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ABSTRACT 

 

 

 

Unmanned Systems Technology (UST) Aludra SR-10 Unmanned Aerial Vehicle 

(UAV) was purposely designed for survey and mapping mission. This study focuses 

on the design, manufacturing and testing of Parachute Recovery System (PRS) on the 

Aludra SR-10 UAV. A design work of PRS involving in defining a suitable type of 

parachute design, parachute compartment, parachute deployment and activation 

mechanism system. This study was performed by simulation approach (using 

Computational Fluid Dynamic, CFD) and experimental approach (static drop test and 

flight test). The evaluation of aerodynamics characteristics using ANSYS software 

over two types of parachute models (annular and cruciform parachutes canopy) help 

to determine the most suitable type of parachute design for PRS. The static drop test 

with on board system (consisted of NI myRio, IMU and GPS) programme using 

LabVIEW software was performed to evaluate the feasibility of the parachute. 

Meanwhile, the flight test was conducted to investigate the performance and reliability 

of PRS at different deployment heights. A baseline annular parachute canopy with 

2.41 m of the nominal diameter was selected as the main parachute, which produced 

highest drag coefficient (1.03). The findings also highlighted the significance of 

separation and recirculating flows behind studied geometries, which in turn was 

responsible in producing the drag. Through the static drop test, the selected parachute 

design provided a predicted terminal descent velocity of approximately 4 m/s with 

payload of 5kg. This parachute recovery system was able to reduce the impact force 

at fourth time lower compared to belly landing, from 139.77 N to 30.81 N. The pilot-

chute was successful pulled main parachute to free stream and fully inflated in a short 

time, less than 3 seconds. Most of all, the parachute recovery was able to support and 

bring the aircraft to a soft and safe landing thus, confirmed its reliability. Interestingly, 

robust evidence in a prediction of the landing position area using PRS was achieved. 
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ABSTRAK 

 

 

 

Unmanned Systems Technology (UST) Aludra SR-10 Unmanned Aerial Vehicle 

(UAV) adalah direka bagi tujuan misi kaji selidik dan pemetaan. Kajian ini memberi 

tumpuan kepada reka bentuk, pembuatan dan ujian Sistem Pemulihan Parasut (PRS) 

pada Aludra SR-10 UAV. Reka bentuk ini melibatkan kerja untuk menentukan jenis 

payung terjun yang sesuai, tempat penyimpanan payung terjun, sistem terjun payung 

dan sistem mekanisme pengaktifan. Kajian ini dilakukan dengan pendekatan simulasi 

(menggunakan Computational Fluid Dynamic, CFD) dan pendekatan eksperimen 

(ujian penurunan statik dan ujian penerbangan). Penilaian ciri-ciri aerodinamik ke atas 

dua jenis model payung terjun (berbentuk nnular dan crucifrm) dengan menggunakan 

perisian ANSYS menunjukkan bahawa payung terjun berbentuk annuar yang paling 

sesuai diunakan sebagai PRS. Ujian pelepasan secara statik bersama sistem yang 

dilengkapi dengan perisian LabVEW digunakan untuk menguji dan menganalisis 

trajektori payung terjun. Sementara itu, ujian penerbangan telah dijalankan untuk 

melihat kebolehpercayaan pelaksanaan PRS di Aludra SR-10 pada ketinggian yang 

berbeza. Payung terjun bebentuk annular dengan agaris pusat kira-kira 2.41m dipilih 

sebagai payung terjun utama kerana ia menghasilkan pekali seret yang tertinggi (1.03). 

Simulasi ini menujukkan aliran di sebalik geometri, yang bertanggungjawab untuk 

menghasilkan daya. Melalui ujian penurunan statik, reka bentuk payung terjun yang 

dipilih memberikan kelajuan penurunan terminal kira-kira 4 m/s dengan muatan 5kg. 

