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Introduction 

Mimicry in the field of science involves reproducing or copying a model, a reference. If we, 

dentists, want to replace what has been lost, we need to agree on what is the correct reference. For the 

restorative dentist, this unquestionable reference is the intact natural tooth. Natural teeth, through the 

optimal combination of enamel and dentin, demonstrate the perfect and unmatched compromise between 

stiffness, strength and resilience. Restorative procedures and alterations in the structural integrity of 

teeth can easily violate this subtle balance.  

Physiologic performance of intact teeth is the result of an intimate and balanced relationship 

between biological, mechanical, functional and esthetic parameters. In modern dental practice, the 

restoration and the tooth should form a structurally adhesive and optically cohesive medium, which has 

the ability to withstand repetitive multi-axial biomechanical force loads over a prolonged period of time. 

The definition of the term “biomimetic” in the field of restorative dentistry is the study of the structure 

and function of the tooth tissue as a model for the design and manufacturing of materials, and techniques 

to restore teeth. In fact, the primary aims of biomimetic dentistry are to be as minimally invasive as 

possible, and to substitute the missing hard dental tissues with restorative materials closely resembling 

the natural tissues regarding their mechanical features and properties. A typical biomimetic restorative 

approach is the combined use of artificial materials to replace different hard dental tissues, such as the 

use of porcelain to replace enamel and composite resins to replace dentin, combined with optimized 

bonding strategies. This construction is possible if we choose an indirect treatment for restorative 

purposes. As logical as it might seem, however, the use of this approach is limited in practice, due to 

both financial and technical limitations. Practically, the most challenging aspect is the ability to apply 

all these engineering concepts in the small biological structure of a tooth. 

Increased use of composite materials in both anterior and posterior regions has made 

technological advances in this field necessary. In spite of the fact that both amalgam and composite resin 

are considered to be suitable materials for restoring Class I and Class II cavities in both premolar and 

molar teeth, in many countries resin composites have almost totally replaced amalgam as a restorative 

material in posterior teeth. Magne et al. showed that amalgam fillings in Class I and Class II cavities 

could not ideally reinforce the tooth and could not substitute the missing dental tooth structure in terms 

of biomechanical features. Resin composite restorations in the posterior region have shown good overall 

clinical performance in small and medium sized fillings, with annual failure rates mostly between 1-3 

%. However, large restorations showed a tendency to fail due to mechanical, fracture-related problems, 

resulting in decreased longevity. It seems from the literature that resin composite fillings show 

limitations due to their insufficient mechanical properties when utilized to restore large cavities.  

Many studies have aimed to improve the mechanical properties of composite resins. Fracture within the 

body and at the margins of restorations, polymerization shrinkage and secondary caries have been cited 

as major problems regarding the mechanical failure of posterior composites. The fracture-related 
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material properties, such as fracture resistance, deformation under occlusal load, and the marginal 

degradation of materials have usually been evaluated by the determination of the basic material 

parameters: flexural strength and fracture toughness. From a biomimetic point of view, we aspire to 

replace dentin with materials that have similar biomechanical properties. Fracture toughness of 

microhybrid and nanohybrid composite resin materials are significantly lower than that of dentin [8]. 

Regarding the microstructure, composite resins consist of filler particles (generally not fibers) embedded 

in a resin matrix, whereas dentin consists of collagen fibers embedded in a hydroxyapatite matrix. 

Consequently, observing the microanatomy of the tissue itself, dentin should rather be seen as a fiber-

reinforced composite instead of a particulate filler one. Composite resins which are reinforced with 

millimeter scale short fibers show a quite interesting similarity to natural dentin, considering their 

microstructure and their biomechanical properties. Studies have shown that short fiber-reinforced 

composite (SFRC) differed significantly and has superior fracture toughness, flexural strength, and 

flexural modulus compared to other tested bulk-fill or conventional composite resin materials. Also, the 

studies have shown a strong correlation between fatigue performance and the material’s fracture 

toughness, and the SFRC was able to withstand both compressive static and fatigue loads. The 

mentioned toughening capability of SFRC over their competition materials is due to two main factors: 

the millimeter-scale short fibers, which fulfill the critical fiber length measures, and the semi-

interpenetrating polymer network (semi-IPN) structure.  

