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1. INTRODUCTION 

Medicines have always been high value-added products, have a high intellectual, scientific and 

technical value, and are expensive to manufacture. It is understood that the production and 

distribution of such special products are subject to strict quality assurance, thus ensuring the 

safety of medicines for users and prescribers and recommenders (doctors, pharmacists) [1].  

The production of drugs is officially regulated by law, it requires a Manufacturing Drug 

License, and these processes are controlled by the authorities. Good manufacturing practice 

(GMP) gives the minimum standard that a medicines manufacturer must meet during 

production. It has the force of law, requiring that manufacturers, processors, and packagers of 

drugs ensure that their products are effective and safe with adequate purity [2]. This protects 

the consumer from purchasing a product that is not effective or even dangerous.  

Unfortunately, it is not surprising that counterfeiters have entered the market for such high-

value-added products in the hope of making a quick profit. 

Substandard and falsified (SF) medicines pose a serious threat to global public health. 

According to the World Health Organization (WHO), it is estimated that 1 in 10 medical 

products is substandard or falsified in low- and middle-income countries where health systems 

are weak or non-existent [3]. It is threatening that over 50% of medicines purchased over the 

Internet are counterfeit in the cases when sites conceal their actual physical address [4,5].  

With the spread of the Internet, patients are increasingly self-diagnosing and medicating 

themselves. This has led to the emergence of thousands of unregulated websites that provide 

unattended access to inappropriate and SF medical products. Unregulated websites, social 

media platforms, and smartphone applications may also be direct channels for counterfeit 

medical products [6]. Globally, there are around 30,000-35000 online pharmacies. 96% of these 

operate illegally. They do not comply with regulatory and safety requirements, and they can 

even sell prescription drugs without a valid prescription. [7]. Patients around the world 

endanger their health and even their lives by unknowingly consuming SF medicines that have 

been badly stored or that have expired [8]. SF medical products can lead to a loss of confidence 

in medicines, healthcare providers, and health systems. All regions of the world are affected. 

Responsible governments prohibit SF medicine under national law but remain vulnerable to 

organized criminals doing business in countries where laws or enforcement are lax, 30% of 

countries have little or no medicine regulation according to the WHO [9]. 
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It has to be emphasized that, in addition to all kinds of protection and coding, the most important 

strategy that can be adopted for the patients’ safety is to organize communication and education 

campaigns to educate the public on the safe use of Internet pharmacies. People must be taught 

to be able to differentiate between legal and illegal medication suppliers [10].  

The European Union (EU) has a strong legal framework for medicines. At the end of the 

distribution chain, only licensed pharmacies and approved retailers are allowed to sell 

medicines, including legitimate sale via the Internet [11]. For EU Member States, since 

February 2019, it has been mandatory to satisfy the requirements of Commission Delegated 

Regulation EU 2016/161 [12] and Directive 2011/62/EU [13] of June 2011. Serialisation 

prevents SF medicinal products from entering the legal distribution chain. It involves tracing 

an each product from the manufacturer through the wholesaler and the pharmacy to the patient, 

by a two-dimensional (2D) identification that is put on each box of prescription drugs. The 2D 

code should include the product code, the batch number, the serial number, the expiry date, and 

the national identification number if required by the Member State where the product is placed 

on the market [12]. In order to combat drug counterfeiting, pharmaceutical manufacturers and 

suppliers are working on adopting a worldwide standardized identification system [14]. 

2. AIMS 

The aim of this research is to support the regulation by developing a technology for marking an 

individual traceable code directly on the surface of the medicine, besides the obligatory 

identification code that has been on each box of drugs in the EU since 2019. Anyone with a 

camera-enabled phone and a suitable application should be able to authenticate these uniquely 

marked drugs, thus helping in the fight against counterfeiters. 

The main steps in the experiments were as follows: 

- Selection of the dosage form to be coded 

- Choosing the instrument for marking 

- Selection of lasers 

- Determination of coatings required for lasering 

- Selection of tablet coating materials 

- Laser ablation with different lasers 

- Comparison of the effects of different lasers on the coated tablet sample 

(physicochemical tests, analytical evaluation) 
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3. THEORETICAL BACKGROUND 

3.1. Social and economic effects of SF medicines 

WHO adopted the name SF medicinal products for the medicines that fail to meet either national 

or international quality standards or specifications[15,16]. The failure rate of SF medical 

products is approximately 10.5% [17,18]. It means that each year 72,000-169,000 children may 

die of pneumonia, or 64,000-158,000 additional deaths of malaria could be caused according to 

the estimations of the University of Edinburgh and London School of Hygiene and Tropical 

Medicine, respectively [19]. In 2013 an estimated 91,577-154,736 under-five deaths were 

associated with the consumption of poor-quality antimalarials only in 39 sub-Saharan African 

countries, which suggests that these poor-quality medicines are important contributors to child 

mortality [20] and may help the spread of growing resistance geographically. The number of 

drugs is also growing in the global marketplace, especially sales on the Internet [21], which has 

become an accepted, and more and more popular way to purchase medications in high-income 

countries [22,23]. The culture of self-diagnosis and self-determination is on the rise. The Pew 

Research Center’s Internet & American Life Project explored in the health survey, that in the 

year 2012, 35% of U.S. adults had gone online to figure out their medical condition, and after 

that only half of them visited a medical professional. Also, within a year’s time, 72% of adult 

Internet users looked for some medical information online, and around 1/3rd engage in self-

diagnosing of their health problems [24,25]. So, the increase of illicit online pharmacies makes 

ordering drugs through the Internet, which is very dangerous, whereas legal internet pharmacies 

provide lots of advantages [26]. 

The motivation of patients to use illicit online pharmacy services can be, that it is beneficial to 

the consumers as it is convenient to order, they are available 24 hours a day, do not require in-

person interview and medical examination of the patient, and they provide privacy for those 

people who have embarrassing personal questions. Furthermore, it is globally reachable, 

doesn’t need prescription from a physician, and gives anonymity. In some instances, they even 

sale medications not yet approved for distribution in certain countries, or vaccines, essential 

medicines [22,25–30]. 

A report of EU Intellectual Property Office (EUIPO) shows that fake medicines cost the EU 

pharmaceutical sector EUR 10.2 billion (4.4% of sales) each year. This is a direct estimate of 

sales lost by legitimate manufacturers and wholesalers of medicines in the EU due to 

counterfeiting. Moreover, 37,700 jobs and EUR 1.7 billion of government revenue are lost 

annually (taxes and social contributions) [31]. 
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The links between drug counterfeiting and other forms of crime are proven both by the methods 

used and the nature of the products that are regularly seized. Traffickers have a single 

motivation: extreme profitability. To give an example: for $1,000 invested, the trafficking of 

counterfeit currency or of heroin would bring a return of $20,000, of counterfeit cigarettes 

$43,000, and in the case of SF medicines, the return would be between $200,000 and $450,000. 

SF medicine would therefore be 10 to 25 times more profitable than the trafficking of narcotics 

[32], [33]. Illegal activities increase as they can easily circumvent regulatory oversight [34], 

and globalization makes it harder to regulate the medical products that are sold in this way [35].  

Managing illicit drug trafficking and limiting access to potentially counterfeit medicines should 

be a priority for governments and drug delivery systems [36]. Recently, global pharmaceutical 

supply chains have been developing stricter regulatory requirements. The FDA’s Drug Supply 

Chain Security Act sets out the necessary steps to implement an electronic, interoperable system 

to identify and trace prescription drugs distributed in the US [37]. To prevent SF medicines 

from entering the legal supply chain, the EU adopted Directive 2011/62/EU [13,38].  

3.2. Anti-counterfeiting technologies 

To protect medical products, a large number of security technologies can be used for 

authentication. The choice of technology depends on the available financial resources, security 

level, feasibility, etc. It is recommended to use more than one technology at the same time to 

provide effective protection against counterfeiting. The technologies that can be used include, 

but are not limited to the following: printing technologies (offset lithography, flexography, 

gravure, screen printing, laser printing, pad printing, embossing and debossing, laser engraving, 

inkjet printing), security labels (adhesive, frangible, security cuts and perforation, void labels, 

holograms) and tracking technologies (serial numbers, linear bar codes, matrix codes, radio 

frequency identification (RFID)) may be used on the packaging of the medicines [39]. 

Furthermore, various methods such as unique coating colours, shapes, tooling, texture, sizes, 

physical feature, unique tablet designs, logos, texts, pearlescent film, printing etc. may be used 

for on-dose visual identification. Physical-chemical identifiers (PCIDs) include inks, pigments, 

flavours, and molecular taggants, for example, TruTag′s on-dose authentication [40], or 

Microtag [41] may be incorporated into solid oral dosage forms as in-dose features. Some 

PCIDs could require the use of instrumental detection. The ideal mark for medical applications 

is indelible, easy to read, difficult to copy or alter, contains unique serialization information, 

and does not change product functionality in any way [42].  
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Other research groups are also investigating alternative techniques for the direct marking of 

dosage forms. You et al., applied a fluorescent 3D QR code consisting of three different colour 

layers directly printed on the surface of the drug capsules. [43]. Another study reports the 

interface between 3D printing and 2D inkjet printing technologies in order to fabricate a drug-

loaded 3D printed tablet with a unique track-and-trace measure in a single step process. 2D 

codes were printed onto the surface of polymeric based printlets. [14]. In one case, CO2 laser 

engraving was used to achieve roughness over different surfaces causing a difference in the 

grey levels on translucent materials. This effect and the micro mold process was used to achieve 

micro pattern of the QR code and to obtain drug-laden biodegradable label [44]. In the literature, 

there are several studies on mobile phones as a device capturing image and processing data for 

the authentication of fake drugs [28,45–48]. 

Oral drug delivery is the most preferred and convenient route of pharmaceutical drug 

administration [49], and tablets are chosen 90% of the time of the solid dosage forms. They are 

physically and chemically stable during storage, simple-to-use, have sustainable production,  

and generally have excellent content uniformity [50].  

Film coating is used in the pharmaceutical industry for solid dosage form because of taste 

masking, visual identifying, improved product stability, controlled release of the API, etc. [51], 

[52], [53]. Unique and distinctive colored coatings can improve identification and make 

counterfeiting more difficult [54]. Coloring is not enough to distinguish each tablet from one to 

another. Further marking is necessary. 

There is a wide range of options for labelling medicines, and several aspects have to be taken 

into account when making the choice. From among many different options, printing is one of 

the most attractive methods for marking (like offset, inkjet and pad printing) as the capital 

equipment cost is relatively low [14]. However, the clear printing pattern may easily be affected 

by the environmental conditions of the process room, uniformity, temperature, and drying of 

the ink [55]. The printing process necessitates contact between the substrate and some form of 

ink carrier, toner reservoir, or stamp, so it could be a source of contamination. High printing 

speed is required for some of the fastest production lines and that can result in a loss of image 

quality and the risk of unreadable codes [39,56]. Furthermore, the ink formulation has to be 

designed with respect to its viscosity and surface tension to guarantee continuous printing and 

high reproducibility of the forming droplets [57]. Printability is also affected by the surface 

roughness of tablets, which may cause problems such as mottled appearance, blur, or dirt of the 
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inks. Also, organic solvents which are harmful to the employees’ health and the environment 

are often used for the inks [58]. 

3.3. Laser technology in anti-counterfeiting applications 

Lasers are a tool to be used every day in the laboratory or factory for a wide variety of advanced 

applications in precision manufacturing and R&D. The word laser stands for Light 

Amplification by Stimulated Emission of Radiation [59]. 

The mystical part of a laser is that it works at all. This is entirely due to the stimulated emission 

phenomenon. Through Einstein’s analysis of radiation from hot objects, he postulated that there 

must be a radiant term based on a photon of radiation striking an excited species and causing it 

to release the energy of excitation.[60].  

Spontaneous emission occurs when transition from the excited state to the lower energy level 

is not stimulated by any incident radiation but occurs more or less naturally. This happens 

because the excited atoms want to go back down to their ground state, and if left alone, it is just 

a matter of time before they do. If the atom was completely stable in its excited state, there 

would be no spontaneous emission [61]. Stimulated emission is when the atom gives up its 

excess energy, to the field, adding coherently to the intensity. A photon originates from the 

energy change between an excited state and a lower state. Many materials can be made to show 

this stimulated emission phenomenon, but only a few have significant power capability, since 

a further condition is that a population inversion is necessary, whereby there are more atoms or 

molecules in the excited state than in the lower-energy state, so as to allow amplification as 

opposed to absorption. To achieve this, the lifetime of the excited species has to be longer than 

that of the lower-energy state. [60].  

A laser consists of three important components: the laser medium (it can be solid, liquid, gas or 

plasma, e.g. CO₂ or crystals), whose atoms are put into an energetically more favorable state by 

the pump, the second important component of a laser (flash lamps, electron beam). The third 

component of every laser is the resonator, which ultimately ensures that the high-energy 

photons generated in the laser medium leave the material, which is the actual laser beam. 

With the laser, the applied energy can be placed precisely on the surface only where it is needed. 

Thus, it is a unique tool for surface engineering. Short pulses from a Nd:YAG laser, excimer or 

a transversely excited atmospheric pressure (TEA) laser can make a mark by removing a layer, 

modifying the surface morphology, causing a local reaction. The mark thus made is then shaped 

into a pattern by direct writing, projecting through a mask or scan-writing a dot matrix. 
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Laser ablation overcomes the drawbacks of ink printing technologies. The laser coding 

technology is a non-contact, chemically clean method that avoids the problems of 

contamination and eliminates the cost of consumables. [60,61].  

When marking individual tablets by laser, the following cases should be considered: if the 

tablets do not have a coating, at least one colored layer should be applied to the drug so that the 

laser coding process can be performed on the surface. In cases when tablets have a colored 

coating (for example, for improved swallowability or identification purposes), that layer could 

be marked. When a functional coating is needed because of the therapy, an extra coating is 

required on top of it to enable marking without the loss of coating functionality.  

This coding process could have benefits for tracking drugs across the distribution chain and for 

adding information for personalized medicines, too with codes tailored for each patient on each 

tablet.This information is increasingly necessary, when dose flexibility is needed for specific 

patient groups depending on age, gender, weight and genetic background [45,62]. 

4. MATERIALS 

4.1. Tablet core materials 

4.1.1. In preformulation 

Tablet samples for laser marking preformulation were original tablets from the legal supply 

chain: Sinecod (GSK), Telfast (Sanofi), Klacid (Abbott), furthermore Eudraguard® control 

(EudrC) and HPMC coated placebo tablets. 

4.1.2. During selection of the lasers 

In the further research to select the lasers, EudrC and HPMC coated round placebo tablets were 

used, with no break line (diameter: 7 mm, crown height: 4 mm).  

4.1.3. During QR code ablation 

QR codes were ablated on the model tablets with active ingredient Ibuprofen DC 85 (Ibu), 

BASF, Germany): 16.66% (w/w), and excipients were: talc 3% (w/w), crospovidone (Kollidon 

CL-M, BASF, Germany) 5% (w/w), magnesium stearate 1% (w/w), microcrystalline cellulose 

(Vivapur 102, JRS Pharma, Germany) 74.33% (w/w), used as received. 

Placebo tablets were also used for coating to save time and material. Placebo tablets were round 

with biconvex surface and had no break line on it (diameter: 10 mm, crown height: 4.2 mm, 

average weight: 350 mg). 

The shape of the tablets was: Nr. 1 type: round with flat surface and no break line on it 

(diameter: 12 mm, crown height: 4.1 mm, average weight: 600 mg). Nr. 2 type: round with flat 
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surface and no break line on it (diameter: 10 mm, crown height: 3.1 mm, average weight: 300 

mg). Nr. 3 type: round with flat surface and no break line on it (diameter: 10 mm, crown height: 

4.8 mm, average weight: 500 mg). 

4.2. Coating materials 

In the experiment to select the lasers, an aqueous-based enteric coating solution was prepared. 

It consisted of 52% w/w dry substance of a neutral copolymer based on ethyl acrylate and 

methyl methacrylate with a ratio of 2:1 (EudrC dispersion 30% w/w (Evonik Nutrition & Care 

GmbH, Germany)), 16% w/w talc, 28% w/w alginic acid sodium salt, 4% w/w glycerol, and 

distilled water. Coatings were colored with 1% w/w patent blau 85 (blue), 3% w/w gelborange 

(orange), 1.5% w/w azorubin (cherry) or 1.5% w/w iron oxide red (red).  

To test free films, aqueous HPMC coating solutions were used and applied to plastic balls. They 

consisted of 15%w/w dry substance in the case of SEPIFILM™ NATurally COLoured coatings 

agents, and 20%w/w dry substance in the case of Sepifilm™ PW coating systems. According 

to the supplier′s recommendation, they were prepared by dispersing them in distilled water. The 

total mixing time lasted for 45 min, followed by passing the dispersion through a 0.5 mm sieve. 

For the comparison of lasering conventionally colored coatings with naturally colored coatings, 

HPMC-based ready-to-use coating formulas were used: Sepifilm PW Red (SPW-R), Sepifilm 

PW Green (SPW-G), Sepifilm PW White (SPW-W) and naturally coloured Sepifilm NAT Pink 

(SNC-P) and Sepifilm NAT Green (SNC-G, Seppic S.A., Paris La Defense, France). They were 

dispersed in distilled water. 

For the QR code ablation, an API containing tablet with two coatings was used: the first, 

(functional) film-forming agent was the aqueous-based enteric coating dispersion: an anionic 

polymethacrylate, Eudragit L30 D55®, (E- L30 D55, Evonik Nutrition & Care GmbH). The 

polymer dispersion was diluted with distilled water to a 56 % w/w polymer content and 

plasticizer/anti-tacking agent PlasAcryl® HTP 20 was added to a 14 % w/w content, based on 

the polymer, 1 h before coating. The second film-forming substance was a HPMC-based 

coating formula, SPW-R. 

The aqueous HPMC coating solutions consisted of 20% w/w dry substance in the case of the 

SPW-R coating system. According to the supplier′s recommendation, they were dispersed in 

purified water. The total mixing time took 45 min, followed by sieving the dispersion through 

a 0.5 mm sieve. 
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5. METHODS 

5.1. Preparation of API content tablets 

For the Ibu containing tablet (see the composition in Chapter 3.1.3), the pressing procedure was 

the following: the ingredients of the tablet were homogenized with a Turbula mixer (Willy A. 

Bachofen Maschienenfabrik, Switzerland) for 8 minutes, and for 2 minutes after the addition 

of the lubricant. The homogenous powder mixture was compressed with a Korsch EK0 (E. 

Korsch Maschienenfabrik, Germany) single punch eccentric tablet press. 

5.2. Tablet coating procedure 

The spray coating process was performed using a 4M8 Pancoat (Pro-C-epT, Belgium) 

perforated coating pan. 

5.2.1. Coating with EudrC dispersion 

The spray coating process was performed on a batch of 500 g tablets. The process was divided 

into three stages. The coating parameters are shown in Table 1. 

Table 1. Coating parameters of placebo tablets with EudrC. 

Step Inlet air 

temp. (°C) 

Exhaust air 

temp. (°C) 

Tablet bed 

temp. (°C) 

Drum speed 

(rpm) 

Air flow 

rate 

(m3/min) 

Warm-up 50  until 30 5 0.50 

Coating 49±2 32±2 30±2 18 0.50 

Drying & cooling 40 27 25 5 0.50 

For the application of the atomized spray coating solution, 0.8 mm spray nozzle was used for 

140 min, with an atomizing air pressure of 1.5 bars and an air flow rate of 0.50 m3/min. The 

drying and cooling processes together lasted for 30 min.  

5.2.2. Preparation of free films  

Experiments were carried out on free films that were sprayed on the surface of 2.5 cm in 

diameter polyethylene balls (Primary Balls Kft., Hungary). After drying the film was removed. 

The coating parameters are shown in Table 2.  

Table 2. Coating parameters of balls with Sepifilm. 

Step Inlet air temperature 

(°C) 

Exhaust air 

Temperature (°C) 

Ball temperature 

(°C) 

Drum speed 

(rpm) 

Warm-up 60 N/A Until 50 3 

Coating 50-55 40-42 45 9 

Drying 40 30 27 3 

Cooling 25 25 25 3 
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A 0.8 mm spray nozzle was used for 55 min, with an atomizing air pressure of 2.0 bars and an 

air flow rate of 0.70 m3/min. The drying and cooling process lasted for 15 min each. 

5.2.3. Coating procedure of tablets with API content 

330 g of placebo tablets and 70 g of Ibu containing tablets were coated together at the same 

time in order to save material and time. During spray coating, 2 layers of coating were put on 

the tablets. The first layer was E-L30 D55. A 0.8 mm spray nozzle was used for the application 

of the atomized spray coating solution for 75 min, with an atomizing air pressure of 1.0 bar, a 

spray rate of 3 g/min and an air flow rate of 0.70 m3/min. The drying and cooling process lasted 

for 15 min. The other coating parameters are shown in Table 3. 

Table 3. Coating parameters of E-L30 D55. 

Step Inlet air temperature 

(°C) 

Exhaust air 

Temperature (°C) 

Tablet 

temperature (°C) 

Drum speed 

(rpm) 

Warm-up 60  Until 50 3 

Coating 45-55 40-45 30-35 15 

Drying 50 38-40 35-37 3 

Cooling 25 25 25 3 

The second layer was the HPMC-based ready-to-use coating formula. A 0.8 mm spray nozzle 

was used for the application of the atomized spray coating solution for 45 min in the case of 

Sepifilm PW coating, with an atomizing air pressure of 2.0 bars, a spray rate of 2 g/min and an 

air flow rate of 0.70 m3/min. The drying and cooling process lasted for 15 min. The other 

coating parameters for the second layer are shown in Table 4. 

Table 4. Coating parameters of Sepifilm films. 

Step Inlet air temperature 

(°C) 

Exhaust air 

Temperature (°C) 

Tablet 

temperature (°C) 

Drum speed 

(rpm) 

Warm-up 60  Until 50 3 

Coating 55 40-42 35 9 

Drying 40 30 27 3 

Cooling 25 25 25 3 

5.3. Measurement of final coating thickness  

It was determined by light microscopy using a LEICA Image Processing and Analysis System 

(LEICA Q500MC, LEICA Cambridge Ltd., United Kingdom). 

In the case of EudrC coating, after calibration, 4–4 halved tablets of different colors were 

examined, each at 10 places and averaged.  
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In the case of the API containing tablets, which had two coatings, after calibration, 4–4 tablets 

were examined, which were cut in half along the middle of the tablet band, and each was 

measured at 10 places and averaged. 

5.4. Irradiation by laser 

5 different types of lasers were used for the irradiation of the films and the tablets. 

5.4.1. Neodymium-doped Yttrium Aluminum (Nd:YAG) laser  

The laser that was first tested is the pulsed Nd:YAG laser, which is shown in Fig. 1A, 

wavelength: 1064 nm, power: 1–2.6 W, frequency: 1 kHz. 

5.4.2. Semiconductor laser (SC laser) 

Secondly, the continuous wave SC laser was used, wavelength: 405 nm, spot size: 73 μm, 

power: 1000 mW, irradiation time: 15–20 ms, which is shown in Fig. 1B. 

