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ABSTRACT

A quadcopter 1s a four-rotor unmanned aerial vehicle (UAV) with nonlinear and
strongly coupled dynamics system. A precise dynamics model is important for
developing a robust controller for a quadcopter. NN model capable to obtain the
accurate dynamics model from actual data without having any governing
mathematical model or priori assumptions. Recursive system identification based on
neural network (NN) offers an alternative method for quadcopter dynamics
modelling. Recursive learning algorithms, such as Constant Trace (CT) can be
implemented to solve insufficient training data and over-fitting problems by
developing a new model from real-time flight data in each time step. The modelling
results from the NN model could be inaccurate due to inappropriate model structure
selection, excessive number of hidden neurons and insufficient training data.
Typically, the model structures and hidden neuron are determined by using trial and
error approach to obtain the best network configuration. This study utilised a fully
tuned radial basis function (RBF) neural network to obtain a minimal structure and
avoid pre-determining the number of hidden neurons by introducing the adding and
pruning neuron strategy. The prediction performance of the proposed fully tuned
RBF was compared with Multilayer Perceptron (MLP), Hybrid Multilayer
Perceptron (HMLP) and RBF networks trained with CT algorithm. The findings
indicated that the fully tuned RBF with minimal resource allocating networks
(MRAN) automatically selected seven neurons with 9.5177 % prediction accuracy
and 5.89ms mean training time. The results also showed that the proposed extended
minimal resource allocating networks (EMRAN) algorithm is capable to adapt with
dynamics changes and infer quadcopter model with an even shorter training time

(4.16ms) than MRAN and suitable for real-time system identification.



ABSTRAK

Quadcopter adalah pesawat udara tanpa pemandu (UAV) yang mempunyai empat
kipas dengan sistem dinamik yang tidak linear. Model dinamik yang jitu adalah
penting untuk membangunkan sistem kawalan quadcopter. Rangkaian neural tiruan
(NN) berupaya menghasilkan sistem dinamik yang jitu dari sumber data sebenar
tanpa membuat formula matematik atau maklumat awal. Pengenalpastian system
dalam talian berasaskan NN menawarkan satu kaedah alternatif bagi memperolehi
sistem dinamik untuk quadcopter. Pembelajaran algoritma secara dalam talian seperti
Pengesan Malar (CT) dilaksanakan untuk menyelesaikan masalah data penerbangan
tidak mencukupi dengan membangunkan dinamik model baru pada masa sebenar.
Hasil pengenalpastian dari model NN tidak jitu disebabkan oleh pemilihan struktur
model vang tidak sesuai, bilangan nod neural yang berlebihan serta data penerbangan
vang tidak mencukupi. Lazimnya, model struktur dan nod-nod neural akan
ditentukan menggunakan kaedah cuba dan ralat untuk mendapatkan konfigurasi
rangkaian terbaik. Kajian ini menggunakan Rangkaian Neural Fungsi Asas Jejarian
(RBF) penyelarasan secara menyeluruh dengan algoritma penambahan atau
pengurangan nod-nod neural bagi mendapatkan struktur yang optimum dan
mengelakkan ketidaktentuan bilangan nod neural. Prestasi RBF penyelarasan
menyeluruh yang dicadangkan dibandingkan dengan Perseptron Berbilang Lapisan
(MLP), Perseptron Berbilang Lapisan Hibrid (HMLP) dan RBF dengan algoritma
CT. Dapatan kajian menunjukkan bahawa RBF penyelarasan menyeluruh dengan
Pengagihan Sumber Rangkaian Minima (MRAN) automatik menggunakan tujuh
node dengan 9.5177 % kejituan and 5.89ms purata masa latihan. Dapatan kajian juga
menunjukkan Penambahan Pengagihan Sumber Rangkaian Minima (EMRAN)
berupaya menghasilkan model dinamik dan menyesuaikan diri dengan perubahan
dinamik dengan purata latihan rangkaian yang lebih singkat (4.16ms) dari MRAN

dan sesuai untuk diimplimentasi dengan pengenalpastian system dalam talian.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

