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Alzheimer’s disease is a neurodegenerative disorder and the most common form of dementia. Early diagnosis may assist interventions to

delay onset and reduce the progression rate of the disease. We systematically reviewed the use of machine learning algorithms for predict-

ing Alzheimer’s disease using single nucleotide polymorphisms and instances where these were combined with other types of data. We

evaluated the ability of machine learning models to distinguish between controls and cases, while also assessing their implementation

and potential biases. Articles published between December 2009 and June 2020 were collected using Scopus, PubMed and Google

Scholar. These were systematically screened for inclusion leading to a final set of 12 publications. Eighty-five per cent of the included

studies used the Alzheimer’s Disease Neuroimaging Initiative dataset. In studies which reported area under the curve, discrimination var-

ied (0.49–0.97). However, more than half of the included manuscripts used other forms of measurement, such as accuracy, sensitivity

and specificity. Model calibration statistics were also found to be reported inconsistently across all studies. The most frequent limitation

in the assessed studies was sample size, with the total number of participants often numbering less than a thousand, whilst the number

of predictors usually ran into the many thousands. In addition, key steps in model implementation and validation were often not per-

formed or unreported, making it difficult to assess the capability of machine learning models.
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Introduction
Dementia comprises a number of neurodegenerative disor-

ders which cause a range of symptoms, some examples

of these are memory loss, depression/anxiety and physical

impairments such as incontinence.1 The most common

form of dementia is Alzheimer’s disease, accounting for

more than 75% of cases.2 The main neuropathological

characteristics of Alzheimer’s disease are the accumulation

of amyloid beta plaques and neurofibrillary tangles con-

sisting of tau protein, which impact brain function.3

Diagnosing the correct form of dementia has long pro-

ven difficult due to different forms sharing phenotypic

characteristics.4 Currently, the only method to confirm a

diagnosis of a specific type of dementia, is post-mortem

brain biopsy.5 Along with an individual’s age, genetics

has been shown to be a strong risk factor for developing

Alzheimer’s disease. Twin and family studies have sug-

gested that up to 80% of Alzheimer’s disease involves the

inheritance of genetic factors.6 However, Genome Wide

Association Studies (GWAS) have failed to explain the

level of heritability shown in twin studies.7 The GWAS-

based heritability estimates assume an additive model,

which, in statistical terms, is equivalent to looking for the

main effects of common variants contributing to disease

risk. In the genetics of complex diseases, it is unknown

whether and to what extent non-additive genetic inter-

action effects contribute to risk.8 Risk prediction model-

ling is often used to assess an individual’s risk of

developing a given disease.9 While there are currently no

specific treatments to prevent Alzheimer’s disease or re-

verse its course, determining an individual’s risk of onset

at an early stage can enable clinicians to improve quality

of life during disease progression. This can be achieved

through a combination of medication and palliative care,

which are most effective when commenced in an early

stage of the disease. Early prediction can also provide

insights to patients and caregivers, enabling them to pre-

pare for the personal implications of Alzheimer’s dis-

ease.10 This review assesses the use of genetic data to

predict the risk of an individual developing Alzheimer’s

disease at any time, or lifetime disease risk with machine

learning (ML) approaches, which are suitable for detec-

tion of any effects contributing to disease risk, including

non-linear effects.

ML can be defined as a set of algorithms which learn

underlying trends and patterns in data. It is not a novel

concept, however, interest in its applications has

increased significantly in recent decades. This is due to

modern computers being able to process larger datasets

and perform in depth mathematical calculations in less

time.11 Advantages of ML lie mostly in the ability of

algorithms to learn from complex datasets, with emphasis

on analysing hidden relationships which may be non-lin-

ear. Therefore, ML algorithms are able to provide data-

driven classifications in a multidimensional space of pre-

dictors, instead of hypothesis-driven approaches testing a

subset of predictors at a time.12
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Advancements in biotechnology have resulted in various

aspects of human biology being reliably recorded, includ-

ing genetic data and other commonly used biomarkers,

e.g. cerebral blood flow, brain imaging. This has led to

the accumulation of large biological datasets which ML

algorithms can learn from, with the aim of classifying the

participants or predict the membership of predefined

classes.13 The combination of genetic data with other

data modalities often leads to complexity, which cannot

be processed easily by humans in an un-biased way.14

However, despite the advantages of using ML for

answering biological questions, possible issues must be

overcome in the ML model development and implementa-

tion. Overfitting is a common issue when developing ML

models,15 whereby a ML model does not generalize well

from observed to unseen data. In this instance, while the

model may perform well when making predictions on

training data, predictions are not accurate when exposed

to new data. Another relevant issue which may arise

when using ML is insufficient sample size. The scenario

in which the number of predictors is larger than the

number of samples in a dataset often leads to optimistic-

ally biased ML performance.16 Genetic datasets are likely

to fall into this category due to the many thousands of

genetic markers in the human genome.17 Therefore, a

careful and clear strategy for the validation of ML mod-

els must be considered in order to prevent overfitting and

overinterpretation of the results.

This review assesses the ability of ML methods to pre-

dict lifetime risk for Alzheimer’s disease using primarily

genetic [single nucleotide polymorphisms (SNPs)] data,

however, studies in which SNPs had been combined with

other forms of data were also considered. Initially, all

forms of dementia were examined, however, searches

returned publications focussed on Alzheimer’s disease

only. The review was written in line with the Preferred

Reporting Items for Systematic Reviews and Meta-analy-

ses (PRISMA) guidelines.18 Databases were searched for

relevant scientific articles, followed by an assessment on

how prediction models were developed. Reviews in this

area have been conducted previously19; however, this re-

view is unique in its assessment for the possibility of bias

for prediction models in this subject area, as well as in

the number of ML methods that it includes. The risk of

bias (ROB) was assessed by using the prediction model

risk of bias assessment tool (PROBAST).20

Materials and methods

Search strategy

The online article databases Scopus, PubMed and Google

Scholar were used to identify relevant publications for

this review. Search terms used were ML, genetics, demen-

tia, Alzheimer’s, SNP, polymorphism, mutation, variant

and marker. These were used to retrieve studies published

between December 2009 and June 2020. An initial search

and screening for relevant publications was conducted by

assessing both abstracts and titles. Based on eligibility cri-

teria (listed below), publications from the initial search

were then further assessed by two independent reviewers.

