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ABSTRACT 

 

 

Fuzzy linear regression analysis has become popular among researchers and standard 

model in analyzing data in vagueness phenomena. However, the factor and 

symptoms to predict tumor size of colorectal cancer still ambiguous and not clear.  

The problem in using a linear regression will arise when uncertain data and not 

precise data were presented. Since the fuzzy set theory‟s concept can deal with data 

not to a precise point value (uncertainty data), fuzzy linear regression was applied. In 

this study, two new models for hybrid model namely the multiple linear regression 

clustering with support vector machine model (MLRCSVM) and fuzzy linear 

regression with symmetric parameter with support vector machine (FLRWSPCSVM) 

were proposed to analyze colorectal cancer data. Other than that, the parameter, error 

and explanation of the five procedures to both new models were included. These 

models applying five statistical models such as multiple linear regression, fuzzy 

linear regression, fuzzy linear regression with symmetric parameter, fuzzy linear 

regression with asymmetric parameter and support vector machine model. At first, 

the proposed models were applied to the 1000 simulated data. Furthermore, 

secondary data of 180 colorectal cancer patients who received treatment in general 

hospital with twenty five independent variables with different combination of 

variable types were considered to find the best models to predict the tumor size of 

CRC. The main objective of this study is to determine the best model to predicting 

the tumor size of CRC and to identify the factors and symptoms that contribute to the 

size of CRC. The comparisons among all the models were carried out to find the best 

model by using statistical measurements of mean square error (MSE), root mean 

square error (RMSE), mean absolute error (MAE) and mean absolute percentage 

error (MAPE). The results showed that the FLRWSPCSVM was found to be the best 

model, having the lowest MSE, RMSE, MAE and MAPE value by 100.605, 10.030, 

7.556 and 14.769. Hence, the size of colorectal cancer could be predicted by 

managing twenty five independent variables. 
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ABSTRAK 

 

 

Analisis regresi linear kabur telah menjadi popular di kalangan penyelidik dan 

menjadi model yang biasa digunakan di dalam fenomena kabur. Walau 

bagaimanapun, factor-faktor dan symptom-simptom untuk meramal saiz tumor untuk 

kanser usus masih samar-samar dan tidak jelas. Masalah dalam menggunakan regresi 

linear akan timbul apabila data yang tidak pasti dan data yang tidak tepat digunakan. 

Oleh kerana konsep teori set kabur dapat menangani data bukan pada nilai titik yang 

tepat (ketidakpastian data), regresi linear kabur telah digunakan. Dalam kajian ini, 

dua model hybrid baru iaitu kluster regresi linear berganda dengan model mesin 

vektor sokongan (MLRCSVM) dan regresi linear kabur dengan parameter simetri 

dengan mesin vektor sokongan (FLRWSPCSVM) dicadangkan untuk menganalisis 

data kanser usus. Selain itu, parameter, ralat dan penjelasan lima prosedur untuk 

kedua-dua model baru dimasukkan. Lima model yang sedia ada di dalam statistic 

digunakan seperti regresi linear berganda, regresi linear kabur, regresi linear kabur 

dengan parameter simetri, regresi linear fuzzy dengan parameter tidak simetrik dan 

model mesin vektor sokongan. Pada mulanya, 1000 data digunakan untuk simulasi. 

Tambahan pula, data sekunder dari 180 pesakit kanser usus yang mendapat rawatan 

di hospital umum dengan dua puluh lima pembolehubah tidak bersandar dengan 

pelbagai jenis kombinasi pemboleh ubah telah digunakan untuk mencari model yang 

terbaik untuk menjangkakan saiz tumor. Objektif utama kajian ini adalah untuk 

menentukan model terbaik untuk meramalkan saiz tumor dan mengenal pasti faktor 

dan gejala yang menyumbang kepada saiz tumor. Perbandingan antara semua model 

telah dijalankan untuk mencari model yang terbaik dengan menggunakan ukuran 

statistic iaitu ralat kuasa dua min (MSE), ralat punca kuasa dua min (RMSE), ralat 

mutlak min (MAE) dan ralat peratusan mutlak min (MAPE). Hasilnya menunjukkan 

bahawa FLRWSPCSVM didapati model terbaik, mempunyai nilai MSE, RMSE, 

MAE dan MAPE terendah sebanyak 100.605, 10.030, 7.556 dan 14.769. Oleh itu, 

saiz tumor boleh dijangkakan oleh dua puluh lima pembolehubah tak bersandar. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

This chapter discussed the background of regression analysis, fuzzy logic, support 

vector machine model and background of colorectal cancer (CRC) of the research. In 

addition, the problem statement, research objectives, the scope of the study, research 

contribution and thesis organization are also given and lastly, summary of each 

chapter in this study is stated. 

