
MOTH: A HYBRID THREAT MODEL FOR IMPROVING SOFTWARE

SECURITY TESTING

HABEEB OLADAPO OMOTUNDE

A thesis submitted in

fulfillment of the requirement for the award of the

Doctor of Philosophy

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

JULY 2018

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iii

DEDICATION

To Almighty Allah and my lovely parents, Tajudeen and Adiat Omotunde.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iv

ACKNOWLEDGEMENT

All praises, thanks and adorations are due to Almighty Allah for making this journey

a success. I am more than grateful to Him for seeing me through this course.

I am deeply indebted to my supervisor Prof. Dr. Rosziati Ibrahim whose help,

stimulating suggestions, useful critiques and encouragement helped me in all the

times of my study under her tutelage. I am deeply indebted to the Office of

Research, Innovation, Commercialization and Consultancy Management (ORICC) for

sponsoring this research under the Vot No. U193. My utmost gratitude goes to my

parents and siblings. You are indeed a blessing to me. Thank you for believing in me.

Your motivation, love and support can never be repaid except by Allah in manifolds.

Special appreciation to my Mum, Mrs Adiat Olaseni Omotunde, my wife and lovely

sons, Abdullah and AbdurRahman. You are my joy and all I have. Thanks for your

understanding, encouragement and prayers during the course of this research. I owe

you a lot for your support and co-operation.
PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

v

ABSTRACT

As SQL injection attack (SQLIA) continues to threaten web applications despite

several techniques recommended to prevent it, a Hybrid Threat Modeling strategy

was adopted in this research due to its proactive approach to risk mitigation in web

applications. This involved the combination of 3 threat modeling techniques namely

misuse cases, attack trees and finite state machines in order to harness their individual

strengths to design a Hybrid Threat Modeling framework and tool called MOTH

(Modeling Threats using Hybrid techniques). Using the MOTH tool developed using

Eclipse rich client platform, experimental results with an e-commerce web application

downloaded from GitHub namely BodgeIt store shows an improved SQL injection

vulnerability detection rate of 13.33% in comparison to a commercial tool, IBM

AppScan. Further benchmarking of MOTH with respect to SQL injection vulnerability

detection in both BodgeIT store and IBM’s Altoro Mutual online banking application

shows it is 30.6% more effective over AppScan. Relative to other threat modeling

tools, MOTH was able to realize a 41.7% optimization of attack paths required to

design effective test plans and test cases for the recommendation of efficient security

requirements needed to prevent SQL injection attacks. A 100% risk mitigation

was achieved after applying these recommendations due to a complete security test

coverage of all test cases during the experiment as all test cases successfully exposed

the inherent security mutants in the AUT. These results show that MOTH is a more

suitable hybrid threat modeling tool for preventing poor specifications that expose web

applications to SQL injection attacks.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vi

ABSTRAK

Serangan SQL Injection (SQLIA) sering terjadi dan memberi kesan kepada aplikasi-

aplikasi web walaupun pelbagai teknik telah dicadangkan untuk mengelakkan ia

berlaku. Oleh itu, strategi Hybrid Threat Modeling telah dilaksanakan di dalam

kajian ini kerana ia memiliki pendekatan proaktif untuk mengurangkan risiko

serangan SQLIA di dalam aplikasi web. Kajian ini telah menggabungkan kelebihan-

kelebihan yang terdapat di dalam 3 teknik threat modeling iaitu misuse cases,

attack trees dan finite state machines untuk menghasilkan Hybrid Threat Modeling

framework dan MOTH (Modeling Threat using Hybrid techniques) tool. MOTH

tool telah dibangunkan menggunakan platform Eclipse dan hasil keputusan ekperimen

menggunakan aplikasi web e-dagang, BodgeIt yang dimuat turun dari GitHub

menunjukkan teknik yang dicadangkan mampu mengesan serangan SQL Injection

dengan lebih baik sebanyak 13.33% berbanding tool komersial, IBM AppScan. MOTH

juga berupaya mengesan serangan SQL Injection dengan lebih baik sebanyak 30.6%

berbanding AppScan bagi aplikasi BodgeIt dan aplikasi perbankan dalam talian, Altoro

Mutual IBM. Berbanding dengan threat modeling tools yang lain, MOTH juga mampu

mengoptimumkan risiko serangan SQL injection sebanyak 41.7%. 100% pengurangan

risiko telah berjaya dicapai selepas mengaplikasikan teknik MOTH. Ini disebabkan

oleh liputan ujian keselamatan yang lengkap bagi semua test cases di dalam semua

eksperimen dan MOTH berjaya mendedahkan security mutants yang wujud di dalam

AUT. Keputusan ini menunjukkan bahawa MOTH adalah hybrid threat modeling tool

yang lebih baik dalam mencegah serangan SQL injection.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vii

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ALGORITHMS xvii

LIST OF SYMBOLS AND ABBREVIATIONS xviii

LIST OF APPENDICES xx

LIST OF PUBLICATIONS xxi

CHAPTER 1 INTRODUCTION 1

1.1 Background Study 1

1.2 Research Motivation 4

1.3 Problem Statement 6

1.4 Research Objectives 7

1.5 Research Scope 8

1.6 Significance of Study 9

1.7 Thesis Outline 10

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

viii

CHAPTER 2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Overview of Software Security Testing 12