A quadcopter is a type of rotorcraft-based unmanned aerial vehicle (UAV) flies by
using four fixed pitch rotors by changing the speed of each rotor. It does not require
any complex mechanical control mechanism for its propellers and it is easier to
maintain. The quadcopter is preferred than a helicopter due better stability
characteristic with similar hovering capability of conventional helicopter. Due to
these advantages, multi-rotor aerial vehicles, such as the quadcopter, attract strong
interest worldwide.

The quadcopter offers unique capabilities that enable it to take off and land
vertically and hover and cruise at a lower speed. The quadcopter platform offers
many potential applications in both military and civil compared to fixed-wing UAV.
Quadcopters in military applications are mainly used for real-time reconnaissance
surveillance and search and rescue missions. Meanwhile, in civil application,
quadcopters are significantly used in aerial photography, delivery service (Wei,
2015), traffic monitoring and structural inspection (Altug, Ostrowski, & Taylor,
2005). The quadcopter is also widely used for university research, to be tested and
developed in different fields of studies including flight control theory, real-time
systems, navigation and robotics.

Most of the above-mentioned applications require the quadcopters to have a
highly robust control system to hover steadily and in close proximity relative to the

targets. Different types of flight controllers, such as PID (Kader, El-henawy, & Oda,



2014), Linear Quadratic Regulator (LQR) (Cowling et al., 2007), model predictive
(Bangura & Mahony, 2014) and artificial neural networks (Boudjedir et al., 2012)
have been developed for the quadcopters to fly autonomously and in close proximity
to the targets. Hence, a comprehensive modelling work needs to be conducted to
obtain an accurate flight dynamics model if one intends to design a robust flight
control system. High accuracy and fidelity of mathematical models are essential in
many flight applications especially in stability and control, system verification and
simulation development (Klein & Morelli, 2006; Tischler & Remple, 2006).

The dynamics model of a quadcopter often involves certain assumptions to
simplify the model complexity. High frequency and unmodelled dynamics are
neglected to simplify the dynamics model analysis. Hence, flight controller design
based on the simplified and unmodelled dynamics may not operate properly in a real
application, leading to crash or unexpected control behaviours during flight (Cai,
Chen, & Lee, 2006; Cai et al., 2016; Waslander, Hoffmann, & Tomlin, 2005). Thus,
a comprehensive method to obtain a precise dynamics model is crucial to develop a

robust controller for a quadcopter.

1.2 Problem statement

Quadcopter flight dynamics modelling is a numerical representation of flight
dynamics response for a given input. System identification based on neural network
(NN) can be used as an alternative method in quadcopter dynamics modelling. The
NN model offers a flexible model structure that can be trained by using various
numbers of efficient training algorithm. These advantages make NN can approximate
complex nonlinear mapping and reduce the costs and efforts to model dynamics
system (Collotta, Pau, & Caponetto, 2014; Lawrynczuk, 2014; Shamsudin & Chen,
2014; Zurada, 1996). However, the modelling result from the NN approach could be
inaccurate due to improper model structure selection, an excessive number of
neurons and insufficient training data for the system (Shamsudin & Chen, 2012).
Furthermore, the NN modelling has disadvantages of longer training, slow
convergence rate and susceptible to the over-fitting problem. In NN system
identification, the performance of a NN model mostly depends on its generalisation

capability which is related to the ability of the network to predict untrained data and



over-fitting problem, leading to generalised poor performance (Urolagin, Prema, &
Reddy, 2012).

