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ABSTRACT 

 

A concrete-filled tube (CFT) column system offers numerous advantages due to its 

large axial stiffness and capacity. In the system, steel is a common type of material 

and has been widely used. However, the application of FRP and PVC came into the 

picture as the alternative to the steel application in the system. In this study, the 

concrete-filled PVC tube (CF-PVCT) columns subjected to axial load were considered 

in both experimental and numerical analysis. The PVC tube is a low-maintenance 

material and locally available in abundance. The investigation on such columns was 

carried out to study their potential and the success of such columns would be a 

milestone achievement in the local construction industry. The study involved 

parameters such as variable lengths, diameters, and thicknesses of the PVC tube as 

well as various concrete strengths for the concrete infill. A total of 110 columns which 

included CFPVCT, CF-PVCT confined with plain PVC socket, hollow PVC column 

and concrete columns were tested under axial load. From the experimental results, the 

CF-PVCT columns failed in shear, outward buckling, sudden explosive as well as PVC 

tube rupture and most of the columns experienced sudden failure. The CF-PVCT 

columns have a higher capacity of around 32% to 98% compared to the unconfined 

concrete columns; however, the CF-PVCT columns confined by plain PVC sockets 

achieved more capacity (23% to 54%) than the CF-PVCT columns. The increase of 

the thickness and diameter of PVC tube led to a good increase in ultimate strength and 

the corresponding strain of the CF-PVCT columns. The displacement at ultimate load 

decreased as the concrete strength increased while it increase as the thickness of tube 

and slenderness ratio increased. The increase of the slenderness ratio led to decrease 

the ultimate strengths and the axial strain of CF-PVCT columns. A simulation using 

finite element software ANSYS v14.5 was conducted to validate the experimental 

work. Three empirical equations to predict the ultimate strength for CF-PVCT columns 

by using three approaches were proposed according to ACI 318-08. Finite element 

analysis by ANSYS indicated similar behaviour in terms of axial displacement and 

mode of failure. The empirical equations proposed in this study showed good 

agreement with the experimental values. The approach using PSO could predict the 

ultimate load of CF-PVCT column with higher accuracy.  
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ABSTRAK 

Sistem tiub tiang terisi-konkrit (CFT) menawarkan banyak kelebihan disebabkan oleh 

kekukuhan paksi dan kapasiti yang tinggi. Di dalam sistem tersebut, keluli merupakan 

sejenis bahan yang biasa dan telah digunakan secara meluas. Walau bagaimanapun, 

penggunaan FRP dan PVC muncul sebagai alternatif kepada aplikasi keluli di dalam 

sistem tersebut. Dalam kajian ini, tiub PVC terisi-konkrit (CF-PVCT) yang dikenakan 

beban paksi dipertimbangkan di dalam kedua-duanya kerja eksperimen dan analisis 

berangka. Tiub PVC merupakan bahan rendah-penyelenggaraan dan boleh didapati 

secara meluas. Penyiasatan ke atas tiang tersebut dijalankan bagi mengkaji potensinya 

dan kejayaan kajian yang dijalankan ke atas tiang seperti ini akan menjadi pencapaian 

yang penting di dalam industri pembinaan tempatan. Kajian ini melibatkan parameter 

seperti panjang tiang, garis pusat, dan ketebalan tiub PVC serta variasi kekuatan 

konkrit. Sejumlah 110 tiang termasuk CFPVCT, CF-PVCT dikurung dengan soket 

PVC, tiang PVC berongga dan tiang konkrit dikenakan beban paksi. 

Daripadakeputusan eksperimen, tiang CF-PVCT gagal dari segi ricih, lengkokan 

keluar, letupan mengejut dan begitu juga berlakunya pecah pada tiub PVC dengan 

kebanyakan tiang tersebut mengalami kegagalan secara mendadak. Tiang CF-PVCT 

mempunyai kapasiti yang tinggi iaitu diantara 32% ke 98% berbanding dengan tiang  

konkrit tidak terkurung, walaubagaimanapun, tiang CF-PVCT dikurung dengan soket 

PVC mencapai kapasiti yang lebih tinggi (23% ke 54%) berbanding dengan tiang CF-

PVCT. Penambahan ketebalan dan garis pusat tiub PVC membawa kepada 

penambahan kekuatan muktamad dan terikan sepadan tiang CF-PVCT. Anjakan pada 

beban muktamad berkurangan apabila kekuatan konkrit bertambah, manakala ianya 

menjadi bertambah seiring dengan penambahan ketebalan dan nisbah kelangsingan 

tiub. . Pertambahan nisbah kelangsingan membawa kepada pengurangan kekuatan 

muktamad dan juga terikan paksi tiang CF-PVCT.  Simulasi menggunakan perisian 

unsur terhingga ANSYS v14.5 turut dijalankan bagi menentusahkan kerja-kerja 

eksperimentasi. Tiga persamaan empirikal bagi meramalkan kekuatan muktamad tiang 

CF-PVCT menggunakan tiga pendekatan telah dicadangkan mengikut ACI 318-

08. Analisis unsur terhingga oleh ANSYS menunjukkan terdapatnya tingkah laku yang 

serupa dari segi anjakan paksi dan mod kegagalan. Cadangan persamaan emperik 

dalam kajian ini mencapai persetujuan yang baik dengan nilai ujikaji. Pendekatan 

menggunakan PSO boleh menentukan beban muktamad tiang PVCT dengan ketepatan 

yang tinggi.     
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 General 

 

Compression members are the key elements of all skeletal structures, and the study 

of their behaviour is usually based on the testing of concentrically loaded members. 