5.4.3. ArF 193nm, UV excimer laser (ArF laser) 

The next laser was the pulsed LLG TWINAMP type ArF laser, which is shown in Fig. 1C. 

Parameters of the laser: wavelength: 193 nm, energy: 3±0.2 mJ, fluence: 444 mJ/cm2, FWHM: 

20 ns, spot size: 375 μm, using a simple square-shaped mask, which has resulted in a 1 mm2 

square-shaped ablation hole, to study the effect of the laser on the coating film.  

5.4.4. KrF 248 nm, UV excimer laser (KrF laser) 

KrF laser, which is shown in Fig. 1D, was used for the next UV-regime ablation, a twin-tube 

hybrid dye-excimer laser-system [63,64]. The current laser-setup produced 60 mJ laser pulses 

with a pulse length of 700 fs. The central part of unfocused 4 cm x 4 cm pulses was cut out by 

an aperture with a diameter of 2 cm. Parameters of irradiation using KrF laser: wavelength: 248 

nm, energy: 0.5 mJ, number of impulses: 10, spot size: 100 μm, FWHM: 700 fs, fluence: 6.37 

J/cm2. 

5.4.5. Titan-Sapphire Femtosecond Laser (femto laser) 

The femto laser (Fig. 1E) operates in the TeWaTi laser lab at the University of Szeged [65] and 

provided amplified pulses with a repetition rate of 200 Hz and maximum pulse energy of 1 mJ.  
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Fig. 1. Lasers used in the study. A: Nd:YAG laser, B: SC laser, C: ArF laser, D: KrF laser, E: femto laser. 

An achromatic lens with a focal length of 150 mm focused the beam onto the target placed into 

the focal plane, allowing a beam imaging of f/19 (F-number) and processing of the target 

surface with 135 fs pulses. Irradiation of tablets using femto laser: wavelength: 800 nm, energy: 

0.62 mJ, number of impulses: 20, spot size: 110 μm, FWHM: 135 fs, repetition rate: 200Hz, 

fluence: 6.52 J/cm2.The experimental setup for the laser processing is outlined in Fig. 2.  

 

Fig. 2. Experimental setup for laser processing. The tablet position was adjusted with a motorized XY 

translator during the QR code engraving. The Z direction translator stage was used to set the focus 

plane precisely at the surface of the tablet. 

A computer-controlled movable desktop, a motorized translator was created for the tablet to be 

able to change its position during lasering, in the case of the SC laser, KrF laser, and femto 

laser. The QR code was ablated hole by hole. 
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5.5. Digital microscope 

The surface morphology of the ablated film was observed by using a Digital Microscope 

(KEYENCE, VHX-6000). This instrument is equipped with a newly developed REMAX VI 

High-Performance Graphics Engine and D.F.D. 2.0 image processing engine. This enables the 

creation of a precise 3D image by analyzing small changes in texture after capturing numerous 

images at different heights and different angle positions, HDR and image-stitching. Through 

line roughness and surface roughness measurements, reliable evaluation of surfaces can be 

performed and converted to a figure. Data were evaluated by HDR playback / measurement / 

stitched image playback software developed by KEYENCE. 

5.6. Surface profilometer 

Profilometry measurements were performed using a Veeco, Dektak 8 Advanced Development 

Profiler®. The tips employed had a radius of curvature ~2.5 μm, and the force applied to the 

surface during scanning was ~30 μN. The horizontal resolution was 0.1–0.13 μm. The vertical 

resolution was 40 Å. Data were evaluated by Dektak software (Microsoft® Windows XP®: 

interactive data acquisition) and Vision® 32 software (data processing, 2-D and 3-D image 

analysis) (Veeco Instruments Inc., NY, USA). 

5.7. Determination of the ablation threshold 

The ablation threshold indicates the minimal laser energy required to remove the material from 

the substrate (i.e., tablet surface). The threshold value is a fundamental parameter for laser fine-

tuning. In most of the cases, the laser operates close to the threshold but slightly higher to be 

effective, and to avoid unwanted side effects, such as the thermal distortion of the material. The 

final etching depth is controlled by the number of laser impulses and not by fluence [66]. 

The characteristics of the ablation holes were examined with a surface profilometer. The laser 

parameters required for ablation were determined from the data obtained using a profilometer. 

The calculation method of the ablation threshold value for each laser that is required to generate 

QR codes is described below at the particular instruments. 

5.8. Scanning electron microscope (SEM) 

The ablated tablets were observed by using S4700 SEM (Hitachi, Japan). The tablets were 

mounted rigidly on a specimen holder with a double-sided carbon adhesive tape and a 

conductive ultrathin golden layer was deployed on them with a sputter device (Polaron, UK). 

The measurements were performed at a magnification of 30–5000, applying 10.0 kV electron 

energy and 1.3–13 MPa air pressure. 
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5.9. Raman spectroscopy 

Raman spectroscopy was used for the examination of the samples treated by lasers. Spectra 

were acquired with a Thermo Fisher DXR Dispersive Raman spectrometer (Thermo Fisher 

Scientific Inc., MA, USA), a diode laser operating at a wavelength of 780 nm and equipped 

with a CCD camera. Raman measurements were carried out with a laser power of 4 mW (Ibu), 

6 mW (EudrC), 12 mW (E-L30 D55, SNC-P, SPW-R, SPW-W, SPW-G) and 24 mW (SNC-G) 

at a slit aperture size of 25 µm. OMNIC 8 software was used for data collection, with cosmic 

ray and fluorescence corrections. 

The spectra of the individual substances of EudrC film were collected using an exposure time 

of 6 s, a total of 48 scans in the spectral range of 1700-200 cm−1. The individual films Sepifilm 

and Sepifilm films treated by lasers spectra were collected using an exposure time of 6 sec. The 

data were collected in the spectral range of 3407-24 cm−1. The API containing tablets treated 

by lasers spectra were collected using an exposure time of 6 sec, and 10 spectra were averaged 

in the spectral range of 3200-200 cm-1. 

Raman chemical mapping was also performed with the same equipment to confirm the chemical 

degradation of the EudrC film. It was profiled to the special changed area of the spectra which 

was treated by SC laser (1800 cm−1-500 cm−1). Then the chemical map was profiled to the 

untreated Raman spectra of the film coating.  

For the API containing tablets, spectral data were collected on the surface of the lasered tablet, 

and on the fracture surface of the halved tablet, including the treated and intact region, too. The 

spectra were determined at certain points in a defined area, while the sample had a translational 

motion between each discrete measurement. The point scan system measures each spectrum 

individually at a series of predefined points. The chemical map was profiled to the spectra of 

E-L30 D55 and to the spectra of SPW-R. In the case of Ibu, profiling was done to the peak 1604 

cm−1 because it was found to be the most typical for the API, and it was the most separated 

from the spectra of the other investigated components. 

Furthermore, sample analyses were performed on the cross-section surface of KrF laser and 

femto laser treated tablets (in 10 points directly below the lasered coated surface and in 10 

points in the core of the lasered tablets). The mean of these 10 spectra was compared with the 

mean of the 10 spectra taken from the core of the untreated tablet and the spectrum of Ibu. 

These averaged spectra were normalized to peak 1604 cm−1 of the Ibu spectrum. 

Data were evaluated by Spectragryph - optical spectroscopy software [67]. 
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5.10. Thermal gravimetric analysis (TGA) 

The TGA of the samples was carried out with a Mettler-Toledo TGA/DSC1 instrument 

(Mettler-Toledo GmbH, Switzerland). The start temperature was 25 °C, the end temperature 

was 500 °C, the applied heating rate was 10 °C/minute. Nitrogen atmosphere was used (Cell 

gas: 50 ml/min, method gas: 70 ml/min). 5 ± 1 mg samples were measured into aluminum pans 

(40 μl). The TG curves were evaluated with Mettler-Toledo STARe Software. 

5.11. Mass spectrometry (MS) 

The gas analysis of the tablet coating material was carried out with the Thermo Star (Pfeiffer 

Vacuum, model ThermostarTM GSD 320, Germany) quadrupole mass spectrometer (maximum 

300 amu) for gas analysis, which was coupled to the TG instrument. The measurements were 

carried out in a flow of nitrogen atmosphere. The connection between the TG and the mass 

spectrometer was made by means of a heated silica capillary, which was maintained at 120 °C. 

Ions with various mass numbers were determined with the SEM MID measurement module of 

the Quadera software. Continuous recordings of sample temperature and sample mass were 

performed. The obtained results were exported and then plotted in one coordinate system with 

the TG curves using the Mettler-Toledo STARe software. 

5.12. In vitro drug disintegration 

In the disintegration studies, the tablets were tested according to the standard method of the 

European Pharmacopoeia with an Erweka model ZT71 apparatus (Erweka, Germany). First, 

900 ml of artificial enzyme-free gastric juice (pH = 1.22) was preheated and maintained at a 

temperature of 37 ± 0.5 °C. According to the guideline, enteric coating should be intact for 2 

hours in acidic media. After 2 hours, the medium was changed to a phosphate buffered saline 

solution (pH = 6.82). The time necessary for each tablet to disintegrate in acidic and intestinal 

solution was recorded automatically by the apparatus. 

5.13. In vitro drug dissolution 

In the present study, the investigation of drug release kinetics from marked tablets was carried 

out with an Erweka DT 700 (Erweka GmbH, Germany) dissolution tester according to the 

standards of the European Pharmacopoeia. A rotating basket method was used for the 

dissolution tests, where the rotation speed was 100 rpm, the dissolution medium was 900 ml of 

artificial enzyme-free gastric juice (pH = 1.22) for 2 hours, and then it was replaced with 900 

ml of phosphate buffered saline solution (pH = 6.82) for 1 hour. The pH value was checked 

with a pH meter. The temperature was maintained at 37± 0.5 °C. As a sample, 5 ml of the 
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dissolution medium was taken manually at predetermined intervals without being replaced. 

Medium loss was not taken into account during the calculations. Samples were filtered through 

a 10 μm Poroplast filter (Erweka, Germany). The absorbance of ibuprofen DC85 was analyzed 

at 222 nm, using a spectrophotometer (Genesys 10S UV-VIS, Thermo Fisher Scientific Inc., 

MA, USA). Four tablets were tested, and samples were taken at the following time intervals: at 

120 min in the case of gastric juice, and after changing to intestinal fluid at 5, 10, 15, 30, 45 

and 60 min. 

6. RESULTS AND DISCUSSION 

In this experiment, the final plan is to put two coatings on the tablet surface in different colors, 

a functional one and a second one for marking. After the laser ablation of the upper film layer, 

the differently colored code could be read even by the patient using a mobile phone with the 

appropriate application. When selecting lasers, the aim was to compare as many different types 

of instruments as possible to give a broad overview of the effects of different lasers on drugs. 

In the following, I would like to present the experiments and tests performed with different 

lasers. 

6.1. Nd:YAG laser 

The preformulation study began using an inexpensive, more widely used pulsed Nd:YAG laser 

on original tablets. It was found that the intervention burned the tablet's coating during testing, 

so the device was not part of our further research. The result of the treatment is presented in 

Fig. 3. The phenomenon can be explained by the fact that due to its longer wavelength (1064 

nm), it has a higher heat effect, which can lead to thermal decomposition. 

 

Fig. 3. Coated tablet treated by Nd:YAG laser. 
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6.2. Semiconductor laser 

A SC laser was chosen next. The continuous mode laser ablates with a photothermal effect and 

has the advantages of being compact, efficient, with a quick modulation response and reliability. 

It is relatively small in size, and it is easy to fabricate by mass production, thus it has a low cost. 

In addition, it operates at different wavelengths. 

With this instrument, a 2D QR code could be marked on the tablets. In this case, a full QR code 

was generated using online ZXing (“Zebra Crossing”) code generator software, an open-source, 

multi-format 1D/2D barcode image processing and a code generator library implemented in 

Java. The standard QR code was generated (ISO/IEC 18004:2015) with 8 numerical characters 

using a resolution of 300 dpi and the lowest error correction (Level L). To read the QR code, 

the same software application was used by a mobile phone. The 3D geometric correction has 

not yet been applied to the 2D images, since it was projected to the tablet, which has negligible 

curvature compared to the real tablet surface. The effect of a SC laser on the quality of the 

coating films was also tested. 

6.2.1. Semiconductor laser treated EudrC coating 

The photograph of the SC laser treated tablet is shown in Fig. 4A. This indicates that the laser 

beam blackened the coating. Factors that change the color of the coating with SC laser 

irradiation needed to be clarified. In Fig. 4B the microscopic image also shows signs of black 

burns.  

 

Fig. 4. SC laser treated EudrC coated tablet. A: Photograph, B: microscopic picture, C: SEM micrograph 

(magnification of 200×). 

6.2.1.1. Investigations of the lasered coating 

6.2.1.1.1. Scanning electron microscopy 

The SEM micrograph (Fig. 4C) shows the SC laser caused considerable damage in the coating 

structure during the treatment. Holes are seen in every 200 μm on the film, surrounded by a 

wide range of burn traces. There are blistering, snowflake like crystals around the holes, 



18 

 

probably due to melting and recrystallization. It is unclear whether these are the results of a 

consequential loss of water or the melting of the coating material.  

6.2.1.1.2. Coating film thickness 

The final coating thickness averages measured on 4 different tablets are: yellow: 60.79 ± 9.11 

μm, blue: 59.31 ± 11.82 μm, cherry: 49.19 ± 10.18 μm and red: 88.02 ± 18.98 μm. 

In the following, the chemical structure degradation described above was analyzed by Raman 

and TG-MS analytical tests. 

6.2.1.1.3. Raman investigations 

Raman spectroscopy is becoming one of the most widely used and applicative approaches to 

analyze pharmaceutical materials. To investigate the effect of the SC laser on film coating, 

Raman spectroscopy was used. The fingerprint region of EudrC is 1800 cm−1 – 500 cm−1. In the 

summary Figure (Fig. 5), the spectra of raw dispersion, raw free film and film treated by SC 

laser are seen. The spectra of the film treated by the laser changed completely compared to the 

untreated film; it smoothed. It is assumed that this is the result of the combustion shown in the 

image above in Fig. 4. 

 

Fig. 5. Raman spectra. A: EudrC dispersion, B: free film of EudrC, C: SCr laser ablated EudrC film. 

To confirm the chemical degradation of the film polymer, Raman chemical mapping was 

performed. The area treated by SC laser which contained burst and intact film, too, was selected. 

The microscopic mosaic photograph is presented in Fig. 6A. The area framed with blue lines is 

the chemically mapped part. The spectra were determined in the blue points. Then this chemical 

map was profiled to the special changed area of the spectra treated by SC laser (1800 cm−1 – 

500 cm−1). 

The warm colors show the area which contains these spectra (Fig. 6B). Then the chemical map 

was profiled to the untreated Raman spectra of the film coating (Fig. 6C). In this picture the 

warm colors show the original (raw) intact film. This picture is the inverse of Fig. 6B. Thus, it 
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was concluded that chemical changes had been caused by the SC laser source. The warm colors 

show the area which contains these spectra (Fig. 6B). Then the chemical map was profiled to 

the untreated Raman spectra of the film coating (Fig. 6C). In this picture the warm colors show 

the original (raw) intact film. This picture is the inverse of Fig. 6B. Thus, it was concluded that 

chemical changes had been caused by the SC laser source. 

 

Fig. 6. A: Microscopic picture of blue EudrC film treated by SC laser, B: chemical map profiled to the 

special changed area of the spectra treated by SC laser, C: chemical map profiled to untreated Raman 

spectra of film coating. 

6.2.1.1.4. TGA and evolved gas analysis with MS 

TGA is a method of thermal analysis which provides curves corresponding to mass loss 

characteristics. As the measured substance degrades, basic information is given about its 

behavior during temperature rise. Data from mass reduction through this system alone do not 

allow the classification of the molecules.  

Table 5. shows TG temperature ranges, mass loss, DTG normalized integral of the examined 

materials and peak temperatures. The main characteristics of the samples derived from the TG 

curves as corresponding mass loss values were used to define the thermal behavior and 

combustion characteristics of the films. It is seen that mass loss in the coating films comes in 

three stages. The first mass loss occurred between 30 and 120 °C, the second stage between 120 

and 290 °C, and the third between 290 and 500 °C. 

In order to clarify the decomposition mechanism of the films, mass loss should be characterized 

during each decomposition process by the identified evolution of gas components. The mass 

spectra were interpreted on the basis of the degassing profiles of the molecule ions and ion 

fragments of various gases. The evolution of released gas species was followed in situ by the 
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coupled system of TG-MS instruments. The evolution curves are shown as current ion versus 

time curves. The characterization of water release by means of MS is possible with the molecule 

H2O, m/z=18 (peak at 50 °C). It can be safely concluded from (Annex 1)Fig. 32 that water is 

given out from the samples at about 50 °C, which is consistent with the mass loss observed 

from the TG curves. The dehydration of the film takes place at around this temperature.  

Table 5. Decomposition behavior of the raw EudrC film and the film treated by SC laser. 

TG-DTG data EudrC film Laser treated EudrC film 

First step   

Thermal range (°C) 30-120 30-120 

Mass loss (%) 4.31 4.12 

Normalized integral (s/°C) -0.11 -0.13 

Peak (°C) 72.83 64.65 

Second step   

Thermal range (°C) 120-290 120-290 

Mass loss (%) 15.03 18.75 

Normalized integral (s/°C) -0.57 -0.60 

Peak (°C) 232.99 230.66 

Third step   

Thermal range (°C) 290-500 290-500 

Mass loss (%) 50.59 69.96 

Normalized integral (s/°C) -2.12 -2.79 

Peak (°C) 362.78 358.40 

An important increase in the concentration of methyl methacrylate is recorded for m/z=41 and 

for m/z=69 due to the decomposition of the polymer at temperatures at around 360 °C. The 

abundance of the m/ z=41 and m/z=69 signals vs. temperature can be seen in Annex1, Fig. 32.  

The evolution of CO2 gas, m/z=44 signal, was detected in two steps at slightly higher 

temperatures around 240 °C and 365–370 °C, as it is seen in the MS curves in Annex1, Fig. 32. 

The release of ethanol, m/z=31, by means of the MS curves seen in Annex1, Fig. 32, happened 

at a temperature around 355 °C. The results of mass spectroscopy are consistent with the mass 

loss observed from the TG curves, as the decomposition of the material occurred slightly sooner 

in the film treated with SC laser in the case of m/z=44 and m/z=69, where decomposition started 

sooner as deacylation had taken place earlier during the laser treatment. 

Raman distinguished the raw film and the film treated by the SC laser. It was concluded that 

chemical changes had been caused by the SC laser source compared to the original film. The 

main finding of the TG measurement showed that the decomposition of the material occurred 

sooner in films marked by laser, in higher temperature ranges, which is probably due to the 

decomposition process that had already started during the laser marking intervention.  
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6.2.2. SC laser treated Sepifilm coating 

Since the SC laser is a cheap and easy-to-use, it was found worthwhile to test the laser on 

materials of other compositions. In view of the growing demand for natural materials and for 

titanium dioxide-free (TiO2) alternatives for consumers and manufacturers of dietary 

supplements, HPMC-based, ready-to-use coating formulas were chosen, which had been 

colored with natural colors (Sepifilm ™ Naturally Colored coatings), and for comparison, 

conventionally colored coating formulas were also examined (SPW-R, SPW-G, and SPW-W).  

The experiments were carried out on free films that were sprayed on the surface of polyethylene 

balls, and thereafter the film was removed from the ball, marked by laser and examined. The 

result of the treatment by SC laser is black burst signals (Fig. 7ABC) or fading of the color of 

coatings, which may be seen in Fig. 7D and E, respectively. Further investigations were made 

to clarify the nature of the changes on the treated surface. 

 

Fig. 7. Photographs of HPMC-based coating films treated by SC laser. A: SPW-W, B: SPW-R, C: SPW-G, 

D: SNC-P, E: SNC-G. 

6.2.2.1. Investigations of the lasered coating 

6.2.2.1.1. Microscopic analysis of the coated surface 

The microscopic images confirm what is visible to the naked eye: laser treated films changed 

color, blackened, or possibly burned. Holes are seen, especially on the SPW-W film (Fig. 8F) 

 

Fig. 8. Sepifilm coatings. First row: untreated films, second row: films treated by SC laser. 



22 

 

SC lasers ablate material with a photothermal effect. Heat flows by thermal conduction and 

material evaporates by boiling after prior melting or burning. [60,61]. 

6.2.2.1.2. Raman investigations 

The SC laser seemingly burned or faded the films. To find out what kind of chemical changes 

happened, Raman investigations were carried out in this case, too. Nevertheless, the complex 

composition of the coatings, especially the ones that contain natural colorings (e.g., extracts of 

fruits, vegetables, plants or algae), where the exact composition is not known, makes analysis 

difficult. The components and the related relevant literature for Raman spectroscopic 

examinations are listed in Table 6. The fingerprint region of Sepifilm is 1800 cm−1– 500 cm−1. 

The spectra of raw free films and films treated by the laser are summarized in Fig. 9.  

 

Fig. 9. Raman spectra of Sepifilm coatings treated with SC laser. (a): SPW-W, (b): SPW-R, (c): SPW-G, 

(d): SNC-P, (e): SNC-G (A: original, B: SC laser treated film). 

In all cases, the spectra of the films treated by the SC laser changed. Firstly, it should be 

emphasized that the polymer films containing the extract of coloring foodstuffs, SPW-G, SNC-

P and SNC-G (Table 6) exhibited severe fluorescence during the measurement (Fig. 9(c)(d)(e)). 

This effect could not be corrected by photobleaching, and it made the analysis difficult or 

impossible. In the case of SPW-G (Fig. 9(c)), fluorescence disappeared after marking it by the 

SC laser, presumably because of a change in the structure of chlorophyll, which resulted in the 

change of the color of the coating (Fig. 7E). 

In the spectra of Fig. 9(d)(e) considerable fluorescence was detectable in the region of 1700 

cm−1 to 1200 cm−1 in the case of the SC laser treated films, which is probably due to the product 

degradation that had occurred during the laser treatment. It was concluded that chemical 

changes had been caused by the SC laser source in the ablated films colored by natural and by 

conventional colorings too, just as it had happened in the previous experiment with EudrC film. 
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Table 6. Compositions and Raman spectroscopic references of conventionally (PW) and 

naturally (NAT) colored coatings. 

PW 

colored 

films 

Literature background  

Raman activity of 

components 

NAT 

colored 

films 

Literature background  

Raman activity of 

components 

HPMC [68] HPMC [68] 

PEG [68] Glycerin [68] 

Talc [69] MCC [70] 

TiO2 [58]   

Coloring 

agents 

white: -  

Coloring 

food agents 

  

red: iron oxide [71] 
pink: beetroot 

extract 
[72] 

green: chlorophyll [73] green: algae extract [74] 

6.2.2.1.3. Thermal gravimetric analysis (TGA) 

TGA measurements were performed to reveal the effect of the assumed chemical changes on 

the structure of the films. The main characteristics of the samples derived from the TG curves 

as corresponding mass loss values were used to define the thermal behavior and combustion 

characteristics of the films. To represent all different types of coatings, the unstained white 

sample and one from naturally and one from conventionally colored coating samples were 

chosen to be examined by TG (Table 7). It is seen that mass loss in SNC-P and SPW-R coating 

comes in two stages. The first mass loss occurred between 25 and 120 °C with both coatings, 

the second stage between 290 and 430 °C in the case of SNC-P film, and between 290 and 

440°C in the case of SPW-R. The mass loss of SPW-W film was observed between 25 and 500 

°C.  