2.3 Software Security Testing Techniques 13

2.3.1 Manual Inspection & Reviews 14

2.3.2 Code Review 14

2.3.3 Penetration Testing 16

2.3.4 Threat Modeling 18

2.4 Threat Modeling Techniques 24

2.4.1 Misuse Cases 24

2.4.2 Attack Trees 26

2.4.3 Finite State Machines 28

2.5 Overview of the Hybrid Threat Modeling Approach 31

2.6 Related Works on Hybrid Threat Modeling 32

2.7 Threat Focus: SQL Injection Attacks (SQLIAs) 35

2.7.1 Tautology SQLIA 40

2.7.2 Union-Based SQLIA 42

2.7.3 Boolean-Based Blind SQLIA 43

2.8 Chapter Summary 46

CHAPTER 3 RESEARCH METHODOLOGY 47

3.1 Introduction 47

3.2 Research Process 47

3.3 Research Framework 50

3.4 Input Stage 52

3.4.1 Newly Developed Systems 52

3.4.2 Existing Systems 53

3.5 Activities Stage 53

3.5.1 Phase 1 - Web Application Decomposi-

tion and Detection of SQLIVs 53

3.5.2 Phase 2 - Vulnerability Exploitation in

Software Assets 55

3.5.3 Hybrid Threat Model Design 57

3.5.4 Phase 3 - Vulnerability Resolution 63

3.6 Output Stage 71

3.6.1 Intermediate Output - SAEV 71

3.6.2 Final Output- Evaluation of MOTH 72

3.7 Chapter Summary 73

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

ix

CHAPTER 4 DESIGN AND IMPLEMENTATION OF THE MOTH

 FRAMEWORK 74

4.1 Introduction 74

4.2 MOTH Design 75

4.2.1 Eclipse RCP for Plug-in Development 77

4.2.2 Eclipse EMF 78

4.2.3 Eclipse GEF 79

4.2.4 Eclipse GMF 79

4.2.5 MOTH Architecture 79

4.3 Hybrid Threat Model Definition and Design 80

4.3.1 Web Application 81

4.3.2 Attack Trees 81

4.3.3 SQL Injection 82

4.3.4 Non-deterministic Finite Automata

(NFA) 83

4.3.5 Modeling Attack Trees as NFA 85

4.4 Implementation Of MOTH Framework 97

4.4.1 MOTH’s UI Components and Features 97

4.4.2 SeaMonster Application 98

4.4.3 Diagram Editor Workbench Advisor 99

4.4.4 Diagram Editor Workbench Window Ad-

visor 99

4.4.5 Diagram Editor Perspective 100

4.4.6 Diagram Editor ActionBar Advisor 101

4.5 MOTH Algorithms 102

4.5.1 VulnScan Algorithm 102

4.5.2 BSM Builder Algorithm 103

4.5.3 Analyze Tree Model Algorithm 108

4.5.4 Merge Machine Algorithm 110

4.6 Security Testing 111

4.7 Experimental Set-up 114

4.7.1 Data Setup 114

4.7.2 Server and Tool Setup 115

4.8 Chapter Summary 115

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

x

CHAPTER 5 RESULT ,ANALYSIS, EVALUATION OF MOTH AND

 DISCUSSION 116

5.1 Introduction 116

5.2 Case Studies 116

5.2.1 BodgeIT Store 117

5.2.2 Altoro Mutual 121

5.3 Hybrid Threat Model Design 123

5.3.1 State Machine Modeling and Optimiza-

tion 124

5.3.2 Attack Tree Modeling and Optimization 125

5.4 Security Testing 127

5.4.1 Test Case Generation (TCG) 128

5.4.2 Test Case Execution (TCE) 133

5.4.3 Test Report and Security Requirement

Specification 133

5.4.4 Applying Security Recommendations 135

5.4.5 Verification of Security Improvement 139

5.5 Evaluation of MOTH 141

5.5.1 Evaluation of Vulnerability Detection

Rate (VDR) 141

5.5.2 Evaluation of Risk Mitigation 143

5.5.3 Evaluation of Security Test Coverage 143

5.6 Comparison of MOTH with Other Threat Modeling

Tools 144

5.6.1 Use of Threat Modeling for Software

Security Testing 145

5.7 Threat Modeling for Security Requirements Elicita-

tion 147

5.8 Comparison based on Threat Model Development 147

5.9 Chapter Summary 149

CHAPTER 6 CONCLUSION 150

6.1 Research Summary 150

6.2 Achievement of Objectives 151

6.3 Contribution of the Study 153

6.4 Limitation of the Study 153

6.5 Recommendations for Future Work 154

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xi

REFERENCES 155

APPENDICES 173

CURRICULUM VITAE 187

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xii

LIST OF TABLES

2.1 Threat Modelling Research Activities 23

2.2 User Authentication Module Vulnerabilities and Security

Specifications (Khan, 2015) 29

2.3 Hybrid Threat Modeling Researches 32

2.4 Differences between Misuse Cases and Attack Trees 33

2.5 Top 10 Most Frequently Exploited Categories of Websites 36

3.1 Misuse Case Template 59

3.3 Security Mutants in Magento Study 65

3.4 Test Case Design Template for login.jsp 67

4.1 MOTH dependency Table on SeaMonster Modeling Tool 76

4.2 Tree Implementation Matrix of Tautology Attack Tree to

NFAs 87

4.3 Tree Implementation Matrix of Union Based Attack Tree to

NFAs 94

4.4 Tree Implementation Matrix of Boolean Based Blind Attack

Tree to NFAs 96

4.5 Mapping Security Tests to the Vulnerable Assets 112

4.6 Test Plan for verifying Tautology SQLIA in Vulnerable Asset

- login.jsp 113

5.1 Overview of bodgeit store web application modules 117

5.2 Distribution of SQL injection Vulnerability across the AUT 118

5.3 Vulnerable SQL Statements in Bodgeit store 120

5.4 SQLIVs detected with MOTH in Altoro Mutual 123

5.5 SQLIVs detected with AppScan in Altoro Mutual 123

5.6 State Machine Optimization for all SQL statement 125

5.7 Attack Path Optimization of Attack Trees 126

5.8 Mapping Attack Paths to Vulnerable Assets 128

5.9 Deriving Test Cases for Login.jsp 129

5.10 Deriving Test Cases for Basket and Advanced.jsp 129

5.11 Deriving Test Cases for Register and Password.jsp 129

5.12 Test Cases 1, 2 and 3 for Login.jsp 130

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiii

5.13 Designing Test Cases 4,5 and 7 for login.jsp using SQL Map 130

5.14 Designing Test Case 6 for Login.jsp 130

5.15 Test Cases 8 and 9 for Basket.jsp 131

5.16 Test Case 10 for Advanced.jsp 132

5.17 Test Cases 11 and 12 for Register.jsp 132

5.18 Test Case 13 for Password.jsp 133

5.19 Test Case Report and Security Recommendations 135

5.20 Recommendations categorized into Classes 136

5.21 Redesigned SQL Statements as Parameterized Queries 137

5.22 Comparison of Test Case Results before and After application

of Security requirements 141

5.23 Tool Comparison 142

5.24 Number of SQLIVs detected by MOTH and AppScan 142

5.25 Comparison Based on Test Case Generation and Execution

for Software Security Testing 145

5.26 Comparison Based on Guide to Hybrid Threat Modeling

Design 148

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiv

LIST OF FIGURES

1.1 Hybrid Threat Modeling at Early Phases of the SSDLC 8

2.1 Cost of fixing software defects over time 17

2.2 The Secure Software development Life cycle 19

2.3 The Microsoft Threat Modeling Process 23

2.4 A Misuse Case representation of user account spoofing attack 25

2.5 An Attack Tree representation of user account spoofing

attack 27

2.6 State Machine Representation of Security Specifications for

the User Authentication Module (Khan, 2015) 29

2.7 Surge in Breach Rate and Types of private information

disclosed 36

2.8 SQL Injection Categories 38

2.9 JSPFirst Login Form 38

2.10 New User Registration Form 39

2.11 Valid and invalid log on 39

2.12 Tautology Based SQL Injection log on successful 41

2.13 Malicious query reveals number of DB columns 43

2.14 Malicious query reveals database name and type 44

2.15 Generic Error when Boolean Based Blind SQLIA fails 45

2.16 Extracting Data with Boolean Based Blind SQLIA 45

3.1 Research Process Flow Chart 48

3.2 Summary of the MOTH framework 50

3.3 MOTH Hybrid Threat Modeling Framework 51

3.4 Mapping the Research Process to the MOTH Framework 52

3.5 Relationship between Risk Management and Test planning 54

3.6 Phase 1 Steps and Output 54

3.7 Phase 2 Steps and Output 55

3.8 Misuse Case Modeling for SQLIA 58

3.9 Tautology SQLIA Attack Tree Model 61

3.10 Merging SQL Injection Misuse Cases with Attack Tree Goals 61

3.11 Authentication Module as a Finite State Machine 62

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xv

3.12 Phase 3 Steps 63

3.13 Selenium WebDriver Architecture 68

3.14 Eclipse Set-Up for Security Test Execution 69

3.15 Replacing Dynamic Queries with Prepared Statement 70

4.1 Developing MOTH using Eclipse RCP Integrated Develop-

ment Environment 77

4.2 MOTH Security Model 80

4.3 MOTH Architectural Diagram 80

4.4 SQLIA Attack Tree Model 81

4.5 LogInStateMachine (Lsm) 84

4.6 Tautology SQLIA Attack Tree Model 85

4.7 Tautology Attack Tree Modelled as a set of NFAs 88

4.8 Simulating Tautology SQLIA via an Attack Vector 90

4.9 Login.jsp 90

4.10 Union Based SQLIA Attack Tree Model 92

4.11 Union Based Attack Tree Modelled as a set of NFAs 93

4.12 Boolean Based Blind SQLIA Attack Tree Model 95

4.13 Boolean Based Blind Attack Tree Modelled as a set of NFAs 95

4.14 SeaMonster Application 98

4.15 Application Workbench Advisor 99

4.16 MOTH Window Configuration 100

4.17 MOTH Layout Configuration with Perspective 101

4.18 Overview of a Workbench window and its parts 101

4.19 MOTH Hybrid Threat Modeling Tool 102

4.20 Optimized State Machine Model of Original and Malicious

SQL Statement 104

4.21 BSMBuilder result after optimization

(optimizedAutomata.gv) 107

4.22 Node and their properties 109

4.23 An Optimized Attack Path Detection using MOTH’s Analyze

Tree Model Algorithm 109

4.24 Software Asset With Exploitable Vulnerability 111

4.25 Simulating Security Testing with Attack Path, APt1 114

4.26 Deploying Bodgeit store Web application for security testing 115

5.1 Bodgeit Store Use Case Diagram 118

5.2 Scanning BodgeIT for vulnerable SQL statements with

MOTH 119