 

1.2 Background of research methods 

 

Carl F. Gauss called as father of regression analysis was the first to made 

contributions to physics, mathematics and astronomy in 1777-1855 and the term 

„‟regression‟‟ was first used in 1877 by Francis Galton. The regression analysis is a 

technique of studying the dependence of one variable (dependent variable) on one or 

more variables (independent variables) with a view to estimate or predict the average 

value of the dependent variables in terms of the known or fixed values of the 

independent variables (John, 2012).  

The objective of regression analysis is primarily used to estimate the 

relationship between variables, determine the effects of all other independent 

variables and predict the value of dependent variable toward independent variables. 

Regression analysis is the most often applied technique and tools of statistical 

analysis and modeling such as in business analysis and medicine analysis. This is 

because regression analysis is easy to use and can applies to many situations in real 

life. The statistical equation is derived obtained from the analysis which explains the  
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relationship of dependent and independent variables. It provides much explanatory 

power, especially due to its multivariate nature. It is available in computer packages 

and can be easily interpreted. Plus, it also extensively used in applied sciences, 

economic, engineering, computer, social sciences and other fields (Agresti, 1996).  

Regression analysis is widely used for prediction and forecasting, where its 

use has substantial overlap with the field of machine learning. Regression analysis is 

also used to understand which one among the independent variables are related to the 

dependent variable and to explore the forms of these relationships. Hence, regression 

analysis can be used to infer causal relationships between the independent and 

dependent variables (Kutner et al., 2004). However, this can lead to illusions or false 

relationships, therefore caution about the data that applied is advisable. 

Many techniques for carrying out regression analysis have been developed. 

Familiar methods such as linear regression, fuzzy linear regression and ordinary least 

squares regression are parametric, in that the regression function is defined in terms 

of a finite number of unknown parameters that are estimated from the data. 

Nonparametric regression refers to techniques that allow the regression function to 

lie in a specified set of functions which may be infinite-dimensional. 

The performance of regression analysis results depends on the form of the 

data generating process and how it relates to the regression approach being used. 

Since the data generating process is generally good or no missing values, the process 

or results regression analysis on making assumptions will be acceptable. These 

assumptions are sometimes testable if a sufficient quantity of data is available. 

Regression models for prediction are often useful even when the assumptions are 

moderately violated, although they may not perform optimally. Though, this may 

happened in many applications, especially with small effects or questions of 

causality based on observational data (Schneider et al., 2010). 

However, regression models are very sensitive to outliers. An outlier is a data 

point that differs significantly from other observations. The variability in the 

measurement may indicate experimental error and an outlier can cause serious 

problem in regression analysis. A researcher found another linear model that is not 

focus on outliers such as support vector machine model (SVM). Support vector 

machine is widely applied to classifying something into a group objects. In machine 

learning, support-vector machine (SVM) is supervised learning models with 

associated learning algorithms that analyze data used for classification and regression 
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analysis.  There is a lot of using a support vector machine versus artificial neural 

network to find the minimum errors and the sigmoid function in both (Mariette et al., 

2015). Vladimir N. Vapnik and Alexey Ya. Chervonenkis were the persons who 

develop the original SVM algorithm in 1963 and extend the algorithm to non-linear 

classifier by applying the kernel trick to maximum-margin hyperplanes in 1992.  

Support vector machine can be used in any applications to solve various real 

world problems in machine learning area such as text and hypertext categorization, 

classification of images, hand-written character, biological and other sciences. Image 

classification can be greatly improved by SVM and be able to classify thousand or 

millions of images rather than use of smartphones and applications like instagram. 

Moreover, the National Institute of Health also has even developed a SVM protein 

software library for protein classification into functional family. Support vector 

machine have been used to classification scenarios with up to 90% compounds 

classified correctly (Chu et al., 2005). 

Support vector machine divided into two categories classification such as 

linear and non-linear. There are two types of linear SVM which are hard margin 

linear refer to maximum margin in hyperlane and soft margin linear that refer to 

minimum margin hyperlane in SVM. Beside that, non-linear SVM which are primal, 

dual and kernel trick (Xiaojin, 2010). 

Models of support vector machine and regression models cannot handle the 

real world data or problems that too complicated and difficulty involves with the 

level of uncertainty which come from human, measurement devices or environmental 

conditions. A researcher, Lotfi A. Zadeh is the first person developed the model that 

can handle the vangunes phenomenon such as fuzzy model. 

