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1. INTRODUCTION 

During mammalian embryogenesis the development of cell lineages and multiple organ 

systems are tightly associated with the finely tuned and orchestrated functions of transcription 

factors (Adamson & Gardner, 1979). The resulting differential gene expression is the basis of 

tissue specific protein production, which enables conduction of diverse functions of the 

organism constructed by myriad of cells harbouring the same genetic information (Adamson 

& Gardner, 1979). Epigenetic factors are crucial in modulating these mechanisms via multiple 

interacting factors and regulatory networks (Artyomov et al., 2010). In my thesis, I determined 

the connections between a polycomb group epigenetic factor RING1 and YY1 binding protein 

(RYBP) also called as Death effector domain-associated factor (DEDAF) and cardiac 

transcription factor Pleiomorphic adenoma gene like 1 (PLAGL1) in the regulation of cardiac 

differentiation using in vitro model system applying mouse embryonic stem (ES) cells. 

 

1.1 Stem cells as model systems of developmental process and congenital heart disorders 

During embryogenesis, the inner cell mass (ICM) of the blastocyst contains the pluripotent ES 

cells that have the capability to differentiate towards all lineages of the body (Marikawa & 

Alarcón, 2009). These cells undergo several cellular events leading towards organogenesis 

(Sasai et al., 2012). ES cells have distinctive features such as- (i) they can divide perpetually 

and self-renew by maintaining the pluripotency of the cells even in cultures; (ii) by changing 

the culture conditions, they can be differentiated into special cell types such as muscle cells, 

nerve cells etc. (Zakrzewski et al., 2019). ES cells also have the ability to the formation of germ 

layers when re-introduced into the early-stage embryo (Gardner & Brook, 1997). Due to these 

abilities, stem cells based in vitro differentiation systems have been widely used as excellent 

model systems to recapitulate the early events of organ development and related disease 

conditions (Keller, 1995; Levinson & Benvenisty, 1995).  

Congenital heart disorders (CHDs) occur due to the structural and functional anomalies during 

heart development (Mckusick, 1964; McCulley & Black, 2012). CHDs are commonly caused 

due to the atrial septal defects, ventricular septal defects, atrioventricular canal defect and valve 

stenosis which often led to serious conditions of contractility disorders. The loss of function of 

several transcription factors have been demonstrated to contribute to CHD conditions both 

using in vivo mouse and in vitro model systems. Improper expression of key cardiac 

transcription factors such as the NK2 homeobox 5 (NKX2-5), Myocyte enhancer factor 2c 
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(MEF2C) and T-box 5 (TBX5) caused serious malformations of the developing heart and 

contractility functions (McCulley & Black, 2012; Weerd et al., 2011). The effect of Plagl1 

mutation is also implicated to heart malformations and CHD conditions as the Plagl1 

heterozygous mutant mice formed atrial and ventricular septal defects (Yuasa et al., 2010). 

Stem cells based in vitro cardiac differentiation methods offer a unique platform to model CHD 

conditions, to dissect and study the molecular mechanisms involved in regulating contractility 

as well as the underlying role of specific transcription factors that might also potentiate to future 

therapeutics (Moretti et al., 2013). 

1.2 Process of mouse embryonic cardiac differentiation 

Since ES cell based in vitro cardiac differentiation system can mimic the in vivo heart formation 

morphologically, functionally and electrophysiologically (Hescheler et al., 1997; Fijnvandraat 

et al., 2003) the different stages of in vitro cardiomyogenesis can be related to the knowledge 

gained from the plethora of studies carried in vivo. A series of cardiac markers identified in 

vivo are generally used to characterize the differentiation state of in vitro cultures. 

Mammalian cardiac system is one of the first functional organ that develops in an early embryo 

(Savolainen et al., 2009). The contraction of the embryonic heart and initiation of the 

rudimentary circulatory system is essential for mammalian embryonic development. The heart 

originates from the embryonic mesoderm that further differentiates into mesothelium, 

endothelium and myocardium (DeRuiter et al., 1992; Yutzey et al., 1995). Mesothelial 

pericardium forms the outer lining of the heart (Madani & Golts, 2014). The inner lining of the 

heart as well as the lymphatic and blood vessels, develop from the endothelium. The early 

multipotent progenitor cells (MPCs) give rise to the atrial and ventricular cell types, fibroblast 

cells, endocardial and epicardial cells, cells of the conductive system (sinoatrial, 

atrioventricular, Purkinje fiber cells), the smooth muscle cells of the aorta, artery and the 

autonomic nerve cells (Weerd et al., 2011). The cardiac sarcomere is the critical unit of cardiac 

muscle fibres that functions in contraction (Sweeney & Hammers, 2018). The formation of all 

these cell types is crucial in maintaining the structure and functions of the developing heart. 

1.3 Markers of cardiac differentiation 

Series of mouse knockouts and in vitro cell culture models have shown the precise timeline 

and exact spatiotemporal expression of key cardiac transcription factors (Table 1). Mesodermal 
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lineage specification is guided by the exit of pluripotency and induction of the T-box 

transcription factors Brachyury (T) and Eomesodermin (EOMES) by graded Transforming 

growth factor beta 1 (TGF-β)/NODAL and the canonical Wingless-type MMTV integration 

site family (WNT) signalling (Figure 1) (Arnold et al., 2009; Watabe & Miyazono, 2009; Tosic 

et al., 2019). T and Eomes are expressed from the early gastrulation stage embryos from E6 in 

the primitive streak of the early mouse embryo (Wilkinson et al., 1990; Chesley, 1935; Russ et 

al., 2000; Nowotschin et al., 2013). The T homozygous mice showed serious implications in 

the morphogenesis of mesoderm derived structures such as the heart (Table 1) (Yanagisawa et 

al., 1981). Both Eomes and T can induce the expression of the Mesoderm posterior 1 (Mesp1) 

which is expressed in the developing heart tube and specifies cardiovascular lineage (Saga et 

al., 1999; David et al., 2011; Guo et al., 2018; Ameele et al., 2012). The expression of Mesp1 

defines the earliest step of cardiac lineage commitment (Figure 1) (Saga et al., 2000; Lescroart 

et al., 2018). MESP1 can target and induce the expression of several cardiac transcription 

factors that specifies progenitor formation (Bondue et al., 2008; Soibam et al., 2015) such as 

the Kinase insert domain protein receptor (Kdr also called as Flk1), multipotent cardiac 

progenitor marker Islet-1 (Isl1) (Cai et al., 2003 ; Moretti et al., 2006) the early cardiac 

progenitor markers which implicates formation of first and second heart fields Nkx2.5, Mef2c 

and cardiac endothelial progenitor marker GATA binding protein 4 (Gata4) (Christoforou et 

al., 2008; Lyons et al., 1995; Tanaka et al., 1999; Terada et al., 2011) (Figure 1). The non-

canonical WNT pathway and NODAL are determined to function upstream to the cardiac 

progenitor formation during the first and second heart field derivation (Figure 1) (Brade et al., 

2006; Gessert & Kühl, 2010; Kamps, 2016). Ascorbic acid is shown to promote cardiac 

differentiation through the induction of BMP, SMAD1 signalling and inhibition of the TGF-β 

signalling (Ivanyuk et al., 2015; Perino et al., 2017). Ascorbic acid is also determined as a 

potent inducer of several cardiac progenitor expression such as Nkx2-5, Mef2c and Gata4 

(Figure 1) (Takahashi et al., 2003; Lin et al., 1997; Kamps, 2016; Molkentin et al., 1997. During 

the cardiac progenitor formation, the expression of T-Box proteins T-Box 3 (Tbx3), T-Box 5 

(Tbx5) and T-Box 18 (Tbx18) are required for the generation of pacemaker cells that function 

in the conduction system of the heart (Mori et al., 2006). As a result of these finely tuned events 

governed by series of key transcription factors, the developing heart starts beating as early as 

E7.5–8 in mouse (Tyser et al., 2016) (Figure 1). 
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Table 1: Mutant phenotypes for key cardiac genes 

Key cardiac genes used in this study are enlisted in the rows of the table. The corresponding 

nature of the analysed mutations, lethality time, the cardiac phenotypes and the reference of 

the studies are presented in the indicating columns of the table. Lethality time of mutant mice 

corresponds to the stage of embryonic heart development when the effect of the loss of the 

respective markers are implicated, and the represented alterations specify the significance of 

these genes in cardiac development. Abbreviations: E-embryonic, ND-no data. 

 

 

 

 

 

Gene Name Mutation type Mutation at Lethality 
time Cardiac Phenotype Source

T complete null ND E10 Improper notochord formation Chesley., 1935

Eomes complete null exon 2 & intron 2 E6.0 Improper primitive streak formation Russ et al., 2000

MesP1 complete null exon 1 & 2 E10.5
Altered heart morphology, two abnormally 

symmetrical heart tubes and the beat periodicity was 
not coordinated between one tube and the other.

Saga., 1999

Isl1 hypomorph exon 3- second LIM 
domain

E8.5- E11.5 No outflow tract, no right ventricule and formation 
of hypoplastic atria 

Cai et al., 2003

Nkx2-5 hypomorph exon 2 E9 No looping, lack of endocardial cushion 
&trabeculae

Lyons et al., 1995

Gata4
hypomorph (only 2 

ZNF binding 
domains deleted)

exon 3 & 4 E10.5 No ventral folding, position of developing heart is 
lateral & dorsal to the neural tube.

Molkentin et al., 1997

Mef2c complete null exon 2 E10.5
Pericardial effusion, very slowly beating, formation 
of hypoplastic ventricular chamber with no looping 

of cardiac tube
Lin et al., 1997

Tbx-5 hypomorph exon 3 E10.5
Dilated heart atrium, formation of hypoplastic left 

ventricle and bifurcated atrial tube Mori et al., 2006

Plagl1 complete null intron 3 E10.5 Atrium Septum defect, ventricular septum defect 
and formation of thin ventricular wall

Yuasa et al., 2010
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Figure 1: Schematic illustration of the markers involved in the stages of in vitro cardiac 

differentiation (modified from Kamps, 2016)  

Factors that influence the progression of the five stages of cardiomyocyte differentiation: 

mesoderm formation (grey background), cardiac mesoderm specification (beige background), 

cardiac progenitor formation (pale yellow background), cardiomyocyte generation (rose 

background) and cardiomyocyte maturation (peach colour). Transcription factors associated 

with each of the six cell types during cardiomyocyte differentiation are presented below. The 

relating time points of in vitro cardiac differentiation is presented at the bottom. Signalling 

pathways and chemical inducers that guide the expression of the described transcription 

factors are highlighted in boxes. Pointed arrows (in black) indicates positive regulation and 

bar headed arrows (in red) indicates inhibition of differentiation. Abbreviations: ES- 

embryonic stem, EB- embryoid body, d- day, LIF- Leukaemia inhibitory factor. 

1.4 In vitro cardiac differentiation methods 

Over the years, several in vitro differentiation methods have been described for the 

differentiation of ES cells to form contractile cardiac cultures. ES cells cultured with stromal 

cells can differentiate to functional cardiomyocytes (CMCs) by (i) the formation of embryoid 

bodies (EB’s), (ii) by monolayer formation in Matrigel or by, (iii) generation of cardiac 

organoids (Figure 2). 
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(i) The EB based methods (Evans & Kaufman, 1981) of cardiac differentiation are 

more robust and simpler, therefore they are widely used for cardiac differentiation 

using mouse ES cells. These methods generally start with the EB formation step by 

either the hanging drop (HD) method, suspension cultures or employing specific 

culture vessels such as the slow turning lateral vessel bioreactor (STLV) 

(Rungarunlert et al., 2013). As the EBs cultured in HDs and STLVs are more 

uniform and evenly sized, these methods are preferred over the suspension culture 

method for cardiac differentiation in which the formed EBs are irregularly shaped 

and diverse in their size (Wang & Yang, 2008). The EBs are cultured in humidified 

conditions for 48 hours, plated out and cultured further to form beating CMCs with 

no chemical inducers (Wang & Yang, 2008). Some EB based methods for cardiac 

differentiation also use inducing factors of signalling pathways that influence 

cardiac lineage commitment such as basic fibroblast growth factor-2 (bFGF-2) 

(Kawai et al., 2004).  

(ii) In the monolayer system of ES cells are cultured along with supporting cell layers 

(e.g., mouse embryonic fibroblasts (MEF) in monolayers seeded on matrigel or 

surface treated tissue culture plates) (Batalov & Feinberg, 2015). The cells are then 

induced with growth factors such as basic fibroblast growth factor (bFGF) and 

ascorbic acid (Kokkinopoulos et al., 2016) to generate beating CMCs. Another 

method depicts the induction of BMP signalling pathway for the differentiation of 

monolayer ES cells. Induction of these growth factors promote the signalling for 

cardiac lineage commitment and CMCs formation (Zhang et al., 2012). 

(iii) Another previously used method involves co-culture of ES cells with isolated 

mesenchymal cells (Pucéat, 2008) or endoderm like cell (END2 cells) which 

resulted in contractile CMCs (Mummery et al., 2012).  

(iv) In the last few years, organoid culture has become the new trend for in vitro 

differentiation of stem cells as they replicate key spaciotemporal features of the in 

vivo organ. In these methods, ES cells are let to form EBs and further cultured in 

media containing FGF4, BMP and ascorbic acid for several days to form beating 

cardiac organoids (cardioids) with chamber like specifications (Lee et al., 2020). 

Due to the reproducibility and the simplicity of the technique, the hanging drop method of EB 

generation was employed in this thesis study and no specific inducers were utilized (described 

in detail in Methods 3.1.2). 
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Figure 2: In vitro cardiac differentiation methods 

CMCs can be differentiated in vitro from ES cells through (EB formation by (1) Hanging drops 

or (2) suspension culture, (3) monolayer culture or (4) formation of cardioids. Abbreviations: 

mES cells: Mouse embryonic stem cells, EB: Embryoid body, CMCs: Cardiomyocytes. 

1.5 Utilisation of luciferase reporter system to study gene regulation 

Luciferase reporter systems are widely used for studying promoter activities influenced by the 

regulatory functions of transcription factors which also relate to distinct cellular responses. 

This system is based on the activity of a bioluminescent protein Firefly, which produces light 

when reacted with a substrate D-luciferin (Figure 3) (Marques & Da Silva, 2009). This system 

is mainly exhausted to establish a functional relationship between the presence and 

concentration of specific regulatory proteins and the level of transcriptional activation (Firefly 

reporter) of the promoter analysed. The promoter of interest is cloned upstream to the firefly 

coding region; therefore, it effectively controls its expression. In a typical experimental assay, 

the cloned promoter construct is subjected to the influence of presumptive regulatory proteins 

upon overexpression (Figure 3). The relative expression level of the resulting firefly reporter 

is directly proportional to the activation/repression levels of the monitored promoter (Fan & 

Wood, 2007). Since Firefly protein is not natively present in mammalian cells, it does not have 

any detrimental effect on the endogenous cellular process (Keller et al., 1987), thereby this 

system provides reliable and reproducible opportunity to study regulatory activities of specific 

transcription factors. 
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Although luciferase reporter systems do not determine whether a regulatory protein directly 

interacts with a putative promoter region, they can be used to establish a functional connection 

between the protein and the amount of promoter activity induced by the protein (Carter & 

Shieh, 2015). Many proteins could indirectly affect transcription of the examined promoter by 

activating or repressing other regulatory proteins, assembly of different protein complexes, or 

signalling mechanisms that in return can affect the regulation of the promoter. 

To distinguish between direct regulators and secondary effects, during my PhD studies I used 

luciferase reporter systems and firefly reporter constructs to molecularly analyse the detailed 

regulation of Plagl1 promoters. I made several mutations of the predicted transcriptional 

binding sites and coupled these experiments with Chromatin immunoprecipitation (ChIP) 

assays (details in methods 3.1.5, 3.2.2, 3.2.4 and 3.4.5) to identify the molecular mechanism 

by which RYBP could mediate its effects during cardiac differentiation. 

 

Figure 3: Promoter regulation analysis using luciferase reporter system  

Schematic representation of the luciferase reporter system. Promoter of interest is cloned 

upstream of the firefly coding region. Adding a specific substrate, D-luciferin, the illumination 

of the firefly protein is triggered and detected using a luminometer. The amount of 

bioluminescent signal generated by firefly is directly proportional to the activity of the 

promoter. Abbreviations: RNA Pol-RNA Polymerase, TF-Transcription factor. 

 

1.6 Polycomb repressive complexes and their regulatory roles in mammalian 

development 

Epigenetic maintenance of differential gene expression is essential for proper differentiation 

and lineage commitment. The interplay between the Polycomb (PcG) and Trithorax (TrxG) 
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group protein complexes orchestrate these mechanisms by regulating genes as early as the 

trophoblast differentiation of a developing embryo (Schuettengruber et al., 2007; Kuroda et al., 

2020). Polycomb group proteins (PcG) are a family of epigenetic silencers implicated in growth 

and development (Gould, 1997); cancer progression and suppression (Laugesen et al., 2016); 

stem cell maintenance and regulation (Aloia et al., 2013) and X-chromosome inactivation 

(Simon & Kingston, 2013). PcG proteins form two principal complexes, named Polycomb 

repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2) (Figure 4A) (Vidal, 

2009). Each complex has constant and variable protein subunits that lead to distinctive cell and 

tissue specific regulation (Gao et al., 2012). The PRC2 complex is a highly conserved multi-

subunit protein complex that consists of Enhancer of zeste subunit 1/2 (EZH1/2), Suppressor 

of zeste (SUZ12), Embryonic ectoderm development (EED) and Retinoblastoma binding 

protein 4/7 (RBBP4/7) which form the minimum core of the complex (Czermin et al., 2002; 

Kuzmichev et al., 2002; Müller et al., 2002). The SET domain containing EZH1/2 factor is the 

catalytic subunit of the complex which specifically deposits the trimethyl mark on lysine 27 of 

histone 3 (H3K27me3), a major chromatin repressive modification (Figure 4A) (Shen et al., 

2008). SUZ12 consists of the ZnB-Zn domain that is able to bind to several interacting partners 

which provides target specificity to the PRC2 complex (Chen et al., 2018). RBBP4/7 factors 

are dispensable for the catalytic activity of the complex (Cao & Zhang, 2004; Ketel et al., 

2005). EED functions in the interaction and recruitment of the chromobox domain containing 

transcription factors (CBX) containing PRC1 complex (also called as the canonical PRC1s) to 

the H3K27me3 modified loci for further enhancement of the PRC1 mediated mono-

ubiquitination mark on lysine 119 of histone 2a (H2AK119ub1) an alternative repression mark 

(Figure 4B) (Cao et al., 2014). 

The canonical PRC1 (cPRC1) complexes consists of the CBX transcription factors, which are 

capable of specific binding to H3K27me3. The catalytic subunit of the cPRC1 is an E3 

ubiquitin ligase imparting factor Ring finger protein 1 (RING1) or its homolog Ring finger 

protein 2 (RNF2), that can deposit H2AK119ub1 (Aranda et al., 2015). The RING1/RNF2 

subunits are always bound to either Polycomb group ring finger 2 (PCGF2) or Polycomb group 

ring finger 4 (PCGF4) which together with CBX factors constitute to the core of the cPRC1 

complex’s (Figure 4B). The cPRC1s are categorized based on the presence of PCGF2 and 

PCGF4 as cPRC1.2 and cPRC1.4 complexes respectively (Geng & Gao, 2020). 
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Another variant of the PRC1 complexes, the non-canonical PRC1s (ncPRC1s) (also called as 

the variant PRC1(vPRC1s)) were also identified in later studies, in which the canonical core 

subunit of the cPRC1s CBX is replaced by RYBP or its homolog YY1 associated factor 2 

(YAF2) (Gao et al., 2012). As the CBX subunits are replaced by RYBP and YAF2 which lack 

the chromobox domains in the ncPRC1s, these complexes are not capable to recognise and 

bind to H3K27me3. RYBP is able to recognise and bind to the H2AK119ub1 mark (Zhao et 

al., 2020) at the repressed genes and deposits further H2AK119ub1 through the RING proteins, 

aiding the compaction of the chromatin and enabling more stable gene repression of the 

targeted loci by the ncPRC1s (Blackledge et al., 2014; Martinez et al., 2020) (Figure 4C). The 

ncPRC1s are categorized based on the presence of either of the 6 PCGF factors to form the 

core of the complex along with RING1/RNF2 and the RYBP/YAF2.  