5.3 Distribution of vulnerable SQL statements across Bodgeit 119

5.4 Result after Scanning BodgeIt store with AppScan 121

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvi

5.5 Result after Scanning BodgeIt store with AppScan 124

5.6 Optimization of State Machines 125

5.7 Attack Path Optimization 126

5.8 TCE with Selenium Before Applying Security Requirements 134

5.9 TCE Report Before implementing Security Requirements 134

5.10 Input Validation 138

5.11 Cookie Type Validation 138

5.12 Using a least privilege account for database transactions 139

5.13 TCE with Selenium After Applying Security Requirements 140

5.14 Vulnerability Assessment with SQL Injection Detection

Tools 143

5.15 Risk Mitigation after Applying Security Recommendations 144

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvii

LIST OF ALGORITHMS

NO. TITLE PAGE

1 VulnScan (SQL injection Vulnerability Detection Algorithm) 103

2 BSMBuilder (Build an Optimized State Machine Model) 105

3 Analyze Tree Model (Attack Path Detection and Optimization

algorithm using DFS Technique) 108

4 Formation of SAEV 110

5 Security Testing Algorithm 112

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xviii

LIST OF SYMBOLS AND ABBREVIATIONS

AUT – Application Under Test

BNF – Backus Naur Form

CAPEC – Common Attack Pattern Enumeration and Classification

CERN – Center for European Nuclear Research

CI5A – Confidentiality, Integrity, Availability, Authentication,

Authorization, Accounting, and Anonymity

CVE – Common Vulnerabilities and Exposures

DAG – Directed Acyclic Graphs

DAST – Dynamic Application Security Testing

DFS – Depth First Search

DBMS – Database Management System

DOS – Denial of Services

EMF – Eclipse Modeling Framework

GEF – Graphics Editing Framework

GMF – Graphics Modeling Framework

GOAT – Graphical Overview and Analysis Tool

HTM – Hybrid Threat Modeling

HTML – Hypertext Mark-up Language

HTTP – Hypertext Transfer Protocol

IAST – Interactive Application Security Testing

IDE – Integrated Development Environment

IMPV – Security Improvement

MLFA – Multi level Automata

MOTH – Modeling Threats using Hybrid-Techniques

NIST – National Institute of Standards and Technology

OWASP – Open Web Application Security Project

PDE – Plug-in Development Environment

pFSM – Predicate Finite State Machines

SAEV – Software Asset with Exploitable Vulnerability

SAST – Static Application Security Testing

SDLC – Software Development Life-Cycle

SOAP – Simple Object Access Protocol

SQL – Structured Query Language

SQLIA – SQL Injection Attack

SQLIV – SQL Injection Vulnerability

SSDL – Secure Software Development Life-Cycle

STRIDE – Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service and Elevation of privilege

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xix

SVRS – Security Vulnerability Repository Service

TP – Test Plan

TCE – Test Case Execution

TCG – Test Case Generation

VDR – Vulnerability Detection Rate

WASC – Web Application Security Consortium

XMI – XML Metadata Interchange

XML – Extensible Markup Language

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Some Code Listings for MOTH 173

B Deploying MOTH 183

C Misuse Case Template 184

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xxi

LIST OF PUBLICATIONS

JOURNALS:

I Habeeb Omotunde, Rosziati Ibrahim and Maryam Ahmed (2017): ”An

Optimized Attack Tree Model for Security Test Case Planning and Generation”.

In Journal of Theoretical and Applied Information Technology Vol. 96 issue 17.

(Indexed by Scopus).

II Habeeb Omotunde, Rosziati Ibrahim, Maryam Ahmed, Rasheedah Olanre-

waju, Noraini Ibrahim and Habeeb Shah (2016): ”A Framework to Reduce

Redundancy in Android Test Suite using Refactoring”. In Indian Journal of

Science and Technology Vol. 9 issue 46. (Indexed by Scopus)

III Habeeb Omotunde, Rosziati Ibrahim (2015): ”A Review of Threat Modeling &

Its Hybrid Approaches to Software Security Testing”. Paper presented at the 4th

International Conference on Research and Innovation in Information Systems

(ICRIIS) 2015 International Conference in Melaka, Malaysia. Published in

ARPN Journal of Engineering and Applied SciencesVol. 10 No. 23 (Indexed

by Scopus)

CONFERENCE PROCEEDINGS:

I Habeeb Omotunde, Rosziati Ibrahim. (2016). ”A Hybrid Threat Model

for Software Security Requirement Specification.” Paper presented at the 3rd

International Conference on Information Science and Security (ICISS) 2016

International conference in Pattaya, Thailand. Published in IEEE Xplore Digital

Library (Indexed by Scopus).

II Habeeb Omotunde, Rosziati Ibrahim(2015). ”Mitigating SQL Injection (SQLi)

Attacks Via Hybrid Threat Modelling”. Paper presented at the 2nd International

Conference on Information Science and Security (ICISS) 2015 International

conference in Seoul, South Korea. Published in IEEE Xplore Digital Library

(Indexed by Scopus).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER 1

INTRODUCTION

1.1 Background Study

As organizations seek to fulfil their objectives in the 21st century, they have come

to immensely depend on reliable and secure software as a core component of their

organizational asset to achieve their set goals (Symantec, 2014; Amthor et al.,

2014). These software assets are system resources that have significant value to the

stakeholders of the organization (Wichers and Williams, 2013). Irrespective of the

size, nature or sector of these organizations, securing the software asset has gained

momentum (Johnson et al., 2013; Zhang et al., 2014) given the explosion of software

vulnerabilities (Sultana et al., 2017) leading to major software security issues in the

form of incessant cyber-attacks to confidential data or mission critical systems which

could bring huge losses to both the organization and her customers (Kavitha et al.,

2017; Pacheco et al., 2017). These kinds of attacks include but are not limited to

SQL injection, denial of service, disclosure of confidential information and data theft

or corruption via social engineering attacks, phishing attacks, watering hole attacks,

buffer overflow or stack smashing (Pickard et al., 2012; Bozic et al., 2013; Chen et al.,

2013; Marback et al., 2013; Shar and Tan, 2013). These could push organizations

out of business due to customers’ lack of trust in using the services, mitigating laws

enacted by the government or legal issues raised by aggrieved parties for breach of

contract (Paul, 2014).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

2

However, post deployment and reactive measures such as software patching

and upgrade, damage assessment, logging analysis, installation of intrusion detection

and prevention systems to mention a few have not stopped or deterred attackers from

continuously bombarding these software assets using more sophisticated attacks to

exploit the software vulnerabilities (Kar and Panigrahi, 2013; Li et al., 2017). These

myriads of unending threats have prompted software security experts to propose

proactive strategies of building security into the traditional Software Development Life

Cycle (SDLC) hence the Secure Software Development Lifecycle (SSDL) paradigm

came to life (OWASP, 2014a; Tatli, 2018). Given the unique culture and practices

of disparate IT firms, many tech giants have thrown their weight behind the creation

of proprietary software security models such as Trustworthy Computing Secure

Development Lifecycle from Microsoft (Microsoft, 2005), CLASP (Comprehensive

Lightweight Security Application Process) and Open SAMM (Software Assurance

Maturity Model) from OWASP (Open Web Application Security Project) (OWASP,

2016) and Touchpoints from Cigital (McGraw, 2006). Interestingly, over 60 tech-

fortune companies such as SONY, VISA, Intel, Microsoft etc. have collaborated

to develop a descriptive framework tagged BSIMM (Building Security In Maturity

Model) (BSIMM, 2014). These new paradigms and the aggressive allocation of

resources (funds and man-power) to such projects have empowered the development

and security team to address security issues during the earliest stages of system

development (Karpati et al., 2014). In the secure software development lifecycle,

one of the critical approaches to defending the organizations software infrastructure

is to anticipate the nature of the attacks from the attacker’s perspective before they

happen and strategizing mitigation plans in order to prevent these attacks from being

successful. This is called Threat Modeling (Groves, 2013).

Threat modeling is a software security practice utilized by software developers,

architects and security experts at the design phase of software development to

document the key assets found in a software application and intentionally expose

those assets to security risks in a thorough and disciplined manner. The goal of

a threat modeling exercise is to detect hidden software vulnerabilities regarded as

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

3

”entry points” (Shostack, 2014) that may elude the application developers and use this

information to develop mitigation strategies thereby providing a roadmap for proactive

security plans (SecurityInnovation, 2011).