Any discrepancies were then resolved by a third reviewer.

Inclusion criteria

• Written in the English language
• Subject matter of Alzheimer’s disease
• The use of SNP data only, unless it was combined

with other forms of non-genetic information.
• Supervised ML techniques
• Prediction resulting in a binary outcome (i.e. case/

control)

Exclusion criteria

• Prediction of Alzheimer’s disease related sub-pheno-

types (e.g. MCI versus controls)
• The use of genetic variants other than SNPs as predic-

tors. The search was deliberately broad (see Search

Strategy section) to capture papers from non-genetic

fields, which do not apply a refined definition of gen-

etic variants

We identified articles published between December 2009

and June 2020. ML techniques have been used in studies

prior to this time frame. However, interest in ML in bio-

logical research has increased mostly in the last decade21;

therefore, studies previous to this were sparse and this re-

cently defined window was used. SNPs were the only

form of genetic variation accepted to facilitate compari-

sons between studies, therefore, articles focussing on gene

expression data or other forms of genetic data (e.g. rare

variants) were not included. Instances where authors had

combined SNP data with other forms of predictive bio-

logical variables were included, e.g. MRI and PET. Only

models which predicted a binary outcome between cases

and controls were included, resulting in the exclusion of

prediction models involving mild cognitive impairment

(MCI). This was due to historic difficulties for clinicians

to distinguish between MCI and Alzheimer’s disease sta-

tus.22 Therefore, accepting models which discriminated

between case and control status allowed a clearer assess-

ment of the predictive performance.

For the purpose of assessing the suitability and compar-

ability of ML approaches, prognostic and diagnostic

models are usually considered separately. Prognostic mod-

els are defined as those which focus on future events and

use longitudinal data, whereas diagnostic models are

based upon current events using cross-sectional data.

Limiting our search to binary outcomes only, revealed no

prognostic models.
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Data extraction

The Critical Appraisal and Data Extraction for

Systematic Reviews of Prediction Modelling Studies

(CHARMS)23 was used as a tool to perform data extrac-

tion. CHARMS provides two tables of check points to be

considered by the reviewer. The first table provides guide-

lines on how to frame the aim of a review, including

how to search and filter extracted publications. The se-

cond table lists aspects to be extracted from each study

for comparison, including predictor type, sample size and

the amount of missing data. CHARMS also gives guid-

ance on assessing how certain aspects were reported such

as model development, model performance and model

evaluation. Advantages of using CHARMS include replic-

ability across different types of reviews, its ease of use

and assisting reviewers in producing transparent

publications.23

The ability of ML methods to discriminate between

two classes was extracted independently from all studies

by two authors. Accuracy (ACC) describes the perform-

ance of a classifier with respect to all samples, it is calcu-

lated as the number of correct predictions divided by the

total number of predictions made. However, it does not

provide information on how well the model performs

within the positive and negative classes.24 Sensitivity is

calculated by using observed positive outcomes to deter-

mine the proportion of classifications correctly made in

the positive class, while specificity measures the same

statistic in the negative class. Area under the receiver

operating characteristic curve (AUC) represents the trade-

off between these two measurements at different thresh-

olds, aiming to find the optimal balance.24 AUC was

extracted in order to draw comparisons between the stud-

ies. Confidence intervals for AUC were also extracted if

provided, otherwise these were calculated using the

Newcombe method.25 Precision can be defined as the

ratio of correct predictions in the positive class, divided

by the total number of positive predictions. Measures of

performance such as accuracy, sensitivity, specificity and

precision were also recorded alongside AUC if present.

As the true positive rate and recall are different terms

used for sensitivity, while specificity is also known as the

true negative rate, they were categorized under sensitivity

or specificity (if reported).

Statistics such as age and gender for participants, types

of predictors and ML models were also extracted, as per

the CHARMS checklist guidance. Figures in this study

were created using Microsoft Word (Fig. 1) and the pro-

gramming language Python (Figs 2 and 3).

Studies were analysed in order to determine whether

they reported the calibration of their models. Calibration

is defined as the accuracy of risk estimates and demon-

strates how well predicted and observed probabilities of

the class membership line up. Previous systematic reviews

conducted for prediction models across a number of re-

search areas have shown that calibration is rarely

reported.26 Poor calibration could lead to healthcare pro-

fessionals or patients having false expectations for certain

events.26

Data analysis

When assessing a number of studies in a review, meta-

analyses are often conducted. A meta-analysis produces a

weighted average of the reported measures, where the

heterogeneity between studies is taken into consideration.

If studies overlap, e.g. contain (partially) the same indi-

viduals, the resulting correlation between the studies will

bias the results of the meta-analysis,27 unless taken into

account. Since the majority of the extracted publications

used the same dataset, a meta-analysis was not performed

in this review.

ROB is another component to critically assess when

conducting a systematic review of prediction models with-

in studies. PROBAST uses a system of questions split

over four categories: participants, predictors, outcome

and analysis. Each category contains multiple choice

questions assessing an occurrence of shortcomings in that

category (with choice of answers from: ‘yes’, ‘probably

yes’, ‘no’, ‘probably no’ and ‘no information’). If any

question is answered with no or probably no, this flags

the potential for the presence of bias, however, assessors

must use their own judgement to determine whether a

domain is at ROB or not. An answer of no does not

automatically result in a high ROB rating. PROBAST

does offer assistance on how to reach an overall conclu-

sion on the level of bias in that category. In this review,

we assessed all selected studies for ROB.