The studies described in this thesis sought to examine how fiber-reinforced composite (FRC) 

materials can be used in the most efficient way to reinforce the dental structure in both endodontically 

non-treated and root canal treated cases. 

Material and Method 

For the anterior study, four hundred upper bovine incisors were collected and stored in 0.5% 

chloramine-T. The largest oro-vestibular and mesio-distal dimension and the hight of the coronal portion 

from the cemento-enamel junction (CEJ) were measured. The oro-vestibular and mesio-distal 

dimensions of the root part were also measured. According to the measurements, only the teeth with a 

maximum deviation of 10% from the determined mean were included in this study (a sum of one 

hundred-eighty teeth).  

Teeth were randomly distributed among 6 study groups (n=30). One group was left intact to later serve 

as control (Group 6). The rest of the teeth (Group 1.-5.) were cut to obtain a length of 12 mm below the 

CEJ using a slow-speed, water-cooled diamond disc. Furthermore, after sectioning of the apical part, all 

teeth were examined under magnification for root fractures. Coronal access was made by using a round-

end parallel diamond (881.31.014 FG – Brasseler USA Dental, Savannah, GA, USA) and an Endo Z 

bur (Dentsply Maillefer, Tulsa, OK, USA) in a high-speed handpiece. Next, the root canal was enlarged 

by Gates Glidden burs No. 1-6 with copious water cooling until an ISO size #140 could be passively 
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extended through the apex. Each canal was then prepared with a GC Fiber Post drill size 1.6 (GC Europe, 

Leuven, Belgium) in order to simulate an immature tooth with thin walls. A 4-mm apical plug of grey 

Pro-Root MTA (mineral trioxid aggregate) (Dentsply Tulsa Dental, Tulsa, OK, USA) was placed in 

each tooth with a MAP System (Dentsply Maillefer, Tulsa, OK, USA). After complete setting of the 

MTA was confirmed with an endodontic explorer the teeth were further restored. The radicular dentin 

was refreshened with a No. 4 Gates Glidden bur and flushed with chlorhexidine and saline. The enamel 

borders of the coronal cavity were acid-etched selectively with 37% phosphoric acid and rinsed with 

water. After drying the cavity completely, a dual-cure one-step self-etch adhesive system (G-Premio 

Bond and DCA, GC Europe, Leuven, Belgium) was used for bonding according to the manufacturer’s 

instructions. The adhesive was light cured for 60 s using an Optilux 501 quartztungsten-halogen light-

curing unit (Kerr Corp., Orange, CA, USA). 

The teeth in all groups were then treated as follows (Figure 1): 

1. Figure: Schematic figure representing the anterior test groups (Group 1–5). 

 

Group 1: The teeth were reconstructed with the Bioblock technique described by Fráter et al. building 

a direct layered FRC post and core from SFRC (everX Posterior, GC Europe). 

Group 2: The teeth were reconstructed with SFRC flow (GC Europe) as described in Group 1. 

Group 4: the teeth received a 1.6 mm diameter conventional FRC post (GC Fiber Post, GC Europe). 

Group 5: The teeth were reconstructed with a dual-cure resin composite core material (Gradia Core, 

GC Europe) without any FRC material. 

To simulate the periodontal ligaments, the root surface of each tooth was coated with a layer of 

liquid latex separating material prior to embedding. All specimens were embedded in methacrylate resin 

at 2 mm from the CEJ to simulate the bone level. 

After the restorative procedures, mechanical testing was carried out on 25 anterior teeth from each group 

(n= 150) and 5 anterior teeth from each restored group (n=25) underwent sectioning, microleakage and 

microhardness testing. 
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For mechanical testing, the restored specimens were submitted to a modified accelerated 

fatigue-testing protocol by a hydraulic testing machine at an angle of 135 degrees to the long axis of 

each tooth. Cyclic isometric loading was applied on the palatal surface of the coronal part of the tooth 

using a round-shaped metallic tip. A cyclic load was applied at a frequency of 5 Hz, starting with 

gradually increasing static loading till 100 N in 5 seconds, followed by cyclic loading in stages of 100 

N, 200 N, 300 N, 400 N, 500 N and 600 N at 5,000 cycles each. Specimens were loaded until fracture 

occurred or until the total of 30 000 cycles were carried out, which was the whole testing procedure. For 

the survival analyses, the number of cycles at which the specimen failed were recorded. 

