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Abstract

This thesis is concerned with two classes of evolving random graph models in random
environment: preferential attachment models with additive fitness, as originally defined
in [51], and weighted recursive graphs, as defined in [71]. These models are generalisa-
tions of affine preferential attachment models and random recursive trees, respectively,
and the random environment represents the inhomogeneity naturally present in real-
world networks. In this thesis we study the properties of these models to understand
the effect of the random environment on the evolution of the graph, and we indicate
how and why the behaviour of the models in random environment differs from the
classical models. In particular, we focus on the behaviour of the degree distribution
and the maximum degree of these models.

For the preferential attachment model with additive fitness we consider a heavy-tailed
fitness distribution and observe a phase transition in the tail exponent of the fitness
distribution with respect to the behaviour of the degree distribution and maximum
degree. When the fitness distribution has a light tail, we observe behaviour similar
to the classical models in the sense that one of the old vertices attains the maximum
degree irrespective of fitness, whereas significantly different behaviour is observed for
sufficiently heavy-tailed fitness distributions, in which case the maximum degree vertex
has to satisfy the right balance between fitness and age.

For the weighted recursive graph model we consider a wide range of vertex-weight
distributions for which different behaviour can be observed. For distributions with
unbounded support we observe that the maximum degree vertex again has to sat-
isfy the right balance between a high vertex-weight and age. For distributions with
bounded support we observe behaviour similar to the random recursive tree, at least
to first order. Higher-order corrections of the maximum degree are highly dependent
on the underlying vertex-weight distribution and here the behaviour can again differ
significantly from what is observed for the random recursive tree.
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Chapter 1

Introduction

1.1 Models for real-world networks

In many areas of science, the objects or systems of interest consist of a large number
of individual parts or components that are linked in a particular way. Often, beyond
understanding what the individual components are, what they behave like and how
individual components are linked, the structure and patterns of the connections can
provide crucial insight into the behaviour of the system as a whole as well. As an
example, the Internet consists of computers and other devices linked by cables, and the
structure of the Internet as a whole has implications on the routes that information
and data can take and hence on the efficiency of the communication of information and
data.

The structure of the connections between components of a system can be represented
as a network, or a graph in mathematical terminology. A graph G consists of a set of
vertices V (G) and a set of edges E(G) ⊆ {{u, v}|u, v ∈ V (G)}. The vertices represent
the components of the system (e.g. people in a social network) and the edges represent
the connections between nodes/agents in the networks (e.g. people who are friends).
A graph G is directed when edges have an orientation (a hyperlink in the World Wide
Web points from one webpage to another) or undirected when edges have no such
orientation (a friendship between two people in a social network).

According to Newman [116], real-world networks can be roughly divided into the fol-
lowing four classes:

(1) Technological networks: Physical infrastructure networks that form the back-
bone of modern technological societies, such as the Internet, telecommunication
networks and power grids.

(2) Information networks: Networks consisting of items of data linked together in a
certain way, such as the World Wide Web and citation networks.

(3) Social networks: Networks in which the nodes represent people and the links
represent some kind of relation between them, such as (online) friendship networks
and collaboration networks.

(4) Biological networks: Networks observed in biological systems, such as the brain
and protein interaction networks.

In the last decades there has been an increasing interest in complex networks and their
behaviour from a large numbers of scientific areas. The growth in computational power
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and availability of high-quality data have enabled the improvement of empirical studies
of complex networks, which in its turn re-incentivised the study of complex networks
from a theoretical perspective. Network research aims to describe the properties real-
world networks exhibit as well as understand why these properties are exhibited.

As many real-world complex networks are large and highly irregular, it is not possible to
understand them from a global perspective, even with the computational possibilities
available today. Rather, researchers aim to describe and understand these networks
from a local perspective, using local properties and describing local rules to govern
the connectivity among vertices. These rules often are probabilistic due to the un-
predictability of how connections are formed in real-world networks and to account
for the complexity of these networks. Moreover, it allows for an understanding of
the macroscopic behaviour of the system that arises from the microscopic behaviour.
Probability theory can be an effective and useful tool to understand complexity and to
derive macroscopic behaviour from probabilistic microscopic rules. As a result, random
graphs are a natural way of modelling and understanding real-world complex networks.

In this thesis, we present the findings of our research related to two particular classes
of random graph models: preferential attachment models with additive fitness, and
weighted recursive graphs. These models are generalisations and extensions of well-
known existing random graph models, and our aim is to show why these models show
different and more rich behaviour compared to the existing models and how exactly
this behaviour differs. We first summarise the existing literature in this introduction
to obtain a clear understanding of real-world networks and present an overview of the
state-of-the-art models, to then provide the connection to the models which we focus
on in this thesis.

1.2 Universal properties of real-world networks

Though probability theory and random graph models can aid in the understanding
of complex networks, it is not a priori apparent what such models should look like.
The empirical study of real-world networks provides an insight in the properties such
models should exhibit in order to reflect the structures and patterns observed in the
real world. This kind of research has sparked new interest in models for complex
networks, especially since it turned out many of the ‘classical’ models in random graph
theory do not exhibit the properties observed in many real-world networks. Further on,
when discussing several random graph models, we focus on whether these properties
are indeed exhibited by these models.

Perhaps somewhat surprisingly, it turns out that certain properties can be observed
in a wide range of complex networks describing systems in very different contexts.
Price [123] argues that the frequent observation of these properties in such a wide
range of contexts can point towards universal mechanisms that govern the formation
of such complex networks, which offers a further incentive to understand what these
properties are and why and how they arise. We discuss a couple of these well-known
properties here.

Scale-free property

The degree of a vertex v ∈ V (G) is defined as the number of edges incident to v, or,
more formally, |{u ∈ V (G) : {v, u} ∈ E(G)}|. In a directed graph G, the degree is
defined as the sum of the in-degree and out-degree, which are the number of edges
oriented towards v and the number of edges oriented away from v, respectively.
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Many real-world networks are said to exhibit the scale-free property, which is a way
of saying that their degree distribution follows a power-law distribution. That is, the
proportion pk of vertices with degree k scales as a regularly-varying function with a
negative exponent −τ , where τ is coined the power-law exponent. Hence,

pk = `(k)k−τ or log pk = log(`(k))− τ log k, (1.2.1)

where ` : N → R+ is a slowly-varying function, i.e. limx→∞ `(cx)/`(x) = 1 for any
fixed c > 0. As a result, since limk→∞ `(k)/ log k = 0 for any slowly-varying function
`, pk against k yields an asymptotically straight line on a log-log plot with slope −τ .
See Figure 1-1 for an example of the degree distribution in a collaboration network of
condensed matter physicists.

Due to the slow decay of a power-law, a very large variability of degrees can be observed
in such networks. Lacking a typical ‘scale’ for the degrees, such networks have been
coined scale free. More formally, a scale-free network is a network that exhibits a
power-law degree sequence as in (1.2.1). Such networks were first observed by Price in
1965 in a network of citations between scientific papers [124]. According to Price, the
in-degree distribution showed a power-law exponent τ between 2.5 and 3, later to be
determined at τ = 3.036 [123]. The Faloutsos brothers were the first to investigate the
degree distribution of the Internet [54], estimating that τ ≈ 2.15− 2.20. Beyond these
particular examples, many other scale-free networks have been studied as well, most of
which were found to exhibit the scale-free property with τ ∈ (2, 3) (see e.g. [2, 6, 34, 134]
and [116] and the references therein).

Tail distribution (Condensed Matter Physics)
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Figure 1-1: The tail distribution of a collaboration network within the field of condensed
matter physics. The network consists of 23133 researchers who collaborated on papers
in the period January 1993 until April 2003, and 93497 edges. An edge is created when
two researchers i and j collaborate on a paper in the aforementioned time period.
The plot represents the tail distribution of the number of collaborators of a researcher
selected uniformly at random and is presented on log-log axes. Data from Stanford
Network Analysis Project [94].

Other than a power-law degree distribution, the presence of a small but significant
number of vertices with unusually high degrees can be observed in scale-free networks
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as well, as a result of the high variability of the degrees. These so-called hubs play
an important role in the structure and performance of scale-free networks and are of
particular interest in this thesis. For example, many, though not all, scale-free networks
are resilient to the removal of randomly selected vertices: The average distance between
nodes and the fraction of vertices in the largest connected component in the graph are
robust to the random removal of vertices. When thinking of real-world applications,
this is a positive result for malicious attacks against power grids, communication net-
works and other essential infrastructure in today’s society, but a negative result for
vaccinations against viruses and other diseases.

As an example, [6] discusses the resilience of the Internet to the removal of vertices.
Here, simulations show that the network remains unaffected by removal of 2.5% of
all vertices when selecting these vertices randomly, confirming the claim made above.
However, after a targeted removal of 3% of the vertices with the highest degree, frag-
mentation of the network occurs. This would imply the loss of connectivity among the
vertices in the network and, as a result, the loss of communication via the Internet.
The observed behaviour can be explained by the fact that a large proportion of all
the vertices has a small degree and hence plays an insignificant role in the connectiv-
ity of the network. The hubs with their relatively large degree are the cause of the
well-connectedness of the network and hence explain the fragmentation when removed.
In other examples of networks where the degree distribution pk decays not as a power
law but as a stretched exponential, this difference in fragmentation due to a different
removal strategy is not observed in simulations [6]. In such networks, the degrees are
much more homogeneous so that a typical vertex has a degree more comparable to the
degree of the best connected vertices in the network. As a result, both the removal of
randomly selected vertices and the high-degree vertices leads to a monotonic decrease
of the connectedness of the network.

Critique of power-laws

The occurrence and observation of the scale-free property in many real-world networks
has incited a tremendous effort to construct mathematical models that reflect and
explain this behaviour. On the other hand, there has also been a critical discussion
about the validity of the observations and measurements of real-world networks. In
particular, the measurements that lead to power laws in the Internet have received a
significant amount of criticism.

As the Internet is decentralised and distributed, it is hard to measure the Internet as
a whole. Often, an algorithm known as traceroute is used to obtain measurements of
the structure of the Internet. Traceroute sends messages from a fixed source to a fixed
destination, and provides details of all routers visited on the messages’ path, as well
as the direction of the path. As a result, traceroute uncovers structures within the
Internet.

The main critique of the traceroute algorithm, however, is that it is subject to a sam-
pling bias. Lakhina et al. use traceroute on certain sub-graphs of an Erdős-Rényi ran-
dom graph and power-law sequences can be observed from the data [93]. As we discuss
in Section 1.3.1, the Erdős-Rényi random graph model does not exhibit a power-law
degree distribution, implying that the observed measurements can only be due to the
traceroute algorithm. Similar results were obtained by Achlioptas et al. [2] and Clauset
and Moore [33] on Erdős-Rényi random graphs and random regular graphs.

Of course, there are ample examples of networks which can be observed as a whole and
for which the complete degree sequence can be measured. In such cases it is harder to
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refute the measurements themselves. Still, it is not trivial to then conclude the degree
sequence follows a power law. Estimators can be biased leading to incorrect estimates,
see for example [137] which provides theoretical justification of using particular esti-
mators for the tail exponent.

A recent criticism of scale-free networks by Broido and Clauset considers a large number
of real-world network datasets in [27] and compares the degree sequences obtained from
these datasets against power law, log-normal, exponential and Weibull distributions.
Table 1.1 provides the conclusions from their analysis, and shows that in many cases
the alternative density was accepted for the degree sequence in statistical tests, which
lead Broido and Clauset to state that “scale-free networks are rare”.

This paper has generated a lot of discussion, as well as criticism. Most notably, Barabási
provides an in-depth review of the paper in a blog post on his website providing critique
on both a conceptual and technical level [12], and in [135] Voitalov et al. consider a
much more general class of power-laws rather than just the pure power law ck−γ for
constants c > 0, γ > 1 considered by Broido and Clauset (see also [73] for a clear
discussion on the matter). Finally, Voitalov et al. conclude:“If we relax the unrealistic
requirement that degree distributions in real-world networks must be pure power laws,
and allow for real-world impurity via regularly varying distributions, then upon the
application of the state of-the-art methods in statistics to detect such distributions in
empirical data, we find that one can definitely not call scale-free networks ‘rare’.”

In this thesis we shall study models which are able to not only produce power-law
degree distributions, but a very large range of degree distributions including the ones
listed in Table 1.1, which points to its potential use in a wide range of applications.

Alternative f(x) ∝ MPL Inconclusive MAlt

Exponential e−λx 33% 26% 41%
Log-normal 1

x exp
{
− (log x− µ)2/(2σ2)

}
12% 40% 48%

Weibull exp
{
− (x/b)a

}
33% 20% 47%

Power law with cut-off x−αe−λx - 44% 56%

Table 1.1: Percentage of network datasets for which the likelihood-ratio test favoured
the power-law model MPL, the alternative model MAlt with density f(x), or neither.
Table from [27, Table 1].

Small-world property

Another property of many real-world complex networks is that distances between ver-
tices are, on average, very small in terms of the network size. The typical distance
in a network is defined as the graph distance between two vertices that are selected
uniformly at random. Let V1, V2 ∈ V (G) be two vertices selected uniformly at random
and let dG(·, ·) denote the graph distance metric on the graph G. The typical dis-
tance then equals dG(V1, V2). Due to the randomness of the vertices V1, V2, the typical
distance provides information on all distances in the network, even when G itself is a
deterministic graph. Networks which have a typical distance of logarithmic order in the
size of the network are known as small worlds. Networks with an even smaller typical
distance, for example of double logarithmic order, are known as ultra-small worlds.
An example is provided in Figure 1-2, where the distribution of the typical distance
within the largest connected component in a collaboration network of condensed matter
physicists is shown.

Small typical distances were first observed empirically by Milgram in [107] in 1967, who
conducted a social experiment in which 60 subjects in Wichita, Kansas, U.S.A. were
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sent a letter and asked to deliver this letter to a person living at a specified address
in Cambridge, Massachusetts. However, participants were only allowed to pass the
letter to personal acquaintances, either directly or via a “friend of a friend”. Though
only three letters actually reached the desired target, it only required on average six
intermediaries to get the letter to the correct person. In later studies, Milgram was
able to increase the success rate of the experiment significantly whilst retaining the
original conclusion. This small-world phenomenon, later also coined the “six degrees of
separation”, is a direct result of the underlying network topology and has been observed
in many other networks as well since Milgram’s study.

In 2001, Dodds et al. performed a similar experiment, now with emails instead of
physical letters. Data was recorded on 61.168 individuals resulting in 24.163 email
chains. Again, the average number of intermediaries was six [45]. Backstrom et al.
studied distances in the Facebook network, as well as their evolution over time, in
2012. They found the average distance to stabilise around 3 − 6 with an average of
4.74, resulting in 3.74 degrees of separation on average [10].

Graph distance in largest component (Condensed Matter Physics)
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Figure 1-2: The proportion of distances between pairs of vertices in the largest con-
nected component in a collaboration network within the field of condensed matter
physics. The network consists of 23133 researchers who collaborated on papers in
the period January 1993 until April 2003, and 93497 edges, with 21363 researchers
and 91342 edges in the largest connected component. An edge is created when two
researchers i and j collaborate on a paper in the aforementioned time period. The
average distance is 5.352153 and the diameter is 15 (the SNAP finds a diameter of 14
based on samples over 1000 nodes, we compute the exact diameter here). The plot
represents the probability distribution of the distance between two researchers i and j
selected uniformly at random from the largest component. Data from Stanford Net-
work Analysis Project [94].

Clustering

Clustering measures the level of transitivity present in a network. That is, when vertex
v is connected to u and u is connected to w, the level of transitivity describes how likely
it is for v to also be connected to w. Transitivity is often observed in many real-world
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networks, most notably social networks, though often not perfect but partial (not all
direct neighbours of a vertex are neighbours themselves). (Partial) transitivity makes
it much more likely that ‘a friend of my friend is also my friend’, rather than to be
connected to a random individual from the population.

To quantify the level of transitivity or clustering, one can compute the clustering coef-
ficient of a graph G = ({1, . . . , n}, E). First, let

WG :=
∑

1≤i,j,k≤n
1{(i,j),(i,k)∈E}, ∆G :=

∑

1≤i,j,k≤n
1{(i,j),(i,k),(j,k)∈E},

denote the number of wedges and triangles present in the graph, respectively (note that
each wedge is counted twice and each triangle counted six times). Then, the clustering
coefficient is defined as

CG :=
∆G

WG
, (1.2.2)

the proportion of wedges for which the closing edge to form a triangle is also present.
As a result, it can be thought of the probability that two neighbours of a randomly
selected vertex are neighbours as well. Alternatively, one can define the local clustering
coefficient of a vertex i ∈ {1, . . . , n} as

CG(i) :=
1

di(di − 1)

∑

1≤j,k≤n
1{(i,j),(i,k),(j,k)∈E},

which denotes the fraction of wedges of which i is the centre vertex for which the
closing edge to form a triangle is also present, and where di is the degree of vertex i.
Another clustering coefficient, also known as the average clustering coefficient proposed
by Strogatz and Watts [138], can then be defined as

C ′G :=
1

n

n∑

i=1

CG(i).

This is an average of all local clustering coefficients, and we note that this definition is
not equivalent to the one in (1.2.2). C ′G is often larger than CG due to the fact that
vertices with low degree contribute more to the average value C ′G, so that CG is often a
better characterisation of the transitivity present in networks with many vertices with
low degree.

Real-world complex networks exhibit clustering in the sense that CG (or C ′G) is bounded
away from zero for large n. Newman provides a lot of examples of social, technological,
biological and information networks in which clustering is observed [118]. To mention
a few: In a film actor collaboration network analysed, CG = 0.20, C ′G = 0.78 and in a
particular electronic power grid, CG = 0.10, C ′G = 0.08. In the collaboration network
for condensed matter physics, of which the degree sequence and typical distance are
analysed in Figures 1-1 and 1-2, respectively, CG = 0.107, C ′G = 0.6334 [94].

1.3 Random graph models

The high variability in how vertices can form connections in real-world networks has
lead to the use of random graphs to model real-world networks. These models can be
roughly split into two categories: static random graph models and evolving random
graph models. Where the former model networks of a fixed size and provides a ‘snap-
shot’ in time of a network, the latter model networks that grow over time. Here, we
discuss some of the well-known random graph models and some of their properties.

7



1.3.1 Static random graphs

Static random graphs are created on a set of n vertices. One is then interested in,
among other things, the structural properties of these graphs as n tends to infinity.
Though this provides insight into how these models behave when they are large in size,
there is no direct correlation between the graph of size n and the graph of size n+1. As
a result, the properties of such models do not always arise naturally but are more often
imposed, which makes them phenomenological models. We describe some well-known
examples here.

Erdős-Rényi random graph

The Erdős -Rényi random graph was proposed independently by Solomonoff and Ra-
paport in [131], Gilbert in [62] and by Paul Erdős and Alfréd Rényi [48], after whom
it was later named. The precise model definition in the three papers varies somewhat,
but all are strongly related.

In the Erdős-Rényi model we take n vertices and connect every pair of vertices i, j ∈
{1, . . . , n} independently with some fixed probability p ∈ [0, 1]. Erdős and Rényi proved
several properties of this random graph model when p = λ/n and λ is a fixed positive
constant. First, it is clear that the degree of each vertex i ∈ {1, . . . , n} follows a
binomial distribution with n− 1 trials and success probability p = λ/n. As a result,

lim
n→∞

P(Degree of i equals k) = e−λ
λk

k!
, k ∈ N0,

yielding a limiting Poisson degree distribution. Since e−λλk/k! is much smaller than
k−τ for any τ > 0 when k is large, it follows that the Erdős-Rényi random graph model
is not a scale-free network.

Furthermore, Erdős and Rényi show the existence of a phase transition of the size of the
largest connected component expressed in the mean degree λ. When λ < 1, the largest
connected component is of order log n, whereas the largest component is of order n
(and is also the unique component of this size) when λ > 1 (see [49, 50, 48]).

Though the scale-free property is not satisfied by the Erdős-Rényi random graph, it
is a small world when a largest component of order n exists, i.e. when λ > 1. Then,
as Newman discusses in [116], the typical distance is of order logn/ log λ. Finally, as
all edges are present independently, it is not reasonable to expect clustering in the
network. Indeed, the clustering coefficient as defined in (1.2.2) is of order 1/n (see
e.g. [72, Exercise 4.9]).

Inhomogeneous random graphs

The Erdős-Rényi model, as discussed above, is not a good model for real-world net-
works, among other reasons due to the fact that it is not scale free. The Erdős-Rényi
graph is egalitarian in the sense that all its vertices are, in distribution, identical. It
thus fails to model the heterogeneous nature of many real-world networks.

To incorporate the lacking heterogeneity in the Erdős-Rényi model, several models
which we classify here as inhomogeneous random graphs have been introduced. These
models aim to generalise the Erdős-Rényi random graph model and introduce more
heterogeneity to the individual vertices in the graph by using vertex-weights. Each
vertex i is assigned a weight wi, and an edge (i, j) is present, independently of all other
edges, with a probability proportional to the product of wi and wj . Examples of such
models are the generalised random graph introduced by Britton, Deijfen and Martin-
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Löf in [26], the Chung-Lu model [31, 32], and the Norros-Reitu model [119]. Bollobás,
Janson and Riordan introduced the most general model in 2007 in [19].

The vertex-weights quantify the ability of a vertex to form edges, and they can be
thought of as the expected degree of a vertex. A vertex with a large weight is more
likely to form edges with other vertices than a vertex with a small weight, resulting in
degrees that are not (necessarily) equal in distribution.

Though inhomogeneous random graphs do not produce graphs that are scale free and
small worlds in general, such graphs can be obtained when, for example, sampling the
weights from a power-law distribution, see e.g. the analysis of the model introduced by
Bollobás, Janson and Riordan [19]. When the weights follow a power-law distribution,
typical distances are either of logarithmic order when the power law has finite variance,
yielding a small-world model, or of double logarithmic order when the power law has
finite mean but infinite variance, yielding an ultra-small-world model (see [19] and [73]
and the references therein). The clustering coefficient converges to zero as the graph
grows infinitely large, see e.g. [20, 73, 77].

Configuration model

The configuration model, first introduced by Bollobás in [17] to study properties of
random regular graphs and later generalised by Molloy and Reed in [108, 109], is a
random graph model that is based on a predetermined degree distribution. One fixes a
sequence of degrees d1, . . . , dn and proceeds to draw a graph uniformly from all graphs
with said degree sequence. This can be obtained by assigning each vertex i ∈ {1, . . . , n}
di half-edges and pairing half-edges uniformly at random to create edges. We note that
the order of the pairing does not influence the distribution of the graph obtained, since
the process of pairing half-edges is exchangeable. In such graphs it is possible for self-
loops (edges from a vertex to itself) and multiple edges between a pair of vertices to
arise. Van der Hofstad discusses the probability of obtaining simple graphs for the
configuration model, as well as techniques to create a simple graph by deleting or
switching edges in [72].

As one can choose a degree distribution for the random graph created by the configu-
ration model, it is possible to obtain a scale-free graph simply by imposing a power-law
degree distribution. Furthermore, when the degree distribution is a power law, Van
der Hofstad, Hooghiemstra and Znamenski [52, 76] and Van der Hofstad, Hooghiem-
stra and Van Mieghem [75] study typical distances in the configuration model. They
observe that such scale-free graphs are small worlds when the power law has finite
variance [75], ultra-small worlds when the power law has finite mean and infinite vari-
ance [52], and that typical distances are bounded when the power law has an infinite
mean [76]. The cluster coefficient vanishes in the erased configuration model (where
self-loops and multiple edges are deleted), though it does not vanish in when self-loops
and multiple edge are retained and τ ∈ (2, 7/3), as established by Van der Hofstad,
Van der Hoorn, Litvak and Stegehuis [77] and Newman [116]. This is mainly due to
the fact that triangles are counted ‘multiple times’ due to the high number of multiple
edges.

Small-world model

Strogatz and Watts introduced the small-world model in [138] as a way to interpolate
between completely deterministic and completely random graphs, as well as to take into
account the underlying geometry that forms the basis for many real-world networks.
One starts with a regular graph of size n in a cycle where each vertex connects to its
k nearest neighbours, and rewires each edge independently with some fixed probability
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p, selecting the new recipient of the edge uniformly at random. The case p = 0 yields
a regular graph, p = 1 yields an (almost) completely random graph (as only one of
the vertices of a rewired edge is altered, it is not considered ‘fully’ random), whilst
p ∈ (0, 1) allows for a mix of deterministic edges to nearest neighbours and random
edges that (typically) form long-range connections or ‘short-cuts’.

In the case that p = 0, the typical distance is rather large (of order n/(2k)), whereas
the case p = 1 reminds us of the Erdős-Rényi model in which typical distances are of
logarithmic order, see [116]. On the other hand, clustering can be observed when p = 0
(as long as k > 2) but not when p = 1. The essential quality of this model is that
both clustering and small distances can be observed for a significant range of values
of p ∈ (0, 1), due to the fact that logarithmic distances can already be observed for
moderate values of p close to zero, whilst clustering can be retained even for values of
p close to one.

However, the degree distribution of the small-world model does not reflect degree distri-
butions observed in real-world networks well, as it decays exponentially in the degree
size [116]. Moreover, the dichotomy of short-range and long-range edges present in
the model is generally speaking not an accurate representation of real-world networks,
where often many edges with intermediate ranges are present. As an example, think
of friendships in a social network, where certain friends live in your direct vicinity, i.e.
short-range connections and some might live in a different country, i.e. long-range con-
nections. However, one often also has connections in neighbouring towns or cities, in
cities at a greater distance, and in different provinces/states within the same country,
which act as the intermediate-range connections.

Hyperbolic random graphs

The structure of many real-world networks is based on an underlying geometry, think
of social networks, distribution networks and transportation networks. This geometry
plays a role in the connections the vertices of the network form, and a multitude of
models aims to incorporate this geometry. Here, we discuss one of these models, known
as the hyperbolic random graph.

Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat and Boguñá in 2010, the model
consists of n vertices in the disk of radius R = 2 log(n/ν), where ν > 0 is a model
parameter and can be interpreted as the average degree. The vertices i ∈ {1, . . . , n}
can be represented by their hyperbolic polar coordinates (ri, θi) where the θi are i.i.d.
uniform in (−π, π) and the ri are i.i.d. from a distribution with density fα,R(r) :=
α sinh(αr)/(cosh(αR)− 1), where α is again a model parameter and controls the scale-
free exponent [92].

The hyperbolic random graph model has been shown to exhibit the scale-free property,
the small-world property as well as non-vanishing clustering. Gugelmann, Panagiotou
and Peter [66] prove the hyperbolic random graph model exhibits the scale-free property
with exponent 2α+1 and also show the clustering coefficient is bounded from below by
a positive constant with high probability as n tends to infinity. The latter result has
recently been improved by Fountoulakis, Van der Hoorn, Müller and Schepers in [58],
where convergence in probability to the exact constant is proved. Abdullah, Bode
and Fountoulakis [1] prove that the largest connected component is ultra-small when
α < 1, establishing the small-world property, and Müller and Staps [113] show that the
diameter of logarithmic order.

An interesting question is how to embed real-world networks in the hyperbolic plane and
how to interpret the hyperbolic geometry in real-world settings. Though the hyperbolic
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random graph has many of the properties one would desire in a network model, it is
not yet quite clear how the hyperbolic model can be used to effectively map real-
world networks, a difficult and very relevant question. The Internet has been mapped
to the hyperbolic plane in [16] and serves as the best known example. Komjáthy and
Lodewijks [88] provide an equivalence between hyperbolic random graphs and geometric
inhomogeneous random graphs, where the position of vertices in the hyperbolic plane
is translated into a Euclidean position and a vertex-weight, which could possibly allow
for a more intuitive interpretation of the hyperbolic geometry. It is interesting to see
more examples of such mappings as research on this topic continues.

1.3.2 Evolving random graphs

The models discussed in Section 1.3.1 provide excellent tools for understanding and
studying the structural properties of networks, e.g. large and small components, degree
distributions, typical distances, etcetera. Also, such models are able to serve as models
for real-world networks. However, all these models exhibit particular features as they
are fixed from the outset: the number of vertices and edges, degree distributions or
expected degrees, the existence and size of giant components and other structural
features can often be chosen as desired.

Though these phenomenological models, used to recreate desired properties, are very
interesting and useful in their own right, they do not provide insight into the question
why the properties observed empirically in real-world networks arise, for example scale-
free degree distributions or small typical distances.

