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ABSTRACT 

Monitoring and inspecting the health condition and state of the pipelines are significant 

processes for an early detection of any leaking or damages for avoiding disasters. 

Although most Non Destructive Test (NDT) techniques are able to detect and locate 

damage during the maintenance intervals, interrupted services could result in high cost 

and lots of time consumed. In addition, most NDTs are utilized to detect and locate 

single damage such as axial crack, circular crack, or vertical crack only. Unfortunately, 

these NDTs are unable to detect or localize multi-type of damages, simultaneously. In 

this research, the proposed method utilizes the Structural Health Monitoring (SHM) 

based on guided wave techniques for monitoring steel pipeline continuously in 

detecting and locating multi-damages. These multi damages include the 

circumference, hole and slopping cracks. A physical experimental works as well as 

numerical simulation using ANSYS were conducted to achieve the research 

objectives. The experimental work was performed to validate the numerical 

simulation. An artificial neural network was used to classify the damages into ten 

classes for each type of damage including circumference, hole and sloping cracks. The 

obtained results showed that the numerical simulation was in agreement with the 

experimental work with relative error of less than 1.5%. In addition, the neural network 

demonstrated a feasible method for classifying the damages into classes with the 

accuracy ranged from 75% to 82%. These results are important to provide substantial 

information for active condition monitoring activities. 
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ABSTRAK 

Pemantauan dan pemeriksaan keadaan kesihatan dan tahap semasa saluran paip adalah 

satu proses penting untuk pengesanan awal kebocoran atau kerosakan bagi 

mengelakkan sebarang bencana. Walaupun kebanyakan teknik Ujian Tanpa Musnah 

(NDT) dapat mengesan dan mencari kerosakan semasa proses penyelenggaraan 

berkala, namun ianya melibatkan kos yang amat tinggi dan waktu yang panjang 

disebabkan oleh pemberhentian pengoperasian. Di samping itu, kebanyakan NDT 

hanya boleh digunakan untuk mengesan dan mencari kerosakan jenis tunggal seperti 

retak paksi, retak membulat atau retakan tegak sahaja. Oleh itu teknik NDT ini tidak 

dapat mengesan atau melokasikan pelbagai jenis kerosakan pada satu-satu masa. 

Dalam kajian ini, kaedah yang dicadangkan menggunakan teknik Pemantauan 

Kesihatan Struktur (SHM) berdasarkan teknik gelombang berpandu untuk memantau 

talian paip keluli secara berterusan untuk mengesan dan mencari pelbagai kerosakan. 

Kerosakan ini termasuk lubang lilitan, lubang dan keretakan. Kerja-kerja eksperimen 

fizikal serta simulasi berangka menggunakan ANSYS telah dijalankan untuk mencapai 

matlamat penyelidikan. Kerja-kerja eksperimen telah dijalankan untuk mengesahkan 

simulasi berangka. Rangkaian neural tiruan digunakan untuk mengklasifikasikan 

kerosakan kepada sepuluh kelas untuk setiap jenis kerosakan termasuk lilitan, lubang 

dan keretakan bercerun. Hasil yang diperolehi menunjukkan bahawa keputusan 

simulasi berangka telah mencapai hasil kerja eksperimen dengan ralat relatif kurang 

dari 1.5%. Di samping itu juga, rangkaian neural telah menunjukkan bahawa kaedah 

yang boleh dilaksanakan dalam mengklasifikasikan kerosakan ke dalam kelas dengan 

ketepatannya di antara 75% hingga 82%. Keputusan ini penting bagi membekalkan 

maklumat penting untuk aktiviti pemantauan keadaan aktif. 
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INTRODUCTION 

1.1 Introduction 

The economy of countries in the world is heavily dependent on an extensive network 

of distribution and transmission pipelines to transport the countries’ energy sources 

such as gas, oil and water. Petroleum in most developed countries is the largest source 

of energy transported using pipes. The network of pipelines has several advantages 

over other transportation methods such as trucks or trains due to effectiveness of cost, 

installation, and distribution inside cities. According to (Factbook, 2012), about 

2,175,000 miles (3,500,000 km) of the pipeline have been installed in more than 120 

countries in the world. However, many factors affect the pipelines network including 

corrosion, mechanical damages, and manufacturing defects. Environmental factors 

such as soil conditions where the pipelines are installed may also cause corrosion. 