For the microleakage test, teeth were sectioned sagitally in the mid-mesio-distal plane and were 

dyed with a permanent marker. The dye penetration along the post/core margins of each section was 

evaluated independently using a stereo-microscope (Heerbrugg M3Z, Heerbrugg, Switzerland) at a 

magnification of 6.5x. The extent of dye penetration was recorded in mms and was later calculated as a 

percentage of the total margin length (Figure 2). 

2. Figure: Pictures of sectioned specimens (Groups 4 and 5) showing microgaps at resin composite-root canal 
interface. 

 

The microhardness of the luting composite and the SFRC inside the canal was measured using a Struers 

Duramin hardness microscope (Struers, Copenhagen, Denmark) with a 40 objective lens and a load of 

1.96 N applied for 10 s. 

For the posterior study, 240 mandibular third molars were selected that were extracted for 

periodontal or orthodontic reasons. The freshly extracted teeth were immediately placed in 5.25% 

NaOCl for 5 minutes and then stored in 0.9% saline solution at room temperature until use, all within 2 

months of extraction. The inclusion criteria were the same as in the anterior study.  

The teeth were randomly distributed over 12 study groups (n=20). One group was left intact to later 

serve as control (Group 12). The rest of the teeth received a standardized MOD cavity preparation with 

the remaining walls being 2.5 mms thick and the depth of the cavity being 5 mms deep, prepared by the 

same trained operator as described by Forster et al. The cavities were restored as follows (Figure 3): 
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Group 1: The cavities were restored with a microhybrid composite restorative material  

(G-aenial Posterior PJ-E, GC Europe), applied with an oblique incremental technique, placed in 

consecutive 2 mm thick increments. 

Group 2: The cavities were restored with an SFRC material (everX Posterior) applied in a bulk-fill 

technique. 

3. Figure: Schematic figure representing the molar test groups (Group 1-12). 

 

Group 3: A piece of 3 mm wide pre-impregnated glass fiber net (everStickNET, GC Europe) with a 

size approx. the same as the remaining cavity was cut and placed on “the bottom” of the cavity in a 

bucco-lingual direction. The net was placed in a way that it would not reach the margins of the cavity, 

leaving 1.5-2 mm space for the future occlusal composite layer.  

After curing for 40 s, the cavity was restored with SFRC and a final layer of occlusal composite as 

described in Group 2. 

Group 4: First, the cavities were restored with SFRC as described in Group 2. When there was only 

approx. 1.5-2 mm space remaining occlusally in the cavity, a piece of 3 mm wide pre-impregnated glass 

fiber net (everStickNET) was placed on the cavity walls in a bucco-lingual direction. The net was placed 

so that it would not reach the margins of the cavity. After curing for 40 s, the cavity was restored with 

a final layer of occlusal composite as in Group 2. 

Group 5: The cavities were restored with SFRC and a final layer of occlusal composite as in Group 2. 

After finishing the restoration, a 4 mm wide and 1.5 mm deep groove was prepared on the occlusal 

surface of the restoration between the cusp tips, from a buccal to lingual direction, with a high-speed 

bur under water cooling. Both end of each groove was on the coronal one-third of the buccal and lingual 

walls of the teeth. After selective enamel etching in the mentioned area, the groove was rinsed, dried 

and adhesively treated. A piece of pre-impregnated glass fiber net, matching the size of the prepared 
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groove, was cut and placed into the groove. After curing for 40 s, the cavity was restored with a final 

layer of occlusal composite as in Group 2. 

Group 6: 1 piece of 3 mm wide pre-impregnated glass fiber net was placed in the cavity, applied 

circumferentially to the walls. The net was placed so that it would cover the axial walls but not reach 

the margins of the cavity. After curing for 40 s, the cavity was restored with SFRC and a final layer of 

occlusal composite as in Group 2. 