By identifying an application’s potential vulnerabilities, threat modeling helps

the development and security team to understand and prioritize the array of risks

for which these discovered vulnerabilities are susceptible in the event of an attack.

With the results of a threat model at hand, development teams can ensure that

they are concentrating their design, implementation or testing efforts on the risks

that matter most considering the direct or indirect impact of such risks on the

business (SecurityInnovation, 2011). In a nutshell, identifying threats during the

threat modelling exercise helps software security engineers come up with realistic and

valuable security requirements (Myagmar et al., 2005). These security requirements

are constraints that govern the intended behaviour of a software application in

accordance with the security goals and policies set by the organization (Haley et al.,

2008). Therefore, threat modeling is vital for software vulnerability detection and

prevention.

Given the above premises, researchers have proposed many methods for

developing threat models such as the use of attack trees (Swideski and Snider, 2004),

threat nets (Dianxiang et al., 2012) a formal specification method adapted from Petri

Nets, use of sequence diagrams to monitor possible threats during program execution

(Wang et al., 2007), finite state machines for modeling software objects behavior (Chen

et al., 2003) and Misuse cases, a variation of the UML Use Case model (Sindre and

Opdahl, 2005a). In the field of software security testing, this approach has also been

used by Wang (Wang et al., 2007) and Dianxiang (Dianxiang et al., 2012) to test for

software security in the design phase of the software development. Marback et al.

(2013) successfully applied attack trees to generate security test cases which might

help in identifying threats capable of compromising security.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

4

1.2 Research Motivation

Over the years, many researchers have taken threat modeling a step further by

experimentally comparing these modeling techniques especially attack trees and

misuse cases. This was done in order to discover the possibility of combining them

as an hybrid for complementary use or rather substitute them as alternatives (Opdahl

and Sindre, 2009).

One of the earliest Hybrid Threat Modeling (HTM) tools developed by a

community of researchers in the academic and industry to resolve software security

issues was SeaMonster (Meland et al., 2008). It was created in order to bridge the

communication gap between security experts and software developers as a means to

enhance knowledge sharing about software vulnerabilities. Misuse case and attack tree

threat models were used in SeaMonster to connect different aspect of every detected

vulnerability so as to understand the causes of these vulnerabilities, threats liable to

exploit them and mitigation strategies to prevent their successful exploitation (Meland

et al., 2008).

These two techniques were chosen by many researchers because they both

focused mainly on what the attacker is trying to achieve, and in turn provide mitigation

strategies to foil the attack (Karpati et al., 2014; Mai et al., 2018). An experiment

was performed by Opdahl and Sindre (2009) using software engineering students

to measure effectiveness, coverage, perceived usefulness, perceived ease of use and

intention to use of both threat modeling techniques i.e. Attack trees and Misuse Cases.

Although, the result showed that attack trees, when compared to misuse cases, were

more efficient in identifying threats particularly those related to confidentiality and

authorization, however, manual inspection of the experimental results indicated that

both techniques are complementary to an extent (Opdahl and Sindre, 2009). Further

experiments were needed to clarify the complementary nature of these techniques

hence Karpati et al. (2014) embarked on an experiment to compare attack trees and

misuse cases in an industrial setting taking his experimental and control group from

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

REFERENCES

Acunetix (2017). OWASP Top 10 Critical Web App Vulnerabilities.

Retrievable at https://www.acunetix.com/vulnerability-scanner/

scan-website-owasp-top-10-risks/.

Ahmed, M. and Ibrahim, R. (2015). A Comparative study of web application testing

and mobile application testing. Lecture Notes in Electrical Engineering. 315,

491–500. doi:10.1007/978-3-319-07674-4 48. Retrievable at https://www.

scopus.com/inward/record.uri?eid=2-s2.0-84915750469.

Al-Azzani, S. (2014). Architecture-centric testing for security. Ph.D. Thesis.

University of Birmingham.

Amthor, P., Kühnhauser, W. E. and Pölck, A. (2014). WorSE: a workbench for model-

based security engineering. Computers & Security. 42, 40–55.

Antunes, N. and Vieira, M. (2009). Detecting SQL injection vulnerabilities in web

services. In Dependable Computing, 2009. LADC 09. Fourth Latin-American

Symposium on. IEEE, 17–24.

Antunes, N. and Vieira, M. (2014). Penetration Testing for Web Services. Computer.

47(2), 30–36. Antunes, Nuno Vieira, Marco.

Avancini, A. (2012). Security Testing of Web Applications: A Research Plan. In

34th International Conference on Software Engineering (ICSE). International

Conference on Software Engineering. 1491–1494. Avancini, Andrea.

Baca, D., Carlsson, B., Petersen, K. and Lundberg, L. (2013). Improving software

security with static automated code analysis in an industry setting. Software:

Practice and Experience. 43(3), 259–279. ISSN 1097-024X. doi:10.1002/spe.

2109. Retrievable at http://dx.doi.org/10.1002/spe.2109.

Banerjee, C., Banerjee, A. and Sharma, S. (2017). Estimating influence of

threat using Misuse Case Oriented Quality Requirements (MCOQR) metrics:

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

156

Security requirements engineering perspective. International Journal of Hybrid

Intelligent Systems. 14(1-2), 1–11. ISSN 1448-5869.

Banerjee, C., Poonia, A. S., Banerjee, A. and Sharma, S. K. (2018). Proposed

Algorithm for Identification of Vulnerabilities and Associated Misuse Cases

Using CVSS, CVE Standards During Security Requirements Elicitation Phase.

In Soft Computing: Theories and Applications. Springer. ISBN 978-981-10-

5699-4, 651–658.

Batool, S. and Asghar, S. (2014). Secure State UML: Modeling and Testing Security

Concerns of Software Systems Using UML State Machines. Research Journal

of Applied Sciences, Engineering and Technology. 7(18), 3786–3790.

Bennetts, S. (2016). The BodgeIt Store. Retrievable at https://github.com/psiinon/

bodgeit.

Blome, A., Ochoa, M., Li, K. Q., Peroli, M., Dashti, M. T. and Soc, I. C. (2013).

VERA: A flexible model-based vulnerability testing tool. 2013 Ieee Sixth

International Conference on Software Testing, Verification and Validation (Icst

2013), 471–478. doi:10.1109/icst.2013.65. Retrievable at 〈GotoISI〉://WOS:

000332473300053.

Bozic, J., Wotawa, F. and Ieee (2013). XSS Pattern for Attack Modeling in Testing.

2013 8th International Workshop on Automation of Software Test (Ast), 71–74.

Retrievable at 〈GotoISI〉://WOS:000332877400012.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M. and Pretschner, A. (2005). Model-

based testing of reactive systems: advanced lectures. vol. 3472. Springer.

BSIMM (2014). Building Security In Maturity Model. Retrievable at http://www.

bsimm.com.

CERN (2016). Static Code Analysis Tools. Retrievable at https://security.web.cern.ch/

security/recommendations/en/code tools.shtml.

Chandrashekhar, R., Mardithaya, M., Thilagam, S. and Saha, D. (2012). SQL

Injection Attack Mechanisms and Prevention Techniques. In Thilagam, P., Pais,

A., Chandrasekaran, K. and Balakrishnan, N. (Eds.) Advanced Computing,

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

157

Networking and Security. (pp. 524–533). Lecture Notes in Computer Science,

vol. 7135. Springer Berlin Heidelberg. ISBN 978-3-642-29279-8. doi:

10.1007/978-3-642-29280-4 61. Retrievable at http://dx.doi.org/10.1007/

978-3-642-29280-4 61.

Chen, L.-H., Hsu, F.-H., Hwang, Y., Su, M.-C., Ku, W.-S. and Chang, C.-H.

(2013). ARMORY: An automatic security testing tool for buffer overflow

defect detection. Computers Electrical Engineering. 39(7), 2233–2242. ISSN

0045-7906; 1879-0755. doi:10.1016/j.compeleceng.2012.07.005. Retrievable

at 〈GotoISI〉://WOS:000326661600025.