The TG curves revealed that the decomposition occurred sooner in all 3 sample coatings if they 

were marked by a SC laser, as can be seen in Annex1, Fig. 33. These results correlate with the 

results of the previous research material EudrC film treated with SC laser (Annex1 Fig. 32 TG 

curves). It can be seen from the microscopic mosaic picture of the pre- and post-lasered films 

that in contrast with the untreated intact films (Fig. 8 first row), the SC laser treated films (Fig. 

Fig. 8 second row) exhibit damaged structures. It can be concluded that the weight loss seen in 

the first step of the TG curve may show the water loss of the films (Annex1, Fig. 33 (a)(c)), as 

it might escape through the holes as a result of the heat effect. The visual signs of the damage 

(Fig. 8. second row) and the corresponding TG curves of SC laser treated films, - where these 

curves reveal that decomposition occurred sooner -, all indicate that the decomposition process 

had already started during the laser marking process. Overall, the earlier the mass loss of the 

TG curves began, the more damaged the surface of SC laser-coded coatings were.  
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An important conclusion is that, despite the chemical modifications obtained, SC lasers could 

be a useful and less expensive alternative to tablet coding if a non-functional coating is marked. 

The coating has to be thick enough to avoid heat transfer to the tablet core and it has to be 

proven that no harmful by-products are formed under the influence of heat.  

Table 7. Decomposition behavior of the raw film and the film treated by SC laser. 

TG data SNC-P film Laser treated SNC-P film 

First step   

Thermal range (°C) 25-120 25-120 

Mass loss (%) 2.85 4.91 

Second step   

Thermal range (°C) 290-430 290-430 

Mass loss (%) 58.26 68.94 

 SPW-R film Laser treated SPW-R film 

First step   

Thermal range (°C) 25-120 25-120 

Mass loss (%) 1.07 1.80 

Second step   

Thermal range (°C) 290-440 290-440 

Mass loss (%) 51.88 55.12 

 SPW-W film Laser treated SPW-W film 

Thermal range (°C) 25-500 25-500 

Mass loss (%) 56.06 65.63 

In the further research, the lasers that do not produce a heat effect during ablation were tested. 

6.3. ArF 193 nm UV excimer laser 

Based on the literature data, the UV excimer laser was chosen for the next experiment as it 

works by photochemical ablation, so it has a negligible heat effect, which minimizes the 

chemical degradation of the material during the process.  

6.3.1. ArF laser treated EudrC coating 

6.3.1.1. Microscopic analysis of the laser treated surface 

The experiment started with the EudrC film, as in the previous case. A simple square-shaped 

mask was used during the treatment, which resulted in a 1 mm2 square-shaped ablation hole. 

First, the effect of laser ablation on the coating film was studied at 10, 20, 30, 40, 50, 60, 70, 

and 80 pulses. The result is shown in Fig. 10A, where the square holes are seen (the number of 

pulses increases from the bottom line left to the top line left), visibly separated from the 

environment. In Fig. 10B the square-shaped ‘print’ is seen on the surface with a microscope, 

too. 
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Fig. 10. ArF laser treated EudrC coated blue tablet. A: Photograph, square-shaped holes from bottom 

line left: 10, 20, 30, 40, from upper line right: 50, 60, 70, 80 impulses, B: microscopic picture of one 

ablated square, C: SEM micrograph of the ablated square (magnification of 500×). 

6.3.1.2. Profilometric analysis of the lasered surface 

The ablated holes of the ArF laser were studied by a surface profilometer, their extent was 

measured. On the surface of the red tablet series of the ablated holes were examined with a full 

profilometer scan (Fig. 11). The tablet coating was treated by ArF laser using 10, 20, 30, 40, 

50, 60, 70, 80, 90 impulses. The curves on the left figure show the depth of the holes made by 

different number of pulses. The ablation depths were calculated by extracting the affected 

regions from the data set, and a near linear line can be fitted to them, which is seen in the right 

figure. The aggregated data show a similar linear relation between the applied number of 

impulses and ablation depth. 

 

Fig. 11. Profilometer analysis of the series of the ablated holes on the EudrC coated red tablet surface. 

Left: the curve shows the depth of the ablated holes made by growing numbers of ArF laser pulses, 

right: the figure shows a near linear relation between the applied number of impulses and ablation 

depth. 

The influence of the colour of differently coloured coatings on ablative depth was examined. 

The results are shown in Fig. 12  for blue, cherry and orange samples. Some influence of the 
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different colors on ablation depth was found. The weighted average of ablation performance is 

0.411 ± 0.025 μm/impulse using 2.8–3.2 mJ impulses in EudrC films. 

 

Fig. 12. Comparison of the measurements of the ablated hole depth of tablets with different colours. 

6.3.1.3. Scanning electron microscope 

The pre- and post-laser structure was examined by SEM as well. In Fig. 10C, the micrograph 

of the blue EudrC film treated with ArF laser is seen. It shows the ablation square at a 

magnification of 500x. The ablated surface of the sample exhibits no large destructions, the 

structure of the film is relatively intact. The shape of the hole is a well-distinguished regular 

square, returning the shape of the mask used. It is clearly visible at the edge of the ablative pit 

that the film has a layered texture due to the drying of droplets during the coating procedure. It 

looks as if these layers came off one after another in accordance with the number of laser 

impulses used. Despite the lack of bigger destructions, there are some cracks in the affected 

area, which may be the result of loss of water caused by local temperature elevation or by a 

photocatalytic reaction. 

To determine how ablation affected the structure of the film, analytical analyses were 

performed. 

6.3.1.4. Raman investigations 

In the following, investigations were performed by Raman spectroscopy to find out if the ArF 

laser had any effect on the coating film. The spectra of the raw film dispersion, the raw free 

film and the films treated by ArF laser are summarized in Fig. 13. In the fingerprint region of 

EudrC, there was no significant difference between the spectra taken from the raw film and 

from the ArF lasered EudrC film. 
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Fig. 13. Raman spectra. A: EudrC dispersion, B: EudrC free film, C: ArF laser ablated EudrC film. 

6.3.1.5. Thermal gravimetric analysis (TGA) 

The TG and DTG curves of the raw polymer film and the film treated by ArF laser run together, 

which indicates that the material did not change during lasering, as seen in Annex1, Fig. 34. 

Table 8 shows the TG temperature ranges, mass loss, DTG normalized integral of the examined 

materials and peak temperatures. 

It is seen that mass loss in the coating films comes in three stages. The first mass loss occurred 

between 30 and 120 °C, the second stage between 120 and 290 °C, and the third between 290 

and 500 °C. Thermogravimetry showed that similar degradation occurred in the raw material 

and in films marked by ArF laser. Taking into the account the results discussed above, it can be 

concluded that no chemical changes were observed on the EudrC coating treated by ArF laser. 

 

Table 8. Decomposition behavior of the raw EudrC film and the film treated by ArF laser. 

TG-DTG data EudrC film Laser treated EudrC film 

First step   

Thermal range (°C) 30-120 30-120 

Mass loss (%) 4.31 3.90 

Normalized integral (s/°C) -0.11 -90.41e-03 

Peak (°C) 72.83 57.03 

Second step   

Thermal range (°C) 120-290 120-290 

Mass loss (%) 15.03 14.28 

Normalized integral (s/°C) -0.57 -0.59 

Peak (°C) 232.99 233.74 

Third step   

Thermal range (°C) 290-500 290-500 
Mass loss (%) 50.59 51.88 

Normalized integral (s/°C) -2.12 -2.12 

Peak (°C) 362.78 360.07 
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6.3.2. ArF excimer laser treated Sepifilm coating 

After the promising results, it was time to test the laser on other types of coatings as well. 

HPMC-based ready-to-use coating formulas were studied next, the same films that were used 

for the SC laser. After marking the polymer films, a detailed quality analysis was performed. 

 

Fig. 14. 3D digital microscope images of coating films treated by ArF laser. A: SPW-R, B: SPW-G, C:  

SNC-P and D: SNC-G. 

The square-shape mask was used, as before for the EudrC film. The ablations of the differently 

colored coatings were considerably different: in coatings SPW-R and SPW-G white and black 

particles appeared, which are seen in Fig. 14A and B. This phenomenon had been seen 

previously neither on the SC laser treated surface (Fig. 7), nor on the naturally colored SNC-P 

and SNC-G coatings (Fig. 14C and D). The difference in the composition of the coatings is 

shown in Table 6. Conventionally colored coatings, SPW-R, SPW-W and SPW-G contain TiO2 

and talc. TiO2 is a white pigment used in most conventional coatings to make films opaque or 

increase their opacity. The opacifying effect is due to its high refractive index, which results in 

the scattering of visible light, and it also has excellent heat and light stability [75]. But 

unfortunately, TiO2 makes precision laser coding more difficult as the white particles stay in 

place and they change the overall surface color, which can affect drug identification. On the 

other hand, new naturally colored film formulations do not contain the excipients in question.  

6.3.2.1. Microscopic analysis of the coated surface 

The next step in the present study had to focus on clarifying how TiO2 particles interfere with 

laser ablation. The microscopic pictures of the untreated and the ArF laser treated films is seen 

in Fig. 15. The first row shows the raw material, while the second row shows the lasered ones.  

Black and white particles (arrows point to them in Fig. 15FGH) are seen here as well in the 

square-shaped ‘print’ in conventionally coloured films. This phenomenon may be connected to 

the three existing crystal structures of TiO2, rutile, anatase, and brookite [55,75]. During the 

laser treatment of TiO2, apart from ablation, three main events are expected to occur: reduction, 

phase transition and melting.  
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Fig. 15. Microscopic pictures of Sepifilm films. First row: untreated films, second row: films treated by 

ArF laser. 

These can be qualitatively graded according to the respective characteristic temperatures of 

500°C, 750 °C, and 1870 °C. It was reported by Robert et al. that the irradiation of TiO2 by 

pulsed, UV, KrF laser at a wavelength of 248 nm induced a colour change from white to dark 

blue, which was the phase transition of anatase to rutile, indicating surface reduction [76]. 

Furthermore, Kato et al. studied the mechanism of printing film-coated tablets containing TiO2 

by using a tripled Nd: YVO4 UV laser printing machine (wavelength of 355 nm). They marked 

clear numbers and letters on the surface of the tablet by turning the colour of the TiO2 particles 

in the film from white to black, causing the film to turn gray on the lasered surface. This is the 

result of the appearance of many black particles in the white film. The black particles are formed 

by the agglomeration of the grayed oxygen-defective TiO2 by UV laser irradiation [58]. It was 

assumed that in the present case the white and black points in Fig. 15 are also associated with 

the laser irradiated TiO2, since the reactions of TiO2 to laser ablation differ significantly from 

the other ingredients of the coating material. Each material has its characteristic ablation 

threshold. This value is specific to the material, the type of laser, the ablation method, the 

wavelength and the fluence [60,61]. In the studies of Laude et al., the ablation of talc started at 

250 mJ/cm2 fluence, at 248 nm wavelength [77], so it is likely that talc was ablated during the 

laser treatment in this study. 

The ablation of TiO2 requires higher fluence or wavelength, than the other ingredients of the 

coating material need, and it is likely to require higher fluence than ArF laser can provide. In 

the present case, the laser was used at 193 nm wavelength and 444 mJ/cm2 fluence, whereas 

literature data about the ablation threshold of TiO2 are available only at 248 nm wavelength and 
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1.44 J/cm2 [78] or 910 mJ/cm2 fluence [76]. The threshold value for the current investigation 

was still below the ablation threshold of TiO2 and was not enough for its removal, but it was 

enough for the removal of the rest of the coating. Therefore, the presence of these excipients 

can disturb the 2D code recognition.  

In the case of TiO2 -free, SNC-P and SNC-G coatings (Fig. 15IJ) those black and white particles 

are not visible.  

6.3.2.2. Analysis by 3D microscope 

The previously discussed TiO2 enrichment can disturb 2D code recognition by increasing 

surface roughness. The remaining particle size can be about half of the ablation depth, as shown 

by the results of the ArF laser treated SPW-R film as an example (Fig. 16). The designated line 

where the measurement was taken passes through the ablation hole (Fig. 16B) and the 

corresponding profile of the ablation hole is shown in Fig. 16C. 

The metal oxide and pigment ratio also changed during the ablation procedure. This effect 

modifies the colour of the treated coating and consequently degrades the contrast of the 2D 

code. 

 

Fig. 16. Surface analysis by 3D microscope of the ArF laser treated region of SPW-R coating. A: 3D 

surface graph, B:  top view with the original colours of the ablation hole, the white TiO2 particle is 

marked with a yellow circle, C:  profile analysis 

According to the literature, it was supposed that the thermal effect of pulsed UV radiation of 

193 nm is negligible, only rapid photochemical reactions take place in the irradiated volume, 

“exploding” the molecules from the surface (photoablation), and there is no time for any heat 
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transfer. This hypothesis was supported by the microscopic pictures where no sign of thermal 

degradation or modification of the film structure was visible (Fig. 14 and Fig. 15). 

6.3.2.3. Raman investigations 

As in the case of a SC laser, Raman examination was done to find out whether a chemical 

change had occurred during lasering. Fluorescence interfered with the measurement in this case, 

too. Among the listed components (Table 6), TiO2 is one of the most important ones that 

influenced the ArF laser ablation results, as already discussed above. In the corresponding 

articles, the peaks of the Raman spectra of TiO2 dioxide may be found at 396, 516, and 638 

cm−1, which characteristic peaks were found in the Raman spectra of Seppic PW films, too, see  

Fig. 17(a)(b). These peaks exhibited a minor decrease in films treated by the ArF laser, and a 

more considerable decrease in intensity when they were lasered by the SC laser, as seen above 

in Fig. 9, in the same way as Kato et al. reported [58], confirming the fact that TiO2 is indeed 

the substance in question. In the case of SPW-G film, which also contains TiO2, it is hard to 

analyze the spectra because of the fluorescence of chlorophyll. In all cases, the spectra of the 

raw films and the lasered films run together (Fig. 17), so it can be concluded that the ArF laser 

did not cause considerable alteration in the coatings. 

 

Fig. 17. Raman spectra of a raw film and a coating treated with ArF laser. (a): SPW-W, (b): SPW-R, (c): 

SPW-G, (d): SNC-P, (e): SNC-G (A: original, B: ArF laser). 

6.3.2.4. Thermal gravimetric analysis (TGA) 

In the micrographs of the ArF laser treated films (Fig. 15, bottom line), it is seen that the ablated 

surface of the sample exhibits no considerable destruction, the structure of the film is relatively 

intact. TG results are shown in Table 9 and Annex 1, Fig. 35, were the TG curves of the laser 

marked films run together with the curves of the raw films which means that the film has not 
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been damaged, during coding. The ArF laser treatment of tablets could be a promising solution 

for limited type of coatings. 

Table 9. Decomposition behavior of raw Sepifilm films and films treated by ArF laser. 

TG-DTG data SNC-P film Laser treated SNC-P film 

First step   

Thermal range (°C) 25-120 25-120 

Mass loss (%) 2.85 4.05 

Second step   

Thermal range (°C) 290-430 290-430 

Mass loss (%) 58.26 59.98 

 SPW-R film Lasered SPW-R film 
First step   

Thermal range (°C) 25-120 25-120 

Mass loss (%) 1.07 1.15 

Second step   

Thermal range (°C) 290-440 290-440 

Mass loss (%) 51.88 52.11 

 SPW-W film Lasered SPW-W film 

Thermal range (°C) 25-500 25-500 

Mass loss (%) 56.06 54.80 

6.4. KrF laser 

To eliminate the problem of the remained particles further solution had to be found to be able 

to ablate those particles. Each material has an ablation threshold, and for successful marking, 

the threshold value of the material has to be exceeded [61]. The ablation threshold of a substance 

is determined by several parameters, which are mostly related to the laser beam. These include 

the repetition rate of the laser (Hz), wavelength, pulse energy, and duration, energy density and 

the absorption properties of the substrate. By selecting the proper laser parameters, the desired 

ablation depth can be achieved [79]. To solve the previous difficulties, KrF laser was chosen 

with a higher wavelength (248 nm). From what have been seen so far, it is known the excimer 

laser is safe, and the literature data confirmed that the ablation threshold of  TiO2 is below the 

wavelength of 248 nm [78]. 

In the following experiment, API containing tablets (white) were coated with 2 layers of 

differently coloured coatings. The transparent bottom layer was the functional one, while the 

red-coloured top layer was applied to enable marking. The 2D codes were drawn by ablating 

specific parts of the upper coating layer. 

The focus is also on demonstrating the effectiveness of a QR code-based authentication process, 

presented from the formulation of the QR-coded tablets by laser ablation to the decoding step 

using a QR code reader application on a smartphone. 
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6.4.1. Microscopic analysis of the coated surface 

The QR code (Fig. 18A) that was lasered on the tablets was generated by the QR code generator 

library libqrencode [80]. A simple code (with content: 12345678) was made, as the aim was to 

find out if it was possible to ablate a decodable QR code on the surface of the tablet by this 

laser. 

 

Fig. 18. The QR code sample. A: The common form of the QR code, B: the inverse of the QR code 

ablated onto the coloured tablet, C: the same QR code but made of dots, prepared for laser and 

desktop control. 

The results of the KrF laser treatments, and the decoding result are seen in Fig. 19.  

                 

Fig. 19. Tablet encoded by KrF laser. A: The size of the QR code is 4x4 mm, B: the size of the QR code is 

5x5 mm, C: microscopic picture of the 4x4 mm QR code, D: microscopic picture of the 5x5 mm QR 

code, E: QR code authenticated by a mobile phone (by QRbot app). 

The QR codes applied on the tablets are readable by a smartphone with QR code scanner 

applications downloaded from the Internet for example, with QRbot (https://qrbot.net/) or with 

the photo mode of the mobile phone. The only requirement is that the application must be able 

to read the “inverse” QR code (Fig. 18B), as in this case the tablet surface is coloured and the 

ablated part is white, just the opposite of the usual QR codes. 
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TiO2 particles had been totally ablated and did not interfere with decoding. It is known that a 

usable QR code can also be created by not overlapping parts, such as dots. The oval-shaped 

holes in the film ablated with the KrF laser were in accordance with the shape of the beam. It 

was possible to generate a readable code from oval-shaped holes, too, even when laser 

irradiation was not perfect, as the code has error correction capability that can restore the 

missing data, as seen on the ablated QR code that is made up of individual points (Fig. 19BD). 

Better coverage can be obtained by overlapping the holes, which results in a more readable 

code. Nevertheless, care must be taken not to punch through the E-L30 D55 layer. The depth 

of ablation can be controlled by changing the number of the pulses on the sample place or the 

fluence, which allows the accurate setting of the penetration depth to the coating layer. 

It took 1.5 and 2 hours to create such a code by the KrF laser, depending on whether there was 

an overlap between the holes or not. Fewer shots mean faster but still effective marking. 

Fig. 20 displays the SEM micrographs of the 4x4 mm QR code on the tablet treated by KrF 

laser. 

 

Fig. 20. SEM micrographs of KrF laser treated tablets. A: Tablet surface at a magnification of 30x, B: 

Tablet surface at a magnification of 100x, C: Tablet surface at a magnification of 200x, D: Tablet 

surface at a magnification of 500x, E: The tablet’s cross-section surface at a magnification of 1000x. 

The place of lasering is shown in the framed section. 

Fig. 20A shows the lasered tablet’s surface. In Fig. 20B it is clearly visible that the QR code is 

made of overlapping dots, as described above. It can be seen in Fig. 20C that the holes are 

deeper at the overlapping parts and also that the surface of the untreated coating is uneven. The 

cavities visible on the untreated surface may have remained from the bubbles formed during 

the coating process due to too quick drying since the air did not have time to diffuse out.  
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Fig. 20D displays the lasered tablet’s surface at greater magnification. The holes in the ablated 

surfaces could also have resulted from bubble formation. Fig. 20E shows the cross-section 

surface of the tablet, where the place of lasering is seen in the framed part. The glossy part on 

the top of the tablet is the SPW-R coating, which is about 5-10 μm thick. The bottom coating, 

which is 60-70 μm thick, seems to be intact. The ablated surface of the sample has no large 

damage. Only a physical change is observed in the structure as a result of the removal of the 

coating by the KrF laser, and no obvious sign of chemical change is detected. 

6.4.2. Disintegration test 

In the disintegration studies, six pieces of coated and KrF laser ablated tablets were tested from 

tablet type Nr 3. The tablets remained intact during the 2-hour disintegration process in the 

artificial enzyme-free gastric juice, which corresponds to the result expected according to the 

European Pharmacopoeia, as they had a gastro-resistant coating. After changing to the intestinal 

fluid, the disintegration test was complete in 30 minutes for all tablets. This result confirmed 

our preliminary conclusion based on SEM analysis, according to which the lasering of the upper 

coating left the functional coating in the bottom intact, so it is possible to mark functionally 

coated tablets, too.  

6.4.3. Coating film thickness 

In the case of double coated tablets, microscopic film thickness measurement was applied to 

confirm the assumption that not only the inter-tablet but also the intra-tablet variability of final 

coating thickness is spread over a wide range. Coating thickness averages measured on different 

tablets, determined on the basis of the measurements at 10 places of 4-4 half tablets, are 

presented in Table 10. It is seen even visually how the thickness of the coatings on the tablet 

varies in different places. 

Table 10. Thickness of the two different coatings of the API containing tablet. 

 12 mm diameter 

round flat tablet 

(600 mg) 

10 mm diameter 

round flat tablet 

(300 mg) 

10 mm diameter 

round flat tablet 

(500 mg) 

 49.43 ± 9.23 16.19 ± 9.19 88.02 ± 18.98 

SPW-R coating  63.12 ± 14.72 61.78 ± 14.67 95.42 ± 13.45 

thickness (μm) 59.31 ± 11.82 34.81 ± 11.76 73.26 ± 22.65 

 76.75 ± 13.98 45.78 ± 14.56 69.76 ± 16.54 

 182.34 ± 22.44 79.62 ± 17.79 155.45 ± 19.57 

E-L30 D55 coating 145.93 ± 29.54 123.65 ± 29.67 98.02 ± 23.77 

thickness (μm) 204.54 ± 17.57 97.43 ± 23.65 136.23 ± 29.76 

 163.78 ± 32.23 134.75 ± 36.76 102.43 ± 13.65 
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6.4.4. Raman investigations 

The dispersive Raman spectrometer was used to detect possible changes in the double coated 

tablets, and chemical mapping was chosen to determine if there was a laser-induced 

modification in the coating layers or in the API. The examination was done on the surface of 

the lasered tablet and on the fracture surface of the halved tablet. The chemical map was profiled 

based on the spectra that are summarized in. Fig. 21. The full spectrum was applied for raw 

free films (E-L30 D55, SPW-R) and a single peak (1604 cm−1) for the API Ibu. Fig. 22 and Fig. 