Early models of maintained epigenetic repression of genes are generally referred as the 

“hierarchical recruitment of the PRC complexes” (Dorafshan et al., 2017). The proposed idea 

involves the initial assembly and binding of the PRC2 complex at the promoters of repressed 

genes. EZH2 imparts the catalytic functions of PRC2 by depositing H3K27me3 which is 

recognised and bound by the chromobox domain of the CBX factors from the cPRC1. The 

RING proteins RING1/RNF2 deposits H2AK119ub1 which facilitates repression of the 

chromatin by histone compaction. The ncPRC1 comprising RYBP then recognises the histone 

ubiquitination and exerts H2AK119ub1 for further chromatin compaction and more stable 

repression. These controlled mechanisms maintain a gene repressed thoroughly during lineage 

commitment thus conserving the identity of the cells during differentiation. 
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Figure 4: Composition and activities of different PRC complexes. core-members and their 

main interacting partners are indicated 

Subunit compositions of the core of (A) PRC2, (B) cPRC1 and (C) ncPRC1 are represented in 

the schematic illustration. SUZ12, EZH2, EED and RBBP4/7 form the core of the PRC2 

complex. The PRC2 complex deposits H3K27me3 for gene repression. The cPRC1 complex 

contains CBXs, PCGFs, RING1/RNF2 and PHCs as the core complex members. cPRC1 can 

deposit H2AK119ub1 for chromatin compaction and gene repression. The core of the ncPRC1 

complex includes ubiquitination binding RYBP, PCGFs and RING1/RNF2. The RING1/RNF2 

in the cPRC1 and ncPRC1 can deposit H2AK119ub1 and are capable to cause chromatin 

compaction and gene repression. Abbreviations: PRC2: Polycomb repressive complex 2, 

cPRC1: canonical Polycomb repressive complex 1, ncPRC1/vPRC1: non canonical/variant 

Polycomb repressive complex 1. 

1.7 Role of RYBP in mouse embryogenesis  

In the last few years, the loss of function mutations of several PcG genes and the use of high-

throughput experiments like RNA-seq and ChIP-seq have revealed the major target genes of 

different PRCs in the regulation of developmental genes relating to different lineages. 

Rybp is essential for mammalian development as the Rybp knock out homozygous mice were 

embryonic lethal during the peri-implantation stages and a portion of the Rybp heterozygous 

mutant mice presented neural tube defects and exencephaly (Pirity et al., 2005). Further in vivo 
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studies have demonstrated the important role of RYBP in the development of organ systems 

such as the central nervous system (Pirity et al., 2005), hematopoietic system (Calés et al., 

2016), testis development (Tian et al., 2020) and the formation of the eye (Pirity et al., 2007).  

Due to the limitations poised by early embryonic lethality of the homozygous mice, in vitro 

based differentiation model systems were preferred to be utilized for analysing the role of 

RYBP during early lineage commitment (Ujhelly et al., 2015; Kovacs et al., 2016; Henry et 

al., 2020).  

1.8 The role of Rybp in cardiac development 

In my thesis work, I utilized wild type and Rybp null mutant ES cells. The mutant ES cells 

proliferate normally, maintain pluripotency and initiate differentiation towards multiple 

lineages (Ujhelly et al., 2015; Kovacs et al., 2016; Henry et al., 2020) making this cell line 

suitable for differentiation-based studies to elucidate the functions of RYBP.  

We have previously identified that mouse ES cells lacking Rybp could not form beating CMCs 

upon in vitro cardiac differentiation (Ujhelly et al., 2015). The expression of several key cardiac 

transcription factors including cardiac progenitor formation markers Isl1 and Tbx5 were 

deficient in the Rybp-/- CMCs in comparison to the wild type during the time course of in vitro 

cardiac differentiation. The deficient expression of Isl1 and Tbx5 are connected to the 

formation of CHD conditions in vivo, in mice (detailed in chapter 1.1). Moreover, Cardiac 

troponin T2 (Tnnt2), a major sarcomere component of wild type CMCs was amongst the most 

downregulated genes in the Rybp null mutant, suggesting that these gene expression changes 

were likely to contribute to the contractility defect of the Rybp mutant cell line (Ujhelly et al., 

2015). One of the most strikingly downregulated genes in the Rybp null mutant cells was 

Plagl1, a key cardiac transcription factor identified to affect chamber specification in the 

developing mouse heart (Yuasa et al., 2010). 

1.9 Overview of the regulatory activities of RYBP 

RYBP is a moonlighting protein, which exerts different functions based on its versatile 

interacting partners (Neira et al., 2009). As specified earlier, RYBP is a member of the 

ncPRC1s, which functions as a repressor of genes distinctive to multiple lineages during 

developmental process (Figure 5A) (Garcia et al., 1999). Although as part of the ncPRC1.3 and 

the ncPRC1.5 complex, RYBP can also exert activation functions (Figure 5B) (Gao et al., 
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2014). The interaction of Autism related Autism susceptibility candidate 2 (AUTS2) and 

Casein kinase 2 (CK2) with the ncPRC1.3 and ncPRC1.5 complex was key in exerting the 

activation functions of the complexes in central nervous system (Gao et al., 2014). Further, in 

ES cells, the ncPRC1.3 and ncPRC1.5 complexes were identified to interact with Testis 

expressed 10 (TEX10) and E1a binding protein p300 (P300) to activate gene expression (Zhao 

et al., 2017). 

ChIP-seq experiments displayed the binding of RYBP at various genomic loci independent to 

the binding of its PRC1 co-factor RNF2 indicating that polycomb independent regulatory 

activities of RYBP does also exist (Morey et al., 2015; Bajusz et al., 2018). Recent studies have 

revealed that the repressive activities of RYBP depends on the ability of RYBP to recognise 

and bind to H2AK119ub1- a repression mark and the initiation of further compaction upon 

binding (detailed in chapter 1.5) (Rose et al., 2016; Zhao et al., 2020; Barbour et al., 2020). No 

consensus DNA binding has been established for RYBP yet, but the protein is able to associate 

with DNA binding transcription factors such as Pluripotency factor POU domain, class 5 

transcription factor 1 (POU5F1, also called as OCT4), E2F transcription factors 2 and 3 (E2F2 

and E2F3) and YY1 transcription factor (YY1). The association of RYBP with these 

transcription factors generally lead to the activation of the targeted gene loci. For example, 

RYBP associated with OCT4 to activate lysine (K)-specific demethylase 2B (Kdm2b), a 

histone demethylase which can recruit PRCs to developmental genes in ES cells (Figure 5C) 

(Li et al., 2017; He et al., 2013). RYBP is also demonstrated to bridge the interaction between 

E2F and YY1 transcription factors to activate Cell division cycle 6 (Cdc6) (Figure 5D) 

(Schlisio et al., 2002).  

Since the emerging studies showed the connections between the expression of RYBP and 

lineage commitment, the diverse associations of RYBP could impact its distinct roles during 

differentiation processes. 
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Figure 5: Different regulatory activities of RYBP 

Schematic illustration representing: (A) the polycomb dependent repression function of RYBP 

(Bajusz et al., 2019), (B) the ncPRC1.3 and ncPRC1.5 complex in which RYBP is a member of 

can exert activation mechanism (Gao et al., 2014), (C) RYBP association with OCT4 activated 

pluripotency genes (Li et al., 2017) and (D) RYBP associates with YY1 and either E2F2 or 

E2F3 transcription factors to activate Cdc6 expression (Schlisio et al., 2002).  

1.10 Relativeness between the functions of RYBP and PLAGL1  

Genome wide transcriptomics of the wild type and Rybp null mutant ES cells and derived 

CMCs revealed altered expression of several cardiac genes crucial for the functional 

morphogenesis of a developing heart (Ujhelly et al., 2015). Plagl1 was one of the most down 

regulated genes in both the Rybp null mutant ES cells and derived CMCs. Intriguingly, the 

Plagl1 homozygous mice was also embryonic lethal as Rybp and the heterozygous mice 

resembled the neural tube defects of the Rybp heterozygous mice (Yuasa et al., 2010). Plagl1 

is also shown to be expressed in the cerebellum of the brain and showed exencephaly defects 

which were also seen in the Rybp heterozygous mice (Pirity et al., 2005; Yuasa et al., 2010). 

During organogenesis, RYBP and PLAGL1 are co-expressed in the developing organ systems 

such as the central nervous system, the heart and the eye (Table 2) (Valente & Auladell, 2001; 

Miró et al., 2009; Pirity et al., 2005; Garcia et al., 1999; Pirity et al., 2007). 
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PLAGL1 is also called as Zinc finger protein inducer of apoptosis and cell cycle arrest (ZAC1) 

due to its roles in apoptosis (Spengler et al., 1997) similar to RYBP (Stanton et al., 2007). Both 

RYBP (Tan et al., 2017; Voruganti et al., 2015; Zhu et al., 2017) and PLAGL1 (Abdollahi et 

al., 1999; Bilanges et al., 1999) have been identified to function as tumor suppressors as well. 

Both RYBP and PLAGL1 are previously identified to physically interact with tumor suppressor 

Transformation related protein 53 (TRP53, also called as P53). RYBP can modulate the 

stability of P53 by inhibiting ubiquitination of the protein (Chen et al., 2009). On the other 

hand, PLAGL1 can interact with p53 to activate the expression of Cyclin-dependent kinase 

inhibitor 1A (Cdkn1a, also called as p21) to regulate cell cycle exit (Liu et al., 2008; Benedetti 

et al., 2017). Taken together, these suggested a possible genetic or biochemical connection 

between the two proteins. 
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Table 2: Gene expression of Rybp and Plagl1 in mouse embryonic tissues 

The expression of Rybp and Plagl1 in in vivo mouse tissues based on previously analysed data 

from RNA-in situ hybridisation experiments are presented in the table. Rybp and Plagl1 are 

co-expressed in the same tissue types in the CNS, heart and the eye. + denotes presence of the 

respective factors, ++ denotes stronger expression, - denotes no expression and ± denotes 

weak expression of Rybp or Plagl1. Abbreviation: ND-no data. 

1.11 Plagl1, as a key cardiac transcription factor 

Mouse Plagl1 has been identified as a transcription factor with diverse functions, expressed at 

various developing tissues during embryonic developmental and adult stages (Table 2) 

(Valente & Auladell, 2001; Alam et al., 2005). Plagl1 expressed strongly in the forelimb, 

hindlimb, liver primordium, neural tube, neural retina, primordial heart, epithalamus, pituitary 

lobe, choroid plexus, cortical plate, marginal zone, hippocampus, atrium, ventricle in the 

developing embryo (Valente & Auladell, 2001; Valente et al., 2005; Alam et al., 2005) 

revealing the role of Plagl1 in the organogenesis of various lineages. 

Mouse 
Embryo

Mouse 
Adult

Mouse 
Embryo

Mouse 
Adult

Forebrain ++ ND + ND Garcia et al, 1999  Valente et al, 2001

Midbrain + ND ++ ND  Pirity et al, 2005  Valente et al, 2001; Alam 
et al, 2005

Hindbrain ++ ND ++ ND Garcia et al, 1999  Valente et al, 2001; Alam 
et al, 2005

Cortical plate ++ ND + ND  Pirity et al, 2005  Valente et al, 2001; Alam 
et al, 2005

Marginal zone ++ ND + -  Pirity et al, 2005  Valente et al, 2001

Hippocampus ++ ND + ++ Pirity et al, 2005  Valente et al, 2001; Alam 
et al, 2005

Ventricular zone - ND ++ ±  Pirity et al, 2005;  Valente et al, 2001; Alam 
et al, 2005

Sub-ventricular zone + ND + ±  Pirity et al, 2005  Valente et al, 2001; Alam 
et al, 2005

Choroid plexus ND ND ++ +  Valente et al, 2001

Retina ++ ++ + +  Pirity et al, 2007 Alam et al, 2005

Lens ++ - + ±  Pirity et al, 2007 Alam et al, 2005

Cornea ++ ± ND ND  Pirity et al, 2007 Alam et al, 2005

Optic nerve ± + ND +  Pirity et al, 2007 Alam et al, 2005

Reference for Plagl1Organ
Rybp Plagl1

Reference for Rybp

Yuasa et al, 2010; Tsuda 
et al, 2004; Alam et al, 

2007

C
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Pirity et al, 2005; Garcia 
et al, 1999; Ujhelly et al, 

2015 

Pirity et al, 2005  Valente et al, 2001, Miró 
X et al,2009
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PLAGL1 is determined to be a cardiac transcription factor with chamber specific expression in 

the developing heart (Tsuda et al., 2004; Yuasa et al., 2010). Plagl1 heterozygous exhibited 

atrial and ventricular septal defects and improper chamber specification in the E15.5 hearts 

(Yuasa et al., 2010). Plagl1 is shown to be regulated by the cardiac transcription factors NKX2-

5 in mouse and by MEF2C in rat mesenchymal cells (Yuasa et al., 2010; Czubryt et al., 2010). 

These studies established PLAGL1 as a cardiac transcription factor, regulated by cardiac 

progenitor transcription factors during mammalian heart development. 

1.12 Relevance of Plagl1 towards diseases  

Plagl1 encodes for zinc finger type transcription factor with anti-proliferative activity and is a 

presumptive tumour suppressor gene on 10q24 which expression is frequently lost in various 

neoplasms. Alterations of Plagl1 expression were profoundly classified in various cancers such 

as breast, ovarian primary tumors and also in tumor derived cell lines, basal cell carcinoma and 

Extraskeletal myxoid chondrosarcoma (EMC) (Cvetkovic et al., 2004; Jacobs et al., 2013; 

Kowalczyk et al., 2015; Li et al., 2014; Ribarska et al., 2014). Allelic deletions of Plagl1 have 

been implicated in different cancers as well (Kowalczyk et al., 2015). Like most imprinted 

genes, a differentially methylated region (DMR), rich in CpG sequences, are influencing Plagl1 

transcription. An in vitro model for Plagl1 gene regulation demonstrated that methylation of 

the CpG islands induces heterochromatin modification that represses gene transcription 

(Varrault et al., 2001).  

Furthermore, the biallelic expression of Plagl1 from an alternate promoter is associated to 

transient neonatal diabetes mellitus (TNDM) (Hoffmann, 2015). The expression of both Plagl1 

and the non-coding RNA (ncRNA) in its locus, Hydatiform mole associated and imprinted 

(Hymai) were identified to be higher in TNDM conditions (Arima et al., 2001).  

These studies indicated the important role of Plagl1 not only in normal mammalian 

development but also in disease conditions as well. 
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2. AIMS 

The aims of this thesis study were to understand the connections between epigenetic factor 

RYBP and cardiac transcription factor Plagl1 during in vitro cardiomyogenesis and to broaden 

our knowledge about the functions of RYBP during cardiac development. Our focus was 

directed towards unravelling the specific molecular mechanisms by which RYBP affected the 

regulation of key cardiac transcription factors such as Plagl1 and to understand the critical role 

of Plagl1 in the formation of contractile CMCs.  

 
The detailed aims of the thesis were: 

 

i. To examine the expression of Plagl1 and compare it with the expression of Rybp 

during in vitro cardiac differentiation. 

 

ii. To characterize and compare the protein localization of RYBP and PLAGL1. 

 

iii. To identify putative regulatory elements in the Plagl1 genomic locus. 

 

iv. To identify the nature of regulatory mechanism which RYBP exerts on the Plagl1 

locus. 
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3. MATERIALS AND METHODS 

3.1 Cell culture techniques 

3.1.1 Cell lines and culture conditions 

Mouse (129SV/Ola) R1 ES cells (Nagy et al., 1993) (mentioned as wild type or Rybp+/+) and 

D11 ES cells (mentioned as Rybp null mutant or Rybp-/-) (M K Pirity et al., 2005)(Figure 6) 

were thawed on mitomycin C (Mit C; Sigma, Cat.No M0503) inactivated mouse embryonic 

fibroblast (MEF) layer and cultured on 0.1% gelatin (Gelatin from bovine skin, Sigma, Cat.No 

G-9391) coated tissue culture plates as described in Magin et al (Magin et al., 1992). The cells 

were maintained in Dulbecco’s modified eagle’s medium (DMEM (1x) + Gluta MAXTM-1 

Dulbecco’s Modified Eagle Medium, Gibco, Cat.No 31966-021) containing 15% Fetal Bovine 

Serum (FBS) (APS, Cat.No S-001A-USDA grade), 0.1 mM non-essential amino acids (MEM 

Non-Essential Amino Acids (100x), Corning, Cat. No 34319012), 0.1 mM ß-mercaptoethanol 

(2-Mercaptoethanol, Gibco, Cat.No 31350-010), 1% sodium pyruvate (Sodium Pyruvate 

(100mM) (100x), Gibco, Cat. No 11360-039), 1% glutamine (L-Glutamine (200 mM) Gibco, 

Cat.No 25030-024), 50 U/ml penicillin/streptomycin (Penicillin/ Streptomycin (100x), Gibco, 

Cat.No 15140-122) and 100 U/ml Leukemia inhibitory factor (LIF, ESGRO, Chemicon/ 

Millipore, Billerica, MA, USA). The cells were passaged prior to reaching 70% confluence 

(approximately every second day). ES cells were cultured on gelatin coated dishes for at least 

three passages prior to differentiation to deplete potentially present MEF cells from the ES cell 

culture. Cells were cultured in humidified conditions containing 5% CO2 at 37°C. The cells 

were grown with fresh ES cell media supplemented every day. 

Human Embryonic Kidney (HEK) 293T cells was used for PLAGL1 protein assays. HEK293T 

cells were maintained in Dulbecco’s modified eagle’s medium (DMEM (1x) + Gluta MAXTM-

1 Dulbecco’s Modified Eagle Medium, Gibco, Cat.No 31966-021) containing 10% FBS (Gibco, 

Cat.No 10500-064), 0.1mM non-essential amino acids (MEM Non-Essential Amino Acids 

(100x), GIBCO, Cat.No 11140-035), 1% sodium pyruvate (Sodium Pyruvate (100 mM), 

Gibco, Cat.No 11360-039) and 50 U/ml penicillin/streptomycin (Penicillin/Streptomycin 

(100x), GIBCO, Cat.No 15140-122). The cells were passaged before the confluency reached 

90% (approximately every 2-3 days). Medium was changed every second day. Cells were 

cultured in humidified conditions containing 5% CO2 at 37°C. 

 



 28 

 

Figure 6: ES cell lines used in this study  

Rybp genomic locus (Chr6: 100228565-100287358) contains 5 exons in the wild type (Rybp+/+) 

ES cells. In the Rybp null mutant (Rybp-/-) ES cells, the 3’ of exon 3, exon 4 and exon 5 are 

replaced by a donor cassette containing Enhanced Yellow Fluorescent Protein (EYFP) 

followed by a floxed neomycin-phosphotransferase (NEO) cassette (Pirity et al., 2005). 

3.1.2 In vitro cardiac differentiation of mouse embryonic stem cells 

Mouse ES cells were harvested as single cell suspension using 0.05% (wt/vol) trypsin (Trypsin-

EDTA (1x) 0,05% / 0,02% in D-PBS, GIBCO, Cat.No 15400-054) and then the cell number 

was calculated using a Burker chamber. The cell number was diluted to 50 cells/µl in 

suspension and 20 µl droplets of cell suspension were dispensed to lids of bacterial dishes 

where each droplet contained around 1000 cells, and then the cells were let to form EBs by the 

HD method as described in Keller et al. (Keller, 1995) (Figure 7). The EBs were harvested on 

the second day and plated into cell culture dishes (60 mm, Corning, Cat.No 430196) coated 

with gelatin containing ES medium (described in 3.1.1) without LIF. The medium was changed 

every second day and the cells were cultured to a maximum of 21 days. The cells were 

harvested for further analysis at different time points of cardiac differentiation: day 0, 2, 7, 10, 

14 and 21 (labelled as d0, d2, d7, d10, d14 and d21). Day 0 represents pluripotent stem cell 

stage, day 2 represents the EB stage, day 7 and day 10 represents early and late cardiac 

progenitor stages respectively and day 14 and day 21 represents the terminal stage of in vitro 

cardiac differentiation.  
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Figure 7: In vitro cardiac differentiation 

CMCs were differentiated in vitro from ES cells through EB formation by using the HD method. 

Cardiac colonies were grown for maximum 21 days, sampled for mRNA expression analysis 

(qRT-PCR) and fixed for ICC analysis at day (d) 0, 2, 7, 10, 14 and 21 (indicated in bold). 

Samples were derived earlier at d0, d8 and d14 for whole genome transcriptomics as described 

previously (Henry et al., 2020; Ujhelly et al., 2015). For the analysis of the initial time points 

of Plagl1 expression, samples were derived at an extended interim time points between day 0 

till day 7 (i.e., d2, 3, 4, 5, and 6) for qRT-PCR and ICC analysis. Abbreviations: ES cells: 

Embryonic stem cells, EBs: Embryoid bodies, HD: Hanging drops, CMCs: Cardiomyocytes, 

ICC: Immunocytochemistry, qRT-PCR: quantitative real-time polymerase chain reaction.  