Data availability

This review did not use or generate any form of new

data.

Results

Search results

Following an initial search, a total of 4020 publications

were returned. This number was reduced by assessing

whether both titles and abstracts aligned with the inclu-

sion criteria, resulting in 500 studies. A more in-depth

analysis was then conducted on the full texts, removing

publications which did not pass the inclusion criteria

upon a detailed inspection, 25 texts remained at this

stage. These were further reduced to 21 due to the pres-

ence of duplicates, comprising both pre-prints and confer-

ence abstracts. Nine further publications were then

removed due to non-relevant methodologies, leaving a

final set of 12 studies to be included. A visual representa-

tion of the selection process is given in Fig. 1.
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The majority of publications (10/12) used the publicly

available Alzheimer’s Disease Neuroimaging (ADNI)28

dataset. ADNI is a longitudinal study measuring various

biomarkers in both Alzheimer’s disease cases and healthy

age-matched controls. However, all studies reported here

analysed a particular subset of the cohort at a fixed time-

point only. Therefore, only cross-sectional format data

were used, and hence models throughout publications

were classed as diagnostic rather than prognostic. Out of

the publications using ADNI, four used the initial five-

year study (ADNI-1), whilst the remaining studies did

not specify which cohort was used. There were two stud-

ies that did not use ADNI. Wei et al.29 used a combin-

ation of three datasets30 in which biomarkers were

collected at a fixed time point, therefore, data were cross-

sectional. Romero-Rosales et al.31 used a longitudinal

source of data known as the National Institute on Aging-

Late-Onset Alzheimer’s Disease Family Study (NIA-

LOAD).32 Again, values for predictors were taken at a

fixed time point, thus the data used were cross-sectional.

All models across the included studies were classified as

diagnostic.

A range of ML approaches were used across the 12

reviewed studies. Table 1 outlines all types of models

used and their frequency across the publications. The

most commonly used ML approach across the analysed

publications was Support Vector Machines (SVMs), fol-

lowed by Naı̈ve Bayes (NB) and Penalized regression.

The number of tested models was also the highest for

SVMs. This approach allows the most flexibility when

adapting models via kernel functions.33 Penalized regres-

sion was commonly used in the form of the Least

Absolute Shrinkage and Selection Operator (LASSO).

This type of regularization shrinks coefficients closer to

zero when compared to their maximum likelihood esti-

mates and simultaneously reduces variance in predictions

and performs predictor selection. These aspects make

penalized regression a popular method in prediction ana-

lysis.34 Random forests (RFs) were also used across three

studies, these algorithms are intuitive in their use of

Figure 1 Visual breakdown of publication selection based on a similar diagram found in PRISMA.
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decision trees, are invariant to scaling, and provide an in-

built measure of predictor importance, which likely

explains their favour in biology.35 Supplementary Table 1

outlines how the model types displayed in Table 1 were

distributed across publications. It also provides study

names, sample sizes and which methods were used to re-

port results. The most commonly used statistics for model

performance were ACC and AUC. With five studies

reporting AUC and the remaining seven studies reporting

ACC.

Risk of bias

For diagnostic models, data sources with the lowest risk

of ROB for participants are of the cross-sectional form.

The publications which used the ADNI dataset assessed it

in a cross-sectional format. This assertion is reinforced in

Gross et al.,36 where ADNI is described as a cross-sec-

tional study with longitudinal follow-up. A similar deci-

sion was reached when considering the two studies which

did not use ADNI, Wei et al.29 and Romero-Rosales

et al.31 After considering this, ROB was deemed low for

participants.

The focus of PROBAST for predictors is to assist the

researcher in determining whether the procedures for

measuring biomarkers were equal for all members of the

study. ADNI provides publicly available documents which

outline the methods for biomarker collection. Predictors

derived from blood samples or MRI scans were collected

using the same protocols for all participants. Therefore,

the process of collecting predictors was deemed to be of

low ROB. Genotyping of SNPs for the NIA-LOAD data-

set32 was performed in the same way across all samples,

therefore, ROB for predictors was low for Romero-

Rosales et al.31 Procedures for collecting predictors in

Wei et al.29 were not provided. This was also the case

when assessing the original source of the data by

Romero-Rosales et al.31; therefore, ROB for predictors

for these publications was stated as not known.

Blinding is the process whereby samples from patients

are collected without prior knowledge of their disease sta-

tus. Such knowledge has been shown to introduce bias to

collection procedures.37 According to the ADNI data

Table 1 Summary of ML methods used in the analysed publications

ML approacha Number of

publicationsb

Number of models

reported across

publicationsc

Additional informationd

Support vector machine (SVMs) 8 44 Linear kernels (22 models, 5 studies). Quadratic polynomials (4

models, 2 study). Cubic Polynomials (4 models, 2 study). Radial

basis functions (3 models, 2 studies). Pearson kernel function

(2 models, 1 study). Unreported kernels (9 models, 3 studies).

A supervised method which uses distance-based calculations

to separate samples into groups.

Penalised regression (LASSO) 4 15 All 15 LASSO regressions across 3 studies. A regression analysis

which performs both feature selection and regularization.

Naı̈ve Bayes (NB) 4 10 Six ordinary NB models, three tree-augmented NB and one

model averaged NB. A probabilistic classifier which uses bayes

theorem to make predictions.

Random forest (RF) 3 5 Five classification RFs used, two of which used the RPART pack-

age. These are an ensemble of decision trees which produce

aggregated classifications.

Bayesian networks (BN) 2 4 2 BNs with K2 learning algorithm, one markov blanket and one

minimal augmented markov blanket. A graphical model which

calculates conditional dependencies between variables using

Bayesian statistics.

Linear models 2 4 Bootstrapping Stage-Wise Model Selection (BSWiMS). A super-

vised model-selection algorithm which uses a combination of

linear models for prediction.

K nearest neighbour (KNN) 2 3 This is a distanced based algorithm which uses similarities in fea-

tures to classify.