The models described here are generative network models, or evolving random graphs.
These models grow or evolve through the sequential inclusion of vertices and edges to
the network, and connections established between vertices are again governed by simple
local rules. Though it is not possible to prove, it can be suggested that these rules (or
similar generative mechanisms) govern the formation of real-world networks when the
structures of these network models are similar to the structures observed empirically
in real-world networks.

We discuss some well-known examples of evolving random graphs.

Vertex copying model

Kleinberg, Kumar, Raghavan, Rajagopalan and Tomkins introduce the vertex copying
model in [87] as a model for the World Wide Web, based on the process of content-
creation on this network. They aimed for their model to capture the fact that some
page creators on the Web link to other websites without regard of the content and
topics already present on the Web, but most creators use Web pages with content of
their interest and link to such pages.

The main attribute of the model is as follows: when creating a Web page, a user finds
a resource list of links regarding a particular interest and copies some (or most) of
these links to be included on their own page. Newman [116] provides an alternative
motivation with respect to citation networks. Here, Newman argues, researchers simply
copy (parts of) bibliographies of other papers in their field into their own new papers,
rather than carefully selecting papers that are actually worth citing.

The simplest form of the model is defined as follows. We assume each vertex has
an identical out-degree m ∈ N and we start with some network consisting of n0 > m
vertices. Then, with probability p ∈ (0, 1), a newly-added vertex connects to an existing
vertex selected uniformly at random, and with probability 1 − p it selects a random
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edge from a uniformly selected vertex and connects with the receiving vertex of said
edge. The in-degree distribution of the model converges to a power law with exponent
1/(1−p) and thus the model not only exhibits the scale-free property but also provides
a possible explanation of how a vertex copying mechanism could be at work within
(certain) real-world networks.

Random recursive tree

The random recursive tree (RRT) is likely to be the simplest model of an evolving
and growing random graph possible. A recursive tree is a labelled tree on which the
labels on a path from the root to any vertex in the tree are strictly increasing (with
the root labelled as 1). The random recursive tree is a tree sampled uniformly among
all recursive trees of size n. We note that there are (n − 1)! of such increasing trees
and any such a tree is drawn with probability 1/(n − 1)!. Another way to construct
the RRT is via a recursive mechanism. One starts with a single vertex which forms
the root of the tree and lets T0 denote this tree. For any n ∈ N, the tree Tn is then
obtained from Tn−1 by introducing a new vertex with label n and connecting it to one
of the vertices in Tn−1 uniformly at random. It is readily checked that this procedure
also yields a uniform increasing tree on n vertices.

The RRT was introduced by Na and Rapoport in [114] in 1970 and has attracted a
wealth of interest and many variations of such trees have been studied since. It has
been used to study the spread of epidemics [110], the evolution of languages [115] and
for investigating pyramid schemes and chain letters [61].

Meir and Moon prove the convergence of the empirical degree distribution to a geomet-
ric distribution in [106]. Mahmoud and Smythe [99] extend this result by showing that
the number of vertices with degree 0, 1, and 2 is asymptotically normal and Janson [82]
further generalises this to the asymptotic normality of the number vertices with any
fixed degree k ∈ N0. It hence follows that the RRT does not exhibit the scale-free
property, most likely one of the main reasons why this model is not often considered
when modelling real-world networks.

High degrees in RRTs have also gained attention, first by Szymański in [133] who
prove the mean of the maximum degree scales as log2 n. Devroye and Lu [44] extend
the convergence in mean to almost sure convergence. Goh and Schmutz [63] prove
the distributional convergence of ∆n − log2 n along suitable subsequences (∆n is the
maximum degree in Tn) and identify possible limiting distributions. Addario-Berry
and Eslava [3] establish a more precise characterisation of these limiting distributions
in terms of Poisson point processes on the real line, and prove a phase-transition in
the distributional limit between the number of vertices attaining the maximum de-
gree and near-maximum degrees. Finally Eslava [53] shows the joint convergence of
the rescaled (near-)maximum degrees and their depth in the tree to Poisson and nor-
mal limits, respectively. Recently, Banerjee and Bhamidi [11] obtained the conver-
gence of the rescaled label of the maximum degree, showing it grows asymptotically as
n(1−2/(2 log 2))(1+o(1)).

Pittel studies the height of the RRT in [122]. The height is the graph distance from a
vertex selected uniformly at random to the root, and grows asymptotically as e log n.
Later, Addario-Berry and Ford established higher-order correction terms for the height
in [4].

In the construction of the RRT, one can also allow the vertex n to connect to m ∈ N
vertices, each selected independently and uniformly at random. This yields a more
general model known as the m-Directed Acyclic Graph (m-DAG), which was introduced
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by Devroye and Lu in [44]. Devroye and Lu also study the asymptotic growth of the
maximum degree of the m-DAG model in [44], is log n/ log1+1/m n as n tends to infinity.
Moreover, Devroye and Janson [43] study the length of paths to the root, which are of
logarithmic order.

Preferential attachment models

In 1955, the economist Herbert Simon proposed a stochastic model aiming to explain
observations in data describing phenomena in sociological, ecological and economical
contexts [130]. The underlying motivation was that, due to the frequency of the obser-
vations and the wide range of contexts within which these observations were made, if
these observations share any properties it can only be the similarity of the probability
mechanisms that give rise to these observations.

Simon’s stochastic model is described in terms of the number of words that appear in
a written text. The assumptions of the model are as follows. First, given a text of
k words, the probability that the (k + 1)st word is a word that has already appeared
exactly i times is proportional to i multiplied with the number of different words that
have each appeared exactly i times (i.e. the total number of occurrences of words that
each have occurred exactly i times). And second, there is a constant probability that
the (k + 1)st word is a new word. Based on these two assumptions, Simon was able to
show that the frequency distribution of words obeys a power law and that the power-
law exponent can be expressed in terms of the probability of adding a new word to the
text.

This “rich-get-richer” effect, where wealthy individuals are able to acquire more wealth
at a rate proportional to their current wealth (Simon’s stochastic model for word fre-
quencies described in terms of money) was also used by Yule in 1925 in an attempt to
explain the distribution of biological genera among animal species [139]. As Yule’s re-
search was carried out prior to the development of the field of probability theory, Yule’s
methods and analysis were difficult and involved. Champernowne used similar ideas
in 1953 to construct a stochastic model for income distribution in a population [29],
though Simon’s model requires weaker assumptions and is applied in a more general
setting.

Price adapted Simon’s approach and methods and was the first to apply them to a
network setting in [123]. He named Simon’s mechanism cumulative advantage, and
used it to describe citation networks in scientific papers. In Price’s model, papers are
published sequentially and new papers cite existing ones. Price then assumes that a
new paper cites an existing paper with a probability that is proportional to one plus
the number of citation the existing paper already has. Since every paper starts out
with zero citations, the addition of one ensures that a paper has a non-zero probability
of receiving citations and hence one avoids a trivial model. This followed empirical
observations Price made in [124] that citation frequencies of scientific papers follow a
power-law distribution, making Price the first to observe scale-free networks as well,
according to Newman [116].

Other mathematical network models based on a similar principle have been stud-
ied since, for example ordered recursive trees [125], non-uniform random recursive
trees [132], random plane oriented recursive trees [98, 100] and random heap ordered
recursive trees [30]. Despite all this research carried out, cumulative advantage or the
“rich get richer” effect did not attract a lot of attention in the scientific community. It
was only until the famous paper of Barabási and Albert [13], who independently ob-
served and modelled the scale-free behaviour of links between webpages in the World
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Wide Web, that the interest in cumulative advantage, or preferential attachment as
Barabási and Albert coined it, increased significantly.

In the preferential attachment model developed by Barabási and Albert, nodes are
sequentially added to the graph and are more likely to connect to nodes with high
degree. The graph starts with m0 nodes, and at every step a new node is added to
the graph. This node is assigned m ≤ m0 edges and connects each edge to a different
vertex already present. The probability an edge connects to a node i with degree ki
equals

ki∑
j kj

, (1.3.1)

where the term in the denominator sums over all vertices present in the graph. After
n steps, one obtains a graph with m0 + n vertices and mn edges.

The description of this model is somewhat informal and does not specify how the
first edge is created (if all nodes have degree zero, the probability in (1.3.1) is ill-
defined), it is not clear whether self-loops are allowed and it is unclear whether there
are dependencies between the m edges of a vertex. Nonetheless, Barabási and Albert
did include simulations in their paper so that a specific model must have been used, and
they observed their model gave rise to a power-law degree distribution with exponent
τ = 3.

Bollobás, Riordan, Spencer and Túsnady [22], and independently Móri [111], study this
model in more detail and in a more rigorous manner. They not only make more precise
choices for the model definition, but also prove that the degree distribution converges
to a power-law distribution with exponent τ = 3 (though Móri already studies a more
general model that allows for exponents τ ∈ (2,∞)).

Empirical observations for preferential attachment mechanisms governing the growth
of networks are presented in, among others, [83, 117]. Though linear preferential at-
tachment, as proposed by Barabási and Albert, is observed in certain contexts such as
the Internet and citation networks, other cases such as collaboration networks seem to
fit better with other attachment rules, such as a sub-linear dependence on the degrees.
Beyond linear preferential attachment rules, such sub-linear and super-linear rules have
been studied from a theoretical perspective as well. In these cases, the probability a
new vertex attaches to a vertex of degree k is proportional to kγ with γ ∈ (0, 1) and
γ > 1, respectively. Such models with sub-linear attachment rules give rise to degree
distributions with stretched exponential tails, see e.g. [40, 89, 91]. With super-linear
attachment, on the other hand, every fixed vertex only acquires a finite number of
edges and in particular cases a single vertex acquires all but finitely many edges, see
[8, 120].

A more general model of linear preferential attachment, allowing for a random out-
degree is studied by Deijfen, Van den Esker, Van der Hofstad and Hooghiemstra in [35].
Even more general attachment rules, where the probability to connect to a vertex of de-
gree k is proportional to f(k) for some function f : N0 → R+ are studied by Athreya [8],
Athreya, Ghosh, Sethuraman [9], Holmgren and Janson [78], Rudas, Tóth, Valkó [127],
Oliviera and Spencer [120], Dereich and Mörters [41], Bhamidi [14] and Banerjee and
Bhamidi [11]. All these papers use an embedding of preferential attachment trees in
Crump-Mode-Jagers branching processes to obtain their results.

Other than the degree distribution, the behaviour of the maximum degree in prefer-
ential attachment models is a topic of interest as well. Móri [112] first studies the
maximum degree in linear preferential attachment models. Later, Athreya (and Ghosh
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and Sethuraman) show that there exists a fixed (though possibly random) vertex that
attains the maximum degree at all but finitely many steps [8, 9], a property that was
later coined ‘persistence’ by Dereich and Mörters. Dereich and Mörters [40] study max-
imum degrees in sub-linear preferential attachment models and show persistence does
not hold for such attachment rules. Rather, new vertices constantly compete for the
maximum degree and the index of the maximum degree at time n is shown to diverge
as a stretched exponential in log n. Banerjee and Bhamidi [11] study the persistence
of hubs for more general attachment rules as well as for more general sequences of
out-degrees, and formulate precise criteria under which persistence does or does not
hold, and provide asymptotics for the index of the maximum degree in the latter case.

Persistence is an interesting concept and can influence the behaviour of a network as
a whole. In real-world networks, persistence can be exhibited in particular contexts,
but does not always seem realistic. In protein-protein interaction (PPI) networks, the
essential proteins that interact with many other proteins (and as a result, form hubs in
the PPI network) often are present earliest on an evolutionary timescale [47]. In social
networks like Twitter, it is, however, not the early adapters that necessarily have the
largest number of followers. Instead, new and more popular individuals appear as time
passes which obtain large numbers of followers rapidly. We aim to provide a different
view and probable explanation for the dichotomy of (non-)persistence in this thesis.

Finally, preferential attachment models have been shown to be (ultra-)small worlds,
depending on the scale-free exponent of the degree distribution. Most attention related
to typical distances is devoted to linear preferential attachment mechanisms. When
the scale-free exponent τ is larger than three, so that the degree distribution has a
finite variance, distances are of logarithmic order [46]. A phase transition occurs when
τ ∈ (2, 3) (finite mean, infinite variance degree distribution), in which case double
logarithmic typical distances as well as diameters can be observed (see [38, 46] for
typical distances and [28, 46] for the diameter of preferential attachment models with
infinite variance degree distributions).

Somewhat surprisingly, it turns out that both typical distances and the diameter of
these preferential attachment models are twice as long as observed in other models such
as the configuration model and inhomogeneous random graphs (when these models
also exhibit a power-law degree distribution with infinite variance and finite mean).
Contradicting the conjectures at the time that all these models belong to the same
universality class, in the sense that their behaviour is very similar and independent of
the precise model definitions (see [74]), the behaviour of typical distances in preferential
attachment models turned out to behave differently. The main reason is that single
edge connections between vertices with high degree are not (much) more likely than
single edge connections between a vertex with low degree and a vertex with high degree
in the preferential attachment model, whilst this is the case in the configuration model
and inhomogeneous random graph models. Instead, two vertices with high degree are
likely to be connected on a path of length two, via a young vertex that connects to both
high degree vertices. This is exactly what gives rise to the factor two in the typical
distances and diameter when compared to the other models mentioned before. Note
that this is only possible if every vertex (or at least most vertices) has (have) an out-
degree of at least two, so that this observation does not hold for preferential attachment
trees. Indeed, here typical distances are always of logarithmic order, independent of
the value of τ ∈ (2,∞). The critical value τ = 3 yields typical distances of order
log n/ log log n distances, where the precise constant depends on lower order terms of
the degree distribution, see [21, 39].
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In the case of infinite variance degree distributions (τ ∈ (2, 3)), typical distances have
been extended to weighted distances (each edge is assigned an i.i.d. edge-length) in [86],
where conditions on the edge-length distribution are formulated which are very closely
related to the conditions for (non-)explosion in continuous-time Crump-Mode-Jager
branching processes. Also, an interesting topic has been introduced in [85], in which
the evolution of typical distances as a function of time in preferential attachment models
is studied.

Beyond preferential attachment models with linear, sub-linear and super-linear attach-
ment rules, many other varieties have been introduced and studied. We provide a short
overview of some of the well-known variants here.

Directed preferential attachment

The discussion of preferential attachment models so far has considered non-directed
graphs only. After all, in motivating examples such as collaboration networks the
edges have no direction, and in citation networks citations always go backward in time,
so that the vertex labels indicate the direction of the edge/citation and a directed graph
is not required. There are, however, examples in which directed edge make sense. On
social media, edges could represent sending and/or responding to messages or who
follows whom, and in the World Wide Web hyperlinks have a clear direction towards
webpages.

Bollobás, Borgs, Chayes and Riordan investigate a directed preferential attachment
model in [18]. Here, one starts with some graph G0 and fixed parameters α, β, γ, δin,
δout ≥ 0, with α + β + γ = 1. At each step, with probability α, a new vertex v is
introduced and a directed edge (v, w) is created. With probability β, a directed edge
(v, w) between two existing vertices v, w is created, and with probability γ a new vertex
v is introduced and a directed edge (w, v) is created. In all cases, vertices are selected
using a linear preferential attachment mechanism with respect to the in- or out-degrees
of vertices. For non-trivial parameters settings, it is shown that both the in-degree as
well as the out-degree sequence converge almost surely to power-law distributions.

Davis, Resnick, Wan and Wang consider the same model and fit it to network data,
estimating parameters with maximum likelihood estimators in [136]. Resnick and Wang
also study the concept of reciprocity, which, for example, characterises communication
between users on social media platforms. It is defined as the average number of directed
edges going back and forth between all pairs of vertices. In [137] they show reciprocity
is not exhibited for most parameter choices of this directed preferential attachment
model.

Preferential attachment with types

Antunović, Mossel and Rácz [7] introduced a preferential attachment model where
each vertex has one of two types, say type zero and one. New vertices connect to m
existing vertices via a linear preferential attachment rule and they obtain type zero with
probability pk, where k equals the number of vertices with type zero they connected
with, and type one otherwise. The main topic of interest in the paper is the behaviour
and convergence of the fractions of types depending on the initial configuration of vertex
types and the probability distribution pk. Jordan extends these results by allowing
vertices of different types to be selected with different preferential attachment rules [84],
and Haslegrave and Jordan consider three types [69]. In this case there are conditions
under which the fractions of types do not converge almost surely.
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Preferential attachment with choice

Paquette and Malishkin [103, 104], Krapivsky and Redner [90] and Haslegrave and
Jordan [68] study a choice-based preferential attachment model where a new node
selects a fixed number of potential neighbours according to a particular preferential
attachment rule and connects to one of the potential candidates via a deterministic
criterion, e.g. select the vertex with the highest/lowest degree. The different papers
show the degree distribution can exhibit exponential decay or a power law, and that
under particular conditions condensation-like behaviour can occur.

Haslegrave, Jordan and Yarrow [70], Grauer, Lüchtrath and Yarrow [65] and Freeman
and Jordan [59] study preferential attachment with location-based choice, where each
node is assigned an independent uniform location on (0, 1) and the choice-criterion is
based on the locations of the vertices. The introduction of locations allows for more
rich behaviour to be observed.

Spatial preferential attachment

One of the main critiques of preferential attachment models is the lack of clustering.
As is the case in the Erdős-Rényi random graph, inhomogeneous random graphs and
the configuration model, these graphs are locally tree-like, something which is often not
the case in real-world networks. Clustering can arise due to the underlying geometry
that governs connections, which, among others, is used in the hyperbolic random graph
model described in Section 1.3.1. Spatial preferential attachment models use geometry
to allow for more clustering via spatial dependence among vertices.

Several spatial preferential attachment models have been introduced over time. Manna
and Sen [105] first considered a spatial preferential attachment model where vertices
are assigned a random position in the unit square in two dimensions and a new vertex
v establishes connections to vertices u with a probability proportional to the degree
of u multiplied with d(u, v)α, where d(·, ·) denotes the Euclidean distance and α ∈
R ∪ {∞,−∞} is a fixed parameter. For α = ∞,−∞, the node is only linked to
the furthest and nearest vertices, respectively. Flaxman, Frieze and Vera study a
spatial preferential attachment model where connections are established with a linear
preferential attachment rule among vertices at distance at most r = r(n), vertices have
a fixed out-degree m and a uniform location in the unit sphere in R3 [55]. Aiello,
Bonato, Cooper, Janssen and Pra lat consider a spatial model where vertices have both
a location on the hypercube in Rm and a region of influence [5]. These regions scale
proportional with the degree of a vertex and scale inversely with time, so that high
degree vertices have a larger region of influence and over time an ageing effect occurs
in which vertices become less attractive. Finally, Jacob and Mörters study a model
in [80] in which new nodes are born in the one-dimensional torus according to a rate
one Poisson process and connect to existing nodes with a probability φ(tρ/f(d)), where
t denotes time, ρ denotes the distance between the two nodes, d denotes the in-degree of
the existing vertex, f is an increasing attachment function and φ is a decreasing profile
function. The attachment rule determines the “strength” of a vertex and the profile
function determines the spatial dependence. Jacob and Mörters argue this model is a
generalisation of the model introduced by Aiello et al. in [5].

1.4 Evolving models in random environment

In the evolving models described above, the only characteristic that enables us to
distinguish between vertices is their age (or perhaps type or location in some of the ‘non-
classical’ models). Indeed, young vertices are often observed to behave very differently
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compared to old vertices in these models, take the location of the maximum degree in
the random recursive tree and preferential attachment model as an example. Similarly,
vertices of a similar age are expected to show similar behaviour. In the preferential
attachment model above, all vertices with the same degree are equally likely to connect
to a new vertex, and in the random recursive tree all vertices are always equally likely
to attract new connections.

Clearly, in a real-world setting this is hardly ever the case. In the World Wide Web,
some webpages may be intrinsically more attractive and interesting and attract more
links. Websites providing useful services, such as directories or encyclopedias, are much
more likely to receive new links when compared to personal homepages. In citation
networks, certain papers perceived to be of higher quality compared to other papers and
as a result attracts more citations from newly written papers. On Twitter, particular
people are more active or post more controversial content, leading to more followers
than the average person.

Moreover, the number of citations of a paper is often a way to measure how influential
a paper has been. Search engines base the importance and usefulness of webpages on
the number of links webpages receive. And people with many followers on Twitter are
considered interesting and fashionable. This would not be the case unless there is some
correlation between the perceived quality of a vertex in the network and the degree of
the vertex. Though it is not always clear a priori why certain vertices are better able
than others to attract connections, every vertex seems to have an inherent ability to
do so.

Allowing for the attractiveness of vertices to vary introduces more heterogeneity in the
network. No longer are all vertices the same and is their behaviour identical. The local
principles which govern the network formation can still be similar, but the individual
dynamics of each vertex can now differ. As a result, one could expect the properties
of the network created to change compared to the networks in which all vertices (with
the same degree) have the same inherent attractiveness. Degree distributions may no
longer be or, instead, become scale free, typical distances could increase or decrease and
hubs in the network might behave very differently. In the models introduced below,
the attractiveness of a vertex is encapsulated by a single value denoted as the fitness
or weight of the vertex. These fitness variables are non-negative i.i.d. random variables
from some underlying distribution. Incorporating this fitness into the construction of
the network allows for much richer behaviour.

As we assign a random variable to every node in the graph, such evolving random
graph models can be interpreted as models in a random environment. The main aim of
this thesis is to understand the influence of the random environment on the local and
global behaviour of the random graphs.

Weighted recursive graphs
Possibly one of the simplest examples of an evolving random graph in a random envi-
ronment is the weighted recursive graph (WRG). This is a generalisation of the random
recursive tree, in which new vertices do not connect to predecessors selected uniformly
at random, but where each vertex is assigned a (random) vertex-weight and new ver-
tices select predecessors with a probability proportional to their weight. Depending on
the structure and assumptions on the behaviour of the sequence of weights, very rich
and, most importantly, very different behaviour can be observed when compared to
the random recursive tree and directed acyclic graph (which can be recovered from the
WRG by assigning all vertices the same weight).
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A weighted recursive tree (WRT) is a WRG in which each new vertex is allowed to
connect to exactly one predecessor, yielding a tree. The weighted recursive tree was
first introduced by Borovkov and Vatutin in [25, 24] who named it a random recursive
tree in random environment, and where the vertex-weights (Wi)i∈N satisfy a product
form Wi =

∏i
j=1Xj for some i.i.d. random variables (Xi)i∈N. Hiesmayr and Işlak [71]

used a slightly different definition of what they named the weighted recursive tree in
which the weight of the first vertex can be random as well, which is the definition we
use in this thesis. They studied the height, depth and branch sizes of the model.

Uribe Bravo and Mailler introduced the name weighted random recursive tree [102]
and applied its properties to study random walks with preferential relocation and fad-
ing memory. The main topic of interest are the height and profile of the tree when
the weights are i.i.d. random variables from certain underlying distributions. Uribe
Bravo and Mailler establish that the height of a typical node is highly dependent on
the underlying distribution of the vertex-weights. Where the height typical nodes is
of logarithmic order in the RRT model (see [53]), the height of typical nodes in the
WRT model can range from log log n to (log n)α with α > 0 to even nδ with δ ≤ 1/2.
Sénizergues allows for deterministic weight sequences with more general assumptions
and studies degree sequences and the height and profile of the tree in [128], and pro-
vides more detailed asymptotic behaviour of the height in [121] together with Pain.
Sénizergues combines assumptions on the weight sequences with the fact that the in-
degree of a vertex is identical in law to a sum of independent indicator random variables
to establish the pointwise convergence as well as convergence in `p of the in-degrees in
the WRT model. For the profile and height, Sénizergue proves the convergence of the
Laplace transform of the profile, defined on the complex plane, from which he can then
obtain the desired properties of the profile and height. For the more refined asymptotic
behaviour of the height of the WRT model, Sénizergues and Pain adapt methods used
to analyse the maximum displacement of a branching random walk in [121] to obtain
more precise results on the asymptotics of the height of the WRT model.

Iyer [79] studies an evolving weighted tree with a more general attachment rule, where a
new vertex connects to a predecessor v with a probability proportional to f(degn(v),Wv),
for some function f and where degn(v) and Wv are the degree and vertex-weight of
vertex v. Note that setting f(x, y) = y for all x ∈ N0, y ≥ 0 yields the WRT model.
As a result, this model can be used to study other examples of evolving weighted trees
as well, such as weighted Cayley trees. Iyer uses an embedding of the WRT model in
a continuous-time Crump-Mode-Jagers process and provides conditions under which
almost sure convergence of the degree distribution is obtained.

Fountoulakis, Iyer, Mailler and Sulzbach study a model for random simplicial complexes
in d ≥ 0 dimensions in [57], which generalises WRTs (though not WRGs). In this model,
the vertices of an evolving d-dimensional simplicial complex are equipped with bounded
vertex weights and the evolution is determined by a fitness function f : [0, 1]d → R+

and the vertex-weight distribution µ. At every step, a face of the complex is selected
with a probability proportional to the sum of the connection function applied to each
of the weights of the vertices adjacent to the face, and a new vertex is introduced
and connected to each of the adjacent vertices (hence creating d more faces). Using
measure-valued Pólya urns, they prove the almost sure convergence of the empirical
degree distribution under certain conditions on the fitness function f and the vertex-
weight distribution µ.
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Preferential attachment models with fitness
Several preferential attachment models in random environment, often referred to as
preferential attachment models with fitness, have been introduced and studied since
the paper by Albert and Barabási. These aim to better explain the mechanisms that
govern the formation of real-world networks such as the World Wide Web, citation
networks, etcetera. Empirical evidence suggests that the acquirement of hyperlinks by
webpages, citations by papers and investment by companies, takes place at different
rates for different webpages, papers and companies, respectively. This points towards
deviations in the growth mechanisms in the sense that it is (slightly) different among
entities (webpages, papers and companies). These deviations are not present in the
preferential attachment model, as discussed above. Bianconi and Barabási introduced
a model that allows for these deviations to occur [15]. Here, every vertex i is assigned
a fitness Fi, and new vertex n+ 1 connects to vertex i with probability

Fi degn(i)∑n
j=1Fj degn(j)

, (1.4.1)

where degn(i) denotes the degree of vertex i in the graph created up to that point,
consisting of n vertices. Due to the multiplicative nature of the connection rule, this
model is also known as a preferential attachment model with multiplicative fitness. It
follows that the vertices that are most likely to attract edges from new vertices are the
ones that are already well-connected and have a high fitness, in other words, the ones
that are both popular and fit. At the same time, the fittest vertices are most likely
to increase their degree. Bianconi and Barabási conjectured the existence of three
different phases which depend on the underlying fitness distribution. Borgs, Chayes,
Daskalakis and Roch study these phases rigorously in [23] and denote these phases as:

� First-mover-advantage phase, in which the inclusion of fitness leads to no signifi-
cant different in behaviour compared to the linear preferential attachment model,

� Fit-get-richer phase, in which the inclusion of fitness allows the more fit vertices
to acquire edges at a higher rate than less fit vertices.

� Innovation-pays-off phase, in which a non-zero proportion of the edges is attracted
by vertices with higher and higher fitness values.

Dereich and Ortgiese [42] further study the fit-get-richer and innovation-pays-off phases
(which they refer to by the Bose-Einstein phase) by determining the almost sure limit
of the empirical degree weighted fitness measure,

Γn :=
1

n

n∑

i=1

Zn(i)δFi , (1.4.2)

where Zn(i) and Fi denote the in-degree and fitness of vertex i, respectively, and where
δ is a Dirac measure. Moreover, they provide conditions for condensation to occur
under rather general assumptions on the attachment rules of the model, by applying
stochastic approximation arguments to Γn. If we let µ be the fitness distribution and
we assume that the essential supremum of µ equals one, then with λ > 0 a model
parameter which controls the number of edges in the graph (which is of the order λn
when the graph consist of n vertices), and

∫
f

1− f µ(df) < λ,

then condensation occurs. This implies that a positive fraction of newly incoming edges
attaches itself to a set of vertices with fitness moving closer and closer to the essential
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supremum of µ. In the limit of the empirical degree distribution, this Dereich [36]
furthers this by analysing a slight variant of the model where the normalising term
in the connection probabilities is deterministic rather than random. Dereich analyses
the condensate, a small number of vertices with exceptionally high degree, studying
which vertices belong to the condensate and determining the qualitative and quanti-
tative properties of the condensate, under the assumption that the fitness distribution
belongs to the Weibull maximum domain of attraction. Most notably, contrary to prior
conjecture [15], Dereich finds that, typically, it is not a single vertex (or even a finite
number of vertices) that constitute the condensate. Rather, the size of the condensate
diverges as the graph size tends to infinity.