Chen, S., Kalbarczyk, Z., Xu, J. and Iyer, R. K. (2003). A data-driven finite state

machine model for analyzing security vulnerabilities. In Dependable Systems

and Networks, 2003. Proceedings. 2003 International Conference on. 605–614.

doi:10.1109/DSN.2003.1209970.

Chernak, Y. (2001). Validating and Improving Test-Case Effectiveness. IEEE software.

18(1), 81–86.

Choras, M., Kozik, R., Puchalski, D. and Holubowicz, W. (2013). Correlation

Approach for SQL Injection Attacks Detection, Advances in Intelligent Systems

and Computing, vol. 189. 177–185. Retrievable at 〈GotoISI〉://WOS:

000312969500018.

Christensen, A. S., Moller, A. and Schwartzbach, M. I. (2003). Precise Analysis of

String Expressions. In International Static Analysis Symposium. Springer, 1–

18.

Das, D., Sharma, U. and Bhattacharyya, D. K. (2017). Defeating SQL injection

attack in authentication security: an experimental study. International Journal

of Information Security. ISSN 1615-5270. doi:10.1007/s10207-017-0393-x.

Retrievable at https://doi.org/10.1007/s10207-017-0393-x.

Deng, M., Wuyts, K., Scandariato, R., Preneel, B. and Joosen, W. (2011). A privacy

threat analysis framework: supporting the elicitation and fulfillment of privacy

requirements. Requirements Engineering. 16(1), 3–32.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

158

Dhakkan, D. (2013). SQL Injections: An Introduction. Retrievable at http://resources.

infosecinstitute.com.

Dharam, R. and Shiva, S. G. (2013). Runtime Monitors to Detect and Prevent Union

Query based SQL Injection Attacks. Premier Hall Sci & Engn. ISBN 978-

0-7695-4967-5, 357–362. doi:{10.1109/ITNG.2013.57}. 10th International

Conference on Information Technology - New Generations (ITNG), Las Vegas,

NV, APR 15-17, 2013.

Dianxiang, X., Manghui, T., Sanford, M., Thomas, L., Woodraska, D. and Weifeng,

X. (2012). Automated Security Test Generation with Formal Threat Models.

Dependable and Secure Computing, IEEE Transactions on. 9(4), 526–540.

ISSN 1545-5971. doi:10.1109/tdsc.2012.24.

Diaz, G. and Bermejo, J. R. (2013). Static analysis of source code security: Assessment

of tools against SAMATE tests. Information and Software Technology. 55(8),

1462–1476. Diaz, Gabriel Ramon Bermejo, Juan.

Dukes, L., Yuan, X. H., Akowuah, F. and Ieee (2013). A Case Study on Web

Application Security Testing with Tools and Manual Testing. In IEEE

SoutheastCon. IEEE SoutheastCon-Proceedings. Dukes, LaShanda Yuan,

Xiaohong Akowuah, Francis.

El-Attar, M. (2012). Towards developing consistent misuse case models. Journal of

Systems and Software. 85(2), 323–339. ISSN 0164-1212.

Felderer, M., Buchler, M., Johns, M., Brucker, A., Breu, R. and Pretschner, A.

(2016). Security Testing: A Survey. Advances in Computers. 101, 1–51.

doi:10.1016/bs.adcom.2015.11.003. Retrievable at https://www.scopus.

com/inward/record.uri?eid=2-s2.0-84952037753&doi=10.1016%2fbs.adcom.

2015.11.003&partnerID=40&md5=3a7344a1956972cc81c879187d5e089e.

Fernandez, E. B., Alder, E., Bagley, R. and Paghdar, S. (2012). A Misuse Pattern

for Retrieving Data from a Database Using SQL Injection. In BioMedical

Computing (BioMedCom), 2012 ASE/IEEE International Conference on. 127–

131. doi:10.1109/BioMedCom.2012.27.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

159

Firesmith, D. (2007). Common Requirements Problems, Their Negative

Consequences, and the Industry Best Practices to Help Solve Them. Journal

of Object Technology. 6(1), 17–33.

Ford, R., Carvalho, M., Mayron, L., Bishop, M. and Ieee (2013). Antimalware

Software: Do we Measure Resilience? Proceedings of the 2013 Ieee

Workshop on Anti-Malware Testing Research (Water’13), 17–23. Retrievable

at 〈GotoISI〉://WOS:000332987700003.

Friedman, G., Hartman, A., Nagin, K. and Shiran, T. (2002). Projected state machine

coverage for software testing. SIGSOFT Softw. Eng. Notes. 27(4), 134–143.

ISSN 0163-5948. doi:10.1145/566171.566192.

Gandotra, V., Singhal, A. and Bedi, P. (2009). Identifying Security Requirements

Hybrid Technique, 407–412. doi:10.1109/icsea.2009.65.

Garn, B., Kapsalis, I., Simos, D. E. and Winkler, S. (2014). On the applicability

of combinatorial testing to web application security testing: a case study.

In Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry

Contributions to Test Automation and Model-Based Testing. ACM. ISBN

1450329330, 16–21.

Granlund, H. (2009). Integration of SVRS into the modelling tool GOAT.

Groves, D. (2013). Application Threat Modelling. Open Web Application Security

Project (OWASP), 1–18. Retrievable at https://www.owasp.org/index.php?

title=Application\ Threat\ Modeling\&oldid=146761.

Gruber, H. and Holzer, M. (2008). Finite automata, digraph connectivity, and regular

expression size. In International Colloquium on Automata, Languages, and

Programming. Springer, 39–50.

Haley, C., Laney, R., Moffett, J. and Nuseibeh, B. (2008). Security

Requirements Engineering: A Framework for Representation and Analysis.

IEEE Transactions on Software Engineering. 34(1), 133–153. ISSN 0098-

5589. doi:10.1109/TSE.2007.70754.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

160

Halfond, W., Viegas, J. and Orso, A. (2006). A classification of SQL-injection attacks

and countermeasures. In Proceedings of the IEEE International Symposium on

Secure Software Engineering. IEEE, 65–81.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of

computer programming. 8(3), 231–274.

Hong, Y., Liu, X. M., Huang, S., Zheng, C. Y. and Ieee (2012). Data Oriented

Software Security Testing. Proceedings of the 2012 Second International

Conference on Instrumentation Measurement, Computer, Communication and

Control (Imccc 2012), 676–679. doi:10.1109/imccc.2012.164. Retrievable at

〈GotoISI〉://WOS:000324691100158.

Horner, M. and Hyslip, T. (2017). SQL Injection: The Longest Running Sequel in

Programming History. Journal of Digital Forensics, Security and Law. 12(2),

10.

Hui, Z. W., Huang, S., Liu, X. M. and Hu, B. (2012). An Integrated

Model for Software Security Testing Requirements Behavior. Information-an

International Interdisciplinary Journal. 15(11A), 4435–4442. ISSN 1343-

4500. Retrievable at 〈GotoISI〉://WOS:000311066200016.

Hummel, O. and Burger, S. (2017). Analyzing source code for automated design

pattern recommendation. In Proceedings of the 3rd ACM SIGSOFT

International Workshop on Software Analytics. ACM, 8–14.

IBM (2018). Altoro Mutual Online Banking Application. Retrievable at http://msdn.

microsoft.com/en-us/library/ms995349.aspx.

Jang, Y.-S. and Choi, J.-Y. (2014). Detecting SQL injection attacks using query result

size. Computers Security. 44(0), 104–118. ISSN 0167-4048. doi:http://dx.doi.

org/10.1016/j.cose.2014.04.007. Retrievable at http://www.sciencedirect.com/

science/article/pii/S0167404814000595.

Johnson, R., Wang, Z. H., Stavrou, A., Voas, J. and Ieee (2013). Exposing Software

Security and Availability Risks For Commercial Mobile Devices. 59th Annual

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

161

Reliability and Maintainability Symposium (Rams). Retrievable at 〈GotoISI〉:

//WOS:000321693500120.

Junqua, J.-C. and van Noord, G. (2001). Robustness in Language and Speech

Technology. MIT Press.