23 present the data of the obtained chemical maps. Part A of the figures shows the microscopic 

mosaic photograph of the KrF laser treated region; the chemically mapped area is framed with 

a blue line. The spectra were collected from places marked by blue points. The other parts of 

the figures show chemical maps, where BC and D show the profiling result of the E- L30-D55, 

Ibu and SPW-R film, respectively. In these maps, the warm colours show a higher concentration 

of the profiled materials. Profiling of the SPW-R spectrum was performed only for tablet cross-

sections. 

 

 

Fig. 21. Raman spectra of the film coatings and of the API. (A) E- L30-D55, (B) SPW-R, (C) API Ibu. 

Chemical map profiling was performed on spectra A,B and a single peak which is circled on spectrum 

C (1604 cm−1). 



37 

 

 

Fig. 22. Surface of the tablet treated by KrF laser. A: Microscopic picture of the surface of the lasered 

tablet, B: chemical map profiled to E-L30-D55, C: chemical map profiled to Ibu. 

The results confirm that the SPW-R upper layer (Fig. 23D) was completely ablated in the places 

that were lasered. Based on Fig. 22C, it can be assumed that the laser had reached the API. It 

could happen because the thickness of the coating was not consistently even, and furthermore 

because the API might have penetrated into the E-L30 D55 coating, which appears in green 

color (Fig. 23C). To determine if there was a laser-induced change in the API, Raman 

measurements were performed on the fracture surface of the tablets, too. Sample analyses were 

made at 10 points directly below the lasered coating surface and at 10 points in the core of the 

lasered tablets. As described in the “Methods” section, 10 spectra were averaged at each point. 

The mean of these spectra was compared with the average of 10 spectra taken from the core of 

an untreated tablet and with the spectrum of Ibu. These spectra were normalized to peak 1604 

cm−1 of the Ibu spectrum and are shown in Fig. 24. There was no significant difference between 

the spectra taken from the KrF laser treated area and the spectra taken from the non-lasered 

area. The most characteristic peaks of Ibu are present in all the spectra, with no slip visible. The 

observed peak intensities can be attributed to the relative inhomogeneity of the materials in the 

tablet, depending on how rich or poor Ibu was in the studied region. 
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Fig. 23. Fracture surface of a tablet treated by KrF laser after halving. A: Microscopic picture of the 

fracture surface of the lasered tablet, B: chemical map profiled to E-L30-D55, C: chemical map 

profiled to Ibu peak, D: chemical map profiled to SPW-R. 

Sampling with a small laser spot may also result in different intensities due to the 

inhomogeneous composition of the tablet. It can be stated that no chemical structural change 

was observed after the labelling. Overall, despite the fact that, mainly due to the uneven 

thickness of the coating, the laser can occasionally reach the functional coating during the 

removal of the PW red layer, and that Ibu can penetrate from the tablet core into the functional 

coating, no chemical structural changes were observed in the coatings during the coding 

process, and thus the laser is found to be suitable for drug labelling.  
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Fig. 24. Averaged and normalised (to peak Ibu 1604 cm-1) spectra taken from the KrF laser treated 

and non-treated places, spectra of untreated tablet core and Ibu spectrum. 

6.5. Ti:sapphire femtosecond laser 

Finally, a near-infrared (800 nm), short-pulse femto laser was tested. The assumption was if the 

pulse is ultrashort, the heat effect is insignificant, and no or just little chemical or thermal 

damage occurs during the removal of the material. As it works at a high wavelength, it has to 

be suitable for the elimination of TiO2 [60]. 

 

Fig. 25. Tablet encoded by femto laser. A: Visible to the naked eye, B: microscopic picture. 

6.5.1. Microscopic analysis of the coated surface 

The same computer-controlled movable desktop was coupled with femto laser as in the case of 

KrF laser to mark the tablet. This time, the shape of the beam was round, thus the ablated holes 

were too, and they overlapped, as shown in Fig. 25B. The ablation of the QR code took around 

10 minutes, as the most important limiting factor of overall ablation is the repetition rate of the 

laser. Therefore, the higher frequency (200 Hz) of the femto laser dramatically shortens the 

marking procedure. 
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Fig. 26. SEM micrographs of femto laser treated tablets. A: Tablet surface at a magnification of 30×, 

B: tablet surface at a magnification of 100x, C: tablet surface at a magnification of 250x, D: ablation 

hole at a magnification of 500×, E: ablation hole at a magnification of 5000x, F: the tablet’s cross-

section surface at a magnification of 100×. The place of lasering is shown in the framed section. 

6.5.2. Scanning electron microscope 

Fig. 26. displays the SEM micrographs of the femto lasered tablet. Apart from element F where 

the tablet’s cross-section surface is seen, others show the tablet’s lasered top surface with a 

section of a QR code, at increasing magnifications. The dots which compose the QR code are 

clearly visible. In Fig. 26ABCD, intact regions can be identified between the holes. Fig. 26E 

shows one hole at a higher magnification. At the bottom of the ablation cavity, a different 

material is detected, which is thought to be the functional coating because of its different, more 

porous structure. The laser penetration here seems to have taken place right up to the bottom of 

the coating. The tablet was fixed to the holder upside down (Fig. 26F). The ablation area is 

visible in the framed part. The femto laser removed the upper coating, which is about 50 μm 

thick, and in some places, the laser also penetrated into the functional E-L30 D55 coating. 

Nevertheless, because its thickness is about 150 μm, the functionality may still be intact despite 

its partial absence. 

Similarly to excimer lasers, it can be stated that the femto laser did not cause considerable 

damage in the coating structure during the treatment, either. Only a physical change can be 

detected in the ablated area, fragments of the coating film are visible where the coating was 

removed. No visible sign of chemical changes was detected in the upper or in the bottom layer.  
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6.5.3. Disintegration test 

As with the disintegration study of KrF laser-treated tablets, 6 femto lasered tablets (type Nr 3) 

were tested, too, and the result was the same, i.e., the tablets did not dissolve in the acid within 

2 hours, only after transfer to the base, in accordance with the European Pharmacopoeia. 

6.5.4. In vitro Drug Dissolution test 

Excimer lasers are known to be intended for laboratory use, while femto lasers are much more 

widely used in industry. Although reducing the ablation time to 10 minutes is considered as a 

great result, but it is still a long time to produce tablets on an industrial scale. Nevertheless, it 

was considered important to measure the dissolution parameters of lasered tablets, as a 

continuation of the experiment to confirm that it is possible to mark tablets with functional 

coating without damaging them during the procedure. 

For in vitro drug dissolution tests, tablets of different shapes were used: A: Type Nr. 1, B: Type 

Nr. 2, C, and D: Type Nr. 3. Three of the investigated tablets remained intact after 120 minutes 

in the gastric medium. The amount of the dissolved API was 0.15%, 2.12%, and 0.92%, for A, 

C and D, respectively, while the dissolved API was 35.2 % for Tablet B, which partially 

disintegrated during this period. The dissolution profile of the tablets in the gastric medium is 

shown in Fig. 28. 

To save time and material, the differently shaped API containing tablets were coated together 

with placebo tablets. Presumably, due to their different geometry, they were mixed 

inappropriately during coating, therefore they might have different coating thicknesses. Tablet 

coating thickness may also vary in the case of identical tablets, as observed by M. Wolfgang 

et.al., where it varied between 56.3 µm and 86.9 µm [81]. The literature also confirms that the 

shape of the tablet directly influences intra-tablet coating uniformity. The most likely reason 

for intra-tablet coating variability is the preferred orientation of tablets when passing through 

the spray zone of the coater [82]. There was another investigation of inter-tablet coating layer 

thickness, where a comparison of both sides of the tablet surface was made. It shows that the 

thickness of the coating layer of some tablets is up to 10μm thicker on one side of the tablet 

than on the other side [83]. Achieving a high level of intra-tablet uniformity is especially 

important for functional film coatings [84], where uniform thickness is required to guarantee 

the desired drug release rate to the patient [81].  

The film layers of a halved, dual-coated tablet are shown in the micrograph in Fig. 27, which 

shows that the coating thickness varies over a wide range within a tablet. There is seen the 
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difference in the thickness of the coating on the top and on the side of the medicine. Also, in 

Chapter 6.4.3. above, Table 10 has the summary of the thickness of the different coatings. 

 

Fig. 27. Uneven thickness of the double coated tablet’s coatings 

In the present study, it can be assumed that in the case of Tablet B, the coating was thinner for 

the reasons indicated above and might have been damaged during the marking. It is likely that 

if only tablets of the same shape are coated at a time, the layer thickness will be more uniform 

and the inner, functional layer can be protected from damage.   

The dissolution profile of the tablets in phosphate buffered saline solution is also seen in Fig. 

28.  

 

Fig. 28. Drug dissolution curves of the 4 coated and lasered tablets 

It can be concluded that during the one-hour in vitro studies, the tablets acted in accordance 

with pharmacopoeial standards, and the disintegration and dissolution process started. It is seen 

that the dissolution of Tablet B started earlier than that of the others, and the final concentration 

was lower. The explanation for this phenomenon is that the dissolution of Tablet B had already 

started in the gastric medium. 
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6.5.5. Raman spectroscopy 

As in previous studies, Raman measurements were performed to check if the tablet material 

had changed during lasering. Fig. 29 and Fig. 30 display the tablet surface and the cross-section 

of femto laser treated tablets, respectively. In Fig. 29B E-L30 D55 is seen in the laser treated 

areas, while in Fig. 29C the warm colours show the API Ibu, which suggests that the coating 

thickness was not consistently even, and the laser might have reached the API or it penetrated 

into the coating in this case as well. In Fig. 30A the arrow points to the missing SPW-R coating, 

and the mapping (Fig. 30D) confirms that it was ablated by the laser. The profiling shows that 

the API is mostly in the tablet core (Fig. 30C), but in the same picture, the area of the inner 

coating is green, which means that the API partly migrated from the tablet core to the E-L30 

D55 film. According to the literature, such migration during the coating process can happen if 

the coating is aqueous based. Migration is enhanced if a component is soluble in the coating 

solution, and it also depends on the spray conditions used during the coating operation [85,86]. 

 

Fig. 29. The surface of the tablet treated by femto laser. A: Microscopic picture of the lasered tablet, 

B: chemical map profiled to E-L30-D55, C: chemical map profiled to Ibu. 

Similarly to the previous case, Raman measurements were performed on the fracture surface of 

the femto laser treated tablets, too, to determine if there was a change in the API, as described 

in the “Methods” section. These spectra were normalized to peak 1604 cm-1 of the Ibu spectrum 

and are shown in Fig. 31. As with the KrF laser results, there was no significant difference 

between the spectra taken from the laser treated region and the spectra taken from the non-

lasered region.  
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Fig. 30. Cross-section surface of the femto laser treated tablet. A: Microscopic picture of the halved 

tablet, the arrow pointing to the missing SPW-R coating, B: chemical map of the tablet surface 

profiled to E-L30 D55, C: chemical map of the tablet surface profiled to Ibu, D: chemical map of the 

tablet surface profiled to SPW-R. 

 

Fig. 31. Averaged and normalised (to Ibu peak 1604 cm-1) spectra taken from the femto lasered and 

non-lasered places, spectra of untreated tablet core and Ibu spectrum. 

Again, the different peak intensities here can be attributed to the relative inhomogeneity of the 

material in the tablet, depending on how rich or poor the Ibu was in the area of interest. 
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It can be stated that no chemical structural change was observed because of the ablation process. 

7. SUMMARY 

The aim of the experiment was to develop a new, efficient way of a unique marking method to 

combat drug counterfeiting. For five different lasers, investigations were made to find out how 

the drug changes in response to the laser beam. 

Tablets were selected for coding as they are widely used and are physicochemically stable. 

- Laser was chosen as a coding tool as it is a non-contact method, thus minimizing the 

problems of contact contamination. 

- In selecting lasers, the goal was to compare different types of instruments during 

ablation and to obtain a general overview of their effects on the drug. As the study 

progressed, it was found out that certain lasers had a detrimental effect on the sample, 

so it was necessary to look for devices that would not cause changes in the material.  

- When laser coding is applied, it should be considered that the tablet must be coated. At 

least one colored layer should be applied to the drug, even if it already has a functional 

coating on, as the 2D code is created by ablating the coating. 

- It is clear from the preliminary experiments [87] that great care must be taken when 

choosing coating materials to ensure that they are compatible with the laser of choice, 

for example, that the laser is able to remove all components of the coating, such as TiO2, 

that the remained white particles do not interfere with 2D code recognition. 

- The choice of the optimal instrument and its parameterization is essential for coding. 

8. CONCLUSION AND PRACTICAL USEFULNESS  

The results presented in this thesis provide useful information for laser drug coding. The present 

research led to the following findings: 

- The aimed anti-counterfeit coding technology was accomplished with three potential 

lasers, excimer laser (ArF and KrF) and femto laser, which did not cause a qualitative 

change in the material during laser marking. 

- It was found that the ArF laser requires higher fluence, or wavelength, to be able to 

exceed the ablation threshold of TiO2, so the usability of this type of laser is limited to 

TiO2 -free coatings. 

- The higher repetition rate of the femto laser allows faster and more efficient coding, 

which has key importance in mass production. 
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- Further results show that due to the high performance in the femtosecond region, the 

wavelength is no longer the critical parameter as it is for a nanosecond or longer pulses. 

Thermal effects are negligibly low in the fs region even at high peak powers. The 

thermal effects of laser ablation can be avoided by reducing the wavelength or the 

impulse length based on the current study. 

- The excimer laser is a laser for laboratory use, while femto lasers are commonly used 

in the industry. It is known that the efficient use of this technology requires further 

development in speed. Other near-infrared pulsed lasers that operate at multi-kHz 

versions (with a repetition frequency of multi ten-kHz and also MHz) could potentially 

further shorten ablation time. Those devices could even be used for line speed marking 

in pharmaceutical companies.  

- Various coating materials were tested, Eudraguard® control, SEPIFILM™ NATurally 

COLoured coatings agents, Sepifilm™ PW coating systems, Eudragit L30 D55®. 

Experience showed that the ability to laser the coatings is determined not only by the 

type of coating, but also by the quality and parameters of the laser. 

New findings/practical relevance of the work  

- Based on the study, a novel, non-contact, functionally advanced marking technology 

was developed by using the lasers mentioned in this study, highlighting the femto laser 

as a potential solution for pharmaceutical companies that would like to have additional 

protection against drug counterfeiters or to label personalized medicines.  

- It should be noted that the method needs further development and scaling-up to enable 

this technology to serve the high volumes of industrial production. 
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Fig. 32. TG, DTG and MS curves of EudrC film , and EudrC film treated with SC laser. 
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Fig. 33. TG curves of Sepifilm films treated with SC laser. (a): SNC-P, (b): SPW-W, (c): SPW-R (A – 

original, B – SC laser treated). 

 

 

Fig. 34.  TG and DTG curves of EudrC film , and EudrC film treated with ArF laser. 
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Fig. 35. TG curves of a raw Sepifilm coating, and the films treated with ArF laser. (a): SNC-P, (b): SPW-

W, (c): SPW-R (A: original, B: ArF laser treated). 
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A B S T R A C T

Based on WHO statistics, counterfeit medicines represent 10% of the global drug trade. According to Directive
2011/62/EU as regards the prevention of falsified medicines from entering into the legal supply chain, a unique
identification should be put on each box of drugs to be able to track and trace them. The objective of this study is
to develop a technology to mark an individual traceability code directly on the surface of the tablet. By using this
technique, anyone with a camera-enabled phone and a suitable application installed should be able to au-
thenticate these drugs. By marking the medicine's surface, patients could be protected from fake drugs.

The aim of the present work was to study how different types of lasers affect the film coating of the tablet
during the laser marking intervention.

To sum up, the present findings may contribute to efficient and reliable laser marking solutions in the unique
identification procedure. Based on our measurement results, it can be stated that the excimer UV laser is clearly
the most suitable marking instrument for anti-counterfeiting coding on solid coated tablet form as this caused the
least amount of chemical degradation of the polymer film.

1. Introduction

In the interest of avoiding misunderstanding, it is important to re-
mark that the expression counterfeit medicine used in this article
comprises the WHO's definitions for substandard (authorized medical
products that fail to meet either their quality standards or specifica-
tions, or both), unregistered (that have not undergone approval by the
National or Regional Regulatory Authority for the market in which they
are distributed), and falsified (that deliberately misrepresent their
identity, composition or source) medical products (WHO, 2018).

Counterfeit drugs pose a great threat for health and they cause
serious social and economic damage. Based on WHO statistics, it is
estimated that 1 in 10 medical products is substandard or falsified in
low- and middle-income countries where health systems are weak or
non-existent (WHO, 2018). The most frequently falsified medicines in
wealthy countries were lifestyle medicines, such as hormones, steroids
and antihistamines. In developing countries, they included medicines
used to treat life-threatening conditions such as malaria, tuberculosis
and HIV/AIDS (European Medicines Agency, 2018).

It is threatening that medicines purchased over the Internet from
sites that conceal their actual physical address are counterfeit in over
50% of cases (UNICRI, 2012; WHO IMPACT, 2006).

A culture of self-diagnosis and self-prescribing has led to the

emergence of thousands of unregulated websites providing un-
supervised access to substandard and falsified medical products.
Unregulated websites, social media platforms, and smartphone appli-
cations can also be direct conduits of counterfeit medical products
(WHO, 2018). Patients across the world put their health, even life, at
risk by unknowingly consuming fake drugs or genuine drugs that have
been badly stored or that have expired (Interpol, 2013).

Responsible governments prohibit falsified medicines under na-
tional law but remain vulnerable to organized criminals doing business
in countries where laws or enforcement are lax—30% of countries have
little or no medicine regulation according to WHO (Attaran et al.,
2012).

Globally, there are around 30,000–35,000 online pharmacies. 96%
of these operate illegally. They do not comply with regulatory and
safety requirements and they may sell prescription drugs without a
valid prescription. On average, 20 online pharmacy websites are cre-
ated each day (CSIP, 2016).

Falsified medicines in the legal supply chain are less prevalent in the
EU, but this trend seems to be on the rise. 2 cases reported in 2012 vs.
12 in 2013 and 15 in 2014 (European Commission Staff Working
Document, 2015). For example, in 2014 falsified vials of the cancer
treatment Herceptin (trastuzumab) were stolen in Italy, manipulated
and later reintroduced illegally into the legal supply chain in some
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countries (European Medicines Agency, 2014; Sukkar, 2014).
A European Union Intellectual Property Office (EUIPO) report

shows that fake medicines cost the EU pharmaceutical sector EUR 10.2
billion (4.4% of sales) each year. This is a direct estimate of sales lost by
legitimate manufacturers and wholesalers of medicines in the EU due to
counterfeiting. Moreover, 37,700 jobs and EUR 1.7 billion of govern-
ment revenue are lost annually (household income taxes, social security
contributions and corporate income taxes) (Wajsman et al., 2016).

The links between drug counterfeiting and other forms of crime are
proven both by the methods used and the nature of the products that
are regularly seized. Counterfeiting is a world-wide problem.
Traffickers have a single motivation: extreme profitability. In the study
report written by Eric Przyswa he has given an example: according to
the International Federation of Pharmaceutical Manufacturers and
Associations (IFPMA), for $1000 invested, the trafficking of counterfeit
currency or of heroin would bring a return of $20,000, of counterfeit
cigarettes $43,000, and in the case of counterfeit drugs, the return
would be between $200,000 and $450,000. Counterfeit drugs would
therefore be 10 to 25 times more profitable than the trafficking of
narcotics. The major distribution vehicle is the Internet, which is de-
centralized and anonymous. The malleability and permanent inter-
connection of networks seem to offer genuine opportunities for illicit
trafficking. (A Royal Pharmaceutical Society Publication, 2014; IRACM,
2013; Przyswa, 2013).

According to Directive 2011/62/EU as regards the prevention of
falsified medicines from entering into the legal supply chain, a unique
identification should be put on each box of drugs (The European
Parliament and the Council of the European Union, 2011). The new
Delegated Regulation 161/2016/EU shall enter into force from 9 Feb-
ruary 2019, which, besides serialization requirements, demands addi-
tional anti-tampering devices for drug packaging. In Europe pharma-
ceutical manufacturers who distribute their products must, in the
future, assign prescription medications with a serial code as a unique
identification feature, save this serial number and transfer it to a
Europe-wide database under the tightest security requirements. The
security code specified by the EU is a 2D data matrix code that ensures
traceability along the entire supply chain (European Comission, 2016).

Our team would like to extend this process by working on the de-
velopment of a technology to mark an individual traceability code di-
rectly on the surface of the tablet. Anyone with a camera-enabled phone
and a suitable application installed on it should be able to authenticate
these drugs. Also, as in certain Member States the persons authorized or
entitled to supply medicinal products to the public are allowed to open
a pack of a medicinal product in order to supply part of that pack to the
public, it is necessary to verify those drugs in question, too (A Royal
Pharmaceutical Society Publication, 2017; European Comission, 2016).
We plan that our development with on-product marking would help to
verify each pill even in the absence of original packaging.

The ideal mark for medical applications is indelible, easy to read,
difficult to copy or alter, contains unique serialization information, and
does not change product functionality in any way (Heller, 2015).

Film coating is used in the pharmaceutical industry for solid dosage
form because of visual attractiveness, trade marking issues, identifying,
taste masking, improved product stability, shelf life increase or con-
trolled release of the active pharmaceutical ingredient (API) (Koller
et al., 2011; Korasa et al., 2016; Markl et al., 2014). Besides the above,
colored coatings can also help to prevent counterfeiting. Since most of
the tablets are round and white and, consequently, easier to fake, a
unique and distinctive shape and color can improve identification and
make counterfeiting more difficult (Pérez-Ibarbia et al., 2016).

Coloring and special shape are not enough to distinguish each tablet
from one another. Further marking is necessary, especially for unique
identification.

From among many different options, printing is one of the most
attractive methods for marking as the capital equipment cost is rela-
tively low. However, the printing process necessitates contact between

the substrate and some form of ink carrier, toner reservoir, or stamp, so
it could be a source of contamination. High printing speed is required
for some of the fastest production lines and that can result in a loss of
image quality and the risk of unreadable codes (Davison, 2011). Fur-
thermore, the ink formulation has to be designed with respect to its
viscosity and surface tension to guarantee continuous printing and high
reproducibility of the forming droplets (Genina et al., 2012). In addi-
tion, chemical markers or colorants that are used on the surface of the
dosage form must be materials that are tested and accepted as safe by
the pharmaceutical authorities (Davison, 2011).

One of the other ways of marking could be done with infrared (IR)
laser. It produces a surface mark through intense localized heating and
it could cause damage in heat-sensitive materials (Gaebler, 2017).