Dereich, Mailler and Mörters [37] and Mailler, Mörters and Senkevich [101] study a
more general model known as reinforced branching processes, a model which covers
branching processes with selection and mutation, generalised Pólya urn models and the
Bianconi-Barabási model. In reinforced branching processes individuals are assigned
fitness values, are organised into families and members of the same family have the
same fitness. A family of size k and fitness f gives birth to new individuals at a rate
kf and every new individual starts a new family with probability β ∈ [0, 1] with a
fitness drawn from an underlying fitness distribution µ, stays with the family it was
born from with probability γ ∈ [0, 1] or both of these events happen (i.e. a new family
is started and an already existing family increases its size by one) with probability
β + γ − 1 (β and γ are such that β + γ ≥ 1). The case γ = 1 − β yields branching
processes with mutation and selection, β = γ = 1 yields the Bianconi-Barabási tree.
Dereich, Mailler and Mörters establish a ‘Winner does not take it all’ principle, which
they coin non-extensive condensation, showing that the size of the largest family is
negligible compared to the number of individuals. This matches with the findings of
Dereich [36] in the sense that the number of families that contribute to the condensate
diverges. They also describe the asymptotic size and fitness of the largest family, under
the assumption that µ belongs to the Weibull maximum domain of attraction. Mailler,
Mörters and Senkevich are able to obtain similar results for a large class of fitness
distributions in the Gumbel maximum domain of attraction.

The multiplicative nature of the Bianconi-Barabási model has a very clear effect on
the model. Even a fitness distribution with bounded support can already result in
behaviour that belongs to the innovation-pays-off phase. A model using a combination
of multiplicative fitness and ageing is considered by Garavaglia, Van der Hofstad and
Woeginger in [60], for which it is shown that the inclusion of ageing can allow for a
wider range of fitness distributions in order to obtain scale-free behaviour.

Introducing ageing, which makes vertices less attractive as time passes, is one way to
temper the strong effect of the multiplicative fitness. A different method is to use the
fitness in an additive rather than a multiplicative way. That is, in the same setting as
before (1.4.1), a new vertex n+ 1 now connects to a vertex i with a probability

degn(i) + Fi∑n
j=1 degn(j) + Fj

.

In this case, the fitness has an initial effect which relatively diminishes as the degree
of a vertex increases. This model, known as preferential attachment with additive
fitness (PAF), was proposed by Ergün and Rodgers in [51]. This model still allows
for a better and more natural explanation of the mechanisms governing the formation
of real-world networks compared to the preferential attachment model proposed by
Albert and Barabási, but the fitness values interact with the degree evolution in a
different manner compared to the Bianconi-Barabási model. It is immediately clear
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that the effect of the fitness is much more subtle than in the case of multiplicative
fitness, where the increase of the degree enhances the effect of the fitness rather than
relatively diminishing it. As a result, one would expect a fitness distribution with a
heavier tail to be required in order to see significantly different behaviour. It begs the
question whether the three phases described above for the Bianconi-Barabási model
can still be observed in the additive case as well, or whether fewer or other kinds of
phases appear. This is one of the topics of interest in this thesis.

Ergün and Rodgers [51] argue that the empirical degree distribution in the PAF model
still converges to a power-law distribution, where the power-law exponent depends
linearly on the mean of the fitness distribution [51]. Bhamidi studies a wide range
of preferential attachment models in [14] using an embedding in Crump-Mode-Jager
branching processes, among which PAF trees. Under the assumption that the fitness
values are almost surely bounded, Bhamidi obtains that the empirical degree distribu-
tion converges in probability to an explicit limiting degree distribution, which agrees
with Ergün and Rodger’s observations and non-rigorous arguments, and proves tight-
ness of the rescaled maximum degree.

Iyer [79] studies a general model of evolving random trees with fitnesses, also using an
embedding in Crump-Mode-Jager branching processes as Bhamidi, but is able to obtain
an almost sure limit of the degree-weighted fitness measure Γn as in (1.4.2) under more
general assumptions on the fitness distributions and more general attachment functions
f which depends on the in-degree and fitness of the vertex. Under the additional
assumption that f(i,W ) = ig(W ) + h(W ) for some functions g, h (here i denotes
the in-degree of a vertex and W its vertex-weight), Iyer present conditions for the
occurrence of condensation.

Fountoulakis and Iyer also study the degree-weighted fitness measure Γn as in (1.4.2)
of a more general model which includes neighbourhood influence in terms of the vertex-
weights of neighbours [56], using embedding in Crump-Mode-Jager branching processes.
In this model a new vertex n + 1 connects to a vertex i (the edge is directed towards
n+ 1) with a probability proportional to

f(Fi) +
∑

j∼i
g(Fi,Fj),

where j ∼ i denotes all out-neighbours of i and f, g : [0, w∗] → R+ are two functions
and w∗ > 0 is a fixed constant. The WRT is recovered by setting f(x) = x, g ≡ 0, the
PAF model by setting f(x) = x, g ≡ 1, and the Bianconi-Barabási model by setting
f(x) = g(x, y) = y. Under assumptions on the functions f and g, the almost sure
convergence to a limiting degree distribution is proved.

Equivalence between WRTs and PAFs
Sénizergues discusses an interesting equivalence between the WRT model and the PAF
model (in the tree case) in [128]. For a fitness sequence (Fi)i∈N, construct a WRT with
weight sequence (Wi)i∈N defined as

W1 := 1, ∀ n ≥ 2, Wn :=

n−1∏

k=1

β−1k , βk ∼ Beta
( k∑

j=1

Fj + k,Fk+1

)
.

Then, the WRT with weight sequence (Wi)i∈N and the PAF tree with fitness sequence
(Fi)i∈N coincide in law. This equivalence is obtained by using a Pólya urn represen-
tation of the PAF and WRT models, which explains the beta random variables in
the construction of the weights (Wn)n∈N. It allows Sénirzergues (and Pain) to carry
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over the results on WRTs in [128] (and [121]) (discussed above) to PAF trees when
the fitness sequence satisfies maxi∈[n]Fi ≤ nc+o(1) for some c ∈ [0, 1/(µ + 1)), where
µ < ∞ denotes the mean of the fitness distribution. This includes the convergence of
the rescaled degrees of fixed vertices, the rescaled maximum degree and the asymptotic
behaviour of the height of the tree. This same equivalence between the WRT and PAF
tree model is also used by Lo in [95] in order to obtain, under the assumption that the
fitness distribution has finite support (though Lo states that the results hold for distri-
butions with exponentially decaying tails and for the multigraph case as well without
providing further details), the weak local convergence of the PAF model to what she
coins the π-Pólya point tree. As a result, the almost sure convergence of the empirical
degree distribution is obtained in total variation distance when the fitness distribution
has finite fourth moment.

1.4.1 Model definitions

In this thesis, we focus on the study of preferential attachment models with additive
fitness and the weighted recursive graph model with random weights. We provide a
precise definition of these models here.

First, we let (Gn)n∈N be a sequence of graphs, denote by Zn(i) the in-degree of vertex
i in Gn and let [t] := {i ∈ N : i ≤ t} for t ≥ 1.

Definition 1.4.1 (Preferential attachment with additive fitness). Let (Fi)i≥1 be a
sequence of i.i.d. copies of a random variable F taking values in (0,∞). For any n ∈ N,
define

Sn :=
n∑

i=1

Fi.

Let n0,m0,m ∈ N. We construct the preferential attachment graph with additive fitness
as follows:

(a) Start with some graph Gn0 which consists of n0 vertices and m0 edges and assign
each vertex i ∈ [n0] the fitness Fi.

(b) For each n ≥ n0, introduce a new vertex n+1 and assign it the vertex-weight Fn+1

and m half-edges. Conditionally on Gn, independently connect each half-edge to
some i ∈ [n] with probability

Zn(i) + Fi
m0 +m(n− n0) + Sn

.

Let Gn+1 denote the resulting graph.

For the weighted recursive graph model, we switch from the notation F to W here for
consistency with the upcoming chapters.

Definition 1.4.2 (Weighted Recursive Graph). Let (Wi)i≥1 be a sequence of i.i.d.
copies of a non-negative random variable W taking values in (0,∞). For any n ∈ N,
define

Sn :=
n∑

i=1

Wi.

Let m ∈ N. We construct the Weighted Recursive Graph as follows:

1) Initialise the graph with a single vertex 1, the root, and assign to the root a
vertex-weight W1. We let G1 denote this graph. .
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2) For n ≥ 1, introduce a new vertex n+ 1 and assign to it the vertex-weight Wn+1

and m half-edges. Conditionally on Gn, independently connect each half-edge to
some vertex i ∈ [n] with probability Wi/Sn. Let Gn+1 denote this graph.

1.5 Main results of the research

The results provided in this thesis describe the degree evolution of vertices in the PAF
and WRG models. In particular, the main focus is on the largest degree and (in certain
cases) near-maximum degrees. Most importantly, we are interested in the description
of the three phases by Borgs et al. in [23] for the Bianoni-Barabási model discussed in
Section 1.4 and formulate similar phases in which different behaviour can be observed
for the PAF models and the WRG model.

For the PAF model, we study the degree distribution and the maximum degree. As
already claimed by Ergün and Rodgers in their introduction of their preferential at-
tachment model with additive fitness [51], when the fitness distribution µ has a finite
mean we obtain a limiting distribution (pk)k∈N0 , with

pk :=

∫ ∞

0

θm
x+ θm

k∏

`=1

(`− 1) + x

`+ x+ θm
µ(dx), k ∈ N0,

though the result presented here holds more generally. Additionally, our methods
provide a rigorous proof and almost sure convergence. Unlike the claim made by Ergün
and Rodgers, we also note that this limiting degree sequence exhibits a phase transition
in the power law exponent, which depends on the precise underlying assumptions for the
fitness distribution µ. Moreover, when the fitness distribution has an infinite mean, we
obtain that the empirical degree distribution no longer exhibits a power-law. Rather, a
typical vertex receives no edges after its introduction to the graph with high probability.

In [95] Lo is able to prove convergence of the empirical degree distribution to the above
limit in total variation distance. However, Lo proves this for distributions µ such that
the fourth moment is finite only.

The phase transitions observed in the limiting degree distribution pk can be extended
to the behaviour of the maximum degree as well. In particular, we provide conditions
which determine whether persistence holds and obtain the growth rate of the maximum
degree relative to the growth rate of the degree of fixed degree vertices. We recall that
persistence means that there exists a fixed vertex which attains the maximum degree
for all but finitely many steps. For a more concise formulation (though not as general
as presented later in Chapter 2), we assume that the fitness distribution µ follows a
power-law. That is, for some slowly-varying function ` : R+ → R+,

µ(x,∞) := `(x)x−(α−1), x > 0. (1.5.1)

Moreover, we let θm := 1 + E [F ] /m, where m is the out-degree of each vertex and F
is a random variable with law µ. We then identify the following regimes:

� Weak disorder regime: When α > 1 + θm, persistence occurs and the maximum
degree grows at the same rate n1/θm as the degree of any fixed vertex.

� Strong disorder regime: When α ∈ (2, 1+θm), persistence does not occur and the
index of the vertex attaining the maximum degree is of order n. The maximum
degree grows at rate n1/(α−1), whereas the degree of any fixed vertex still grows
at n1/θm , so that the maximum degree grows faster than the degree of any fixed
vertex.
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� Extreme disorder regime: When α ∈ (1, 2), persistence does not occur and the
index of the vertex attaining the maximum degree is of order n. The maximum
degree grows linear in n, whereas the degree of any fixed vertex is finite almost
surely for all n ∈ N.

Though not entirely the same, the weak, strong, and extreme disorder regimes exhibited
by the PAF are comparable to the first-mover-advantage, fit-get-richer and innovation-
pays-off phases for the Bianconi-Barabási model described by Borgs et al. [23], though
the conditions for the fitness distribution are very different. The identification of the
weak disorder regime matches with results obtained by Sénizergues in [128], though here
we can allow for an out-degree m > 1 as well as somewhat more general attachment
rules, which are not included in Definition 1.4.1. The identification of the strong
and extreme regimes is novel and here we are able to provide a precise description of
the limiting distributions of the rescaled maximum degree and rescaled index of the
maximum degree (the latter only in the strong disorder regime).

For the WRG model, we again study the degree distribution and the maximum degree.
One can interpret the WRG model as the PAF model without the preferential attach-
ment feedback mechanism that makes vertices more likely to attract edges as their
degree increases. Instead, vertices have a fixed ‘attractiveness’ determined by their
vertex-weight. The preferential attachment mechanism has a strong effect on the over-
all behaviour of the network relative to the fitness, in the sense that only sufficiently
heavy-tailed fitness distributions are able to cause a significant change in the behaviour
of the degree distribution and the maximum degree, as discussed above. Omitting this
mechanism therefore allows the more subtle influence of the fitness/vertex-weights to
become apparent.

The empirical degree distribution of the WRG model almost surely converges to a
limiting distribution (pk)k∈N0 when the vertex-weights have finite mean, with

pk :=

∫ ∞

0

θm − 1

θm − 1 + x

( x

θm − 1 + x

)k
µ(dx), k ∈ N0,

where we recall that θm := 1 +E [W ] /m and W is a random variable with law µ. This
is also obtained for the WRT model as a special case in the more general ‘evolving
random trees with fitness’ studied by Iyer in [79]. In the case that the vertex-weights
have an infinite mean (and the tail distribution is slowly varying as in (1.5.1)), the
same result as for the PAF model is obtained; a typical vertex attracts no edges after
its introduction to the graph with high probability.

Where the limiting degree distribution for the PAF model is always a power law (in the
case of finite mean random variables), the limit (pk)k∈N0 here is strongly influenced by
the choice of the distribution µ. The asymptotic behaviour of pk can range from geo-
metric to stretched exponential to log-compressed exponential to power law, depending
on the underlying vertex-weight distribution.

As is the case for the degree distribution, the behaviour of the maximum degree is
also highly dependent on the vertex-weight distribution µ. Unlike the PAF model,
the behaviour of the maximum degree now can be classified based on whether the
vertex-weights are bounded or unbounded, and on the maximum domain of attraction
(MDA) the vertex-weight distribution belongs to (assuming it belongs to any MDA).
A distribution µ belongs an MDA when there exist sequences (an, bn)n∈N, such that

lim
n→∞

µ(−∞, anx+ bn)n = G(x), (1.5.2)
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for some distribution G and for all continuity points x of G. G can be exactly one of
three families of distributions: Weibull, Gumbel or Fréchet. The book on extreme value
theory by De Haan and Ferreira (and the references therein) provides a comprehensive
introduction to maximum domains of attraction and the overarching extreme value
theory [67]. We provide a rough outline of the behaviour of the maximum degree based
on bounded or unbounded vertex-weights and further distinguish between the different
MDAs µ belongs to.

Unbounded vertex weights
When the distribution µ has an unbounded support, which yields unbounded vertex-
weights, the behaviour of the maximum degree is mainly determined by the interplay of
the behaviour of the vertex-weight and the age of a node (i.e. the time it is introduced
to the graph). For distributions with unbounded support, the Fréchet MDA and the
Gumbel MDA are considered, where we note that the Gumbel MDA also consists of
distributions with finite support, which we discuss later on.

Fréchet. When the distribution µ belongs to the Fréchet MDA, the maximum degree
is of order un := inf{x ∈ R : µ(x,∞) < 1/n} and the index of the maximum degree
is of order n. Both the limit of the rescaled maximum degree as well as the rescaled
maximum degree can be expressed in terms of a Poisson point process. An interesting
observation is the following: in case µ has an infinite first moment, the limits are
equivalent to the limits of the maximum degree and index in the PAF model when
the fitness follows the same distribution. As the effect of the fitness is very strong for
such a distribution, the preferential feedback mechanism is, as it were, overpowered by
the fitness and the preferential attachment model with additive fitness (or at least its
maximum degree) behaves as a weighted recursive graph.

Gumbel. When the distribution µ belongs to the Gumbel MDA, the precise expression
of the tail distribution is essential in determining the behaviour of the maximum degree.
We consider three different classes of tail distributions: log-compressed exponential
(exp

{
−(log x)τ

}
with τ > 1), stretched and compressed exponential (exp

{
−xτ

}
with

τ > 0), and super-exponential (e.g. exp{− exp{x}}). In all cases, we show that the first
order asymptotic behaviour of the maximum degree is of order bkn log(kn/n) and the
location of the maximum degree is roughly kn, where bn is as in (1.5.2) and (kn)n∈N
is a suitable sequence for which bkn log(kn/n) is maximised. In the log-compressed
exponential case and the (stretched) exponential case, we also obtain the second order
asymptotic behaviour, which depends on akn (as in (1.5.2)) and a fine interplay of
vertices having a high vertex-weight and being sufficiently young to allow for enough
time to obtain a high degree.

Bounded vertex-weights
When the distribution µ has bounded support, which yields almost surely bounded
vertex-weights, the effect of the tail distribution of µ is (even) more subtle than in
the previous case. Here, large degrees arise via a different mechanism, involving a
balance between the age of vertices and large deviation events in which a vertex’ degree
significantly outgrows its mean degree, like in the random recursive tree (though all
vertex-weights are equal in law there). As a result, the first order asymptotic behaviour
of the maximum degree is determined exactly by the first moment of µ only, and is of
order logθm n, where we recall that θm := 1 +E [W ] /m, where W is a random variable
with law µ.

Only when we consider higher-order asymptotic behaviour of the (near-)maximum de-
grees, do we observe different behaviour, though we can only prove this in the tree case
(i.e. m = 1). These differences arise due to the tail distribution of the vertex-weight
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distribution µ and are closely linked to the tail distribution of the limiting degree dis-
tribution (pk)k∈N0 . The distributions considered belong to the Weibull MDA or the
Gumbel MDA, or have an atom at one (by the construction of the WRG we can assume
without loss of generality that bounde vertex-weights are at most one), and for ease of
writing we set θ := θ1.

Atom at one. When the distribution µ has an atom at one, vertices need to have a
vertex-weight equal to one in order to obtain a high degree (compared to other vertices).
As a result, the behaviour of the WRG (in the tree case) with such a vertex-weight
distribution is similar to the random recursive tree. We show that the difference of the
maximum degree and blogθ nc converges in distribution along particular subsequences,
without rescaling. The sub-sequential convergence is due to a lattice effect caused by
the floor function applied to logθ n and as degrees only take integer values. Moreover,
precise asymptotics for the distribution of the maximum degree, as well as asymptotic
normality of the number of (near-)maximum degrees are obtained.

When µ does not contain an atom at one, the second-order behaviour of the maximum
degree diverges to −∞. As it is unlikely to observe a vertex with a weight larger
than 1− εn for some sequence (εn)n∈N in this case, the largest degrees do not grow as
quickly as in the case when µ has an atom at one. How much smaller than logθ n the
(near-)maximum degrees are depends on εn and thus on the tail of µ.

Weibull. When the distribution µ belongs to the Weibull MDA with parameter α > 1,
the second order asymptotic behaviour is shown to be −(α − 1) logθ logθ n. Higher-
order behaviour, as well as the precise asymptotics for the distribution of the maximum
degree and asymptotic normality of the number of (near-)maximum degrees, requires
more assumption on the tail of µ, for which we provide an example.

Gumbel. When the distribution µ belongs to the Gumbel MDA, similar cases as for
the unbounded distributions in the Gumbel MDA discussed above can be observed.
The higher-order terms depend on the precise assumptions of the distribution, and we
again provide an example for which this can be obtained.

1.6 Structure of the thesis

The thesis is structured as follows: In Chapter 2, we present our results related to the
preferential attachment model with additive fitness. The contents of Chapter 2 are
published in [97]. In Chapter 3 and 4 we investigate the weighted recursive graph and
the weighted recursive tree model (the weighted recursive graph model with m = 1).
Chapter 3 presents the content of [96], which deals with both unbounded and bounded
vertex-weights, whereas Chapter 4 deals with bounded vertex-weights only and provides
more precise results compared to what is discussed in Chapter 3 related to bounded
vertex-weights. Finally, in Chapter 5 we provide a conclusion and discuss several open
problems related to the models investigated in this thesis.
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Chapter 2

A phase transition for
preferential attachment models
with additive fitness

In this chapter we consider the influence of additive fitness on several affine preferen-
tial attachment models and we are able to present a phase transition in terms of the
behaviour of the degree distribution and the maximum degree. The findings presented
in this chapter have been published by the author of this thesis and Marcel Ortgiese
in Electronic Journal of Probability as an open access publication [97].

2.1 Outline of the article

We consider preferential attachment models with additive fitness, as first introduced
by Ergün and Rodgers in [51]. Starting from an arbitrary graph Gn0 with n0 vertices
with labels 1, . . . , n0 and fitness values F1, . . . ,Fn0 , i.i.d. copies of some strictly positive
random variable F , and m0 ≥ 1 edges, the graph Gn is obtained at step n > n0 from the
graph Gn−1 by introducing a new vertex n and assigning it a fitness value Fn ∈ (0,∞)
(which also is an independent copy of F). This new vertex then connects to m ∈ N
predecessors, each chosen with a probability proportional to the in-degree plus fitness
of the predecessor. We can also allow for a random out-degree, where the vertex n
connects to each predecessor with a probability proportional to its in-degree plus fitness
and where connections to different vertices have a negative correlation, in spirit of the
Bernoulli preferential attachment models studied by Dereich and Mörters in [41, 40].
The model derives its name from the fact that the fitness plays an additive role in these
models, in contrast to the multiplicative nature of the fitness in the Bianconi-Barabási
model.

In the literature it is well-known that the limiting degree distribution of the affine
preferential attachment model, which can be interpreted as a special case of the model
under investigation here, is a power law with an exponent τ that can be expressed in
terms of the model parameters δ and m, see e.g. [22, 111] and [72] and the references
therein. Moreover, the maximum degree scales polynomially with exponent 1/(τ − 1)
and is attained at a fixed vertex for all but finitely many steps, a property known as
persistence, see e.g. [8, 112].

We investigate how the properties of the degree distribution and the maximum degree
change under the influence of the additive fitness. In particular, we outline a phase
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transition for the model depending on how quickly the tail of the fitness distribution
decays, consisting of three phases in which different behaviour is observed. We coin
these phases the weak disorder regime, strong disorder regime and extreme disorder
regime. In Section 2 we present a detailed overview of the results related to the degree
distribution and maximum degree, as well as the phase transition itself. In Section
4 we provide the details of the proof of the existence of this phase transition for the
degree distribution, which uses a stochastic approximation approach in the weak and
strong disorder regimes and a more straightforward first moment approach in the ex-
treme disorder regime. Section 5 consists of technical preparations required for proving
the convergence of the maximum degree in the extreme disorder regime. The method-
ology for this proof is a combination of the weak convergence of point processes and
the concentration of the maximum degree around the conditional mean maximum de-
gree. Section 6 presents similar technical preparations for the weak and strong disorder
regime, which again use point process convergence and concentration, and martingale
techniques, respectively. Finally, the main results related to the maximum degree are
proved in Section 7.
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Abstract

Preferential attachment models form a popular class of growing networks, where
incoming vertices are preferably connected to vertices with high degree. We consider
a variant of this process, where vertices are equipped with a random initial fitness
representing initial inhomogeneities among vertices and the fitness influences the
attractiveness of a vertex in an additive way. We consider a heavy-tailed fitness
distribution and show that the model exhibits a phase transition depending on the
tail exponent of the fitness distribution. In the weak disorder regime, one of the old
vertices has maximal degree irrespective of fitness, while for strong disorder the
vertex with maximal degree has to satisfy the right balance between fitness and age.
Our methods use martingale methods to show concentration of degree evolutions as
well as extreme value theory to control the fitness landscape.

Keywords: Network models; preferential attachment model; additive fitness; scale-free property;
maximum degree.
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1 Introduction

A distinctive feature of real-world networks is their inhomogeneity, characterized in
particular through the presence of hubs. These are nodes with a number of connections
that greatly exceeds the average and thus have a great impact on the overall network
topology. The existence of hubs in a network is closely linked to the scale-free property,
that is, the proportion of nodes in the network with degree (number of connections) k
scales as a power law k−τ for some τ > 1.

Preferential attachment models, as popularized by Barabási and Albert [2], form a
class of random graphs that shows this behaviour ‘naturally’, that is, as a result of the
dynamics and not because it is imposed otherwise, see also [6] for a first mathematical
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derivation of this fact. In these evolving random graph models new vertices are intro-
duced to the network over time and they connect to earlier introduced vertices with a
probability proportional to their degree. This leads to the so-called rich-get-richer effect,
which means that vertices with a high degree are more likely to increase their degree. It
is exactly this effect that yields the power-law degree distributions and the existence of
hubs in the graph.

The study of the emergence of hubs in random graph models such as the preferential
model is often focused on the behaviour of the maximum degree in the graph. Móri first
showed that for the Barabási-Albert model the maximum degree is of the same order
as the degree of the first vertex [20], which was later generalised by Athreya et al. to
affine preferential attachment models (with random out-degree) and to a larger class of
preferential attachment models by Bhamidi in [1] and [3], respectively. A consequence
of the way in which preferential attachment graphs evolve, is that the rich-get-richer
effect should really be interpreted as an old-get-richer effect: it is the old vertices, who
are introduced at the beginning of the evolution of the graph, that are able to attract the
most connections [15].

However, when compared to real-life networks, it is clearly desirable to have a model
where younger vertices can compete with the old ones. One way to achieve this is
by assigning to each vertex a random fitness representing its intrinsic attractiveness
and then to let the connection probability of a newly incoming vertex be proportional
to either the product of the fitness and degree or the sum. These two models were
introduced by Barabási and Bianconi in [4] and Ergün and Rodgers in [13], respectively.

Most previous results on preferential attachment models with fitness deal with the
multiplicative case for bounded fitness. One of the reasons is that under certain condi-
tions on the fitness distribution, these models exhibit the phenomenon of condensation,
where a positive proportion of incoming vertices connects to vertices with fitness closer
and closer to the maximal fitness in the system. This phenomenon was first shown in
the mathematical literature in [7], later extended in [12] for a wide range of models, by
looking at the empirical fitness and degree distribution. A full dynamic description of the
condensation is a challenging problem, however see [9] for a very detailed analysis in a
slightly modified model. [10] considers a continuous-time embedding of the process into
a reinforced branching process, which allows them to control the maximal degree (in the
continuous-time setting), which in the non-condensation case can be translated back to
the random graph model. Also, under certain assumption on the fitness distribution, they
show that condensation is non-extensive in the sense that there is not a single vertex that
acquires a positive fraction of the incoming edges. These results are extended by [19]
to a larger class of (bounded) fitness distributions (as a special case of a more general
set-up).

Here, we consider the model with additive fitness, where a vertex is chosen with
probability proportional to the sum of its degree and its intrinsic fitness. Both models of
multiplicative and additive fitness can be seen as a way to understand how a random
perturbation of the attractiveness of a vertex (due to natural inhomogeneities in the
system) changes the behaviour of a standard preferential attachment model. As we
have just discussed, in the multiplicative model we observe condensation which is quite
a drastic change of the behaviour. This effect is already present for certain cases of
bounded fitness, due to the fact that a small perturbation can have a large effect when
multiplied by a large degree. For the additive model, we see that the change in behaviour
due to random perturbations is of a very different nature. Indeed, the effect of large
fitness values is not as immediate and it turns out that we need larger variability in the
fitness values (and in particular we need to assume unbounded fitness) to observe a
qualitative different behaviour compared to the standard model.
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To best of our knowledge the only mathematical result have been [3] and [23], who
confirmed the non-rigorous results in [13]. [3] showed that when the fitness is bounded,
the degree distribution follows a power law with the same exponent as for the model
with an additive constant equal to the expected value of the fitness. Moreover, [3]
gives the asymptotics for the maximum degree and shows that it agrees again with
the asymptotics for the model with additive constant. [23] considers the case of a
deterministic additive sequence and shows that there is an equivalence between the
preferential attachment (tree) model and a weighted recursive tree. From this, the
author deduces `p-convergence of the renormalized degree sequence under a growth
condition on the additive sequence. Furthermore, he considers geometric properties of
the weighted recursive trees. Somewhat related is a model of preferential attachment
with random (possibly heavy-tailed) initial degree, for which [8] show convergence of
empirical fitness distributions, but the structure of these networks is very different from
the additive fitness case due to large out-degrees.