Group 7: 1 piece of 3 mm wide LWUHMW polyethylene ribbon fiber (Ribbond-Ultra THM; Ribbond 

Inc., Seattle WA, USA) was placed into the cavity covering the cavity walls in a bucco-lingual direction 

forming a fiber layer with Ribbond just as in Group 3, only there with the glass fiber net. In all groups 

where polyethylene fibers were used, the fibers were first saturated with adhesive resin (StickRESIN, 

GC Europe), the excess resin was removed with a hand instrument and then placed into the bed of un-

cured flowable composite (G-aenial Universal Flo, GC Europe). The fiber was placed in so that it would 

not reach the margins of the cavity. After curing for 40 s, the cavity was restored with microhybrid 

composite as in Group 1. 

Group 8: The cavities were restored with a microhybrid composite applied in an oblique incremental 

technique. The material was placed in consecutive 2 mm thick increments. When there was only approx. 

1.5-2 mm space remaining of the cavity occlusally, 1 piece of 3 mm wide LWUHMW polyethylene 

ribbon fiber (Ribbond-Ultra THM) was cut and placed in the remaining cavity in a bucco-lingual 

direction, forming a fiber layer with Ribbond just as in Group 4 with the glass fiber net. After handling 

of the fibers and curing for 40s, the cavity was restored with a final layer of occlusal composite as in 

Group 1. 

Group 9: the cavity was restored with microhybrid composite as in Group 1. After finishing the 

restoration, a 4 mm wide and 1 mm deep groove was prepared on the occlusal surface of the restoration 

between the cusp tips, from a buccal to lingual direction, with a high-speed bur under water cooling. 

The end of each groove was on the coronal one-third of the buccal and lingual walls of the teeth. After 

adequate adhesive treatment a piece of LWUHMW polyethylene ribbon fiber (Ribbond-Ultra THM) 

was placed into the groove. After handling of the fibers and curing for 40 s, the cavity was restored with 

a final layer of occlusal composite. 

Group 10: A piece of LWUHMW polyethylene ribbon fiber was cut and placed on the cavity walls 

circumferentially. The fiber was handled and adapted into flowable composite as in Group 7. After 

curing for 40 s, the cavity was restored with microhybrid composite as in Group 1. 

Group 11: 1 piece of 1 mm wide LWUHMW polyethylene ribbon ((Ribbond Ultra Orthodontic; 

Ribbond Inc., Seattle WA, USA) was placed through the previously performed holes on the buccal 



 - 9 - 

and lingual walls. This ribbon was placed into the prepared grooves on the external coronal surfaces, 

connecting the opposing walls like a tightrope. First the polyethylene fibers were fixed in one groove, 

light cured and covered with composite, and subsequently the rest of the fibers on the opposing side 

were tightly positioned with a tweezer and fixed to the opposing groove by light curing and composite 

coverage. This produced a “transcoronal splinting” inside the cavity. After curing for 40s, the cavity 

was restored with microhybrid composite as in Group 1. 

The restored specimens were stored in physiological saline solution and subsequently embedded as 

described previously in the anterior study. Immediately after embedding, all specimens were subjected 

to a fracture resistance test. Teeth were quasi-statically loaded with a crosshead speed of 2 mm/minute, 

parallel to the long axis of the tooth in a universal testing machine, until they fractured. A force vs. 

distance curve was dynamically plotted for each tooth. In each case the specific failure load was 

determined when the force versus distance curve showed an abrupt change in load, indicating a sudden 

decrease in the specimen’s resistance to compressive loading (Figure 4) 

4. Figure: Force versus distance curves of specimens representing each study groups. Peaks indicate the amount 
of maximal failure load. 

 

After recording failure load, each specimen was visually examined for the type and location of failure 

(restorable or non-restorable fracture), as described above in the anterior study. 

Statistical analysis was conducted in SPSS 23.0 (SPSS Inc., Chicago, IL).  

In the anterior study the number of survived cycles was analyzed descriptively for each group and with 

the Kaplan-Meier method across the groups (with the Breslow test for the pairwise analyses). The 

frequency of restorable and non-restorable fractures was calculated for each group. 

In the molar study for the comparisons between the groups, ANOVA with Tukey's HSD post-hoc test 

was used. 