Ensemble methods 1 2 Ensembles are the use of a number of ML models, these arrive at

a collective prediction result.

Logistic regression (LR) 1 1 A form of linear regression whereby the outcome is a categorical

variable.

Multi-factor dimensionality reduction (MFDR) 1 1 A technique used to detect combinations of independent varia-

bles that influence a dependent variable.

aType of machine learning model.
bThe number of publications models were used in.
cThe number of publications these models occurred in.
dFurther information regarding the machine model used.

BN ¼ Bayesian networks; RF ¼ random forest; KNN¼ K nearest neighbour; LASSO¼ least absolute shrinkage and selection operator; LR¼ logistic regression; MFDR¼ multi-

factor dimensionality reduction; ML¼ machine learning.
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generation policy, samples were collected using blinding

and only unblinded when uploaded to databases. Imaging

data were collected and processed using standardized

automated pipelines, thereby reducing the possibility of

multiple clinicians using different methods when collecting

predictors.38 ROB was deemed low for blinding in

ADNI. Policies for blinding were not provided by either

Wei et al.29 or Romero-Rosales et al.31 Therefore, a

judgement could not be made for either publication.

ROB in the PROBAST category ‘outcome’ was consid-

ered to be low for the majority of studies. PROBAST’s

questions regarding this section focus on how the out-

come was determined and whether this determination

was applied equally to all participants. ADNI used a

range of clinically accepted methods to determine an indi-

vidual’s Alzheimer’s disease status, including the Mini

Mental State Examination and the Clinical Dementia

Rating. The use of multiple methods of cognitive per-

formance reduced the possibility of misdiagnosis, which

in turn reduced the ROB. Diagnosing the outcome for

participants in NIA-LOAD study was also achieved using

a range of stringent methods. NINCD-S-ADRDA39 crite-

ria were used for Alzheimer’s disease diagnosis at recruit-

ment, while diagnosis was pathologically confirmed for

participants who were deceased. Controls were deter-

mined using neuropsychological tests in which memory

function was examined, coupled with examination for

any previous history of neurological disorders. As meth-

ods for both controls and cases were applied uniformly

across the study participants, with the exception of

deceased and alive Alzheimer’s disease individuals, the

ROB for Romero-Rosales et al.31 was deemed low for

outcome. In Wei et al.29 all brain donors for cases satis-

fied clinical and neurobiological criteria for cases of late

onset Alzheimer’s disease, while clinical cases satisfied cri-

teria for probable Alzheimer’s disease.40 Also, brain

donor controls did not have significant cognitive impair-

ment at the time of death and clinical controls exhibited

no cognitive impairment. However, the methods used to

determine these diagnoses were not elaborated upon. For

instance, whilst there was a mention of using clinical cri-

teria, these were not defined. Therefore, ROB for out-

come was unclear.

The fourth and final category in which PROBAST aids

investigation is in the analysis phase of a study. All stud-

ies exhibited high ROB for this section, with a consistent

lack of reporting for calibration; additionally, 5 out of

12 publications did not report possible missing values in

their data and how these were dealt with if present. To

assess whether sample sizes used in modelling are ad-

equate, PROBAST suggests the use of the metric Events

per Variable (EPV). EPV is defined as the number of

events in the minority class (i.e. the smaller of either

cases or controls), divided by the number of candidate

predictors used. In cases where more in-depth algorithms

[e.g. Neural Networks (NNs)] are used, model parameters

are also included in the calculation of EPV. We evaluated

ROB using a value of at least 10 EPVs, following com-

mon recommendations.16 However, this threshold may be

tailored more to the accurate estimation of regression

coefficients in a logistic regression model. More complex

algorithms which require the tuning of hyperparameters

(RFs, SVMs, NNs) may require a value of over 100.41

Values across all studies were assessed to be below this

threshold. The study with the highest EPV of 9.43 was

Chang et al.42 The lowest EPV, 0.0018, was found for

Wei et al.29

Values of EPV below the recommended threshold of 10

introduce the possibility of overfitting, which in turn

could result in spurious results.16 However, efforts were

made by most studies to overcome the problem of over-

fitting, mostly in the form of cross-validation (CV) (11/12

studies). During this process, the data are divided into k

partitions, with k-1 partitions used as training data and

the remaining partition used as the test set. This process

is then repeated k times. It has been demonstrated that

using CV is a viable method for authors to address over-

fitting.43 Despite this, the possibility of bias could still be

present if the correct form of CV is not used. To investi-

gate the importance of CV type selection, several methods

of CV were used on datasets with low EPV values.44 The

simplest form of CV (k-partitioning) was shown not to

counteract the issue of overfitting in some instances and

could even exacerbate the problem. Nested-CV has been

shown to achieve the best performance of all methods45

and it operates by using an outer and inner loop of CV.

The outer loop splits k times to perform model validation

while hyperparameters and feature selection are con-

ducted in the inner loop. This method was only reported

by two of the included studies.46

ML performance

Figures 2 and 3 summarize the reported accuracies

across all included studies and ML methods. The first

column shows the reference number of the publication as

listed in Supplementary Table 1, along with the sample

size used in the respective ML model. ML approaches

used are shown in the second column. The third column

displays information which assists the reader in distin-

guishing between models in the same study, this includes

factors such as number of SNPs used, and methodologies

implemented. Studies were sorted by sample size in

ascending order. The vertical dashed line shows the ac-

curacy of 0.5, which indicates a 50% chance of the result

being correct. The last column shows the actual values of

the accuracy achieved. Confidence intervals of AUC val-

ues in Fig. 2 were calculated using the Newcombe

method.25 These confidence intervals reflect the variability

of AUC controlling for sample size. This allows for com-

parison between studies with large sample size differen-

ces. If the intervals overlap between studies, then the

AUCs are not significantly different between models.
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Five studies recorded AUC for the performance of

models, ranging from 0.49 to 0.97. The remaining seven

studies reported mainly ACC, sensitivity and specificity

(Supplementary Table 2). The highest AUC value was

achieved by An et al.47 (Study 6 in Fig. 1), where the

authors used a hierarchal method to find the optimal set

of features for the prediction of Alzheimer’s disease.

