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ABSTRACT

This thesis investigates analytically the magnetohydrodynamics (MHD) transport of

Newtonian and non-Newtonian fluids flows inside a circular channel. The flow

was subjected to an external electric field for the Newtonian model and a uniform

transverse magnetic field for all models. Pressure gradient or oscillating boundary

condition was employed to drive the flow. In the first model Newtonian fluid flow

without stenotic porous tube was considered and in the second model stenotic porous

tube was taken into account. The third model is concerned with the temperature

distribution and Nusselt number. The fourth model investigates the non-Newtonian

second grade fluid velocity affected by the heat distribution and oscillating walls. Last

model study the velocity, acceleration and flow rate of third grade non-Newtonian

fluid flow in the porous tube. The non-linear governing equations were solved

using the Caputo-Fabrizio time fractional order model without singular kernel. The

analytical solutions were obtained using Laplace transform, finite Hankel transforms

and Robotnov and Hartley’s functions. The velocity profiles obtained from various

physiological parameters were graphically analyzed using Mathematica. Results were

compared with those reported in the previous studies and good agreement were found.

Fractional derivative and electric field are in direct relation whereas magnetic field and

porosity are in inverse relation with respect to the velocity profile in Newtonian flow

case. Meanwhile, fractional derivative and Womersely number are in direct relation

whereas magnetic field, third grade parameter, frequency ratio and porosity are in

inverse relation in third grade non-Newtonian flow case. In the case of second grade

fluid, Prandtl number, fractional derivative and Grashof number are in direct relation

whereas second grade parameter and magnetic field are in inverse relation. The fluid

flow model can be regulated by applying a sufficiently strong magnetic field.
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ABSTRAK

Tesis ini mengkaji pengangkutan magnetohidrodinamik (MHD) bagi aliran bendalir

Newtonan dan bukan Newtonan di dalam saluran membulat secara analitik. Kesemua

model tertakluk kepada medan magnet merentas lintang yang seragam, sementara

khusus bagi model Newtonan pula, aliran tersebut juga tertakluk kepada medan

elektrik luaran. Kecerunan tekanan atau syarat sempadan yang berayun dikenakan

supaya aliran berlaku. Pada model pertama, aliran bendalir Newtonan tanpa tiub

berliang yang tersumbat telah dikaji dan model kedua pula mengambilkira tiub

berliang yang tersumbat. Model ketiga mengambilkira taburan suhu dan nombor

Nusselt. Model keempat mengkaji halaju bendalir bukan Newtonan gred kedua dengan

kesan taburan haba dan dinding yang berayun. Model terakhir mengkaji halaju,

pecutan dan kadar aliran bendalir bukan Newtonan gred ketiga di dalam tiub berliang.

Persamaan menakluk tak-linear telah diselesaikan menggunakan model peringkat

pecahan masa Caputo-Fabrizio tanpa inti singular. Penyelesaian analitik diperoleh

menggunakan jelmaan Laplace, jelmaan Hankel terhingga, dan fungsi Robotnov dan

Hartley. Profail halaju diperoleh dari pelbagai parameter fizikal telah dianalisis

secara graf menggunakan Mathematica. Keputusan yang didapati telah dibandingkan

dengan kajian terdahulu dengan hasil yang memuaskan. Terbitan pecahan dan medan

elektrik berada dalam bentuk hubungan terus, sementara medan magnet dan sifat

keliangan pula berkadar songsang terhadap profail halaju pada model aliran Newtonan.

Untuk model aliran bukan Newtonan gred ketiga pula, terbitan pecahan dan nombor

Womersely mempunyai sifat hubungan terus terhadap profail halaju, sementara medan

magnet, parameter gred ketiga, kadar frekuensi dan keliangan pula berkadaran

songsang. Bagi model bendalir gred kedua, nombor Prandtl, terbitan pecahan dan

nombor Grashof berkadar terus terhadap profail halaju, sementara parameter bendalir

gred kedua dan medan magnet berkadar songsang. Model aliran bendalir boleh

dikawal dengan mengenakan kekuatan medan magnet yang secukupnya.
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CHAPTER 1

INTRODUCTION

1.1 Research background

According to ordinary calculus, a function can be differentiated to the rst or second

order. On the basis of results, some potential applications or meanings may be

identified. In the 17th century, sir Isaac Newton and Wilhelm Leibnitz independently

discovered their own calculus. Over three hundred years, the question raised by

Leibnitz about fractional-order derivative was a prevailing topic. It has long been

regarded as a pure mathematical domain with no practical applications. Nevertheless,

recently, this matter has changed due to improvement in the fractional calculus

Sengar, Sharma and Trivedi (2015). The most significant advantage of modeling

with fractional-order derivative is its non-local property (where we take non-integer

order derivative like half order derivative), which differentiates it from the local

model (where we take integer-order derivative like first order derivative, second order

derivative etc). The local model only describes the current stage of the system

whereas, the non-local model describes the historical stage of the system. According

to Devendra, Singh and Kumar (2015) non-local property of the fractional differential

equations differentiates it from the other models which predict the next stage of a

system based on the historical background and doesn’t rely on the current state of

the system. According to Caputo (2008) and Riesz (2016) fractional calculus is

concerned with derivatives and integrals of arbitrary (real or complex) orders in applied

mathematics. Nowadays it gained importance and popularity, normally due to the

established applications in science and engineering. It includes problem modeling
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in fluid flow, electric networks, propagation of seismic waves, rheology, oscillation,

anomalous and reaction-diffusion, turbulence, polymer and chemical physics, electro-

chemistry, relaxation and dynamical processes and many other physical phenomena in

the complex systems.