Columns can be defined as members that carry axial compressive loads, which length 

is considerably greater than the cross-sectional dimensions. Such members may also 

carry other types of loadings, and may have different types of end conditions. 

 In civil engineering, the merits of a material are based on factors such as 

availability, structural strength, durability, and workability. The properties of 

construction materials differ from each other; thus, there is no single material that 

can provide all structural requirements. The engineer's problem include an 

optimization involving different materials and methods of construction, with the 

objective of constructing any building structure at minimum cost to meet its 

requirements. This is the reason for using two or more materials and connecting them 

together in order to take full advantages of their properties. The structural member of 

two or more materials is known as a composite structure. 

 Having the advantage of the composite structure, composite columns such as 

concrete filled steel tube (CFST) is known to have more merit compared to the bare 

steel or reinforced concrete columns. The concrete infill in the tube of the CFST 

column prevents inward buckling modes of the steel tube, and the tube provides 

effective lateral confinement to the concrete inside the tube.  
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The stiffness, strength and ductility of a composite column are considered to be 

greater than those of thin-walled steel columns with the same cross-section as the 

outer steel plates of the composite column, because the encased concrete itself gives 

stiffness strength, and also because the buckling deflection of the outer steel plates 

toward the inside of the box cross-section is prevented by the encased concrete 

(Kitada, 1998) as is illustrated in Figure 1.1. 

 

 

 

Figure 1.1: Difference in buckling modes between cross-sections of steel and 

composite columns (a) Steel cross-section; (b) composite cross-section (Kitada, 

1998) 

 

 Composite columns can be in the form of concrete-encased sections as shown 

in Figure 1.2; (a) to (c), concrete-filled hollow sections Figure 1.2 (f) to (i) and partly 

concreted-encased sections Figure 1.2 (d) and (e). 

 

 

 

Figure 1.2: Typical cross-sections of composite column (Zhang, 2004) 
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1.2 Concrete Filled Tube, CFT Columns 

 

Concrete-filled tube (CFT) columns provide great seismic resistant structural 

properties such as high strength, high ductility, and large power absorption capacity. 

In addition to the improvement in structural properties, construction time can be 

decreased substantially due to the prevention of permanent formwork. CFT columns 

are generally designated by the cross-section of the tube, with the circular (CCFT), 

square (SCFT) and rectangular (RCFT) are still widely used in construction. Other 

column shapes that are aesthetically used are elliptical, polygon or round-ended 

rectangular as shown in Figure 1.3. 

 

 

 

Figure 1.3: Typical cross-sections of concrete filled tubular sections 

 

 The ultimate strengths of CFT columns are affected by their material 

properties like the compressive strength of the concrete, the yield strength of the steel 

and the nonlinear behaviours of these materials. Apart from the material properties, 

the ultimate strengths are also significantly affected by the concrete confining 

pressure and the geometric properties of the tubes such as the shape of the cross-

section, the slenderness ratio, and the width to thickness ratio. 

 The use of concrete in-filled steel tube columns has increased throughout the 

world in many years (Li et al., 2010). Besides steel, newly discovered materials such 

as Fiber Reinforced Plastics (FRP), and aluminium, can be introduced as the caged 

reinforcement material. Other advantages may be added through the use of these 

material substitution. 
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The study on concrete-filled PVC tube composite columns (CF-PVCT) is limited, 

but it is useful on the application such as for pile foundation or aggressive 

environments (Jiang et al., 2014). The  PVC tube  has  adequate  stiffness  to  resist  

cracks  and deformations  of  concrete core (Marzouck and Sennah, 2002). Besides,  

the  PVC  tube can  act  as  formwork,  improves  the  construction  speed, and  

protects  the core concrete from corrosions  caused by atrocious environment. 

 

1.3 Polyvinyl Chloride (PVC) 

 

Polyvinyl Chloride PVC, commonly referred to as vinyl, is a plastic material 

(polymer) made on the basis of salt and oil. Since a significant proportion of its mass 

is chlorine, creating a given mass of PVC requires less petroleum than many other 

polymers. PVC is a thermoplastic material, which means it can be melted several 

times. After being heated up to a certain temperature it will harden again as it cools. 

It is used to make durable products, often with a life expectancy exceeding 60 years.