The total number of hidden neurons in the hidden layer is the main parameter
that determines the overall NN model structure. A typical selection of hidden
neurons is based on the trial and error method or rule-of-thumb approach (Panchal &
Panchal, 2014; Peyada & Ghosh, 2009). However, this approach is labourious and
may not achieve an optimal NN architecture (Romero Ugalde et al., 2015). The
selection of the number of neurons is a very crucial step during NN modelling and an
mcorrect number of neurons could lead to an inaccurate and poor prediction
performance (Pairan & Shamsudin, 2017; Shamsudin & Chen, 2012). Hence. a good
selection of NN structure and implementation of advanced NN architectures should
improve the prediction performance and reduce the training time of the model
(Panchal & Panchal, 2014; Shamsudin & Chen, 2012).

Standard offline/batch training neural network models, such as Levenberg-
Marquardt (LM), Gauss-Newton (GN) and back-propagation are insufficient to
represent the dynamics nonlinear systems over the entire flight envelope. These
methods will fail to adapt to frequent dynamics changes as they are only suitable for
time-invariant system (V. Puttige & Anavatti, 2007; Samal, 2009, Shamsudin, 2013).
Since the quadcopter is a time-variant and nonlinear dynamics system, recursive
training algorithms should be introduced to improve the prediction, adaptability of
the dynamics model over the entire flight envelope and avoid the over-fitting
problem (Hunter et al., 2012; Shamsudin, 2013).

This thesis attempts to overcome the drawbacks of system identification
based on the NN by introducing recursive NN-based modelling by using fully tuned
radial basis function (RBF) neural network. Fully tuned RBF with a recursive
training algorithm was proposed to overcome the large numbers of hidden neurons
and parameters selection dilemma, reduce training time and avoid the over-fitting
data problem. The fully tuned neural network was applied to the quadcopter platform

to model the nonlinear attitude dynamics by using raw flight data.



1.3 Objectives

This study intends to develop a real-time identification algorithm for modelling a

quadcopter dynamics system using RBF NN with automatic tuning for all RBF

network parameters. This study specifically aims:

1. Develop a comprehensive and adaptive system identification method for a
quadcopter attitude dynamics system using fully tuned RBF NN.

2. Evaluate performance of a developed system identification algorithm in terms of
prediction model error and execution speed in real-time hardware.

3. Generalize performance of NN model by establishing a relationship between the

effect of regression size and the number of neurons.

1.4 Scope of Study

The scopes set for the research work are as follows:

1. Establishing comprehensive quadcopter flight dynamics model characteristics.

2. Developing a suitable real-time system identification algorithm for a quadcopter
with execution speed of less than 30ms.

3. Developing a NN system identification algorithm using National Instrument
MyRIO embedded device and LabVIEW development software.

4. Performing quadcopter flight test based on DII flight controller with attitude hold
mode.

5. Establishing network communication link between quadcopter and ground station
by using WIFI on MyRIO that have an approximate communication range of

150m.

1.5 Significant of Study

This study will be significant in correct selection of neuron sizes or network
parameter such as center and width that impact the prediction error of the NN
network. The fully tuned RBF networks solved hidden neuron size dilemma using

automatic tuning algorithm to obtain the optimum network structure with better



training time and prediction quality. The method improves conventional hidden
neuron selection process by integrating the growth of hidden neurons, center and
width as part of training process. Thus, save time and effort compared to troublesome
manual selection of network parameters.

The usage of recursive algorithms for NN model like Kalman Filter or
recursive Gauss-Newton (rGN) can be applied to reduce computation complexity of
the offline (batch) training method. The proposed MRAN and EMRAN recursive
training algorithms introduce adding and pruning neuron strategy to offer a faster
system identification method with adaptability to dynamics change compare with

standard RBF network.