Jurgenson, A. (2010). Efficient Semantics of Parallel and Serial Models of Attack

Trees. TUT Press.

Just, R. (2014). The Major Mutation Framework: Efficient and Scalable Mutation

Analysis for Java. In Proceedings of the 2014 International Symposium on

Software Testing and Analysis. ISSTA 2014. New York, NY, USA: ACM. ISBN

978-1-4503-2645-2, 433–436. doi:10.1145/2610384.2628053. Retrievable at

http://doi.acm.org/10.1145/2610384.2628053.

Just, R., Jalali, D. and Ernst, M. D. (2014). Defects4J: A Database of Existing Faults

to Enable Controlled Testing Studies for Java Programs. In Proceedings of the

2014 International Symposium on Software Testing and Analysis. ISSTA 2014.

New York, NY, USA: ACM. ISBN 978-1-4503-2645-2, 437–440. doi:10.

1145/2610384.2628055. Retrievable at http://doi.acm.org/10.1145/2610384.

2628055.

Kacker, R. N., Kuhn, D. R., Lei, Y. and Lawrence, J. F. (2013). Combinatorial

testing for software: An adaptation of design of experiments. Measurement.

46(9), 3745–3752. ISSN 0263-2241. doi:10.1016/j.measurement.2013.02.021.

Retrievable at 〈GotoISI〉://WOS:000324298700089.

Kar, D. and Panigrahi, S. (2013). Prevention of SQL Injection Attack Using Query

Transformation and Hashing. Proceedings of the 2013 3rd Ieee International

Advance Computing Conference (Iacc), 1317–1323. ISSN 2164-8263.

Retrievable at 〈GotoISI〉://WOS:000321780700237.

Karpati, P., Redda, Y., Opdahl, A. L. and Sindre, G. (2014). Comparing attack trees

and misuse cases in an industrial setting. Information and Software Technology.

56(3), 294–308.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

162

Karpati, P., Sindre, G. and Opdahl, A. L. (2010). Towards a Hacker Attack

Representation Method.

Katkalov, K., Moebius, N., Stenzel, K., Borek, M. and Reif, W. (2014). Modeling

test cases for security protocols with SecureMDD. Computer Networks. 58,

99–111. ISSN 1389-1286. doi:10.1016/j.comnet.2013.08.024. Retrievable at

〈GotoISI〉://WOS:000331781500009.

Kaur, N. and Kaur, P. (2014). Mitigation of SQL Injection Attacks Using Threat

Modeling. SIGSOFT Softw. Eng. Notes. 39(6), 1–6. ISSN 0163-5948. doi:10.

1145/2674632.2674638. Retrievable at http://doi.acm.org/10.1145/2674632.

2674638.

Kavitha, C., Gillian, C., Orla, C., Hon, L., Benjamin, N., Brigid, O. G., Dick, O., Scott,

W., Paul, W., Candid, W. et al. (2017). Symantec Internet Security Threat

Report 2017. Volume XXII.

Khalil, H. and Labiche, Y. (2017). State-Based Tests Suites Automatic Generation Tool

(STAGE-1). In 2017 IEEE 41st Annual Computer Software and Applications

Conference (COMPSAC), vol. 1. ISBN 0730-3157, 357–362. doi:10.1109/

COMPSAC.2017.221.

Khamaiseh, S. and Xu, D. (2017). Software Security Testing via Misuse Case

Modeling. In IEEE 15th Intl Conf on Dependable, Autonomic and Secure

Computing. 534–541.

Khan, M. U. (2015). Representing Security Specifications in UML State Machine

Diagrams. Procedia Computer Science. 56, 453–458.

Kordy, B., Pietre Cambacedes, L. and Schweitzer, P. (2014). DAG-based attack and

defense modeling: Dont miss the forest for the attack trees. Computer science

review. 13, 1–38.

Lam, P., Bodden, E., Lhotak, O. and Hendren, L. (2011). The Soot framework for Java

program analysis: a retrospective. In Cetus Users and Compiler Infastructure

Workshop (CETUS 2011), vol. 15. 35.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

163

Li, C., Li, M., Liu, S. and Nakajima, S. (2013). Applying Functional Scenario-Based

Test Case Generation Method in Unit Testing and Integration Testing, Springer

Berlin Heidelberg, Lecture Notes in Computer Science, vol. 7787, book

section 1. ISBN 978-3-642-39276-4, 1–11. doi:10.1007/978-3-642-39277-1

1. Retrievable at http://dx.doi.org/10.1007/978-3-642-39277-1 1.

Li, W., Zhang, Z. and Wang, L. (2017). Improvement in diversify active defense

for web application by using language and database heterogeneity. In

2017 11th IEEE International Conference on Anti-counterfeiting, Security, and

Identification (ASID). 30–35. doi:10.1109/ICASID.2017.8285738.

Liu, B. C., Shi, L., Cai, Z. H., Li, M. and Ieee (2012). Software Vulnerability Discovery

Techniques: A Survey. In 4th International Conference on Multimedia

Information Networking and Security (MINES). International Conference on

Multimedia Information Networking and Security. 152–156. Liu, Bingchang

Shi, Liang Cai, Zhuhua Li, Min.

Liu, L., Su, G., Xu, J., Zhang, B., Kang, J., Xu, S., Li, P. and Si, G. (2017).

An Inferential Metamorphic Testing Approach to Reduce False Positives in

SQLIV Penetration Test. In 2017 IEEE 41st Annual Computer Software and

Applications Conference (COMPSAC), vol. 1. ISBN 0730-3157, 675–680.

doi:10.1109/COMPSAC.2017.276.

LiU, S. and Rios, E. (2008). D2. 2 Initial Modelling Methods and Prototype Modelling

Tools.

Madhuri, K., Suman, M., Sri, M. N., Kumar, K. R. and Kameswari, U. J. (2012).

A Systematic Approach to Generate and Conduct Destructive Security Test

Sets. Mems, Nano and Smart Systems, Pts 1-6. 403-408, 4495–4498. ISSN

1022-6680. doi:10.4028/www.scientific.net/AMR.403-408.4495. Retrievable

at 〈GotoISI〉://WOS:000310764702143.

Mai, P. X., Goknil, A., Shar, L. K., Pastore, F., Briand, L. C. and Shaame, S. (2018).

Modeling Security and Privacy Requirements: a Use Case-Driven Approach.

Information and Software Technology. ISSN 0950-5849. doi:https://doi.org/

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

164

10.1016/j.infsof.2018.04.007. Retrievable at http://www.sciencedirect.com/

science/article/pii/S0950584918300703.

Mammar, A., Mallouli, W. and Cavalli, A. (2012). A systematic approach to integrate

common timed security rules within a TEFSM-based system specification.

Information and Software Technology. 54(1), 87–98.

Marback, A., Do, H., He, K., Kondamarri, S. and Xu, D. (2013). A threat model-

based approach to security testing. Software-Practice and Experience. 43(2),

241–258.

Matuleviius, R., Norta, A. and Samartel, S. (2018). Security Requirements

Elicitation from Airline Turnaround Processes. Business Information Systems

Engineering. 60(1), 3–20. ISSN 1867-0202. doi:10.1007/s12599-018-0518-4.

Retrievable at https://doi.org/10.1007/s12599-018-0518-4.

McAffer, J., Lemieux, J.-M. and Aniszczyk, C. (2010). Eclipse Rich Client Platform.

Addison-Wesley Professional.

McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley

Professional. ISBN 0321356705.

McWhirter, P. R., Kifayat, K., Shi, Q. and Askwith, B. (2018). SQL Injection Attack

classification through the feature extraction of SQL query strings using a Gap-

Weighted String Subsequence Kernel. Journal of Information Security and

Applications. 40, 199–216. ISSN 2214-2126. doi:https://doi.org/10.1016/j.

jisa.2018.04.001. Retrievable at http://www.sciencedirect.com/science/article/

pii/S2214212617303691.

Meland, P., Spampinato, D. G., Hagen, E., Baadshaug, E. T., Krister, K.-M. and Velle,

K. S. (2008). SeaMonster: Providing tool support for security modeling. Norsk

informasjonssikkerhetskonferanse, NISK.