The general limit of significance was set at α=0.05 on both studies. 
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Results 

The Kaplan–Meier survival curves of the anterior samples are displayed in Figure 5. Table 1 

shows the p values for group-wise comparisons. In the anterior study the survival rate of Group 2 did 

not differ significantly from the intact teeth (control group). The rest of the anterior groups had 

significantly lower survival rates compared to the anterior control group. All restored anterior groups 

showed exclusively irreparable fractures, whereas the control group had some that were reparable, but 

most fractures were irreparable in this group as well (Table 2).  

5. Figure: Fatigue resistance survival curves (Kaplan–Meier survival estimator) for all six groups. 

 

1. Table: p values of pairwise log-rank post hoc comparisons (Kaplan–Meier survival estimator followed by log-
rank test for cycles until failure or the end of the fatigue loading among all 6 groups) 

GROUPS 
Control Group 1 Group 2 Group 3 Group 4 Group 5 

Chi 
square Sig. Chi 

square Sig. Chi 
square Sig. Chi 

square Sig. Chi 
square Sig. Chi 

square Sig. 

Control 
(intact 
teeth) 

- - 5.551 0.018 1.722 0.189 6.208 0.013 13.801 0.000 7.083 0.008 

Group 1 5.551 0.018 - - 0.793 0.373 0.000 1.000 1.434 0.231 0.143 0.705 

Group 2 1.722 0.189 0.793 0.373 - - 0.355 0.551 3.401 0.065 1.003 0.316 

Group 3 6.208 0.013 0.000 1.000 0.355 0.551 - - 3.467 0.063 0.254 0.614 

Group 4 13.801 0.000 1.434 0.231 3.401 0.065 3.467 0.065 - - 1.027 0.311 

Group 5 7.083 0.008 0.143 0.705 1.003 0.316 0.254 0.614 1.027 0.311 - - 



 - 11 - 

 

2. Table: The distribution of fracture pattern among the study groups (n = 25) 

FRACTURE 

PATTER 
Group 1 Group 2 Group 3 Group 4 Group 5 Intact teeth 

Restorable 0 0 0 0 0 2 

Non-restorable 18 15 22 22 20 11 

Fractured teeth 18 15 22 22 20 13 

Non-fractured teeth 7 10 3 3 5 12 

 

The mean values and standard deviations of microgap percentages at the post/core-root canal interface 

of the five restored anterior groups are presented in Figure 6. According to our findings, the Bioblock 

technique (Group 1) had low percentage of microgaps (19.7%) compared to the other groups, whereas 

Group 4 exhibited a remarkably high number of microgaps (38.3%) at the examined interphase in the 

root canal. 

6. Figure: Mean percentage of microgaps observed in the anterior restored groups  

 

The surface microhardness (Vickers hardness) of the luting composite and SFRCs decreased gradually 

within a limited range with increasing depth (Figure 7). The data showed no difference in Vickers 

hardness values between the tested dual-core luting composite and SFRCs at the top and middle parts 

of the canal. However, at the apical part, packable SFRC (Group 1) presented the most drastic decrease 

along with Vickers hardness values. 
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7. Figure: Microhardness (Vickers hardness) mean values for resin composites at the top (coronal), middle and 
bottom (apical) part of the root canal. The arrow above Group 1’s third/bottom column indicates that the Vickers 
hardness of this group dropped below 80% of the coronal part’s value. Vertical lines represent standard deviation 
(SD) 

 

Regarding the molar study, Table 3. summarizes the fracture thresholds for the different study 

groups. Teeth with transcoronal splinting (Group 11) yielded the highest fracture resistance among the 

restored molar groups, and interestingly, this was slightly even higher than that of the molar control 

group (intact teeth). Groups 1, 3 and 4 showed significantly lower fracture resistance values compared 

to intact molar teeth. The results of the post-hoc pairwise comparisons (Tukey's HSD) are given in Table 

4. In terms of fracture pattern (Table 5.), the type and position of fibers within the restoration influenced 

the ratio of favorable and unfavorable fractures. Only SFRC (Group 2) was characterized by the highest 

percentage of favorable (i.e. reparable) fractures, while composite alone (Group 1) and transcoronal 

splinting (Group 11) yielded the lowest ratio.  