Manifold regularization was used to combine both genet-

ic and MRI data in a semi-supervised hierarchal feature

and sample selection framework. This method utilized

both labelled and unlabelled data in order to maximize

the amount of information for prediction. For classifica-

tion purposes, SVMs were used to discriminate between

controls and cases. However, the EPV score was 0.919

and this is below the recommended threshold of 10. This

could introduce the possibility of overfitting which can in

turn lead to spurious results.16 The authors used CV to

alleviate the potential for overfitting.

A single study reported calibration statistics29

(Publication 5 in Supplementary Table 1). The authors

compared the predictive capability of a model using aver-

aged NB with both standard NB and NB with feature se-

lection. The method used to report calibration was

calibration curves. The results highlighted that the model

using averaged NB achieved better calibration than the

standard NB model and achieved similar performance to

the NB with feature selection. The prediction accuracy of

these models was 0.59–0.72 (Publication 5 in Fig. 1).

Figure 2 A forest plot displaying models used across publications which reported AUC, with the addition of confidence

intervals derive using the Newcombe Method. Column 1—Publication number as found in Supplementary Table 1, along with sample size.

Column 2—Type of machine learning model. Column 3—Information to help distinguish between models in publications, including differing SNP

numbers and methodologies.
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Ten-fold CV was the most common form of validation

used, however, a range of other values of k were also

documented. One further study used a nested CV ap-

proach to optimize both model performance and hyper-

parameter tuning. Leave one out CV was also used by

one study, this functions by creating a number of folds

equal to the number of data points in the training set.

Within each fold a single data point is removed to be

used as the test set, the algorithm is then trained on the

remaining points. Prediction performance is calculated by

averaging over the results for all folds. Also, one publica-

tion explored a different approach of dividing the data

into training and test datasets called a split sample. In

this process, a model is trained using a training set and

is subsequently tested on a validation (test) set, where the

test dataset contains the remainder of the original data

not included in the training dataset. All of these methods

are known as internal validation, where model optimiza-

tion and hyperparameter tuning is achieved using a single

dataset. External validation involves using a completely

separate cohort to validate an already trained model, usu-

ally this cohort has been independently gathered and

assessed to the initial training data.48 This method was

not used by any study in this review (Supplementary

Table 3).

Sample size

Sample sizes ranged from 72 to 3856 individuals, with

the largest cohort being the NIA-LOAD dataset.49 The

majority (10/12) of studies used 300–900 individuals

from the ADNI dataset. The number of SNPs used in

models varied between studies, with numbers ranging

from 21 to 561 309 SNPs. The large range in the

Figure 3 A forest plot displaying all models used across publications which reported ACC. Column 1—Publication number as found

in Supplementary Table 1, along with sample size. Column 2—Type of machine learning model. Column 3—Information to help distinguish

between models in publications, including differing SNP numbers and methodologies.
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number of SNPs used was due to differences in the used

methodologies. The study which used the greatest number

of SNPs31 investigated improving AUC by reintroducing

initially misclassified samples to the final models. The

study which used the least number of SNPs focussed only

on the top 10 genes associated with Alzheimer’s dis-

ease,50 thereby limiting the number of SNPs included in

the study. EPV ranged from 0.0018 to 9.43 for eleven

studies, with one study not providing enough information

to calculate EPV. These values are displayed in Fig. 4,

this also includes the number of samples, amount of pre-

dictors used and values of either ACC or AUC for each

study. The publication number corresponds to those used

in Figs 2 and 3. Owing to the large difference between

two values and the rest, two scales were used to allow

for all points to be plotted on the same figure.

Imbalances between classes, as a ratio between controls

over cases, ranged from 0.408 to 6.55, with a median

value of 1.193 (Supplementary Table 4). The accuracy

for the study with the highest class imbalance (6.55) was

0.95–0.99 ACC.51

Predictors

Criteria used for inclusion specified that SNPs were the

only form of genetic data used as predictors. However,

other predictors were also considered, whereby other

forms of predictive material were used alongside SNPs.

The most common form of secondary data used was

MRI, included in four publications. PET imaging data

were also used in two studies. Additionally, CSF was

used in one publication (Supplementary Table 5).

Pre-processing techniques for SNPs were reported in

the majority (10/12) of studies. All these studies excluded

SNPs which did not satisfy Hardy-Weinberg equilib-

rium.52 SNPs were selected with a variety of Alzheimer’s

disease association significance thresholds (0.00007–0.05),

leading to different numbers of SNPs being retained

across studies. Seven of the studies which discussed pre-

processing for SNPs also used minimal minor allele fre-

quency (MAF), i.e. rare variants were removed from a

SNP set based on their allele frequency. Thresholds used

for MAF varied (0.01–0.04) across studies

(Supplementary Table 5). Two studies did not report

steps taken to pre-process SNPs; this could lead to ques-

tions regarding data quality.

Eight out of 12 studies used methods to address miss-

ing data values. Two studies excluded samples with

>10% missing predictor values. A further four publica-

tions described processes for the imputation of missing

genotypes. For instance, Sherif et al.53 imputed missing

SNP values by using the expectation maximization algo-

rithm. Another study31 imputed missing genotypes by

using the median value of the nearest neighbours, this

was the only example of using a measure of central ten-

dency. Zhou et al.46 did not remove or impute missing

data, rather they designed a method in which samples

with missing values were incorporated in the models. All

complete samples were used to develop a latent represen-

tation space. Samples with missing values were used to

learn independent modality specific latent specifications.

These latent representations were then used as an input

for the Alzheimer’s disease classifier. This process allowed

these authors to produce models which outperformed

comparable methods of dealing with missing data and

selecting features.