 PVC has many uses such as in water butts, window frames, mud flaps, water 

pipes and garden furniture. It is a durable material and sturdier than many other 

plastics, difficult to burn, has great resistance to strong acids and bases, to other 

chemicals, and to many organic solvents. Additionally, polyvinyl chloride is one of 

the least expensive plastics. 

 PVC is predominantly used by equipment manufacturers because it is low 

cost, lightweight and easy to handle and install. It is not affected by corrosions or 

other forms of degradation, therefore, it is used as an alternative to the metal in many 

applications where corrosions can compromise functionality and increase 

maintenance cost. 

 

1.4 Problem Statement 

 

Concrete filled steel tube columns is the typical concrete filled tube (CFT) columns 

mostly used in buildings. Generally, CFT columns can be found in bridge and high-

rise buildings, where traditional columns of the steel or concrete structure normally 

being used extensively in lower –rise buildings.  
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The steel tube which acts as reinforcement in such column is expensive and is 

exposed to the risk of corrosion. Products like Poly Vinyl Chloride (PVC) tubes can 

be used as an alternative to the metal for the application of CFT column for low –

cost housing and pile foundation or in severe environments attacks due to its 

exceptional properties. Cheaper PVC that is locally available in abundance adds 

another advantage. It is an achievement for the local construction industry if it can 

develop CFT columns using PVC.  However, the feasibility of using the material on 

the composite columns needs to be determined through experimental works to 

investigate its carrying capacity and associated ductility. 

 The concrete filled steel tube (CFST) have been used for many decades 

because of its advantageous qualities like enhanced strength, ductility, and stiffness 

(Shams, 1998). However, information on the concrete filled PVC tubes (CF-PVCT) 

columns is still limited. Therefore, further studies on the CF-PVCT columns should 

be carried out as an alternative for composite column structures.  

 Most of the studies on the plastic composite columns were carried out 

experimentally by previous researchers such as [Kurt (1978), Daniali (1992) and 

Marzouck and Sennah (2002)], which were focused on the effects of slenderness 

ratio for concrete filled plastic tube columns. In reality, the existing model has not 

been confirmed for slender of concrete filled plastic tube columns (ACI 318, 2008). 

Furthermore, there are restraints to add the length effect for plastic composite 

columns. Therefore, in this research an empirical equation for CF-PVCT column has 

been proposed to predict the strength of plastic tubular columns. 

 

1.5 Objectives 

 

The aims of this study was to investigate the potentials of using the PVC tube in 

concrete filled PVC tubes columns, (CF-PVCT columns). In order to achieve this, 

the investigation on such columns was carried out with the following objectives: 

1. To study the effects of various thicknesses, length, diameter, slenderness 

ratio, compressive strength and concrete confinement on the structural 

behaviour of CF-PVCT columns under axial load. 

2. To validate and simulate the experimental results by means of finite element 

method using ANSYS software. 
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3. To propose an empirical equation to predict the ultimate load of the CF-

PVCT columns under axial load. 

 

1.6 Scope of study 

 

This study was focused on experimental works and FE models to study the structural 

behaviour of the (CF-PVCT) columns. Therefore, in order to achieve the objectives 

of the study, one hundred ten (110) specimens were casted and tested. This included 

sixty-eight (68) PVC-confined concrete columns, thirty-four (34) unconfined 

concrete columns, four (4) hollow PVC tube and four (4) concrete filled PVC tube 

with PVC plain sockets in order to study the confinement pressure. Various lengths 

(200, 500, 700, 1000mm), diameters (75,100,150, 200mm) and thickness (3.5, 4.8, 

6.8, 9.8mm) of the CF-PVCT were considered to study their effects on the structures. 

The specimens were grouped into seven groups based on the values of diameter and 

concrete compressive strength. Short CF-PVCT had identical design details with 

different concrete compressive strength of (21, 24 and 40) N/mm² for cylinder test. 

The parameter involves concrete strength, diameter effect, slenderness ratio, 

thickness effect and confinement pressure by plain PVC socket. 

 The experimental performance observation consisted of concrete strength, the 

displacement of the specimens, ultimate load, strain and failure mode of PVC tube. 

To simulate the CF-PVCT, finite element analysis software (ANSYS v14.5) was 

conducted. The FEA is used to analysis the theoretical behaviour of the columns to 

compare with the experimental results. Three empirical equations were proposed to 

predict the ultimate load of CF-PVCT columns by using three approaches. In the first 

approach, the PVC tube was treated as an external reinforcement to the concrete core 

in the CF-PVCT column while the PVC tube was treated as an individual component 

of the composite column in the second approach. The third equation was proposed by 

using the practical swarm optimization (PSO) algorithm that was implemented in the 

MATLAB. 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   163 
` 

 

 

 

REFERENCES 

 

 

 

ACI Committee 318 (2005). Building Code Requirements for Structural Concrete 

and Commentary. Farmington Hills, USA: American Concrete Institute. 

