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ABSTRACT

As SQL injection attack (SQLIA) continues to threaten web applications despite

several techniques recommended to prevent it, a Hybrid Threat Modeling strategy

was adopted in this research due to its proactive approach to risk mitigation in web

applications. This involved the combination of 3 threat modeling techniques namely

misuse cases, attack trees and finite state machines in order to harness their individual

strengths to design a Hybrid Threat Modeling framework and tool called MOTH

(Modeling Threats using Hybrid techniques). Using the MOTH tool developed using

Eclipse rich client platform, experimental results with an e-commerce web application

downloaded from GitHub namely BodgeIt store shows an improved SQL injection

vulnerability detection rate of 13.33% in comparison to a commercial tool, IBM

AppScan. Further benchmarking of MOTH with respect to SQL injection vulnerability

detection in both BodgeIT store and IBM’s Altoro Mutual online banking application

shows it is 30.6% more effective over AppScan. Relative to other threat modeling

tools, MOTH was able to realize a 41.7% optimization of attack paths required to

design effective test plans and test cases for the recommendation of efficient security

requirements needed to prevent SQL injection attacks. A 100% risk mitigation

was achieved after applying these recommendations due to a complete security test

coverage of all test cases during the experiment as all test cases successfully exposed

the inherent security mutants in the AUT. These results show that MOTH is a more

suitable hybrid threat modeling tool for preventing poor specifications that expose web

applications to SQL injection attacks.
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ABSTRAK

Serangan SQL Injection (SQLIA) sering terjadi dan memberi kesan kepada aplikasi-

aplikasi web walaupun pelbagai teknik telah dicadangkan untuk mengelakkan ia

berlaku. Oleh itu, strategi Hybrid Threat Modeling telah dilaksanakan di dalam

kajian ini kerana ia memiliki pendekatan proaktif untuk mengurangkan risiko

serangan SQLIA di dalam aplikasi web. Kajian ini telah menggabungkan kelebihan-

kelebihan yang terdapat di dalam 3 teknik threat modeling iaitu misuse cases,

attack trees dan finite state machines untuk menghasilkan Hybrid Threat Modeling

framework dan MOTH (Modeling Threat using Hybrid techniques) tool. MOTH

tool telah dibangunkan menggunakan platform Eclipse dan hasil keputusan ekperimen

menggunakan aplikasi web e-dagang, BodgeIt yang dimuat turun dari GitHub

menunjukkan teknik yang dicadangkan mampu mengesan serangan SQL Injection

dengan lebih baik sebanyak 13.33% berbanding tool komersial, IBM AppScan. MOTH

juga berupaya mengesan serangan SQL Injection dengan lebih baik sebanyak 30.6%

berbanding AppScan bagi aplikasi BodgeIt dan aplikasi perbankan dalam talian, Altoro

Mutual IBM. Berbanding dengan threat modeling tools yang lain, MOTH juga mampu

mengoptimumkan risiko serangan SQL injection sebanyak 41.7%. 100% pengurangan

risiko telah berjaya dicapai selepas mengaplikasikan teknik MOTH. Ini disebabkan

oleh liputan ujian keselamatan yang lengkap bagi semua test cases di dalam semua

eksperimen dan MOTH berjaya mendedahkan security mutants yang wujud di dalam

AUT. Keputusan ini menunjukkan bahawa MOTH adalah hybrid threat modeling tool

yang lebih baik dalam mencegah serangan SQL injection.
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CHAPTER 1

INTRODUCTION

1.1 Background Study

As organizations seek to fulfil their objectives in the 21st century, they have come

to immensely depend on reliable and secure software as a core component of their

organizational asset to achieve their set goals (Symantec, 2014; Amthor et al.,

2014). These software assets are system resources that have significant value to the

stakeholders of the organization (Wichers and Williams, 2013). Irrespective of the

size, nature or sector of these organizations, securing the software asset has gained

momentum (Johnson et al., 2013; Zhang et al., 2014) given the explosion of software

vulnerabilities (Sultana et al., 2017) leading to major software security issues in the

form of incessant cyber-attacks to confidential data or mission critical systems which

could bring huge losses to both the organization and her customers (Kavitha et al.,

2017; Pacheco et al., 2017). These kinds of attacks include but are not limited to

SQL injection, denial of service, disclosure of confidential information and data theft

or corruption via social engineering attacks, phishing attacks, watering hole attacks,

buffer overflow or stack smashing (Pickard et al., 2012; Bozic et al., 2013; Chen et al.,

2013; Marback et al., 2013; Shar and Tan, 2013). These could push organizations

out of business due to customers’ lack of trust in using the services, mitigating laws

enacted by the government or legal issues raised by aggrieved parties for breach of

contract (Paul, 2014).
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However, post deployment and reactive measures such as software patching

and upgrade, damage assessment, logging analysis, installation of intrusion detection

and prevention systems to mention a few have not stopped or deterred attackers from

continuously bombarding these software assets using more sophisticated attacks to

exploit the software vulnerabilities (Kar and Panigrahi, 2013; Li et al., 2017). These

myriads of unending threats have prompted software security experts to propose

proactive strategies of building security into the traditional Software Development Life