Ultraviolet (UV) lasers overcome the drawbacks of the above-men-
tioned ink printing and IR laser printing technologies. UV laser marking
is a non-contact method that avoids the problems of contamination and
eliminates the cost of consumables. It undergoes a cold photochemical,
rather than photothermal interaction. Since this is a cold process, there
is essentially no Heat Affected Zone (HAZ) or changes to the sur-
rounding material. Finally, since UV light can be more tightly focused
than IR, UV lasers support complex, high-resolution marks such as 2D
barcodes.

In the past UV lasers were rarely utilized because of their cost.
However, over the past decade, companies reduced UV laser price by a
factor of nearly five over this period (Heller, 2015).

The final aim of the present work is to develop a technology to mark
an individual traceability code directly on the tablet. The plan is to
make 2 layers of coatings on the surface. The first one is the functional
one, and the other on the top of it would be applied because of the
marking. The colors of the 2 coatings should contrast each other. By
ablating the upper coating, we should be able to read the 2D data
matrix code that will be formed of those two layers. The basic experi-
ment for this article started with only one layer. We examined how the
coated film behaves when it is treated with 3 different types of laser to
be able to select the right instrument for further research. With excimer
UV laser we made a square shape ablation for a start, which we plan to
replace in the future with 2D code forming mask. With semiconductor
laser we were able to mark a 2D barcode on the surface of the tablet.
Unfortunately, the pulsed Nd:YAG laser damaged the coating film. By
analytical quality tests, we were planning to select the right instrument
for unique drug marking.

This investigation suggests the use of excimer UV laser for marking
the tablet surface because this treatment minimizes the chemical de-
gradation of the coating film during the process.

2. Materials and methods

2.1. Materials

2.1.1. Tablet core and coating materials
Tablet samples for laser marking preformulation were original ta-

blets from the legal supply chain: Sinecod (GSK), Telfast (Sanofi),
Klacid (Abbott), furthermore Eudraguard® control and HPMC coated
placebo tablets.

In the further research round placebo tablets were used, with no
break line (diameter: 7 mm, crown height: 4 mm). Aqueous-based en-
teric coating solution was prepared. It consisted of 52% w/w dry sub-
stance of a neutral copolymer based on ethyl acrylate and methyl me-
thacrylate with a ratio of 2:1 (Eudraguard® control dispersion 30% w/w
(Evonik Nutrition & Care GmbH)), 16% w/w talc, 28% w/w alginic acid
sodium salt, 4% w/w glycerol, and distilled water. Coatings were co-
lored with 1% w/w patent blau 85 (blue), 3% w/w Gelborange (or-
ange), 1.5% w/w Azorubin (cherry) or 1.5% w/w Iron Oxide Red (red).
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2.2. Methods

2.2.1. Tablet coating procedure
The spray coating process was performed using a 4M8 Pancoat (Pro-

C-epT, Zelzate, Belgium) perforated coating pan on a batch of 500 g
tablet. The process was divided into three stages. The coating para-
meters are shown in Table 1. For the application of the atomized spray
coating solution, 0.8mm spray nozzle was used for 140min, with an
atomizing air pressure of 1.5 bars and an air flow rate of 0.50m3/min.
The drying and cooling processes together lasted for 30min.

The final coating thickness was determined by Zeiss
Stereomicroscope. Measurements were performed at a magnification of
500. After calibration, we examined 4–4 half-cut tablets (differently
colored), each at 10 places. Coating thickness averages measured on
different tablets are: yellow: 60.79 ± 9.11 μm, blue:
59.31 ± 11.82 μm, cherry: 49.19 ± 10.18 μm and red:
88.02 ± 18.98 μm.

2.2.2. Irradiation of tablets using 3 types of laser
The coated tablets were irradiated with a pulsed Lambda Physik

EMG 201 type ArF excimer laser (wavelength: 193 nm, energy:
3 ± 0.2mJ, fluence: 444mJ/cm2, FWHM: 20 ns, spot size: 375 μm),
CW (continuous wave) semiconductor laser (wavelength: 405 nm, spot
size: 73 μm, power: 1000mW, irradiation time: 15–20ms) and pulsed
Nd:YAG laser (wavelength: 1064, power: 1–2.6W, frequency: 1 kHz).

2.2.3. Surface profilometer
Profilometry measurements were performed on a Veeco, Dektak 8

Advanced Development Profiler®. The tips employed had a radius of
curvature ~2.5 μm, and the force applied to the surface during scanning
was ~30 μN. The horizontal resolution was 0.1–0.13 μm. The vertical
resolution was 40 Å.

Data has been evaluated by Dektak software (Microsoft® Windows
XP®: interactive data acquisition) and Vision® 32 software (data pro-
cessing, 2-D and 3-D image analysis) (Veeco Instruments Inc., New
York, USA).

2.2.4. Scanning electron microscope (SEM)
The morphology of the ablated film was observed by using a scan-

ning electron microscope (SEM, Hitachi Tokyo, Japan S4700). The ta-
blets were stuck to a double-sided carbon adhesive tape and a con-
ductive golden layer was deployed with the use a sputter apparatus
(Polaron Ltd., UK). The measurements were performed at a magnifi-
cation of 100–2000, applying 10.0 kV of electron energy and
1.3–13MPa of air pressure.

2.2.5. Raman spectra
In our method, the effect of laser light was analyzed by Raman

surface mapping. To investigate the components, Raman spectra were

Table 1
Coating parameters of placebo tablets.

Step Inlet-air
temperature
(°C)

Exhaust-air
temperature
(°C)

Tablet bed
temperature
(°C)

Drum
speed
(rpm)

Air
flow
rate
(m3/
min)

Warm up 50 Until 30 5 0.50
Coating 49 ± 2 32 30 ± 2 18 0.50
Drying &

cooli-
ng

40 27 25 5 0.50

Fig. 1. Coated tablet treated by Nd:YAG laser.

Fig. 2. Coated tablet treated with excimer laser: from bottom line left: 10, 20,
30, 40, upper line from right: 50, 60, 70, 80 impulses (A) and coated tablet
treated with semiconductor laser (B).

Fig. 3. The ablation depth calculation process.
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acquired with a Thermo Fisher DXR Dispersive Raman (Thermo Fisher
Sco. Inc., Waltham, MA, USA) equipped with a CCD camera and a diode
laser operating at a wavelength of 780 nm. Raman measurements were
carried out with a laser power of 6 and 24mW at 25 μm slit aperture
size on a 2 μm spot size. The spectra of the individual substances were
collected using an exposure time of 6 s, a total of 48 scans in the spectral
range of 1700–200 cm−1 with cosmic ray and fluorescence corrections.

2.2.6. Thermal gravimetric analysis (TGA)
The thermal gravimetric analysis of the samples was carried out

with a Mettler-Toledo TGA/DSC1 instrument (Mettler-Toledo GmbH,
Switzerland). The start temperature was 25 °C, the end temperature was
500 °C, the applied heating rate was 10 °C/minute. Nitrogen

atmosphere was used (Cell gas: 50ml/min, method gas: 70ml/min).
5 ± 1mg samples were measured into aluminum pans (40 μl). The TG
curves were evaluated with Mettler-Toledo STARe Software.

2.2.7. Mass spectrometry (MS)
The gas analysis of the tablet coating material was carried out with

the Thermo Star (Pfeiffer Vacuum, model ThermostarTM GSD 320,
Germany) quadruple mass spectrometer (maximum 300 amu) for gas
analysis that was coupled to the TG instrument. The measurements
were carried out in a flow of nitrogen atmosphere. The connection
between the TG and the mass spectrometer was made by means of a
silica capillary, which was maintained at 120 °C. Ions with various mass
numbers were determined with the SEM MID measurement module of
the Quadera software. Continuous recordings of sample temperature
and sample mass were performed. The obtained results were exported
and then plotted in one coordinate system with the TG curves using the
Mettler-Toledo STARe software.

3. Results and discussion

Coated tablets were marked with 3 different types of lasers. After
marking polymer films, we made an analytical quality control of them
to check if there occurred any change during the laser intervention.

Since the Nd:YAG laser treatment burned the tablet's coating during
the preformulation study, that tool was not a part of our further re-
search. The treatment result is presented in Fig. 1.

3.1. Examination of tablet surface

Firstly, film coted tablets were treated by excimer laser with 10, 20,
30, 40, 50, 60, 70 and 80 pulses, which is seen in Fig. 2, Part A. The

Fig. 4. The profilometer analysis of the ablated holes. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

Fig. 5. The profilometer analysis of the red tablet surface.

Fig. 6. Comparison of the measurements of the ablated hole depth of tablets
with different colors. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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holes have a shape of a regular square, sharply separated from the
environment, returning the shape of the mask used. Secondly, coated
tablets were treated by semiconductor laser. With this instrument we
were able to mark a two-dimensional QR code on tablets. The photo-
graph of it can be seen in Fig. 2, Part B. It shows that the laser beam
blackened the coating. Factors changing the color of the coating by the
semiconductor laser irradiation were not cleared.

The ablated holes of the excimer laser were examined by a surface
profilometer and their extent was measured. Also, the influence of the
differently colored coatings on the ablative depth was examined.

The results of profilometer were evaluated as follows: the raw data
were detrended by fitting the second order polynomial to the region not
affected by laser treatment (Fig. 3). This correction was applied to the
data in order to eliminate the tablet curvature effect. The obtained data
was used to calculate the ablation depth by fitting a line to the points in
the ablation hole. The distance of the line segment's center point from
zero level was assumed as the average ablation depth (Fig. 3).

The results of the ablations on the blue colored tablet are shown in
Fig. 4. The curves in the left figure show the deepness of the holes made
by different numbers of laser pulses. The measurements and the fitted
line in the right figure show near lineal relation between the applied
number of impulses and ablation depth up to 100 impulses.

The series of the ablated holes were examined with a full profil-
ometer scan on the red tablet surface (Fig. 5). The tablet coating was
treated by excimer laser using 10, 20, 30, 40, 50, 60, 70, 80, 90 im-
pulses. The ablation depths were also calculated by extracting the af-
fected regions from the dataset. The aggregated data show a similar
linear relation between the applied number of impulses and ablation
depth as was determined in the case of other colors.

We found some influence of the different colors on the ablation
depth (Fig. 6). The quantitative analysis of this effect needs more pro-
filometer and optical property measurements. The weighted average of
the ablation performance is 0.411 ± 0.025 μm/impulse using
2.8–3.2mJ impulses in Eudraguard® control film.

3.2. Scanning electron microscope

The pre- and post-laser structure was examined by SEM as well. In
Fig. 7, Parts A, B the micrographs of the film treated with excimer laser
can be seen. They show the same ablation square at different magni-
fications. It is seen that the ablated surface of the sample exhibits no
large destructions, the structure of the film is relatively intact. The

Fig. 7. The SEM micrograph of excimer laser treated film (magnification of 100×: A, magnification of 500×: B) and semiconductor laser treated film (magnification
of 200×: C).

Fig. 8. Raman spectra of film coatings (A: Eudraguard® control dispersion, B:
prepared free film of Eudraguard® control, C: prepared free film of Eudraguard®
control treated by excimer laser, D: prepared free film of Eudraguard® control
treated by excimer semiconductor laser).

Fig. 9. Microscopic picture of films treated by excimer laser (A) and treated by semiconductor laser (B).
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shape of the hole is a well distinguished regular square, returning the
shape of the mask used. It is clearly visible at the edge of the ablative pit
that the film has a layered texture due to the drying of droplets during
the coating procedure. It looks as if these layers came off one after
another in accordance with the number of laser impulses used. Despite
the lack of bigger destructions, there are some cracks in the affected
area, which may be the result of loss of water caused by the local
temperature elevation or by a photocatalytic reaction.

Part C of Fig. 7 shows that, in contrast with the excimer laser, the
semiconductor laser induced considerable damage in the coating
structure during the treatment. Holes are seen in every 200 μm on the
film, surrounded by a wide range of burn traces. There are blistering,

snow-flake like crystals around the holes, melting, and recrystallization.
It is unclear whether these are the results of a consequential loss of
water or the melting of the coating material.

The changes described above were observed macroscopically. In the
following, the chemical structure degradation was analyzed by Raman
and TG-MS analytical tests.

3.3. Raman investigations

Raman spectroscopy is a promising analytical method to monitor
the preparation process and to implement the PAT requirements. In this
article, a Dispersive Raman spectrometer was used to detect the effect

Fig. 10. Microscopic picture of film treated by semiconductor laser (A), chemical maps profiled to special changed area of spectra which was treated by semi-
conductor laser (B), chemical maps profiled to untreated Raman spectra of film coating (C). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Decomposition behavior of the raw polymer film and the film treated by laser.

TG-DTG data Eudraguard® control film Eudraguard® control film treated with excimer laser Eudraguard® control film treated with semiconductor laser

First step
Thermal range (°C) 30–120 30–120 30–120
Mass loss (%) 4.31 3.90 4.12
Normalized integral (s/°C) −0.11 −90.41e-03 −0.13
Peak (°C) 72.83 57.03 64.65

Second step
Thermal range (°C) 120–290 120–290 120–290
Mass loss (%) 15.03 14.28 18.75
Normalized integral (s/°C) −0.57 −0.59 −0.60
Peak (°C) 232.99 233.74 230.66

Third step
Thermal range (°C) 290–500 290–500 290–500
Mass loss (%) 50.59 51.88 69.96
Normalized integral (s/°C) −2.12 −2.12 −2.79
Peak (°C) 362.78 360.07 358.40
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Fig. 11. TG, DTG and MS curves of Eudraguard® control film (E.C. film), Eudraguard® control film treated with excimer laser (E.C. film excimer laser), Eudraguard®
control film treated with semiconductor laser (E.C. film semiconductor laser).
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of different laser sources on the surface of coated tablets. Raman
spectroscopy is used for the non-invasive and fast, qualitative in-
vestigation of pharmaceutical dosage forms.

To investigate the effect of different laser sources on film coating,
we used Raman spectroscopy. The finger print region of Eudraguard®
control is 1800 cm−1–500 cm−1. In Fig. 8 we summarized the spectra of
raw film dispersion, raw free film and films treated by different laser
sources. The spectra of the film treated by semiconductor laser changed
completely, the fingerprint region of Eudraguard® control smoothed.
The result of this laser treatment, black burst signal, is seen in the
microscopic picture (Fig. 9, Part B). The square shaped ‘print’ on the
surface of the film returned the shape of the mask used after the ex-
cimer laser ablation (Fig. 9, Part A).

To confirm the chemical degradation of the film polymer, Raman
chemical mapping was chosen. We selected an area treated by semi-
conductor laser which contained burst and intact film, too. The mi-
croscopic mosaic photo is presented in Part A of Fig. 10. The area
framed with blue lines is the chemically mapped part. The spectra were
determined in the blue points. Then this chemical map was profiled to
the special changed area of the spectra which was treated by semi-
conductor laser (1800 cm−1–500 cm−1). The warm colors show the
area which contains these spectra (Part B of Fig. 10). Then the chemical
map was profiled to the untreated Raman spectra of the film coating
(Part C of Fig. 10). In this picture the warm colors show the original
(raw) intact film. This picture is the inverse of Part B of Fig. 10. So, we
have concluded that chemical changes were caused by the semi-
conductor laser source.

3.4. Thermal gravimetric analysis (TGA)

TGA is a method of thermal analysis which provides curves corre-
sponding to mass loss characteristics. As the measured substance de-
grades, basic information is given about their behavior during tem-
perature rise. Data from mass reduction through this system alone does
not allow classification of the molecules.

The burning characteristics of samples obtained from thermo-
gravimetric analysis may be used to effectively compare the decom-
position characteristics of the raw polymer film and films treated by
different laser beams.

Table 2 shows TG temperature ranges, mass loss, DTG normalized
integral of examined materials and peak temperatures. The main
characteristics of the samples derived from TG curves as corresponding
mass loss values were used to define the thermal behavior and com-
bustion characteristics of films.

It is seen that mass loss in coating films comes in three stages. The
first mass loss occurred between 30 and 120 °C, the second stage be-
tween 120 and 290 °C, and the third between 290 and 500 °C.
Thermogravimetry showed that the decomposition of the material oc-
curred sooner in films marked by semiconductor laser, in higher tem-
perature ranges, which is probably due to the decomposition process
that had already started during the laser marking process. We did not
experience anything like this in the case of using excimer laser.

3.5. Evolved gas analysis with mass spectrometry

To clarify the decomposition mechanism of the films, the mass loss
should be characterized during each decomposition process by the
identified evolution of gas components. The mass spectra were inter-
preted on the basis of degassing profiles of the molecule ions and ion
fragments of various gases.

The evolution of released gas species was followed in situ by the
coupled system of TG-MS instruments. The evolution curves are shown
as current ion versus time curves. The characterization of water release
by means of MS is possible with the molecule H2O, m/z=18, (peak at
50 °C). It can be safely concluded from Fig. 11 that water is given out at
about 50 °C from the samples, which is consistent with the mass loss

observed from the TG curves. The dehydration of the film takes place at
around this temperature.

An important increase in the concentration of methyl methacrylate
is recorded for m/z=41 and for m/z=69 due to the decomposition of
the polymer at temperatures at around 360 °C. The abundance of the m/
z=41 and m/z=69 signals vs. temperature can be seen in Fig. 11. The
m/z=69 signal corresponds to the monomer after the loss of eOCH3

from the side chain, and the m/z=41 signal corresponds to the
monomer after the loss of the entire side chain (eCOOCH3).

The evolution of gas of CO2, m/z=44 signal was detected in two
steps at slightly higher temperatures around 240 °C and 365–370 °C, as
it is seen on the MS curves in Fig. 11.

The release of ethanol, m/z=31 by means of MS curves seen in
Fig. 11, happens at a temperature around 355 °C.

The results of mass spectroscopy are consistent with the mass loss
observed from the TG curves, as the decomposition of the material
occurred slightly sooner in the film treated with semiconductor laser in
the case of m/z=44 and m/z=69, where the decomposition started
sooner as the deacylation had taken place earlier during the laser
treatment.

Also, there were other gases evolved from the treated material,
which are under examination for the interpretation of further mass loss
difference seen in the TG curves of the original film compared to the
films treated by lasers.

4. Conclusions

Anti-counterfeiting unique laser marking of the tablet surface op-
eration was investigated in this article.

It was found that from among the three types of coding instruments
examined, excimer laser ablation did not cause a qualitative change in
the material during laser marking.

In this study we examined how the depth of ablation can be con-
trolled by changing only the number of impulses delivered by excimer
laser. We found that the correlation is completely linear. We were able
to ablate even 100 μm deep in the coating, so it is possible to trim the
outer layer even if it is that thick.

Raman spectroscopy is becoming one of the most widely used and
applicative approaches for analyzing pharmaceutical materials. It was
shown that Raman was capable of distinguishing films treated by dif-
ferent laser sources. We have concluded that chemical changes were
caused by semiconductor laser source compared to the original film,
and the film treated by excimer laser.

The main finding of the TG measurement showed that the decom-
position of the material occurred sooner in films marked by semi-
conductor laser, in higher temperature ranges, which is probably due to
the decomposition process that had already started during the laser
marking intervention. We did not experience anything like this in the
case of using excimer laser.

Based on our measurement results, it can be stated that the excimer
UV laser is clearly the most suitable marking instrument for anti-
counterfeiting coding on solid coated tablet form.
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A B S T R A C T

Substandard and/or falsified medicines are a growing global threat for health and they cause serious social and
economic damage. In low- and middle-income countries the failure rate of these medical products is approxi-
mately 10.5%. 50% of medicines purchased over the Internet may be fake.

According to Directive 2011/62/EU as regards the prevention of falsified medicines from entering into the
legal supply chain, a unique identification should be put on each box of drugs in the EU from 9th February 2019.

The current project is focusing on the development of a laser technology to mark an individual traceable code
on the surface of the tablet. Usually, coatings contain titanium dioxide for sufficient coverage, which makes
precision laser coding more difficult. New naturally coloured films do not include those excipients. In this re-
search, we would like to compare the physical-chemical properties of conventionally and naturally coloured
coatings after the laser marking procedure by using two types of lasers.

This unique identification technology can be used for marking personalized medicine with the doses tailored
for each patient, too.

To sum up, the present findings may contribute to efficient and reliable laser marking solutions in the unique
identification procedure. Based on our measurement results, it can be stated that excimer UV lasers are pro-
mising candidates as marking instruments for the polymer film in both conventionally and naturally coloured
coatings.

1. Introduction

Substandard and falsified (SF) medicinal products are a growing
problem, as they damage patients′ health, the society and the economy.
The World Health Organization, (WHO) adopted the name SF for the
medical products that fail to meet either national or international
quality standards or specifications at its 70th World Health Assembly in
2017 (WHO, 2017a; World Health Assembly, 2017).

According to the reports from WHO (2017), in low- and middle-
income countries the failure rate of SF medical products is approxi-
mately 10.5% (WHO, 2017b, 2017c), which means that due to SF
medicines each year 72,000 to 169,000 children may die of pneumonia,
or 64,000–158,000 additional deaths of malaria could be caused ac-
cording to the estimations of the University of Edinburgh and London
School of Hygiene and Tropical Medicine, respectively (WHO, 2017d).
In 2013 an estimated 122,350 (IQR: 91,577–154,736) under-five deaths

were associated with the consumption of poor-quality antimalarials
only in 39 sub-Saharan African countries, which suggests that these
poor-quality medicines are important contributors to child mortality
(Renschler et al., 2015) and may help the spread of growing resistance
geographically. The number of drugs is also growing in the global
marketplace, especially sales on the Internet (Nayyar et al., 2019),
which has become an accepted, and more and more popular way to
purchase medications in high-income countries since the establishment
of the first Internet pharmacies (Gallagher and Colaizzi, 2000; Ghinea
et al., 2006). Unfortunately, by now about 50% of medicines purchased
over the Internet are falsified because of the increase of illegal activities
(UNICRI, 2012; WHO IMPACT, 2006; Wilczyński, 2015), as they can
easily circumvent regulatory oversight (Siva, 2010), and globalization
makes it harder to regulate the medical products that are sold in this
way (Bichell, 2017).

Most of the counterfeiters produce and print packaging in different
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countries, shipping components to the final destination, where they are
assembled and distributed (WHO, 2017d). Parallel imports also pose a
significant risk to the safety of patients, especially when the product has
to be repackaged, which is generally not allowed, but sometimes it is
objectively necessary, e.g., to suit the target country′s national language
(European Commission, 2003; Said et al., 2011). Nevertheless, the re-
moval of blister packs from their original external packaging and their
insertion with one or more original packages into new external
packaging, or their insertion into another original package, the inser-
tion of new user instructions in national languages, or the fixing of self-
stick labels on original external packaging or blister packs is considered
as an activity which shall not affect the condition of the medicinal
product inside the packaging. The necessity of repackaging must be
justified by the parallel distributor in the course of a notification pro-
cedure (European Medicines Agency, 2019).

Managing illicit drug trafficking and limiting access to potentially
counterfeit medicines should be a priority for governments and drug
delivery systems (Vida et al., 2017). Recently, global pharmaceutical
supply chains have been developing stricter regulatory requirements. In
the USA, the FDA′s Drug Supply Chain Security Act sets out the ne-
cessary steps to implement an electronic, interoperable system to
identify and trace prescription drugs distributed in the US (FDA, 2014).