Under extreme conditions, corrosion can impact the pipes’ integrity as early as 5 years 

after installation (Kishawy & Gabbar, 2010). In addition, mechanical damages such as 

dents, gouges and removed metals can also impact the integrity of the pipelines due to 

the unsuitable handling of the pipes, unsuitable backfilling or running equipment too 

close to the pipe before it is backfilled (Macdonald et al., 2007; Warman et al., 2006). 

Moreover, several types of manufacturing defects could cause failure in pipelines’ 

operations such as a defect in the longitudinal seam of the pipe which is the most 

common manufacturing defects. Figure 1.1 shows the statistics on what cause pipeline 

damages. Therefore, reliability and integrity of pipelines are significant conditions that 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



2 

 

 

 

grab researchers’ attention for detecting and monitoring the degradation of the pipeline 

systems by regularly assessing their conditions. 

  

 

Figure 1.1: Actual damages that cause of pipelines incidents (Association, 2014) 

1.2 Background  

There are several and different methods (Carandente et al., 2012; Eybpoosh et al., 

2016, 2017; Liu et al., 2016; Løvstad & Cawley, 2011, 2012; Peter & Wang, 2013; 

Wang et al., 2015; Wang et al., 2010) that have been proposed and designed for 

inspecting, detecting, localizing and characterizing various types of damages. 

Industries typically implement a combination of several different destructive and non-

destructive inspection techniques for inspecting and monitoring pipelines that are used 

for transporting oil and natural gas. These techniques are commonly used to ensure the 

integrity of pipelines. However, there are different factors that can be used to classify 

the existing techniques (Su & Ye, 2009). In this section, the applied current techniques 

are classified into destructive and non-destructive. 

1.2.1 Destructive Testing techniques (DT) 

Destructive testing (DT) is a technique in which the operation of the monitoring or 

inspecting needs to stop the functionality of the pipelines or temporarily taken out of 

operation. Most DT techniques are based on determining some mechanical properties, 
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such as strength, toughness and hardness of the structure (Kang et al., 2011; Puust et 

al., 2010). Hydrostatic test is an example of the most common method used as DT. 

The test involves pressurizing the pipeline to a point greater than the maximum 

operating pressure. This is followed by observing the pressure for several hours to 

determine if there are any leaks. However, there are some drawbacks of using DT 

because of the potential risks that may arise during the test. These include leakage or 

rupture due to the high pressure. If this happens, the hazardous materials in the pipeline 

must be replaced with water to prevent environmental damage which causes service 

interruptions and water removal difficulties. Consequently, DT is considered as an 

unsuitable method for monitoring and inspecting the pipelines used for transporting 

natural gas and oil. In addition, DT is time consuming and need high cost. 

1.2.2 Non-destructive techniques 

Non-Destructive Testing and Evaluation (NDT/E) is the process of assessing the 

structural integrity of a material or component without causing any physical damage 

to the test object. Non-destructive techniques (NDT) have clear advantages over DT. 

The non-destructive techniques with pipelines typically involve a damage detection 

discipline commonly referred to as non-destructive evaluation (NDE). Generally, non-

destructive testing (NDT) is used by the industry for assessing pipeline integrity and 

reliability (Shi & Miro, 2017; Varela et al., 2015).It is an acceptable practice to detect 

dangerous defects before they cause catastrophic failure or interruption to production.  

Recently, NDE  conducted at regular scheduled intervals during the lifetime of 

engineered structures and assets, is clearly too unwieldy to achieve automatic damage 

identification when the structures and assets are in service (Qatu et al., 2016). 

However, ND need to be performed at regular maintenance intervals which make ND 

does not provide on-line monitoring and detection of failures as they happen. To 

overcome the limitation of none on-line monitoring and detection of failures, 

researchers proposed a more reliable, economical monitoring system involves a 

damage detection process known as structural health monitoring (SHM) (Packo et al., 

2011; Yu et al., 2008). In other words, SHM is defined as ‘the nondestructive and 

continuous monitoring characteristics using an array of sensors related to the fitness 
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of an engineered component as it operates, so as to diagnose the onset of anomalous 

structural behavior (Kim & Kwon, 2015; Yang, 2009).  

1.3 Problem statement 

Although there are several SHM techniques being utilized for monitoring cracks in 

pipelines, there are some limitations whereby most existing detection and monitoring 

techniques are based on non-destructive techniques in which the detection requires a 

service interruption. In other words, this requires the pipeline system to be taken out 

for cracks inspection. Consequently, this interruption involves a high cost and lots of 

time. In addition, most existing techniques are implemented and used to detect specific 

and single type of crack such as axial crack (Liu et al., 2017), circular crack (Wang et 

al., 2015), or vertical crack only. Moreover, most existing techniques are able to detect 

cracks during maintenance intervals (as a basic requirement or regular maintenance 

intervals). Thus, these techniques could not provide continuous monitoring on the 

conditions of the pipeline for detecting cracks. Therefore, extra efforts are needed for 

an early detection of single or multiple damages in pipelines network using guided 

waves (GW) methods.     