None of the analysed studies which reported the use of

imputation methods specified whether this process was

undertaken before CV or afterwards, which may be

prone to the issue of data leakage.54

Hyperparameter search

Hyperparameter tuning is a common step in developing

prediction models, it is implemented to ensure the opti-

mization of AUC.55 Reporting of techniques for hyper-

parameter optimization was inconsistent across studies,

with seven publications not providing values or the pro-

cess of tuning. For the remaining five studies, a range of

differing techniques were used. Zhou et al.46 used a

nested approach to optimize model parameters. Ten-fold

CV was used to fit models, whilst an inner loop of 5-

fold CV trained model hyperparameters. However, this

was only the case for some hyperparameters, as some

were fixed at pre-determined values to reduce training

times. This arbitrary fixing of values could introduce

bias. Hao et al.56 also used a nested approach for hyper-

parameter tuning. Five-fold CV was used to optimize

parameters for regularization, with a separate loop of

five-fold CV used for model validation. These were the

only two studies which reported the use of nested CV for

hyperparameter tuning. The remaining 3 studies reported

hyperparameter optimization but did not specify whether

a nested approach was used.

Bi et al.57 used an iterative process to determine the

optimum number of decision trees to use in their RF ap-

proach. Furthermore, grid search and CV techniques

were employed to optimize varying hyperparameters

across the studies (Supplementary Table 6, last column).

In this process, CV is used to test different combinations

of hyperparameter values, with the aim of producing the

set which leads to the highest value of AUC. Seven publi-

cations did not report optimization methods. Of these

seven studies, four used NB methods, which do not re-

quire hyperparameter tuning. For the remaining three

studies, hyperparameter tuning was required but not

reported.

Descriptive statistics

Eight studies did not report values regarding both age

and gender for study participants. The remaining four

reported the age and gender distributions in both classes

(cases and controls). De Velasco Oriol et al.58 reported
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age and gender for both the discovery and validation

sets. Values for the mean age for both cases (75.4–75.5)

and controls (76.1–77.4) were similar across studies. This

similarity is due to the consistent use of the ADNI data-

set throughout the analysed studies. The proportion of

males to females in controls ranged from 0.59 to 1.22; in

cases this proportion ranged from 1.05 to 1.22

(Supplementary Table 7).

Discussion
This review assessed a selection of studies which used

ML to predict Alzheimer’s disease from mainly genetic

data. Using a systematic approach (PRISMA), 12 studies

were identified which met inclusion criteria. This could

be perceived as a low number of studies; however, this

amount is consistent with other ML reviews.59 A poten-

tial reason for this small number is that ML is a relative-

ly novel technique in Alzheimer’s prediction. Also, the

disease risk associated with SNP data in complex genetic

disorders has gained recent interest due to the appearance

of GWAS, followed by prediction using polygenic risk

scores.60 In addition, difficulties exist in accessing data-

sets with sufficient sample size for prediction. These

manuscripts were reviewed to identify the type of models

used, model development and the validity of the reported

results.

AUC results in the included studies (5 out of 12) varied

(0.49–0.97) for Alzheimer’s disease risk prediction. The

most accurate models were shared across two studies,

with the authors recording AUC >0.8, which could be

considered as high (e.g. approved clinical prediction mod-

els in cardiovascular disease and diabetes typically

achieve AUCs of 0.8–0.8561). Given that genetic predic-

tion for complex traits is bounded by heritability and the

disease prevalence,62 these results match and outperform

the theoretical maximum prediction accuracy in AD using

Polygenic Risk Scores (AUC¼ 0.82, assuming SNP-based

heritability h2¼ 0.24 and life-time disease prevalence of

2%63). Seven out of 12 publications did not report AUC

for their models, with accuracy and sensitivity being the

preferred choices. The most common measure of perform-

ance used other than AUC was ACC. Four studies

reported ACC >0.8, which is considered important when

attempting to reduce the possibility of miss-communicat-

ing risk to clinicians and the public. However, ACC can

be skewed by the presence of class imbalances.64 In add-

ition, ACC is calculated from all predictions against all

observed outcomes, although this does not clarify how

the model performs per class. For these reasons, we ad-

vocate that AUC should be used as a standard measure

for reporting performance.

Figure 4 A forest plot displaying all available EPV values across the included studies. Column 1—Publication number as found in

Supplementary Table 1. Column 2—Number of samples. Column 3—Number of predictors used, Column 4—AUC of models if reported,

Column 5—ACC of models if reported, Column 6—values of EPV.
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Continued research and development in the field of ML

has led to an increasing number of algorithms available

for use in risk prediction.65 This is reflected in the use of

10 different types of approaches across all studies, the

most popular of these being SVMs. SVMs are known for

their simple application and predictive accuracy, and are

therefore used regularly in prediction modelling.66 Other

notable algorithms used in the assessed studies were RFs

and NB. Similar to SVMs, NB is known for its easy im-

plementation. However, its performance can be hindered

due to correlations between features used for prediction,

which negates the naı̈ve assumption that all input features

are independent.67 If correlation between features is pre-

sent, the importance of these features will be overempha-

sized during modelling.68 RFs, used in three studies, are a

popular classifier due to their ability to negate overfitting.

However, applying RFs to prediction problems can be

challenging due to the need for hyperparameter tuning.69

Given the success of the forementioned algorithms in a

range of application areas, it is perhaps not surprising

that these three algorithms were the most used across all

publications.70

None of the included studies used NNs to predict

Alzheimer’s disease. NNs are powerful predictive algo-

rithms, with the ability to learn non-linear patterns in

complex datasets. In some scenarios, they can infer rela-

tionships in the data which are beyond the scope of other

ML techniques.71 A possible explanation for their ab-

sence could be the structure of datasets used across the

selected models, where the number of predictors often

outnumbered individuals. In the scenario where a dataset

has many more predictors than individuals, a prediction

algorithm is more susceptible to overfitting.72 NNs are

known for being complex to implement, as well as diffi-

cult for hyperparameter tuning and susceptible to overfit-

ting.73 This could explain why they were not present in

the reviewed studies.