 

ACI Committee 318 (2008). Building Code Requirements for Structural Concrete 

(ACI 318-08) and Commentary (ACI 318R-08). Farmington Hills, USA: 

American Concrete Institute. 

 

Alshimmeri, A. J. H. (2016). Structural Behavior of Confined Concrete Filled 

Aluminum Tubular (CFT) Columns under Concentric Load. Journal of 

Engineering, 22(8), pp. 125-139. 

 

ASTM. (2001). Standard practice for making and curing concrete test specimens in 

the laboratory. C136-01, West Conshohocken, Pennsylvania. 

 

ASTM. (2002). Standard test method for compressive strength of cylindrical 

concrete specimens. C39-02, West Conshohocken, Pennsylvania. 

 

Attard, M. M., & Setunge, S. (1996). Stress-strain relationship of confined and 

 unconfined concrete. Materials Journal, 93(5), pp. 432-442. 

 
Bathe, K. J. (1996).  Finite Element Procedures. New York: Prentice-Hall. 

 

Becque, J. (2000). Analytical modeling of concrete columns confined by FRP. 

University of Manitoba: Master’s Thesis. 

 

Béton, F. I. (2010). Model Code 2010-Final draft: Fédération Internationale du 

 Béton fib/International Federation for Structural Concrete. 

 

Bland, J. M., and Altman, D. G. (2007). Agreement between methods of 

measurement with multiple observations per individual. Journal of 

biopharmaceutical statistics, 17(4), pp. 571-582.  

 

British Standard Institute (2002) “Method of Testing Concrete”, Part 118, BS-1881, 

1983.American Society of Testing and Materials (ASTM), ASTM C-39, 

West Conshohocken, PA 

 

British Standard Institute, “Method of Testing Concrete”, Part 118, BS-1881, 1983.  

 Camp, C. V., Meyer, B. J., and Palazolo, P. J. (2004). Particle swarm 

optimization for the design of trusses. Paper presented at the Proc. of the 2004 

Structures Congress. Building on the Past: Securing the Future. 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   164 
` 

Clark, W. S. (1994). Axial load capacity of circular steel tube columns filled with 

 high strength concrete. Victoria University of Technology: Ph.D. 

 Thesis. 

Considère, A. (1906). Experimental researches on reinforced concrete. McGraw 

 Publishing Company. 

 

Dai, X. H., Lam, D., Jamaluddin, N., & Ye, J. (2014). Numerical analysis of slender 

 elliptical concrete filled columns under axial compression. Thin-Walled 

 Structures, 77, pp. 26-35. 

 

Daniali, S. (1992). Investigation of the behavior of reinforced plastic columns with 

 concrete core. Proc., ASCE 1992 Material Congress, pp. 666-676. 

 

De Nardin, S., & El Debs, A. L. H. C. (2007). Axial load behaviour of concrete-filled 

 steel tubular columns. Proceedings of the Institution of Civil Engineers-

 Structures and Buildings, 160(1), pp. 13-22. 

 

Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., and 

Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants 

and applications in power systems. IEEE Transactions on evolutionary 

computation, 12(2), pp. 171-195.  

 

Dimou, C., and Koumousis, V. (2009). Reliability-based optimal design of truss 

structures using particle swarm optimization. Journal of computing in civil 

engineering, 23(2), pp. 100-109. .  

 

Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm 

theory. Paper presented at the Proceedings of the sixth international 

symposium on micro machine and human science. 

 

El Echary, H. (1997). Length effect on concrete-filled FRP tubes using acoustic 

emission. University of Central Florida: Master’s Thesis. 

 

Elegbede, C. (2005). Structural reliability assessment based on particles swarm 

optimization. Structural Safety, 27(2), pp. 171-186.  

 

Ellobody, E. (2007). Nonlinear behavior of concrete-filled stainless steel stiffened 

 slender tube columns. Thin-Walled Structures, 45(3), pp. 259-273 

 

Fam, A., & Rizkalla, S. (2001). Behavior of Axially Loaded Concrete-Filled Circular 

 FRP Tubes. A CI Structural J, 98(3), pp. 280-289 

 

Fam, A.Z. (2000). Concrete-filled fiber-reinforced polymer tubes for axially and 

flexural structural members. University of Manitoba. Ph.D. Thesis. 

 

Faruqui (2015). ANSYS Meshing Basics. Retrieved on August 19, 2015, from 

https://www.slideshare.net/SyedHasibAkhterFaruq/ansys-meshing-basics  

 

Felkner, J., Chatzi, E., and Kotnik, T. (2013). Interactive particle swarm 

optimization for the architectural design of truss structures. Paper presented 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

https://www.slideshare.net/SyedHasibAkhterFaruq/ansys-meshing-basics


PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   165 
` 

at the Computational Intelligence for Engineering Solutions (CIES), 2013 

IEEE Symposium on. 