1.6 Thesis Organisation

The work presented in this thesis focuses on the development of a system
identification method based on a fully tuned RBF to determine the attitude dynamics
model of the quadcopter. The thesis is organized as follows: In Chapter 2, discusses
on quadcopter flight dynamics modelling and system identification. In Chapter 3,
research methodology in system identification method based on neural network and
details about fully tuned neural network are addressed. Results and discussion are

presented in chapter 4. Chapter 5 presents the concluding remarks.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of quadcopter dynamics and system identification
based on neural network model. An unmanned aerial vehicle (UAV) is defined as an
air vehicle that is able to perform flight missions without human pilot on board. Most
UAVs are equipped with automatic flight control, communication systems, sensors
and ground control station that can fly autonomously or remotely controlled (Office
of the Secretary of Defence, 2003). The popularity of UAV has grown very fast and
approximately over 1000 UAV models have been developed for military and civil
applications (Guowei Cai, Dias, & Seneviratne, 2014).

UAY can be classified into fixed-wing, rotary wing and flapping wing UAVs.
The fixed-wing UAV is developed for long range and high-altitude missions such as
meteorological and environmental monitoring. Meanwhile, flapping wing UAV is
replicating a bird's flying mechanism with a low power consumption and vertical
take-off and landing (VTOL) capability. However, most flapping wing UAVs are
still under development and have an extremely low payload capability (Norouzi
Ghazbi, Aghli, Alimohammadi, & Akbari, 2016). Rotary wing UAVs such as
helicopter and quadcopter are mainly used on missions that require hovering flight.
The rotorcraft UAV also has VTOL capability and able to hover and cruise at a very
low speed which make it the best UAV for searching and tracking ground targets.



The mechanical structure of a quadcopter is very simple and usually have two
basic types of configuration which are the cross configuration and the plus
configuration as shown in Figure 2.1. The cross configuration quadcopter is more
stable and provides higher momentum than plus configuration, which will increase
the manoeuvrability performance (Gupte, Mohandas, & Conrad, 2012). Reference
frame for cross configuration quadcopter is shown in Figure 2.2. The position of the
quadcopter can be addressed in a coordinate of body frame, b with reference to
inertial frame, e. Xp, Y, and Zp are the main axis of the body frame of quadcopter
while Xe, Ye, and Z. are axis on inertial frame. Two diagonal rotors (M1 and M3) are

rotating counter-clockwise whereas the other rotors (M2 and M4) rotate in the

ko)
C+c

)

(a) (b)

Figure 2.1: Quadcopter mechanical structure configuration (a) Cross configuration

clockwise direction.

(b) Plus configuration

Red color rotation indicated that the speed of the motor is increasing and
black rotation means the speed is decreasing. Thus, a quadcopter will have a forward
pitch and create pitch angle (8). Similarly, when flying in positive Yy axis and create
roll (¢) as in Figure 2.3(b), the quadcopter is required to decrease the propeller speed
at M1 and M2 and increase the propeller speed at M3 and M4. To change the
quadcopter heading in 7y (1), the quadcopter must increase M1 and M3 rotor speed,
and decrease rotor speed at M2 and M4 as shown in Figure 2.3 (¢).

All rotor speeds need to be controlled to create any manoeuvre of the
quadcopter since reducing the speed of one rotor will cause the quadcopter to change
direction but there are also changes in the total yaw moment and thrust (Altug et al.,
2005; McKerrow, 2004). Thus, the quadcopter is an unstable and highly coupled
dynamics system, which made it difficult to control. Recent quadcopter design is

expected to fly in uncertain environments and outside the traditional flight envelope



region, thus, require the controller to have a higher level of robustness and
adaptability (Collotta et al.,, 2014; L. Li, Sun, & Jin, 2015). Robust control
techniques are necessary for the autonomous flight of the UAV to adapt themselves
to the changes in dynamics of the vehicle. A comprehensive research done by Office
of the Secretary of Defence (2003) concluded that flight control failure contributes
about 26 percent of total UAV failures and second major problem contribution for
UAYV after power and propulsion failure. In order to minimize crash or failure during
a mission, it 1s essential to have an automatic flight control system (AFCS) installed
on-board and the design of AFCS 1s strongly related to the dynamic model of UAV.
High fidelity model of a UAV 1s important to design an advanced automatic flight
control system such as the nonlinear control, linear-quadratic regulator (LQR) and

Hw control (Guowei Cai et al., 2014).