To prevent falsified medicines from entering the legal supply chain,
the European Union adopted Directive 2011/62/EU (European
Commission Staff Working Document, 2015; The European Parlament
and the Council of the European Union, 2011). The EU Commission
gave additional technical details for the further design of security fea-
tures with the Delegated Regulation (EU) 2016/161. From 9th February
2019 serialization, traceability and verification for prescription-only
medicines are obligatory requirements in the EU. This requires a new
safety feature, a unique 2D data matrix barcode, which should be put on
each box of drugs (European Comission, 2016).

To protect medical products, a large number of security technolo-
gies can be used for authentication. The choice of technology depends
on the available financial resources, security level, feasibility, etc. It is
recommended to use more than one technology at the same time to
provide an effective protection against counterfeiting. The technologies
that can be used include, but are not limited to the following: Printing
technologies (offset lithography, flexography, gravure, screen printing,
laser printing, pad printing, embossing and debossing, laser engraving,
inkjet printing), security labels (adhesive, frangible, security cuts and
perforation, void labels, holograms) and/or tracking technologies (se-
rial numbers, linear bar codes, matrix codes, radio frequency identifi-
cation (RFID)) may be used on the packaging of the medicines(Davison,
2011). Furthermore, various methods such as unique coating colours,
shapes, tooling, texture, sizes, physical feature, unique tablet designs,
logos, texts, pearlescent film, printing etc. may be used for on-dose
visual identification, while physical-chemical identifiers (PCIDs) in-
clude inks, pigments, flavours, and molecular taggants. For example,
TruTag′s on-dose authentication (TruTag Technologies, 2019), Mi-
crotag (Nogaja, 2013), may be incorporated into solid oral dosage
forms as in-dose features. Some PCIDs could require the use of instru-
mental detection.

The final aim of the present project is to extend the regulation
provided by the Directive and to develop a technology for marking
individual traceable 2D codes directly on the surface of the tablet. With
this process, it would be easier to provide tablet authentication and to
avoid illegal repackaging. As most existing anti-counterfeit technolo-
gies are on the drug packaging, it is easy for unscrupulous traders to
exchange quality drugs (You et al., 2016). The QR code on the surface
of the tablet is an excellent opportunity because of its high-capacity and
error-correctability, its comprehensive reading ability, and its rapid and
easy generation (Fei and Liu, 2016).

Besides anti-falsification, this unique identification technology is
also suitable to label personalized medicines with codes tailored for
each patient on each tablet. This information is increasingly needed for

older persons following a prolonged complex drug regimen as they
make mistakes when taking their medication (Mira et al., 2015), or
when dose flexibility is needed for specific patient groups depending on
age, gender, weight and genetic background (Edinger et al., 2018;
Vakili et al., 2015). Coding could have benefits in terms of remote
monitoring like tracking of medicine, or medicine reminder and mon-
itoring system (Zanjal and Talmale, 2016). Furthermore, in hospitals, it
is important to have a method to keep track of individual medicines
dispensed to patients to avoid severe health risks. When the medicine
leaves its packaging, it becomes impossible to identify the drug unless
the leaflet remains accessible. The problem is the lack of information on
the medicine itself (Kato et al., 2010).

Other research groups are also investigating alternative techniques
for the direct marking of dosage forms. You et al., applied a fluorescent
3D QR code consisting of three different colour layers directly printed
on the surface of the drug capsules. By using the multilayer printing and
splitting technology, where each layer encodes information of different
aspects of the drug and may be decoded by a specific smartphone ap-
plication, the information storage capacity per unit area increases (You
et al., 2016). Another study reports the interface between 3D printing
and 2D inkjet printing technologies in order to fabricate a drug-loaded
3D printed tablet with a unique track-and-trace measure in a single step
process. 2D codes were printed onto the surface of polymeric based
printlets for scanning using a smartphone device and were designed to
encode tailored information pertaining to the drug product, patient and
prescriber. Plus, a novel anti-counterfeit strategy was designed, which
involved the deposition of a unique combination of material inks for
detection using Raman spectroscopy (Trenfield et al., 2019). In a third
case, CO2 laser engraving was used to achieve roughness over different
surfaces causing a difference in the grey levels on tranFslucent mate-
rials. This effect and the micro mold process was used to achieve micro
pattern of the QR code and to obtain drug-laden biodegradable label
(Fei and Liu, 2016).

In the present study laser ablation has been chosen for marking
because it overcomes the drawbacks of the most popular printing
methods (like offset-, ink-jet-, and pad printing), where the clear
printing pattern may easily be affected by the environmental conditions
of the process room, uniformity, temperature, and drying of the ink
(Hosokawa and Kato, 2011). Printability is also affected by ink viscosity
and surface tension, the size of the nozzle (Daehwan et al., 2009), the
surface roughness of tablets, which may cause problems such as mottled
appearance, blur, or dirt of the inks (Kato et al., 2010). Most of the ink
printing requires contact between the substrate and some form of ink
carrier, toner reservoir, or stamp so that could be a source of con-
tamination (Davison, 2011). In addition, organic solvents which are
harmful to the employees′ health and the environment are often used
for the inks (Kato et al., 2010). In contrast, laser ablation is a non-
contact method that avoids the problems of the above-mentioned ink
printing technologies and eliminates the cost of consumables using ink.

The final plan is to put two coatings on the tablet surface in different
colours, a functional one and a second one for marking. After the laser
ablation of the upper film layer, the differently coloured code could be
read even by the patient using a mobile phone with the appropriate
application. In the literature, there are several studies on mobile phones
as a device capturing image and processing data for the authentication
of fake drugs (Edinger et al., 2018; Fei and Liu, 2016; Karen
Langhauser, 2013; Mackey and Nayyar, 2017; Ur Rehman et al., 2011).
This coding process could have benefits for tracking drugs across the
distribution chain and for adding information for personalised medi-
cines. However, the 2D code on the surface of the medicine could have
an impact on the visual appearance and affect the acceptance of med-
ication by patients (Trenfield et al., 2019).

Preliminary studies (Ludasi et al., 2018) have shown that the use of
conventional coatings, containing titanium dioxide and talc to achieve
better surface coverage, could make precision laser coding more diffi-
cult. Therefore, as a response to the growing demand for natural
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materials, and since new naturally coloured film formulations do not
include the excipients mentioned above, the current research is fo-
cusing on the comparison of the physical-chemical properties of con-
ventionally and naturally coloured coatings after the laser marking
procedure by two different types of lasers.

The selection criteria for lasers were the comparison of completely
different types of instruments to provide a broader overview of the
effects of different lasers. The pulsed mode excimer laser works with
photochemical ablation, which seems to have a more gentle effect on
the structure of the coating. However, it uses gas mixtures, usually
noble gas and halides, and the running costs are high due to the
maintenance and equipment costs (E. Kannatey-Asibu Jr., 2009; Steen
and Mazumder, 2010). In contrast, the continuous mode semiconductor
(diode) laser ablates by the photothermal effect and has the advantages
of being compact, efficient, with a quick modulation response and re-
liability. It is relatively small in size and easy to fabricate by mass
production, thereby it has a low cost. In addition, they operate at dif-
ferent wavelengths.

2. Materials

2.1. Coating materials

HPMC based ready-to-use coating formulas: Sepifilm PW Red, PW
Green, PW White and naturally coloured Sepifilm NAT Pink and NAT
Green (Seppic S.A., Paris La Defense, France) were used dispersed in
distilled water.

3. Methods

3.1. The plastic ball coating procedure

In this study, experiments were done on coating films, sprayed on
the surface of polyethylene balls (Primary Balls Kft., Budaörs, Hungary)
with an outer diameter of 2.5 cm under the same conditions as pre-
viously used on tablets. Thereafter the film was removed from the ball,
marked by laser and examined.

The aqueous HPMC coating solutions consisting of 15%w/w dry
substance in the case of SEPIFILM™ NATurally COLoured coatings
agents, and 20%w/w dry substance in the case of Sepifilm™ PW coating
systems, according to the supplier′s recommendation, were prepared by
dispersing them in distilled water. The total mixing time lasted for
45min, followed by passing the dispersion through a 0.5 mm sieve.

4M8 Pancoat (ProCepT, Zelzate, Belgium) perforated coating pan
was used for spray coating. 35 pieces of balls were coated at the same
time in four stages. The coating parameters are shown in Table 1. A
0.8 mm spray nozzle was used for the application of the atomised spray
coating solution for 55min, with an atomising air pressure of 2.0 bars
and an air flow rate of 0.70m3/min. The drying and cooling process
lasted for 15min each.

3.2. Irradiation of coating films with 2 types of laser

In the first step the coating films were irradiated with a LLG
TWINAMP type ArF excimer laser (wavelength: 193 nm, energy:

3 ± 0.2mJ, fluence: 444mJ/cm2, FWHM: 20 ns, spot size: 375 µm),
using a simple square-shaped mask, which has resulted in a 1mm2

square-shaped ablation hole, to study the effect of the laser on the
coating film. The extension of the ablation procedure to achive the
planned 2D imaging requires the combination of the laser with a precise
CNC stage.

The effect of a CW semiconductor laser (wavelength: 405 nm, spot
size: 73 µm, power: 1000 mW, irradiation time: 15–20ms) on the
quality of the coating films was also tested. In this case a full QR code
was generated using online ZXing (“Zebra Crossing”) code generator
software, an open-source, multi-format 1D/2D barcode image proces-
sing and code generator library implemented in Java. The standard QR
code was generated (ISO/IEC 18004:2015) with 8 numerical characters
using 300 dpi resolution and lowest error correction (Level L). For
reading the QR code, the same software application was used by a
mobile phone. The 3D geometric correction has not yet been applied to
the 2D images, since it was projected to the coating film, which has a
negligible curvature compared to the real tablet surface.

3.3. Digital microscope

The surface morphology of the ablated film was observed by using a
Digital Microscope (KEYENCE, VHX-6000). This instrument is equipped
with a newly developed REMAX VI High-Performance Graphics Engine
and D.F.D. 2.0 image processing engine. This enables the creation of a
precise 3D image by analysing small changes in texture after capturing
numerous images at different heights and different angle positions,
HDR and image-stitching. Through line roughness and surface rough-
ness measurements, reliable evaluation of surfaces can be performed
and converted to a figure.

Data was evaluated by HDR playback / measurement / stitched
image playback software developed by KEYENCE.

3.4. Surface profilometer

Profilometry measurements were performed on a Veeco, Dektak 8
Advanced Development Profiler®. The tips employed had a radius of
curvature ~2.5 μm, and the force applied to the surface during scanning
was ~30 μN. The horizontal resolution was 0.1–0.13 μm. The vertical
resolution was 40 Å. Data was evaluated by Dektak software (Microsoft
® Windows XP ®: interactive data acquisition) and Vision ® 32 software
(data processing, 2-D and 3-D image analysis) (Veeco Instruments Inc.,
New York, USA)

3.5. Raman spectra

Films treated by a laser were investigated by Raman spectroscopy.
Spectra were acquired with a Thermo Fisher DXR Dispersive Raman
(Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped with a
CCD camera and a diode laser operating at a wavelength of 780 nm.
Raman measurements were carried out with a laser power of 12 and 24
mW at 25 µm slit aperture size. Spectra of the individual films and films
treated by two different lasers were collected using an exposure time of
6 sec. The data were collected in the spectral range of 3407–24 cm−1

using automated fluorescence corrections. OMNIC 8 software was used
for data collection, averaging the total of 20 scans and making the
spectral corrections. For the removal of cosmic rays, a convolution filter
was applied to the original spectrum using Gaussian kernel.

3.6. Thermal gravimetric analysis (TGA)

The thermal gravimetric analysis of the samples was carried out
with a Mettler-Toledo TGA/DSC1 instrument (Mettler-Toledo GmbH,
Switzerland). The start temperature was 25 °C, the end temperature was
500 °C, the applied heating rate was 10 °C/min. Nitrogen atmosphere
was used (cell gas: 50ml/min, method gas: 70ml/min). 5 ± 1mg of

Table 1
The coating parameters of balls.

Step Inlet air
temperature (°C)

Exhaust air
temperature (°C)

Ball temperature
(°C)

Drum
speed
(rpm)

Warm-up 60 N/A Until 50 3
Coating 50–55 40–42 45 9
Drying 40 30 27 3
Cooling 25 25 25 3
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samples were measured into aluminium pans (40 μl). The peak areas
were evaluated with Mettler-Toledo STARe Software.

4. Results and discussion

The present study is focusing on the comparison of conventionally
coloured and naturally coloured coatings that are talc- and titanium
dioxide-free, to clarify how the titanium dioxide particles interfere with
laser ablation. Films were sprayed on the surface of polyethylene balls,
removed and marked with 2 different types of lasers. After marking the
polymer films, a detailed quality analysis was made to check if there
occurred any change during the laser intervention in different films.

4.1. Surface

Laser marked films were examined first by a 3D digital microscope.
The investigated lasers had different effects on the films. The excimer
laser′s material removal mechanism is photochemical ablation. The
energy of the ultraviolet photon is between 3.5 and 6.5 eV, which is
similar to the molecular bonding energy for many organic materials
(the energy associated with the CeC bond is roughly 4.6 eV, while that
of the CeH bond is about 4.2 eV and 6.42 eV in our case). When an
organic material is irradiated with an ultraviolet beam, the compounds
efficiently absorb the beam′s energy in a very thin layer of the order of
submicron, near the surface. This breaks molecular bonds, causing
ablative decomposition of the irradiated area. The process occurs al-
most instantaneously, there is no time for any heat transfer. The re-
sulting edges are well defined, with minimal thermal damage to the
surrounding area, which is why the process is also called cold ablation.

In contrast, semiconductor lasers ablate material by a photothermal
effect. Heat flows by thermal conduction and material evaporates by
boiling after prior melting or burning. However, this thermal heating
may cause material removal by routes other than straight boiling. By
the sufficient heating of the material, the vibrations can break the
weaker bonds, and the boiling point of the broken structure may be
lower than that of the original structure and evaporation occurs without
the reaching of the melting point, which is of particular relevance to
polymers (Kannatey-Asibu Jr., 2009; Steen and Mazumder, 2010).

The effects of the different lasers on the ablated polymer films are

Fig. 1. Coating films treated by excimer laser: Sepifilm PW Red (A), PW Green (B), Sepifilm Naturally Coloured Pink (C) and Green (D).

Fig. 2. The coating films treated by semiconductor laser: Sepifilm PW White (A), PW Red (B), PW Green (C) and Sepifilm Naturally Coloured Pink (D) and Green (E).

Fig. 3. Microscopic picture of untreated films (first column: a, d, g), films
treated by excimer laser (second column: b, e, h) and films treated by semi-
conductor laser (third column: c, f, i). Sepifilm PW Red (a, b, c), PW White (d, e,
f), and Sepifilm Naturally Coloured Pink (g, h, i).
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seen in Figs. 1 and 2, showing the holes ablated by the excimer laser,
and the markings achieved by the semiconductor laser, repectively.
During the excimer laser ablation, the square-shaped holes on the film
returned the shape of the mask used. The ablations of the differently
coloured coatings were considerably different: coatings PW Red and PW

Green, containing titanium dioxide and talc, are seen in Fig. 1 A and B,
where white and black particles are visible. The is no similar phe-
nomenon on the laser treated surface of the naturally coloured NAT
Pink and NAT Green coatings (Fig. 1C and D). The resulted shape is
much sharper, and the surface is much smoother in this type of coating

Fig. 4. Typical untreated tablet surface roughness measured with profilometer.

Fig. 5. Surface analysis by KEYENCE 3D microscope of the excimer laser treated region of Sepifilm PW Red coating. A – 3D surface graph, B – top view with original
colours of the ablation hole, C – profile analysis. The white titanium dioxide particle is marked with a yellow circle.
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films due to the lack of the disturbing particles.
The result of the treatment by semiconductor laser is black burst

signals or the fading of the colour of coatings, which may be seen in
Fig. 2A–C or D and E, repectively. To clarify the nature of changes on
the treated surface, further investigations were made.

The microscopic pictures of the untreated, excimer laser treated and
semiconductor laser treated films may be seen in the first (Fig. 3a, d,
g.), second (Fig. 3b, e, h) and third (Fig. 3c, f, i) columns of Fig. 3 re-
spectively. Arrows are pointing at the little white titanium dioxide
particles. However, in the square shaped ‘print’ both black and white
particles are seen in Fig. 3b, e.

This phenomenon may be connected to the three existing crystal
structures of titanium dioxide, rutile, anatase, and brookite (Hosokawa
and Kato, 2011). By the laser treatment of titanium dioxide, apart from
ablation, three main events are expected to occur: reduction, phase
transition and melting. These can be qualitatively graded according to
the respective characteristic temperatures of 500 °C, 750 °C, and

1870 °C. It was reported by Robert et al. that the irradiation of titanium
dioxide by KrF excimer UV pulsed laser at wavelength 248 nm induced
a colour change from white to dark blue, which was the phase transi-
tion of anatase to rutile indicating surface reduction (Robert et al.,
2003). Furthermore, Kato et al. were studying the mechanism of
printing film-coated tablets containing titanium dioxide by using a
tripled Nd: YVO4 UV laser printing machine (wavelength of 355 nm).
They marked clear numbers and letters on the surface of the tablet by
turning the colour of the film from white to grey, as a result of the
appearance of many black particles in the coloured part of the film. The
black particles are formed by the agglomeration of the greyed oxygen-
defected titanium dioxide by the UV laser irradiation (Kato et al.,
2010). It was assumed that in the present case the white and black
points in Fig. 3b and e are also associated with the laser irradiated ti-
tanium dioxide, since the reactions of titanium dioxide to laser ablation
differ significantly from other ingredients of the coating material. Each
material has its characteristic ablation threshold. This value is specific

Fig. 6. Surface analysis by 3D microscope of the excimer laser treated region of the Sepifilm NAT Pink coating. A – 3D surface graph, B – top view with original
colours of the ablation hole, C – profile analysis.

Table 2
The compositions and Raman spectroscopic references of conventionally (PW) and naturally (NAT) coloured coatings.

PW coloured films Literature background Raman activity of
components

NAT coloured films Literature background Raman activity of
components

HPMC (Romann et al., 2010) HPMC (Romann et al., 2010)
PEG (Romann et al., 2010) glycerine (Romann et al., 2010)
Talc (Szostak and Mazurek, 2002) MCC (Fechner et al., 2003)
Titanium dioxide (Kato et al., 2010)
Pigments white: - Colouring food agents

red: iron oxide (Li et al., 2012) pink: beetroot
extract

(de Oliveira et al., 2010)

green: chlorophyll (Koyama et al., 1986) green: algae extract (Weiss et al., 2010)
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to the material, to the type of laser, to the ablation method and to the
wavelength and the fluence (Kannatey-Asibu Jr., 2009; Steen and
Mazumder, 2010). In the studies of Laude et al., the ablation of talc
started at 250mJ/cm2

fluence at 248 nm wavelength, so it is likely that
talc has been ablated during the laser treatment (Laude et al., 1997).
The ablation of titanium dioxide requires higher fluence than other
ingredients of the coating material, and it is likely to require higher
fluence than our laser can provide. In the present case the excimer laser
was used at 193 nm wavelength and 444mJ/cm2

fluence, whereas lit-
erature data about the ablation threshold of titanium dioxide is avail-
able only at 248 nm wavelength and 1.44 J/cm2 (Van Overschelde
et al., 2006) or 910mJ/cm2

fluence (Robert et al., 2003). The threshold
value in this study was still below the ablation threshold of titanium
dioxide and was not enough for its removal, but it was enough for the
removal of the rest of the coating. Therefore the presence of these ex-
cipients makes precision laser coding by the excimer laser more difficult
as particles remain, increasing overall surface roughness and degrading
the uniform colour distribution. In the case of the titanium dioxide-free
naturally coloured coatings (Fig. 3g and h), those black and white
particles are not visible.

The QR code requires a certain spatial resolution when encoding the
desired amount of data. The required (RMS-Root mean squared) surface
roughness of the treated region should be less than 10 µm. In most
cases, the untreated tablet surface fulfils that criterion, see Fig. 4.

The previously discussed titanium dioxide enrichment can disturb
the 2D code recognition by increasing surface roughness. The re-
maining particle size can be about half of the ablation depth, as shown
by the results of the excimer laser treated PW Red film as an example
(Fig. 5). The designated line where the measurement was taken is
passing through the ablation hole (Fig. 5A and B) and the corre-
sponding profile of the ablation hole is shown in Fig. 5C.

The metal oxide and pigment ratio also changed during the ablation
procedure. This effect modifies the treated coating colour and, as a
result, degrades the 2D code contrast. In contrast, no disturbing white
particles are seen in the case of NAT Pink coating (Fig. 6), and the
lasered surface is found to be smoother.

According to the literature, it was supposed that the thermal effect
of pulsed UV radiation of 193 nm is negligible, only rapid photo-
chemical reactions take place in the irradiated volume “exploding” the
molecules from the surface (photoablation), and there is no time for any
heat transfer. This hypothesis was supported by the microscopic pic-
tures where no sign of thermal degradation or modification of the film
structure were visible. In contrast, the 404 nm wavelength diode
(semiconductor) laser has a higher wavelength, greater heat effect, and
operates with continuous irradiation, where there is enough time for
heat transfer, heat propagation and heat accumulation, which can lead
to thermal degradation. The signs of melting and burning, causing
structural changes and modified porosity of the films are well visible in
Figs. 2 and 3c, f, i.

4.2. Raman investigations

As it was discussed above, the 2 types of lasers have a completely
different effect on the coatings, which was displayed in the microscopic
pictures (Fig. 3). The semiconductor laser seemingly burned or faded
out the films. To find out what kind of chemical changes happened,
Raman investigations were carried out. Nevertheless, the complex
composition of the coatings, - especially the ones that contain natural
colourings (e.g., extracts of fruits, vegetables, plants or algae) -, where
the exact composition is not known, makes analysis difficult.

The components and the related relevant literature for Raman
spectroscopic examinations are listed in Table 2.

The fingerprint region of Sepifilm is 1800 cm−1–500 cm−1. The
spectra of raw free films and films treated by different lasers are sum-
marized in Fig. 7. In all cases, the spectra of the films treated by the
semiconductor laser changed the fingerprint region of Sepifilm, while

Fig. 7. Raman spectra of film coatings treated with different lasers (a) Sepifilm
PW White, (b) Sepifilm PW Red, (c) Sepifilm PW Green, (d) Sepifilm NAT Pink,
(e) Sepifilm NAT Green (A – original, B – excimer laser, C – semiconductor
laser). Raman measurements were carried out with a laser power of 12mW and
in the case of Sepifilm NAT Green 24mW.
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the excimer laser did not cause considerable alteration in the coatings.
Firstly, it should be emphasized that the polymer films containing

the extract of colouring foodstuffs, Sepifilm PW Green, NAT Pink and
NAT Green (Table 2) exhibited severe fluorescence during the mea-
surement (Fig. 7c–e). This effect could not be corrected by photo-
bleaching, and it has made the analysis difficult or impossible. In the
case of PW Green, fluorescence disappeared after marking it by the
semiconductor laser, presumably because of a change in the structure of
chlorophyll, which resulted in the change of the colour of the coating
(Fig. 2).