Sistem pemulihan payung terjun ini dapat mengurangkan empat kali ganda daya impak 

semasa mendarat berbanding pendarahan perut pesawat, dari 139.77 N hingga 30.81 

N. Pilot-chute berjaya menarik payung terjun utama untuk aliran bebas dan 

melambung sepenuhnya dalam masa yang singkat, kira-kira 3 saat. Pemulihan payung 

terjun mampu menyokong dan membawa pesawat ke pendaratan yang lembut dan 

selamat. Di samping itu, kajian ini dapat memberikan bukti kukuh untuk meramalkan 

kawasan pendaratan yang menggunakan pemulihan payung terjun. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1 Research background 

 

Unmanned Aerial Vehicle (UAV) is an aircraft with no pilot on board. UAVs can be 

remotely controlled that can be flown by a pilot at a ground control station, (GCS) or 

autonomously based on pre-programmed flight plans. Over the past few decades, there 

have been significant researches and developments of UAVs. UAV can be 

distinguished from one another in terms of range or altitude, shapes, size, weight, 

endurance, design approach and missions [1]–[4]. UAV are now gaining high interests 

from civil and military fields to conduct a mission which includes reconnaissance, 

surveillance, target tracking, combat and high structure inspection. Moreover, UAVs 

have different components those are used to perform the mentioned missions and roles 

[2], [5], [6].  

In military field, UAVs have been used not only for reconnaissance and 

surveillance but also as a target and decoy to simulate the profile of enemy aircraft or 

missile. Furthermore, UAVs can be employed in various areas including rescue, strike 

mission and combat for some high-risk missions. Multiple civilian roles have been 

designed for UAVs to be utilized in civil and numerous commercial applications such 

as search and rescue, survey, inspection, agriculture, aerial photography and data 

collection. Besides that, UAVs has also been widely used as experimental platform in 

various research groups in university and industry in order to develop further 

technologies [4], [7], [8]. 

Despite this rapidly grows industry of UAVs technology, safety to people and 

property remains as the utmost importance. The primary safety for Unmanned Aerial 

System (UAS) that closely relates to hazardous probability are: 1) a collision between 

UAV and other airspace users and 2) the controlled or uncontrolled impact of the UAV 
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crash on the ground, hit an object or structure or land on some undesired location [9]. 

Modern UAVs are equipped with a typically expensive and high technology electronic 

components. System failures and damage of UAVs whether it is structural or systems 

damage can be costly. To increase the safety of UAV operation, different types of 

UAV safety equipment can be adopted includes parachutes, nets, flight termination 

systems and emergency locator transmitters as recovery system [2], [5], [10].  

The process of UAVs recovering is frequently described as the most difficult 

and critical phases in UAV operations. Proper design of recovery system for UAVs is 

highly desirable factor to prevent improper landing leads to accidents. However, 

different technologies for recovering commonly come together with positive and 

negative attributes. One mechanism that has been studied by several researchers in 

recent years to address safety concerns for most small type of UAV is by mounting a 

parachute system onto the aircraft. Not only as primary recovery method, but the 

parachute system can be the most effective method as a recovery system in the event 

of a system failure to reduce the risk on the aircraft and its payload.  

The ultimate goal of this current research is to determine the feasibility and 

reliability of Parachute Recovery Systems (PRS) in order to allow small unmanned 

aerial vehicle (SUAVs) such as Aludra SR-10 UAV safe landing without damage. 

Thus, a proper development of mechanism and solutions are required to allow vertical 

descent and horizontal landing of aircraft in preventing the damage on aircraft’s 

airframe and structure. This study approaches to promote the systematic design 

technique and process of parachute recovery including the analysis of its performance. 

Besides, these researches are beneficial to predict the landing area of these aircraft 

using the parachute recovery system. 

  

1.2 Problem statements 

 

Unmanned Systems Technology (UST) Aludra SR-10 Unmanned Aerial Vehicle 

(UAV) was purposely designed for survey and mapping mission. In the early 

designing stage of Aludra SR-10 UAV, this type of unmanned aircraft used skid and 

belly landing as a recovery method. This type of landing method may encounter a 

tough landing on hard soil and gravel, producing high impact momentum on the 

aircraft body. This impact may cause structural or system damage which costly to be 

repaired. Therefore, this research disclosure was performed in a correlation to 
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enhancements in the field of aircraft safety and implementation of emergency 

parachute recovery for Aludra SR-10 UAV. 