Another potential reason for the absence of NNs in

this review is the omission of the term from our keyword

search, that is we searched for the term Machine

Learning, rather than specific ML techniques. This could

be purported as the main limitation of this review as

some research papers might have been mistakenly

excluded. A subsequent search for the use of NNs for

Alzheimer’s disease prediction returned a study,74 which

used deep NNs to predict Alzheimer’s disease from SNP

data. Using the ADNI dataset, the authors conducted sev-

eral experiments to predict case–control status. A stand-

ard architecture was implemented for the NN, along with

5-fold CV for model validation. Results for the NN

across experiments centred around 65% AUC. However,

this paper would not have been included in the review

due to it being a pre-print, and therefore lacking a peer

review.

A secondary study using NNs was also found, that

used SNPs and MRI data from ADNI.75 The authors

developed a novel stage-wise deep learning framework,

which fused multimodal data in stages. This method

achieved a classification accuracy of 64.4%.

Greater focus in recent years has been given to the pos-

sibility of bias when authors introduce novel concepts.

For instance, authors may aim to achieve the best predic-

tion accuracy possible in order to supersede previous

publications. This may have been achieved by choosing

datasets which produce the best accuracy only, leading to

a lack of generalization in the research area. This possi-

bility has led to comparative studies which draw compar-

isons between novel techniques and historic models.76

A number of consistent issues were highlighted across

the included studies. One of the main focus points was

the widespread usage of the ADNI dataset, where 10 of

the 12 included studies used this as a data source.

Methods used to demonstrate model performance were

reported inconsistently. The combination of low EPV val-

ues and inconsistent model performance reporting led to

the possibility of bias in the analysis phase of modelling.

In terms of model implementation, the main aspects

scrutinized were the use of any hyperparameter tuning, as

well as the methods used for model validation.

Hyperparameter tuning has become an increasingly im-

portant part of ML development. The majority of algo-

rithms require certain values for hyperparameters which

are specified by the user. If these values are not opti-

mized, then the model is susceptible to overfitting and in-

accurate predictions.77 Five out of the 12 studies

referenced the use of hyperparameters, the remaining 7

studies did not outline any tuning methods. Greater

transparency about the use of hyperparameters and their

tuning allows the reader to understand whether issues

such as overfitting were accounted for. Therefore,

researchers should report both hyperparameter values and

methods used to obtain them.

Model validation is also an important aspect of predict-

ive analysis. Correct methods of validation reduce the

likelihood of overfitting, whereby algorithms become too

reliant on the training/test data and cannot perform suffi-

ciently when tested on unseen data.44 The most common-

ly used method among the selected studies (11/12) was

CV. This method has become increasingly popular in pre-

diction models, due to its ability to counteract overfit-

ting.78 Eleven of the 12 studies which reported CV used

a varying number of folds, whilst one of these publica-

tions used a technique called leave one out CV. In the

majority of cases, the higher the number of folds, the

greater the accuracy from CV. However, increasing the

number of folds leads to a higher chance of overfitting.78

Therefore, leave one out CV is only suitable for small

datasets, where the number of samples is <100.79 Nested

CV was used by two studies only. These were the only

evidence of using separate validation folds for both

model optimization and hyperparameter tuning through-

out all included studies. Using the same CV split for both

of these tasks can introduce overfitting,45 therefore we

recommend the use of nested CV for future analysis. The
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only publication which did not report CV used a train

and test split method for internal validation. The model

is trained only once, increasing the chance of a model

becoming too reliant on the training data and thereby

reducing its ability to replicate in independent datasets.

Since the split of the data is conducted randomly, an ar-

gument could be made that the derived results could be

influenced by this single split.80 Therefore, methods

which use a form of CV are recommended.

Calibration compares the similarity of probabilistic pre-

dictions with observed outcomes. This metric was only

reported in one study.29 Calibration is of high import-

ance when assessing ML performance, this is especially

true when considering models which may be implemented

in the medical sector.81 The implications of incorrectly

communicating the risk of developing Alzheimer’s disease

to an individual could cause considerable harm, by means

of both physical and psychological trauma. With the po-

tential of causing death due to incorrect treatment in the

most serious of circumstances.82 Therefore, we recom-

mend that authors aim to produce highly calibrated mod-

els and also report calibration statistics.

Another aspect investigated in this review was the sam-

ple size used in the training of models. These were rela-

tively small with most studies using between 300 and

900 individuals (due to the common use of the ADNI

dataset). Different quality control techniques also resulted

in the number of predictors (SNPs) to vary across publi-

cations, ranging between tens of SNPs to over 100 000.

The combination of small number of samples and large

number of predictors led to low EPV scores, the highest

of which was 9.43 in Chang et al.42 The common use of

ADNI also contributed to low EPV values due to the

consistent implementation of small numbers of partici-

pants and high numbers of predictors. A more commonly

known term for low EPV values is the ‘curse of dimen-

sionality’. This refers to the requirement for more train-

ing data when the number of features is increased. If the

number of samples is not sufficient with respect to the

number of features present, an ML algorithm is more

likely to overfit. The number of samples, therefore, must

increase at a certain rate in order to balance this relation-

ship. Low EPV values suggest this balance has not been

achieved.83

One method for dealing with a large number of fea-

tures and the issues that this could cause, is feature selec-

tion. An example of this is Minimum Redundancy

Relevance (mRMR). This method is widely used in genet-

ic studies.84 In mRMR, features which are significantly

correlated with the target variable are identified and this

subset is then filtered further based upon correlations be-

tween features, with heavily correlated features being dis-

carded. However, this method was used in only one58 of

the 12 studies reviewed. To summarize, all EPV scores

were below the threshold recommended by PROBAST.