 

Fourie, P., and Groenwold, A. A. (2001). The particle swarm algorithm in topology 

optimization. Paper presented at the Proceedings of the Fourth World 

Congress of Structural and Multidisciplinary Optimization. 

 

Fourie, P., and Groenwold, A. A. (2002). The particle swarm optimization algorithm 

in size and shape optimization. Structural and Multidisciplinary 

Optimization, 23(4), pp. 259-267.  

 

Gathimba Naftary, K., Oyawa Walter, O., & Mang'uriu Geoffrey, N. (2014). 

 Compressive strength characteristics of concrete-filled plastic tubes short 

 columns. Int J Sci Res (IJSR), 3(9), pp. 2168-74. 

 

Ghali, K. N., Rizkalla, S. H., Kassem, M. A., Fawzy, T. M., & Mahmoud, M. H. 

 (2003). FRP-confined circular columns under small eccentric loading. In 

 Proceedings of the Fifth Alexandria International Conference on Structural 

 and Geotechnical Engineering, Alexandria, Egypt. pp. 20-22. 

 

Guide, A. F. U. (2011). Release 14.0, ANSYS. Inc., USA, November 

 

Guler, S., Lale, E., & Aydogan, M. (2013). Behaviour of SFRC filled steel tube 

columns under axial load. International Journal of Advanced Steel 

Construction, 9(1), pp. 14-25 

 

Gupta, P. K. (2013). Confinement of concrete columns with unplasticized Poly-vinyl 

chloride tubes. International Journal of Advanced Structural Engineering, 

5(1), 19 

 

Gupta, P.K., Sarda, S.M., and Kumar, M.S. (2007). Experimental and computational 

study of concrete filled steel tubular columns under axial loads. Journal of 

Constructional Steel Research, 63, pp. 183-193 

 

Hafiz, F. (2016). Analytical and Numerical Study on Behavior of Concrete Filled 

 Steel Tabular Columns Subjected to Axial Compression Loads. International 

 Journal of Scientific & Engineering Research, v.7, pp. 1720-1727  

 

Hajsadeghi, M., Alaee, F. J., & Shahmohammadi, A. (2011). Investigation on 

behaviour of square/rectangular reinforced concrete columns retrofitted with 

FRP jacket. Journal of Civil Engineering and Management, 17(3), pp. 400-

408. 

 

 Harmon, T., Slattery, K., and Ramakrishnan, S. (1995). The effect of confinement 

stiffness on confined concrete. Proceedings of the Second International 

RILEM Symposium (FRPRCS--2), Taerwe, L., (Ed.), v. l, pp. 584-592 

 

Han, L. H. (2002). Tests on stub columns of concrete-filled RHS sections. Journal of 

 Constructional Steel Research, 58(3), pp. 353-372. 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   166 
` 

Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), pp. 66-72. 

  

Hong, W. K., & Kim, H. C. (2004). Behavior of concrete columns confined by 

 carbon composite tubes. Canadian Journal of Civil Engineering, 31(2), pp. 

 178-188. 

 

Huang, L., Sun, X., Yan, L., & Zhu, D. (2015). Compressive behavior of concrete 

 confined with GFRP tubes and steel spirals. Polymers, 7(5), pp. 851-875. 

 

Hussein, Haider M. Abdul, and Ahmed N. Mohammed (2013). Nonlinear finite 

 element analysis of concrete filled steel tubes. Journal of Babylon 

 University/Engineering Sciences. 

 

 Imran, I., & Pantazopoulou, S. J. (1996). Experimental study of plain concrete under 

triaxial stress. ACI Materials Journal-American Concrete Institute, 93(6), pp. 

589-601 

 

Iskander, M. G., & Hassan, M. (1998). State of the practice review in FRP composite 

 piling. Journal of Composites for Construction, 2(3), pp. 116-120 

 

Jamaluddin, N., Lam, D., Dai, X. H., & Ye, J. (2013). An experimental study on 

elliptical concrete filled columns under axial compression. Journal of 

constructional steel research, 87, pp. 6-16 

 

Jiang, S. F., Ma, S. L., & Wu, Z. Q. (2014). Experimental study and theoretical 

analysis on slender concrete-filled CFRP–PVC tubular columns. 

Construction and Building Materials, 53, pp. 475-487. 

 

Jiangshan Adhesive (2010). PVC glue Properties. Retrieved on July 24, 2010, from              

http://linger.en.tradevv.com/pid15729781/high+quality+PVC+glue+types.ht

m 

 

Johansson, M., & AKESSON, M. (2001). Finite element study of concrete-filled 

 steel tubes using a new confinement-sensitive concrete compression model. 

 Nordic concrete research, 27, pp. 43-62. 

 
Johansson, M., and Gylltoft, K.(2002). Mechanical behavior of circular steel–

concrete composite stub columns. Journal of Structural Engineering, Vol. 