In our work we consider the case of unbounded fitness and show that when the fitness
distribution follows a power law, a more complex phase diagram arises. Our first result
shows convergence for the empirical degree and fitness distribution. From this we can in
particular deduce that if the fitness distribution is sufficiently light-tailed, then we are in
a weak disorder regime, where the same result as in [3] still holds for both tail exponent
of the degree distribution and the asymptotics of the maximum. However, if the tail
exponent of the fitness distribution is sufficiently small (but so that the fitness still has a
finite first moment), then we are in a strong disorder regime, where the tail exponent of
the degree distribution is the same as for the fitness distribution. Moreover, the maximal
degree grows of the same order as the largest fitness in the system. However, the vertex
that maximizes the degree has to satisfy a delicate balance between arriving early and
having a large fitness. In the limit this competition is expressed as an optimization of a
functional of a Poisson point process.

Finally, we can also consider the extreme disorder regime when the fitness does not
have a finite first moment. In that case, we show that a uniformly selected vertex has
in-degree zero with high probability. Moreover, the maximal degree now scales as order
n and the maximising vertex again satisfies the right balance between arriving early
and large fitness. We note that our results for the degree distribution improve on those
by Ergün and Rodgers [13], where these different regimes are overlooked and only the
weak disorder regime is covered.

Our proof for the empirical degree/fitness distributions uses a stochastic approxima-
tion argument, which was also used in [12] for the multiplicative case. The analysis of
the maximal degree is split into two steps: First we show concentration of the degrees
when compared to the expected degree (conditionally on the fitness values) adapting the
martingale arguments of Móri [20] (see also [15] for an exposition with more general
attachment rules). For the weak disorder case, similar arguments as in [15] are sufficient
to control the maximal degree. However, in the strong and extreme disorder case, we
have to control the conditional expectation of the degrees, which are a function of the
fitness only. We then show that these functionals simplify and converge to a functional of
a Poisson point process, so that with the concentration we can deduce convergence of
the maximal degree. Finally, our analysis is robust and covers essentially three variants
of preferential attachment models: a model with possibly random out-degree as in [11]
(and at most one edge between vertices) and two variations where the out-degree of
each new vertex is fixed and then the connection probabilities are either updated after
each edge is drawn or are kept fixed.

Notation. Throughout we use the following notation. We let N = {1, 2, 3, . . .}
be the natural numbers, we write N0 = {0, 1, 2, . . .} if we want to include 0 and let
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[n] := {1, . . . , n}. Moreover, for any sequence an and bn of positive real numbers, we say
an = Θ(bn) if there exists a constant C > 0 such that an ≤ Cbn and bn ≤ Can. Moreover,
we say an ∼ bn if limn→∞

an
bn

= 1. Also, we use the conditional probability measure
PF (·) := P(· | (Fi)i∈N) and expectation EF [·] := E[· | (Fi)i∈N].

2 Definitions and main results

The preferential attachment model is an evolving random graph model, where vertices
are added to the graph consecutively and then connected to older vertices. We denote
by Gn the resulting directed graph at the stage when the vertex set is [n]. Moreover, we
take edges to be directed from the vertex with high index to the one with lower index.
Throughout, we use the following notation,

Zn(i) := in-degree of vertex i in Gn.

We now introduce three different preferential attachment with fitness models (PAF), the
first one which allows for a random out-degree in the spirit of Dereich and Mörters [11],
the second one where the out-degree of a new vertex is fixed and we connect edges
while keeping the degrees fixed, and the last one with a fixed out-degree, but where we
update degrees in between connections (where the latter is the fitness modification of a
model closer to [6]).

Definition 2.1 (Preferential attachment with fitness). Let (Fi)i≥1 be a sequence of i.i.d.
copies of a random variable F taking values in (0,∞) with distribution µ. For any n ∈ N,
define

Sn :=

n∑

i=1

Fi. (2.1)

Let n0,m0 ∈ N. We say that a sequence of random graphs (Gn)n≥n0
is a preferential

attachment model with (additive) fitness if Gn is a directed and weighted graph on
the vertex set [n] with edges directed from larger to smaller indices. Moreover, we
assume that Gn0

has m0 edges and we assign fitness values F1,F2, . . . ,Fn0
to the vertices

1, 2, . . . , n0 respectively.
To obtain Gn+1 from Gn for some n ≥ n0, add vertex n+ 1 to the vertex set and attach

fitness Fn+1 to n+ 1. Furthermore, we assume that the updating rule satisfies one of the
following three assumptions for some fixed m ∈ N:

(PAFRO) Preferential attachment with fitness and random out-degree. Conditionally
on Gn, vertex n+ 1 is connected to each vertex in [n] by at most one edge
and the probability to connect to a given i ∈ [n] is

Zn(i) + Fi
m0 + (n− n0) + Sn

. (2.2)

Furthermore, conditionally on Gn the degree increments
(∆Zn(i) := Zn+1(i)−Zn(i), i ∈ [n]) are pairwise non-positively correlated.

(PAFFD) Preferential attachment with fitness and fixed degree. To vertex n + 1

we assign m half-edges. Conditionally on Gn, connect each half-edge
independently to some i ∈ [n] with probability

Zn(i) + Fi
m0 +m(n− n0) + Sn

.
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(PAFUD) Preferential attachment with fitness and updating degree. To vertex n+ 1

we assign m half-edges. Let Zn,j(i) denote the in-degree of vertex i when
n + 1 has attached j of its half-edges, j = 1, . . . ,m. For j = 1, . . . ,m,
conditionally on the graph of size n including the first j− 1 half-edges from
n+ 1, connect the jth half-edge to i ∈ [n] with probability

Zn,j−1(i) + Fi
m0 +m(n− n0) + (j − 1) + Sn

.

Remark 2.2. The quantity in (2.2) is always less than 1, since
∑n0

i=1Zn0
(i) = m0 and at

each step Zn(i) increases by at most one. Note also that for the PAFRO model, the exact
distribution of (∆Zn(i), i ∈ [n]) is not specified. For example, for m = 1, the PAFFD and
the PAFUD model are identical and both satisfy PAFRO. Another possibility is to consider
a model with a random out-degree, where (∆Zn(i), i ∈ [n]) is a vector of independent
Bernoulli variables with success probability as given in (2.2).

We have defined our random graph model for an arbitrary fitness distribution. How-
ever, for the analysis the most interesting case occurs when we are dealing with heavy-
tailed distributions. In this case the fitness can have a significant effect on the behaviour
of the system as a whole, whereas the ‘fitness effect’ is smoothed out when its tail
behaviour is too light. In the latter case, one sees no differences in the mean-field
behaviour when changing from a deterministic, fixed fitness to random i.i.d. fitness
values. Therefore, in the following, we frequently consider the following assumption:

Assumption 2.3. The fitness distribution is a power law with exponent α > 1, i.e.

P(F ≥ x) = µ(x,∞) = `(x)x−(α−1), for x > 0,

where ` is a slowly-varying function at infinity, i.e. for all c > 0 limx→∞ `(cx)/`(x) = 1.

We continue by stating our first main result. We define the following measures,

Γn :=
1

n

n∑

i=1

Zn(i)δFi , Γ(k)
n :=

1

n

n∑

i=1

1{Zn(i)=k}δFi , pn(k) := Γ(k)
n ([0,∞)), (2.3)

which correspond to the the empirical fitness distribution of a vertex sampled with
weight given by its in-degree, then the joint empirical fitness-in-degree distribution and
finally the empirical degree distribution.

Theorem 2.4 (Degree distributions in PAF models). Consider the three PAF models as in
Definition 2.1 and suppose the fitness satisfies E[F ] <∞. Let θm := 1 + E[F ] /m. Then,
almost surely, for any k ∈ N0, as n→∞,

Γn → Γ, Γ(k)
n → Γ(k), and pn(k)→ p(k), (2.4)

where the first two statements hold with respect to the topology of weak convergence
and the limits are given as

Γ(dx) =
x

θm − 1
µ(dx), Γ(k)(dx) =

θm
x+ θm

k∏

`=1

(`− 1) + x

`+ x+ θm
µ(dx), (2.5)

and

p(k) =

∫ ∞

0

θm
x+ θm

k∏

`=1

(`− 1) + x

`+ x+ θm
µ(dx). (2.6)
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Remark 2.5. Throughout this article we work with Definition 2.1. However, Theorem 2.4
also holds under the following slightly weaker conditions. Set

F̄n :=
1

n

n∑

i=1

(Zn(i) + Fi),

and define the degree increment at step n+ 1 of vertex i by ∆Zn(i) := Zn+1(i)−Zn(i).
We assume the graph Gn0 is given deterministically such that m0 :=

∑
i∈[n0]Zn0

(i) ≥ 1.
Furthermore, we assume for n ≥ n0,

(A1) E[∆Zn(i) | Gn] = (Zn(i) + Fi)/(nF̄n)1{i≤n}.

(A2) ∃ Cvar > 0 : Var(∆Zn(i) | Gn) ≤ CvarE[∆Zn(i) | Gn].

(A3) supi=1,...,n n
∣∣P(∆Zn(i) = 1 | Gn)− E[∆Zn(i) | Gn]

∣∣ a.s.−→ 0.

(A4) Conditionally on Gn, {∆Zn(i)}i∈[n] is negatively quadrant dependent in the sense
that for any i 6= j and k, l ∈ Z+,

P(∆Zn(i) ≤ k,∆Zn(j) ≤ l | Gn) ≤ P(∆Zn(i) ≤ k | Gn)P(∆Zn(j) ≤ l | Gn) . (2.7)

As can be seen from the proof, Theorem 2.4 holds for any evolving random graph model
that satisfies these assumptions. See also Lemma 4.3 below, where we show that the
PAFFD and the PAFUD model satisfy the negative quadrant dependency as in (A4).

By comparing with the case where the fitness is constant, we can interpret Theo-
rem 2.4 such that the degree of a typical vertex can be found via a two-step process,
where first the fitness is chosen according to µ and then the degree evolves as in the
case with an additive constant equal to the fitness.

However, while at first our result looks similar to the constant fitness case, by looking
at the tail exponent of the degree distribution we can see that this is only the case when
the fitness is not too heavy-tailed. Indeed, suppose that the fitness distribution follows
a power law, then we can distinguish three different regimes. As the next theorem
shows, if the fitness distribution has finite moments of order θm = 1 + E[F ] /m, then the
degree distribution has power law exponent 1 + θm, which is the same as in the model
with constant fitness equal to E[F ]. Using the terminology used in the field of random
media, we refer to this situation as the weak disorder regime. However, if the fitness
distribution is more heavy-tailed, but still with finite first moment, then the degree
distribution follows the same power law as the fitness distribution, a situation which
we refer to as the strong disorder regime. Finally, we can also consider the extreme
disorder case when the fitness distribution does not have a finite first moment. In this
case we show that with high probability, a uniformly chosen vertex has not received any
incoming edges (since most connections are made to vertices with very high fitness).

Theorem 2.6. Suppose p(k), k ∈ N0, is as in (2.6) and θm = 1 + E[F ] /m.

(i) Weak disorder. If E[Fθm ] <∞, then for k →∞,

p(k) ∼ Ck−(1+θm), where C := θm

∫ ∞

0

Γ(x+ θm)

Γ(x)
µ(dx),

and where Γ is the Gamma function.

(ii) Strong disorder. Suppose F has a power law distribution as in Assumption 2.3.
Then, if α = 1 + θm and E[Fθm ] =∞, we have as k →∞

p(k) = Θ(`?(k)k−(1+θm)),
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where `?(k) :=
∫ k

1
`(x)/x dx.

If α ∈ (2, 1 + θm), then as k →∞,

p(k) = Θ(`(k)k−α).

(iii) Extreme disorder. Suppose F has a power law distribution as in Assumption 2.3
with α ∈ (1, 2) and consider the three PAF models as in Definition 2.1. Let Un be
a uniformly chosen vertex in Gn, let ε > 0 and let En := {Zn(Un) = Zn0

(Un)}, be
the event that Un has not increased its degree with respect to the initialisation Gn0 .
Then, for n sufficiently large,

P(En) ≥ 1− Cn−((2−α)∧(α−1))/α+ε,

for some constant C > 0.

Our next main result provides a more detailed analysis of the dynamic behaviour of
the system by describing the asymptotics of the maximal degree. As might be expected
from the different phases observed for the tail of the degree distribution, there are also
three distinct phases for the maximal degree. Again under the assumption that the
fitness has a power law, we observe that in the weak disorder regime, where the fitness
has relatively light tails, the vertex with maximal degree is one of the old vertices, similar
to the system with constant fitness. This first result (parts (i) and (iii) in the theorem
below) in the special case of the PAFUD/PAFFD model with m = 1 is also contained
in [23].

However, if the fitness is more heavy-tailed (but still with finite first moment), i.e. in
the strong disorder regime, the maximal degree grows at the same rate as the maximal
fitness in the system (i.e. approximately like n1/(α−1)). In this case, the maximal degree
satisfies a delicate balance between arriving early enough and having large fitness.
Finally, in the extreme disorder regime, where the fitness does not have a first moment,
the maximal degree grows of order n, again satisfying a non-trivial optimisation between
large fitness value and arriving early. The main difference compared to the strong
disorder regime is that now the sum of the fitness values in the normalization, e.g.
in (2.2), is random to first order and depends on the extreme values of the fitness
landscape. As is common in extreme value theory, the limiting variables in the strong
and extreme disorder regime are described in terms of a functional of a Poisson point
process capturing the extremes of the fitness (in competition with the advantage of
arriving early).

Theorem 2.7 ((Maximum) degree behaviour in PAFs). Consider the three PAF models as
in Definition 2.1. First, the following results hold for fixed degrees:

(i) Suppose E[F1+ε] <∞ for some ε > 0, then for all fixed i ∈ N,

Zn(i)n−1/θm a.s.−→ ξi, (2.8)

where ξi is an almost surely finite random variable with no atom at 0 and θm :=

1 + E[F ] /m.

(ii) When the fitness distribution satisfies Assumption 2.3 with α ∈ (1, 2), for all fixed
i ∈ N,

Zn(i)
a.s.−→ Z∞(i), (2.9)

for some almost surely finite random variable Z∞(i).

In the following let In := arg maxi∈[n]Zn(i) (resolving any ties by taking the smaller
index).

EJP 0 (2012), paper 0.
Page 7/54

https://www.imstat.org/ejp

38



A phase transition for preferential attachment models with additive fitness

(iii) Weak disorder: If E[Fθm+ε] <∞ for some ε > 0, then we have

In
a.s.−→ I, max

i∈[n]
Zn(i)n−1/θm a.s.−→ sup

i≥1
ξi, (2.10)

for some almost surely finite random variable I.

Additionally, assume that the fitness distribution is a power law with parameter α as in
Assumption 2.3 and define un := sup{t ∈ R : P(F ≥ t) ≥ 1/n}. Let Π be a Poisson point
process on (0, 1) × (0,∞) with intensity measure ν(dt,dx) := dt × (α − 1)x−αdx. Then,
the following results hold:

(iv) Strong disorder: When α ∈ (2, 1 + θm),

(In/n,max
i∈[n]
Zn(i)/un)

d−→ (I, sup
(t,f)∈Π

f(t−1/θm − 1)), (2.11)

where I
d
= Bθm , with B ∼ Beta(θm − (α− 1), α) and where max(t,f)∈Π f(t−1/θm − 1)

has a Fréchet distribution with shape parameter α−1 and scale parameter (Γ(θm−
(α− 1))Γ(α)/Γ(θm))1/(α−1), where Γ is the Gamma function.

(v) Extreme disorder: When α ∈ (1, 2), let Π be a Poisson point process on E :=

(0, 1)× (0,∞) with intensity measure ν(dt, dx) := dt× (α− 1)x−αdx. Then,

(In/n,max
i∈[n]
Zn(i)/n)

d−→
(
I ′,m sup

(t,f)∈Π

f

∫ 1

t

(∫

E

g1{u≤s}dΠ(u, g)

)−1

ds

)
, (2.12)

for some random variable I ′ with values in (0, 1).

3 Overview of the proofs

In this section, we give a short overview of the proofs of the main theorems and the
structure of the remaining paper.

In Section 4 we prove Theorems 2.4 and 2.6. To prove Theorem 2.4, we use the
theory of stochastic approximation in a similar setup as in [12], where it was used for
models with multiplicative fitness.

The main idea is to consider, for 0 ≤ f < f ′ <∞, the quantities

Γn((f, f ′]) =
1

n

n∑

i=1

Zn(i)1{Fi∈(f,f ′]}, Γ(k)
n ((f, f ′]) =

1

n

n∑

i=1

1{Zn(i)=k,Fi∈(f,f ′]}, k ≥ 0,

where 0 < f < f ′ < ∞. Then, by considering the conditional increment and using the
preferential attachment dynamics, we show that

Γn+1((f, f ′])− Γn((f, f ′]) ≤ 1

n+ 1
(An −BnΓn((f, f ′])) + (Rn+1 −Rn),

and also a similar lower bound with slightly different sequences An, Bn. This should be
interpreted as a time-discretisation of a differential inequality. Then, a basic stochastic
approximation argument (see also Lemma 4.1 below) shows that if An, Bn and Rn
converge almost surely, then we obtain an upper bound on the lim sup of Γn((f, f ′]) (and
similarly a lower bound). By an approximation argument this yields convergence of
Γn. We obtain similar bounds for Γ

(k)
n ((f, f ′]) (involving Γ

(k−1)
n ((f, f ′])) so that with an

induction argument we also can deduce convergence of Γ
(k)
n .

In the last part of Section 4 we prove Theorem 2.6 using standard arguments.
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The remainder of the paper deals with the asymptotics of the degree of a fixed vertex,
as well as the maximal degree, as stated in Theorem 2.7. In the following we only discuss
the proof for the PAFUD model, but the proofs for the PAFRO model and PAFFD model
follow with minor modifications.

A central tool in the analysis of the degree evolutions is the following martingale
introduced by [20] in the context of classical preferential attachment (see also [15]). For
k ≥ −min{Fi, 1}, define a sequence

Mk
n(i) := ckn

(Zn(i) + Fi + (k − 1)

k

)
, (3.1)

where ckn is a carefully chosen normalisation sequence and

(
a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
, for a, b > −1 such that a− b > −1,

is the generalized binomial coefficient defined in terms of the Gamma function Γ. Next,
we write

PF and EF

for the (regular) conditional probability measure (and its expectation respectively) when
conditioning on the fitness values F1,F2, . . .. Then, as for the standard preferential
model, one can show that (Mk

n(i), n ≥ i) is a martingale under the conditional measure
PF .

Note that (3.1) with k = 1 gives,

Zn(i) = (c1n)−1M1
n(i)−Fi,

and M1
n(i) converges as it is a non-negative martingale. So for fixed i, the leading order

is determined by c1n. Indeed, we see that

ckn ≈
n−1∏

j=1

(
1− k

mj + Sj

)m
≈ exp

{
−
n−1∑

j=1

k

j + Sj/m

}
, (3.2)

where Sj =
∑j
`=1 F`. In Lemma 6.4, we prove that if E[F ] < ∞, then by the law of

large numbers the sequence ckn rescaled by nk/θm converges almost surely. Moreover, if
α ∈ (1, 2) (for a power law fitness distribution), then ckn converges almost surely without
rescaling. This proves the first two statements (2.8) and (2.9) of Theorem 2.7.

To prove the statements about the maximal degree, we first consider the conditional
expectation of Zn(i) which, using the martingale M1

n(i), can be written as

EF [Zn(i)] = Fi
( c1i
c1n
− 1
)
, (3.3)

at least for i > n0, otherwise a small correction is necessary. From this point, the proofs
in the three different regimes deviate from each other.

First, if we assume that E[F ] <∞, then by (3.3) and the asymptotics of c1n in (3.2) we
can deduce that

EF [Zn(i)] ≈ Fi
((n

i

)1/θm
− 1
)
. (3.4)

Now, suppose that E
[
Fθm+ε

]
<∞ for some ε > 0. Then, in Lemma 6.6, we show that

lim
i→∞

sup
n≥n0∨i

M1
n(i) = 0.
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Intuitively, this follows from (3.4), since under the assumption that E
[
Fθm+ε

]
<∞ for

some ε > 0, the maximum of the fitness values satisfies maxi∈[n] Fi = o(n1/θm) (with high
probability), so that the term (ni )1/θm dominates for i small. We then use the following
result for triangular arrays ai,n, 1 ≤ i ≤ n,: if limn→∞ ai,n = ai for all i ∈ N, and if
supn≥i ai,n = bi and limi→∞ bi = 0, we obtain limn→∞maxi∈[n] ai,n = supi≥1 ai. Using this
result on ai,n = c1n(Zn(i) + Fi) = M1

n(i) yields, together with (3.4), the weak disorder
result in (2.10).

Next, we consider the strong disorder regime, where the fitness distribution is a
power law with parameter α with α ∈ (2, 1 + θm). Extreme value theory tell us that in
this case maxi∈[n] Fi ≈ n1/(α−1) so that (3.4) suggests that in this regime vertices with
high fitness have a chance to compete with the old vertices. To capture the asymptotics
of the peaks of the fitness landscape more precisely, we consider the point process

Πn :=

n∑

i=1

δ(i/n,Fi/un), (3.5)

where un := sup{t ≥ 0 : P(F ≥ t) ≥ 1/n}. Then, classical extreme value theory (see
e.g. [21, Corollary 4.19]) tells us that

Πn ⇒ Π,

in the vague topology, where Π is a Poisson point process on (0, 1)× (0,∞) with intensity
measure ν(dt,dx) := dt× (α− 1)x−αdx (see also Section 5 below for more details). From
this convergence, we can then deduce using (3.4) that

max
i∈[n]

EF [Zn(i)/un]
d−→ sup

(t,f)∈Π

f(t−1/θm − 1),

see the first part of Proposition 6.1 for details. A non-trivial part of the proof is showing
that the approximation in (3.4) works sufficiently well for the relevant range of i. The
proof of Theorem 2.7 is then completed by showing concentration of Zn(i) around its
conditional mean, so that

max
i∈[n]
Zn(i)/un −max

i∈[n]
EF [Zn(i)/un]

P−→ 0.

The concentration argument relies on the martingale Mk
n(i) for carefully chosen k (which

correspond approximately to kth moments of Zn(i)), see the first part of Proposition 6.2.
Finally, we consider the extreme disorder regime, where α ∈ (1, 2) so that the fitness

does not have finite first moments. In particular, the law of large numbers no longer
applies to the sum Sn =

∑n
i=1 Fi appearing in the normalizing constant in the attachment

probabilities. In this case, we obtain from (3.2) that, for i of order n,

c1i
c1n
− 1 ≈ exp

{
m

n−1∑

j=i

1

Sj

}
− 1 ≈ m

n−1∑

j=i

1

Sj
.

Then, it follows from (3.3) with the same Πn as in (3.5) that

EF [Zn(i)]

n
≈ mFi

un

( 1

n

n∑

j=i

un
Sj

)

= m
Fi
un

∫ 1

i/n

(∫

E

f1{t≤s}dΠn(f, t)
)−1

ds

=: m
Fi
un
T i/n(Πn),

(3.6)
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where E := (0, 1)× (0,∞). From this we can eventually deduce that

max
i∈[n]

EF [Zn(i)/n]
d−→ m sup

(t,f)∈Π

f

∫ 1

t

(∫

E

g1{u≤s}dΠ(u, g)

)−1

ds.

Unfortunately, the corresponding functionals T i/n(Πn) are not directly continuous in Πn,
so that the arguments involve careful cut-off arguments (see Section 5). The final step is
to show concentration

max
i∈[n]
Zn(i)/n−max

i∈[n]
EF [Zn(i)/n]

P−→ 0,

which again uses the martingale M1
n(i), but in this case is slightly easier than for α > 2

due to the scaling factor n.
Overall, the proof of Theorem 2.7 is structured in the following way. In Section 5, we

first show convergence of the functional T i/n(Πn) introduced in (3.6). We also take the
opportunity to recap some of the basics of convergence of point process convergence
and we also carry out the technical cut-off arguments. In Section 6 we introduce the
martingales Mk

n(i) more formally and prove some of their properties. We use these
properties to show concentration in all three regimes and the point process convergence
in the strong disorder case. Finally, in Section 7 we prove Theorem 2.7 by gathering
together all the necessary results from the previous two sections.

4 Degree and fitness distributions

This section is devoted to first proving Theorems 2.4 and 2.6, where the proof of the
former theorem uses the ideas of stochastic approximation. Before proving Theorem 2.4,
we introduce several preliminary lemmas. The first lemma, which is the main ingredient
in the proof of Theorem 2.4, comes from [12, Lemma 3.1]:

Lemma 4.1. Let (Xn)n≥0 be a non-negative stochastic process. We suppose that the
following estimate holds:

Xn+1 −Xn ≤
1

n+ 1
(An −BnXn) +Rn+1 −Rn, a.s.

where

(i) (An)n≥0 and (Bn)n≥0 are almost surely convergent stochastic processes with de-
terministic limits A,B > 0.

(ii) (Rn)n≥0 is an almost surely convergent stochastic process.

Then, almost surely,

lim sup
n→∞

Xn ≤
A

B
.

Similarly, if instead, under the same conditions (i) and (ii),

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn,

then almost surely,

lim inf
n→∞

Xn ≥
A

B
.

In the next lemma, we discuss two specific examples of the stochastic process Rn as
introduced in Lemma 4.1, which are used in the proof of Theorem 2.4:
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Lemma 4.2. Recall Γn and Γ
(k)
n from (2.3) and let 0 < f < f ′ <∞, k ∈ N0 and assume

the fitness distribution has a finite mean. We then have the two following results:

(i) Set Xn := Γ
(k)
n ((f, f ′]), ∆Rn := Xn+1 − E[Xn+1 | Gn] and Rn :=

∑n
j=n0

∆Rj . Then
Rn converges almost surely.

(ii) Set Xn := Γn((f, f ′]), ∆Rn := Xn+1 −E[Xn+1 | Gn] and Rn :=
∑n
j=n0

∆Rj . Then Rn
converges almost surely.

Before proving Lemma 4.2, we recall the concept of negative quadrant dependence
(NQD) as introduced in (2.7). We note that the PAFRO model has been defined with an
additional assumption of non-positively correlated degree increments. Note that, since
the degree increments in this model are Bernoulli random variables, NQD is equivalent
to non-positive correlation. For the PAFFD and PAFUD models, NQD follows directly
from the definition of the model, as we show in the following lemma:

Lemma 4.3. Recall the degree increments ∆Zn(i) := Zn+1(i)− Zn(i). For the PAFUD
and PAFFD model, the (∆Zn(i))i∈[n] are negative quadrant dependent, in the sense of
(2.7).

Proof. The NQD of the PAFFD model directly follows from [17], as (∆Zn(i))i∈[n] forms a
multinomial distribution, for which NQD is known. For the PAFUD model, (∆Zn(i))i∈[n]

is a convolution of unlike multinomial distributions (the probabilities of the multino-
mial distribution change at each step/sampling). In the case that the change in the
probabilities in independent of the previous samplings (where previous edges are at-
tached), [17] provides a proof of NQD. However, in this case, the changes in the sampling
probabilities are dependent, so that a more careful argument is required. Let us write
∆Zn(i) := X1 + . . .+Xm,∆Zn(j) := Z1 + . . .+Zm, where the Xk, Zk are Bernoulli random
variables which take value 1 if the kth edge of vertex n+ 1 connects to i, j, respectively,
k ∈ [m]. Since X1, Z1 are part of a multinomial vector with one trial, (2.7) holds for
these random variables. Then, we investigate X1 +X2, Z1 +Z2, where we prove (2.7) for
X1 +X2, Z1 +Z2, but with ≥ rather than ≤ in the event, which is an equivalent definition
of NQD. We write, for k, ` ≥ 0,

P(X1 +X2 ≥ k, Z1 + Z2 ≥ ` | Gn) = E[P(X2 ≥ k −X1, Z2 ≥ `− Z1 | Gn, X1, Z1) | Gn] .

Since, conditionally on Gn and (X1, Z1), the random variables (X2, Z2) are part of a
multinomial vector with a single trial, the same argument we use for X1, Z1 gives the
upper bound

E[P(X2 ≥ k −X1 | Gn, X1, Z1)P(Z2 ≥ `− Z1 | Gn, X1, Z1) | Gn] . (4.1)

It follows from the definition of the PAFUD model that, conditionally on X1, X2 is
independent of Z1 and, conditionally on Z1, Z2 is independent of X1. As the probabilities
in (4.1) are increasing functions of X1, Z1, respectively, it follows from the definition of
negative association in [17], which is equivalent to NQD, that

E[P(X2 ≥ k −X1 | Gn, X1, Z1)P(Z2 ≥ `− Z1 | Gn, X1, Z1) | Gn]

≤ E[P(X2 ≥ k −X1 | Gn, X1) | Gn]E[P(Z2 ≥ `− Z1 | Gn, Z1) | Gn]

= P(X1 +X2 ≥ k | Gn)P(Z1 + Z2 ≥ ` | Gn) .

We can iterate the same argument to obtain the same inequality for the m terms in
∆Zn(i) = X1 + . . . + Xm,∆Zn(j) = Z1 + . . . + Zm. We then recall that this result is
equivalent to (2.7), as required.
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Proof of Lemma 4.2. First note that, in both cases, Rn is a zero-mean martingale with
respect to Gn. The convergence of Rn can be proved by showing its martingale incre-
ments ∆Rn = Rn+1−Rn have summable conditional second moments, or have summable
second moments. Define, for 0 < f < f ′ <∞, In := {i ∈ [n] | Fi ∈ (f, f ′]}. We first deal
with case (i). We write ∆Rn as the difference of two martingales. For k ≥ 1,

∆Rn =
1

n+ 1

∑

i∈In

(
1{Zn+1(i)=k} − P(Zn+1(i) = k | Gn)

)
= ∆M (1)

n −∆M (2)
n ,

where ∆M
(i)
n is a martingale difference, i.e. ∆M

(i)
n = M

(i)
n+1 −M

(i)
n , i ∈ {1, 2}, and

∆M (1)
n =

1

n+ 1

(∑

i∈In
1{Zn(i)<k,Zn+1(i)≥k} − E

[∑

i∈In
1{Zn(i)<k,Zn+1(i)≥k}

∣∣∣∣Gn
])
,

∆M (2)
n =

1

n+ 1

(∑

i∈In
1{Zn(i)≤k,Zn+1(i)>k} − E

[∑

i∈In
1{Zn(i)≤k,Zn+1(i)>k}

∣∣∣∣Gn
])
.

(4.2)

Indeed, we have used that for all i ∈ N, k ∈ N0,

1{Zn+1(i)=k} = 1{Zn+1(i)=k,Zn(i)≤k} = 1{Zn+1(i)≥k,Zn(i)≤k} − 1{Zn+1(i)>k,Zn(i)≤k}

= 1{Zn(i)=k} + 1{Zn+1(i)≥k,Zn(i)<k} − 1{Zn+1(i)>k,Zn(i)≤k}.

Note that, as the indicators in M
(1)
n ,M

(2)
n only differ by one index k, it is sufficient to

prove the summability of the conditional second moment of ∆M
(2)
n for all fixed k ≥ 1. So,

we write

E
[
(∆M (2)

n )2
∣∣∣Gn

]

=
1

(n+ 1)2
E

[(∑

i∈In

(
1{Zn(i)≤k,Zn+1(i)>k} − P(Zn(i) ≤ k,Zn+1(i) > k|Gn)

))2
∣∣∣∣Gn
]
.

(4.3)

Using the non-positive correlation of the degree increments for the PAFRO model and
Lemma 4.3 for the PAFFD and PAFUD models, we can bound this from above by,

1

(n+ 1)2

∑

i∈In
E
[(
1{Zn(i)≤k,Zn+1(i)>k} − P(Zn(i) ≤ k,Zn+1(i) > k | Gn)

)2 ∣∣∣Gn
]

≤ 1

(n+ 1)2

∑

i∈In
1{Zn(i)≤k}P(∆Zn(i) ≥ 1 | Gn)

≤ 1

(n+ 1)2

n∑

i=1

E[∆Zn(i) | Gn] =
m

(n+ 1)2
,

(4.4)

where we use Markov’s inequality in the final step and use that the increments of all
in-degrees is exactly m by the definition of the PAFFD and PAFUD models. Hence,
combining (4.3) and (4.4) yields the almost sure summability of the conditional second
moments of ∆M

(2)
n , which implies the almost sure convergence of Rn. For the PAFRO

model, we use the same steps as in (4.3) and (4.4), but take the expected value on the
left- and right-hand sides. Then, using the definition of the PAFRO model, we arrive at

E
[
(∆M (2)

n )2
]
≤ 1

(n+ 1)2

n∑

i=1

E[∆Zn(i)] ≤ 1

(n+ 1)2

n∑

i=1

E[Zn(i) + Fi]
m0 + (n− n0)

. (4.5)

By using the tower rule and conditioning on Gn−1, we find

E[Zn(i) + Fi] = E[E[Zn(i) + Fi | Gn−1]] ≤ E[Zn−1(i) + Fi]
(

1 +
1

m0 + (n− 1− n0)

)
.
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Continuing this recursion yields

E[Zn(i) + Fi] ≤ E[Zi∨n0(i)+Fi]
n−1∏

j=i∨n0

(
1+

1

m0 + (j − n0)

)
≤ (m0 + E[F ])(m0 + (n− n0))

m0 + (i ∨ n0 − n0)
.

Using this upper bound in (4.5), we obtain

E
[
(∆M (2)

n )2
]
≤ 1

(n+ 1)2

(
C1 +

n∑

i=n0+1

m0 + E[F ]

m0 + (i− n0)

)
≤ C1 + C2 log n

(n+ 1)2
, (4.6)

for some constants C1, C2 > 0, which is indeed summable.
For k = 0, we can write ∆Rn as

∆Rn := ∆M (1)
n + ∆M (2)

n + (1{Fn+1∈(f,f ′]} − µ((f, f ′]))/(n+ 1),

where ∆M
(1)
n = 0 and ∆M

(2)
n is as in (4.2) with k = 0. We already proved the summability

of the second conditional moment of M (2)
n which follows for k = 0 as well, and the last

term has a second conditional moment bounded by µ((f, f ′])/(n+1)2, which is summable
too. This proves the almost sure convergence of Rn.

For (ii), we have

∆Rn =
1

n+ 1

∑

i∈In
(Zn+1(i)− E[Zn+1(i) | Gn]) =

1

n+ 1

∑

i∈In
(∆Zn(i)− E[∆Zn(i) | Gn]),

as Zn+1(i) = Zn(i) + ∆Zn(i). We now bound the conditional second moments of ∆Rn by

E
[
∆R2

n | Gn
]

=
1

(n+ 1)2
E
[(∑

i∈In
(∆Zn(i)− E[∆Zn(i) | Gn])

)2 ∣∣∣ Gn
]

≤ 1

(n+ 1)2

∑

i∈In
Var(∆Zn(i) | Gn).

(4.7)

The second line follows from Lemma 4.3 for the PAFFD and PAFUD models and from
the conditional non-positive correlation of the Zn(i) for the PAFRO model. Then, for
the PAFUD and PAFFD models, we use that ∆Zn(i) is a sum of m indicator random
variables and hence that its variance can be bounded by m times its mean. Also noting
that the sum of all the increments of the in-degrees equals m, we obtain the upper bound
(m/(n + 1))2, which is summable almost surely. For the PAFRO model, we again take
the expected value on both sides of (4.7) to get rid of the conditional statement. Then,
as the variance of ∆Zn(i) is bounded by its mean for the PAFRO model, and the same
approach as used in (4.5) through (4.6) works here as well to arrive at a summable upper
bound.

With these lemmas at hand, we can prove Theorem 2.4:

Proof of Theorem 2.4. We provide a proof for the PAFFD and PAFUD models, the proof
for the PAFRO model follows by setting m = 1; the additional required adjustments are
all included in the proof of Lemma 4.2.

First, we show that Γn converges in the weak∗ topology to Γ, defined in (2.5). To this
end, we let 0 < f < f ′ <∞, and set

In := {i ∈ [n] | Fi ∈ (f, f ′]}, Xn :=
1

n

∑

i∈In
Zn(i) = Γn((f, f ′]). (4.8)
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We develop a recursion for Xn+1 − Xn. By writing Zn+1(i) = Zn(i) + ∆Zn(i) and
F̄n := (m0 +m(n− n0) + Sn)/n, we find

E[Xn+1 | Gn] =
1

n+ 1

(∑

i∈In
E[Zn+1(i) | Gn]

)
= Xn +

1

n+ 1

(∑

i∈In

Zn(i) + Fi
nF̄n/m

−Xn

)
,

where we note that this holds for both the PAFFD as well as the PAFUD model. Then,

Xn+1 −Xn =
1

n+ 1

(∑

i∈In

Zn(i) + Fi
nF̄n/m

−Xn

)
+ ∆Rn,

with ∆Rn := Xn+1 − E[Xn+1 | Gn]. It is now possible to write the following two bounds:

Xn+1 −Xn ≥
1

n+ 1

(
−
(

1− m

F̄n

)
Xn +

|In|
n

mf

F̄n

)
+ ∆Rn,

Xn+1 −Xn ≤
1

n+ 1

(
−
(

1− m

F̄n

)
Xn +

|In|
n

mf ′

F̄n

)
+ ∆Rn.

We note that, by the strong law of large numbers, |In|/n converges almost surely to
µ((f, f ′]) and F̄n converges almost surely to mθm, where we recall that θm = 1 +E[F ] /m.
From Lemma 4.2 it follows that Rn :=

∑n
k=n0

∆Rn converges almost surely, so it follows
from Lemma 4.1 that almost surely

lim inf
n→∞

Xn ≥
f

θm − 1
µ((f, f ′]), lim sup

n→∞
Xn ≤

f ′

θm − 1
µ((f, f ′]). (4.9)

We now take a countable subset F ⊂ [0,∞) that is dense, such that for each f ∈ F,
µ({f}) = 0. As F is countable, there exists an almost sure event Ω0 on which both
statements in (4.9) hold for any pair f, f ′ ∈ F such that f < f ′. Take an arbitrary open
set U , and approximate U from below by a sequence of sets (Um)m∈N, where each Um
is a finite union of small disjoint intervals (f, f ′], with f, f ′ ∈ F. Then, for any m ∈ N,
applying a Riemann approximation to (4.9),

lim inf
n→∞

Γn(U) ≥ lim inf
n→∞

Γn(Um) ≥ Γ(Um) on Ω0. (4.10)

Hence, by the monotone convergence theorem, it follows that lim infn→∞ Γn(U) ≥ Γ(U).
Likewise, for any closed set C, a similar argument shows that lim supn→∞ Γn(C) ≤ Γ(C).
It hence follows from the Portmanteau lemma [18, Theorem 13.16] that Γn converges to
Γ a.s. in the weak∗ topology.

The approach to prove the other two parts in (2.4) is to apply induction on k to the
convergence of the measures Γ

(k)
n (and thus pn(k)). We prove the statements in (2.4)

hold for k = 0, the initialisation of the induction, below, and show the induction step first.
Let us assume that the last two statements in (2.4) hold for all 0 ≤ i < k, for some k ≥ 1.
We now advance the induction hypothesis.

Let us take 0 < f < f ′ < ∞, and define Xn := Γ
(k)
n ((f, f ′]). Then, we can write the
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following recurrence relation, using In as in (4.8):

E
[
Xn+1

∣∣Gn
]

=
1

n+ 1

n+1∑

i=1

P
(
Zn+1(i) = k,Fi ∈ (f, f ′]

∣∣ Gn
)

=
1

n+ 1

∑

i∈In

k∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn
)

=
1

n+ 1

(∑

i∈In

k−1∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn
)

+
∑

i∈In
1{Zn(i)=k}

(
1− P

(
∆Zn(i) ≥ 1

∣∣ Gn
)) )

,

(4.11)

where in the second step we note that Zn+1(n+ 1) = 0 < k by definition and where we
isolated the Zn(i) = k case in the last step. We do this, as this proves to be the only part
that does not converge to zero almost surely. We can then write

E
[
Xn+1

∣∣Gn
]

= Xn +
1

n+ 1

(∑

i∈In

k−1∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn
)

−
∑

i∈In
1{Zn(i)=k}P

(
∆Zn(i) ≥ 1

∣∣ Gn
)
−Xn

)

= Xn +
1

n+ 1

(∑

i∈In

k−1∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn
)

−
∑

i∈In
1{Zn(i)=k}

(
P
(
∆Zn(i) ≥ 1

∣∣ Gn
)
− k + Fi
nF̄n/m

)

+
∑

i∈In
1{Zn(i)=k}

(
f ′ −Fi
nF̄n/m

)
−
(

1 +
k + f ′

F̄n/m

)
Xn

)
.

(4.12)

We can therefore write, using that f ′ −Fi ≥ 0 holds almost surely for all i ∈ In,

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn, (4.13)

where

An :=
∑

i∈In

k−1∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣Gn
)

−
∑

i∈In
1{Zn(i)=k}

(
P
(
∆Zn(i) ≥ 1

∣∣Gn
)
− k + Fi
nF̄n/m

)
,

Bn := 1 +
k + f ′

F̄n/m
,

∆Rn := Rn+1 −Rn = Xn+1 − E[Xn+1 | Gn] .

(4.14)

We now prove the convergence of all three terms. First, we prove the convergence of An
to

A :=
1

θm

∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx). (4.15)

We note that, by the induction hypothesis, almost surely,

lim
n→∞

∣∣∣
∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx)−

∫

(f,f ′]
(k − 1 + x) Γ(k−1)

n (dx)
∣∣∣ = 0. (4.16)
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We now deal with the two terms in An separately. We start with the second term. By
the definition of the PAFFD and PAFUD models in Definition 2.1, it follows that for both
models,

P(∆Zn(i) ≥ 1 | Gn) ≤ 1−
(

1− Zn(i) + Fi
nF̄n

)m
=

m∑

`=1

(
m

`

)
(−1)`+1

(Zn(i) + Fi
nF̄n

)`
.

Using this in the second term of An in (4.14), we obtain

∑

i∈In
1{Zn(i)=k}

m∑

`=2

(
m

`

)
(−1)`+1

(k + Fi
nF̄n

)`
≤ Cm

m∑

`=2

n1−`
(k + f ′

F̄n

)`
, (4.17)

where Cm > 0 is a constant. We note that this expression tends to zero almost surely as
n tends to infinity, and that a similar lower bound that tends to zero almost surely can be
constructed as well. For the first term, we write,

lim
n→∞

∣∣∣
∑

i∈In

k−1∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣Gn
)
− 1

θm

∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx)

∣∣∣

≤ lim
n→∞

[ ∣∣∣ 1

θm
− 1

F̄n/m
∣∣∣
∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx)

+
1

F̄n/m
∣∣∣
∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx)−

∫

(f,f ′]
(k − 1 + x) Γ(k−1)

n (dx)
∣∣∣

+
∣∣∣
∑

i∈In
1{Zn(i)=k−1}P

(
∆Zn(i) = 1

∣∣Gn
)
− m

F̄n

∫

(f,f ′]
(k − 1 + x) Γ(k−1)

n (dx)
∣∣∣

+
∑

i∈In

k−2∑

`=0

1{Zn(i)=`}P
(
∆Zn(i) ≥ 2

∣∣Gn
) ]

.

(4.18)

The first line converges to zero almost surely by the strong law of large numbers. By the
induction hypothesis as used in (4.16), the second line converges to zero almost surely
and by a similar argument as in (4.17) the last line converges to zero almost surely. For
the third line, we use the definition of Γ

(k−1)
n , as defined in (2.3), to find

∑

i∈In
1{Zn(i)=k−1}P

(
∆Zn(i) = 1

∣∣Gn
)
− m

F̄n

∫

(f,f ′]
(k − 1 + x) Γ(k−1)

n (dx)

=
∑

i∈In
1{Zn(i)=k−1}

(
P
(
∆Zn(i) = 1

∣∣Gn
)
− k − 1 + Fi

nF̄n/m
)
,

and so, again using similar steps as in (4.17), the third line in (4.18) converges to zero
almost surely, which finishes the proof of the almost sure convergence of An to A, as in
(4.15). Now, for Bn we immediately conclude that

lim
n→∞

Bn = 1 +
k + f ′

θm
=: B,

almost surely. Finally, the almost sure convergence of Rn again follows from Lemma 4.2.
We thus obtain from Lemma 4.1,

lim inf
n→∞

Xn ≥
A

B
=

1

k + f ′ + θm

∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx). (4.19)

Likewise, the upper bound

lim sup
n→∞

Xn ≤
1

k + f + θm

∫

(f,f ′]
(k − 1 + x) Γ(k−1)(dx) (4.20)
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can be established from (4.12), too, when we replace the f ′ by f in (4.12) and note that
f −Fi ≤ 0 holds almost surely for all i ∈ In.

We now again take a countable subset F ⊂ [0,∞) that is dense, such that for each
f ∈ F, µ({f}) = 0. As F is countable, there exists an almost sure event Ω0 on which
both (4.19) and (4.20) hold for any pair f, f ′ ∈ F such that f < f ′. A similar argument as
in (4.9) and (4.10) can be made, using Riemann approximations and the Portmanteau
lemma, which yields for any open set U ⊆ [0,∞) and any closed set C ⊆ [0,∞),

lim inf
n→∞

Γ(k)
n (U) ≥

∫

U

k − 1 + x

k + x+ θm
Γ(k−1)(dx),

lim sup
n→∞

Γ(k)
n (C) ≤

∫

C

k − 1 + x

k + x+ θm
Γ(k−1)(dx),

(4.21)

and thus Γ
(k)
n converges in the weak∗ topology to Γ(k), given by

Γ(k)(dx) =
(k − 1) + x

k + x+ θm
Γ(k−1)(dx) = . . . =

k∏

`=1

(`− 1) + x

`+ x+ θm
Γ(0)(dx).

What remains is to perform the initialisation of the induction, regarding Γ
(0)
n . Analogous

to the steps in (4.11), we now set Xn := Γ
(0)
n ((f, f ′]), with 0 < f < f ′ <∞, to obtain

E[Xn+1 | Gn] =
1

n+ 1

(∑

i∈In
P(Zn+1(i) = 0 | Gn) + P(Fn+1 ∈ (f, f ′])

)

=
1

n+ 1

(∑

i∈In
1{Zn(i)=0}P(∆Zn(i) = 0 | Gn) + µ((f, f ′])

)

= Xn +
1

n+ 1

(
−
∑

i∈In
1{Zn(i)=0}P(∆Zn(i) ≥ 1 | Gn)−Xn + µ((f, f ′])

)
.

Similar to (4.12), (4.13) and (4.14), we find

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) + ∆Rn, (4.22)

where An → µ((f, f ′]), Bn → (f ′ + θm)/θm a.s. as n → ∞, and ∆Rn = Rn+1 − Rn :=

Xn+1 − E[Xn+1 | Gn]. As before, the almost sure convergence of Rn follows from Lemma
4.2. Analogously to (4.22),

Xn+1 −Xn ≤
1

n+ 1
(An −B′nXn) + ∆Rn

holds, with B′n → (1 + f + θm)/θm almost surely. Hence, using Lemma 4.1,

lim inf
n→∞

Xn ≥
θm

f ′ + θm
µ((f, f ′]), lim sup

n→∞
Xn ≤

θm
f + θm

µ((f, f ′]),

and thus, with a similar reasoning as in (4.21), almost surely Γ
(0)
n converges weakly in

the weak∗ topology to

Γ(0)(dx) :=
θm

x+ θm
µ(dx),

which yields

Γ(k)(dx) =
θm

x+ θm

k∏

`=1

(`− 1) + x

`+ x+ θm
µ(dx).
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Then,

p(k) := lim
n→∞

pn(k) =

∫ ∞

0

θm
x+ θm

k∏

`=1

(`− 1) + x

`+ x+ θm
µ(dx),

which proves (2.4) and concludes the proof.

We now prove Theorem 2.6:

Proof of Theorem 2.6. We start by proving (i). The integrand of the integral in (2.6) can
be written as

θm
x+ θm

k∏

`=1

(`− 1) + x

`+ x+ θm
= θm

Γ(x+ θm)

Γ(k + x+ 1 + θm)

Γ(k + x)

Γ(x)
.

From [16, Theorem 1] it follows that k1+θmΓ(k + x)/Γ(k + x+ 1 + θm) ≤ 1 for all x, k ≥ 0.
By also using that Γ(t+ a)/Γ(t) = ta(1 +O(1/t)) as t→∞ and a fixed, we find that the
dominated convergence theorem yields

lim
k→∞

p(k)k1+θm =

∫ ∞

0

θm
Γ(x+ θm)

Γ(x)
µ(dx),

which is finite since E[Fθm ] <∞.
We now prove (ii), so the fitness distribution satisfies Assumption 2.3. First, let

α ∈ (2, 1 + θm). We write the integral in (2.6) as two separate integrals by splitting the
domain into (0, k) and (k,∞). We first concentrate on an upper bound. We note that, by
symmetry, it also follows that x1+θmΓ(k + x)/Γ(k + x + 1 + θm) ≤ 1. Hence, we obtain
the upper bound

k−(1+θm)

∫ k

0

θm
Γ(x+ θm)

Γ(x)xθ
xθµ(dx) +

∫ ∞

k

θm
Γ(x+ θm)

Γ(x)xθm
x−1µ(dx). (4.23)

We note that there exists a constant c > 1 such that Γ(x + θm)/(Γ(x)xθm) ∈ [1, c] when
x ≥ 1. Hence, using Assumption 2.3, we can bound (4.23) from above by

θmk
−(1+θm)

∫ 1

0

Γ(x+ θm)

Γ(x)
µ(dx) + cθmk

−(1+θm)

∫ k

1

xθmµ(dx) + cθmk
−1

∫ ∞

k

µ(dx)

= o(k−α) + cθmk
−(1+θm)E

[
Fθm1{1≤Fθm≤k}

]
+ cθm`(k)k−α

= o(k−α) + cθ2
mk
−(1+θm)

∫ k

1

xθm−1`(x)x−(α−1)dx+ cθm`(k)k−α,

(4.24)

where the first term follows from the fact that α < 1 + θm and that the integral from 0 to
1 is finite. Hence, by [5, Proposition 1.5.8], as k tends to infinity, this is asymptotically

cθm(2θm − (α− 1))

θm − (α− 1)
`(k)k−α.

For a lower bound, we bound the second integral in (4.23) from below by zero, and
bound the first integral, using similar steps as before, from below by

o(k−α) + θ2
mk
−(1+θm)

∫ k

1

xθm−1`(x)x−(α−1)dx, (4.25)

which is asymptotically, as k tends to infinity, (θ2
m/(θm − (α − 1))`(k)k−α. Finally, for

α = 1 + θm, we note that the first term of (4.24) is no longer o(k−α), but of the same
order as the other terms. Furthermore, since the argument of the integral in the last line
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of (4.24) (as well as in (4.25)) now equals `(x)/x, the integral equals `?(k) and it follows
from [5, Proposition 1.5.9a] that either `? converges, in which case this falls under the
first case (i) as the θth

m moment exists, or that `? is slowly varying itself. Thus, in the
latter case, we obtain an upper and lower bound with asymptotics, respectively,

(
θm

∫ 1

0

Γ(x+ θm)

Γ(x)
µ(dx) + cθm`(k) + cθ2

m`
?(k)

)
k−(1+θm) =: L(k)k−(1+θm),

(
θm

∫ 1

0

Γ(x+ θm)

Γ(x)
µ(dx) + θ2

m`
?(k)

)
k−(1+θm) =: L(k)k−(1+θm).

We also have from [5, Proposition 1.5.9a] that, in the case that `? diverges as k tends to
infinity, `?(k)/`(k)→∞ as k →∞ as well, so that L(k), L(k) = Θ(`?(k)) as k →∞, which
finishes the proof of (ii).

Finally, we tend to (iii). We provide a proof for the PAFFD and PAFUD models with
m ≥ 1 first, and then show how the results follows for the PAFRO model as well.

Recall that Un is a uniformly chosen vertex from [n]. We first condition on the size of
the fitness of Un. Let 0 < β < ((2− α)/(α− 1) ∧ 1). Note that when Un > n0, En denotes
the event that Zn(Un) = 0. Then,

P(En) ≥ P
(
En ∩ {FUn ≤ nβ}

)
= P

(
FUn ≤ nβ

)
− P

(
Ecn ∩ {FUn ≤ nβ}

)
. (4.26)

Clearly, for ε > 0 fixed and n large,

P
(
FUn ≤ nβ

)
= P

(
F ≤ nβ

)
= 1− `(nβ)n−(α−1)β ≥ 1− n−(α−1)β+ε, (4.27)

where we use Potter’s theorem [5, Theorem 1.5.6], which states that for any fixed ε > 0

and any function `, slowly-varying at infinity,

lim
x→∞

`(x)xε =∞, lim
x→∞

`(x)x−ε = 0. (4.28)

For the second probability on the right-hand side of (4.26), we write

P
(
Ecn ∩ {FUn ≤ nβ}

)
= P

( n−1⋃

j=Un∨n0

{∆Zj(Un) ≥ 1} ∩ {FUn ≤ nβ}
)

=

n∑

k=1

1

n
P
( n−1⋃

j=k∨n0

{∆Zj(k) ≥ 1} ∩ {Fk ≤ nβ}
)

≤
n∑

k=1

n−1∑

j=k∨n0

1

n
P
(
{∆Zj(k) ≥ 1} ∩ {Fk ≤ nβ}

)
.

Now, using Markov’s inequality, applying the tower rule and switching the summations
yields the upper bound, writing F̄n = (m0 +m(n− n0) + Sn)/n,

1

n

n−1∑

j=n0

j∑

k=1

E
[
(Zj(k) + nβ)/(jF̄j)1{Fk≤nβ}

]

=
1

n

n−1∑

j=n0

j∑

k=1

(
E
[
Zj(k)/(jF̄j)1{Fk≤nβ}

]
+ nβE

[
(jF̄j)−1

1{Fk≤nβ}
] )

≤ 1

n

n−1∑

j=n0

j∑

k=1

(
E[Zj(k)/(m0 +Mj)] + nβE

[
(m0 +Mj)

−1
] )
,

(4.29)
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where Mj := maxk≤j Fk, we bound jF̄j from below by m0 + Mj and we bound the
indicator variables from above by 1. We now bound the first moment from above. Note
that, for the PAFFD and PAFUD models,

j∑

k=1

E[Zj(k)] = m0 +m(j − n0), (4.30)

since every vertex i > n0 has out-degree m. Hence, combining (4.29) and (4.30), we
obtain the upper bound, by using the tower rule and conditioning on the fitness,

1

n

n−1∑

j=n0

(m+m0 + nβ)jE[1/(m0 +Mj)] ≤ Cnβ−1
n−1∑

j=n0

jE[1/(m0 +Mj)] , (4.31)

when n is sufficiently large, for some constant C > 0. We now bound E[1/(m0 +Mj)]

from above.
E[1/(m0 +Mj)] = E

[
1/(m0 +Mj)1{Mj≤j1/(α−1)−ε}

]

+ E
[
1/(m0 +Mj)1{Mj≥j1/(α−1)−ε}

]

≤ P
(
Mj ≤ j1/(α−1)−ε

)
+ j−1/(α−1)+ε

(4.32)

where we boundMj from below by zero and j1/(α−1)−ε in the first and second expectation,
respectively. Then, using 1− x ≤ e−x, for j large,

P
(
Mj ≤ j1/(α−1)−ε

)
≤ exp{−`(j1/(α−1)−ε)j(α−1)ε} ≤ exp{−j(α−1)ε/2}, (4.33)

where we use Potter’s theorem, as in (4.28), in the last step. By combining (4.32) and
(4.33), it follows that for j sufficiently large (say j > j0 for some j0 ∈ N),

E[1/(m0 +Mj)] ≤ 2j−1/(α−1)+ε,

and E[1/(m0 +Mj)] ≤ 1 for j ≤ j0. Using this in (4.31) yields

P
(
Ecn ∩ {FUn ≤ nβ}

)
≤ Cj0nβ−1 + 4Cnβ−1

n−1∑

j=j0+1

j1−1/(α−1)+ε

≤ C̃nβ+((1−1/(α−1))∨−1)+ε

= C̃nβ−((2−α)/(α−1)∧1)+ε,

(4.34)

which, by the definition of β and the fact that ε is arbitrarily small, tends to zero as n
tends to infinity. Finally, we combine (4.34) and (4.27) in (4.26) to find

P(En) ≥ 1− n−(α−1)β+ε − C̃nβ−((2−α)/(α−1)∧1)+ε. (4.35)

We now finish the proof of Theorem 2.4 by choosing the optimal value of β ∈ (0, ((2 −
α)/(1− α) ∧ 1)), namely β = (2− α)/(α(α− 1)) ∧ (1/α), and setting C = 1 + C̃.

For the PAFRO model, set m to equal 1. Then, there is one adjustment required.
Namely, the equality in (4.30) does not hold. Rather, using (4.6) yields the upper bound

j∑

k=1

EF [Zj(k)] ≤ Cj(log j − 1) ≤ Cj1+ε,

for some large constant C > 0. This adds at most an extra ε in the exponent of the
final expression in (4.35) and since ε is arbitrarily small, the result still holds, which
concludes the proof.
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5 Convergence of point process functionals

As mentioned in the proof overview in Section 3, in this section we complete an
important step in the proof of Theorem 2.7 and show convergence of a functional of
a point process as defined in (3.6) in the extreme disorder regime (α ∈ (1, 2)). At the
same time, we take the chance to discuss some of the required theory of point process
convergence, which also is useful in the next section when we consider the strong
disorder case. A good reference for this theory is the book [21].

Recall un from Theorem 2.7 and let Mp(E) be the space of point measures (point
processes) on E := (0, 1)× (0,∞). Let us define the point process

Πn :=

n∑

i=1

δ(i/n,Fi/un), (5.1)

with δ a Dirac measure. It follows from [21, Corollary 4.19] that, when the fitness
distribution satisfies Assumption 2.3 for any α > 1, Πn has a weak limit Π, which is a
Poisson point process (PPP) on E with intensity measure ν(dt,dx) := dt× (α− 1)x−αdx.
[21, Proposition 4.20] shows that an almost surely continuous functional T1 applied to
Πn converges in distribution to T1 applied to Π by the continuous mapping theorem. In
this section, we prove a similar result, though a slightly different approach is required.

Let ε, δ > 0, Eδ := (0, 1)× (δ,∞). For a point measure Π ∈Mp(E), define

T ε(Π) :=

∫ 1

ε

(∫

E

f1{t≤s}dΠ(t, f)
)−1

ds, T εδ (Π) :=

∫ 1

ε

(∫

Eδ

f1{t≤s}dΠ(t, f)
)−1

ds, (5.2)

whenever these are well-defined. That is, when Π((0, s) × (0,∞)) > 0 for all s ∈ (ε, 1)

and when Π((0, s)× (δ,∞)) > 0 for all s ∈ (ε, 1), respectively. As mentioned above, the
reason for studying the functional T ε is due to (3.6), where we see that the EF [Zn(i)/n]

is (well) approximated by m(Fi/un)T i/n(Πn) in the extreme disorder regime, since the
law of large numbers no longer applies to the fitness random variables in this regime.
As a result, studying the maximum conditional mean in-degree can be done via studying
this functional T ε. Therefore, the main goal in this section is to prove the following
proposition:

Proposition 5.1. Let (Fi)i∈N be i.i.d. copies of a random variable F , which follows a
power-law distribution as in Assumption 2.3 with α ∈ (1, 2). Consider the point measure
Πn in (5.1), its weak limit Π and the functional T ε in (5.2). Then,

max
i∈[n]

Fi
un
T i/n(Πn)

d−→ sup
(t,f)∈Π

fT t(Π).

To prove Proposition 5.1, one would normally prove the continuity of the functional
T ε and combine the weak convergence of Πn with the continuous mapping theorem to
yield the required result, as Resnick does in his proof of Proposition 4.20. This does,
however, not work in this case. Due to the specific form of the functional, proving its
continuity is not directly possible. Therefore, we investigate T εδ as defined in (5.2) and
show that this functional is indeed continuous and is ‘sufficiently close’ to T ε. This is
worked out in the following two lemmas:

Lemma 5.2. Consider, for ε ∈ (0, 1), δ > 0 fixed, the operator T εδ as in (5.2). Then, the
mapping Π 7→∑

(t,f)∈Π:t>ε,f>δ δ(fT tδ (Π)) is continuous in the vague topology for measures
Π ∈Mp(E) satisfying the following conditions:

Π({s} × (0,∞)) = Π((s, t)× {0}) = Π((s, t)× {∞}) = 0, ∀s < t ∈ [0, 1],

Π((0, ε)× (δ,∞)) > 0, Π((s, t)× (x,∞)) <∞, ∀s < t ∈ [0, 1], x > 0.
(5.3)
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Remark 5.3. We note that for a PPP Π with intensity measure ν as introduced above, all
the conditions in (5.3) are satisfied almost surely, except for Π((0, ε)× (δ,∞)) > 0, which
happens with positive probability only.

Proof of Lemma 5.2. We first prove that, for fixed ε ∈ (0, 1), δ > 0, the mapping
Π 7→ ∑

(t,f)∈Π:t>ε,f>δ δ(T εδ (Π)) is continuous in the vague topology for measures Π ∈
Mp(E). We obtain this by taking Πn,Π ∈ Mp(E) such that Πn

v→ Π, and show that the
image of the mapping of Πn introduced above also converges vaguely to the mapping
of Π. Since the image is a point measure with only finitely many points, due to the last
condition in (5.3), we can label the points (t, f) in Π such that f > δ, by (ti, fi), 1 ≤ i ≤ p
for some p ∈ N, where we order the points such that ti is increasing in i. We can do the
same for the points of Πn, where we add a superscript n. Vague convergence is then
equivalent to the convergence of (tni , f

n
i ) ∈ Πn to (ti, fi) ∈ Π for all 1 ≤ i ≤ p, since there

are only finitely many points.
By [21, Proposition 3.13], we can fix η > 0 and take n large enough such that the balls

Bi := B((ti, fi), η), centred around (ti, fi) with radii η, contain the points (tni , f
n
i ) and

Bi ∩Bj = ∅ for i 6= j. Thus, let us set q := Π((0, ε)× (δ,∞)) > 0 and take n large enough
such that Πn((0, ε)× (δ,∞)) = q as well. That is, points (ti, fi), (t

n
i , f

n
i ), i = 1, . . . , q, satisfy

tni < ε and points (ti, fi), (t
n
i , f

n
i ), i = q + 1, . . . , p, satisfy tni > ε (due to the first condition

in (5.3) there are no points (t, f) such that t = ε a.s.). We can now express T εδ (Π) in
terms of a sum. Namely,

T εδ (Π) =

∫ 1

ε

(∫

Eδ

f1{t≤s}dΠ(t, f)
)−1

ds =

p+1∑

i=q+1

[
(ti − ti−1 ∨ ε)

( i−1∑

j=1

fi

)−1]
, (5.4)

where we set tp+1 := 1. A similar expression follows for Πn, with tnp+1 := 1. Since the
sum contains a finite number of terms, the convergence of T εδ (Πn)→ T εδ (Π) immediately
follows from the convergence of the individual points. As Πn

v−→ Π, fni → fi as n tends

to infinity for all i = 1, . . . , p as well. What remains to prove, is that (T
tni
δ (Πn), 1 ≤ i ≤

p)→ (T tiδ (Π), 1 ≤ i ≤ p) as n→∞. Using the triangle inequality, we obtain

|T t
n
i

δ (Πn)− T tiδ (Π)| ≤ |T t
n
i

δ (Πn)− T tiδ (Πn)|+ |T tiδ (Πn)− T tiδ (Π)|.

Let us first consider 2 ≤ i ≤ p. The second term on the right-hand side tends to zero
by the above, as for i ≥ 2, Πn((0, ti) × (δ,∞)) > 0 and thus the conditions in (5.3) are
satisfied with ε = ti. The first term can be rewritten using the definition of T εδ in (5.2) as

|T t
n
i

δ (Πn)− T tiδ (Πn)| =
∫ tni ∨ti

tni ∧ti

(∫

Eδ

f1{t≤s}dΠn(t, f)
)−1

ds

≤ |tni − ti|
(∫

Eδ

f1{t≤tni ∧ti}dΠn(t, f)
)−1

,

where we bound the integrand of the outer integral from above by replacing the inte-
gration variable s by tni ∧ ti in the integral’s argument. In the integral that remains, we
can bound f from below by δ and therefore, for n sufficiently large, we can bound the
integral from below by δ, as there is always at least one particle (t, f) such that t ≤ tni ∨ ti
since i ≥ 2 and the balls Bi introduced above are disjoint. We thus obtain the upper
bound |tni − ti|/δ, which tends to zero with n. For i = 1, we adapt our approach to find

|T t
n
1

δ (Πn)− T t1δ (Π)| ≤ min{|T t
n
1

δ (Πn)− T t1δ (Πn)|+ |T t1δ (Πn)− T t1δ (Π)|,
|T t

n
1

δ (Πn)− T t
n
1

δ (Π)|+ |T t
n
1

δ (Π)− T t1δ (Π)|}.
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When t1 < tn1 , the first term is infinite and we use the second term, while the second
term is infinite when t1 > tn1 and we then use the first term. When the first term is finite
(t1 > tn1 ), its first term is bounded from above by (t1 − tn1 )δ−1 < η/δ and its second term
can be bounded by a constant times η, as follows when using (5.4). Similarly, when the
second term of the minimum is finite (t1 ≤ tn1 ), its second term is bounded from above
by (tn1 − t1)δ−1 < η/δ and its first term can be bounded by a constant times η. As η is
arbitrary, the required result holds.

We are also interested in how ‘close’ T ε(Π) and T εδ (Π) (resp. T ε(Πn) and T εδ (Πn)) are
when δ is small (resp. δ is small and n is large). We formalise this in the following lemma:

Lemma 5.4. Consider the operator T εδ as in (5.2) and the point process Πn as in (5.1),
let Π be its weak limit and let Assumption 2.3 hold with α ∈ (1, 2). For ε ∈ (0, 1), η > 0

fixed,

T εδ (Π)
P−→ T ε(Π) as δ ↓ 0,

lim
δ↓0

lim
n→∞

P(|T εδ (Πn)− T ε(Πn)| ≥ η) = 0.
(5.5)

Proof. We start by proving the first statement. We fix η > 0 and define Eξδ := (0, ε) ×
(δ(2−α)/2(1 + δ−ξ),∞), where ξ ∈ (0, (2− α)/2). Then,

P(|T εδ (Π)− T ε(Π)| ≥ η) ≤ P(|T εδ (Π)− T ε(Π)| ≥ η |Π(Eξδ ) 6= 0) + P(Π(Eξδ ) = 0). (5.6)

We condition on {Π(Eξδ ) 6= 0} to ensure that T εδ (Π) is finite and show that on {Π(Eξδ ) 6= 0}
the difference in T εδ (Π) and T ε(Π) tends to zero in probability as δ ↓ 0. We first compute
the second probability on the right-hand side.

P
(

Π(Eξδ ) = 0
)

= exp

{
−
∫

Eξδ

(α− 1)y−αdydt

}

= exp

{
− εδ−(α−1)(2−α)/2(1 + δ−ξ)−(α−1)

}
.

(5.7)

Note that, by the choice of ξ, this probability tends to zero with δ. Now, we bound the
conditional probability in (5.6). Defining the event Fδ,ξ := {Π(Eξδ ) 6= 0}, we obtain,

P(|T εδ (Π)− T ε(Π)| ≥ η |Fδ,ξ)

= P

(∣∣∣∣
∫ 1

ε

(∫

Eδ

f1{t≤s}dΠ(t, f)

)−1

−
(∫

E

f1{t≤s}dΠ(t, f)

)−1

ds

∣∣∣∣ ≥ η
∣∣∣∣Fδ,ξ

)

≤ P
(∫ 1

ε

(∫

E\Eδ
f1{t≤s}dΠ(t, f)

)/(∫

Eδ

f1{t≤s}dΠ(t, f)

)2

ds ≥ η
∣∣∣∣Fδ,ξ

)

≤ P
(∫

E\Eδ
fdΠ(t, f) ≥ η

1− ε

(∫

Eδ

f1{t≤ε}dΠ(t, f)

)2 ∣∣∣∣Fδ,ξ
)
,

(5.8)

where, in the last line, we replaced the integration variable s with 1 in the integral in
the numerator and with ε in the integral in the denominator. We now bound the integral
over Eδ on the right-hand side from below using Π(Eξδ ) ≥ 1 and use Markov’s inequality
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to find the upper bound

P

(∫

E\Eδ
fdΠ(t, f) ≥ η

1− εδ
2−α(1 + δ−ξ)2

∣∣∣∣Fδ,ξ
)

= P

(∫

E\Eδ
fdΠ(t, f) ≥ η

1− εδ
2−α(1 + δ−ξ)2

)

≤ E
[∫

E\Eδ
fdΠ(t, f)

]
1− ε
η

δ−(2−α)(1 + δ−ξ)−2

=

∫

E\Eδ
(α− 1)x1−αdtdx

1− ε
η

δ−(2−α)(1 + δ−ξ)−2 =
(1− ε)(α− 1)

η(2− α)
(1 + δ−ξ)−2,

(5.9)

which tends to zero as δ ↓ 0. Note that we can omit the conditional statement in the
second line, as the integral is independent of Π(Eξδ ). Combining (5.7) and the upper

bound of (5.9) in (5.6), implies that T εδ (Π)
P−→ T ε(Π) as δ ↓ 0. We now prove the second

statement in (5.5), which uses a similar approach. Namely, using analogous steps as in
(5.6), (5.8) and (5.9), we obtain

P(|T ε(Πn)− T εδ (Πn)| ≥ η)

≤ P
(∫

E\Eδ
fdΠn(t, f) ≥ η

1− εδ
2−α(1 + δ−ξ)−2

)
+ P

(
Πn(Eξδ ) = 0

)
.

(5.10)

The second probability on the right-hand side converges to P(Π(Eξδ ) = 0) as n tends to
infinity, and then to zero as δ tends to zero by (5.7). Using Markov’s inequality, we obtain
an upper bound for the first probability on the right-hand side of the form

n∑

i=1

E
[
Fi/un1{Fi/un≤δ}

] 1− ε
η

δ−(2−α)(1 + δ−ξ)2

=
1− ε
η

δ−(2−α)(1 + δ−ξ)2 n

un

∫ δun

x`

`(x)x−(α−1)dx,

where x` := inf{x ∈ R : FF (x) > 0}. Using [5, Proposition 1.5.8], yields
∫ δun

x`

`(x)x−(α−1)dx ∼ 1

2− α (δun)2−α`(δun), as n→∞.

Thus, as n→∞, since ` is slowly-varying,

1− ε
η

δ−(2−α)(1 + δ−ξ)2 n

un

∫ δun

x`

`(x)x−(α−1)dx ∼ (1− ε)
η(2− α)

(1 + δ−ξ)−2n`(un)u−(α−1)
n .

Using [21, Corollary 4.19 and Proposition 3.21], we conclude that n`(un)u
−(α−1)
n con-

verges to 1 and so the right-hand side tends to zero with δ. Thus,

lim
δ↓0

lim
n→∞

P(|T ε(Πn)− T εδ (Πn)| ≥ η) = 0, (5.11)

which finishes the proof.

We now prove Proposition 5.1.

Proof of Proposition 5.1. For a closed set C ⊆ R+ and η > 0, let Cη := {x ∈ R :

infy∈C |x− y| ≤ η} be the η-enlargement of C and let us define the events

En,ε,δ(η) :=
{∣∣∣max

i∈[n]

Fi
un
T i/n(Πn)− max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)

∣∣∣ < η
}
,

Fn,ε,δ := {Πn((0, ε)× (δ,∞)) ≥ 1}.
(5.12)
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We can then write

P
(

max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

)
≤ P

({
max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

}
∩ En,ε,δ(η) ∩ Fn,ε,δ

)

+ P(En,ε,δ(η)c) + P
(
F cn,ε,δ

)
.

(5.13)

Then, on En,ε,δ(η) and using Cη, we can bound the first probability on the right-hand
side from above by

P

({
max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn) ∈ Cη

}
∩ Fn,ε,δ

)
.

We note that every term in the maximum is bounded from above by 1. Then, since for
n large Πn((ε, 1) × (δ,∞)) = Π((ε, 1) × (δ,∞)) < ∞ and on Fn,ε,δ, it follows from the
continuous mapping theorem, Lemma 5.2 and Remark 5.3 that

lim
n→∞

P

({
max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn) ∈ Cη

}
∩ Fn,ε,δ

)

= P

({
sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π) ∈ Cη

}
∩ Fε,δ

)
,

(5.14)

where Fε,δ := {Π((0, ε)× (δ,∞)) ≥ 1}. We now claim that it is possible to remove the δ
in T εδ (Π) and the δ and ε constraints in the supremum in (5.14), as well as that the two
terms in the last line of (5.13) tend to zero when letting n tend to infinity, and then δ and
ε to zero. These two tasks require a very similar approach, as they are essentially the
same, one with Πn and the other with its weak limit Π. We start with the latter claim.
We want to show that

∣∣∣ sup
(t,f)∈Π:t≥ε,f≥δ

fT tδ (Π)− sup
(t,f)∈Π

fT t(Π)
∣∣∣ P−→ 0 as first δ ↓ 0 and then ε ↓ 0. (5.15)

To this end, we write
∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π)− sup

(t,f)∈Π

fT t(Π)
∣∣∣ ≤

∣∣∣ sup
(t,f)∈Π:t≥ε,f≥δ

fT tδ (Π)− sup
(t,f)∈Π:t≥ε

fT t(Π)
∣∣∣

+
∣∣∣ sup

(t,f)∈Π:t≥ε
fT t(Π)− sup

(t,f)∈Π

fT t(Π)
∣∣∣

=: D1 +D2.

We first prove D1 tends to zero in probability as δ ↓ 0. Namely, using the triangle
inequality and the definitions of T εδ and T ε in (5.2),

D1 ≤
∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π)− sup

(t,f)∈Π:t≥ε,f≥δ
fT t(Π)

∣∣∣

+
∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT t(Π)− sup

(t,f)∈Π:t≥ε
fT t(Π)

∣∣∣

≤ sup
(t,f)∈Π:t≥ε,f≥δ

f(T tδ (Π)− T t(Π)) + sup
(t,f)∈Π:t≥ε,f<δ

fT t(Π)

≤
(

sup
(t,f)∈Π

f
)

sup
(t,f)∈Π:t≥ε

(T tδ (Π)− T t(Π)) + δT ε(Π)

≤
(

sup
(t,f)∈Π

f
)

(T εδ (Π)− T ε(Π)) + δT ε(Π),

(5.16)

where the final inequality follows from the definitions of T ε and T εδ . Since α > 1,
sup(t,f)∈Π f < ∞ almost surely. Furthermore, for any ε > 0 fixed, T ε(Π) < ∞ almost

EJP 0 (2012), paper 0.
Page 26/54

https://www.imstat.org/ejp

57



A phase transition for preferential attachment models with additive fitness

surely as well. Finally, by Lemma 5.4, (T εδ (Π)− T ε(Π))
P−→ 0 as δ ↓ 0. Thus, we obtain

that D1
P−→ 0 as δ ↓ 0. We now show that D2

a.s.−→ 0 as ε ↓ 0. We discretise the interval
(0, 1) into smaller sub-intervals [2−(k+1), 2−k), k ≥ 0. Then,

lim
ε↓0

D2 ≤ lim
ε↓0

sup
(t,f)∈Π:t<ε

fT t(Π) = lim
K→∞

sup
k≥K

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

fT t(Π). (5.17)

We now bound the inner supremum, by controlling the size of the maximum fitness value
in these sub-intervals. That is, we define, for ξ > 0, k ∈ Z+,

`k := 2−(k+1)/(α−1) log((k + 2)1+ξ)−1/(α−1),

hk := 2−(k+1)/(α−1) log((1− (k + 2)−(1+ξ))−1)−1/(α−1).
(5.18)

Now,

P
(

Π([2−(k+1), 2−k)× (hk,∞)) 6= 0
)

= 1− exp
{
−
∫ 2−k

2−(k+1)

∫ ∞

hk

(α− 1)x−αdxdt
}

= 1− exp{log((1− (k + 2)−(1+ξ))}
≤ k−(1+ξ),

P
(

Π([2−(k+1), 2−k)× (`k,∞)) = 0
)

= exp
{
−
∫ 2−k

2−(k+1)

∫ ∞

`k

(α− 1)x−αdxdt
}

≤ k−(1+ξ),

(5.19)

which are both summable. Therefore, by the Borel-Cantelli lemma, it follows that almost
surely there exist a random index L, such that for all k ≥ L,

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

f ∈ (`k, hk). (5.20)

Now, on the event {t ≤ 2−L},

T t(Π) =

∫ 1

t

(∫

E

f1{u≤s}dΠ(u, f)
)−1

ds

=

∫ 2−L

t

(∫

E

f1{u≤s}dΠ(u, f)
)−1

ds+

∫ 1

2−L

(∫

E

f1{u≤s}dΠ(u, f)
)−1

ds

≤
∫ 2−L

t

( sup
(u,f)∈Π:u≤s

f)−1ds+
(∫

E

f1{u≤2−L}dΠ(u, f)
)−1

(5.21)

By applying (5.20) to the both integrals, we find an upper bound

dlog2(1/t)e∑

j=L

2−(j+2)`−1
j+1 + `−1

L .

Using the definition of `j in (5.18), for j large and some ζ ∈ (0, α− 1), we obtain

T t(Π) ≤ C
dlog2(1/t)e∑

j=L

2(j+1)((1+ζ)/(α−1)−1) + `−1
L

≤ C̃t1−(1+ζ)/(α−1) + `−1
L ,

(5.22)

for some constant C̃ > 0. Again using (5.20) and on {k > L} (similar to t ≤ 2−L), we find

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

fT t(Π) ≤ hk(C̃2(k+1)((1+ζ)/(α−1)−1) + `−1
L )

≤ C̃2(k+1)(ζ/(α−1)−1)kγ + hk`
−1
L ,
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for some γ > (1 + ξ)/(α− 1). We finish the argument by noting that L <∞ almost surely
and hence

lim
K→∞

sup
k≥K

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

fT t(Π) ≤ lim
K→∞

sup
k≥K

C̃2(k+1)(ζ/(α−1)−1)kγ + hk`
−1
L

= lim
K→∞

C̃2(K+1)(ζ/(α−1)−1)Kγ + hK`
−1
L ,

(5.23)

which equals zero by the choice of ζ. Thus, D2
a.s.−→ 0 as ε ↓ 0. Together with the

convergence of D1 to zero in probability, we obtain (5.15). Recall Fn,ε,δ from (5.12)
and Fε,δ = limn→∞ Fn,ε,δ under (5.14). Evidently, by a similar argument as in (5.7),
limδ↓0P(Fε,δ) = 1 for all ε ∈ (0, 1), which also shows the third probability in (5.13) tends
to zero as n→∞ and then δ ↓ 0. Combining this with (5.15) and (5.14) yields

lim
ε↓0

lim
δ↓0

lim
n→∞

P

({
max
εn≤i≤n
Fi≥δun

Fi
un
T
i/n
δ (Πn) ∈ Cη

}
∩ Fn,ε,δ

)
= P

(
sup

(t,f)∈Π

fT t(Π) ∈ Cη
)
. (5.24)

Recall En,ε,δ(η) from (5.12). What remains to prove, is that for all η > 0 fixed,

lim
ε↓0

lim
δ↓0

lim
n→∞

P(En,ε,δ(η)c) = 0,

which is very similar to (5.15), though we now deal with Πn rather than Π. Again, we
use the triangle inequality to find

P(En,ε,δ(η)c) ≤ P
(∣∣∣ max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n
Fi
un
T i/n(Πn)

∣∣∣ ≥ η/2
)

+ P

(∣∣∣ max
εn≤i≤n

Fi
un
T i/n(Πn)−max

i∈[n]

Fi
un
T i/n(Πn)

∣∣∣ ≥ η/2
)

=: P1 + P2.

(5.25)

We first deal with P1. As in (5.16), we split this into two terms, namely

P1 ≤ P
(∣∣∣ max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n
Fi
un
T
i/n
δ (Πn)

∣∣∣ ≥ η/4
)

+ P

(∣∣∣ max
εn≤i≤n

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n
Fi
un
T i/n(Πn)

∣∣∣ ≥ η/4
)
.

(5.26)

To show the first probability tends to zero, we write

∣∣∣ max
εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n
Fi
un
T
i/n
δ (Πn)

∣∣∣ ≤ δ max
εn≤i≤n

T
i/n
δ (Πn) ≤ δT εδ (Πn).

Then, on Fn,ε,δ, T εδ (Πn) converges in distribution to δT εδ (Π) by the continuous mapping
theorem and the fact that T εδ is continuous in Πn, as follows from the proof of Lemma

5.2 and Remark 5.3. So, as δ ↓ 0, T εδ (Π)
P−→ T ε(Π), as follows from the proof of Lemma

5.4, which implies that δT εδ (Π)
P−→ 0 as δ ↓ 0. As before, P(Fn,ε,δ) → 1 as n → ∞ and

then δ ↓ 0, so by intersecting the first probability on the right-hand side of (5.26) with
Fn,ε,δ, F

c
n,ε,δ, as in (5.13), yields that it tends to zero as n → ∞ and then δ ↓ 0. What

remains is to show that the second probability on the right-hand side of (5.26) tends to
zero as n tends to infinity, then δ ↓ 0 and finally ε ↓ 0. We again use a similar argument
as in (5.16) to find

∣∣∣ max
εn≤i≤n

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n
Fi
un
T i/n(Πn)

∣∣∣ ≤
(

max
i∈[n]

Fi
un

)
(T εδ (Πn)− T ε(Πn)). (5.27)
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We show that the product of the maximum and (T εδ (Πn)− T ε(Πn)) converges to zero in
probability as first n → ∞ and then δ ↓ 0. We can use the fact that (T εδ (Πn) − T ε(Πn))

tends to zero in probability as n→∞ and then δ ↓ 0, as is shown in the proof of Lemma
5.4. To extend this result to the product of these two random processes, we introduce
the events Bn,δ := {maxi∈[n] Fi/un ≤ δ−ξ}, for some ξ ∈ (0, (2 − α)/2). Then, splitting
the second probability on the right-hand side of (5.26) into two parts by using (5.27) and
intersecting with the events Bn,δ and Bcn,δ, we obtain the upper bound

P

(∣∣∣ max
εn≤i≤n

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n
Fi
un
T i/n(Πn)

∣∣∣ ≥ η/4
)
≤ P

(
T εδ (Πn)− T ε(Πn) ≥ ηδξ/4

)

+ P
(
Bcn,δ

)
.

P(Bcn,δ) converges to P(Bcδ), where Bδ := {Y ≤ δ−ξ} and Y is the distributional limit of
maxi∈[n] Fi/un. Then, as δ ↓ 0, P(Bcδ) → 0, as Y is almost surely finite. Following the
steps of the argument in (5.10) through (5.11) with ηδξ/4 instead of η, we find

lim sup
n→∞

P(|T ε(Πn)− T εδ (Πn)| ≥ ηδξ/4) ≤ 4(1− ε)
η(α− 2)

δ−ξ(1 + δ−ξ)−2 + lim sup
n→∞

P(Πn(Eξδ ) = 0)

=
4(1− ε)
η(α− 2)

δ−ξ(1 + δ−ξ)−2 + P(Π(Eξδ ) = 0),

which tends to zero as δ ↓ 0. It thus follows that P1 → 0 as n→∞ and then δ ↓ 0.

What remains, is to show that P2 tends to zero as n→∞, ε ↓ 0. This follows from a
similar approach as in (5.17) through (5.23). Recall `k, hk from (5.18). We then divide
the set of indices i ∈ [n] into subsets Ak,n := {i ∈ [n] : i ∈ (2−(k+1)n, 2−kn]}, 0 ≤ k ≤
blog n/ log 2c, and define the events AFk,n :=

{
maxi∈Ak,n Fi/un ∈ (`k, hk)

}
. Using (5.19),

it readily follows that

lim inf
n→∞

P
(
AFk,n

)
≥ 1− 2k−(1+ξ).

Hence, when setting kn := blog n/ log 2c, and for any sufficiently large K ∈ N,

lim inf
n→∞

P

( ⋂

K≤k≤kn
AFk,n

)
≥ 1− CK−ξ, (5.28)

for some constant C > 0, independent of K. Similar to (5.17), we write

lim sup
ε↓0

lim sup
n→∞

P2 = lim sup
K→∞

lim sup
n→∞

P

(
sup
k≥K

sup
i∈Ak,n

Fi
un
T i/n(Πn) ≥ η/4

)
.

Again, the idea is to replace the limit of ε to 0 by the limit of K to∞ and the supremum
over k ≥ K. Now, by intersecting with a similar event to the one in (5.28), we find the
upper bound

lim sup
K→∞

lim sup
n→∞

P

({
sup
k≥K

sup
i∈Ak,n

Fi
un
T i/n(Πn) ≥ η/4

}
∩
( ⋂
√
K≤k≤kn

AFk,n
))

+ P

( ⋃
√
K≤k≤kn

(
AFk,n

)c)
.

(5.29)

By (5.28), it follows that the double limit of the second probability equals zero, so we
focus on the first probability. Following the approach in (5.21) and (5.22) and using a
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Markov bound, we bound the first probability in (5.29) from above by

4

η
E
[

sup
k≥K

sup
i∈Ak,n

Fi
un
T i/n(Πn)1∩√K≤k≤knA

F
k,n

]

≤ 4

η
E

[
sup
k≥K

sup
i∈Ak,n

hk
n

( 2−
√
Kn∑

j=i

un/Mj +

n∑

j=2−
√
Kn

un/Mj

)
1∩√K≤k≤knA

F
k,n

]
,

(5.30)

where we recall that Mj := maxm≤j Fm. We then bound the maximum in the second

sum from below by considering only the indices m ≤ 2−
√
Kn and using the events in the

indicator to further bound the maximum from below by `√K . The terms of the second
sum then are independent of j, which yields the upper bound n(`√K)−1. We rewrite

the first sum, where we note that for i ∈ Ak,n, i ≥ 2−(k+1)n, and as before bound the
maximum from below to find

2−
√
Kn∑

j=i

(Mj/un)−1 ≤
k+1∑

j≥
√
K

∑

p∈Aj,n
(`j+1)−1 ≤ n

k+1∑

j≥
√
K

2−(j+1)(`j+1)−1.

Since, for large j, we can bound (`j)
−1 from above by 2j(1/(α−1)+ζ) for some small ζ,

we obtain the upper bound Cn2(k+1)((2−α)/(α−1)+ζ), for some constant C > 0. Note that
this upper bound, as well as the upper bound stated above for the second sum in (5.30)
are deterministic. Hence, using both upper bounds and bounding the indicator in the
expectation in (5.30) from above by 1 yields the upper bound

Cη sup
k≥K

sup
i∈Ak,n

(hk2(k+1)((2−α)/(α−1)+ζ) + (`√K)−1hk) ≤ Cη sup
k≥K

2−(k+1)(1−ζ)kγ + `−1√
K
hk

= Cη2−(K+1)(1−ζ)Kγ + `−1√
K
hK ,

for some γ > 0 and where Cη = (4/η) max{C, 1}. This bound no longer depends on n,
and as we let K tend to infinity the bound tends to zero. This proves P2 tends to zero
with n → ∞ and then ε ↓ 0. Combining this result with the convergence of P1 to zero
with n→∞ and then δ ↓ 0, it follows that the upper bound in (5.25) tends to zero, and
therefore the two probabilities on the second line of the right-hand side of (5.13) tend to
zero with n→∞, then δ ↓ 0 and finally ε ↓ 0. Together with (5.24), this yields

lim sup
n→∞

P

(
max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

)
≤ P

(
sup

(t,f)∈Π

fT t(Π) ∈ Cη
)
.

Including the limit η ↓ 0 finally yields, by the continuity of the probability measure,

lim sup
n→∞

P

(
max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

)
≤ P

(
sup

(t,f)∈Π

fT t(Π) ∈ C
)
,

and applying the Portmanteau lemma [18, Theorem 13.16] finishes the proof.

6 Martingales and concentration

In this section we state and prove several important results, required for the proof of
Theorem 2.7. As discussed in the overview of the proof of Theorem 2.7 in Section 3, to
study the degree evolution we use particular martingales. Understanding the behaviour
of these martingales is essential for describing the different phases in the behaviour of
the degrees (Zn(i))i∈N as stated in Theorem 2.7.
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We devote this section to (i) proving several results regarding these martingales,
which is required for studying the behaviour of the evolution of the degrees (Zn(i))i∈N
(in the weak disorder regime), (ii) as well as proving other important results regarding
the behaviour of the maximum conditional mean degree, which determines the behaviour
of the maximum degree in the strong and extreme disorder regime, which we deal with
in two separate subsections. First, however, we formulate the following propositions
which outline the behaviour of the maximum degree in the strong and extreme disorder
regime:

Proposition 6.1 (Maximum mean degree in the strong and extreme disorder regime).
Consider the three PAF models as in Definition 2.1. Let Π be a Poisson Point Process
(PPP) on E := (0, 1)× (0,∞) with intensity measure ν(dt,dx) := dt× (α− 1)x−αdx, and
let θm := 1 + E[F ] /m. Then, for α ∈ (2, 1 + θm),

max
i∈[n]

EF [Zn(i)/un]
d−→ max

(t,f)∈Π
f(t−1/θm − 1), (6.1)

while for α ∈ (1, 2),

max
i∈[n]

EF [Zn(i)/n]
d−→ m max

(t,f)∈Π
f

∫ 1

t

(∫

E

g1{u≤s}dΠ(u, g)

)−1

ds. (6.2)

Proposition 6.2 (Concentration in the strong and extreme disorder regime). Consider
the three PAF models as in Definition 2.1. When α ∈ (2, 1 + θm), for any η > 0,

lim
n→∞

P

(∣∣∣max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]

∣∣∣ > ηun

)
= 0. (6.3)

Similarly, when α ∈ (1, 2), for any η > 0,

lim
n→∞

P

(∣∣∣max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]

∣∣∣ > ηn

)
= 0. (6.4)

6.1 A family of martingales

To prove Propositions 6.1 and 6.2 and to understand the behaviour of the maximum
degree in the weak disorder regime, we introduce a family of martingales and derive
some of their properties. We define, for k ∈ R, n, n0,m,m0 ∈ N and a, b > −1 such that
a− b > −1,

ckn(m) :=

n−1∏

j=n0

m∏

`=1

(
1− k

m0 +m(j − n0) + k + (`− 1) + Sj

)
,

c̃kn(m) :=

n−1∏

j=n0

(
1− k

m0 +m(j − n0) + k + Sj

)m
,

(
a

b

)
:=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
,

(6.5)

where we recall Sj from (2.1). For ease of writing, we omit the (m) in ckn(m), c̃kn(m)

whenever there is no ambiguity. We can then formulate the following lemma:

Lemma 6.3 (Degree and fitness martingales). Let i ∈ N, k ≥ −min(Fi, 1). For the PAFRO
model (m = 1) and the PAFUD model with out-degree m ∈ N, the random variable

Mk
n(i) := ckn(m)

(Zn(i) + Fi + (k − 1)

k

)

is a martingale with respect to Gn−1 for n ≥ i ∨ n0, under the conditional probability
measure PF (·). For the PAFFD model with out-degree m ∈ N, the random variable

M̃k
n(i) := c̃kn(m)

(Zn(i) + Fi + (k − 1)

k

)
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is a supermartingale (resp. submartingale) with respect to Gn−1 for n ≥ i ∨ n0, under the
conditional probability measure PF (·) when k ≥ 0 (resp. k ∈ (−min(Fi, 1), 0). Finally, for
the PAFFD model, M1

n(i) is a martingale with respect to Gn−1 for n ≥ i ∨ n0 under the
conditional probability measure PF (·).

Proof. For ease of writing, let us define Xn(i) := Zn(i) + Fi and ∆Xn(i) := Xn+1(i) −
Xn(i) = ∆Zn(i). For the PAFRO model, we use ckn(1), which, as defined in (6.5) for
general m ∈ N, is equal to

ckn(1) =

n−1∏

j=n0

(
1− k

m0 + (j − n0) + k + Sj

)
.

For the proof of for the PAFRO model, we omit the (1) in ckn(1). We can write

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1EF

[(
Xn+1(i) + (k − 1)

k

) ∣∣∣∣ Gn
]

= ckn+1EF

[(
Xn(i) + (k − 1)

k

)
Γ(Xn+1(i) + k)

Γ(Xn(i) + k)

Γ(Xn(i))

Γ(Xn+1(i))

∣∣∣∣ Gn
]

= ckn+1

(
Xn(i) + (k − 1)

k

)
EF

[
1 + ∆Xn(i)

k

Xn(i)

∣∣∣ Gn
]
,

(6.6)

as ∆Xn(i) is either 0 or 1. Then, taking the expected value of ∆Xn(i) yields

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1

(
Xn(i) + (k − 1)

k

)(
1 +

Xn(i)

m0 + (n− n0) + Sn

k

Xn(i)

)
= Mk

n(i),

as ckn+1(1 + k/(m0 + (n − n0) + Sn)) = ckn. Note that the conditional mean of Mk
n(i) is

finite almost surely as well. For the PAFFD model with out-degree m ∈ N, we can follow
the same steps to find

EF [M̃k
n+1(i)

∣∣ Gn] = c̃kn+1

(
Xn(i) + (k − 1)

k

)
EF

[
Γ(Xn+1(i) + k)

Γ(Xn(i) + k)

Γ(Xn(i))

Γ(Xn+1(i))

∣∣∣∣ Gn
]

= c̃kn+1

(
Xn(i) + (k − 1)

k

)
EF

[∆Xn(i)−1∏

`=0

Xn(i) + k + `

Xn(i) + `

∣∣∣∣ Gn
]

≤ c̃kn+1

(
Xn(i) + (k − 1)

k

)
EF

[(
Xn(i) + k

Xn(i)

)∆Xn(i) ∣∣∣∣ Gn
]
,

(6.7)

where we use Gamma function’s properties in the second line and note that x 7→ (x+k)/x

is decreasing in x for k ≥ 0 in the last step. For k ∈ (−min(Fi, 1), 0) the upper bound
becomes a lower bound, as x 7→ (x+ k)/x is decreasing in x in that case. Conditionally
on Gn, the number of edges vertex n+ 1 connects to i is a binomial random variable with
m trials and success probability Xn(i)/

∑n
j=1Xn(j), so

EF

[(
Xn(i) + k

Xn(i)

)∆Xn(i) ∣∣∣∣ Gn
]

=

(
1 +

k∑n
j=1Xn(j)

)m
,

where we use that a random variable X ∼ Bin(m, p) has probability generating function
E
[
zX
]

= (pz + (1− p))m, z ∈ R. Then, recalling that for the PAFFD model
∑n
i=1Xn(i) =

m0 + m(n − n0) + Sn yields the result. For the PAFUD model, we require a few more
steps. As the connection of the ith edge of vertex n+ 1 is dependent on the connection
of edges 1, . . . , i− 1, we iteratively condition on Gn,j , j = m− 1,m− 2, . . . , 0, the graph
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with n vertices where the n+ 1st vertex has connected j of its half-edges to the vertices
1, . . . , n. More precisely, letting Xn,j := Zn,j(i) + Fi, we write

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1EF

[
E

[(
Xn+1,0(i) + (k − 1)

k

) ∣∣∣∣ Gn,m−1

] ∣∣∣∣Gn
]

= ckn+1EF

[
E

[(
Xn,m−1(i) + 1n+1,m,i + (k − 1)

k

) ∣∣∣∣ Gn,m−1

] ∣∣∣∣Gn
]
,

where 1n+1,m,i is the indicator of the event that the mth half-edge of vertex n+1 connects
with vertex i. Now, as in (6.6), we write this as

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1EF

[(
Xn,m−1(i) + (k − 1)

k

)(
1 + k

E[1n+1,m,i | Gn,m−1]

Xn,m−1(i)

)∣∣∣∣Gn
]
.

By the definition of the PAFUD model, the mean of the indicator equals
Xn,m−1(i)/

∑n
j=1Xn,m−1(j) = Xn,m−1(i)/(m0 + m(n − n0) + (m − 1) + Sn). Hence, we

obtain

EF [Mk
n+1(i)

∣∣ Gn]

= ckn+1

(
1 +

k

m0 +m(n− n0) + (m− 1) + Sn

)
EF

[(
Xn,m−1(i) + (k − 1)

k

)∣∣∣∣Gn
]
,

which, when iteratively following the same steps by conditioning on Gn,j for j = m −
2, . . . , 0, yields the required result. Finally, we prove that M1

n(i) is a martingale in the
PAFFD model. We repeat the steps in (6.7), but note that as k = 1, we can omit the
inequality and obtain

EF [M1
n+1(i)

∣∣Gn] = c1n+1(m)Xn(i)(1 + EF [∆Xn(i)
∣∣Gn]/Xn(i)).

As before, we note that ∆Xn(i) is a binomial random variable with mean
mXn(i)/

∑n
j=1Xn(j). Thus,

EF [M1
n+1(i)

∣∣Gn] = c1n+1(m)Xn(i)
(

1 +
m

m0 +m(n− n0) + Sn

)
= cnn(m)Xn(i) = M1

n(i),

which finishes the proof.

From Lemma 6.3, we immediately conclude that the (super)martingales Mk
n(i), M̃k

n(i)

converge almost surely, as they are non-negative, to some random variables ξki , ξ̃
k
i ,

respectively. To distil from this an understanding of the behaviour of the evolution of the
degrees (Zn(i))i∈N, we study the growth rate of the normalising sequences ckn, c̃

k
n:

Lemma 6.4. Consider the sequences ckn, c̃
k
n in (6.5) and recall θm := 1 + E[F ] /m. If

E
[
F1+ε

]
<∞ for some ε > 0, then for any k ∈ R,m ∈ N,

ckn(m)nk/θm
a.s.−→ ck(m), c̃kn(m)nk/θm

a.s.−→ c̃k(m), (6.8)

for some almost surely finite random variables ck(m), c̃k(m). When the fitness distribution
satisfies Assumption 2.3 with α ∈ (1, 2), for any k ∈ R,m ∈ N,

ckn
a.s.−→ ck(m), c̃kn

a.s.−→ c̃k(m), (6.9)

for some almost surely finite random variables ck(m), c̃k(m) (again omitting the (m)

whenever there is no ambiguity). Furthermore, the following upper and lower bounds
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hold almost surely for ckn(m) when E
[
F1+ε

]
<∞ for some ε > 0 (they hold for c̃kn(m) as

well). For n0 + 1 ≤ i ≤ n,

cki (m)

ckn(m)

( i
n

)k/θm
≤ exp

{
k

θm
log
( i
n

n− (n0 + 1)

(i− (n0 + 1)) ∨ 1

)

+
mk

E[F ]

∞∑

j=i

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

}
,

cki (m)

ckn(m)

( i
n

)k/θm
≥ 1− mk

E[F ]

n−1∑

j=i

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

− m

2

n−1∑

j=i

( k
Sj

)2

− m0 + E[F ]n0 + (m− 1)

θ2
m

π2

6i
− 1

θm((i− (n0 + 1)) ∨ 1)
.

(6.10)

Proof. We only prove the results for ckn(1), as the proofs for m > 1 and c̃kn(m) follow
similarly. For ease of writing, let θ := θ1. We start by proving (6.8). We can write

cknn
k/θ = exp

{
−

n−1∑

j=n0

log

(
1 +

k

m0 + j − n0 + Sj

)
+
k

θ
log n

}

= exp

{
−
n0+d2|k|e∑

j=n0

log

(
1 +

k

m0 + j − n0 + Sj

)
−

n−1∑

j=n0+d2|k|e+1

k

jθ

−
n−1∑

j=n0+d2|k|e+1

k

jθ

(E[F ]− Sj/j)− (m0 − n0)/j

(m0 − n0)/j + 1 + Sj/j

+

n−1∑

j=n0+d2|k|e+1

∞∑

`=2

(−1)`
1

`

( k

m0 + j − n0 + Sj

)`
+
k

θ
log n

}
,

(6.11)

where we apply a Taylor expansion on the logarithmic terms in the sum for j ≥ n0 +

d2|k|e+ 1. The second sum and the last term balance, their sum converges to some finite
value depending on k and γ, where γ is the Euler-Mascheroni constant. We now show
the almost sure absolute convergence of the third sum in the second line of (6.11). This
is implied by the almost sure convergence of

n∑

j=1

1

j2
|Sj − jE[F ] |.

We prove this by showing that the mean of this sum converges. Let ε > 0 such that the
(1 + ε)th moment of the Fi exists. Using Hölder’s inequality, we obtain

n∑

j=1

E
[
|Sj − jE[F ] |/j2

]
≤

n∑

j=1

1

j2
E
[
|Sj − jE[F ] |1+ε

]1/(1+ε)
.

Now, we use a specific case of the Marcinkiewicz-Zygmund inequality [14, Proposition
3.8.2], which states that for q ∈ [1, 2] and i.i.d. Xi with E[X1] = 0,E[|X1|q] < ∞, there
exists a constant cq such that

E

[∣∣∣
j∑

i=1

Xi

∣∣∣
q
]
≤ cqjE[|X1|q] . (6.12)

Thus, if we set Xi := Fi − E[F ], it follows that

n∑

j=1

1

j2
E
[
|Sj − jE[F ] |1+ε

]1/(1+ε) ≤ c1+εE
[
|F − E[F ] |1+ε

]1/(1+ε)
n∑

j=1

j−(2−1/(1+ε)),
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which converges, as ε > 0. Finally, taking the absolute value of the double sum in (6.11)
yields the upper bound

n−1∑

j=n0+d2|k|e+1

∞∑

`=2

1

`

( |k|
m0 + j − n0 + Sj

)`
≤
∞∑

`=2

∞∑

j=d2|k|e+1

|k|`
j`
≤ |k|

∞∑

`=2

∞∑

i=2

i−`.

In the first step, we first bound m0 + j − n0 + Sj from below by j − n0 and then take all
terms where ik < j ≤ (i+ 1)k, i ≥ 2, and bound them from below by i|k|, which yields
the same upper bound |k| times in the third step. The right-hand side equals

|k|
∞∑

`=2

(ζ(`)− 1) = |k|,

where ζ is the Riemann zeta function, which thus proves the almost sure convergence
of the double sum. This proves (6.8). For proving (6.9) we use a different approach.
Namely, we prove that − log ckn converges almost surely, which yields the desired result
as well. To that end, let Mj := maxi≤j Fi. Then, we write

− log ckn =

n−1∑

j=n0

log
(

1 +
k

m0 + j − n0 + Sj

)
≤

J∑

j=1

k

Mj
+ k

n∑

j=J+1

j−1/(α−1)+ε, (6.13)

where we use (4.33) in the last step to conclude that, by the Borel-Cantelli lemma, there
exists an almost surely finite random index J such that for all j ≥ J , Mj ≥ j1/(α−1)−ε,
for some small ε ∈ (0, (2 − α)/(α − 1)), as well as that log(1 + x) ≤ x for all x > −1. It
therefore follows that the upper bound on the right-hand side of (6.13) converges as n
tends to infinity almost surely, and therefore so does ckn, since − log ckn is non-negative and
increasing. We now turn to the bounds in (6.10). Rather than using a Taylor expansion
as in (6.11), we simply use that log(1 + x) ≤ x, to obtain

cki
ckn

( i
n

)k/θ
≤ exp

{
k(E(n)− E(i)) + k

n−1∑

j=i

Sj − jE[F ]

(m0 + jθ − n0)(m0 + j − n0 + Sj)

}
, (6.14)

where

E(n) :=

n−1∑

j=n0

1

m0 + jθ − n0
− 1

θ
log n.

We rewrite E(n) to find

E(n) =

( n−(n0+1)∑

j=0

1

m0 + E[F ]n0 + jθ
−
n−(n0+1)∑

j=1

1

jθ

)

+

( n−(n0+1)∑

j=1

1

jθ
− 1

θ
log(n− (n0 + 1))

)
+

1

θ
log(1− (n0 + 1)/n),

(6.15)

where we note that the first and second term are decreasing and the final term is
increasing in n. Hence, we obtain the upper bound for all n0 + 1 ≤ i ≤ n,

E(n)− E(i) ≤ 1

θ
log
( i
n

n− (n0 + 1)

(i− (n0 + 1)) ∨ 1

)
.

Using this inequality and taking the absolute value of the terms in the sum in (6.14),
yields the upper bound

exp

{
k

θ
log
( i
n

n− (n0 + 1)

(i− (n0 + 1)) ∨ 1

)
+

k

E[F ]

∞∑

j=i

|Sj/j − E[F ] |
m0 + j − n0 + Sj

}
,
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as required. Similarly, we find a lower bound of the same form. As log(1 + x) ≥ x− x2/2

for x ≥ 0, exp{−x} ≥ 1− x for x ∈ R, we find

cki
ckn

( i
n

)k/θ
≥ exp

{
− k

n−1∑

j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑

j=i

( k

m0 + j − n0 + Sj

)2

+ k(E(n)− E(i))

}

≥ 1− k
n−1∑

j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑

j=i

( k

m0 + j − n0 + Sj

)2

+ k(E(n)− E(i)).

(6.16)

Using (6.15) and the fact that
∑n−1
j=1

1
j − log n is non-decreasing, we obtain the lower

bound

1− k
n−1∑

j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑

j=i

( k
Sj

)2

− m0 + E[F ]n0

θ2

n−(n0+1)∑

j=i−n0

1

j2

+
1

θ(n− (n0 + 1))
− 1

θ((i− (n0 + 1)) ∨ 1)

≥ 1− k
n−1∑

j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑

j=i

( k
Sj

)2

− m0 + E[F ]n0

θ2

π2

6i

− 1

θ((i− (n0 + 1)) ∨ 1)
,

which finishes the proof.

We now prove two results which are used later on to prove parts of Theorem 2.7
(in the weak disorder regime). First, we show that the almost sure limits of certain
(super)martingales in Lemma 6.3 do not have an atom at zero:

Lemma 6.5. For k ≥ 1, consider the martingales Mk
n(i) for the PAFRO and PAFUD

models and M̃k
n(i) for the PAFFD model as in Lemma 6.3 and their almost sure limits

ξki , ξ̃
k
i , respectively. Then, the ξki , ξ̃

k
i do not have an atom at zero.

Proof. We first focus on the martingales Mk
n for the PAFRO and PAFUD models. Let

ε > 0. We can write,

PF
(
ξki < ε

)
= lim
n→∞

PF

(
ckn

(Zn(i) + Fi + (k − 1)

k

)
< ε

)

≤ lim
n→∞

PF
(
ckn(Zn(i) + Fi)k < εΓ(k + 1)

)
,

(6.17)

since xk ≤ Γ(x + k)/Γ(x) for k ≥ 1, x > 0, by [16, Theorem 1]. Now, take p ∈
(−min(Fi, 1)/k, 0). The goal is to raise both sides to the power p and use a Markov
bound. We first, however, need some other inequalities to obtain useful expressions.
Using the concavity of log x and noting that x+ pk is a weighted average of x and x+ k

when p ∈ (0, 1) and x+ k is a weighted average of x and x+ pk when p ≥ 1, we obtain,
for all x, k ≥ 0,
(

1− k

x+ k

)p
≥ 1− pk

x+ pk
when p ∈ (0, 1),

(
1− k

x+ k

)p
≤ 1− pk

x+ pk
when p ≥ 1. (6.18)

From the first inequality, we also immediately obtain, for p ∈ (−1, 0), k ≥ 0, x ≥ k|p|,
(

1− k

x+ k

)p
≤ 1− pk

x+ pk
. (6.19)
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It thus follows that, when p ∈ (−min(Fi, 1)/k, 0), (ckn)p ≤ ckpn , as Fi > k|p|. Also, from
[25] it follows that for all x ≥ 0, s ∈ (0, 1),

xs ≥ Γ(x+ s)

Γ(x)
.

Hence, since Γ(x)/Γ(x+ s) is decreasing in x for s ≥ 0, when p ∈ (−1, 0), x ≥ |p|,

xp ≤ Γ(x+ p)

Γ(x)
, (6.20)

so that, combining both (6.19) and (6.20) in (6.17) with p ∈ (−min(Fi/k, 1/k), 0), yields

PF
(
ckn(Zn(i) + Fi)k < εΓ(k + 1)

)
≤ PF

(
Mkp
n (i) ≥ εpΓ(k + 1)p/Γ(kp+ 1)

)

≤ EF [Mkp
n (i)](εΓ(k + 1))|p|Γ(kp+ 1)

= Mkp
i∨n0

(i)ε|p|Γ(k + 1)|p|Γ(pk + 1),

(6.21)

which is finite almost surely and tends to zero with ε almost surely. We can thus first
take the limit of n to infinity, and then let ε tend to zero. Hence, almost surely,

PF
(
ξki = 0

)
= lim

ε↓0
PF
(
ξki < ε

)
= 0,

and thus P(ξ1
i = 0) = 0, by the dominated convergence theorem. For the PAFFD model,

an altered argument is required, since M̃k
n(i) is a submartingale for negative k, as

follows from Lemma 6.3 so that the final steps in (6.21) no longer work. Rather, we
only follow the same steps for ξ̃ki in (6.17). Then, let us define, for a large constant
C > 0, η ∈ (0,E[F ] /(E[F ] + m)) and a large integer N ≥ i ∨ n0, the stopping time
TN := inf{n ≥ N : Zn(i) ≥ Cn1−η}. We aim to show that we can construct a sequence ĉkn,
to be defined later, such that

M̂k
TN∧n(i) := ĉkTN∧n

(ZTN∧n(i) + Fi + (k − 1)

k

)

is a supermartingale for k ∈ (−min(Fi, 1), 0) for the PAFFD model. First, recall the
computations in (6.7). We notice that the product in the second line contains terms
which are positive but less than 1 when k ∈ (−min(Fi, 1), 0). Therefore, the product
decreases as the number of terms increases, so that we can bound the expected value
from above by 1 + kP(∆Zn(i) ≥ 1 | Gn) /(Zn(i) + Fi). If we define

ĉkn :=

n−1∏

j=n0

(
1− kmaj

m0 +m(j − n0) + Sj + kmaj

)
, an := 1−m− 1

2

Cn−η + Fi/n
(m0 +m(n− n0) + Sn)/n

,

we obtain

EF
[
M̂k
TN∧(n+1)(i)1{TN≥n+1}

∣∣Gn
]

≤ M̂k
n(i)

(
1− kman

m0 +m(n− n0) + Sn + kman

)(
1 + k

P(∆Zn(i) ≥ 1 | Gn)

Zn(i) + Fi

)
1{TN≥n+1}.

We now bound P(∆Zn(i) ≥ 1 | Gn) from below, using that 1−(1−x)m ≥ mx−m(m−1)x2/2

for all x ∈ (0, 1),m ∈ N. Then, on {TN ≥ n + 1}, we can bound Zn(i) from above by
Cn1−η, which yields the upper bound

M̂k
n(i)

(
1− kman

m0 +m(n− n0) + Sn + kman

)(
1 +

kman
m0 +m(n− n0) + Sn

)
1{TN≥n+1}

= M̂k
n(i)1{TN≥n+1} = M̂k

TN∧n(i)1{TN≥n+1}.
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Finally, as the event {TN ≤ n} is Gn measurable,

EF
[
Mk
TN∧(n+1)(i)1{TN≤n}

∣∣Gn
]

= M̂k
TN (i)1{TN≤n} = M̂k

TN∧n(i)1{TN≤n}.

Together with the computations above, this yields

EF
[
M̂k
TN∧(n+1)(i)

∣∣Gn
]
≤ M̂k

TN∧n(i),

which shows indeed that M̂k
TN∧n(i) is a supermartingale for k ∈ (−min(Fi, 1), 0). It

also follows relatively easily, following similar steps as in the proof of Lemma 6.4, that
ĉknn

k/θm a.s.−→ ĉk for some random variable ĉk as n tends to infinity. So, we can then write,
for k ≥ 1, p ∈ (−min(Fi/k, 1/k), 0), continuing the steps in (6.17) and using (6.19) and
(6.20) as in (6.21),

PF (ξ̃ki < ε) ≤ lim
n→∞

PF ((ckpn /ĉ
kp
n )M̂kp

n (i) ≥ εpΓ(k + 1)p/Γ(kp+ 1)).