Cycle (SDLC) hence the Secure Software Development Lifecycle (SSDL) paradigm

came to life (OWASP, 2014a; Tatli, 2018). Given the unique culture and practices

of disparate IT firms, many tech giants have thrown their weight behind the creation

of proprietary software security models such as Trustworthy Computing Secure

Development Lifecycle from Microsoft (Microsoft, 2005), CLASP (Comprehensive

Lightweight Security Application Process) and Open SAMM (Software Assurance

Maturity Model) from OWASP (Open Web Application Security Project) (OWASP,

2016) and Touchpoints from Cigital (McGraw, 2006). Interestingly, over 60 tech-

fortune companies such as SONY, VISA, Intel, Microsoft etc. have collaborated

to develop a descriptive framework tagged BSIMM (Building Security In Maturity

Model) (BSIMM, 2014). These new paradigms and the aggressive allocation of

resources (funds and man-power) to such projects have empowered the development

and security team to address security issues during the earliest stages of system

development (Karpati et al., 2014). In the secure software development lifecycle,

one of the critical approaches to defending the organizations software infrastructure

is to anticipate the nature of the attacks from the attacker’s perspective before they

happen and strategizing mitigation plans in order to prevent these attacks from being

successful. This is called Threat Modeling (Groves, 2013).

Threat modeling is a software security practice utilized by software developers,

architects and security experts at the design phase of software development to

document the key assets found in a software application and intentionally expose

those assets to security risks in a thorough and disciplined manner. The goal of

a threat modeling exercise is to detect hidden software vulnerabilities regarded as
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”entry points” (Shostack, 2014) that may elude the application developers and use this

information to develop mitigation strategies thereby providing a roadmap for proactive

security plans (SecurityInnovation, 2011).

By identifying an application’s potential vulnerabilities, threat modeling helps

the development and security team to understand and prioritize the array of risks

for which these discovered vulnerabilities are susceptible in the event of an attack.

With the results of a threat model at hand, development teams can ensure that

they are concentrating their design, implementation or testing efforts on the risks

that matter most considering the direct or indirect impact of such risks on the

business (SecurityInnovation, 2011). In a nutshell, identifying threats during the

threat modelling exercise helps software security engineers come up with realistic and

valuable security requirements (Myagmar et al., 2005). These security requirements

are constraints that govern the intended behaviour of a software application in

accordance with the security goals and policies set by the organization (Haley et al.,

2008). Therefore, threat modeling is vital for software vulnerability detection and

prevention.

Given the above premises, researchers have proposed many methods for

developing threat models such as the use of attack trees (Swideski and Snider, 2004),

threat nets (Dianxiang et al., 2012) a formal specification method adapted from Petri

Nets, use of sequence diagrams to monitor possible threats during program execution

(Wang et al., 2007), finite state machines for modeling software objects behavior (Chen

et al., 2003) and Misuse cases, a variation of the UML Use Case model (Sindre and

Opdahl, 2005a). In the field of software security testing, this approach has also been

used by Wang (Wang et al., 2007) and Dianxiang (Dianxiang et al., 2012) to test for

software security in the design phase of the software development. Marback et al.

(2013) successfully applied attack trees to generate security test cases which might

help in identifying threats capable of compromising security.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



4

1.2 Research Motivation

Over the years, many researchers have taken threat modeling a step further by

experimentally comparing these modeling techniques especially attack trees and

misuse cases. This was done in order to discover the possibility of combining them

as an hybrid for complementary use or rather substitute them as alternatives (Opdahl

and Sindre, 2009).

One of the earliest Hybrid Threat Modeling (HTM) tools developed by a

community of researchers in the academic and industry to resolve software security

issues was SeaMonster (Meland et al., 2008). It was created in order to bridge the

communication gap between security experts and software developers as a means to

enhance knowledge sharing about software vulnerabilities. Misuse case and attack tree

threat models were used in SeaMonster to connect different aspect of every detected

vulnerability so as to understand the causes of these vulnerabilities, threats liable to

exploit them and mitigation strategies to prevent their successful exploitation (Meland

et al., 2008).

These two techniques were chosen by many researchers because they both

focused mainly on what the attacker is trying to achieve, and in turn provide mitigation

strategies to foil the attack (Karpati et al., 2014; Mai et al., 2018). An experiment

was performed by Opdahl and Sindre (2009) using software engineering students

to measure effectiveness, coverage, perceived usefulness, perceived ease of use and

intention to use of both threat modeling techniques i.e. Attack trees and Misuse Cases.

Although, the result showed that attack trees, when compared to misuse cases, were

more efficient in identifying threats particularly those related to confidentiality and

authorization, however, manual inspection of the experimental results indicated that

both techniques are complementary to an extent (Opdahl and Sindre, 2009). Further

experiments were needed to clarify the complementary nature of these techniques

hence Karpati et al. (2014) embarked on an experiment to compare attack trees and

misuse cases in an industrial setting taking his experimental and control group from

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



REFERENCES

Acunetix (2017). OWASP Top 10 Critical Web App Vulnerabilities.

Retrievable at https://www.acunetix.com/vulnerability-scanner/

scan-website-owasp-top-10-risks/.

Ahmed, M. and Ibrahim, R. (2015). A Comparative study of web application testing

and mobile application testing. Lecture Notes in Electrical Engineering. 315,

491–500. doi:10.1007/978-3-319-07674-4 48. Retrievable at https://www.

scopus.com/inward/record.uri?eid=2-s2.0-84915750469.

Al-Azzani, S. (2014). Architecture-centric testing for security. Ph.D. Thesis.

University of Birmingham.
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