Meland, P., Tndel, I. and Jensen, J. (2010). Idea: Reusability of Threat Models

Two Approaches with an Experimental Evaluation, Springer Berlin Heidelberg,

Lecture Notes in Computer Science, vol. 5965, book section 9.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

165

Meland, P. H., Ardi, S., Jensen, J., Rios, E., Sanchez, T., Shahmehri, N. and Tondel,

I. A. (2009). An architectural foundation for security model sharing and reuse.

In International Conference on Availability, Reliability and Security, 2009.

ARES’09. IEEE, 823–828.

Menzel, M., Thomas, I. and Meinel, C. (2009). Security Requirements Specification in

Service-Oriented Business Process Management. In International Conference

on Availability, Reliability and Security, 2009. ARES ’09. March. 41–48. doi:

10.1109/ARES.2009.90.

Michael, C. C. and Radosevich, W. (2005). Risk-Based and Functional Security

Testing. Build Security In.

Microsoft (2005). The Trustworthy Computing Security Development Lifecycle.

Retrievable at http://msdn.microsoft.com/en-us/library/ms995349.aspx.

Mirembe, D. P. and Muyeba, M. (2008). Threat Modeling Revisited: Improving

Expressiveness of Attack. In Computer Modeling and Simulation, 2008. EMS

’08. Second UKSIM European Symposium on. 93–98.

MITRE (2014). Common Vulnerabilities and Exposures. Retrievable at https://cve.

mitre.org/.

Mittal, P., Jena, S. K. and Ieee (2013). A Fast and Secure Way to Prevent SQL

Injection Attacks. 2013 Ieee Conference on Information and Communication

Technologies. ISBN 978-1-4673-5758-6; 978-1-4673-5759-3. Retrievable at

〈GotoISI〉://WOS:000325208700140.

Mumtaz, H., Alshayeb, M., Mahmood, S. and Niazi, M. (2018). An empirical

study to improve software security through the application of code refactoring.

Information and Software Technology. 96, 112–125. ISSN 0950-5849.

doi:https://doi.org/10.1016/j.infsof.2017.11.010. Retrievable at http://www.

sciencedirect.com/science/article/pii/S0950584916303664.

Myagmar, S., Lee, A. J. and Yurcik, W. (2005). Threat Modeling as a Basis for Security

Requirements. In Symposium on requirements engineering for information

security (SREIS), vol. 2005. Citeseer, 1–8.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

166

Natarajan, K. and Subramani, S. (2012). Generation of Sql-injection Free Secure

Algorithm to Detect and Prevent Sql-Injection Attacks. Procedia Technology.

4(0), 790–796. ISSN 2212-0173. doi:http://dx.doi.org/10.1016/j.protcy.

2012.05.129. Retrievable at http://www.sciencedirect.com/science/article/pii/

S2212017312004082.

NIST (2016). Source Code Security Analyzers. Retrievable at https://samate.nist.gov/

index.php/Source Code Security Analyzers.html.

Opdahl, A. L. and Sindre, G. (2009). Experimental comparison of attack trees

and misuse cases for security threat identification. Information and Software

Technology. 51(5), 916–932. ISSN 0950-5849. doi:http://dx.doi.org/10.1016/

j.infsof.2008.05.013. Retrievable at http://www.sciencedirect.com/science/

article/pii/S0950584908000773.

Oracle (2017). MySQL 5.7 Reference Manual and Documentation. Retrievable at

https://dev.mysql.com/doc/refman/5.7/en/union.html.

Ouchani, S., Mohamed, O. A., Debbabi, M. and Pourzandi, M. (2010). Verification

of the correctness in composed UML behavioural diagrams. In Software

Engineering Research, Management and Applications 2010. (pp. 163–177).

Springer.

OWASP (2013). Blind SQL Injection. Retrievable at https://www.owasp.org/index.

php/Blind SQL Injection.

OWASP (2014a). Testing Guide Introduction. Retrievable at https://www.owasp.org/

index.php/Testing\ Guide\ Introduction.

OWASP (2014b). Threat Risk Modeling. Open Web Application Security Project

(OWASP).

OWASP (2015). Testing for SQL Injection. Retrievable at https://www.owasp.org/

index.php.

OWASP (2016). OWASP CLASP Project. Retrievable at https://www.owasp.org/index.

php/Category:OWASP\ CLASP\ Project.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

167

Pacheco, J., Ibarra, D., Vijay, A. and Hariri, S. (2017). IoT Security Framework for

Smart Water System. In ACS 14th International Conference on Computer

Systems and Applications (AICCSA). 1285–1292. doi:10.1109/AICCSA.2017.

85.

Paul, M. (2014). Software Security: Being Secure in an Insecure World [White paper].

Retrievable at https://www.isc2.org.

Pickard, C., Miladinov, S. and Ieee (2012). Rogue software: Protection against

potentially unwanted applications. Proceedings of the 2012 7th International

Conference on Malicious and Unwanted Software, 1–8. Retrievable at

〈GotoISI〉://WOS:000318854300001.

Raspotnig, C., Karpati, P. and Opdahl, A. L. (2018). Combined Assessment of

Software Safety and Security Requirements: An Industrial Evaluation of the

CHASSIS Method. Journal of Cases on Information Technology (JCIT). 20(1),

46–69.

Redhat (2017). How Threat Modeling Helps Discover Security Vulnerabilities.

Retrievable at https://access.redhat.com/blogs/766093/posts/2914051.

Rosen, K. H. (2012). Discrete mathematics and its applications. Amc. 10(12), 824.

Sadeghian, A., Zamani, M. and Abd Manaf, A. (2013a). A Taxonomy of SQL

Injection Detection and Prevention Techniques. ISBN 978-0-7695-5133-3, 53–

56. doi:{10.1109/ICICM.2013.18}. International Conference on Informatics

and Creative Multimedia (ICICM), Kuala Lumpur, Malaysia, Sep 04-06, 2013.

Sadeghian, A., Zamani, M., Ibrahim, S. and Ieee (2013b). SQL Injection is Still Alive:

A Study on SQL Injection Signature Evasion Techniques. 2013 International

Conference on Informatics and Creative Multimedia (Icicm), 265–268. doi:

10.1109/icicm.2013.52. Retrievable at 〈GotoISI〉://WOS:000343826000050.

Saidane, A. and Guelfi, N. (2013). Towards test-driven and architecture model-

based security and resilience engineering. 163–188. doi:10.4018/

978-1-4666-2958-5.ch010.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

168

Salman, Y. D., Hashim, N. L., Rejab, M. M., Romli, R. and Mohd, H. (2017).

Coverage criteria for test case generation using UML state chart diagram. In

AIP Conference Proceedings, vol. 1891. AIP Publishing. ISBN 0735415730,

020125.

Salva, S. and Regainia, L. (2017). Using Data Integration for Security Testing. In

Yevtushenko, N., Cavalli, A. R. and Yenign, H. (Eds.) Testing Software and

Systems. Springer International Publishing. ISBN 978-3-319-67549-7, 178–

194.

Saxena, A., Sengupta, S., Duraisamy, P., Kaulgud, V., Chakraborty, A. and Ieee (2013).

Detecting SOQL-Injection Vulnerabilities in SalesForce Applications. 2013

International Conference on Advances in Computing, Communications and

Informatics. ISBN 978-1-4799-2432-5; 978-1-4799-2659-6. Retrievable at

〈GotoISI〉://WOS:000343771500083.

Schneier, B. (1999). Attack trees. Dr. Dobbs journal. 24(12), 21–29.

SecurityFocus (2014). bugtraq database. Retrievable at http://www.securityfocus.

com/archive/1.

SecurityInnovation (2011). Threat Modelling for Secure Embedded Soft-

ware [White paper]. Retrievable at http://web.securityinnovation.com/

threat-modeling-embedded/.

SecurityInnovation (2014). Static code analysis is better at the desktop [White paper].

Retrievable at http://www.klocwork.com.

Selenium (2016). SeleniumHQ Test Automation. Retrievable at http://www.

seleniumhq.org/.

Shahriar, H., North, S. and Chen, W. C. (2013). Client-Side Detection of SQL Injection

Attack, Lecture Notes in Business Information Processing, vol. 148. 512–517.