Lotfi A. Zadeh studied in University of Colifornia at Berkeley introduced the 

paper on fuzzy sets in 1964. Among the contents described in the paper are the idea 

of grade membership was born, sharp criticism from academic community and waste 

of government funds. Moreover, on 1965 until 1975 Lotfi A. Zadeh continued to 

broaden the foundation of fuzzy set theory. The concept fuzzy set theory provides a 

fuzzy multistage decision making, fuzzy similarity relations, fuzzy restrictions and 

linguistic hedges. Fuzzy logic can be interpreted in a wider sense as theory of fuzzy 

sets. As such two objectives, fuzzy logic alleviate difficulties in developing and 

analyzing complex systems encountered by conventional mathematical tools and 

observing that human reasoning can utilize concepts and knowledge that do not have 
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well-defined and sharp boundaries. Such for examples are tall of human, the lighter 

of lamp and else. 

 Fuzzy logic is a form of many-valued logic which can be any real number or 

point number between 0 and 1. In contrast with traditional logic theory, binary sets 

have two valued logic which is the truth value that ranges in degree between 0 and 1 

(true and false). The truth value of fuzzy logic may be at range between completely 

true and completely false. Furthermore, if linguistic variables are used, specific 

function degree are also managed (Husain et al., 2015).  

 Fuzzy logic has been applied to many fields such as aerospace, automotive, 

business, chemistry industry, financial and medical. It allows getting the approximate 

values and numbers as well as incomplete and ambiguous data in all fields of fuzzy 

data. Fuzzy logic is able to solve incomplete data using controlling and decision 

making part. 

 Other than that, Hideo Tanaka was the first person that developed fuzzy 

linear regression both the research as well as statistic in 1982. In his study, he 

concerned with the application of fuzzy linear function to a regression analysis in a 

vague phenomenon. Usually in regression model, deviations between the observed 

values and the estimated values are supposed to be due to observation errors. It 

assumed that these deviations of system parameter depend on vagueness of the 

system structure. The data considered input and output relations whose vagueness the 

systems structure (Husain et al., 2015). 

 There are significant advantage of fuzzy model in analysis which is can be 

used without any assumptions. If the error of data is not normally distributed, then 

the data still can be used. It is difference with another regression analysis in statistic. 

Fuzzy logic provides a basic mathematical framework for dealing with vagueness. 

 Fuzzy regression analysis gives a fuzzy functional relationship between the 

dependent and independent variables in a vagueness environment. Linear regression 

is recommended as initial analysis before fuzzy regression analysis to make the 

greater decisions in fuzzy data. The input of the fuzzy data may be crisp or fuzzy. 

There are two types of fuzzy regression models such as Tanaka‟s linear 

programming approach and the fuzzy least-squares approach. Several methods have 

been presented to estimate fuzzy regression models. The first model is fuzzy 

regression was proposed by Tanaka et al. in 1982 for linear case by focusing on 

extension principle (Taheri, 2003). 
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Making sense of data is an ongoing task for researchers and professionals in 

almost every practical endeavor. The age of information technology, characterized 

by a vast array of data, has enormously amplified this quest and made it even more 

challenging. Data collection has become the reality of our lives at any time and from 

everywhere. It is reported that understanding the data, revealing underlying 

phenomena, and visualizing major tendencies are the major undertakings to pursue in 

intelligent data analysis (IDA), data mining (DM), and system modeling (Pedryoz, 

2005). 

Fuzzy regression used in complex systems such as in industry, economy, 

finance, marketing, and ecology function in the real world and it is more imprecision. 

Such systems require decisions based on human thinking and judgmental and involve 

human–machine interactions. In such environments, human often not be able to 

obtain exact numerical data about the system. The nature of information about the 

complex systems with vagueness is frequently fuzzy. In general, fuzzy regression 

seems to be intuitively more adequate for real life problems. Therefore, fuzzy 

regression analysis is more effective for modeling of complex systems. The 

pioneering work in this field reported that the authors used Zadeh‟s extension 

principle, A-level procedure, interval arithmetic, and linear programming techniques 

to develop a fuzzy linear regression analysis. Minimization of these distances in the 

fuzzy number space with respect to the unknown parameters of regression models 

leads to solving systems of equations (Aliev et al., 2002). 

 

1.3 Research background of colorectal cancer 

 

Colorectal cancer (CRC) is the cancer which affecting colon (bowel or large 

intestine) or rectum. Usually, the colon is about 5 feet long and as a part of insider 

body human. Plus, CRC can occur in any section of the colon or the rectum. These 

parts colon and rectum are the main important role to digest food and past waste in 

human body. Colorectal cancer can be called as colon cancer, colorectal carcinoma 

and vaginal metastases (Hwei et al., 2013). Colorectal cancer is one of the most 

 

common diseases malignancies in the world (Malaysian Oncological Society, 2007). 

According to World Health Organization (WHO) (2018), cancer is the second 

leading cause of death globally and accounted for 8.8 million death in 2015. 
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