Nowadays, Parachute Recovery System (PRS) are recently used for landing 

method purposely to replace the belly landing technique. The PRS mechanism are 

currently applied in numerous tasks in aviation industry and very suitable to be applied 

as recovery system in small and medium sized unmanned aircraft such as Aludra SR-

10 UAV. To date there are various embodiments and concepts correspond to the 

parachute recovery which are significantly important be considered for the 

investigation. However, previous studies of the PRS for UAV lack several conceptual 

and methodological analyses. The criteria includes parachute canopy shape, 

attachment to the aircraft, deployment compartment, deployment mechanism and 

others.  

There are four shapes of commonly used parachute canopies UAV’s recovery 

system. These four types of parachute canopies are cruciform, hemisphere, annular 

and parafoil shape. Different type of parachute design produce different drag forces 

during descending. The parachute which produce provide a higher drag force will give 

better performance in parachute recovery system [11], [12]. A significant study of drag 

force produced by different shapes of parachute can be determined using 

Computational Fluid Dynamic (CFD).  

Upon an activation of the deployment mechanism, the parachute should rapidly 

deploys away from the storage compartment. The ability to rapidly deploy the 

parachutes is an important feature for low flying aircraft such as Aludra SR-10 UAV 

which is necessary in order to minimize the altitude loss. Further investigations are 

needed to explore the mechanism that allows the parachute to deploy rapidly after 

being activated. A static drop test could provide a needed information in determining 

the parachute inflation process and descending behaviour, as well as the minimum 

deployment altitude. 

Mostly, the parachute descends uncontrollably and almost slightly vertically 

through the air stream. This situation leads to an uncertain landing point. Investigation 

of the landing area or range is considered as a continuing concern within the parachute 

recovery performance. The main challenge faced by many researchers is to 

predetermine the recovery area of an aircraft from the parachute deployment point. An 

analysis from the flight test data is useful to determine the accuracy of landing area 

prediction. 
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Additional weight to the aircraft is an important concept in the most studies. 

Additional weight is an impact factor that significantly affect the flight performance 

of UAV which include its stability, slower cruising speeds and reduced aircraft 

endurance. Therefore, the addition of significant weight from parachute recovery 

equipment and devices to the UAV should be considered. In this study, the design 

criteria for these recovery system were set to lift a maximum payload of the aircraft 

up to a maximum take-off weight (MTOW) of 5 kg.  

 

1.3 Research objectives 

 

This prospective study was designed to investigate the use of parachute recovery as a 

landing method for CTRM research unmanned aircraft, Aludra SR-10 UAV. The 

specific objective of this study were 

i. To design a suitable parachute for Aludra SR-10 UAV as the Parachute 

Recovery System (PRS). 

ii. To develop and manufacture a complete Parachute Recovery System (PRS) for 

Aludra SR-10 UAV.  

iii. To conduct a static drop test and flight test in order to investigate the 

performance of the design Parachute Recovery System (PRS). 

 

1.4 Scope of study 

 

To achieve the research objective as discussed in the previous sub chapter, the full 

scopes of study will be conducted in this research work involves:  

 

i. Understanding on the use of CFD ANSYS-Fluent software: The ANSYS 

Fluent software is CFD software which developed based on Time Reynolds 

Average Navier Stokes Equations (TRANS).  To solve this type equations, there 

are there elements need to be considered.  These three elements are (1) numerical 

grid generation, (2) numerical scheme used for solving the TRANS (Flow 

solver), and (3) the turbulence models. The ANSYS software allows various grid 

model can be implemented (course, medium and fine), various flow solver and 

various turbulent model can be implemented. Through understanding on 

ANSYS software helps in solving the flow problems involving parachute.  
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ii. Static drop test: The test was conducted to evaluate a parachute performance 

through releasing the parachute from altitude of 38 meter above ground level 

(AGL) under 5kg payload. The on board system measurement unit were 

designed to evaluate the parachute performance includes the rate of descent and 

the stress impact. This system consist of NI myRio, IMU and GPS devices were 

developed using LabVIEW software.  