3.1.3 Calcium Phosphate transient transfection method 

Calcium Phosphate method (Kingston et al., 2003) was used to transiently transfect HEK293T 

cells for reporter assays and protein overexpression for protein stability assays (methods 3.3.2) 

and co-immunoprecipitation (Co-IP, methods 3.3.3) analysis. HEK293T cells were seeded at a 

density of 1 x 106 cells per 6 cm tissue culture dishes and maintained as described above. 5 

hours before transfection the cells were fed with fresh medium. The transfection mix were 

prepared by diluting the required plasmids in 0.1 mM Tris-EDTA (Trizma base, Sigma, Cat.No 

T1503) buffer and 2.5 M Calcium chloride (CaCl2, Sigma, C-3881) and 2X HEPES buffered 

saline (HBS, Sigma, Cat.No H3375) dropwise by bubbling the solution using Pasteur pipette 

to provide oxygen for the mixture. The transfection mix was added to the cells dropwise and 

the cells were then maintained with the transfection mix in humidified conditions. 16 hours 

after the transfection, fresh media was provided to the cells and after 40 hours the cells were 

washed twice with 2ml of 1X PBS on ice and then harvested for whole cell protein lysate using 

cell lysis buffer (Cell culture lysis 5X reagent, Promega, Cat.No E153). 

d0 d2 d7 d10 d14 d21d8

ES cells
(Pluripotent) Embryoid bodies (EBs) Cardiac progenitor formation Terminal cardiac (CMCs)

d3 d4 d5 d6

Extended time points for Plagl1
expression analysis
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3.1.4 The luciferase reporter assay system 

HEK293T cells was transfected with Calcium Phosphate transient transfection method as 

mentioned above (3.1.4) (Figure 8). The transfected cells were harvested for their protein 

lysates 40 hours after transfection with 1X Passive lysis buffer (1X PLB) provided by the 

luciferase assay kit (Dual Luciferase Reporter Assay System, Promega, Cat.No E1910) (Figure 

8). Concentration of the whole cell lysate was determined by the Bradford’s method (5X Bio-

Rad Protein Assay Dye reagent concentrate, Cat.No 5000006) according to the manufacturer’s 

instructions. Protein concentrations were measured from OD600 taken in UV spectrophotometer 

(WPA Photometer UV110 Cambridge, UK, Cat.No RS232). The concentration of the lysates 

was then determined by Bradford’s method (Bradford, 1976) using Bovine Serum Albumin 

(BSA, VWR, Cat.No G22361V) as the standard. 20 µg of the protein lysates were measured 

from each transfection with 100 µl of Luciferase Assay Reagent II (LAR II, provided with the 

kit). Luciferase activity was recorded with Perkin Elmer TopCount NXT Luminometer in dark 

conditions. Each measurement was recorded in triplicates. 

 
Figure 8: Flow chart of the working model for luciferase reporter assay  

Schematic representation of the workflow for luciferase reporter assay. 1 x 106 HEK293T cells 

were seeded in 6 cm petri dishes and on d2 were transfected with the required plasmids by 

Calcium Phosphate method. 16 hours after transfection the cells were fed with fresh media and 

after 40 hours the cells were harvested for the protein cell lysates. The cells transfected with 

EGFP was checked to measure the transfection efficiency and the samples were prepared for 

luciferase measurement as described in 3.1.4. 

Day 1: Seeding 1 x 106 HEK293T cells/6cm

Day 2: CaPO4 transfections of plasmids

Day 3: Feeding

Day 4: Check transfection efficiency 
in controls 

Making cell lysate
Add substrate

Detect the luciferase levels 
using luminometer
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3.1.5 Inhibition of PRC1 activity  

Inhibition of PRC1 activity was performed to analyse the PRC1 dependent and independent 

activities of RYBP in promoter assays. 16 hours after transfection of the required plasmids by 

Calcium Phosphate method (detailed in 3.1.4), HEK293T cells were fed with growth media 

supplemented with 50 µM of PRC1 inhibitor, PRT4165 (PRT4165, Sigma, Cat.No 

NSC600157) as previously reported by Ismail et al. and Gracheva et al. (Ismail et al., 2013; 

Gracheva et al., 2016). The cells were maintained with PRT4165 supplemented media for 

further 1 hour after treatment and the whole cell lysates were procured. The cell lysates were 

then prepared for luciferase reporter assay as described in 3.1.4. 

3.2 Molecular biology techniques  

3.2.1 Quantitative real-time PCR (qRT-PCR) 

Relative quantification of mRNA expression during in vitro cardiac differentiation was 

performed using quantitative real-time PCR (qRT-PCR). Total RNA was isolated from the 

harvested cells at the required time points of in vitro cardiac differentiation (described in 3.1.2) 

using GeneJET RNA Purification Kit (Thermo Scientific, Cat.No K0732) according to the 

manufacturer’s instruction. Reverse transcription PCR for the cDNA synthesis from the 

isolated RNA was performed using Applied Biosystems High-capacity cDNA Reverse 

Transcription Kit (Invitrogen Life Technologies, Cat.No 4368814) according to the 

manufacturer’s instructions. qRT-PCR analysis was performed with SYBR green master mix 

(SYBR® Select Master Mix for CFX, Applied Biosystems, Cat.No 4472942) using Bioer 

LineGene Real-time PCR system (Bioer, China).  

Relative mRNA expression changes were determined using the ∆∆Ct method. The threshold 

cycle (Ct) values for each gene were normalized to the expression level of Hprt (Hypoxanthine 

guanine phosphoribosyl transferase I) as internal control. The data is presented as fold 

expression changes normalized to wild type d0. The primers used in this study are listed in 

Table 3.  
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Table 3: Primers used in qRT-PCR reactions 

3.2.2 Chromatin Immunoprecipitation and qRT-PCR (ChIP-qRT-PCR) 

Chromatin immunoprecipitation (ChIP) was performed by using EpiXplore ChIP kit, 

(Clonetech, Cat.No 632011) according to manufacturer’s instructions. In brief nuclear 

extraction from ES cells and d7 cardiac differentiated cells from 10 cm plates was carried out 

by carefully lysing the cytoplasm and nuclei using the lysis buffers (provided in the kit) and 

subsequent shearing of the DNA was performed using an ultrasonicator (Ultrasonic 

homogenizer 3000, BioLogics) at 4x30 s cycles, 60 pulse and 20 kHz. The sheared DNA was 

loaded into 1 % Agarose gel electrophoresis (AGE) and the size of the sheared chromatin was 

seen between 200 bp to 800 bp (ideal for IP and qRT-PCR). The sheared DNA was then 

incubated with prewashed magnetic beads (Mag Capture beads, Clonetech, Cat.No 632577) 

under gentle rocking for 4 hours at 4°C. The wash steps were carried out according to the 

manufacturer’s instructions with the help of a magnetic stand. The eluted immunoprecipitated 

chromatin was then treated with RNase A and Proteinase K (provided in the kit).  

The immunoprecipitated chromatin was then used for qRT-PCR using SYBR green as 

described in 3.2.1. 

 

 

Gene Name Forward Primer sequence Reverse primer sequence
Hprt 5'- AGTCCCAGCGTCGTGATTAG-3' 5'-GCAAGTCTTTCAGTCCTGTCC-3'
Rybp 5'-TTAGGAACAGCGCCGAAG-3' 5'-GCCACCAGCTGAGAATTGAT-3'

Plagl1 ex 1/2 5'-AGCAAGGCTTCTCACAGGC-3' 5'-GTGAGGTACTTCCTTCAGCATCTTG-3'
Plagl1 ex 4/5 5'-GATTGCTTCAGCGTGCCATCG-3' 5'-ACTCCTCTGACTCCTATGCAAA-3'

Plagl1 ex 10/11 5'ATGGCTCCATTCCGCTGTC-3' 5'-CTCAGCCTTCGAGCACTTGAA-3'
Hymai 5'-AAGTAGTGACAACCGGGGCCAT-3' 5'-GAACACAAATCACCTCTTCCC-3'

Plagl1it 5'-GCAACCCCACACATCCTTAAGC-3' 5'-GAACATTCACAGAAACTCAAGG-3'



 33 

 
Figure 9: Sheared chromatin of d0 wild type ES cells used for ChIP-qPCR 

Wild type ES cells were harvested from 10 cm petri dishes and the isolated nuclear fractions 

with the chromatin was sheared by sonication. The sonicated sheared chromatin was loaded 

in 2% AGE with 100 bp ladder (GelPilot 100 bp ladder, Qiagen, Cat.No 239045) in the left. 

The size of the ladder bands is labelled accordingly. The isolated chromatin was sheared at an 

average size of 200-800 bp in length which is ideal to use in qRT-PCR. Abbreviations: kb: 

kilobase, bp: base pair. 

3.2.3 Molecular cloning, transformation and confirmation 

All enzymes required for molecular cloning of promoter and cDNA constructs of interest were 

performed using NEB enzymes. Amplification of the promoter regions was done using BAC 

clone (RP23-259L24 BAC clone for Plagl1 promoters) or using wild type genomic DNA 

(gDNA) isolated from ES cells (for Tnnt2 promoter) as the template. One Taq Hot Start DNA 

Polymerase kit (NEB, Cat.No M0481S) was used for the amplification of DNA following the 

manufacturer’s instructions. 

The Plagl1 P1 promoter (4612 bp) was PCR amplified using 5’ and 3’ HindIII site containing 

primers from RP23-259L24 BAC (RPCI23-259L24, BACPAC resource, RPCI) construct 

(Table 4). The amplified DNA was gel eluted using QIAquick Gel Extraction kit (Qiagen, 

Cat.No 28706) according to the manufacturer’s instructions and cloned into the HindIII site of 

the MCS (multiple cloning site) in the pGL4.20 vector (Figure 10A) (pGL4.20 (luc2/Puro) 

vector, Promega, Cat.No E6751). 
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The Plagl1 P2 promoter (1821 bp) was also amplified and cloned using 5’ and 3’ HindIII site 

containing primers (Table 4). The P2 promoter was cloned into pGL4.20 vector (Figure 10B) 

as mentioned above. 

The Plagl1 P3 promoter containing pGL3-mZac1pr (henceforth called as the Plagl1 P3 

promoter) construct (Figure 10C) was a kind gift from Dr. Michael Czubryt, Institute of 

Cardiovascular Sciences, University of Manitoba, Canada. 

 
 

Figure 10: Schematic representation of the generated Plagl1 promoters containing 

luciferase reporter constructs 

The (A) Plagl1 P1 and (B) P2 promoter regions were cloned at the HindIII sites immediately 

upstream to the luciferase coding region in pGL4.20 Luc2 vector. Plagl1 P3 promoter (C) 

incorporating luciferase reporter construct was a kind gift from Dr. Michael Czubryt. The 

constructs were labelled as pGL4.20 Plagl1 P1, pGL4.20 Plagl1 P2 and pGL3 Plagl1 P3 

according to the encompassing promoter region. The Plagl1 promoter regions are represented 

in green colour along with indicating cloning restriction sites, regulatory elements such as 

TATA box (blue box), consensus binding sites for NKX2-5 and MEF2C, and vector elements.  

A B

C

A B

C
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The subcloning of the P3 promoter was performed as follows. Clone a (1-2.8 kb) and f (2.8- 

5.4 kb) were produced by cleaving the P3 with BglII (Figure 10C). Clone a (1-2.8 kb) was self-

ligated after digestion with BglII and the 2.8-5.4 kb band was eluted and re-cloned into pGL3 

empty vector at the BglII site. Clones b (1-1.3 kb) and d (1.3- 2.8 kb) were generated by HindIII 

digestion of clone a. Clone c (1-1.6 kb) was generated by digesting clone a with PstI and self-

ligating the 6.5 kb band. Clone e (1.6-3.7 kb) construct was generated by digesting the Plagl1 

P3 promoter by PstI (Figure 10C). The 2.1 kb band after digestion with PstI was gel eluted and 

re-cloned into the same sites in pGL3 empty vector. Clone g (2.8-3.7 kb) and h (3.7-5.4 kb) 

were generated by digesting clone f with PstI and performing self-ligation and insert ligation 

of fragments as mentioned earlier. 

The Tnnt2 promoter (2688 kb) was PCR amplified using wild type gDNA from ES cells as 

template. The PCR amplicon was gel eluted and cloned into KpnI sites (Table 4) and cloned 

into pGL4.20 vector (Figure 11) as described above. 

 
Figure 11: Schematic representation of the generated Tnnt2 promoter containing luciferase 

reporter construct 

The Tnnt2 promoter was cloned at the KpnI sites immediately upstream to the luciferase coding 

region in pGL4.20 Luc2 vector. 

Tnnt2 promoter is represented in green colour along with indicating cloning restriction sites. 

cDNA overexpression constructs for Hymai (Figure 12A) and Plagl1it ncRNA (Figure 12B) 

were generated by PCR amplifying the ncRNAs from d14 cardiac differentiated wild type cells. 

The PCR amplicons were gel eluted and cloned into the XbaI site in pcDNA3.1- vector (Figure 

12). 
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Figure 12: Schematic representation of the Hymai and Plagl1it cDNA overexpression 

constructs 

Both (A) Hymai and (B) Plagl1it ncRNA were cloned at the XhoI sites in the pcDNA3.1- vector. 

The cloned cDNA region is represented in orange colour along with indicating vector elements. 

 

cDNA overexpression constructs were generated by PCR amplifying Nkx2-5 and Mef2c from 

cDNA pool generated from whole cell RNA isolated from d10 cardiac differentiated wild type 

cells. The PCR amplicons were gel eluted and cloned into the BamHI site in pRK7 FLAG 

vector in frame with the N-terminal FLAG tag. Both FLAG-NKX2-5 (Figure 13A) and FLAG-

MEF2C (Figure 13B) constructs produced N-terminally FLAG tagged proteins. 

Further confirmation of the cloned constructs was performed by orientation check of the ligated 

insert by restriction digestion of the plasmids and by sequencing the plasmids (Deltagene, 

Szeged, Hungary). 

 

 

 

A B
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Figure 13: Schematic representation of the Nkx2-5 and Mef2c cDNA overexpression 

construct 

Both (A) Nkx2-5 and (B) Mef2c cDNA were cloned at the BamHI sites in frame with a N-

terminal FLAG tag. The cloned cDNA region is represented in maroon colour along with 

indicating vector elements. 

 

 
Table 4: Table of the primers used to clone the Plagl1 P1, P2, Tnnt2 promoters and cDNA 

overexpression constructs in this study (3.2.3). 

3.2.4 Site directed mutagenesis 

Site directed mutagenesis was performed using Q5 site directed mutagenesis kit (NEB, Cat.No 

E0554S) following the manufacturer’s instructions. Primers were designed to mutate 

consensus sites for Nkx2-5 and Mef2c at the P3 promoter by using NEBase Changer tool 

(https://nebasechanger.neb.com) provided by NEB (Table 5). The primers were designed to 

mutate the consensus of 3 Nkx2-5 and one Mef2c sites by introducing BamHI and HindIII sites 

respectively at the consensus to assist with screening positive mutants harbouring the right 

mutation. The PCR reaction was set according to the corresponding primer annealing 

temperature suggested by NEBase Changer tool. The KLD (kinase, ligase and DpnI digestion) 

enzyme (provided in the kit) was used to digest template DNA and ligation for rapid generation 

of mutant constructs carrying mutation for Nkx2-5 and Mef2c consensus. The transformed 

A B

Gene Name Forward Primer sequence Reverse primer sequence
Plagl1 P1 5'-GCTGAAGCTTATTAACCGCCTCATTCTCA-3' 5'-TACTAAGCTTTGGGTCTGATGGTTCCATAGA-3'
Plagl1 P2 5'-TGTAAGCTTCACTTTTCCTTTTGCAAGGCAT-3' 5'-TGTCAAGCTTAAGTGTGCAGAGGGAACTT-3'

Tnnt2 promoter 5'-TGATGGTACCGGAATCTAACAGTGTCTGGA-3' 5'-TATTGGTACCCCTCCCACAAGCTTACAATCA-3'
Hymai cDNA 5'-TATTCTCGAGCCCACGGCATCTGCGATTTG-3' 5'-ACGCTCGAGAGCATGTGAGGCAAATGACAAAC-3'

Plagl1it cDNA 5'-TATTCTCGAGCCTTGCTGCACGGACAGACT-3' 5'-GAGCTCGAGAGCAGCAACTGGGTGACATGC-3'
Nkx2-5 cDNA 5'-TAATTAGGATCCATGTTCCCCAGCCCTGC-3' 5'-TATTAGGATCCCTACCAGGCTCGGATGCC -3'
Mef2c cDNA 5'-AGCAGGATCCATGGGGAGAAA AAAGATTCAGA-3' 5'-TAATGGATCCTCATGTTGCCCATCCTTCAGAG-3'
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colonies were then screened and confirmed by BamHI and HindIII digestions for Nkx2-5 and 

Mef2c consensus sites respectively. Seven different mutants were generated harbouring single 

and multiple mutants of Nkx2-5 and Mef2c consensus (Figure 14). Further confirmation was 

performed by sequencing the plasmids (Deltagene, Szeged, Hungary) and checked for carrying 

the mutation with no off-target mutations in the constructs. 

 

 
Table 5: Table of the primers used to mutate Nkx2-5 and Mef2c sites at the P3 promoter in 

this study (3.2.4). 

 

 
 

Figure 14: Schematic illustration of the position of Nkx2-5 and Mef2c sites and the 

generated mutants of the P3 promoter. 

The P3 promoter containing 3 Nkx2-5 (red colour) and 1 Mef2c (green colour) binding sites 

were mutated by the site directed mutagenesis method. The single mutants (1-4) and multiple 

mutants of the Nkx2-5 and Mef2c sites (5-7) were generated and labelled accordingly to the 

left of the schematic representation. 

 

 

Gene 
Name Forward Primer sequence Reverse primer sequence

Nkx2-5 (1) 5'-CTTGAATATCCATCTTGGAAGACCAAAATG-3' 5'-CTTTTGGGTCTTTGGGGGTGG

Nkx2-5 (2) 5'-TCCCATTTCCAAGCTTGTGGGCCTCAC-3' 5'-TTTCCATTTTGGTCTTCCAAG

Nkx2-5 (3) 5'-CTACACCATGAAGCTTGGCCTTTATTC-3' 5'-CTAATGGTTCCTAGATATTG

Mef2c 
5'-

TCCTTAGAATGGGGGGACACTGAAAATGAAATGAAATCCTG
AGACTTTGG-3'

5'-
TCCTGAGTGAGTGATAGAGATCTGCCAATTGAGCCATCTGCT

TCATTC-3'

X1

2

3

4

5

6

7

Plagl1 P3

X

X

X

X X

XXX

XXXX

Nkx2-5 consensus
Mef2c consensus
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3.3 Biochemical assays 

3.3.1 Western blot analysis 

Analysis of proteins during in vitro cardiac differentiation was carried out by the Western blot 

technique. Whole cell lysates were isolated from differentiated samples by using 1x Passive 

lysis buffer (5x Passive lysis buffer, Promega, Cat.No E1941). Concentration of the whole cell 

lysate was determined by the Bradford’s method (detailed in 3.1.4). The protein samples were 

stored in 6X Laemmli dye (Laemmli, 1970) and 20 µg of the quantified total protein was then 

loaded in 10% sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) 

using Bio-Rad Mini-Protean® 3 cell, Cat.No 67S/11919. The protein was then transferred to 

Polyvinylidene fluoride (PVDF transfer membrane, Immobilon®-P, Millipore, Cat.No 

IPVH00010) membrane and was hybridised with RYBP antibody, (anti-DEDAF, Merck 

Millipore, Cat.No AB3637, 1:1000) and PLAGL1 Antibody (anti-Zac1 C-7, Santa Cruz, 

Cat.No sc-166944, 1:1000). Bio-Rad Goat-anti-mouse IgG-HRP conjugate, (Cat.No 172-101, 

1:2000) and Merck Millipore Goat-anti-Rabbit IgG-HRP conjugate, (Cat.No AP132P, 1:2000) 

were used as the secondary antibodies. The membranes were washed with TBST buffer for 5 

times with 5 minutes of gentle shaking and then hybridised with Immobilon™ Western, 

Chemiluminescent HRP Substrate, Millipore, Cat.No WBKLS0500. Alliance Q9 system 

(UVITECH) was used to capture the chemiluminescent signals. 

3.3.2 Protein stability assays 

The wild type d14 differentiated cardiomyocytes were treated with 75 µg/ml concentration of 

Cyclohexamide, (CHX, Sigma, Cat.No C7698) and 10 µM MG132 (MG132, Cayman 

Chemicals, Cat.No 133407-82-6) for up to 6hours and the cells were then lysed in a time 

dependant manner between 1 hour and 6 hours of the treatment by using 1X Passive lysis buffer 

(5X Passive lysis buffer, Promega, Cat.No E1941) respectively. 

3.3.3 Co-Immunoprecipitation (Co-IP) 

HEK293T cells were transiently transfected with 5 µg of pcDNA3.1-RING1A FLAG, pRK7- 

FLAG NKX2-5, pRK7-FLAG MEF2C and pRK7-FLAG PLAGL1 (a kind gift from Dr. 