1.4 Research objectives 

The goal of this research is to integrate a robust and reliable SHM technology with the 

GW-based Piezoelectric Transducers (PZT) sensor array system. The research 

objectives were identified as follows: 

1. To develop an ANSYS model of guided waves, in order to acquire preliminary 

understanding of the guided waves in the pipeline and to obtain simulation data.  

2. To assess and validate the Finite Element Analysis Simulation data with the 

experimental work. 

3. To evaluate an SHM-based technology on GW technique for continuous 

monitoring steel pipeline and detect, locate, and characterize different types of 

damage(s). 

4. To classify multiple damages (type, size, number, and location) using Artificial 

Neural Network (ANN). 
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1.5 Scope of the research  

To achieve the objectives of the study, this work direction was limited to the following 

scope: 

1. For oil supply, natural gas and industries pipelines network, a schedule 40 steel 

pipe was used and prepared for testing purpose in various research topics and 

damage detection in particular. It was difficult to obtain the pipe if it was 

purchased in a small quantity for an experiment as a non-commercial sample, 

were difficult to obtain and extremely expensive. In addition, the pipes’ weight 

is quite heavy to suspend in the air with a plastic wire to prevent wave 

reflection. Therefore, a lighter and cheaper pipe was chosen as an alternative 

for the experiment. The selected material is a carbon steel pipeline (diameter 

60mm, length 1000mm and 4mm thickness). 

2. Three types of modes were generated when the waves were  propagating along 

a cylindrical structure, which were: the longitudinal L(0,m), torsional T(0,m) 

and flexural F(n,m) wave modes. L (0,2) mode was propagated as if it was non-

dispersive over the frequency range. Therefore, Guided waves propagation L 

(0,2) mode was used in hollow cylinders. In addition, this mode was not 

capable to detect axial damage, and therefore the artificial and simulated 

damages were circumference, holed, and sloped. 

3. There are numerous elements to a pipeline system, including the main body of 

the individual pipe segments, flanged and welded joints, valves, fittings, and 

pumping stations. The waves suffered substantial dispersion and mode 

conversion that made it hard to analyze from the pipeline system. Therefore, 

the monitored area was the main body of the individual pipe segments only. 

4. The simulations of perfect, cracks and holes pipes based on the ultrasonic 

guided-waves were conducted by using the ANSYS Finite Element Analysis 

Simulation software (FEA). The pipe structure with Guided waves simulated 

the pipes with the same parameters and boundary conditions.  

5. The Artificial Neural Network (ANN) has been used for a wide range of 

applications such as diseases’ diagnosis, mining gigantic data, speech 

recognition, image processing, pattern recognition, classification and 

prediction as well as many other applications. The ANN model was used to 

classify different damages through the use of Matlab software. 
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1.6 Thesis structure  

This thesis is divided into five chapters and organized as follows: 

Chapter One: Overviews the problem background. This is where the problem 

statement is introduced, and the objectives of this research are specified. In addition, 

the chapter states the scope of the research.  

Chapter Two: In this chapter, an overview of SHM concepts and approaches 

and its applications are introduced. Moreover, it provides an overview about guided 

wave propagation in details. In addition, characteristics of piezoelectric effects and 

equations are presented. Finally, this chapter explains the artificial neural network.   

Chapter Three: In this chapter, the research methodology is discussed and 

explained, and the main phases of experimental and numerical work were described. 

In addition, it provides the details of the experimental setup including overall pipeline 

inspection system. Finally, the Finite Element Analysis Simulation is also discussed, 

including finite element method and classification using artificial neural network. 

Chapter Four: In this chapter, the results and finding of experimental work 

are explained together with the results and finding of ANSYS. Then the validation of 

the two results is presented and discussed. Finally, the classification of the damages 

based on confusion matrix is illustrated and discussed.  

Chapter Five: This chapter summary of the results and conclusions are given. 

A brief discussion on the future recommendations is also presented. The conclusion, 

contributions of this study and the future works as well as the limitation of this study 

are presented. 

 

 
 

CHAPTER 2 
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