128, No. 8, pp. 1073-1081 

 

Kanatharana, J., and Lu, L.W.(1998). Strength and Ductility of Concrete Columns 

Reinforced with FRP Tubes. Proceedings of the Second International on 

Composites in Infrastructure ICCI '98, pp. 370-384 

 

Karabinis, A. I., Rousakis, T. C., & Manolitsi, G. E. (2008). 3D finite-element 

analysis of substandard RC columns strengthened by fiber-reinforced 

polymer sheets. Journal of Composites for Construction, 12(5), pp. 531-540 

 

 Kargahi, M.(1995). Fiber reinforced plastic (FRP) shell as external reinforcement 

for concrete columns. University of Central Florida: Master’s Thesis. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

http://www.vinidex.com.au/technical/material-properties/pvc-properties/
http://linger.en.tradevv.com/pid15729781/high+quality+PVC+glue+types.htm
http://linger.en.tradevv.com/pid15729781/high+quality+PVC+glue+types.htm


PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   167 
` 

. 

Kathiravan, R., and Ganguli, R. (2007). Strength design of composite beam using 

gradient and particle swarm optimization. Composite Structures, 81(4), 471-

479.  

 

Kennedy, J., Eberhart, R., and Shi, Y. (2001). Swarm Intelligence, Morgan 

Kaufmann Publishers. Inc., San Francisco, CA.  

 

Khajehzadeh, M., M R, T., and Eslami, M. (2010). Economic design of retaining 

wall using particle swarm optimization with passive congregation. Australian 

Journal of Basic and Applied Sciences .4(11).  

 

Kitada T. (1998) Ultimate strength and ductility of state of art on concrete-filled steel 

bridges piers in Japan. Engineering Structures. 20 (4–6), pp. 347–54 

 

Knowles, R. B., & Park, R. (1969). Strength of concrete filled steel columns. Journal 

 of the structural division. v. 95, ST12, pp. 2565-2587. 

 

Knowles, R. B., & Park, R. (1970). Axial load design for concrete filled steel tubes. 

Journal of the Structural Division. v. 96, ST10, pp. 2125-2153 

 

Kovacs, G., Groenwold, A., Jarmai, K., and Farkas, J. (2004). Analysis and optimum 

design of fibre-reinforced composite structures. Structural and 

Multidisciplinary Optimization. 28(2-3), pp. 170-179.  

 

 Kurt, C.E. January (1978)  "Concrete filled structural plastic columns", Journal of 

the Structural Division, Proceedings of the American Society of Civil 

Engineers. Vol. 104, No. 1. pp. 55-63 

 

 Lahlou, K., Aitcin, P.C., and Chaallal, O. (1992). Behavior of high-strength concrete 

under confined stresses. Cement & Concrete Composites. 14, pp. 185-193 

 

Lam, D., & Gardner, L. (2008). Structural design of stainless steel concrete filled 

columns. Journal of Constructional Steel Research. 64(11), pp. 1275-1282 

 

Lam, D., & Testo, N. (2011). Structural design of concrete filled steel elliptical 

 hollow sections. In Composite Construction in Steel and Concrete VI. pp. 

 252-262. 

 

Lam, D., and Wong, K.K.Y. (2005). Axial capacity of concrete filled stainless steel 

columns.  Proceedings of the Structures Congress 2005. New York, New 

York, United States. pp. 1107-1120 

 

Lavanya, D., & Udgata, S. (2011). Swarm intelligence based localization in wireless 

 sensor networks. Multi-Disciplinary Trends in Artificial Intelligence, pp. 317-

 328. 

 

Li, G. (2006). Experimental study of FRP confined concrete cylinders. Engineering 

Structures. 28, pp. 1001–1008 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   168 
` 

Li, G., Torres, S., Alaywan, W., and Abadie, C. (2005). Experimental study of FRP 

 tube-encased concrete columns. Journal of Composite Materials. Vol. 39, No. 

 13, Pp. 1131-1145 

 

Li, G., Yang, Z. J., & Lang, Y. (2010). Experimental behavior of high strength 

 concrete-filled square steel tube under bi-axial eccentric loading. Advanced 

 Steel Construction. 6(4), pp. 963-975. 

 

Liu, H., Wang, X., & Kong, X. (2012). Mechanical Performance Analysis Based on 

ANSYS of Concrete Column Confined by BFRP sheets. Proceedings of the 

2nd International Conference on Electronic & Mechanical Engineering and 

Information Technology. Atlantis Press. pp. 442-224. 

 

Marzouck, M., and Sennah, K. (2002) "Concrete-filled PVC tubes as compression 

members", Proceedings of the International Challenges of Concrete 

Construction Congress. Scotland, U.K., Vol. 4, pp. 31-37 

- 

Maxfield, A. C. M., and Fogel, L. (1965). Artificial intelligence through a simulation 

of evolution. Biophysics and Cybernetics Systems: Proceedings of the Second 

Cybernetics Sciences. Spartan Books, Washington DC, EE. UU.  