Small sample size may be a difficult issue to overcome

therefore, it is advisable to use CV to reduce the impact

of possible overfitting. Further techniques, such as nested

CV have been shown to mitigate overfitting more effect-

ively.44 We therefore encourage authors to investigate

which type of validation technique would be suitable for

their models.

This review aimed to assess ML models which used

SNP data for Alzheimer’s disease prediction. Of the 12

studies reviewed, eight used SNPs only, and the remain-

ing four combined SNPs with other data modalities. In

terms of AUC, it appears that using a multimodal ap-

proach may lead to better prediction performance. The

details are presented in Supplementary Table 1. For ex-

ample, An et al.47 have shown that AUC was 85.5% for

SNPs alone and 97.4% when both SNP and MRI data

were considered together. However, for the studies that

reported ACC only, there appears to be little difference

in predictive performance between those which used

SNPs only and those which used a multimodal approach.

When considering other factors which may cause differ-

ences in prediction performance, class imbalances

appeared to have a negligible effect. Extreme values of

class imbalance did not lead to largely different accuracy

results. Class imbalances can lead to poorer prediction

due to the model favouring the majority class.

Techniques such as under/over sampling can be used in

order to overcome this issue. Between the two methods,

under sampling has been found to be more effective in

addressing predictive bias.85 This is due to a common

issue amongst over sampling algorithms, in which the

creation of synthetic minority samples can introduce noise

to the data.86 The issue of class imbalance was not of

major concern in the reviewed papers, however with the

availability of large population cohorts (e.g. UK

Biobank), care should be taken when analysing diseases

with small prevalence, which includes Alzheimer’s disease

and other dementias.

Data leakage is another issue to be considered. It

occurs when an algorithm’s performance is artificially

inflated due to information being leaked from the train-

ing to test dataset. Manipulating data before training and

validation may inadvertently leak information and boost

performance. A way in which this can occur is pre-proc-

essing on the entire dataset before data is split. This is

relevant to imputation of missing values, derivation of

and adjustment for population structure. In order to

avoid this, any pre-processing steps should be carried out

separately in both the training and test datasets.54 To

achieve non-biased results, an ML algorithm should al-

ways be validated on data separate to training data.

Nested CV can be used to ensure pre-processing is car-

ried out per fold, as this reduces the risk of data

leakage.87

ROB in the remaining three sections of PROBAST (par-

ticipants, predictors and outcome) was considered to be

low for all publications. The usage of cross-sectional data

reduced the ROB for the study participants. The use of a

well-documented dataset (ADNI) provided details in areas
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such as predictor collection, the determination of disease

status and inclusion of individuals in these studies. These

areas could not be assessed in the two studies which did

not use ADNI. The widespread use of ADNI also pro-

vided the possibility of comparison between studies due

to the common data samples, however this prevented the

possibility of performing a meta-analysis. The use of a

range of data sources in future studies would be benefi-

cial for the development of ML models and is likely to

improve their robustness and replicability. In particular,

the continued use of the same resource does not provide

insight into the performance of ML in different popula-

tions. If used in frontline medicine, models will have to

be able to predict upon individuals from different genetic

backgrounds.88 For instance, 93% of the participants of

ADNI are Caucasian.28 It has been shown that GWAS

results from primarily Caucasian subjects do not replicate

well in other races, which may also impact the prediction

success of ML algorithms trained on them.89 Overall,

despite ROB being low for the first three sections of

PROBAST, issues within the analysis phase of modelling

introduced possibilities of bias. This could bring the val-

idity of the results into question.

Reviews in the field of ML for AD prediction have

been previously conducted. Tanveer et al.90 conducted a

comparison between three different ML techniques

(SVMs, NNs and ensemble methods). The type of data

used was imaging only, leading to a greater number of

included texts. Comparisons were drawn between the

methods but further detail on ROB was not included.

Khan and Usman91 also conducted a review into ML

prediction for dementia which included models using

imaging data. In their review a large percentage of the

studies used ADNI as their data source, and their results

and conclusions follow a similar pattern to this review,

however the authors did not formally assess ROB.

This review has highlighted a number of areas which re-

quire improvement in the field of ML for Alzheimer’s dis-

ease prediction using genetic data. Some areas require

greater attention than others, namely the reporting of

model performance and development. Reporting these

measures thoroughly will allow for an accurate compari-

son between studies and provide better clarity for the per-

formance of the models. More detailed description is also

required when explaining model implementation, with spe-

cial emphasis on hyperparameter tuning. This will provide

greater understanding of how authors have attempted to

maximize performance and reduce the possibility of over-

fitting. Furthermore, the majority of studies in this review

used the publicly available ADNI dataset, which demon-

strated a clear overreliance on one particular data source

of Caucasian origin. Using a wider range of data sources

would enhance the validity of results and also develop

understanding of the applications of ML for Alzheimer’s

disease prediction in more diverse populations.

In conclusion, ML will continue to be used more exten-

sively in both academia and the industry due to its ability

to analyse complex patterns in datasets, which will allow

users to achieve better risk prediction as compared to

more classical statistical methods. The continued usage of

ML will boost the development of feature selection tech-

niques and lead to improvements for classification and

model optimization algorithms. These models have great

potential to improve clinical risk prediction for

Alzheimer’s disease, and many other complex genetic dis-

eases. Since genetic data are classed as sensitive data

under General Data Protection Regulation, most of the

large genetic datasets require strict permissions and exact

description of usage. UK Biobank is one of the largest

cohorts, however it may not be suitable for application

of ML to AD, as it is a population-based cohort with

relatively young participants. The Dementias Platform UK

(DPUK)94 is an attempt to provide a secure computation-

al platform collecting genomic data from UK cohorts

suitable for dementia research. The future of artificial in-

telligence applied to large genomic data lies with specific-

ally designed secure computing facilities to store and

analyse the sensitive data.

Supplementary material
Supplementary material is available at Brain

Communications online.
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