 

iii. Manufacturing and installation of PRS: Installation of PRS into Aludra SR-

10 UAV involved only a simple modification to the UAV airframe and system. 

The detailed mechanism involved in implementing the design of parachute 

recovery were based on the design evaluation and concept selection in the design 

process. 

 

iv. Flight test: The performance characteristics of PRS included parachute inflation 

time, descent time taken, deployment distance, PRS reliability and deployment 

method verification were observed and analysed. The landing distance area 

during flight test was compared and validated with the mathematical model of 

prediction landing area.  

 

1.5 Contribution 

 

The design, manufacturing and test the Recovery Parachute System on the Aludra SR-

10 UAV represent the research work which will give contribute as follows: 

 

i. Deeper understanding of the Parachute Recovery System (PRS), and also the 

selection of suitable deployment system and mechanisms for Aludra SR-10 

UAV.  

ii. Provide a useful knowledge to identify, select and design the suitable type of 

parachute canopy to be used as parachute for recovery system. 

iii. The static drop test procedure represent a suitable test for evaluating the rate of 

descent parachute and stress impact. 

iv. The development of flight testing process gives a real performance of the 

capability and reliability of parachute recovery system.   
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1.6 Thesis organization 

 

The overall structure of the study was divided into five chapters.. The first chapter 

described research background, problem statements, objective and scope of the study. 

Chapter 2 focused on laying out the theoretical background and previous work by the 

researchers from the earliest models to the latest models related to the parachute 

recovery systems. The information was collected from several resources and then was 

then was reviewed to obtain related data regarding the design requirement and 

consideration for the parachute recovery. 

 The third chapter explained the research methodology employed for this study. 

The methodological approach was performed in this study involved computational 

simulation and experimental approach. The simulation approach was conducted by 

Computational Fluid Dynamic (CFD), meanwhile the experimental approach involved 

a static drop test and an open environment flight test. This chapter described the design 

methodology approach in the early phase of the design process development, provided 

with the outline function, set of integrated ideas and concepts.  

 The fourth section presented the findings of the research, focusing on the three 

key themes that were (i) computational simulation, (ii) drop test and flight test, and 

(iii) addresses of each research question in turn. The results obtained from CFD 

aerodynamic simulation offered an important contribution to the selection of parachute 

canopy design. The selected parachute undergone a drop test to determine the 

feasibility and ability to support load during the landing before undertaking into the 

final testing. In the final test, the flight test assisted in determining mechanical 

feasibility of the parachute recovery for Aludra SR-10 UAV. Lastly, final chapter 

summarized the current findings in order to reflect on the extent to which this study 

was contributed to the parachute recovery study and provided basics idea for further 

research.
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

It is very important to obtain necessities on the subject matter knowledge as can 

contribute to a proper execution of the research. The concept and modelling technique 

for this system was also highlighted. 

 

2.2 Recovery system for Unmanned Aerial Vehicle 

 

Recovery are often described as the most difficult and critical phases in UAV 

operations. The primary function of the recovery system is to land the UAV on a 

runway, smooth field road, or carrier deck safely. Proper and suitable design of the 

recovery system for UAVs is highly desirable factor to prevent improper landing that 

may lead to accidents. There are various types of recovery system that available for 

the small-to-medium UAVs such as skid or belly recovery, wheeled landing, parachute 

recovery and vertical-net recovery. However, different technologies for recovering 

present together with positive and negative attributes [2], [4], [5], [13]. 

The simplest and less expensive option for the recovery system is skid and 

belly landing method, where the aircraft’s fuselage contacts directly to the ground. 