 

Mirmiran, A., & Shahawy, M. (1997). Behavior of concrete columns confined by 

fiber composites. Journal of Structural Engineering. 123(5), pp. 583-590 

 

 Mirmiran, A., and Shahawy, M.(1995) "A novel FRP-concrete composite 

construction for the infrastructure", Proc. Struct. Congress XIII, ASCE, 

Boston, MA, pp. 1663-1666 

 

Mohamad, N. (2010). The Structural Behaviour of Precast Lightweight Foamed 

Concrete Sandwich Panels as a Load-bearing Wall. Ph.D. Thesis. University 

Technology Malaysia:  

 

Mohamed, H. M. H. (2010). Axial and flexural behaviour of reinforced concrete-

 filled FRP tubes: Experimental and theoretical studies. Ph.D. Thesis. 

 University of Sherbrooke 

 

Mohamed, H., & Masmoudi, R. (2008). Behaviour of the Concrete Filled FRP Tube 

Columns under Eccentric Load. Proceedings of the 5 th Middle East 

Symposium On Structural Composites for Infrastructure Applications 

(MESC-5) 

 

Mohamed, H., and Masmoudi, R.(2009). Behaviour of FRP tubes-encased concrete 

columns under concentric and eccentric loads. Composites & Polycon, 

American Composites Manufacturers Association. pp. 1-8. 

 

Mohan, S., Yadav, A., Kumar Maiti, D., and Maity, D. (2014). A comparative study 

on crack identification of structures from the changes in natural frequencies 

using GA and PSO. Engineering Computations, 31(7), pp. 1514-1531. 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   169 
` 

Naik, G. N., Omkar, S., Mudigere, D., and Gopalakrishnan, S. (2011). Nature 

inspired optimization techniques for the design optimization of laminated 

composite structures using failure criteria. Expert Systems with Applications, 

38(3), pp. 2489-2499.  

 

Norayanan, R. (1982). Axially Compressed Structure's Stability and Strength. 

Applied Science Publishers, LTD. 

 

O’shea, M. D., & Bridge, R. Q. (1999). The effects of local buckling and 

 confinement in concrete filled circular steel tubes. Mechanics of Structures 

 and Materials, Balkema, Rotterdam, pp. 321-525. 

 

Oyawa, W. O., Gathimba, N. K., & Mang'uriu, G. N. (2015). Innovative composite 

concrete filled plastic tubes in compression. In World Congress on Advances 

in Structural Engineering and Mechanics. 

 

Ozbakkaloglu, T., J. C. Lim, and D. J. Oehlers (2007) Concrete-filled square FRP 

tubes under axial compression. Proceedings of the Asia-Pasific Conference 

on FRP in structures (APFIS 2007), ST Smith (ed), International Institute for 

FRP in construction. 

 

Park, J. H., Jo, B. W., Yoon, S. J., & Park, S. K. (2011). Experimental investigation 

on the structural behavior of concrete filled FRP tubes with/without steel re-

bar. KSCE Journal of Civil Engineering. 15(2), pp. 337-345. 

 

Patil, B. H., & Mohite, P. M. (2014). Parametric Study of Square Concrete Filled 

Steel Tube Columns Subjected To Concentric Loading. International Journal 

of engineering Research and Applications, 1(4), pp. 109-112. 

 

 

Perera, R., Sevillano, E., Arteaga, A., and De Diego, A. (2014). Identification of 

intermediate debonding damage in FRP-plated RC beams based on multi-

objective particle swarm optimization without updated baseline model. 

Composites Part B: Engineering, 62, pp. 205-217.  

 

 Pico, O.(1997). Confinement effectiveness of square FRP tubes in hybrid columns. 

University of Central Florida: Master’s Thesis. 

 

Prion, H. G., & Boehme, J. (1994). Beam-column behaviour of steel tubes filled with 

 high strength concrete. Canadian Journal of Civil Engineering, 21(2), pp. 

 207-218. 

 

Rahman, S. (2007). PVC pipe & fittings: underground solutions for water and sewer 

 systems in North America. proceedings of the 2nd Brazilian PVC Congress, 

 Sao Paulo, pp. 19-20. 

 

Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A study of the failure of 

concrete under combined compressive stresses. University of Illinois at 

Urbana Champaign, College of Engineering. Engineering Experiment Station 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   170 
` 

Roeder, C. W., Cameron, B., & Brown, C. B. (1999). Composite action in concrete 

filled tubes. Journal of structural engineering, 125(5), 477-484. 

 

Romero, M. L., Bonet, J. L., & Ivorra, S. (2005). A review of nonlinear analysis 

 models for concrete filled tubular columns. Innovation in Civil and Structural 

 Engineering Computing, pp. 119-142. 

 

Saafi, M., Toutanji, H., & Li, Z. (1999). Behavior of concrete columns confined with 

fiber reinforced polymer tubes. ACI materials journal, 96(4), pp. 500-509. 