A fluid can be called a continuum because its particles have an identical

topological relationship between each other. Ockendon and Tayler (1983) states

that flow velocity, pressure, density, and temperature describes the state of fluid.

Most of the organic and inorganic liquids being tiny molecular weight like gases,

inorganic salts, and solution of liquefied metals with salts exhibit Newtonian flow

characteristics. In these types of matter, shear stress is proportional to the shear rate

at constant temperature and pressure, in simple shear, as by Chhabra (2010) dynamic

viscosity is the constant of proportionality. In the past decades, most of the works of

literature practice the Navier-Stokes equation to model the Newtonian fluid. However,

Newtonian models are less applicable generally. In fact, according to Chen, Lai

and Chen (2010) many complex types of fluids like blood, soaps, oils and greases,

suspensions, clay coatings, and many emulsions are non-Newtonian fluids. Fluid

having flow curve (shear stress versus shear rate) being nonlinear and deviated from

the origin can be categorized as a non-Newtonian fluid. Furthermore, viscosity and

shear stress does not vary at the specific pressure and temperature. Flow conditions

like flow geometry and shear rate and even kinematic history also affect the non-

Newtonian fluid characteristics. In the past, there were many mathematical models,

focused on the flow parameters (like magnetic field, electricity, wall porosity and

stenosis) affecting the non-Newtonian flow of a fluid inside by using various numerical

approaches (Homotopy perturbation method (HPM), Homotopy analysis method

(HAM), Adomian decomposition method (ADM), Perturbation method, Variation

parameter method (VPM), Variation iteration method (VIM) and Caputo fractional

derivative (UFDt) in Calculus. Recently, there is an advancement towards fractional

calculus, because it describes the sub-diffusion process between tissues and sub-

cellular space during the fluid flow.

Unsteady flow refers to the state where the fluid properties at a point in the

system change over time. In other words, time-dependent flow is known as unsteady
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flow. Many examples can be given from everyday life like water flow out of a tap

which has just been opened. This flow is unsteady to start with, but with time does

become steady. Some flows, though unsteady, become steady under certain frames

of reference. These are called pseudo steady flows. On the other hand, a flow such

as a wake behind a bluff body is always unsteady. Unsteady flows are undoubtedly

difficult to calculate while with steady flows, we have one degree less complexity.

Whether a particular flow is steady or unsteady, it depends on the chosen frame of

reference. For instance, laminar flow over a sphere is steady in the frame of reference

that is stationary with respect to the sphere. In a frame of reference that is stationary

with respect to a background flow, the flow is unsteady. Turbulent flows are unsteady

by definition. Steady flows are often more tractable than otherwise similar unsteady

flows. The governing equations of a steady problem have one dimension fewer (time)

than the governing equations of the same problem without taking advantage of the

steadiness of flow field.

Fluid or gas flow through pipes is common in the distribution networks of

fluids. The fluid is normally powered by a pump via a flow section in such applications.

Friction resists flow-through pipes which are directly linked to the drop in pressure and

heat loss. The pressure drop is then used to determine the pumping power requirement.

Most of the fluids, especially liquids, are transported in circular pipes. This is because

pipes with a circular cross-section can withstand large pressure differences between the

inside and the outside without undergoing significant distortion. The fluid velocity in

a pipe changes from zero at the surface because of the no-slip condition to a maximum

at the pipe center. The region around a magnet that exerts a magnetic force is called

a magnetic field. It is generated by the movement of electric charges. The presence

and strength of a magnetic field are denoted by magnetic flux lines. These lines also

indicate the direction of the magnetic field. The flux lines are clearly visible when iron

particles are positioned on a magnet. Magnetic fields also generate power in particles

that come in contact with it as shown in the Figure 1.1. Electrical fields are formed

around particles that carry an electrical charge. This attracts positive charges, while

negative charges are repelled. A moving charge always has both a magnetic and an

electric field, and that’s precisely the reason they are associated with each other. They
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are two different fields with nearly the same characteristics. Therefore, they are inter-

related in a field called the electromagnetic field. In this field, the electric field and the

magnetic field move at right angles to each other. However, they are not dependent

on each other. They may also exist independently. Without the electric field, the

magnetic field exists in permanent magnets and electric fields exist in the form of

static electricity, in absence of the magnetic field.

Every numerical approach present and portrait a comparative study of the

nonlinear velocity profile, wall shear stress, flow rate and pressure gradient in the

presence of certain external flow parameters. The fluid flow model in the study

is defined in Caputo-Fabrizio fractional-order derivative (CF) approach without a

singular kernel.

Figure 1.1: Magnetic Therapy as mentioned in Lusk (2018)
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