This recovery method normally may damage the aircraft’s structure due to a sudden 

impact force thus, increases the maintenance and repairing cost. Therefore, a strong 

belly structure along with shock absorbers is required to withstand the impact. 

A conventional landing is also known as wheeled landing and has been used 

by many small-to-medium UAVs due to their gentle retrieval and smooth landing. This 

type of recovery system can protect the aircraft from damage during landing while the 

landing gear act as a shock absorbent. In addition, the landing gear can provide a more 
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stable support for the aircraft on the ground compared to the skid or belly landing 

recovery. However, this type of recovery requires a large landing area and cannot be 

applied when there is no or less availability of adequate landing area. 

The parachute recovery is commonly used by a small and air-launched 

unmanned aircraft as recovery system and also as an emergency flight termination 

system. Numerous parachute configuration have been designed to have a relatively 

low rate of descent in order to decrease the damage of aircraft upon the impact toward 

the ground or water. The landing position of the UAVs after parachute deployment is 

difficult to be determined due to difficulty of directional to control because it is 

subjected to the vagaries of the wind. Therefore, the parachute deploys at a very low 

altitude in order to reduce a drift distance.  

Vertical-net recovery is the most commonly used approaches for "zero-length" 

recovery method. A net is gripped tightly around two balancing poles that are staked 

firmly onto the ground. This type of recovery system is most desirable because the 

forces are properly distributed to the entire aircraft, so that the UAV does not get 

damage. An important criterion of using this type of recovery system is the location of 

the propeller as it is directly contacted between propeller and net may damage. 

Abinaya and Arravind [13] have compared various types of recovery system 

for the small-to-medium AVs in term of safety, cost, design complexity, operator skill 

and recovery failure rate. Table 2.1 expresses the rating between four types of recovery 

methods used by the SUAVs such as skid or belly recovery, wheeled landing, 

parachute recovery and vertical-net recovery. This rating comparison help is beneficial 

identify and select an effective recovery design for Aludra SR-10 UAV. Apparently, 

according to the rating comparison by considering the advantages and disadvantages 

of every system, the PRS can fulfill the requirement for a successful recovery method. 

This type of recovery method allows a soft landing even with it is handled by an 

untrained operator 
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Table 2.1: Rating of different types of recovery system 

Classification 
Skid or belly 

landing 

Wheeled 

landing 

Parachute 

recovery 

Vertical-net 

recovery 

Cost Low High Medium High 

Safety Medium High Medium Average 

Operator skill 

requirement 
Low Average Average Medium 

Design 

complexity 
Low High Medium Medium 

Recovery failure 

rate 
Medium Low Medium High 

 

2.3 Characteristic of parachute 

 

Modern designs of parachutes are classified into two categories that are ascending and 

descending canopies. An ascending canopy is specifically built to ascend and stay 

aloft as long as possible such as paraglide. In contrast, the descending canopy provides 

a reduced/ low amount of dragging force. This condition is mainly to slow and 

maintain a balance of dropping object or person so that the item would remain safe 

until it reaches the ground [14]. 

The physics behind deployment parachute is involving the interaction between 

gravity and air resistance includes several factors such as weight and shape of the 

parachute. As the aircraft’s power supply was cut off, no thrust is produced thus leads 

to zero thrust acting on the aircraft. An explosive charge is widely used to deploy the 

parachute in order to slow down the descent rate of the aircraft. Figure 2.1 shows the 

forces act on the parachute during the recovery system. Since a weight still act on the 

aircraft, the aircraft immediately falls back to the earth by its weight. Air resistance 

increases due to a large surface area that is produced by canopy when it is opened. As 

the aircraft descends, the drag and the weight in opposing forces are produced. The 

weight (W) is always directed towards the centre of the earth while the drag force (D) 

is opposed to the motion direction. A stable parachute is descent in equilibrium 

acceleration between the total drag of the parachute and the aircraft (DT) and the 

weight of the load and the parachute assembly (WT).  
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