3. Table: Descriptive statistics of the results by group. Group 1: composite; Group 2: SFRC; Group 3: B-L net at 
the bottom; Group 4: B-L net at the top; Group 5: net occlusal splinting; Group 6: net circumferential; Group 7: 
Ribbond B-L at the bottom; Group 8 Ribbond B-L at the top; Group 9: Ribbond occlusal splinting; Group 10: 
Ribbond circumferential; Group 11: Ribbond transcoronal splinting; Group 12: control 

GROUPS n Mean (Newton) SD 

Group 1 20 1629.45 503.11 

Group 2 20 1746.25 467.50 

Group 3 20 1122.20 440.04 

Group 4 20 1408.65 314.59 

Group 5 20 1925.60 792.69 

Group 6 20 2067.30 535.80 

Group 7 20 1834.40 578.56 

Group 8 20 2022.05 771.41 

Group 9 20 2129.25 629.75 
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Group 10 20 1906.95 538.09 

Group 11 20 2484.80 682.90 

Group1 12 20 2266.30 601.14 

 
4. Table: Significance matrix from the post-hoc pairwise comparisons (Tukey’s HSD). The conventions are the 
same as in Table 1. Empty cells indicate lack of significance. 

GROUPS 
Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Group 

6 

Group 

7 

Group 

8 

Group 

9 

Group 

10 

Group 

11 

Group 

12 

Group 1 -          0.000 0.033 

Group 2  - 0.041        0.005  

Group 3  0.041 -  0.001 0.000 0.009 0.000 0.000 0.002 0.000 0.000 

Group 4    -  0.002  0.049 0.007  0.000 0.000 

Group 5   0.001  -        

Group 6   0.000 0.023  -       

Group 7   0.009    -    0.026  

Group 8   0.000 0.049    -     

Group 9   0.000 0.007     -    

Group 10   0.002       -   

Group 11 0.000 0.005 0.000 0.000   0.026    -  

Group1 12 0.033  0.000 0.000        - 

 
5. Table: Fracture pattern by groups. Number of observation and group percentages. The conventions are the 
same as in Table 1. 

 
Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Group 

6 

Group 

7 

Group 

8 

Group 

9 

Group 

10 

Group 

11 

Group 

12 

Reparable 
4 

(20%) 

16 

(80%) 

8 

(40%) 

14 

(70%) 

13 

(65%) 

14 

(70%) 

8 

(40%) 

10 

(50%) 

10 

(50%) 

12 

(60%) 

4 

(20%) 

18 

(90%) 

Irreparable 
16 

(80%) 

4 

(20%) 

12 

(60%) 

6 

(30%) 

7 

(30%) 

6 

(30%) 

12 

(60%) 

10 

(50%) 

10 

(50%) 

8 

(40%) 

16 

(80%) 

2 

(10%) 
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Discussion and Conclusions 

• The restoration of immature anterior teeth with the use of flowable SFRC as post-core material 

displayed promising performance in terms of fatigue resistance and survival. 

• Microgap formation within the root canal does not seem to show direct correlation with fatigue 

survival values in case of immature anterior teeth. 

• Surface microhardness values of the tested restorative materials decreased as the depth 

increased in the root canal. 

• The surface microhardness values of SFRC materials utilized in the Bioblock technique were 

comparable to dual dual-cure materials within the root canal. 

• Deep MOD cavities in non-root canal treated molars can be reinforced with fibers utilized in 

direct restorative techniques. 

• Regarding fracture resistance, the use of polyethylene fibers seems to always be beneficial in 

the direct composite restoration of deep MOD non-root canal treated molars, regardless of 

position within the cavity or the restoration itself. 

• Regarding fracture resistance, the efficacy of glass fiber net used together with SFRC for 

restoring non-root canal treated molars with large MOD cavities is highly dependent on the 

position of the net within the cavity or the restoration,  

• Bulk-applied SFRC (to substitute dentin and the DEJ) covered with composite can reinforce 

deep MOD cavities in non-root canal treated molars. 

• If fracture occurs within direct composite restorations used for the restoration of deep MOD 

cavities in non-root canal treated molars, it is predominantly an unfavorable (irreparable) 

fracture. 
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