Among the listed components, titanium dioxide is one of the most
important that had an effect on the lasering results, which has already
been discussed above. In the corresponding articles, the peaks of the
Raman spectra of titanium dioxide may be found at 396, 516 and
638 cm−1, which characteristic peaks were found in the Raman spectra
of Seppic PW films (Fig. 7a–c). These peaks exhibited a minor decrease
in films treated by the excimer laser, and a more considerable decrease
in intensity when they were lasered by the semiconductor laser, in the
same way as Kato et al. have reported (Kato et al., 2010). In the same
spectra, considerable fluorescence was detectable in the region of
1700 cm−1 to 1200 cm−1 in the case of the semiconductor laser treated
films, which is likely due to the product degradation that had occurred
during the laser treatment.

4.3. Thermal gravimetric analysis (TGA)

To reveal the effect of the assumed chemical changes on the struc-
ture of the films, TGA measurements were performed. The main char-
acteristics of the samples derived from TG curves as corresponding mass
loss values (Table 3) were used to define the thermal behaviour and
combustion characteristics of films. It is seen that mass loss in Sepifilm
NAT Pink and Sepifilm PW Red coating comes in two stages. The first
mass loss occurred between 25 and 120 °C with both coatings, the
second stage between 290 and 430 °C in the case of NAT Pink film, and
between 290 and 440 °C in the case of PW Red. The mass loss of Se-
pifilm PW White film was observed between 25 and 500 °C.

The TG curves revealed that the decomposition occurred sooner in
Sepifilm NAT Pink, PW White, and PW Red coatings if they were
marked by a semiconductor laser, as it may be seen in Fig. 8. These
results correlate with the results of our previous research (Ludasi et al.,
2018). It may be seen from the microscopic mosaic picture of the pre-
and post-lasered films that in contrast with the untreated intact films
(Fig. 3a, d, g), the semiconductor laser treated films (Fig. 3c, f, i) exhibit
damaged structures. Holes may be seen, especially on the Sepifilm PW
White film (Fig. 3f) surrounded by a wide range of melted area. A da-
maged structure and larger pores appeared, suggesting that water can
escape more easily from the internal parts of the material as a result of

the heat effect. Therefore, it can be concluded that the weight loss seen
in the first step of the TG curve may show the water loss of the films
(Fig. 8a and c). The visual signals of the damage (Fig. 3c, f, i) and the
corresponding TG curves of semiconductor laser treated films, - where
all of these curves reveal that decomposition occurred sooner -, all in-
dicate that the decomposition process had already started during the
laser marking process. In contrast, in the micrographs of the excimer
laser treated films (Fig. 3b, e, h) it is seen that the ablated surface of the
sample exhibits no considerable destruction, the structure of the film is
relatively intact. The TG curves of the excimer laser marked films run
together with the curves of the original, untreated film. Overall, the
earlier the mass loss of TG curves began, the more damaged the surface
of semiconductor laser-coded coatings was, and the lack of these signs
on the excimer laser treated ones indicates well the different effects of
different lasers on the films.

5. Conclusion

In this study, the behaviour of conventional coating compared to
ones containing natural colourings was examined during marking with
different lasers. The results demonstrated that the excimer laser could
be the right instrument for marking functional coatings, since it caused
no structural damage in the treated films. However, the laser treatment
of the naturally coloured material can be performed more accurately,
with greater precision due to the lack of remaining particles disturbing
the reading of the ablated codes. It can also be concluded that laser
ablation differentiates the ingredients of the conventional coating as the
white titanium dioxide particles stay in place and they change the
overall surface colour, which can affect drug identification. Marking
pills by excimer laser could be a promising solution for pharmaceutical
companies that would like to have additional protection against drug
counterfeiters or to mark personalized medicines. It is also an important
conclusion that, despite the resulting chemical modifications, semi-
conductor lasers may be useful and cheaper alternative for tablet coding
if marking is performed on non-functional coating which is thick en-
ough to avoid heat transfer into the tablet core, and if no harmful by-
product is formed as a result of the heat. These technologies would not
be mandatory, but the option is there to use them as they could have
several useful features, too.
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Table 3
Decomposition behavior of the raw polymer film and the film treated by laser.

TG data Sepifilm® NAT. P. film Sepifilm® NAT. P. film treated with excimer laser Sepifilm® NAT. P. film treated with semiconductor laser

First step
Thermal range (°C) 25–120 25–120 25–120
Mass loss (%) 2.85 4.05 4.91
Second step
Thermal range (°C) 290–430 290–430 290–430
Mass loss (%) 58.26 59.98 68.94
TG data Sepifilm® PW R film Sepifilm® PW R film treated with excimer laser Sepifilm® PW R film treated with semiconductor laser
First step
Thermal range (°C) 25–120 25–120 25–120
Mass loss (%) 1.07 1.15 1.80
Second step
Thermal range (°C) 290–440 290–440 290–440
Mass loss (%) 51.88 52.11 55.12
TG data Sepifilm® PW W film Sepifil® PW W film treated with excimer laser Sepifilm® PW W film treated with semiconductor laser
Thermal range (°C) 25–500 25–500 25–500
Mass loss (%) 56.06 54.80 65.63
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A B S T R A C T   

Counterfeiting of the products for healing is as old as trading, and it is difficult to quantify the magnitude of the 
problem. It is known that substandard and/or falsified (SF) medicines are a growing global threat to health, and 
they cause serious social and economic damage. The EU has a strong legal framework for medicines, it is 
mandatory to meet the requirements of Directive 2011/62/EU. Serialisation prevents SF medicinal products from 
entering the legal distribution chain. The present study is an extension of the original idea and aims to develop a 
laser technology-based method to mark an individual traceable code on the surface of the tablet, which tech
nology can also be used for marking personalized medicines. The method is based on the ablation of the upper 
layer of a double-layer, differently coloured coating. The 2D code should be formed without harming the 
functional layer, and anyone with a smartphone integrated with a camera should be able to authenticate these 
drugs with a suitable application. The present findings confirmed that KrF excimer laser and Ti:sapphire 
femtosecond laser are efficient and reliable for marking. These should be promising candidates for pharma
ceutical companies that would like to have additional protection against drug counterfeiters.   

1. Introduction 

Counterfeiting of the products for healing is as old as trading, dating 
back to 1495 BCE, when there was a hunt for genuine medicinal plants at 
the request of Queen Hatshepsut of Egypt because the market was full of 
worthless fakes (Brickell, 2001). In the 18th century, when malaria was 
still endemic in Europe, the continent was flooded with false cinchona 
bark used to treat fevers (WHO, 2017a). 

Substandard and falsified (SF) medicinal products pose a growing 
threat to public health as they can deliver hazardous treatment or even 
cause death (Han et al., 2012a). Moreover, in health institutions phy
sicians and pharmacists may not even be aware of patients buying 
medicines from uncertain or illegal sources, but these products are likely 
to influence the success of therapies (Fittler et al., 2018b). Bringing these 
drugs under control is a considerable challenge globally (Han et al., 
2012a). 

Substandard medicines are authorized medical products that fail to 

meet either their quality standards or specifications, or both, while 
falsified medical products are those that deliberately misrepresent their 
identity, composition or source (WHO, 2017b). 

Some falsified medical products are almost visually identical to the 
genuine product and very difficult to detect. However, many can be 
identified (WHO, 2018). Possible techniques for detection: visual 
analysis (inspection of packaging condition, labelling, spelling mis
takes, dosage units, expiry dates, or various product security features 
like watermarks, holograms or microprinting, etc.), physical analysis 
(observation of discolourations, surface investigations by microscopy, 
furthermore, evaluation of disintegration or dissolution measurements, 
etc.), and chemical analysis (classical chemistry or instrumental 
analysis such as spectroscopy, spectrometry, chromatography, etc.) 
(Davison, 2011; Roth et al., 2019). 

The EU has a strong legal framework for medicines. At the end of the 
distribution chain, only licensed pharmacies and approved retailers are 
allowed to sell medicines, including legitimate sale via the Internet 
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(European Medicines Agency, 2018a). For EU Member States, since 
February 2019, it has been mandatory to satisfy the requirements of 
Commission Delegated Regulation (EU) 2016/161(European Commis
sion, 2015) and Directive 2011/62/EU (The European Parlament and 
the Council of the European Union, 2011) of June 2011. Serialisation 
prevents SF medicinal products from entering the legal distribution 
chain. It involves tracing an individual product from the manufacturer 
through the wholesaler to the patient, by a unique 2D identification that 
is put on each box of prescription drugs. The 2D code should include the 
product code, the batch number, the serial number, the expiry date, and 
the national identification number if required by the Member State 
where the product is placed on the market (European Commission, 
2015). In order to combat drug counterfeiting, pharmaceutical manu
facturers and suppliers are working on adopting a worldwide stan
dardized identification system (Trenfield et al., 2019). 

The aim of this research is to support the regulation and to develop a 
technology for marking an individual traceable code directly on the 
surface of the medicine. Oral drug delivery is the most preferred and 
convenient route of drug administration (Viswanathan et al., 2017), and 
from among these, tablets are the most chosen pharmaceutical drug 
delivery systems. They are physically and chemically stable during 
storage, simple-to-use, have sustainable production and generally 
excellent content uniformity (Haaser et al., 2013). Therefore, tablets 
were chosen for marking in this study. The laser coding technology al
lows the authentication of tablets and avoids illegal repackaging. 

For encoding, the Quick Response (QR) Code was chosen, which 
contains information in vertical and horizontal directions. It offers high- 
capacity encoding so it can hold a great volume of information. QR codes 
have different features and data capacities. Some have a maximum 
storing capacity of approximately 7000 figures (Denso Wave, 1994). 
They have an error correction capability that can restore data from a 
partially damaged code, and they offer omnidirectional reading. 
Because of these features, the QR code is suitable for encoding a high- 
level authentication capability (Han et al., 2012b). In the case of tab
lets, it is possible to encode in the QR code the name of the drug or in
formation relevant to the patient, the usage, the dose, the ID of the 
producer and the batch number or the expiration date, etc. (Edinger 
et al., 2018). Further research is needed to determine the maximum 
information density of QR codes produced by the laser ablation tech
nique on curved drug surfaces. In 2018, the European Medicines Agency 
(EMA) published a guideline on the use of mobile scanning and other 
technologies, such as QR coding in labelling and packaging of medicines 
(European Medicines Agency, 2018b). 

If marking of individual tablets is aimed at or necessary, the 
following cases should be considered when laser coding is applied: if the 
tablets to be marked do not have a coating, at least one coloured layer 
should be applied to the drug so that the laser coding process can be 
performed on the surface. In cases when tablets have a coloured coating 
(for example, for improved swallowability or identification purposes), 
that layer could be marked. When a functional coating is needed because 
of the therapy, an extra coating is required on top of it to enable marking 
without the loss of coating functionality. 

In our previous study, the results demonstrated that marking func
tional coatings by ArF 193 nm excimer laser caused no structural 
damage in the treated films (Ludasi et al., 2018), although titanium 
dioxide particles remained in the film during ablation. Those white 
particles made the accurate reading of the QR codes difficult due to the 
reduced contrast. To eliminate the problem, naturally coloured coatings 
were used (Ludasi et al., 2019). That solution seemed to work, but since 
most coatings contain titanium dioxide for better coverage and/or 
improved photostability, it would greatly restrict the use of this method. 
So, another solution had to be found. Each material has an ablation 
threshold, and for successful marking, the threshold value of the mate
rial has to be exceeded (Kannatey-Asibu, 2009). The ablation threshold 
of a substance is determined by several parameters, which are mostly 
related to the laser beam. These include the repetition rate of the laser 

(Hz), wavelength, pulse energy and duration, energy density and the 
absorption properties of the substrate. By selecting the proper laser 
parameters, the desired ablation depth can be achieved (Elliott, 1995). 
To solve the difficulty with titanium dioxide, other types of lasers were 
tested in this study. In the first case, a KrF excimer laser with a higher 
wavelength (248 nm) (hereinafter: UV248) was chosen, as it was known 
from previous experience that the excimer laser was safe. Also, the laser 
exceeded the ablation threshold of titanium dioxide at the wavelength of 
248 nm known from the literature (Van Overschelde et al., 2006). In the 
second case, a near-infrared (800 nm), short pulse femtosecond laser 
was used. The assumption was if the pulse is ultrashort, the heat effect is 
negligible, and no or just little chemical or thermal damage occurs 
during the removal of the material. In addition, it can create very fine 
structures, it is more accurately adjustable, faster and also cleaner (Steen 
and Mazumder, 2010). 

In the present experiment, tablets (white) were coated with 2 layers 
of differently coloured coatings. The transparent bottom layer was the 
functional one, while the red-coloured top layer was applied to enable 
marking. The 2D codes were drawn by ablating specific parts of the 
upper coating layer. Anyone with a camera-enabled phone and a suit
able application should be able to authenticate these drugs. In addition, 
as for healthcare it is increasingly important that each patient receive 
personalized drug therapy instead of a ‘one-size-fits-all’ treatment 
(Ayyoubi et al., 2021), these codes could be used as a label in person
alized medicine. 

We would like to emphasize that, in addition to all kinds of protec
tion and coding, the most important strategy that can be adopted for the 
patients’ safety is to organize communication and education campaigns 
to inform them and to educate the public on the safe use of Internet 
pharmacies. People must be taught to be able to differentiate between 
legal and illegal medication suppliers (Fittler et al., 2018a). Mobile 
phone applications that recognize information encoded on tablets can 
dramatically reduce the time for education, especially for the upcoming 
generation. 

2. Materials 

2.1. Tablet core and coating materials 

The active ingredient of the model tablet was Ibuprofen DC 85 (Ibu, 
BASF, Germany) 16.66% (w/w), and excipients: microcrystalline cel
lulose (Vivapur 102, JRS Pharma, Germany) 74.33% (w/w), crospovi
done (Kollidon CL-M, BASF, Germany) 5% (w/w), talc (Molar 
Chemicals, Hungary) 3% (w/w) and magnesium-stearate (Molar 
Chemicals, Hungary) 1% (w/w) were used as received. 

The shape of the tablets was as follows: Nr1 type: round with flat 
surface and no break line on it (diameter: 12 mm, crown height: 4.1 mm, 
average weight: 600 mg). Nr 2 type: round with flat surface and no break 
line on it (diameter: 10 mm, crown height: 3.1 mm, average weight: 300 
mg). Nr 3 type: round with flat surface and no break line on it (diameter: 
10 mm, crown height: 4.8 mm, average weight: 500 mg). 

Placebo tablets were also used as coating aid for reasons of saving 
time and material. The placebo tablets were round with biconvex sur
face and had no break line on them (diameter: 10 mm, crown height: 4.2 
mm, average weight: 350 mg). 

The first (functional) film-forming agent was an aqueous-based 
enteric coating dispersion: Eudragit L30 D55® (Evonik Nutrition & 
Care, Germany). The second film-forming substance was a hydrox
ypropyl–methylcellulose (HPMC)-based coating formula, Sepifilm PW 
Red (Seppic S.A., France). 

3. Methods 

The ingredients of the tablet were homogenized with a Turbula 
mixer (Willy A. Bachofen Maschienenfabrik, Switzerland) for 8 min, and 
2 min after the addition of the lubricant. The homogenous powder 
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mixture was compressed with a Korsch EK0 (E. Korsch Maschienenfab
rik, Germany) single punch eccentric tablet press. 

3.1. Coating procedure 

330 g of placebo tablets and 70 g of API (Active Pharmaceutical 
Ingredient) containing tablets were coated together at the same time in 
order to save material and time. 

Eudragit® L30-D55 aqueous polymer dispersion was prepared. It 
consisted of 16.76% w/w dry substance of a methacrylic acid - ethyl 
acrylate copolymer with a ratio of 1:1 (dispersion 30% w/w) (Evonik 
Nutrition & Care GmbH), PlasAcryl® HTP 20 (Evonik Nutrition & Care 
GmbH) 2.9% w/w dry substance was added to the dispersion as 
plasticizer/anti-tacking agent and distilled water 1 h before coating. 

The aqueous HPMC coating solutions consisted of 20% w/w dry 
substance in the case of Sepifilm™ PW Red coating system. According to 
the supplier′s recommendation, they were dispersed in purified water. 
The total mixing time took 45 min, followed by sieving the dispersion 
through a 0.5 mm sieve. 

Spray coating was performed in a 4 M8 Pancoat (ProCepT, Belgium) 
perforated coating pan. 2 layers of coatings were put on the tablets. The 
first layer was Eudragit L30 D55. A 0.8 mm spray nozzle was used for the 
application of the atomised spray coating solution for 75 min, with an 
atomising air pressure of 1.0 bar, a spray rate of 3 g/min and an air flow 
rate of 0.70 m3/min. The drying and cooling process lasted for 15 min. 
Other coating parameters are shown in Table 1. 

The second layer was the HPMC-based ready-to-use coating formula. 
A 0.8 mm spray nozzle was used for the application of the atomised 
spray coating solution for 45 min in the case of Sepifilm PW coating, 
with an atomising air pressure of 2.0 bars, a spray rate of 2 g/min and an 
air flow rate of 0.70 m3/min. The drying and cooling process lasted for 
15 min. Other coating parameters for the second layer are shown in 
Table 2. 

The final coating thickness was measured with a stereomicroscope 
(Zeiss, Germany). Measurements were performed at a magnification of 
500. After calibration, 4–4 tablets were examined, which were cut in 
half along the middle of the tablet band, and each was measured at 10 
places and averaged. 

3.2. Irradiation of coated tablets 

2 different types of lasers were used for the irradiation of the tablets. 
The experimental setup for the laser processing is outlined in Fig. 1. 
KrF excimer laser (UV248) was used for the UV-regime ablation, a 

twin-tube hybrid dye-excimer laser-system (Szatmári, 1994, Szatmári 
and Schäfer, 1988). The current laser setup produced 60 mJ laser pulses 
with a pulse length of 700 fs. The central part of unfocused 4 cm × 4 cm 
pulses was cut out by an aperture 2 cm in diameter and the remaining 
pulses were attenuated with dielectric coated plates to about 1–2 mJ in 
order to avoid plasma formation in the air. The parameters of irradiation 
using excimer laser were the following: wavelength: 248 nm, energy: 
0.5 mJ, number of impulses: 10, spot size: 100 μm, FWHM: 700 fs, flu
ence: 6.37 J/cm2. 

Ti:sapphire Femtosecond laser (Femto), operating in the TeWaTi 
laser lab at the University of Szeged (TeWaTi, 2019) provided amplified 

pulses with a repetition rate of 200 Hz and maximum pulse energy of 1 
mJ. An achromatic lens with a focal length of 150 mm focused the beam 
onto the target placed into the focal plane, allowing beam imaging of f/ 
19 (F-number) and processing of the target surface with 135 fs pulses. 
Irradiation of tablets using Femto laser: wavelength: 800 nm, energy: 
0.62 mJ, number of impulses: 20, spot size: 110 μm, FWHM: 135 fs, 
repetition rate: 200 Hz, fluence: 6.52 J/cm2. 

A computer-controlled, movable desktop, a motorized translator was 
created to be able to change the position of the tablet during lasering 
(Fig. 1). The QR code was ablated hole by hole. During UV248 laser 
ablation, the oval-shaped holes in the film followed the shape of the 
beam. It took 1.5–2 h to create such a code with the UV248 laser and 10 
mins with the Femto laser. 

3.3. Surface profilometer 

Veeco, Dektak 8 Advanced Development Profiler® was used for 
profilometry measurements. The tips employed had a radius of curva
ture ~2.5 μm, and the force applied to the surface during scanning was 
~30 μN. The horizontal resolution was 0.1–0.13 μm, and the vertical 
resolution was 40 Å. Dektak software (Microsoft® Windows XP®: 
interactive data acquisition) and Vision® 32 software (data processing, 
2D and 3D image analysis) were used for data evaluation (Veeco In
struments Inc., New York, USA). 

3.4. Determination of the ablation threshold 

The characteristics of the ablation holes were examined with a sur
face profilometer. The laser parameters required for ablation were 
determined from the data obtained using a profilometer according to the 
method described below. 

The ablation threshold indicates the minimal laser energy required to 
remove the material from the substrate (i.e., tablet surface). The 
threshold value is a fundamental parameter for laser fine-tuning. In most 
of the cases, the laser operates close to the threshold but with slightly 
higher energy to avoid unwanted side effects, such as the thermal 
distortion of the material. The final etching depth is controlled by the 
number of laser impulses and not by fluence (Lawrence, 2010). 

As the spatial distribution of fluence was different for the two laser 
types (homogeneous flat top and Gaussian), two different methods were 
applied to determine the corresponding ablation threshold. 

The first method is based on the measured ablation rate (ablation 
depth per number of laser impulses). The ablation rate shows a loga
rithmic correlation with the applied fluence (impulse total energy per 
unit surface area) close to the threshold. The l = (1/α) ln(F/Fth) loga
rithmic function was fitted to the measurements by using nonlinear 
least-squares (NLLS) Marquardt-Levenberg algorithm in this case. 

The second method is based on the measured ablation diameter. The 
linearized model log(energy) versus estimated impact surface was used 
in this case to calculate the zero crossing by fitting the linear trend to the 
measurements. 

Fig. 2 summarizes the threshold calculation results for the UV248 
laser. Only the first method was used for threshold estimation in this 
case. Fig. 3 shows the results for the Femto laser, where the second 
method was used for threshold estimation in two measurement sessions. 

Table 1 
Coating parameters of Eudragit L30 D55.  

Step Inlet air 
temperature 
(◦C) 

Exhaust air 
Temperature (◦C) 

Tablet 
temperature 
(◦C) 

Drum 
speed 
(rpm) 

Warm- 
up 

60  Until 50 3 

Coating 45–55 40–45 30–35 15 
Drying 50 38–40 35–37 3 
Cooling 25 25 25 3  

Table 2 
Coating parameters of Sepifilm films.  

Step Inlet air 
temperature 
(◦C) 

Exhaust air 
Temperature (◦C) 

Tablet 
temperature 
(◦C) 

Drum 
speed 
(rpm) 

Warm- 
up 

60  Until 50 3 

Coating 55 40–42 35 9 
Drying 40 30 27 3 
Cooling 25 25 25 3  
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3.5. Scanning electron microscope (SEM) 

The ablated tablet was observed by using a scanning electron mi
croscope (SEM, Hitachi, Japan S4700). The tablets were mounted rigidly 
on a specimen holder with a double-sided carbon adhesive tape and a 
conductive ultrathin golden layer was deployed on them with a sputter 
device (Polaron, UK). The measurements were performed at a magnifi
cation of 30–5000, applying 10.0 kV electron energy and 1.3–13 MPa air 
pressure. 

3.6. Raman spectra 

Raman spectroscopy was used for the examination of the tablets 
treated by lasers. Spectra were acquired with a Thermo Fisher DXR 
Dispersive Raman spectrometer (Thermo Fisher Scientific Inc., MA, 
USA), a diode laser operating at a wavelength of 780 nm and equipped 
with a CCD camera. Raman measurements were carried out with a laser 
power of 4 mW (Ibu) and 12 mW (Eudragit L30 D55, Sepifilm PW Red) 
at a slit aperture size of 25 µm. The spectra of the tablets treated by lasers 
were collected by using an exposure time of 6 sec, and 10 spectra were 

Fig. 1. Experimental setup for laser processing. The tablet position was adjusted with a motorized XY translator during the QR code engraving. The Z direction 
translator stage was used to set the focus plane precisely on the surface of the tablet. 

Fig. 2. UV248 laser ablation threshold determination. A: Ablation depth estimation based on the number of the applied laser pulses. B: Threshold calculation result 
based on ablation depth by using logarithmic model fit. 

Fig. 3. Femto laser ablation threshold determination. A, B: Threshold calculation result based on ablation diameter using a linearized model. Diagrams A and B 
represent two measurement sets with different pulse energy ranges. 
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averaged in the spectral range of 3200–200 cm− 1 with cosmic ray and 
fluorescence corrections. 

Raman chemical mapping was also performed with the same 
equipment. Spectral data were collected on the surface of the lasered 
tablet, and on the fracture surface of the halved tablet, including the 
treated and the intact region, too. The spectra were determined at 
certain points in a defined area, while the sample had a translational 
motion between each discrete measurement. The point scan system 
measures each spectrum individually at a series of predefined points. 
The chemical map was profiled to the spectra of Eudragit L30 D55 and to 
the spectra of Sepifilm PW Red. In the case of Ibu, profiling was made to 
the peak at 1604 cm− 1 because it was found to be the most typical for the 
API, and it was the most separated from the spectra of the other inves
tigated components. 

Furthermore, sample analyses were performed on the cross-section 
surface of both types of laser-treated tablets (10 points directly below 
the lasered coated surface and 10 points in the core of the lasered tab
lets). The mean of these 10 spectra was compared with the mean of the 
10 spectra taken from the core of the untreated tablet and the spectrum 
of Ibu. These averaged spectra were normalized to peak 1604 cm− 1 of 
the Ibu spectrum. 

Data was evaluated with Spectragryph - optical spectroscopy soft
ware (F. Menges, 2020). 

3.7. In vitro drug disintegration 

In the disintegration studies, the tablets were tested according to the 
standard method of the European Pharmacopoeia with an Erweka model 
ZT71 apparatus (Erweka, Germany). First, 900 ml of artificial enzyme- 
free gastric juice (pH = 1.22) was preheated and maintained at a tem
perature of 37 ± 0.5 ◦C. According to the guideline, enteric coating 
should be intact for 2 h in acidic media. After 2 h, the medium was 
changed to a phosphate buffered saline solution (pH = 6.82). The time 
necessary for each tablet to disintegrate in acidic and intestinal solution 
was recorded automatically by the apparatus. 

3.8. In vitro drug dissolution 

In the present study, the investigation of drug release kinetics from 
marked tablets was carried out with an Erweka DT 700 (Erweka GmbH, 
Germany) dissolution tester according to the standards of the European 
Pharmacopoeia. A rotating basket method was used for the dissolution 
tests, where the rotation speed was 100 rpm, the dissolution medium 
was 900 ml of artificial enzyme-free gastric juice (pH = 1.22) for 2 h, 
and then it was replaced with 900 ml of phosphate buffered saline so
lution (pH = 6.82) for 1 h. The pH value was checked with a pH meter. 
The temperature was maintained at 37 ± 0.5 ◦C. As a sample, 5 ml of the 
dissolution medium was taken manually at predetermined intervals 
without being replaced. Medium loss was not taken into account during 
the calculations. Samples were filtered through a 10 μm Poroplast filter 
(Erweka, Germany). The absorbance of ibuprofen DC85 was analyzed at 
222 nm, using a spectrophotometer (Genesys 10S UV–VIS, Thermo 
Fisher Scientific Inc., MA, USA). Four tablets were tested, and samples 
were taken at the following time intervals: at 120 min in the case of 
gastric juice, and after changing to intestinal fluid at 5, 10, 15, 30, 45 
and 60 min. 

4. Results and discussion 

The present study focuses on demonstrating the effectiveness of a QR 
code-based authentication process of film-coated tablets, from the 
formulation of the QR-coded tablets by laser ablation to the decoding 
step using a QR code reader application on a smartphone. 

The primary focus was on removing the titanium dioxide particles 
that remained in the film during previous ablation studies (Ludasi et 
al….) by comparing the effectiveness of two different types of lasers in 

marking. The 2D codes were formed by removing particular parts of the 
upper coloured coating. After marking, a detailed quality analysis was 
made to check if any change occurred in the quality of films or in the API 
during the laser intervention. Also, the disintegration and dissolution of 
the lasered products were investigated to confirm that it was possible to 
mark the tablets with functional coating without damaging them during 
the procedure. 

4.1. Microscopic analysis of the coated surface 

The QR code (Fig. 4A) that was lasered on the tablets was generated 
by the QR code generator library libqrencode. (Fukuchi, 2020). A simple 
code (with content: 12345678) was made as the secondary aim was to 
find out if it was possible to ablate a decodable QR code on the surface of 
the tablet by these lasers. Further research is being done on how much 
information can be encoded in a QR code of a given size to keep the 
decoding accuracy. 

The present study confirmed that titanium dioxide particles did not 
interfere with decoding when coding had been done by UV248 or Femto 
lasers. The QR codes applied on the tablets are readable by a smartphone 
with QR code scanner applications downloaded from the Internet, for 
example, with QRbot (https://qrbot.net/) or with the photo mode of the 
mobile phone. The only requirement is that the application must be able 
to read the “inverse” QR code (Fig. 4B), as in this case the tablet is 
coloured and the ablated part is white, just the opposite of the usual QR 
codes. 

The results of the UV248 laser treatment are seen in Fig. 5. It can be 
observed through visual inspection that the 5 × 5 mm QR code is made 
up of dots. 

It is known that a usable QR code can also be created by not over
lapping parts, such as dots. The UV248 laser-ablated oval-shaped holes 
in the film were in accordance with the shape of the beam. It was 
possible to make a readable code from oval-shaped holes, too, even in 
cases where laser irradiation was not perfect, as the code has error 
correction capability that can restore the missing data, as seen on the 
ablated QR code that is made up of individual points (Fig. 5B,D). Better 
coverage can be obtained by overlapping the holes, which results in a 
more readable code. Nevertheless, care must be taken not to punch 
through the Eudragit layer. The depth of ablation can be controlled by 
changing the number of pulses on the sample place or the fluence, which 
allows the accurate setting of the penetration depth to the coating layer. 
It took 1.5 and 2 h to create such a code by the UV 248 laser depending 
on whether there was an overlap between the holes or not. Fewer shots 
mean faster but still effective marking. 

The same computer-controlled movable desktop was coupled with 
the Femto laser to mark the tablet, as in the previous case. At this time, 
the shape of the beam was round, thus the ablated holes were too, and 
they overlapped, as shown in Fig. 6. The ablation of the QR code took 
about 10 min, as the most important limiting factor of overall ablation is 
the repetition rate of the laser. Therefore, the higher frequency (200 Hz) 
of the Femto laser dramatically shortens the marking procedure. 

Fig. 7A–C displays the scanning electron micrographs of the 4 × 4 
mm QR code on the tablet treated by the UV248 laser. 

Fig. 7A shows a part of the QR code on the tablet surface, and it is 

Fig. 4. Sample QR code ablated on the tablet. A: The common form of the QR 
code. B: The inverse of the QR code ablated onto the coloured tablet. C: The 
same QR code but made of dots, prepared for laser and desktop control. 
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clearly visible that it is made of overlapping dots, as described above. 
The holes are deeper at the overlapping parts. It can also be seen that the 
surface of the untreated coating is uneven, and the holes visible on the 
untreated surface may have remained from the bubbles formed during 
the coating process due to too quick drying since the air did not have 
time to diffuse out. Fig. 7B displays the lasered tablet surface at greater 
magnification. The holes in the ablated surfaces could also have resulted 
from bubble formation. Fig. 7C shows the cross-section surface of the 
tablet, where the place of lasering is seen in the framed part. The glossy 
part on the top of the tablet is the PW red coating, which is about 5–10 
μm thick. The bottom coating, which is 60–70 μm thick, seems to be 
intact. The ablated surface of the sample has no large damage. Only a 
physical change is observed in the structure as a result of the removal of 
the coating by the UV248 laser, and no obvious sign of chemical change 
is detected. 

Fig. 7D-G displays the micrographs of the Femto lasered tablet. In 
Fig. 7D, a part of a QR code is seen on a halved tablet. The dots which 
compose the QR code are clearly visible. The penetration depth seems to 
be greater with the Femto laser than with the UV248. In Fig. 7E the 
lasered surface is visible at higher magnification, where intact regions 
may be identified between the holes. Fig. 7F shows one hole at higher 
magnification. At the bottom of the ablation cavity a different material is 

detected, which is thought to be the functional coating because of its 
different, more porous structure. The laser penetration here seems to 
have taken place right up to the bottom of the coating. In Fig. 7G, the 
cross-section surface of the halved tablet is seen. The tablet was fixed to 
the holder upside down. The ablation area is visible in the framed part. 
The Femto laser removed the upper coating, which is about 50 μm thick, 
and in some places, the laser also penetrated into the functional Eudragit 
coating. Nevertheless, because its thickness is about 150 μm, function
ality may still be intact despite its partial absence. 

Similarly to the UV248 laser, it may be seen that the Femto laser did 
not cause considerable damage in the coating structure during the 
treatment, either. Only a physical change may be detected in the ablated 
area, fragments of the coating film are visible where the coating was 
removed. No visible sign of chemical changes was detected in the upper 
or in the bottom layer. Overall, it can be stated that no visible chemical 
change occurred on the treated surface when using either of the two 
lasers. 

4.2. Disintegration test 

In the disintegration studies, six pieces of coated and ablated tablets 
were tested from tablet type Nr 3. The tablets remained intact during the 

Fig. 5. Tablet encoded by UV248 laser. A: The size of the QR code is 4 × 4 mm. B: The size of the QR code is 5 × 5 mm. C: Microscopic picture of the 4 × 4 mm QR 
code. D: Microscopic picture of the 5 × 5 mm QR code. 

Fig. 6. Tablet encoded by Femto laser. A: Visible to the naked eye. B: Microscopic picture.  
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2-hour disintegration process in the artificial enzyme-free gastric juice, 
which corresponds to the result expected according to the European 
Pharmacopoeia, as they had a gastro-resistant coating. After changing to 
the intestinal fluid, the disintegration test was complete in 30 min for all 
tablets. This result confirmed our preliminary conclusion based on SEM 
analysis, according to which the lasering of the upper coating left the 
functional coating in the bottom intact, and it is possible to mark 
functionally coated tablets. 

4.3. In vitro drug dissolution test 

For in vitro drug dissolution tests, tablets of different shapes were 
used: A: Type Nr1, B: Type Nr2, C and D: Type Nr3. Three of the 
investigated tablets remained intact after 120 min in the gastric me
dium. The amount of the dissolved API was 0.15%, 2.12%, and 0.92%, 
for A, C and D, respectively, while the dissolved API was 35.2% for 
Tablet B, which partially disintegrated during this period. 

In order to save time and material, the differently shaped API con
taining tablets were coated together with placebo tablets. Presumably, 
due to their different geometry, they were mixed inappropriately during 
coating, therefore they might have different coating thicknesses. Tablet 
coating thickness may also vary in the case of identical tablets, as 
observed by M. Wolfgang et al., where it varied between 56.3 µm and 
86.9 µm (Wolfgang et al., 2019). The literature also confirms that the 
shape of the tablet directly influences intra-tablet coating uniformity. 
The most likely reason for intra-tablet coating variability is the preferred 
orientation of tablets when passing through the spray zone of the coater 
(Wilson and Crossman, 1997). There was another investigation of inter- 
tablet coating layer thickness, where a comparison of both sides of the 
tablet surface was made. It shows that the thickness of the coating layer 
of some tablets on one side of the tablet is up to 10 μm thicker than on 
the other one (Ho et al., 2007). Achieving a high level of intra-tablet 
uniformity is especially important for functional film coatings (Dong 
et al., 2017), where uniform thickness is required to guarantee the 
desired drug release rate to the patient (Sacher et al., 2019). In the 
present study, it can be assumed that in the case of tablet B, the coating 
was thinner and had been damaged during the marking. It is likely that if 
only tablets of the same shape are coated at a time, the layer thickness 
will be more uniform and the inner, functional layer can be protected 
from damage. 

The dissolution profile of the tablets in phosphate buffered saline 
solution is shown in Fig. 8. It can be concluded that during the one-hour 

in vitro studies, the tablets acted in accordance with pharmacopoeial 
standards and the disintegration and dissolution process started. It is 
seen that the dissolution of tablet B started earlier than that of the others, 
and the final concentration was lower. The explanation for this phe
nomenon is that the dissolution of tablet B had already started in the 
gastric medium. 

4.4. Coating film thickness 

To confirm the assumption that not only the inter-tablet but also the 
intra-tablet variability of final coating thickness is spread over a wide 
range, microscopic film thickness measurement was applied. Fig. 9 
shows the difference in the thickness of the coating on the top and on the 
side of the tablet. Coating thickness averages measured on different 
tablets, determined on the basis of measurements at 10 places of 4–4 half 
tablets, are presented in Table 3. 

4.5. Raman 

Finally, to confirm that the ablation process causes no chemical 
change, a dispersive Raman spectrometer was used to detect possible 
changes in the coated tablets. Chemical mapping was chosen to deter
mine if there was a laser-induced change in the coating layers or in the 

Fig. 7. SEM micrographs of laser-treated tablets. First row: Films A, B, C treated by UV248 laser. A: Tablet surface at a magnification of 100×. B: Tablet surface at a 
magnification of 500×. C: The tablet’s cross-section surface at a magnification of 1000×. Second row: Tablets D, E, F, G treated by Femto laser. D: Tablet surface at a 
magnification of 30×. E: Tablet surface at a magnification of 500×. F: Ablation hole at a magnification of 5000×. G: The tablet’s cross-section surface at a 
magnification of 100×. C,G: The place of lasering is shown in the framed section. 

Fig. 8. Drug dissolution curves of the 4 coated and lasered tablets.  
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API in the core during marking. The examination was done on the 

surface of the lasered tablet and on the fracture surface of the halved 
tablet. The chemical map was profiled based on the spectra that are 
summarized in Fig. 10. The full spectrum was applied for raw free films 
(Eudragit L30-D55, Sepifilm PW Red) and a single peak (1604 cm− 1) for 
the API Ibuprofen DC85. 

Figs. 11–14 present the data of the obtained chemical maps. Part “A” 
of the figures shows the microscopic mosaic photo of the laser-treated 
region, the chemically mapped area is framed with a blue or a red 
line. The spectra were collected from places marked by blue or red 
points. The other parts of the Figures show chemical maps, where “B”, 
“C” and “D” show the profiling result of the Eudragit, Ibu and PW red 
film, respectively. In these maps, warm colours show a higher concen
tration of the profiled materials. Profiling of the PW red spectrum was 
performed only for tablet cross-sections. 

The UV 248 nm laser-treated tablet surface is presented in Fig. 11 
and Fig. 12. The results confirm that the PW red upper layer (Fig. 12D) 
was completely ablated in the places that were lasered. Based on 
Fig. 11C, it can be assumed that the laser had reached the API because 

Fig. 9. Uneven thickness of tablet coatings.  

Table 3 
Thickness of the different coatings.   

12 mm diameter 
round flat tablet 
(600 mg) 

10 mm diameter 
round flat tablet 
(300 mg) 

10 mm diameter 
round flat tablet 
(500 mg)  

49.43 ± 9.23 16.19 ± 9.19 88.02 ± 18.98 
PW red 

coating 
63.12 ± 14.72 61.78 ± 14.67 95.42 ± 13.45 

thickness 
(μm) 

59.31 ± 11.82 34.81 ± 11.76 73.26 ± 22.65  

76.75 ± 13.98 45.78 ± 14.56 69.76 ± 16.54  
182.34 ± 22.44 79.62 ± 17.79 155.45 ± 19.57  

Eudragit 
coating 

145.93 ± 29.54 123.65 ± 29.67 98.02 ± 23.77 

thickness 
(μm) 

204.54 ± 17.57 97.43 ± 23.65 136.23 ± 29.76  

163.78 ± 32.23 134.75 ± 36.76 102.43 ± 13.65  

Fig. 10. Raman spectra of film coatings and the API. A: Eudragit L30-D55, B:Sepifilm PW Red, C: API Ibuprofen DC85. Chemical map profiling was performed on 
spectra A, B and a single peak, which is circled on the spectrum C (1604 cm− 1). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 11. Surface of the tablet treated by UV248 laser. A: Microscopic picture of the surface of the lasered tablet. B: Chemical map profiled to Eudragit L30-D55. C: 
Chemical map profiled to Ibu. 

Fig. 12. Fracture surface of a tablet treated by UV248 laser after halving. A: Microscopic picture of the fracture surface of the lasered tablet. B: Chemical map profiled 
to Eudragit L30-D55. C: Chemical map profiled to Ibu peak. D: Chemical map profiled to Sepifilm PW red. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 13. Surface of the tablet treated by Femto laser. A: Microscopic picture of lasered tablet. B: Chemical map profiled to Eudragit L30-D55. C: Chemical map 
profiled to Ibuprofen. 

Fig. 14. Cross-section surface of the Femto laser treated tablet. A: Microscopic picture of the halved tablet, arrow pointing at the missing PW red coating. B: Chemical 
map of the tablet surface profiled to Eudragit L30-D5. C: Chemical map of the tablet surface profiled to Ibuprofen. D: Chemical map of the tablet surface profiled to 
Sepifilm PW red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the thickness of the coating was not consistently even, and furthermore 
because the API might have penetrated into the Eudragit coating 
(Fig. 12C). 

Fig. 13 and Fig. 14 display the tablet surface and the cross-section of 
Femto laser-treated tablets, respectively. In Fig. 13B Eudragit is seen in 
the laser-treated areas, while in Fig. 13C the warm colours show the API 
Ibu, which suggests that the coating thickness was not consistently even, 
and the laser might have reached the API or penetrated into the coating 
in this case as well. 

In Fig. 14A the arrow points to the missing PW red coating, and the 
mapping (Fig. 14D) confirms that it was ablated by the laser. The 
profiling shows that the API is mostly in the tablet core (Fig. 14C), but in 
the same picture, the area of the inner coating is green, which means 
that the API partly migrated from the tablet core to the Eudragit film. 
According to the literature, such migration during the coating process 
can happen if the coating is aqueous-based. Migration is enhanced if a 
component is soluble in the coating solution, and it also depends on the 
spray conditions used during the coating operation (Dansereau et al., 
1993; Guo et al., 2002). Ibu is a Biopharmaceutics Classification System 
(BCS) class II drug with low solubility at pH = 1.2 and pH = 4.5 but high 
solubility at pH = 6.8 (Álvarez et al., 2011). 

To determine if there was a laser-induced change in the API, Raman 
measurements were performed on the fracture surface of the tablets 
treated by the two lasers. Sample analyses were made at 10 points 
directly below the lasered coating surface and at 10 points in the core of 
the lasered tablets. As described in the “Methods” section, 10 spectra 
were averaged at each point. The mean of these spectra was compared 
with the average of 10 spectra taken from the core of an untreated tablet 
and with the spectrum of Ibu. These spectra were normalized to peak 
1604 cm− 1 of the Ibu spectrum and are shownin Fig. 15. 

There was no significant difference between the spectra taken from 
the lasered area compared with the spectra taken from the non-lasered 
area. The most characteristic peaks of Ibu are present in all the 
spectra, with no slip visible. The observed peak intensities can be 
attributed to the relative inhomogeneity of the materials in the tablet, 
depending on how rich or poor Ibu was in the studied region. Sampling 
with a small laser spot may also result in different intensities due to the 
inhomogeneous composition of the tablet. It can be stated that no 
chemical structural change was observed after the labelling. Overall, 
despite the fact that, mainly due to the uneven thickness of the coating, 
the laser might occasionally reach the functional coating besides the 
removal of the PW red layer and also that Ibu may penetrate from the 
core of the tablet into the functional coating, no chemical structural 
change was observed in the coatings during labeling. 

5. Conclusions 

During laser ablation, it is important not to cause any change in the 
medicine. Commonly, it is the thermal effect which can cause problems 
in the material’s quality. At the same time, the coating has to be 
removed at specific points. This can be achieved by choosing the right 
laser and setting the optimal parameters. 

It can be concluded that in the experiment, the threshold exceeded 
the ablation threshold of titanium dioxide during lasering, and it was 
sufficient in its removal. Titanium dioxide did not interfere with QR 
code recognition, which was performed with a mobile phone. 

It was found that ablation with UV248 laser and Femto laser did not 
cause a qualitative change in the material during laser marking. The 
UV248 laser is a laser for laboratory use, while Femto lasers are 
commonly used in the industry. However, the higher repetition rate of 
the Femto laser allows faster and more efficient coding, which has key 
importance in the production. Furthermore, the results show that due to 
the high performance in the fs pulse length, the wavelength is no longer 
a critical parameter as it is for ns or longer pulses. The thermal effects are 
negligibly low in the fs region even at high peak powers. The thermal 
effects of laser ablation can be avoided by reducing the wavelength or 
the impulse length based on the current study. 

It is known that the efficient use of this technology requires further 
development in speed. Other high energy near-infrared pulse lasers that 
operate at multi-kHz versions (with a repetition frequency of multi ten- 
kHz and also MHz), could potentially further shorten the ablation time. 
Those devices could even be used for line speed marking in pharma
ceutical companies. Also, these devices are scalable in energy and they 
are capable of implementing the one-shot technique. Further research is 
needed in this direction by testing new lasers and new techniques. 

In conclusion, we propose a functionally advanced marking by the 
lasers mentioned in this article, highlighting the Femto laser as a solu
tion for pharmaceutical companies that would like to have additional 
protection against drug counterfeiters or to label personalized medi
cines, knowing that the technique needs further improvement. 
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Fittler, A., Vida, R.G., Káplár, M., Botz, L., 2018a. Consumers turning to the internet 
pharmacy market: Cross-sectional study on the frequency and attitudes of hungarian 
patients purchasing medications online. J. Med. Internet Res. 20, 1–11. Doi: http://d 
x.doi.10.2196/11115. 

Fittler, A., Vida, R.G., Rádics, V., Botz, L., 2018b. A challenge for healthcare but just 
another opportunity for illegitimate online sellers: Dubious market of shortage 
oncology drugs. PLoS One 13, 1–17. https://doi.org/10.1371/journal. 
pone.0203185. 

Fukuchi, K., 2020. Libqrencode - a fast and compact QR Code encoding library, v.4.1.1. 
[WWW Document]. URL https://github.com/fukuchi/libqrencode (accessed 
1.11.21). 
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