 

Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of centrally 

loaded concrete-filled steel-tube short columns. Journal of Structural 

Engineering, 130(2), 180-188 
 

Schneider, S.P. (1998). Axially loaded concrete-filled steel tubes. Journal of 

Structural Engineering, Vol. 124, No. 10, pp. 1125-1138. 

 

Schutte, J., and Groenwold, A. (2003). Sizing design of truss structures using particle 

 swarms. Structural and Multidisciplinary Optimization, 25(4), pp. 261-269. 

 

Shakir-Khalil, H., & Zeghiche, J. (1989). Experimental behaviour of concrete-filled 

 rolled rectangular hollow-section columns. Structural Engineer, 67, pp. 346-

 53. 

 

Shams, M. H. (1998). Non-linear evaluation of concrete-filled steel tubular columns. 

 pp. 0852-0852. 

 

Shayanfar, M. A., Barkhordari, M. A., and Ghanooni-Bagha, M. (2015). Estimation 

of Corrosion Occurrence in RC Structure Using Reliability Based PSO 

Optimization. Periodica Polytechnica. Civil Engineering, 59(4), 531. 

 

Shin, M., & Andrawes, B. (2010). Experimental investigation of actively confined 

concrete using shape memory alloys. Engineering Structures, 32(3), pp. 656-

664. 

 

Smith, G. N. (1986). Probability Statistics Civil Engineering. Collins, London. 

 

Specification, I. (1984). No. 45. Natural Sources for Gravel that is used in Concrete 

and Construction. Baghdad.  

 

Specification, I. (1984). No. 5. Portland Cement. Baghdad. 

 

 Specification, I. (1984). No.8. Portland Cement. Baghdad. 

 

Standard, A. S. T. M. (2003). Standard test method for tensile properties of plastics. 

 ASTM International. Designation: D, 638, pp. 1-13. 

 

Storn, R., and Price, K. (1995). Differential evolution-a simple and efficient adaptive 

scheme for global optimization over continuous spaces (Vol. 3): ICSI 

Berkeley. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

   171 
` 

 

Suresh, S., Sujit, P., and Rao, A. (2007). Particle swarm optimization approach for 

multi-objective composite box-beam design. Composite Structures, 81(4), pp. 

598-605.  

 

Tarabia, A. M., & Albakry, H. F. (2014). Strengthening of RC columns by steel 

 angles and strips. Alexandria Engineering Journal, 53(3), pp. 615-626. 

 

Uy, B.(2001). Strength of short concrete filled high strength steel box columns. 

Journal of Constructional Steel Research, 57, pp. 113-134. 

 

Varaee, B. A.-N. H. (2011). Minimum cost design of concrete slabs using particle 

swarm optimization with time varying acceleration coefficients. World 

Applied Sciences Journal, 13(12), pp. 2484-2494. 

 

Volety, I. V. (2006). Modeling of Fiber Reinforced Polymer confined concrete 

cylinders. Louisiana State University. Master’s Thesis. 

  

vinidex .(2013). PVC Properties. Retrieved on February 15, 2013, from 

http://www.vinidex.com.au. 

 

Yagmahan, B., and Yenisey, M. M. (2010). A multi-objective ant colony system 

 algorithm for flow shop scheduling problem. Expert Systems with 

 Applications, 37(2), pp. 1361-1368. 

 

Yan, B., Goto, S., Miyamoto, A., and Zhao, H. (2013). Imaging-based rating for 

corrosion states of weathering steel using wavelet transform and PSO-SVM 

techniques. Journal of computing in civil engineering, 28(3), 04014008. 

  

Yang, Y.F., and Han, L.H. (2006). Experimental behavior of recycled aggregate 

concrete filled steel tubular columns. Journal of Constructional Steel 

Research, 62, pp. 1310-1324. 

 

Ye, J., Hajirasouliha, I., Becque, J., and Eslami, A. (2016). Optimum design of cold-

formed steel beams using Particle Swarm Optimisation method. Journal of 

Constructional Steel Research, 122, pp. 80-93.  

 

Zhang, D., & Ye, X. (2004). Nonlinear Analysis of Special-Shaped Reinforced 

Concrete Columns. Structural Engineers, 1, 006 

 

Zhang, H., Li, H., and Tam, C. (2006). Permutation-based particle swarm 

optimization for resource-constrained project scheduling. Journal of 

computing in civil engineering, 20(2), pp. 141-149. 

  

Zhou, F., and Young, B. (2008). Tests of concrete-filled aluminum stub columns. 

Thin-Walled Structures, 46, pp. 573-583.  

 

 Zhou, F., and Young, B. (2009). Concrete-filled aluminum circular hollow section 

column tests. Thin-Walled Structures, 47, pp. 1272-1280. 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

http://www.vinidex.com.au/technical/material-properties/pvc-properties/
http://www.vinidex.com.au/

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf



