Brain Barrier to Treat Neurodegenerative Diseases. J.
Controlled Release. 2016, 235, 34−47.
(37) Veszelka, S.; Tóth, A.; Walter, F. R.; Tóth, A. E.; Gróf, I.;
Mészáros, M.; Bocsik, A.; Hellinger, É.; Vastag, M.; Rákhely, G.; Deli,
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Shimono, T.; Kittel, Á.; Tanaka, K.; Niwa, M. A New Blood-Brain
Barrier Model Using Primary Rat Brain Endothelial Cells, Pericytes
and Astrocytes. Neurochem. Int. 2009, 54, 253−263.
(45) Barna, L.; Walter, F. R.; Harazin, A.; Bocsik, A.; Kincses, A.;
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