Dietmar Spengler, Max Plank Institute of Psychiatry, Germany) in combination with 5 µg of 

pcDNA3.1 RYBP cDNA containing expression vectors. Transient transfection and protein 

lysis were performed as mentioned above (detailed in 3.1.3). The whole cell lysates were 
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incubated in ice for 15 minutes and were spun at 15,000 x g for 10 minutes at 4°C. The 

supernatant was separated and pre-cleaned with 30 µl of Protein A-Agarose beads (Roche, 

Ref.No 11134515001) at 4°C under gentle rocking for 20 minutes. The precleared supernatant 

with agarose beads were spun at 500 x g for 2 minutes at 4°C. 80 µl of the supernatant was 

collected and mixed with 6X Laemmli dye, boiled for 10 minutes at 100°C to use as input 

lysates for Western blot analysis. The remainder of the supernatant was incubated overnight at 

4°C under gentle rocking with 30 µl of RYBP antibody (anti-DEDAF, Millipore, Cat.No 

AB3637) bound agarose beads (5 µl of RYBP antibody (1 µg/ml) was bound to 100 µl of 

agarose beads for 4 hours at 4°C under gentle rocking). To wash the immunoprecipitated 

proteins, the protein bound FLAG-tagged beads were centrifuged for at 500 x g for 2 minutes 

at 4°C and washed with 1X PBS for 5 times. The immunoprecipitated proteins bound to the 

RYBP-tagged beads were then mixed with 30 µl of 6X Laemmli dye, boiled for 10 minutes at 

100°C and stored in -20°C until further use. 20 µl of the input lysates and 20 µl of the 

immunoprecipitated proteins were loaded in 10 % SDS-PAGE and Western blot analysis 

(detailed in 3.3.2) was carried out. The Western transferred membrane was immunoblotted 

with anti-FLAG antibody (Monoclonal anti-FLAG M2 Peroxidase (HRP), Sigma, Cat.No 

A8592) at 4°C under gentle shaking overnight. The membranes were processed as mentioned 

in methods 3.3.2. 

3.3.4 Immunocytochemistry (ICC) analysis 

Immunofluorescence staining of in vitro cardiac cell cultures was achieved by culturing the 

cells over glass coverslips in 24 well plates (24 well Cell Culture Cluster Costar, Cat.No 3524) 

as described before (detailed in 3.1.2) and fixed with 4% Paraformaldehyde (PFA, Sigma, 

Cat.No 158127) for 20 minutes at room temperature (RT). Cells were permeabilized by 0.2% 

Triton X-100 (Triton® X-100, Sigma, Cat.No T8787) in Phosphate Bovine Saline (Dulbecco’s 

PBS (1x), Gibco, Cat.No 14190-144) for 20 minutes in gentle shaking at RT. 5% BSA in PBS 

was used to block the cells for 1 hour at RT. The cells were incubated with RYBP antibody 

(Anti-DEDAF antibody, Merck Millipore, Cat.No AB3637, 1:1000 dilution) and PLAGL1 

antibody (anti-Zac1 C-7, Santa Cruz, Cat.No sc-166944, 1:1000 dilution) in 5% BSA overnight 

at 4°C under gentle shaking. The cells were washed for 5 times with PBS and incubated with 

fluorescent labelled secondary antibody (Alexa Fluor 488 Goat-Anti-Rabbit, Invitrogen, 

Cat.No A-21206; Alexa Fluor 647 Donkey-Anti-Mouse, Invitrogen, Cat.No A-31571) at 

1:2000 dilution in BSA for 1 hour at 4°C. The cells were then washed 3 times with PBS. The 
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cells were then incubated for 20 minutes with DAPI (Vector Laboratories, Cat.No H-1200) 

diluted at 1:2500 in PBS. The cells were then washed 3 times with PBS and mounted in 

Fluoromount-G™, (eBioscience, Cat.No 00-4958-02). The images were taken in Olympus 

LSM confocal microscopy (Olympus Corporation, Japan). 

3.4 Bioinformatic analysis 

3.4.1 Transcriptome analysis  

Microarray analysis of the genome wide transcriptomics (Ujhelly et al., 2015) was carried out 

by mapping the sequenced reads from RNA-seq experiment by TopHat1 and the log2 fold 

change (FC) counts were calculated by read counts after normalization using DESeq1 package 

in R programming and deposited in GEO (Gene expression omnibus- 

https://www.ncbi.nlm.nih.gov/geo/) accession ID GSM4575880 (Henry et al., 2020). 

The sorting of the genes based on their corresponding log2 FC values was performed in 

Microsoft Excel using the VLookup and sorting functions. Hierarchical clustering of the values 

(log2 FC ≥ 2) for upregulation and (2 ≤ log2 FC) for downregulation of genes between wild 

type and Rybp null mutant ES cells and differentiated CMCs was performed by the k-means 

method using the XLSTAT extension tool in Microsoft Excel. Representative heatmaps were 

generated by transferring the clustered gene sets into Prism GraphPad 8 software.  

3.4.2 Analysis of the reported ESTs of the Plagl1 splice variants  

Complete CDS (coding sequence) of Plagl1 mRNA and deposited transcript variants were 

downloaded in FASTA format from NCBI-Nucleotide database. Each variant sequence was 

BLASTed with the Plagl1 genomic locus from Ensembl 

(https://www.ensembl.org/index.html) ID: ENSMUSG00000019817 as the reference file with 

indicating exon positions. The exons transcribed in each splice variant was identified and the 

splice variant sequences were aligned using BioEdit software. The corresponding position of 

the promoter region from which the splice variants were transcribed were presumed based on 

the coding exons and the relative position of the promoter regions.  

3.4.3 Analysis of functional domains and degron sites in PLAGL1 

The analysis for the functional domains in the PLAGL1 protein was determined by uploading 

the PLAGL1 amino acid (aa) sequence (NCBI ID: NP_033564.2) in the PROSITE ExPasy 
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Motif search tool (https://prosite.expasy.org) maintained by the Swiss Institute of 

Bioinformatics (SIB). Serine-threonine phosphorylation analysis was done by using kinase 

specific phosphorylation site prediction using GPS 5.0 online tool 

(http://gps.biocuckoo.cn/online.php) (Wang et al., 2020). Serine-threonine and tyrosine kinases 

sites in the PLAGL1 protein was predicted by setting high threshold cut-off. 

3.4.4 Analysis of the Plagl1 promoter for CpG islands and TATA box  

The CpG islands in the Plagl1 P1, P2 and P3 promoters were analysed by uploading the 

FASTA sequence in the DBCAT online tool (http://dbcat.cgm.ntu.edu.tw). DBCAT uses 

methylation microarray data to analytically identify the CpG islands in the query sequence. 

TATA box prediction was done by uploading the FASTA sequence of Plagl1 P1, P2 and P3 

promoters into YAPP Eukaryotic core promoter prediction webtool 

(http://www.bioinformatics.org/yapp/cgi-bin/yapp.cgi).  

3.4.5 Transcription factor binding analysis in Plagl1 promoters 

Transcription factors binding (TFB) analysis was performed using TRANSFAC webtool 

(https://genexplain.com/transfac/). TRANSFAC is a widely used TFB analysis tool which 

identifies TFB sites based on the experimentally proven consensus of several transcription 

factors and ChIP binding (Wingender et al., 1996; Wingender, 2008; Kaplun et al., 2016) . The 

amplified and cloned Plagl1 promoters P1, P2 and P3 promoter sequences were analysed for 

TFB sites by choosing either muscle specific, cell cycle specific or for all eukaryotic 

transcription factors. 

3.4.6 Motif search in gene promoter regions  

Promoter regions of sarcomeric genes- Actc1, Tnnt2, Tnni3, Tpm1, Tpm4, Myh7, Myom1 and 

Ttn were download from ENSEMBL (https://www.ensembl.org/index.html). ENSEMBL 

database identifies promoter regions in the chromatin based on metagenomic index containing  

pre-selected set of ChIP-Seq assays for CTCF, H3K4me1, H3K4me2, H3K4me3, H3K9ac, 

H3K27ac, H3K27me3, H3K36me3, H4K20me1 (Zerbino et al., 2015). The downloaded 

promoter regions in FASTA format were uploaded into JASPAR (http://jaspar.genereg.net/) 

database for motif search (Sandelin et al., 2004). The analysis was done by choosing Mus 

musculus PLAGL1, NKX2-5, MEF2C and TBX5. Predicted consensus sites and binding scores 

were used to generate Manhattan plot. Binding scores of over 10 was considered significant. 
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3.4.7 Metadata analysis in ES cells and CMCs 

Metadata analysis for existing ChIP-seq analysis was performed by downloading pre-existing 

ChIP-seq data from GEO database (https://www.ncbi.nlm.nih.gov/geo/) under the following 

IDs. In ES cells, RYBP ChIP- GSM4052120, RNF2 ChIP- GSM4052131 and input ChIP- 

GSM4052104 (Zepeda-Martinez et al., 2020), In differentiated CMCs, RYBP ChIP- 

GSM1657391, RNF2 ChIP- GSM1657390 and input ChIP- GSM1657392 (Morey et al., 2015).  

The downloaded BigWig files were uploaded into IGV (Integrative Genomics Viewer) 

choosing specific annotations i.e., mm9 or mm10 according to the original analysis and the 

binding peaks were visualized by setting the data range of the peaks using the input file as the 

reference. 

3.8 Statistical analysis 

All experiments were repeated three times. Experiments were evaluated by using two-way 

ANOVA for significance in qRT-PCR data and one-way ANOVA for significance in luciferase 

reporter assays using GraphPad Prism version 7. All data mentioned in this thesis are expressed 

as mean ± standard deviation (SD). Values of p ≤ 0.05 were accepted as significant (*p < 0.05; 

**p < 0.01; ***p < 0.001; ****p < 0.0001). 
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4. RESULTS 

4.1 Hierarchical gene cluster analysis of the whole genome transcriptome 

In order to get a global view of the transcriptional changes in the Rybp null mutant cells during 

cardiac differentiation, a detailed comparison of the mRNA transcriptomes across wild type 

and Rybp null mutant ES cells (d0) and derived CMCs (d8, d14) was previously performed 

(Ujhelly et al., 2015; Henry et al., 2020); GEO acc. GSE151349). In brief, wild type and Rybp 

null mutant ES cells were let to form EBs by the hanging drop method. On the second day the 

EBs were collected, plated on cell culture plates and cultured up to 14 days. The samples were 

collected from the designated time points of cardiac differentiation (methods 3.1.2) where d0 

represented the pluripotent stem cells stage, d8 the progenitor stage and d14 the terminal 

cardiac stage (Figure 7). In this analysis genes expression changes revealed that the levels of 

several key cardiac transcription factors part of signalling pathways and genes that code for 

proteins indispensable for contractility were downregulated (Ujhelly et al., 2015). In the frame 

of the current study, further analyses of the whole genome transcriptome data with functional 

annotations studies were carried out to identify the mechanisms that possibly led to the 

contractility defect of the Rybp null mutant CMCs. 

4.1.1 Calcium homeostasis, the JAK-STAT pathway and cell adhesion are 

amongst the most affected mechanisms in the Rybp-/- ES cells and derived CMCs 

Hierarchical clustering of the values (2 ≤ log2 fold change ≥ 2) between wild type and Rybp 

null mutant ES cells and differentiated CMCs was performed by the k-means method using 

XLSTAT tool revealed 8 distinct gene clusters (detailed in methods 3.4.1) (Figure 15A).  

From the analysis, clusters of genes with discrete fold change patterns during the analysed time 

points (methods 3.1.2) were procured (Figure 15A). Cluster 1 contained genes that were 

profoundly upregulated (log2 fold change ≥ 4) in ES (d0) at both examined stages of in vitro 

cardiac differentiation (i.e., d8 and d14) in the Rybp null mutant cells in comparison to the wild 

type (Figure 15B and C). These include Hyperpolarization-activated cyclic nucleotide-gated 

potassium and sodium channel 2 (Hcn2) and Hyperpolarization-activated cyclic nucleotide-

gated potassium and sodium channel 3 (Hcn3) (Figure 15B). High expression of Hcn2 and 

Hcn3 are associated to cause sinoatrial node dysfunction ultimately leading to heart failure 

(Yanni et al., 2011).  
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Other cardiac ion channel genes such as Potassium voltage-gated channel Isk-related subfamily 

member 1 (Kcne1), Potassium voltage-gated channel Isk-related subfamily member 2 (Kcne2), 

Calcium channel voltage-dependant gamma subunit 5 (Cacng5), Calcium-sensing receptor 

(Casr), Transient receptor potential cation channel subfamily V member 4 (Trpv4) and gap 

junction genes such as Gap junction protein beta 2 (Gjb2) were identified to be part of cluster 

1 (Figure 15B and C). These genes play essential roles in the maintenance of ion homeostasis 

in the developing CMCs.  

In cluster 2 we identified several genes with significantly upregulated expression level in the 

Rybp null mutant ES cells (log2 fold change ≥ 4) and decreased expression level at d8 and d14 

(log2 fold change ≤ 2) (Figure 15D and E). Genes that contribute to vascular smooth muscle 

contraction such as Angiotensin II receptor type 1 (Agtr1), Endothelin receptor type A (Ednra), 

Arginine vasopressin receptor 1a (Avpr1a), Myosin light chain kinase 3 (Mylk3 also called as 

Mlck) and Myosin light chain 2 (Myl2) that function in vasoconstriction and Adenosine A2a 

receptor (Adora2) that plays role in vasodilation were all part of the same cluster. Genes 

essential in maintaining calcium homeostasis in the developing CMCs such as Potassium 

inwardly-rectifying channel subfamily J member 5 (Kcnj5), Calcium voltage-gated channel T 

type alpha 1G subunit (Cacna1g), Calcitonin receptor (Calcr) and Sodium channel voltage-

gated type I alpha (Scn1a) were also identified in the same cluster showing that key cardiac 

genes were upregulated from the ES cell stage and these gene expression changes together 

could potentially lead to the loss of ion equilibrium which is required for the normal formation 

of CMCs (Figure 15D).  

Cluster 3 contained genes that were extensively downregulated at d8 and upregulated by d14 

in the Rybp null mutant cells (Figure 15F and G). By Gene Ontology (GO) analysis we 

identified 16 genes that acts on the JAK-STAT (Janus Kinase-Signal transducer and activator 

of transcription proteins) signalling pathway (GO:0046425) that contributes to the normal 

proliferation and apoptosis of the differentiating cells.  

In cluster 4, 5, 6 and 7 we did not identify genes that significantly related to any function 

connected to cardiac development. In cluster 8, cell adhesion markers such as Cadherin protein 

6, 7 and 17 (Cdh6, Cdh7 and Cdh17, respectively) and Vascular cell adhesion molecule 1 

(Vcam1) were identified to be downregulated in the Rybp null mutant ES cells (Figure 15H and 

I). Cell adhesion is a key feature which is required for the proper proliferation and 

differentiation of various cell types during mammalian heart development. 
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Figure 15: Hierarchical gene clustering of transcriptome data from wild type and Rybp null 

mutant cells during in vitro cardiac differentiation. 

(A) Heat map from hierarchical clustering of RYBP regulated gene expression changes with 

significant upregulated (log2 fold change ≥2; green colour) and downregulated (log2 fold 

change ≤2; red colour) genes in the Rybp null mutant cells. The cluster numbers are listed on 

the right side of the heat map. (B and C) Cluster 1 heat map and tendency graph highlight the 

upregulated gene set at all three time points i.e., d0, d8 and d14. (D and E) Cluster 2 heat map 

and tendency graph highlight the genes upregulated in d0 only and downregulated in d8 and 

d14. (F and G) Cluster 3 heat map and tendency graph highlight the genes downregulated in 

d8 and upregulated in d14. (H and I) Cluster 8 heat map and tendency graph highlight the 

genes highly downregulated in d0. The tendency graphs are represented as an average of the 

overall log2 fold change for each time point pertaining to each cluster respectively. 
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4.1.2 Key cardiac transcription factors and sarcomeric components are 

downregulated in the Rybp null mutant CMCs 

To gain more insights about the expression of key cardiac genes which are vital for the 

formation of beating CMCs, we further dissected the transcriptome. Our analysis revealed that 

genes required for cardiac progenitor formation and sarcomere organization were remarkably 

downregulated at d8 and d14 in the mutant cells (Figure 16A). Cardiac progenitor markers Shh 

(d8 Log2 FC: -5.40, d14 Log2 FC: -2.42), Isl1(d8 Log2 FC: -1.14, d14 Log2 FC: -2.82), Nkx2-

5 (d8 Log2 FC: -9.14, d14 Log2 FC: -8.84) and Mef2c (d8 Log2 FC: -1.27, d14 Log2 FC: -1.02) 

displayed severe downregulation at d8 and d14 in Rybp-/- CMCs (Figure 16A). Cardiac 

transcription factors with known roles in first and second heart field specification such Hand2 

(d8 Log2 FC: -0.61, d14 Log2 FC: -0.08), Gata4 (d8 Log2 FC: -0.55, d14 Log2 FC: -0.22), Tbx5 

(d8 Log2 FC: -0.58, d14 Log2 FC: -0.98) and Tbx20 (d8 Log2 FC: -0.34, d14 Log2 FC: -0.13) 

also displayed faint downregulation at d8 and d14 in Rybp-/- CMCs. 

Sarcomeric genes such as Myomesin 1 (Myom1), Titin (Ttn), Actin alpha cardiac muscle 1 

(Actc1), Myosin heavy peptide 6 cardiac muscle alpha and Myosin heavy peptide 7 cardiac 

muscle beta (Myh6 and Myh7, respectively) were highly downregulated in the mutant cells 

(Figure 16B). This analysis shed light on the impairment of sarcomere formation, which can 

immensely contribute towards the non-contractility phenotype of the Rybp null mutant cells as 

well. 

 
Figure 16: Genes required for cardiac progenitor formation and sarcomere organisation are 

downregulated in the Rybp null mutant CMCs 

Log2 Fold change values from the transcriptome were used to generate bar graphs. (A) Bar 

graph representing the downregulation of genes functioning in cardiac progenitor formation 

in d8 and d14 differentiated Rybp null mutant CMCs. (B) Bar graph representing the 
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downregulation of sarcomeric genes in d8 and d14 differentiated Rybp null mutant CMCs. 

Abbreviations: d:day. 

4.2 Plagl1 is the most strikingly downregulated gene in the Rybp-/- ES cells and CMCs 

In the whole genome transcriptome analysis, Plagl1 a cardiac transcription factor with 

transactivation functions during mammalian embryonic development (Yuasa et al., 2010) was 

one of the most strikingly down regulated gene in the Rybp null mutant ES cells as well as 

derived CMCs (d0 Log2 FC: -3.79, d8 Log2 FC: -6.26, d14 Log2 FC: -6.53). In order to further 

characterize the expression of Plagl1 during an extended time course of in vitro cardiac 

differentiation (methods 3.1.2), we performed gene expression analysis by qRT-PCR. In brief, 

whole cell RNA was extracted from d0, d2, d7, d10, d14 and d21 time points of in vitro cardiac 

differentiation, reverse transcribed and qRT-PCR analysis was performed (details in methods 

3.2.1) (Primer list in Table 3). Gene expression changes were analysed using wild type and 

Rybp null mutant cells from the designated time points of in vitro cardiac differentiation. Our 

results showed that in the wild type cells (Rybp+/+), Plagl1 mRNA was first detectable from d7 

(cardiac progenitor formation stage) and its expression peaked by d14 and d21 (CMC stage) 

(Figure 17). Plagl1 was not expressed at any analysed time points of in vitro cardiac 

differentiation in the Rybp null mutant cultures (Figure 17). 

 
Figure 17: Plagl1 is not expressed in the Rybp-/- during in vitro cardiac differentiation 

Relative gene expression analysis of Plagl1 during in vitro cardiac differentiation by qRT-PCR 

analysis. The presented values are averages of three independent experiments; error bars 

indicate standard deviation. Values indicated by asterisks significantly differed in the Rybp-/- 

compared to Rybp+/+ by the statistical method two-way ANOVA (****p < 0.0001). 

 

 

****

****

Re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n Rybp+/+

Rybp-/-

Plagl1



 49 

4.3 PLAGL1 is not detectable at protein level either in the Rybp null mutant cells at all 

time points of in vitro cardiac differentiation. 

In order to investigate whether PLAGL1 is detectable during any time point of cardiac 

differentiation, we performed immunocytochemical analysis with samples derived from d0, d2, 

d7, d10, d14 and d21 of in vitro cardiac differentiation from the wild type and Rybp-/- cultures. 

The samples were stained for PLAGL1 with anti-PLAGL1 antibody (methods 3.3.4), and the 

pictures were taken using Olympus LSM confocal microscope. Our results defined that 

PLAGL1 protein levels corelated to the mRNA levels detected by qRT-PCR (Figure 17) in the 

wild type cells. PLAGL1 staining was detectable at d7 (Figure 18A) from the analysed time 

points and the PLAGL1 signal was the highest at d14 CMC stage (Figure 18A). As expected, 

PLAGL1 was not detected at all time points of in vitro cardiac differentiation in the Rybp null 

mutant cultures revealing that PLAGL1 expression was absent in the Rybp null mutant cultures 

in both the mRNA and protein levels during the time course of in vitro cardiac differentiation 

(Figure 18B). 
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Figure 18: PLAGL1 is not detectable in the RYBP null mutant cells during in vitro cardiac 

differentiation 

Immunocytochemical analysis of PLAGL1 (Red) in the (A) wild type and (B) Rybp-/- null mutant 

cells derived from d0, d2, d7, d10, d14 and d21. DAPI (blue) was used to stain the nuclei. The 

indicating time points are represented in top. Olympus Confocal IX 81, Obj: 60x; Scale bar: 

100 µm. 