Retrievable at 〈GotoISI〉://WOS:000345280400046.

Shanmughaneethi, V. and Swamynathan, S. (2012). Detection of SQL Injection

Attack in web applications using web services. IOSR Journal of Computer

Engineering (IOSRJCE). 1(5), 13–20.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

169

Shar, L. K. and Tan, H. B. K. (2013). Predicting SQL injection and cross site

scripting vulnerabilities through mining input sanitization patterns. Information

and Software Technology. 55(10), 1767–1780. ISSN 0950-5849. doi:http://dx.

doi.org/10.1016/j.infsof.2013.04.002. Retrievable at http://www.sciencedirect.

com/science/article/pii/S0950584913000852.

Shostack, A. (2008). Experiences threat modeling at microsoft. In Modeling Security

Workshop. Dept. of Computing, Lancaster University, UK.

Shostack, A. (2014). Threat Modeling: Designing for Security. Wiley.

ISBN 9781118809990. Retrievable at http://books.google.com.my/books?id=

asPDAgAAQBAJ.

Sindre, G., Firesmith, D. G. and Opdahl, A. L. (2003). A reuse-based approach to

determining security requirements. In Proceedings of the 9th international

workshop on requirements engineering: foundation for software quality

(REFSQ 03), Klagenfurt, Austria. Citeseer.

Sindre, G. and Opdahl, A. L. (2005a). Eliciting security requirements with misuse

cases. Requirements Engineering. 10(1), 34–44.

Sindre, G. and Opdahl, A. L. (2005b). Eliciting Security Requirements With

Misuse Cases. Requirements Engineering. 10(1), 34–44. ISSN 0947-

3602. doi:10.1007/s00766-004-0194-4. Retrievable at 〈GotoISI〉://WOS:

000226269900003.

Sipser, M. (2006). Introduction to the Theory of Computation. vol. 2. Thomson Course

Technology Boston.

Sneed, H. M. (2004). Measuring the Effectiveness of Software Testing. SOQUA

TECOS. 58, 109–120.

Soni, M. (2014). Defect Prevention: Reducing Costs and Enhancing Quality.

Retrievable at http://www.isixsigma.com.

Stackoverflow (2017). Difference Between Union and Union

All. Retrievable at http://stackoverflow.com/questions/49925/

what-is-the-difference-between-union-and-union-all.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

170

Su, Z. and Wassermann, G. (2006). The Essence of Command Injection Attacks in

Web Applications. In Conference Record of the 33rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’06. New York,

NY, USA: ACM. ISBN 1-59593-027-2, 372–382. doi:10.1145/1111037.

1111070. Retrievable at http://doi.acm.org/10.1145/1111037.1111070.

Subramani, S., Vouk, M., Williams, L. and Ieee (2013). Non-Operational Testing of

Software for Security Issues. 2013 Ieee International Symposium on Software

Reliability Engineering Workshops (Issrew), 21–22. Retrievable at 〈GotoISI〉:

//WOS:000330639500011.

Sultana, K. Z., Williams, B. J. and Bhowmik, T. (2017). A study examining

relationships between micro patterns and security vulnerabilities. Software

Quality Journal. ISSN 1573-1367. doi:10.1007/s11219-017-9397-z.

Retrievable at https://doi.org/10.1007/s11219-017-9397-z.

Swideski, F. and Snider, W. (2004). Threat Modeling. Microsoft Press. ISBN

0735619913.

Symantec (2014). Web Security Threat Report.

Talukder, A. K., Maurya, V. K., Santhosh, B. G., Jangam, E., Muni, S. V., Jevitha, K. P.,

Saurabh, S. and Pais, A. R. (2009). Security-aware Software Development

Life Cycle (SaSDLC) - Processes and tools. In Wireless and Optical

Communications Networks, 2009. WOCN ’09. IFIP International Conference

on. 1–5.

Tatli, E. s. (2018). Developer-oriented Web Security by Integrating Secure SDLC into

IDEs. Sakarya University Journal of Computer and Information Sciences. 1(1),

36–43.

Tndel, I. A., Jaatun, M. G., Cruzes, D. S. and Moe, N. B. (2017). Risk

Centric Activities in Secure Software Development in Public Organisations.

International Journal of Secure Software Engineering (IJSSE). 8(4), 1–30.

Tondel, I. A., Jensen, J. and Rostad, L. (2010). Combining misuse cases with

attack trees and security activity models. Fifth International Conference on

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

171

Availability, Reliability, and Security: Ares 2010, Proceedings, 438–445.

Trusted-Consultant (2007). Secure Software Engineering and Risk Management

Strategies for Building Secure Web Applications. Retrievable at http://

securesoftware.blogspot.my/2007/02/justin-schuh-question-3.html.

Tuma, K., Scandariato, R., Widman, M. and Sandberg, C. (2017). Towards Security

Threats that Matter. In Computer Security. (pp. 47–62). Springer.

Van den Berghe, A., Yskout, K. and Joosen, W. (2018). Security patterns 2.0: Towards

security patterns based on security building blocks. In SEAD18: IEEE/ACM

1st International Workshop on Security Awareness from Design to Deployment.

ACM.

Wang, L., Wong, E. and Xu, D. (2007). A threat model driven approach for security

testing. In Software Engineering for Secure Systems, 2007. SESS’07: ICSE

Workshops 2007. Third International Workshop on. IEEE, 10–10.

Washizaki, H. (2017). Security patterns: Research direction, metamodel, application

and verification. In 2017 International Workshop on Big Data and Information

Security (IWBIS). 1–4. doi:10.1109/IWBIS.2017.8275094.

Wichers, D. and Williams, J. (2013). OWASP Top 10 Most Critical Web Application

Security Risks. OWASP Foundation.

Williams, I. and Yuan, X. (2017). Creating Abuse Cases Based on Attack Patterns:

A User Study. In 2017 IEEE Cybersecurity Development (SecDev). 85–86.

doi:10.1109/SecDev.2017.27.

Wu, T.-Y., Chen, C.-M., Sun, X., Liu, S. and Lin, J. C.-W. (2017). A

Countermeasure to SQL Injection Attack for Cloud Environment. Wireless

Personal Communications. 96(4), 5279–5293. ISSN 1572-834X.

doi:10.1007/s11277-016-3741-7. Retrievable at https://doi.org/10.1007/

s11277-016-3741-7.

Wysopal, C., Nelson, L., Dustin, E. and Zovi, D. (2007). The Art of Software

Security Testing: Identifying Software Security Flaws. Addison-Wesley. ISBN

9780321304865.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

172

Yadav, N. and Shekokar, N. (2018). Analysis on Injection Vulnerabilities of Web

Application. In Vasudevan, H., Deshmukh, A. A. and Ray, K. P. (Eds.)

Proceedings of International Conference on Wireless Communication. Springer

Singapore. ISBN 978-981-10-8339-6, 13–22.

Zech, P., Felderer, M. and Breu, R. (2017). Knowledge-based security testing of web

applications by logic programming. International Journal on Software Tools

for Technology Transfer. ISSN 1433-2787. doi:10.1007/s10009-017-0472-3.

Retrievable at https://doi.org/10.1007/s10009-017-0472-3.

Zhang, D. Z., Liu, D. G., Csallner, C., Kung, D. and Lei, Y. (2014). A distributed

framework for demand-driven software vulnerability detection. Journal of

Systems and Software. 87, 60–73. ISSN 0164-1212. doi:10.1016/j.jss.2013.

08.033. Retrievable at 〈GotoISI〉://WOS:000329273400005, zhang, Dazhi Liu,

Donggang Csallner, Christoph Kung, David Lei, Yu.

Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y. and Zhang, L. (2018). Predictive

mutation testing. IEEE Transactions on Software Engineering.

Zuo, C., Zhao, Q. and Lin, Z. (2017). AUTHSCOPE: Towards Automatic Discovery

of Vulnerable Authorizations in Online Services. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security. ACM,

799–813.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

	DoctoralThesis - FRONT PAGE
	PAGE 1
	PAGE 2
	PAGE 3
	4-13A
	PAGE 14
	15-22
	23-24

	DoctoralThesis - Body