Body frame

Xy

e
X, .
ﬁlai frame

Figure 2.2: Cross quadcopter frame.

la

® €
e @

(a) b) (c)
Figure 2.3: Speed of rotor for quadcopter flying movement (a) Pitch forward along

. 7,

Y.

X axis (b) Roll right along Yy axis (¢) Yaw clockwise along 7 axis



2.2 Quadcopter Dynamic Modelling and System Identification

This section introduces dynamics modelling techniques used to determine the
mathematical model of the quadcopter system. Two common methods were
developed in modelling the quadcopter based on the first principle approach and

system identification.

2.2.1  First principle approach method

The first principle method of quadcopter modelling used the Newton-Euler equations
of motion to describe the system behaviour. The flight dynamics is then extended to
include forces and moments balance of the vehicle platform with a certain number of
assumptions and simplifications. Many unknown parameters in the mathematical
model need to be measured or approximated, thus, make the modelling work
complex (Norgaard, 2000). Several assumptions are used to simplify the
mathematical model development as follows:

(1)  The quadcopter frame is symmetrical in x and y-axis and rigid.

(i1)  The center of gravity and center body principle axis are coinciding.

(1)  Aerodynamics effects such as flapping on rotors are ignored.
(iv) = The propellers are rigid.

Figure 2.4 below shows the basic flight dynamics model for a quadcopter
that represents four main components which are kinematics, 6 degree of freedom
(DOF) rigid body dynamics, aerodynamic forces and moments and onboard stabilizer
dynamics. The kinematics part shows the relative translational and rotational motion
between the vehicle and local environment. The motion is defined by using Newton-
Euler equations of motion which in the body frame (b) and the inertial (e¢). The

kinematic equations are given by

P,= R Vi (2.1)

d = S, 0 (2.2)
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Figure 2.4: Flight dynamics model for quadcopter. (G. Cai et al., 2016)

where P, = [px Dy pz]T is the quadcopter position in inertial reference frame
,®=[¢p 8 y¥]" is the Euler angle in Earth frame , V, = [u v w]? is linear
velocity in body frame and @, = [ p g r |7 is the angular rate of quadcopter in
the body reference frame. R, and S,/ are rotational matrices from the body
reference to inertial reference frame (Guowei Cai et al., 2006).

The 6 DOF rigid-body dynamics component addresses the quadcopter

translational and rotational dynamics in the body frame defined as follows:

Vb = —Wy XVb + E + E (23)
m m
o, = J7H M, —w, X (Jwy) | 2.4

where m is the mass of quadcopter, Jis the simplified inertia matrix, F;, , F;, and M,
are the total force, gravity force and total moments, respectively.

The aerodynamic forces and moments component primarily contains forces
and moments that act on the quadrotor due to four major sources which are the
gravitational force, rotors movement, the gyroscopic effects and inertia counter
torque (Phang, Cai, Chen, & Lee, 2012). The drag generated from the frame of the
quadcopter can be neglected because the force is small compared to other force

components. So, the equation for total force and moments is given by:

Fb)_ Fg (Frotm’) ( 0 ) ( 0 ) (2-5)
(Mb _(O)+ M'rof:m’ * M.QTJIO * Mcounf:E'r

where, Fy is the force due to gravily, F,pp0r and M, 4, are the forces and moments

due to the rotating rotor for cach rotor, respectively, M

gryo 18 the total moments

induced by the four rotors and the quadcopter rigid body and M ..., 18 the moment
caused by changes in the rotational speed of the propeller.
The on board stabiliser component in the quadcopter flight dynamics is

used as the control input mixer to stabilise the quadcopter. Several outputs of the
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