 

4.4 Overview of the Plagl1 genomic locus 

To unravel the molecular mechanism behind the downregulation of Plagl1 in the Rybp null 

mutant cells during cardiac differentiation, we analysed the Plagl1 genomic locus 

(Chr10:13090832-13131694 bp) for the position of promoters, regulatory RNAs and potential 

splice variants. The Plagl1 genomic locus was downloaded in FASTA format from ENSEMBL 
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(ENSMUSG00000019817) and the respective position of the coding exons were mapped 

according to ENSEMBL and the downloaded mRNA sequences from ESTs. Based on previous 

publications and by carefully mapping the regulatory regions for promoter regions and different 

ncRNAs we have reconstructed the Plagl1 genomic locus. The Plagl1 genomic locus consists 

of three promoter regions P1, P2 and P3, eleven exons and two ncRNAs Hymai and Plagl1 

intronic transcript (Plagl1it) (Figure 19). The P1 promoter, which harbours demethylated CpG 

islands is the site of imprinting of the Plagl1 locus. The P2 promoter which lies 30 kb upstream 

to the transcription start site (TSS) is previously identified to express Plagl1 biallelically and 

functions only in disease conditions. The P3 promoter contains variable enhancer elements like 

a TATA box and several consensus binding-sites for key lineage specific transcription factors 

such as NKX2-5, MEF2C and TBX5. Hymai and Plagl1it ncRNAs are imprinted and expressed 

downstream to the P1 promoter. Exons 10 and 11 code for the full length PLAGL1 protein. 

PLAGL1 protein contains seven C2H2-type zinc finger domains at the amino terminal of the 

protein, from the amino acids 1 to 210. This region also encompasses two nuclear localization 

signals (NLS) along the zinc finger domains. PLAGL1 also contains proline and glutamine rich 

regions at the carboxyl terminal (residues 220 to 444) (Figure 19). 

 

Figure 19: Schematic illustration of the Plagl1 genomic locus 

Schematic representation of the Plagl1 genomic locus. Exons are represented with grey bars; 

The three promoters P1, P2 and P3 are marked in blue ovals; The two ncRNA, Hymai ncRNA 

and Plagl1it are represented with orange rectangle. Abbreviations: kb: kilobase, bp: base pair, 

ncRNA: noncoding RNA, aa: amino acid. 
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4.5 The expression of the two ncRNAs Hymai and Plagl1it are also affected in the Rybp 

null mutant CMCs during cardiac differentiation 

Since our results determined that all splice variants of Plagl1 are not detected in the Rybp null 

mutant cells during the time course of in vitro cardiac differentiation, we wondered if the two 

ncRNAs Hymai and Plagl1it are also affected in the Rybp null mutant CMCs. Gene expression 

analysis using qRT-PCR determined that the expression kinetics of both Hymai and Plagl1it in 

the wild type cultures resembled the expression kinetics of Plagl1 (Figure 20A and B). Hymai 

(Figure 20A) and Plagl1it (Figure 20B) expression could be first detected by d2, EB formation 

stage and the expression peaked by d14 suggesting that the two ncRNAs might function in the 

regulation of Plagl1. The high expression levels of both ncRNAs at d14 is also indicative of 

their potential functions during CMC development.  

Both Hymai and Plagl1it expression in the Rybp null mutant cells were also affected at all the 

analysed time points (Figure 20A and B). Unlike Plagl1, Hymai and Plagl1it ncRNA 

expression was detected at low levels in the Rybp null mutant CMCs further indicating the 

significant effect of the loss of Rybp in Plagl1 regulation. 

 

 
Figure 20: Hymai and Plagl1it expressed at low levels in Rybp-/- at all examined stages of in 

vitro cardiac differentiation 

Relative gene expression analysis of Hymai (A) and Plagl1it (B) during in vitro cardiac 

differentiation by qRT-PCR analysis. The presented values are averages of three independent 

experiments; error bars indicate standard deviation. Values indicated by asterisks significantly 

differed in the Rybp-/- compared to Rybp+/+ by the statistical method two-way ANOVA (****p 

< 0.0001). 
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4.6 Multiple splice variants of Plagl1 can be transcribed from monoallelic and biallelic 

promoters 

As the Plagl1 mRNA was not expressed in the Rybp null mutant cells at any of the examined 

time points of in vitro cardiac differentiation (results 4.2), we further performed detailed in 

silico analysis of the various splice variants that are transcribed from the Plagl1 genomic locus. 

We have also identified the corresponding promoters producing protein coding transcripts and 

the promoters that can be active during cardiac differentiation. cDNA sequences were 

downloaded from NCBI (https://www.ncbi.nlm.nih.gov/nuccore/) and the transcripts were 

aligned with ClustalW tool in BioEdit programme.  

The schematic representation presented on Figure 21 was generated based on the analyses with 

representative NCBI accession I.D of the cDNA transcripts. The position of the Plagl1 

promoter regions is mutually exclusive to the emerging cDNAs. Our analysis showed that 

FJ425893.1 emerge from the P2 promoter, NM_009538.2, NM_009538.3, NM_001364643.1, 

NM_001364644.1, NM_001364645.1, BC141284.1 and AF147785.1 emerge from the P1 

promoter and X95504.1, AA919394.1 and AF324471.1 emerge from the P3 promoter. 

NM_009538.2 and NM_009538.3 are mostly similar and differ only in their 5’ region of exon 

8 coding. NM_001364643.1, NM_001364644.1 and NM_001364645.1 are also similar splice 

variants with NM_001364644.1 harbouring an alternate splice site within exon 11. 

NM_001364645.1 variant differs from NM_001364644.1 by harbouring exon 8 additionally. 

The identified splice variants may have tissue and disease specific expression. We also 

conclude that all the three promoters can produce protein coding transcripts since the last two 

exons (exon 10 and 11) code for the full length PLAGL1 protein.  
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Figure 21: Plagl1 can be expressed by mono and biallelic promoters 

Schematic representation of the various splice variants of Plagl1 based on ESTs deposited in 

EST database (methods 3.4.2). The NCBI accession numbers (NCBI ACC #) are presented on 

the left side, the corresponding promoters from where the transcripts are transcribed from are 

presented at the right side. Splice variants are shown in grey boxes in the middle. The numbers 

in the boxes represent corresponding exons. 

4.7 Splice variants of Plagl1 are transcribed from P1 and P3 promoters during in vitro 

cardiac differentiation 

To gain further insights about which promoters are active during the time course of in vitro 

cardiac differentiation we performed gene expression analysis using primers specific to the 

exons that are distinctive to the transcripts produced from the alternative promoter regions. We 

used primers specific to exon 1 and 2 (hereafter mentioned as Plagl1 1/2) to check the 

expression from Plagl1 P2 promoter, primers specific to exon 6 and 7 (hereafter mentioned as 

Plagl1 6/7) to check the expression from Plagl1 P1 promoter. The P2 promoter produces 

biallelic expression of Plagl1 whereas the P1 and P3 promoters regulate monoallelic 
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expression of Plagl1 as the P1 promoter is the site of imprinting and all genomic products 

downstream to P1 are imprinted. The Plagl1 P3 promoter is situated immediately upstream to 

the last two exons which code for the full length PLAGL1 protein. As these two exons are 

present in all the transcripts, we couldn’t make primers specific to check the activity of only 

P3 promoter. We used primers specific to exon 10 and 11 as a universal primer which can 

detect the expression of all the splice variants of Plagl1 together. 

 QRT-PCR analysis using Plagl1 6/7 primers in the wild type cultures showed that Plagl1 

expressed weakly until day 7 and its expression levels induced to over 100 folds when 

compared to the wild type d0 (Figure 22A). The expression of Plagl1 using Plagl1 10/11 

(Figure 22B) showed up to 400 folds change increase in d14 as opposed to the 100 folds 

increase in the d14 Plagl1 6/7 suggesting that both Plagl1 P1 and P3 promoters could be 

presumably active during in vitro cardiac differentiation (Figure 22B). Using primers specific 

to Plagl1 1/2 we did not get any signal in the wild type cells (data not shown) suggesting that 

the P2 promoter might not be active during cardiac development and could only cause biallelic 

expression of Plagl1 in disease states such as the Transient neonatal diabetes mellitus (TNDM) 

(Valleley et al., 2007). In the case of the Rybp-/- cells, we could not detect Plagl1 expression 

using any primer sets. 

 

Figure 22: Plagl1 is expressed from both P1 and P3 promoters during in vitro cardiac 

differentiation 

Relative gene expression analysis of Plagl1 using primers specific to (A) exon 6/7 and (B) exon 

10/11 during in vitro cardiac differentiation. The presented values are averages of three 

independent experiments; error bars indicate standard deviation. Values indicated by asterisks 

significantly differed in the Rybp-/- compared to Rybp+/+ by the statistical method two-way 

ANOVA (****p < 0.0001). 
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4.8 Two isoforms of the PLAGL1 protein are detectable during in vitro cardiac 

differentiation 

In order to further characterize the isoforms of the PLAGL1 protein, that are expressed during 

in vitro cardiac differentiation, we performed Western blot analyses. Protein cell lysates were 

derived from the indicated points of in vitro cardiac differentiation and 20 µg of the total protein 

from each time point was loaded into each well for Western blot analysis (methods 3.3.1). Our 

results showed that PLAGL1 signals correlated to the mRNA expression levels (methods 

3.1.1). PLAGL1 was hardly detectable until d2. The first time point when PLAGL1 was clearly 

detectable was at day 7, which corresponds to the stage of cardiac progenitor formation stage 

(Figure 23). The expression peaked by d14, corresponding to the time of cardiomyocyte 

formation. At d7 and d10 the two major isoforms of PLAGL1: PLAGL1 a (NCBI Accession: 

NP_033564.2, 79 kDa) and PLAGL1 b (NCBI Accession: NP_001351572.1, 76 kDa) can be 

seen indicating that just two isoforms of PLAGL1 are expressed during in vitro cardiac 

differentiation (Figure 23). In d14 and d21 several bands of PLAGL1 protein were obtained 

which we further analysed for potential post-translation modification of PLAGL1 (Figure 23).  

 
Figure 23: Two isoforms of PLAGL1 are expressed during in vitro cardiac differentiation 

Western blot analysis detected the two isoforms of PLAGL1 protein: PLAGL1 a and PLAGL1 

b can be seen clearly in d7 and d10. Protein lysates from d21 Rybp null mutant CMCs was 

used as the negative control. Lysate from flag tagged PLAGL1 over-expresser in HEK293T 

cells was used as a positive control. β Tubulin was used as an internal loading control to 

monitor the kinetics of PLAGL1 during the time course of cardiac differentiation. The 

respective molecular weights of both PLAGL1 and β Tubulin are indicated at the right. 

Abbreviations: d: day, HEK: Human embryonic kidney cells, β TUB: β Tubulin, kDa- kilo 

Daltons. 
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4.9 PLAGL1 undergoes post translational degradation during CMC formation 

Analysis of the PLAGL1 protein in wild type differentiated CMCs by Western blot displayed 

multiple bands of PLAGL1 protein in d14 and d21 cardiac differentiated cell lysates (Figure 

23). The highest two bands correspond to the isoforms of PLAGL1 protein: PLAGL1 a and 

PLAGL1 b which can be seen at 79 kDa and 76 kDa respectively (Figure 23). We wondered if 

the additional bands between 76 kDa and 51 kDa were post translational modifications of the 

PLAGL1 isoforms. In order to identify if PLAGL1 undergoes post translational modifications 

during cardiac differentiation we performed experiments with Cyclohexamide (CHX) a 

translational inhibitor and MG132 a protease inhibitor (methods 3.3.2). In brief, we 

differentiated ES cells to form CMCs in vitro for 14 days and treated the cells with media 

supplemented with 75 µg/ml concentration of CHX. Cells were harvested and lysed at every 

hour until 6 hr. Our results determined that PLAGL1 was undergoing post translational 

degradation and formed a stable 51 kDa size protein upon CHX treatment (indicated in red 

arrow, Figure 24A). Next, we performed the same experiment by treating the cells with 10 µM 

MG132. Upon MG132 treatment the 51 kDa degraded band was not formed due to the 

inhibition of protease activity and the two isoforms PLAGL1 a and PLAGL1 b were detected 

stronger (Figure 24B). These results demonstrated that PLAGL1 underwent degradation by 

d14, the time point with strongest PLAGL1 expression. 
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Figure 24: PLAGL1 undergoes degradation upon CHX treatment  

(A)Western blot analysis displaying PLAGL1 modifications after treatment with 75 µg/ml CHX 

suplemented to wild type d14 CMCs along with media. Both isoforms of the PLAGL1 protein 

degraded to a stable 51 kDa size protein. (B) Western blot analysis displaying PLAGL1 

modifications after treatment with 10 µM MG132 suplemented to wild type d14 CMCs along 

with media. MG132 treatment caused inhibition of protease activity resulting in accumulation 

of the two PLAGL1 isoforms. β-Tubulin was used as an internal loading control. The respective 

molecular weights of both PLAGL1 and β -Tubulin are labelled in kDa at the right. 

Abbreviations: CHX: Cyclohexamide, hr: hour, Untrans HEK: Untransfected human 

embryonic kidney cells, kDa- kilo Daltons, β TUB: β Tubulin. 

4.10 PLAGL1 has a degron site immediately after the Serine-Threonine phosphorylation 

sites at the N-terminal 

In order to identify the site of degradation and undertsand the machanism by which PLAGL1 

protein undergoes post-translational degradation, we analysed the PLAGL1 amino acid 

sequence for possible degron sites and motifs. Our analysis with bioinformatic tools based on 
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previously indicated conserved degron motifs (methods 3.4.3) determined that PLAGL1 has 2 

NLS in the amino terminal of the protein. This region also has numerous serine-threonine sites 

that can get phosphorylated and harbour polyubiqutination for protease activity (Figure 25A). 

Our analysis also determined that S223-T232-S233 posses a degron site immediately after the 

rapid serine-throeonine phosphorylation sites which can aid protease activity (Figure 25A). 

The supposed cleavage of PLAGL1 protein at the S223-T232-ST233 degron site will result in 

33 kDa amino terminal region and 51 kDa carboxyl end of PLAGL1 (Figure 25B).  

 

 
 

Figure 25: NLS and degron motifs in the N-terminal of PLAGL1  

(A) Schematic representation of NLS, serine-threonine phosphorylation and degron sites in the 

PLAGL1 amino acid sequence. The two NLS sequences are indicated in blue boxes and the 

degron site is indicated in black bar. The serine-threonine phosphorylation sites in PLAGL1 

protein are indicated in red. (B) Schematic representation of PLAGL1 protein fragmentation 

after post-translational degradation at the degron site (S223-S233). Abbreviations: NLS: 

nuclear localization signal, s: serine, t: threonine, y: tyrosine, kDa: kilo Daltons. 

4.11 PLAGL1 and RYBP are co-expressed in the nuclei of the differentiating cardiac 

cultures 

The fact, that there is no Plagl1 in the Rybp null mutant ES cells and differentiated CMCs made 

us think whether Plagl1 is regulated by RYBP. To deepen our understanding about the 

relationship between Rybp and Plagl1, we next analysed available in vivo evidence to see if 
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Rybp and Plag11 are expressed in the same tissue types of the developing mouse embryo. We 

collected data containing RNA in situ hybridization experiments from existing publications 

about the expression pattern of Rybp and Plagl1 in various tissue types during mouse 

embryonic development. This analysis revealed that Rybp and Plagl1 co-expressed in several 

tissue types specific to the central nervous system, heart and eye (Table 2). We previously 

established that Rybp expressed moderately in the E8.5 and E9.5 heart (Ujhelly et al., 2015). 

RNA in situ hybridization and Northern blot analysis showed that Plagl1 expressed immensely 

from as early as E7.5 heart until adulthood in a chamber-restricted pattern (Yuasa et al., 2010). 

These data suggested that the two proteins might be present in the same cells during CMC 

differentiation. 

Therefore, to examine the subcellular localization of RYBP and PLAGL1 we co-stained the 

wild-type cardiac cultures, with anti-RYBP and anti-PLAGL1 antibodies. We performed 

immunostaining on cells derived during in vitro cardiac differentiation (i.e., d0, d2, d7, d10, 

d14 and d21). At d0, RYBP was observed both in the nuclei and cytoplasm of the wild type 

cells (Figure 26). At later time points RYBP was predominantly seen in the nuclei and 

expressed persistently at all the observed time points of in vitro cardiac differentiation (Figure 

26). On the other hand, in the wild type cells PLAGL1 was not detected at early time points d0 

and d2 (Figure 26). PLAGL1 signals were first observed from d7 and its expression gradually 

increased as differentiation proceeded with highest observed expression at d14 (Figure 26). At 

d7, which represents an early cardiac stage showed a mixed population of both PLAGL1 

expressing and non-expressing cells suggesting that the cells are in heterogenous state of 

differentiation and PLAGL1 could start to be expressing in the differentiating cells only (Figure 

26). These data suggested that the RYBP and PLAGL1 prominently co-expressed when cells 

start to differentiate presumably towards CMCs (Figure 26). 
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Figure 26: RYBP colocalized with PLAGL1 in the nuclei of differentiating cardiac cultures 

Immunocytochemical analysis for the subcellular localisation of RYBP and PLAGL1 of wild 

type cultures during d0, d2, d7, d10, d14 and d21 time points of in vitro cardiac differentiation. 

Immunostainings: blue: DAPI (nuclei), green: RYBP, red: PLAGL1. Olympus Confocal IX 81, 

Obj.: 60 x; Scale bar: 100 µm. Abbreviations: d: day. 
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4.12 Plagl1 expression is first detected at early progenitor stage during in vitro cardiac 

differentiation 

To determine the earliest time point, when Plagl1 first appears in the differentiated cardiac 

cultures and to gain insights into the possible relationship between RYBP and PLAGL1, we 

checked the expression of Rybp and Plagl1 between d2 and d7 time points. We performed a 

new experimental setup (methods 3.1.2) differentiating mouse ES cells until the early phase of 

in vitro cardiac differentiation deriving samples every day from d3, d4, d5 and d6 of in vitro 

cardiac differentiation. The EBs from hanging drops on d2 were plated into 6 cm plates for 

further gene expression analysis by qRT-PCR and in 24 well plates for protein localisation 

studies by ICC (methods 3.1.2). Rybp expressed persistently while Plagl1 expression elevated 

after d3, and the expression increased for over 2 folds from d4 in the wild type cultures. As 

expected, Plagl1 expression was not detected at any time point in the Rybp-/- cells (Figure 27A, 

B). From our previous results, we knew that RYBP was detected uniformly in the nuclei of d2 

EBs (Figure 26). ICC experiments using d3, d4, d5 and d6 EBs revealed that RYBP was 

detected strongly in the outgrowth of the attaching EBs after d3 (Figure 27C e, f, g and h). 

PLAGL1 was more explicitly detected from d4 in the wild type cells, which is likely to 

correspond to the earliest days of progenitor formation stage during in vitro cardiac 

differentiation (Figure 27C j). The number of PLAGL1 positive cells gradually increased from 

d4 and more PLAGL1 positive cells were detected in d5 and d6 (Figure 27C k and l). From d4, 

RYBP and PLAGL1 co-expressed in the nuclei and the intensity of PLAGL1 signals varied in 

the heterogenous population of differentiating cells. The PLAGL1 expressing cells were mostly 

detected in the outgrowth of the attaching EBs, the place from where differentiation proceeds 

(Figure 27C n, o and p).  
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Figure 27: PLAGL1 expression is induced during the early progenitor stages of cardiac 

differentiation 

(A, B) Relative gene expression analysis of Rybp and Plagl1 by qRT-PCR in samples derived 

from in vitro cardiac differentiation at d0, 2, 3, 4, 5 and 6 days of cardiac differentiation. The 

presented values are averages of three independent experiments; error bars indicate standard 

deviation. Values indicated by asterisks significantly differed in the Rybp-/- compared to 

Rybp+/+ by the statistical method two-way ANOVA (****p < 0.0001). (C) Immunocytochemical 

analysis of RYBP and PLAGL1 in day 0, 2, 3, 4, 5 and 6 samples of in vitro cardiac 
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differentiated samples. Immunostainings: blue: DAPI (nuclei), green: RYBP, red: PLAGL1. 

Olympus Confocal IX 81, Obj.: 60 x; Scale bar: a-p: 100 µm. Abbreviations: d: day. 

4.13 Plagl1 promoters contain distinctive regulatory elements  

Since our preliminary results suggested that Plagl1 might be a downstream target of RYBP, 

we next investigated the regulatory elements in the Plagl1 promoters. The Plagl1 promoter 

sequences were downloaded from ENSEMBL (ENSMUSG00000019817) based on the 

previously identified sequences in Platas et al., 2012 and Platas et al., 2013. The promoter 

sequences were analysed for presence of CpG islands and TATA box (Figure 28). The P1 

promoter (4612 bp), which is the site of imprinting contains long stretch of CpG island (1673 

bp) that covers 27.5% of the promoter region. The P2 promoter which produces biallelic Plagl1 

transcripts and active only in disease conditions, has a 655 bp long CpG island whereas the P3 

promoter does not contain any CpG islands. The P1 promoter contains a 14 bp long TATA box 

(TACAGTTTTTTATAC) away from the CpG island (Figure 28). The P2 promoter does not 

contain any TATA box but contains three E-box consensus sequences (CACGTG and 

CAGCTG) which is not found in P1 and P3 promoters (Figure 28). The P3 promoter contains 

a 67 bp long TATA box at the middle of the promoter region (Figure 28). The identification of 

these regulatory positions indicated potential regulatory mechanisms at these promoters also 

emphasizing the possible mechanism by which RYBP could regulate these promoters. RYBP 

containing ncPRC1s were previously identified to bind at the CpG islands (Farcas et al., 2012) 

and RYBP was shown to associate with consensus binding E-box binding homeobox factors 

(Zhu et al., 2017). 
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Figure 28: P1 and P2 promoters contain CpG islands and only P1 and P3 promoters have 

TATA box 

Schematic representation of the regulatory elements in the Plagl1 P1, P2 and P3 promoters. 

The CpG islands (Green box) positions were identified from DBCAT 

(http://dbcat.cgm.ntu.edu.tw) and the positions of TATA box (Blue box) and E-box (light brown 

box) motifs were identified by TRANFAC (https://genexplain.com/transfac/). The labels for the 

identified regulatory elements in the Plagl1 promoters are presented at the top. 

4.14 RYBP activates the Plagl1 P1 and P3 promoters 

In order to elucidate if RYBP can directly influence the activation of Plagl1 expression via its 

promoters, we performed luciferase reporter assays using reporter constructs containing Plagl1 

P1, P2 and P3 promoters. To investigate this hypothesis, we cloned a 4612 bp long Plagl1 P1 

promoter region encompassing exon 4 and P2 promoter encompassing exon 1 into pGL4.20 

vectors. The promoter constructs were then transiently transfected into HEK293T cells in 

combination with RYBP cDNA constructs (Arrigoni et al., 2006) (methods 3.1.4). The protein 

cell lysates from the transfected cells were harvested 48 hrs after transfections and the 

luciferase levels were measured using a luminometer after inducing the luciferase signals with 

substrate. All three promoters P1, P2 and P3 containing luciferase constructs produced modest 

level of luciferase signals due to the endogenous transcription factors in HEK293T cells. The 

luciferase activity of the three promoters co-transfected with RYBP were normalized to the 

base level luciferase signal of the single transfected P1, P2 and P3 promoter constructs, 

respectively in all consecutive experiments. Our results showed that when co-transfected with 

RYBP, Plagl1 P1 and P3 promoter luciferase levels increased for up to 1.6-fold and 2.5-fold 

respectively when compared to the single transfected P1 and P3 promoter controls indicating 
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activation of the promoters by RYBP (Figure 29). In the contrary, the luciferase levels 

produced by P2 promoter construct got marginally reduced to 0.8-fold under the influence of 

RYBP indicating that this P2 promoter is not activated, but perhaps mildly repressed by RYBP. 

 
Figure 29: RYBP overexpression activated P1 and P3 promoters and repressed the P2 

promoter 

HEK293T cells were transfected with 2.5 µg of Rybp and 5 µg of Plagl1 P1, P2 and P3 

promoter containing luciferase reporter constructs. Luciferase activity of the transfected cell 

lysates were measured 48 hours after transfection. Values are expressed as fold changes of 

luciferase activity normalized to P1, P2 or P3 single transfected signals. The presented values 

are averages of three independent experiments; error bars indicate standard deviation. Values 

indicated by asterisks significantly differed from the value taken as 1 according to the 

statistical method one-way ANOVA (****p < 0.0001). 

4.15 The activation of Plagl1 P1 and P3 promoters by RYBP is polycomb independent  

Since RYBP was originally identified as a polycomb protein and purified as a core member of 

the ncPRC1s, we wondered whether RYBP activates Plagl1 P1 and P3 promoters in a 

polycomb dependent mechanism. 
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4.15.1 A small molecule- PRC1 inhibitor did not attenuate the activation by RYBP 

at the P1 and P3 promoters 

In order to unravel whether RYBP activates Plagl1 P1 and P3 promoters in a polycomb 

dependant or independent manner, HEK293T cells were transiently transfected with all three 

Plagl1 promoter containing luciferase reporter constructs in combination with RYBP 

overexpression construct. 16 hrs after transfection the cells were treated with 50 µM of 

PRT4165 (PRC1 inhibitor) supplemented with media (methods 3.1.5). To let the inhibitory 

effect of PRT4165 develop, the transfected cells were cultured further for another 24 hours 

under humidified conditions and finally harvested for their protein cell lysates. Luciferase 

reporter assay was carried out using single transfected promoter constructs as normalization 

controls as described earlier (results 4.1.4). Our results showed that RYBP overexpression 

could still activate Plagl1 P1 (1.5-fold) and P3 (4.43-fold) promoters in the presence of the 

PRC1 inhibitor (Figure 30). Moreover, in these conditions the originally repressed Plagl1 P2 

promoter did not present any significant activity when compared to the single transfected 

control suggesting that the repressive activity of RYBP at the P2 promoter was reversed by 

PRT4165. These results suggested that RYBP activated Plagl1 P1 and P3 promoters in a 

polycomb independent mechanism. 
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Figure 30: RYBP overexpression activates P1 and P3 promoters in a PRC1 independent 

mechanism. 

HEK293T cells were transfected with 2.5 µg of Rybp and 5 µg of Plagl1 P1, P2 and P3 

promoter containing luciferase reporter construct. Transfected cells were treated with 50 µg 

of PRT4165 supplemented with media after 16 hrs after transfection. Luciferase activity of the 

transfected cell lysates were measured 48 hours after transfection. Values are expressed as 

fold changes of luciferase activity normalized to P1, P2 or P3 single transfected signals 

respectively for samples containing the respective promoters. The presented values are 

averages of three independent experiments; error bars indicate standard deviation. Values 

indicated by asterisks significantly differed from the value taken as 1 according to the 

statistical method one-way ANOVA (***p < 0.001). 

4.15.2 RING1 does not synergistically function with RYBP at the Plagl1 P1 and P3 

promoters  

RYBP and RING1 are core members of the ncPRC1s, physically interacting with each other 

(Gao et al., 2012). After elucidating that a potent PRC1 inhibitor PRT4165 did not affect the 

activation of the P1 and P3 promoters by RYBP, indicating that the activation of the two 

promoters by RYBP acts in a polycomb independent manner, we further confirmed this by 

checking if RING1 can act synergistically with RYBP. In these experiments, HEK293T cells 
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were transiently transfected with all three Plagl1 promoter containing luciferase reporter 

constructs in combination with a concomitant RYBP and RING1 overexpression. Luciferase 

reporter assay was carried out using single transfected promoter constructs as normalization 

controls as described earlier (results 4.1.4). Our results determined that RING1 could not 

elevate the activation signals of both P1 and P3 promoters by RYBP (Figure 31A and B). The 

activity of RING1 itself caused mild increase in the luciferase levels in both P1 (1.7-fold) and 

P3 (1.6-fold) promoters although the measured levels never reached the level achieved by 

RYBP itself. In case of the P2 promoter, which is in a maintained repressed state during normal 

developmental conditions, showed an unexpected increase of 2.8-fold by RING1 itself when 

compared to the P2 promoter control disclosing the possible role of RING1 in PLAGL1 related 

disease conditions connected to P2 promoter (Figure 31 C). These results further validate the 

previous results suggesting a polycomb independent activation of the P1 and P3 promoters by 

RYBP and at the same time pinpointing that the mild repressive effect of RYBP on the P2 

promoter is not a result of synergism between RYBP and RING1.  
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Figure 31: RING1 did not enhance the activation potential of RYBP at P1 and P3 

promoters 

HEK293T cells were transfected with 2.5 µg of Rybp, 2.5 µg of pcDNA3.1 Ring1 FLAG and 5 

µg of Plagl1 P1, P2 and P3 promoter containing luciferase reporter construct. Luciferase 

activity of the transfected cell lysates were measured 48 hours after transfection. Values are 

expressed as fold changes of luciferase activity normalized to P1, P2 or P3 single transfected 

signals respectively for (A, B and C) respectively. The presented values are averages of three 

independent experiments; error bars indicate standard deviation. Values indicated by asterisks 

significantly differed from the value taken as 1 according to the statistical method one-way 

ANOVA (**p < 0.01; ****p < 0.0001). 

4.15.3 Existing ChIP-seq analysis revealed a polycomb independent binding of 

RYBP at the P3 promoter 

In order to have a deeper understanding of our results generated from the luciferase reporter 

assays we analysed existing ChIP-seq binding datasets of RYBP and ncPRC1 core factor RNF2 

in Plagl1 locus from both ES cells and cardiac progenitor cells (CPCs). ChIP-seq raw data 

were downloaded as BEDGRAPH files for RYBP (ES cells: GSM4052120; CPC: 

GSM1657391) and RNF2 (ES cells: GSM4052131; CPC: GSM1657390) and analysed for 

binding peaks at the Plagl1 locus using IGV programme (methods 3.4.7). The files were 
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analysed to their respective experimental reference genome annotations i.e., mm10 for ES cells 

and mm9 for CPCs as disclosed by the authors. This analysis revealed binding of RYBP and 

RNF2 at P1 and P2 promoters and not at the P3 promoter in ES cells (Figure 32). Since the 

PRC1s mediated regulatory functions have an affinity to bind to the CpG islands, the presence 

of CpG islands in P1 and P2 promoters (Figure 32) can explain the binding of both RYBP and 

RNF2 at these promoters as well as lack of binding at the P3 promoter. Plagl1 is not expressed 

in ES cells and hence the binding of RYBP and RNF2 at P1 and P2 promoters suggests a PRC 

mediated repression of these promoters. The P3 promoter contains a ∽70 bp long TATA box 

(Figure 32) and surrounded with consensus sites for lineage specific transcription factors and 

hence might not express Plagl1 in ES cells. 

In CPCs both RYBP and RNF2 maintain strong binding at the P2 promoter as the P2 promoter 

is active only during abnormal conditions. At the P1 promoter both RYBP and RNF2 are 

dispersedly bound suggesting a weak binding of these factors at this promoter. At the P3 

promoter RYBP showed adequate binding (indicated in red arrow) independent to RNF2 

binding suggesting a direct activity of RYBP to regulate Plagl1 expression via P3.  

Since Plagl1 expressed from the CPCs stage of cardiac differentiation (Figure 17) the direct 

binding of RYBP at the P3 promoter in CPCs and not in ES cells together with the luciferase 

reporter assays (Figures 29, 30 and 31) gave a clear indication that RYBP indeed activates this 

promoter in a polycomb independent mechanism. 
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Figure 32: RYBP binds at the P3 promoter independent to RNF2 binding in CPCs and not 

in ES cells 

Published ChIP-seq raw files of RYBP and RNF2 were downloaded from experiments 

generated from ES cells and CPCs. The downloaded files from Geo accession viewer 

(https://www.ncbi.nlm.nih.gov/geo/) under the IDs RYBP (ES cells: GSM4052120; CPC: 

GSM1657391) and RNF2 (ES cells: GSM4052131; CPC: GSM1657390) were processed in 

Integrative genome viewer (IGV). Binding peaks are displayed for RYBP (Blue) and RNF2 

(Green) at 0-50 data range in both ES cells and CPCs at Plagl1 locus (displayed on top) with 

indicative promoter and ncRNA regions. The binding of RYBP at P3 in CPCs is indicated in 

red arrow highlighted with black dotted box.  
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4.16 RYBP did not activate the P1 and P3 promoters synergetic with E2F and YY1 

transcription factors 

After identifying that RYBP activates Plagl1 P1 and P3 promoters in a polycomb independent 

manner we were wondering the possible mechanism by which RYBP activates the two 

promoters. RYBP was previously identified to activate Kdm2b expression in ES cells by 

associating with pluripotency factor POU domain pluripotency factor 1 (POUF51, classically 

called as OCT4) (Li et al., 2017). Since we already reported that the expression of pluripotency 

genes including Oct4 is not affected in the Rybp null mutant ES cells and Plagl1 expression is 

only first seen after cardiac lineage commitment we ruled out the possibility of RYBP 

activation mechanism via OCT4. The other reported activation mechanism by RYBP was 

demonstrated to bridge E2F (E2F2 and E2F3) and YY1 transcription factors to activate Cdc6. 

In order to investigate if RYBP can activate Plagl1 expression via E2F and YY1 we next 

performed luciferase reporter assay by co-transfecting HEK293T cells with the P1, P2 and P3 

luciferase constructs in combination with RYBP, E2F2, E2F3 and YY1 overexpression. 

Luciferase assay was performed as mentioned earlier (methods 3.1.4). Our results determined 

that E2F2, E2F3 and YY1 could not elevate the activation levels of P1 and P3 promoters by 

RYBP (Figure 33A and C). Breaking down the results, in the case of the P1 promoter 

interestingly E2F2 could induce high level of activation. In cells transfected with only E2F3, 

YY1 and in different combinations of RYBP, E2F2, E2F3 and YY1 overexpression the 

luciferase levels of the P1 promoter did not exhibit any statistical differences (Figure 33A). In 

the P2 promoter, as expected RYBP caused a decrease in luciferase levels when compared to 

the P2 promoter control. Intriguingly single transfections and combinations of RYBP, E2F2, 

E2F3 and YY1 overexpression all resulted in the activation of the P2 promoter (Figure 33B). 

In the P3 promoter, single transfection with RYBP resulted in the highest activation of P3 and 

this activation did not get pronounced with the presence of E2F2, E2F3 or YY1 (Figure 33C). 

These results determined that RYBP is not activating Plagl1 P1 and P3 via interacting E2F and 

YY1. Interestingly RYBP could rather activate the P2 promoter in combination with E2F and 

YY1 transcription factors revealing the unexpected role of RYBP in disease conditions and 

tumor formations. 
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Figure 33: E2F and YY1 transcription factors cannot elevate the activation of P1 and P3 

promoters in combination with RYBP 

(A and C) Luciferase reporter assay determined that E2F and YY1 cannot elevate the 

activation levels of P1 and P3 promoters by RYBP. (B) Luciferase reporter assay determined 

that E2F and YY1 increased the activation level of P2 promoter by RYBP. Values are expressed 

as fold changes of luciferase activity normalized to P1, P2 or P3 single transfected signals 

respectively for A, B and C respectively. The presented values are averages of three 

independent experiments; error bars indicate standard deviation. Values indicated by asterisks 

significantly differed from the value taken as 1 according to the statistical method one-way 

ANOVA (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). 
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4.17 Hymai and Plagl1it overexpression did not affect the activity of RYBP at the Plagl1 

P1 and P3 promoters 

Next, we further dissected the possible mechanism by which RYBP activates Plagl1 P1 and 

P3 promoters, considering the potential contribution of the ncRNAs located in the Plagl1 

genomic locus. NcRNAs such as Xist, Meg3 and Bvht have been previously shown to 

transcriptionally regulate its target genes. The ncRNAs in the Plagl1 genomic locus Hymai and 

Plagl1it ncRNAs express similar to Plagl1 during cardiac differentiation. So we wondered if 

the two ncRNAs can synergistically act with RYBP. To test this hypothesis, we PCR amplified 

Hymai and Plagl1it from d14 differentiated wild type cDNA and cloned into pcDNA3.1 

overexpression vector (methods 3.2.3). The cloned fragments were verified by sequencing and 

were transiently transfected to HEK293T cells with the P1, P2 and P3 luciferase constructs in 

combination with RYBP, Hymai and Plagl1it overexpression. Luciferase assay was performed 

as described earlier (methods 3.1.4). Our results determined that neither Hymai nor Plagl1it 

could synergistically act with RYBP to enhance the activation levels on the Plagl1 P1 and P3 

promoters (Figure 34A, B and C). In brief, on the P1 and P3 promoters, Hymai (P1: 5.5-fold 

and P3: 11-fold) and Plagl1it (P1: 4.42-fold and P3: 3-fold) could exert activation compared 

to the activation of just RYBP (P1: 4-fold and P3: 3-fold) (Figure 34A and C). The activation 

levels of the P1 and P3 promoters induced by Hymai and Plagl1it were not increased in 

combination with RYBP when compared to the effects induced by just Hymai and Plagl1it. On 

the P2 promoter, the two ncRNAs displayed no significant changes in combination with RYBP 

(Figure 34B). Our results also suggested that the two ncRNAs did not affect the P2 promoter 

which lies 30 kb upstream to the TSS implying the target range of the two ncRNAs. 
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Figure 34: Hymai and Plagl1it did not enhance the activation levels of P1 and P3 promoter 

by RYBP 

Luciferase reporter assay determined that Hymai and Plagl1it cannot elevate the activity of 

RYBP at the (A) P1, (B) P2 and (C) P3 promoters. Values are expressed as fold changes of 

luciferase activity normalized to P1, P2 or P3 single transfected signals for A, B and C 

respectively. The presented values are averages of three independent experiments; error bars 

indicate standard deviation. Values indicated by asterisks significantly differed from the value 

taken as 1 according to the statistical method one-way ANOVA (**p < 0.01; ****p < 0.0001). 

4.18 RYBP activates the P3 promoter via NKX2-5  

In order to identify the mechanism by which RYBP could activate Plagl1 P1 and P3 promoter 

we next identified the minimum region required by RYBP to activate the promoter and 

combined with transcription factor binding sites (TFBS) analysis to detect the possible 

regulatory mechanism. Since the response to RYBP overexpression was higher in the P3 

promoter than the P1 and due to the presence of enhancer elements such as a 67 bp long TATA 

box as opposed to the relatively smaller TATA box in the P1 promoter, we utilized only the 

P3 promoter for further analysis.  
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 4.18.1 RYBP activates the 3’ region of the P3 promoter containing binding sites 

for NKX2-5 and MEF2C 

Therefore, to detect the RYBP responsive regions in the P3 promoter we made deletion mutant 

clones of this promoter by restriction digesting P3 at several sites and re-cloned them back into 

luciferase reporter constructs (methods 3.2.3). These sub-clones were transfected in 

combination with RYBP cDNA and transfected in HEK293T cells for luciferase reporter 

assays. Our results demonstrated a surge in the activation of 3’ half of the P3 promoter when 

compared to the full length and 5’ sub-clones of the P3 promoter (Figure 35C). Sub-clones f, 

g and h of the P3 promoter displayed high activation levels (∽ 20-folds) as opposed to the 5-

fold activation by just RYBP. To gain insights into the RYBP response elements present in 

these sub clones we performed TFBS analysis using TRANSFAC (Figure 35A and B). We 

identified the presence of three Nkx2-5 and one Mef2c binding sites, from which the first two 

Nkx2-5 and the Mef2c sites were at close proximity to the TATA box. Also, from clone d and 

e which contained the first two Nkx2-5 sites the activation levels were not as high as clone f, g 

and h suggesting that the third Nkx2-5 site have more response to RYBP (Figure 35C). 

Comparing the activation signals of clone e, f, g and h, the Mef2c site did not seem to affect 

the activation by RYBP whilst the presence of Nkx2-5 sites itself displayed higher activation 

signals (Figure 35C). These results implied that RYBP may regulate the region via Nkx2-5 

consensus. 
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Figure 35: Deletion mutants of the P3 promoter resulted in the 3’ fragments activated the 

highest by RYBP which contained NKX2-5 binding sites. 

Consensus binding sites for (A) NKX2-5 and (B) MEF2C procured from JASPAR database 

(http://jaspar.genereg.net). (C) Luciferase reporter assay using the various sub-clones of the 

P3 promoter labelled left to the schematic representation of the fragments. Clones containing 

regions 1-2.8 kb (a), 1-1.3 kb (b), 1-1.6 kb (c), 1.3-2.8 kb (d), 1.6-3.7 kb (e), 2.8-5.4 kb (f), 2.8-

3.7 kb (g) and 3.7-5.4 kb (h) of the P3 promoter were transfected in HEK293T cells with RYBP. 

Values are expressed as fold changes of luciferase activity normalized to P3 single transfected 

signals. The presented values are averages of three independent experiments; error bars 

indicate standard deviation. Values indicated by asterisks significantly differed from the value 

taken as 1 according to the statistical method one-way ANOVA (****p < 0.0001). 
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4.18.2 RYBP does not activate the P3 promoter via MEF2C consensus sites 

After identifying the presence of Nkx2-5 and Mef2c binding sites at the RYBP responsive 

regions in the P3 promoter, we further analysed the influence of these sites for activation by 

RYBP by performing site directed mutagenesis at these sites. Site directed mutagenesis was 

performed for the 3 Nkx2-5 and 1 Mef2c sites by as altering the sites to form HindIII and BamHI 

sites (methods 3.2.4). Single mutants (clone 1, 2, 3 and 4) harbouring mutation for either Nkx2-

5 or Mef2c and progressive mutation of the sites harbouring more than one mutation of the 

Nkx2-5 and Mef2c sites (clones 5, 6 and 7) were generated. The mutants were co-transfected 

with RYBP and luciferase reporter assay was carried out as mentioned earlier (methods 3.1.4). 

Our results showed the clones 1, 2 and 3 harbouring mutations for the 3 Nkx2-5 binding sites 

displayed loss of activity implying the sites important for activation by RYBP (Figure 36). The 

activation signal did not get attenuated by the mutation of Mef2c site in clone 4 and the 

luciferase activity was over 20-fold implying that RYBP could activate this clone and that the 

Mef2c site was not important for the activation of the P3 promoter by RYBP (Figure 36). The 

mutation of the Nkx2-5 and Mef2c binding sites (clone 5, 6 and 7) also displayed attenuated 

luciferase levels suggesting that Nkx2-5 site was indeed important for the activation of the P3 

promoter by RYBP (Figure 36). 

 

 

 



 80 

 
Figure 36: Binding site mutants of P3 promoter harbouring different mutations of NKX2-5 

and MEF2C revealed that NKX2-5 is required for the activation of P3 by RYBP 

Luciferase reporter assay using the various mutants of the P3 promoter containing mutation 

for Nkx2-5 and Mef2c sites as indicated in the schematic representation. Clone 1 harbours 

mutation for the first Nkx2-5 site, clone 2 harbours mutation for the second NKX2-5 site, clone 

3 harbours mutation for the third NKX2-5 site, clone 4 harbours mutation for the MEF2C site, 

clone 5 harbours mutation for the first Nkx2-5 and the Mef2c site, clone 6 harbours mutation 

for the first two Nkx2-5 sites and the Mef2c site and clone 7 harbours mutation for all the sites. 

The mutants were transfected in HEK293T cells with RYBP. Values are expressed as fold 

changes of luciferase activity normalized to P3 single transfected signals. The presented values 

are averages of three independent experiments; error bars indicate standard deviation. Values 

indicated by asterisks significantly differed from the value taken as 1 according to the 

statistical method one-way ANOVA (****p < 0.0001). 

4.18.3 RYBP and NKX2-5 can synergistically activate the P3 promoter 

Next in order to further clarify if RYBP and NKX2-5 can synergistically activate the P3 

promoter we performed luciferase reporter assay co-transfecting HEK293T cells with P3 

promoter containing luciferase reporter and overexpression constructs for RYBP and NKX2-

5. For this assay we generated a NKX2-5 overexpression construct by cloning NKX2-5 

cDNA into pRK7FLAG vector. Luciferase reporter assay was performed as described earlier. 

Relative fold activity

X1
2

3

4

5

6

7

Un HEK

RYBP 

Plagl1 P3

RY
BPX

X
X

XX
XXX

XXXX

****



 81 

Our results showed that NKX2-5 can itself activate the P3 promoter (10.5-fold) as opposed 

to the 3-fold activation by just RYBP (Figure 37). In combination with NKX2-5, the 

activation of the P3 promoter by RYBP reached 80-folds implying that both RYBP and 

NKX2-5 can synergistically function in the activation of the P3 promoter (Figure 37).  

 
Figure 37: NKX2-5 overexpression elevated the activation of P3 promoter by RYBP 

Luciferase reporter assay using the P3 promoter in combination with RYBP and NKX2-5 

revealed that the P3 promoter was activated extensively. Values are expressed as fold changes 

of luciferase activity normalized to P3 single transfected signals. The presented values are 

averages of three independent experiments; error bars indicate standard deviation. Values 

indicated by asterisks significantly differed from the value taken as 1 according to the 

statistical method one-way ANOVA (*p < 0.05; **p < 0.01). 

4.18.4 RYBP can interact with NKX2-5 protein 

Since all previous results indicated that NKX2-5 might mediate the effects of RYBP in the 

activation of Plagl1 P3, we next examined if RYBP could interact with the NKX2-5 protein 

itself. To test this hypothesis HEK293T cells were co-transfected with RYBP in combination 

with either RING1-FLAG, FLAG-NKX2-5, FLAG-MEF2C and FLAG-PLAGL1 

overexpression constructs. FLAG tagged RING1, an established interactor of RYBP (Garcia 

et al., 1999) in the ncPRC1s was used as the positive control in this experiment. Since the 

earlier experiments revealed that MEF2C might not affect the activation of P3 promoter by 
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RYBP, we used FLAG tagged MEF2C as a potent negative control along with the PLAGL1. 

Co-immunoprecipitation (Co-IP) was performed with anti-RYBP tagged agarose beads 

(methods 3.3.3) and the immunoprecipitates were run in Western blot (methods 3.3.1) and 

hybridised with anti-FLAG antibody. Our results demonstrated that RYBP can interact with 

NKX2-5 protein. In brief, the cell lysate controls showed bands for RING1 (51 kDa), NKX2-

5 (40 kDa), MEF2C (55 kDa) and PLAGL1 (81 kDa) upon hybridising with anti-FLAG 

antibody. In the immunoprecipitates, as expected RING1 was immunoprecipitated with 

RYBP (Figure 38). The presumed negative controls MEF2C and PLAGL1 were not 

immunoprecipitated by RYBP (Figure 38). These results demonstrated that RYBP interacted 

with NKX2-5 and this interaction is a novel finding which is vital for the activation of Plagl1 

expression. 

 

Figure 38: Co-immunoprecipitation revealed that RYBP interacts with NKX2-5 protein 

Co-IP was performed from cell lysates derived from HEK293T cells co-transfected with RYBP 

with either RING1-FLAG, FLAG-NKX2-5, FLAG-MEF2C and FLAG-PLAGL1. The input 

lysates are in the left and the IPs are presented in the right with indicating labels at the top. 

The size of the bands is represented left to blot. RYBP interacted with the RING1 (51 kDa, 

positive control) and NKX2-5 (40 kDa) indicated with red arrow. RYBP did not interact with 

MEF2C and PLAGL1. Abbreviations: IP: immunoprecipitates, kDa: kilo Daltons. 
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4.18.5 RYBP bound at the NKX2-5 consensus at the P1 and P3 promoters in 

CMCs but not in ES cells 

We next performed chromatin-immunoprecipitation (ChIP) coupled with qRT-PCR to identify 

if RYBP can directly regulate the P3 promoter. ChIP was performed using EpiXplore ChIP kit 

(methods 3.2.2). The shearing of the chromatin was performed using a sonicator and the 

sheared chromatin were sustained at an average size of 200-800 bp (Figure 8, methods 3.2.2). 

The sheared chromatin was incubated overnight with anti-RYBP antibody and magnetic beads 

conjugated with mouse IgG (provided by the kit, details in methods 3.2.2). The bound 

chromatin was separated using a magnetic stand and eluted. The immunoprecipitated 

chromatin was eluted and used for qRT-PCR analysis using primers specific to the Nkx2-5 and 

Mef2c consensus sites. This experiment was performed with chromatin isolated from wild type 

ES cells (d0) and d7 differentiated CMCs. Since Plagl1 expression is not found in ES cells and 

only seen from the progenitor formation stage, d7 was used to identify the specific binding of 

RYBP at both the P1 and P3 promoter. 1% of the sheared DNA used for ChIP was used for the 

input control. The data was presented as input percentage by normalizing the Ct values of the 

ChIP to the respective adjusted input Ct values. Our results revealed that RYBP can bind at the 

Nkx2-5 consensus sites in both P1 and P3 promoter in the d7 but not in d0 as expected (Figure 

39). Since NKX2-5 is a cardiac transcription factor and not expressed in d0, the binding of 

RYBP at the Nkx2-5 sites in d7 differentiating CMCs also implies the reason for Plagl1 

expression from cardiac progenitor formation stage. 
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Figure 39: RYBP bound at the Nkx2-5 sites at P1 and P3 promoter in the wild type d7 

differentiating CMCs and not in d0 ES cells. 

ChIP-qRT-PCR was performed with sheared chromatin derived from d0 and d7 wild type 

cultures using primers specific to Nkx2-5 and Mef2c consensus. Primers specific to the 

previously described Klf4 promoter was used a positive control. 

RYBP bound discretely at the Nkx2-5 sites at both P1 and P3 promoter in the d7 differentiating 

CMCs and not in ES cells. Values are presented as input percentage normalized to adjusted 

input Ct values. The presented values are averages of three independent experiments; error 

bars indicate standard deviation. Values indicated by asterisks significantly differed in the 

Rybp+/+ d7 compared to Rybp+/+ d0 by the statistical method two-way ANOVA (****p < 

0.0001). 

4.19 Hymai and Plagl1it synergistically functions with NKX2-5 to activate the P3 

promoter  

As Hymai and Plagl1it ncRNAs could not affect the activation of the P3 promoter by RYBP, 

we next wondered if the two ncRNAs could influence the activation of P3 by NKX2-5. 

HEK293T cells were co-transfected with P3 promoter containing luciferase reporter construct 

with either Hymai, Plagl1it, NKX2-5 overexpression or in combination with the ncRNA 

(Hymai or Plagl1it) along with NKX2-5 overexpression. Luciferase reporter assay was 

performed as mentioned earlier (methods 3.1.4). Our results showed that both Hymai and 

Plagl1it could act synergistic with NKX2-5 (Figure 40). In brief, both Hymai (8.5-fold) and 

Plagl1it (3-fold) could activate P3 promoter as determined in the earlier experiments (Figure 

40). NKX2-5 overexpression activated the P3 promoter (5.6-fold) and this activation got 

enhanced with the presence of Hymai (72-fold) and Plagl1it (96-fold) (Figure 40). These 
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results suggested that both Hymai and Plagl1it ncRNAs synergistically activate the P3 

promoter with NKX2-5 implying that the ncRNAs also function in this activation mechanism 

(Figure 40).  

 

Figure 40: Hymai and Plagl1it ncRNA can enhance the activation of P3 promoter by NKX2-

5. 

Luciferase reporter assay using the P3 promoter in combination with Hymai, Plagl1it and 

NKX2-5 revealed that the activation of the P3 promoter by NKX2-5 was enhanced significantly 

by both Hymai and Plagl1it. Values are expressed as fold changes of luciferase activity 

normalized to P3 single transfected signals. The presented values are averages of three 

independent experiments; error bars indicate standard deviation. Values indicated by asterisks 

significantly differed from the value taken as 1 according to the statistical method one-way 

ANOVA (*p < 0.05; ***p < 0.001; ****p < 0.0001). 

4.20 PLAGL1 is important for the formation of terminally differentiated CMCs and 

sarcomere organisation 

Plagl1 is required for the proper formation of heart in vivo (Yuasa et al., 2010). Rybp null 

mutant cardiac differentiated cultures, lack Plagl1 expression and could not form contracting 

CMCs. In order to characterize the functions of PLAGL1 during in vitro cardiac differentiation, 

we next checked if PLAGL1 affects the expression of sarcomeric genes which is crucial for 

contractility. 
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4.20.1 PLAGL1 co-expressed with CTNT in the differentiating CMCs  

To elucidate if the expression of Plagl1 admissible towards the formation of terminally 

differentiated CMCs, we performed ICC with wild type d7 and d14 differentiating CMCs co-

stained for PLAGL1 and cardiomyocyte marker CTNT. CTNT is a classical cardiomyocyte 

marker and component of thin filament structure of the sarcomere. ICC was performed as 

mentioned earlier (methods 3.3.4). From our results, CTNT staining was visualized in the 

nuclei and dispersed along the cell of the d7 differentiating CMCs (Figure 41b). Nuclear 

staining of CTNT is previously reported in maturing muscle murine cells (Asumda & Chase, 

2012). In d14 CMC cultures, CTNT staining was present in the cytoplasm (Figure 41f). 

PLAGL1 signals were strongly present in the cells that showed strong CTNT staining 

(indicated in white arrow, Figure 41d and h). These results determined that PLAGL1 and 

CTNT were co-expressed in the same differentiating CMCs and cells displaying strong CTNT 

staining also had strong PLAGL1 signals indicating the relevance of PLAGL1 expression 

towards the formation of terminally differentiated CMCs (Figure 41d and h). 

 

Figure 41: PLAGL1 and CTNT are co-expressed in the same differentiating CMCs 

Immunocytochemical analysis of PLAGL1 (c, g) and CTNT (b, f) in day 7 and 14 samples of in 

vitro cardiac differentiated. DAPI (a, e) was used to stain the nuclei. Both PLAGL1 and CTNT 

co-stained the same differentiating CMCs (highlighted with white arrow). Immunostainings: 

blue: DAPI (nuclei), green: RYBP, red: PLAGL1. Olympus Confocal IX 81, Obj.: 60 x; Scale 

bar: a-h: 50 µm. 
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4.20.2 Sarcomere gene promoter regions contain consensus binding sites for 

PLAGL1 

Since the expression of PLAGL1 protein had relevance to the formation of terminally 

differentiated CMCs, we were curious whether PLAGL1 could be involved in regulating 

sarcomeric gene expression. In order to achieve this, we first performed a consensus motif 

search for PLAGL1 binding at the sarcomeric gene promoters. Promoter sequence of sarcomere 

thin filament markers Actc1, Tnnt2, Tnni3, Tpm1, Tpm4 and thick filament markers Myh7, 

Myom1, Ttn were downloaded from ENSEMBL (https://www.ensembl.org/index.html) in 

FASTA format based on the indicating promoter regions by the database. In case of more than 

1 indicating promoter region, the promoter immediately upstream to the TSS was considered. 

The sequences were then analysed for the binding of PLAGL1, NKX2-5, MEF2C and TBX5 

using JASPAR tool (http://jaspar.genereg.net). TFBS was performed by choosing consensus 

of these TFs from mouse (methods 3.4.5). The results were generated as binding scores with 

scores higher than 10 considered significant match to the experimentally identified consensus. 

This analysis resulted in several binding sites for PLAGL1, NKX2-5, MEF2C and TBX5 at 

each promoter region indicating that PLAGL1 could regulate these promoters parallel to 

NKX2-5, MEF2C and TBX5 which are already shown to affect the regulation of sarcomeric 

genes (Figure 42). 
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Figure 42: PLAGL1 can bind to the promoter of sarcomeric genes 

Motif search for TFBS of PLAGL1, NKX2-5, MEF2C and TBX5 at the sarcomeric promoters 

were analysed from JASPAR. The resulting binding score was used to generate Manhattan 

plot. The gene names and the indicating TFs are presented below. The binding strength is 

presented at the left with binding score higher than 10 considered significant (indicated by a 

dotted line). 

4.20.3 PLAGL1 can activate the Tnnt2 promoter 

Since our previous results indicated that PLAGL1 could potentially regulate the sarcomeric 

genes via their promoters, we tested this hypothesis by PCR amplifying and cloning Tnnt2 

promoter from genomic DNA derived from wild type ES cells (methods 3.2.3). The promoter 

was cloned into luciferase reporter constructs, verified by sequencing the fragment and co-

transfected into HEK293T cells with either NKX2-5, MEF2C or PLAGL1. NKX2-5 and 

MEF2C were previously shown to affect the regulation of sarcomeric genes and were used as 

positive controls. Luciferase reporter assay was performed as indicated earlier (methods 3.1.4). 

Both NKX2-5 (16-fold) and MEF2C (4-fold) could activate the Tnnt2 promoter as expected 

(Figure 43). PLAGL1 activated the Tnnt2 promoter over 14-folds elucidating that PLAGL1 

can activate the expression of sarcomeric genes via their promoters as analysed by Tnnt2 

(Figure 43). This novel finding also establishes the critical role of PLAGL1 during cardiac 
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differentiation and that the loss of Plagl1 expression could affect differentiation by signalling 

sarcomere gene expression, which is vital for contractility. 

 
Figure 43: PLAGL1 activates sarcomeric thin filament marker Tnnt2 promoter 

Luciferase reporter assay using the Tnnt2 promoter in combination with NKX2-5, MEF2C and 

PLAGL1 revealed that the activation of the Tnnt2 promoter was enhanced significantly by 

PLAGL1. The activation of the Tnnt2 promoter by PLAGL1 was similar to the activity of the 

positive control NKX2-5 and higher than the activity of MEF2C. Values are expressed as fold 

changes of luciferase activity normalized to P3 single transfected signals. The presented values 

are averages of three independent experiments; error bars indicate standard deviation. Values 

indicated by asterisks significantly differed from the value taken as 1 according to the 

statistical method one-way ANOVA (***p < 0.001; ****p < 0.0001). 
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5. DISCUSSION 

 
RYBP is a member of the non-canonical polycomb repressive complex 1s (ncPRC1s), which 

are classically highlighted for their role as repressors (Garcia et al., 1999). As expected, genetic 

alterations of genes coding for polycomb proteins majorly resulted in the upregulation of genes 

in the mutant ES cells further confirming their role as epigenetic repressors. Recently, multiple 

studies have also revealed the downregulation of several genes in the polycomb mutant cells 

(Morey et al., 2013, 2015; Obier et al., 2015; Ujhelly et al., 2015; Zhao et al., 2020) For 

example, polycomb YY1 associated factor 2 (YAF2) is an ortholog of RYBP that shares over 

65% homology to RYBP. Knock out of YAF2 in mouse ES cells resulted in 351 genes 

upregulated and 146 genes downregulated in the Yaf2-/- cells (Zhao et al., 2018). Furthermore, 

knockdown of Polycomb group ring finger 2 (PCGF2 also called as MEL18) using shRNA 

resulted in 720 upregulated genes and 148 downregulated genes in the shMel18 mutant ES 

cells. PCGF2/MEL18 is a distinctive member of the canonical PRC1.2 complex which 

functions in the maintenance of gene repression in ES cells and also plays essential roles during 

the early mesoderm precursor formation from mouse ES cells (Morey et al., 2015). To 

understand the mechanism of downregulation of target genes upon compromised expression of 

polycomb proteins has been of significant interest lately (Gao et al., 2014). Recently, the RYBP 

containing ncPRC1.3 and ncPRC1.5 complexes were identified to activate genes related to 

autism in the CNS by interacting with newly identified interacting partners AUTS2 and CK2 

(Figure 5) (Gao et al., 2014). 

Previously our group reported that compromised expression of RYBP leads to severe 

alterations in the expression of many genes essential for cardiac differentiation in the mutant 

cells (Figure 15) (Ujhelly et al., 2015). Several cardiac transcription factors such as Isl1, Tbx5 

and Tnnt2 express at reduced mRNA levels in the Rybp null mutant CMCs (Figure 16). One of 

the most downregulated genes was Plagl1, which was of utmost interest to us since PLAGL1 

is a key cardiac transcription factor (Yuasa et al., 2010). PLAGL1 can bind at critical cardiac 

gene loci, such as Nkx2-5, Tropomyosin 2 (Tpm2), Plectin (Plec) and Myosin heavy chain 7B 

(Myh7b) identified by ChIP-seq assay in N2A cells (Varrault et al., 2017).  

In the current study, we provide evidence that Plagl1 is not expressed in the Rybp-/- cells neither 

in mRNA nor at protein levels during any stages of in vitro cardiac differentiation. Based on 

our results we hypothesized that Plagl1 might be a downstream target of RYBP. To examine 

this hypothesis, we first tried to understand the complex regulatory regions of Plagl1 
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expression. We dissected the Plagl1 genomic locus, described all splice variants and the coded 

protein products in detail. The Plagl1 genomic locus has had many schematic illustrations 

updated several times. The original description of the Plagl1 locus showed that Plagl1 had 8 

exons with one promoter region (P1 promoter). The P1 promoter resides upstream to exon 4 

containing a conserved CpG island which is also present in rat and human PLAGL1 (Figure 

19) (Smith et al., 2002). Later Valleley and colleagues (Valleley et al., 2010) identified a second 

promoter region, which they termed as P2 situated 30 kb upstream to the previously described 

P1 promoter. The P2 promoter has an unmethylated CpG island which can produce biallelic 

expression of Plagl1 in leukocytes and pancreas during disease condition such as TNDM. 

Another independent study about the Plagl1 genomic locus showed that Plagl1 had 9 exons 

with a 3 kb promoter region upstream to exon 4 (P1 promoter) that can be activated by cardiac 

transcription factor NKX2-5 (Yuasa et al., 2010). Next, demonstrating that MEF2C can 

regulate Plagl1 expression in rat mesenchymal cells (Czubryt et al., 2010), identified a novel 

5.4 kb alternate promoter region (P3 promoter) containing a MEF2C consensus site 

immediately upstream to the exon 10 by in silico analysis. The latest illustration of the mouse 

Plagl1 locus gave the most detailed description of the promoters and the presence of the two 

ncRNAs Hymai and Plagl1it (Platas et al., 2012). By performing 5’ and 3’ RACE along with 

EST analysis the position of the transcripts was mapped from the three different promoter 

regions which were described previously naming them as P1, P2 and P3 promoters (Platas et 

al., 2012). In our study, we further verified the positions of the exons, promoters, regulatory 

elements and the ncRNAs Hymai and Plagl1it ncRNAs. Our schematic illustration of the 

Plagl1 locus is an updated depiction from all previously available data (Figure 19). We also 

provide novel information about the promoters potentially active during cardiac development 

as previous studies only aimed at characterizing the promoters and elucidating imprinting at 

the genomic locus. We performed gene expression analysis using exon specific primers Plagl1 

1/2, Plagl1 6/7, and Plagl1 10/11 to validate which promoter were producing protein coding 

transcripts during in vitro cardiac differentiation. Our results suggested that only the P1 and P3 

promoters are active during cardiac differentiation (Figure 22). This data further strengthens 

the theory that the Plagl1 P2 promoter is only active and produces biallelic expression of 

Plagl1 in specific tissues such as leukocytes and pancreas during disease states such as TNDM.  

PLAGL1 protein was previously identified to express abundantly in the embryonic heart in a 

chamber restricted pattern (Yuasa et al., 2010). Present study provides novel information 

characterizing the expression of PLAGL1 during in vitro differentiation of ES cells into cardiac 
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lineage. In the wild type cultures, Plagl1 expression was not observed at day 0 and day 2 

indicating that PLAGL1 may not have any role in maintaining the pluripotency of ES cells and 

in consequent germ layer formation (Figure 18). PLAGL1 expression was first detectable at 

day 4, which is a very early stage when the cardiac progenitors form indicating its role in early 

lineage commitments. Our gene expression analyses and co-expression of RYBP and PLAGL1 

in the differentiating cells raised our hypothesis that Plagl1 could be a downstream target of 

RYBP during cardiac morphogenesis (Figure 26). 

By performing luciferase reporter assay we have examined the role of RYBP in regulating 

Plagl1 at the promoter levels, and we determined that RYBP activates the P1 and P3 promoters. 

In order to clarify the mechanism by which RYBP activated the Plagl1 promoters we 

demonstrated that RYBP activates both P1 and P3 promoter in a polycomb independent 

manner (Figure 29, 30 and 31). By performing similar promoter activity assays using RYBP in 

combination with E2F (E2F2 and E2F3) and YY1 transcription factors we also determined that 

the activation of the Plagl1 promoters by RYBP differs from the previously identified 

activation mechanisms by RYBP (Figure 33).  

Several ncRNAs have been identified to play vital roles in cellular processes including 

chromatin remodelling, DNA repair and translation (Wang & Chang, 2011). The recent 

development in the ncRNAs have increased the interest in identifying the interactions and 

functions of ncRNA. Several ncRNAs have been already identified in the polycomb mediated 

regulation of genes. Inactive X specific transcripts (Xist), Braveheart (Bvht), and Maternally 

expressed gene 3 (Meg3) are some of the many ncRNAs identified to interact with polycomb 

complex proteins (Bousard et al., 2019; Klattenhoff et al., 2013; Sunwoo et al., 2015; Wu et 

al., 2018). Xist mediates whole chromosome transcriptional silencing during the dose 

compensation process in mammals (Sahakyan et al., 2018). Bvht and Meg3 are determined to 

likely induce cardiac lineage commitment and are expressed upstream to Mesp1, potentiate to 

regulate a core cardiac gene network (Klattenhoff et al., 2013; Wu et al., 2018).  

Hymai and Plagl1it ncRNAs are both imprinted and express only from one allele from the 

Plagl1 genomic locus (Benedetti et al., 2017). The expression of Hymai is partially connected 

to the expression of Plagl1 since Hymai is also transcribed upon the regulation of P1 promoter 

and altered expression of both PLAGL1 and Hymai are indicative of disease condition such as 

TNDM and tumors. Plagl1it ncRNA was identified from independent RACE experiments 

(Platas et al., 2012). Although few studies have described the functions of Hymai, not much is 

known about Plagl1it. From our expression studies by qRT-PCR we also determined the 
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altered expression pattern of the ncRNAs Hymai and Plagl1it in the Rybp null mutant cultures 

during in vitro cardiac differentiation (Figure 20). High expression of the two ncRNAs at day 

14 of wild type cardiac differentiation CMCs shows that the ncRNAs might function during 

the terminal stages of CMC formation (Figure 20). Therefore, we were keen to investigate 

whether Hymai and Plagl1it affected the activation of Plagl1 by RYBP. Our results determined 

that the two ncRNAs could activate the Plagl1 P1 and P3 promoters themselves. But the 

overexpression of either Hymai or Plagl1it did not alter the activity of the Plagl1 promoters 

regulated by RYBP (Figure 34).  

To identify the mechanism by which RYBP can activate Plagl1 expression, we subcloned the 

P3 promoter as various smaller fragments and determined their inducibility by RYBP. By 

combining the acquired results with TFBS we demonstrated that consensus binding sites for 

cardiac progenitor transcription factors Nkx2-5 and Mef2c was required for the activation of 

the P3 promoter by RYBP (Figure 35). Two previous studies have shown that Nkx2-5 and 

Mef2c can activate the expression of Plagl1. (Czubryt et al., 2010; Yuasa et al., 2010). By 

performing site directed mutagenesis of the Nkx2-5 and Mef2c consensus sites we confirmed 

that the Nkx2-5 consensus site was indeed essential for the activation of the P3 by RYBP 

(Figure 36). 

By combining Co-IP and ChIP-qRT-PCR methods we also proved that RYBP interacts with 

NKX2-5 protein (Figure 37) and this interaction is vital in the regulation of Plagl1 in the wild 

type CMCs. RYBP is bound at the Nkx2-5 consensus sites in both P1 and P3 promoters in d7 

CMCs and not in d0 ES cells where Plagl1 is normally expressed (Figure 38). Since Nkx2-5 

only expressed after cardiac lineage commitment and vital for the progenitor formation, these 

results nicely recapitulate the expression kinetics of Plagl1 during cardiac differentiation. Our 

results also indicate a potential interaction of Hymai and Plagl1it with NKX2-5 as they 

increased the fold activation levels of the P3 promoter by NKX2-5 extensively (Figure 40). 

Our results also suggest that although aberrant expression of Nkx2-5, Hymai and Plagl1it in 

the Rybp null mutant CMCs could itself impact Plagl1 regulation, the consequence of the 

absence of Rybp might result in a more several decline in the activation of Plagl1 (Figure 20). 

Since Plagl1 expression was not detected neither at mRNA nor at protein levels in the Rybp 

null mutant cultures, the loss of Plagl1 functions could at least partially contribute to the 

phenotype of the Rybp null mutant CMCS during cardiac differentiation. Rybp null mutant 

CMCs lack proper sarcomere formation and subsequent contractility (Figure 16) (Henry et al., 

2020). Therefore, to examine whether Plagl1 expression is important for sarcomere formation, 
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we determined the colocalization of PLAGL1 and a sarcomere marker CTNT by ICC. We 

found that PLAGL1 expression was profoundly present in the CTNT positive cells, suggesting 

that PLAGL1 preferentially expressed in cells differentiating towards terminal CMCs. 

Luciferase reporter assays showed that Plagl1 can activate the expression of Tnnt2 promoter. 

These data together provide vital understanding about the role of Plagl1 in CMC formation 

and the molecular mechanism by which RYBP functions during cardiac morphogenesis (Figure 

43 and 44).  

 

Figure 44: Model of in vitro cardiac differentiation in the presence and absence of Rybp 

(A) Differentiation of wild type ES cells towards CMCs in the presence of Rybp. The expression 

of key cardiac transcription factors such as NKX2-5, MEF2C and TBX5 guide cardiac lineage 

commitment and differentiation. In the wild type, RYBP interacts with NKX2-5 to activate 

Plagl1 expression associating with Hymai and Plagl1it. PLAGL1 activates Tnnt2 expression 

via its promoter and thereby affects sarcomere formation. 

(B) Differentiation of pluripotent ES cells towards CMCs is impaired in the absence of Rybp. 

During cardiac differentiation progenitor transcription factors (Nkx2-5, Mef2c and Tbx5) 

exhibit reduced expression levels in the Rybp null mutants. Moreover, in the absence of Rybp, 

Plagl1 expression is absent, which also affects sarcomere formation. As a result, the formation 

of terminally differentiated cardiomyocytes is impaired and contractility is compromised in the 

lack of functional Rybp.  
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Taken together our results provide vital novel information about the regulatory functions of 

RYBP during cardiac development. We propose that RYBP acts by activating specific cardiac 

genes via Plagl1 (Figure 44). The interaction between RYBP and NKX2-5 protein is a novel 

finding, and these results broadens the understanding about the alliance between polycomb 

proteins and lineage specific markers to regulate differentiation. Overall, these results also 

affirm the theory that in certain cases polycomb proteins, such as RYBP could also exert their 

roles as transcriptional activators during mammalian embryonic development. 
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8. SUMMARY OF THE PHD THESIS 

INTRODUCTION 

In my PhD study, I have focused on the functions of a PcG protein RYBP, during the early 

onset of cardiac development using mouse ES cells based in vitro differentiation system. We 

have earlier shown that RYBP is expressed in the mouse developing heart in vivo and that ES 

cells lacking RYBP could not form functionally contracting CMCs in vitro. In my PhD thesis, 

I have further dissected the underlying molecular mechanisms. Genome-wide transcriptomics 

using wild-type and Rybp null mutant CMCs revealed a list of genes with significantly altered 

expression in the Rybp null mutant CMCs including alterations in key mechanisms such as ion 

homeostasis, cell adhesion, cardiac progenitor formation and sarcomere organisation. One of 

the most downregulated gene in the Rybp null mutant CMCs was Pleiomorphic adenoma gene 

like 1 (Plagl1), a zinc finger protein with transactivation and consensus specific DNA-binding 

activities. Plagl1 is an essential factor for cardiac morphogenesis and is highly expressed in 

mouse hearts from E8.5 of embryonic development to adulthood in a chamber-restricted 

pattern. Importantly, ablation of Plagl1 in mouse embryos caused atrial and ventricular septum 

defects which often lead to cardiomyopathies. 

AIM 

To identify the regulatory mechanism that cause the downregulation of Plagl1 expression in 

the Rybp null mutant ES cells and CMCs and investigate how Plagl1 deficiency could 

contribute to the non-contractility phenotype of the Rybp null mutant CMCs.  

METHODS 

To achieve these aims I used wild-type and Rybp null mutant mouse ES cells and differentiated 

them to form cardiac cultures up to 21 days and have collected samples from day 0 

(pluripotent), day 2 (embryoid body), day 4 (early cardiac progenitor stage), day 7 and day 10 

(early CMCs), 14 and 21 (matured CMCs) for further assays. This included: (1) Gene 

expression studies using quantitative real-time polymerase chain reaction; (2) Western blot 

analyses to define protein content and kinetics; (3) Immunocytochemistry to determine the 

subcellular localization of PLAGL1 and its co-localization with key cardiac transcription 

factors such as cardiac CTNT.  
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RESULTS AND CONCLUSIONS 

Our results showed that PLAGL1 was first detected at the early progenitor formation stages 

(day 4) and the expression was the highest in the matured CMCs stage (day 14) of 

differentiation indicating its role in CMC formation. Since in the Rybp null mutant cultures, 

Plagl1 is not expressed at any time point of in vitro cardiac differentiation our current 

hypothesis is that cells lacking RYBP are impaired in their CMC development at least partially 

due to the impaired inducibility of Plagl1. 

Besides this, in silico analyses of the Plagl1 genomic locus has revealed that Plagl1 has a 

complex genomic structure containing 11 exons, 3 promoter regions (P1, P2 and P3) and 2 

ncRNAs Hymai and Plagl1it. From gene expression analyses using primers specific to the 

various splice variants of Plagl1, I determined that gene products from only Plagl1 P1 and P3 

promoters are transcribed during in vitro cardiac differentiation. Furthermore, the expression 

of the two ncRNAs Hymai and Plagl1it were also greatly altered in the Rybp mutant cells 

suggesting that every gene product from the entire Plagl1 locus is affected by the lack of Rybp 

in the mutant CMCs. Since the ncRNAs are transcribed from the same promoters as Plagl1 and 

were induced only at low level in the Rybp null mutant CMCs, suggested that RYBP may 

regulate the promoters of Plagl1. Therefore, I cloned the Plagl1 P1, P2 and P3 promoters into 

luciferase reporter constructs and performed reporter assays to investigate whether RYBP can 

regulate any of the Plagl1 promoters. My results revealed that RYBP can activate Plagl1 via 

the P1 and P3 promoters. By using truncated mutants of the P3 promoter, my experiments 

revealed that RYBP can activate the 3’ part of the P3 promoter that consisted of the TATA box 

and included consensus sites for cardiac transcription factors NKX2-5 and MEF2C. Site 

directed mutagenesis of the consensus sites of NKX2-5 and MEF2C and luciferase assays with 

RYBP disclosed that the NKX2-5 sites were essential for the activation of the P3 promoter by 

RYBP. ChIP-qRT-PCR analysis to determine if RYBP bound at the Plagl1 promoters revealed 

that RYBP bound at the NKX2-5 consensus in both the P1 and P3 promoter. Our results also 

determined that PLAGL1 co-expressed with CTNT in the wild type differentiating CMCs and 

PLAGL1 can activate Tnnt2 promoter. Since these transcription factors are required for the 

development of multiple cardiac cells types our results suggest that Plagl1 at least partially, 

mediates the effects of Rybp during cardiac differentiation. 

Taken together, my results provide novel interpretation on how the absence of RYBP can cause 

impairment in cardiac differentiation, which might also be relevant to disease conditions such 

as cardiomyopathies or arrhythmias. 
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9. ÖSSZEFOGLALÓ 

BEVEZETÉS 

A PhD tanulmányom középpontjában a polikomb csoportba tartozó RYBP fehérje szívizom 

irányú differenciációban betölött szerepének elemzése állt, melyet egér embrionális őssejteken 

alapuló in vitro differenciációs rendszerben vizsgáltunk. Vizsgálataink alapját azon korábbi 

megfigyelésünk képezte, hogy az RYBP termelődése egér szívben az embrionális fejlődés 

során kifejezett, továbbá hogy RYBP hiányában in vitro kultúrákban az őssejtek nem képesek 

funkcionálisan összehúzódó kardiomiocitákat (CMC) kialakítani. A doktori disszertációm 

során tovább elemeztem a molekuláris mechanizmusok hátterét. Először, Rybp null mutáns és 

vad típusú kardiális minták teljes genomi transzkriptom elemzését felhasználva kimutattunk 

egy sor olyan gént, amelynek expressziója szignifikánsan eltér az Rybp null mutáns 

szívizomsejtekben és olyan fő kardiális mechanizmusok résztvevői, mint pl. az ion 

homeosztázis, sejt adhézió, kardiális progenitor kialakítás és szarkomer organizáció. Az Rybp 

null mutáns szívizomsejtekben az egyik legkiugróbb változást egy DNS-kötő aktivitással 

rendelkező cink-ujj fehérje, a Pleiomorphic adenoma gene like 1 (Plagl1) mutatta. Ez a gén 

Rybp hiányában sem őssejtekben, sem pedig a CMC populációkban nem volt kimutatható. 

A Plagl1 a kardiális morfogenézis egyik nélkülözhetetlen tagja és a 8.5-ik naptól nagy 

mennyiségben termelődik a fejlődő egér szívkamrákban. Egér embrióban kimutatták, hogy 

Plagl1 hiányában a pitvari és kamrai válaszfal hibásan fejlődik ki, ami gyakran szívbetegségek 

kialakulásához vezet.  

 

CÉLKITŰZÉSEK 

Azonosítani a Plagl1 csökkent termelődésében szerepet játszó szabályozó 

mechanizmusokokat, Rybp null mutáns őssejtekben és kardiomiocitákban. Úgyszintén, 

megvizsgálni, hogy a hibás Plagl1 termelődés vajon miként játszhat szerepet az 

összehúzódásra képtelen Rybp null mutáns szívizomsejtek fenotípus kialakításában.  

 

MÓDSZEREK 

Céljaink megvalósításához, Rybp null mutáns és vad típusú egér őssejteket differenciáltattuk 

in vitro kardiális irányba. Az kolóniákat 21 napig növesztettük és az analízishez szükséges 

mintákat 0, 2, 4, 7, 10, 14, és 21 napokon gyűjtöttük be, ahol a nulladik nap a pluripotens, 2. 
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nap az embrionális test, 4. nap a korai kardiális progenitor, a 7. és 10. nap a korai kardiomiocita 

a 14. és 21. nap pedig az érett kardiomiocita állapotot reprezentálja. Mintáink vizsgálatához a 

következő módszereket alkalmaztuk: (1) Kvantitatív valós idejű polimeráz lánc reakcióval 

(qRT-PCR) gén kifejeződést vizsgáltunk; (2) A fehérjék mennyiségének és kinetikájának 

kimutatásához Western-blot analízis alkalmaztunk; (3) Immunocitokémiai módszerekkel 

megvizsgáltuk a PLAGL1 sejteken belüli lokalizációját ill. hogy milyen más kulcsfontosságú 

kardiális transzkripciós faktorokkal mint pl. a kardiális troponinT-vel lokalizálódik együtt. (4) 

Luciferáz riporter próbával és helyspecifikus mutációs analízissel megvizsgáltuk az RYBP 

fehérje Plagl1 P1, P2 és P3 promóter szakaszára ill. a PLAGL1 fehérje kardiális troponinT 

promóterére kifejtett hatását, tehát hogy vajon transzkripcionálisan képes-e az RYBP a Plag1 

gén szabályozására.  

EREDMÉNYEK (ÉS KÖVETKEZTETÉSEK) 

Az eredmények rávilágítottak, hogy a PLAGL1 fehérje a korai kardiális progenitor 

kialakulásának stádiumában kezd el termelődni és a legnagyobb mértékű kifejeződést a 14. 

napon az érett kardiomiocita állapotban éri el, jelezve a PLAGL1 fontos szerepét a 

kardiomiociták kialakulásában. Az Rybp null mutáns szívizomtelepekben a Plagl1 egyik 

vizsgált időpontban sem mutatott expressziót ezért úgy véljük, hogy a Plagl1 hibás indukciója 

legalább részben felelőssé tehető a mutáns kolóniák rendellenesen fejlődő szívizomsejtjeinek 

kialakításában. Emellett in silico feltártuk a Plagl1 összetett genomi szerkezetét, ami 12 

exonból, 3 promóter régióból (P1, P2 és P3) és 2 nem-kódoló RNS-ből (Hymai és Plagl1it) 

áll. A különböző Plagl1 splice variánsok kimutatásához specifikus primereket terveztünk és 

gén expressziós analízissel kimutattuk, hogy in vitro kardiális differenciáció során csak a P1 

és P3 Plagl1 promóterek gén terméke íródik át. Továbbá a Hymai és Plagl1it nem kódoló RNS-

ek termelődése szintén változást mutatott az Rybp mutáns sejtekben, ez arra utal, hogy az Rybp 

hiánya a mutáns kardiomiocitákban hatással van a Plagl1 lokusz összes géntermékre. A nem 

kódoló RNS-eket ugyanazon promóter régiók szabályozzák, mint a Plagl1-et és csak kis 

mértékben indukálódtak az Rybp mutáns szívizomsejtekben, mindez arra engedtek 

következtetni, hogy az RYBP nagy valószínűséggel közvetlenül szabályozhatja a Plagl1 

promóterét. Ahhoz, hogy ezt a feltevésünket kísérletileg is alátámasszuk a P1, P2 és P3 Plagl1 

promótereket luciferáz riporter konstrukcióba klónoztuk. A riporter-assay eredményei 

feltárták, hogy az RYBP a P1 és P3 promótereken keresztül képes kifejteni aktiváló hatását. 

Ezután mutáns P3 promótereket hoztunk létre és segítségükkel kimutattuk, hogy az RYBP a 
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P3 promóter, TATA-boxokból valamint NKX2-5 és MEF2C kötő szekvenciákból álló, 3’ 

végét aktiválja. A konszenzus NKX2-5 és MEF2C szakaszok célzott mutagenezisével és 

RYBP luciferáz-assay segítségével megállapítottuk, hogy az Nkx2-5 kötő helyek megléte 

nélkülözhetetlen a P3 promóter aktiválásához. ChIP-qRT-PCR segítségével kimutattuk, hogy 

az RYBP képes kötődni az Nkx2-5 kötő konszenzus szekvenciához mindkét, P1 és P3, 

promóter esetében. Vad típusú kardiomiocitákon végzett kísérleteinkből az is kiderült, hogy a 

PLAGL1 ugyanazon sejtekben található mint a kariális troponinT és a PLAGL1 képes aktiválni 

a kardiális troponinT promóterét. Az előbb említett transzkripciós faktorok jelenléte több 

kardiális sejttípus kialakulásához is szükséges ezért az eredményeink arra engednek 

következtetni, hogy a kardiális differenciáció során a PLAGL1 legalább részben közvetíti az 

RYBP hatását. Összességében az eredményeink az RYBP hiányában fellépő hibás kardiális 

differenciáció új oldalait világítják meg, melyek a különböző kardiális betegségekben, mint pl. 

a veleszületett szívbetegségek, aritmiák kialakulásában is relevánsak lehetnek 
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