We now intersect with the event {TN ≥ n+ 1} and its complement to obtain the upper
bound

lim
n→∞

PF
(
{(ckpn /ĉkpn )M̂kp

n (i) > εpΓ(k + 1)p/Γ(kp+ 1)} ∩ {TN ≥ n+ 1}
)

+ PF (TN ≤ n)

≤ lim
n→∞

PF
(

(ckpn /ĉ
kp
n )M̂kp

TN∧n(i) > εpΓ(k + 1)p/Γ(kp+ 1)
)

+ PF (TN ≤ n) .

Using the Markov inequality for the first probability and because M̂kp
TN∧n(i) is a super-

martingale since kp ∈ (−min(Fi, 1), 0), we find the upper bound

lim
n→∞

(ckpn /ĉ
kp
n )ε|p|EF [M̂kp

TN∧n(i)]Γ(k + 1)|p|Γ(kp+ 1) + PF (TN ≤ n)

≤ (ckp/ĉkp)ε
|p|EF [M̂kp

N (i)]Γ(k + 1)|p|Γ(kp+ 1) + lim
n→∞

PF (TN ≤ n) .
(6.22)

We note that the first term tends to zero with ε. For the second probability we write, for
some sth moment bound, with s > (E[F ] /(E[F ] +m)− η)−1,

PF (TN ≤ n) ≤
n∑

j=N

PF
(
(Zj(i) + Fi)s ≥ Csjs(1−η)

)

≤ Γ(k + 1)

Cs

n∑

j=N

(c̃sj)
−1j−s(1−η)EF [M̃s

j (i)].

Using the upper bound for csn0
/csn = 1/csn in (6.10), we find the upper bound

Ck,sAM̃
s
i∨n0

(i)

n∑

j=N

js(1/θm−(1−η)) ≤ C̃k,sAM̃s
i∨n0

(i)N1−s(E[F ]/(E[F ]+m)−η),

where A equals the upper bound in (6.10) with i = n0. This upper bound is independent
of n, so we find, combining this with (6.22),

lim
ε↓0
PF (ξ̃ki < ε) ≤ C̃k,sAM̃s

i∨n0
(i)N1−s(E[F ]/(E[F ]+m)−η),

where the right-hand side tends to zero almost surely as N tends to infinity, by the choice
of s. Thus, it follows that limε↓0PF (ξ̃ki < ε) = 0 for all k ≥ 1. Again, using the dominated
convergence theorem finally yields the required result.

As a final result describing the behaviour of the martingales Mk
n(i), we show that, for

particular values of k, these martingales are small when i is large.
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Lemma 6.6. Consider the martingales (resp. supermartingales) Mk
n(i) (resp. M̃k

n(i)) as
in Lemma 6.3. Let M := sup{s ≥ 1 : E[Fs] <∞} and assume that M > θm. Then, for all
m ∈ N, k ∈ (θm,M), almost surely

lim
i→∞

sup
n≥n0∨i

Mk
n(i) = 0, lim

i→∞
sup

n≥n0∨i
M̃k
n(i) = 0. (6.23)

Proof. We note that the first result is implied if, for any ε > 0,

P

(
sup

n≥i∨n0

Mk
n(i) ≥ ε for infinitely many i

)
= 0,

and similarly for M̃k
n(i). We now use the ‘good’ event E`(δ) := {|Sj/j−E[F ] | ≤ δ ∀j ≥ `},

where we take δ > 0 sufficiently small such that k ∈ (θm(1 + δ),M). That is, we intersect
with E`(δ) and E`(δ)c. By writing i.o. for ‘infinitely often’, we find

P

(
sup

n≥i∨n0

Mk
n(i) ≥ ε i.o.

)
≤ P

({
sup

n≥i∨n0

Mk
n(i) ≥ ε i.o.

}
∩ E`(δ)

)
+ P(E`(δ)

c)

= P
(
1E`(δ)

∞∑

i=1

1Ai =∞
)

+ P(E`(δ)
c) ,

(6.24)

where Ai := {supn≥i∨n0
Mk
n(i) ≥ ε}. We now show that the first probability on the

right-hand side equals 0 for every ` ∈ N, by showing the sum of indicators has a finite
mean. We write

E

[
1E`(δ)

∞∑

i=1

1Ai

]
= E

[
1E`(δ)EF

[ ∞∑

i=1

1Ai

]]
, (6.25)

and first deal with the conditional expectation. We apply Doob’s martingale inequality
[22, Theorem II 1.7] to the events Ai to find

PF (Ai) = lim
N→∞

PF

(
sup

i∨n0≤n≤N
Mk
n(i) ≥ ε

)
≤ lim
N→∞

1

ε
EF [Mk

N (i)] =
1

ε
EF [Mk

i∨n0
(i)], (6.26)

where the first step holds by the monotonicity of the events {supi∨n0≤n≤N M
k
n(i) ≥ ε}.

Doob’s martingale inequality holds for submartingales only, though. However, we can
still prove the same upper bound for M̃k

n(i), but a different technique is required. We
define the stopping time τε := inf{n ≥ i ∨ n0 | M̃k

n(i) ≥ ε}. Then, for any N ∈ N,

PF

(
sup

i∨n0≤n≤N
M̃k
n(i) ≥ ε

)
= PF (τε ≤ N) = PF

(
1{τε≤N}M̃

k
τε(i) ≥ ε

)
,

so that using Markov’s inequality yields the upper bound

1

ε
EF [1{τε≤N}M̃

k
τε(i)] ≤

1

ε

(
EF [1{τε≤N}M̃

k
τε(i)] +EF [1{τε>N}M̃

k
N (i)]

)
=

1

ε
EF [M̃k

τε∧N (i)],

see also [22, Exercise 1.25, Chapter II]. We now use the optional sampling theorem [26,
Theorem 10.10], which yields the required upper bound. Again, by monotonicity and
taking N to infinity we obtain the same result. Using (6.26) in (6.25) and recalling Mk

n(i)

from Lemma 6.3 yields the upper bound

E

[
1E`(δ)

∞∑

i=1

ε−1cki∨n0

(Zi∨n0(i) + Fi + (k − 1)

k

)]
.

Note that, for i > n0, Zi∨n0(i) = 0 and for i ∈ [n0], Zi∨n0(i) = Zn0(i) ≤∑n0

j=1Zn0(i) = m0.

Also, for i ≥ ` ∨ n0 and on E`(δ), we can bound cki∨n0
from above by Ci−k/(θm(1+δ)) for
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some large constant C > 0. For i ∈ [(` ∨ n0)− 1], we can just bound cki∨n0
(i) from above

by 1. This yields the upper bound

C

∞∑

i=`∨n0

E

[
1E`(δ)i

−k/(θm(1+δ))

(Fi + (k − 1) +m0

k

)]
+

(`∨n0)−1∑

i=1

E

[(Fi + (k − 1) +m0

k

)]

≤ C̃(1 + E
[
Fk
]
)

∞∑

i=`∨n0

i−k/(θm(1+δ)) + C̃(1 + E
[
Fk
]
)(` ∨ n0),

which is finite by the choice of k and δ. We note that we can indeed bound the mean
of
(F+(k−1)+m0

k

)
by a constant times 1 plus the kth moment of F . Namely, using the

asymptotics of the Gamma function,

E

[(F + (k − 1) +m0

k

)]
=

∫ ∞

0

(
x+ (k − 1) +m0

k

)
µ(dx)

≤
∫ x∗

0

(
x+ (k − 1) +m0

k

)
µ(dx) + C1

∫ ∞

x∗
xkµ(dx)

≤ C2(1 + E
[
Fk
]
),

with C2 := max{C1,
∫ x∗

0

(
x+(k−1)+m0

k

)
µ(dx)} and x∗ such that for x ≥ x∗,

(
x+(k−1)+m0

k

)
≤

C1x
k. It follows that the mean in (6.25) is finite and thus that the first probability on the

right-hand side of (6.24) equals 0. Hence,

P

(
sup

n≥i∨n0

Mk
n(i) ≥ ε i.o.

)
≤ P(E`(δ)

c) ,

which tends to 0 as ` → ∞ by the strong law of large numbers, and so we obtain
(6.23).

6.2 The maximum conditional mean degree in the strong and extreme disorder
regime

We now use the martingales studied in the previous subsection, specifically Lemmas
6.3 and 6.4, as well as the results attained in Section 5 to prove Propositions 6.1 and 6.2.

First, though, we state a final result from [1], which provides conditions such that
the maximum of a double array converges to a certain limit:

Proposition 6.7. [1, Proposition 3.1] Let {an,i : i ∈ [n]}n≥1 be a double array of non-
negative numbers such that

1. For all i ≥ 1, limn→∞ an,i = ai <∞,

2. supn≥1 an,i ≤ bi <∞,

3. limi→∞ bi = 0,

4. For i 6= j, ai 6= aj .

Then,

• maxi∈[n] an,i → maxi≥1 ai, as n→∞.

• In addition, there exist I0 and N0 such that maxi∈[n] an,i = an,I0 for all n ≥ N0.

We now prove Proposition 6.1:
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Proof of Proposition 6.1. The focus of the proof is on the PAFUD model. The proof for
the PAFRO model follows by setting m = 1, the proof for the PAFFD model follows in the
same way, as we only look at the mean of M1

n(i), which by Lemma 6.3 is a martingale for
both the PAFUD and PAFFD model.

We start by proving (6.1). Take α ∈ (2, 1 + θm). Using Lemma 6.3, it directly follows
that

EF [Zn(i)] = (c1n(m))−1EF [M1
n(i)]−Fi =

c1i∨n0
(m)

c1n(m)
Zi∨n0

(i) + Fi
(c1i∨n0

(m)

c1n(m)
− 1
)
. (6.27)

Note that for i ≥ n0 the first term on the right-hand side equals zero. We can then
construct the inequalities

max
i∈[n]

Fi
un

(c1i∨n0

c1n
− 1
)
≤ max

i∈[n]
EF [Zn(i)/un] ≤ max

i∈[n]

Fi
un

(c1i∨n0

c1n
− 1
)

+
m0

unc1n
.

By Lemma 6.4, the last term on the right-hand side tends to zero almost surely, as
α − 1 < θm. That is, since un = ˜̀(n)n1/(α−1) for some slowly-varying function ˜̀, and
c1n(m)n1/θm converges almost surely, the fact that α− 1 < θm yields that unc1n diverges
to∞ almost surely.

By the reverse triangle inequality, it follows that for x, y ∈ Rn+,

|max
i∈[n]

xi −max
i∈[n]

yi| = |‖x‖∞ − ‖y‖∞| ≤ ‖x− y‖∞ = max
i∈[n]
|xi − yi|. (6.28)

So, as c1i∨n0
= c1i for all i ≥ n0,

∣∣∣max
i∈[n]

Fi
un

(c1i∨n0

c1n
− 1
)
−max
i∈[n]

Fi
un

( c1i
c1n
− 1
)∣∣∣ ≤ max

i∈[n]

Fi
un

c1i − c1i∨n0

c1n
= max

i<n0

Fi
un

c1i − c1n0

c1n
,

which again tends to zero almost surely by Lemma 6.4, as it is a maximum over a finite
number of terms. Therefore, assuming the limits exist, it follows that

lim
n→∞

max
i∈[n]

EF [Zn(i)/un] = lim
n→∞

max
i∈[n]

Fi
un

( c1i
c1n
− 1
)

(6.29)

almost surely. We now show that

∣∣∣max
i∈[n]

Fi
un

( c1i
c1n
− 1
)
−max
i∈[n]

Fi
un

(( i
n

)−1/θm
− 1
)∣∣∣ P−→ 0. (6.30)

Using (6.28) we find

∣∣∣∣max
i∈[n]

Fi
un

( c1i
c1n
− 1
)
−max
i∈[n]

Fi
un

(( i
n

)−1/θm
− 1
)∣∣∣∣ ≤ max

i∈[n]

Fi
un

(n
i

)1/θm
∣∣∣∣
c1i
c1n

( i
n

)−1/θm
− 1

∣∣∣∣.

Then, let η ∈ (1, (α − 2) ∧ 1) and let (εn)n∈N be a sequence such that εn := n−β, with
β ∈ (0, θmη/(1 + (1 + θm)η)). We split the maximum into two parts: indices i which are
at most εnn and at least εnn and deal with these separately. (Note that β < 1 and thus
εnn→∞.) We first define, for A ⊆ [n] and δ > 0,

EA :=
{

max
i∈A
Fi
un

(n
i

)1/θm
∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣ > δ
}
. (6.31)

This yields
P
(
E[n]

)
≤ P

(
E[εnn]

)
+ P

(
E[n]\[εnn]

)
. (6.32)
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We first investigate the latter probability. We write,

P
(
E[n]\[εnn]

)
≤ P

((
max
i>εnn

Fi
un

)
ε−1/θm
n max

i>εnn

∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣ > δ

)
, (6.33)

where we bound the (n/i)1/θm , as in the definition of EA in (6.31), from above by ε−1/θm
n

and take the maximum over the fitness variables and the absolute value separately.
Since the number of terms in maxi>εnn Fi/un is asymptotically n, that is, (n− εnn)/n =

1− εn = 1− o(1), it follows that the first maximum on the right-hand side converges in
distribution. For the second maximum in (6.33), when i ≥ εnn, the terms in the absolute
value should be small due to the almost sure convergence of c1nn

1/θm and c1i i
1/θm because

of Lemma 6.4 (note that i > εnn so that i tends to infinity with n). We show a slightly
stronger result, namely that

ε−1/θm
n max

i>εnn

∣∣∣ c
1
i

c1n

( i
n

)1/θm
− 1
∣∣∣ P−→ 0.

To prove this, we use the upper and lower bound in (6.10). The upper bound, when
considering εnn ≤ i ≤ n, is largest for i = εnn. Thus, we have a uniform upper bound for
all εnn ≤ i ≤ n,

c1i
c1n

( i
n

)1/θm
≤ exp

{
k

θm
log
(
εn

n− (n0 + 1)

εnn− (n0 + 1)

)
+

mk

E[F ]

∞∑

j=εnn

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

}
.

For n large, the denominator in the sum can be bounded from below by mj/2 and the
term in the logarithm can be bounded from above by 1 + 2(n0 + 1)/(εnn). Hence, we
obtain the upper bound

c1i
c1n

( i
n

)1/θm
≤ exp

{
k

θm
log
(

1 +
2(n0 + 1)

εnn

)
+

2k

E[F ]

∞∑

j=εnn

|Sj/j − E[F ] |
j

}
.

Similarly, the lower bound in (6.16) is largest when i = n − 1 (note that the second
maximum in (6.33) is never attained at i = n, so we can ignore this case), from which we
obtain

max
i≥εnn

( c1i
c1n

( i
n

)1/θm
−1
)
≥ −m0 + E[F ]n0 + (m− 1)

θ2
m

π2

6(n− 1)
− 1

θm(n− (n0 + 2))
≥ −C

n
,

for some constant C > 0. It then follows that, as ε−1/θm
n = nβ/θm ≥ 1, a(ex − 1) ≤ eax − 1

for all x ∈ R when a ≥ 1,

ε−1/θm
n max

i≥εnn

∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣

≤ max

{
C

n1−β/θm , exp

{
k

θm
log
((

1 +
2(n0 + 1)

n1−β

)nβ/θm)

+
2k

E[F ]
nβ/θm

∞∑

j=εnn

|Sj/j − E[F ] |
j

}
− 1

}
.

(6.34)

Clearly, the first argument tends to zero, as β < θm. What remains to prove is that the
second argument of the maximum on the right-hand side of (6.34) converges to zero in
probability. The first term in the exponent tends to zero, as 1− β > β/θm by the choice
of β. For the second term, using Markov’s inequality, for any δ > 0,

P

(
nβ/θm

∞∑

j=εnn

|Sj/j − E[F ] |
j

> δ

)
≤ δ−1nβ/θm

∞∑

j=εnn

j−2E[|Sj − jE[F ] |]

≤ δ−1nβ/θm
∞∑

j=εnn

j−2E
[
|Sj − jE[F ] |1+η

]1/(1+η)
,
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where we note that η ∈ (0, (α−2)∧2), such that we can apply the Marcinkiewicz-Zygmund
inequality as in (6.12). This yields, for some constant C > 0, the upper bound

Cnβ/θm
∞∑

j=εnn

j−2+1/(1+η) ≤ C̃nβ(η/(1+η)+1/θm)−η/(1+η),

which tends to zero by the choice of β. It now follows that the right-hand side of (6.34)
tends to zero in probability. This implies, using Slutsky’s theorem [24], that for any δ > 0,

lim
n→∞

P
(
E[n]\[εnn]

)
= 0. (6.35)

For the first probability on the right-hand side of (6.32), we show that
maxi≤εnn(Fi/un)(n/i)1/θm tends to zero in probability when n tends to infinity and that
maxi≤εnn |(c1i /c1n)(i/n)1/θm − 1| converges almost surely. We focus on the former first.
The claim is proved by using the Poisson Point Process (PPP) weak limit. Recall Πn in
(5.1) and its weak limit Π. We write

Πn =

n∑

i=1

δ(i/n,Fi/un) ⇒
∑

i≥1

δ(ti,fi) =: Π in Mp(E), (6.36)

where δ is a Dirac measure, and Π is a PPP on (0, 1) × (0,∞) with intensity measure
ν(dt, dx) := dt× (α− 1)x−αdx [21, Corollary 4.19]. We now define Π′ to be the PPP on
R+ obtained from mapping points (t, f) ∈ Π to ft−1/θm and let Π′ε be the restriction of
Π′ to points (t, f) such that t ≤ ε. More formally,

Π′ :=
∑

(t,f)∈Π

δ(ft−1/θm ), Π′ε :=
∑

(t,f)∈Π

1{t≤ε}δ(ft−1/θm ).

Now, we fix an arbitrary δ, η > 0. Then, we can find an ε > 0 sufficiently small, such that

P

(
max

(t,f)∈Π:t≤ε
ft−1/θm > δ

)
= 1− P(Π′ε((δ,∞)) = 0)

= 1− exp
{∫ ε

0

∫ ∞

δt1/θm
(α− 1)f−αdfdt

}

= 1− exp
{
− θm
θm − (α− 1)

δ−(α−1)ε(θm−(α−1))/θm
}

(6.37)

is at most η/2. Due to (6.36) and the continuous mapping theorem, any continuous
functional T of Πn converges in distribution to T (Π). We use this to compare the law of
maxi≤εn(Fi/un)(i/n)−1/θm and max(t,f)∈Π:t≤ε ft−1/θm by defining, for ε ∈ (0, 1], the func-
tional Tε, such that Tε(Π) := max(t,f)∈Π:t≤ε ft−1/θm . Let Mk := {Π ∈ Mp(E) | Tε(Π) <

k}, k ∈ N. Then, on Mk, Tε is continuous, and thus Tε is continuous on ∪k∈NMk. Since
the point processes Π with intensity measure ν as described above are such that Tε(Π)

is finite almost surely, as follows from (6.37), Π ∈ Mk for some k ∈ N and thus Tε is
continuous with respect to Π almost surely for any ε ∈ (0, 1]. It follows that, for δ, η fixed,
ε chosen such that (6.37) holds and n sufficiently large,

P

(
max
i∈[εn]

Fi
un

(i/n)−1/θm > δ

)
≤ P

(
max

(t,f)∈Π:t≤ε
ft−1/θm > δ

)
+ η/2 < η.

As εn decreases monotonically, εn < ε for n sufficiently large. Hence, it follows that for n
large,

P

(
max
i∈[εnn]

Fi
un

(i/n)−1/θm > δ

)
≤ P

(
max
i≤εn

Fi
un

(i/n)−1/θm > δ

)
< η. (6.38)
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We therefore can conclude that maxi∈[εnn](Fi/un)(i/n)1/θm P−→ 0 as n → ∞, as η is
arbitrary. We now show that maxi≤εnn |(c1i /c1n)(i/n)1/θm − 1| converges almost surely.
Because of Lemma 6.4, cknn

k/θm a.s.−→ ck, so that for each fixed i ∈ N, |(c1i /c1n)(i/n)1/θm −
1| a.s.−→ |c1i i1/θm/c1 − 1| =: Ai. Note that it follows from the proof of Lemma 6.4 that ck > 0

almost surely (and thus for c1 in particular), so that Ai <∞ almost surely for all i ∈ N.
Also, Ai 6= Aj almost surely for all i 6= j. Using the lower and upper bound in (6.10), we
obtain for every i ≥ n0 + 1 fixed and n ≥ i,

sup
n≥i

∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣

≤ max

{
mk

E[F ]

∞∑

j=i

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

+
m

2

∞∑

j=i

( k
Sj

)2

+
m0 + E[F ]n0 + (m− 1)

θ2
m

π2

6i

+
1

θm((i− (n0 + 1)) ∨ 1)
,

exp

{
k

θm
log
( i

(i− (n0 + 1)) ∨ 1

)
+

mk

E[F ]

∞∑

j=i

|Sj/j − E[F ] |
m0 + j − n0 + Sj

}
− 1

}

=: Bi.

As the sums in the maximum are almost surely finite for all i ∈ N, as follows from the
proof of Lemma 6.4 and the strong law of large numbers, limi→∞Bi = 0 almost surely.
Thus, combining the above steps with Lemma 6.7, we conclude that as n→∞,

max
i∈[n]

∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣
a.s.−→ sup

i≥1
Ai,

and there exist almost surely finite random variables I,N , such that the maximum is
almost surely attained at index i = I for all n ≥ N . It thus follows that the maximum
converges almost surely to an almost surely finite limit AI . We can now conclude that,
as εnn→∞,

max
i≤εnn

∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣
a.s.−→ sup

i≥1
Ai = AI ,

which, together with (6.38), yields

max
i≤εnn

Fi
un

( i
n

)−1/θm
max
i≤εnn

∣∣∣∣
c1i
c1n

( i
n

)1/θm
− 1

∣∣∣∣
P−→ 0.

Combining this with (6.32) and (6.35), we obtain (6.30). By a similar argument as before,
we find,

max
i∈[n]

Fi
un

(( i
n

)−1/θm
− 1
)

d−→ max
(t,f)∈Π

f(t−1/θm − 1). (6.39)

Thus, combining (6.29), (6.30) and (6.39) and applying Slutsky’s theorem [24], we arrive
at the desired result.

We now prove (6.2) and so we let α ∈ (1, 2). An important result is stated in Propo-
sition 5.1. By the construction of Πn in (5.1) and the definition of T ε in (5.2), it follows
that

Fi
un
T i/n(Πn) =

Fi
un

∫ 1

i/n

(∫

E

f1{t≤s}dΠn(t, f)
)−1

ds =
Fi
un

1

n

n∑

j=i

un
Sj

=
Fi
n

n∑

j=i

1

Sj
,

as for s ∈ [j/n, (j + 1)/n) the integrand is constant. Hence, by Proposition 5.1, what
remains is to prove that

∣∣∣∣max
i∈[n]

EF [Zn(i)/n]−max
i∈[n]

Fi
n

n∑

j=i

m/Sj

∣∣∣∣
P−→ 0. (6.40)
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Recall the result in (6.29) regarding the limit of the maximum conditional mean. The
above is therefore implied by the following two statements:

∣∣∣∣max
i∈[n]

Fi
n

( c1i
c1n
− 1
)
−max
i∈[n]

Fi
n

n∑

j=i

m/(m0 +m(j − n0) + Sj)

∣∣∣∣
P−→ 0,

∣∣∣∣max
i∈[n]

Fi
n

n∑

j=i

m/(m0 +m(j − n0) + Sj)−max
i∈[n]

Fi
n

n∑

j=i

m/Sj

∣∣∣∣
P−→ 0.

(6.41)

We start by proving the first line of (6.41). Let us write Zj := m0 +m(j − n0) + Sj . By
(6.28), it follows that

∣∣∣∣max
i∈[n]

Fi
n

(c1i /c
1
n − 1)−max

i∈[n]

Fi
n

n∑

j=i

m/Zj

∣∣∣∣ ≤ max
i∈[n]

Fi
n

(
(c1i /c

1
n − 1)−

n∑

j=i

m/Zj

)
,

as the terms within the brackets on the right-hand side are a.s. positive. Then, we further
bound the expression on the right-hand side from above by splitting the maximum into
two parts, as

max
i∈[n]

Fi
n

(
(c1i /c

1
n − 1)−

n∑

j=i

m/Zj

)
≤ max

i∈[in]

Fi
n

(
(c1i /c

1
n − 1)−

n∑

j=i

m/Zj

)

+ max
in≤i≤n

Fi
n

(
(c1i /c

1
n − 1)−

n∑

j=i

m/Zj

)
,

(6.42)

where in is strictly increasing and tends to infinity with n. We first investigate the second
maximum, by bounding the terms within the brackets. Namely, recalling the definition
of c1n in (6.5) and applying the inequality 1− x ≤ e−x for all x ∈ R to c1i /c

1
n yields

(c1i /c
1
n − 1)−

n∑

j=i

m/Zj ≤ exp

{ n∑

j=i

m/Zj

}
− 1−

n∑

j=i

m/Zj =

∞∑

k=2

( n∑

j=i

m/Zj

)k
.

Now, fix ε > 0. By (4.33) there exists an almost surely finite random variable J such that
for all j ≥ J , Mj ≥ j1/(α−1)−ε, with Mj = maxk≤j Fk. So, on {i ≥ J}, Zj ≥ j1/(α−1)−ε for
all j ≥ i. This yields the upper bound

∞∑

k=2

mi−k((2−α)/(α−1)−ε) ≤ Ci−2((2−α)/(α−1)−ε), (6.43)

for some constant C > 0, as we can bound an exponentially decaying sum by a constant
times its first term. It follows, on in ≥ J , which holds with high probability, and by (6.43),
that

max
in≤i≤n

Fi
n

(
(c1i /c

1
n − 1)−

n∑

j=i

m/Zj

)
≤ Ci−2((2−α)/(α−1)−ε)

n

un
n

max
in≤i≤n

Fi
un
, (6.44)

which tends to zero in probability when i
−2((2−α)/(α−1)−ε)
n un/n = o(1), that is, when

in = nρ, with ρ ∈ (1/2, 1). On the other hand, when considering the first maximum in
(6.42), we find

max
i∈[in]

Fi
n

(
(c1i /c

1
n − 1)−

n∑

j=i

m/Zj

)
≤ (1/c1n)

uin
n

max
i≤in

Fi
uin

, (6.45)
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where we bound the terms inside the brackets on the left-hand side by omitting all
negative terms and by noting that c1i ≤ 1 for all i. The right-hand side of (6.45) converges
to zero in probability when uin/n = o(1), that is, when in = nρ with ρ < α− 1, since c1n
converges almost surely for α ∈ (1, 2) by Lemma 6.4. We conclude that for α ∈ (3/2, 2)

we can find a ρ ∈ (1/2, α− 1) such that both maxima tend to zero in probability. When
α ∈ (1, 3/2], however, such a ρ cannot be found and more work is required to prove
the desired result. In this case, we split the maximum into K = K(α) <∞ maxima, as
follows: Let Ai,n := Fi/n,Bi,n := (c1i /c

1
n − 1) −∑n

j=im/Zj . Then, we define ikn := nρk ,
k = 0, 1, . . . ,K, with ρ0 = 0, ρK = 1, and

ρk :=
α− 1

2

ck − 1

c− 1
, k ∈ {1, 2, . . . ,K − 1},

where c := 2(2− α)− 2ε(α− 1) 6= 1. Note that ρk is strictly increasing in k, independent
of c < 1 or c > 1. We now write

max
i∈[n]

Ai,nBi,n ≤
K−1∑

k=0

max
ikn≤i≤ik+1

n

Ai,n max
ikn≤i≤ik+1

n

Bi,n. (6.46)

We first deal with the k = 0 term. As in (6.45), since ρ1 < α− 1,
maxi0n≤i≤i1n Ai,n maxi0n≤i≤i1n Bi,n tends to zero in probability. For k = 1, . . . ,K − 2, follow-
ing the same steps that lead to the bound in (6.44), we obtain

max
ikn≤i≤ik+1

n

Ai,n max
ikn≤i≤ik+1

n

Bi,n ≤ Ck(ikn)−2((2−α)/(α−1)−ε)uik+1
n

n
max

ikn≤i≤ik+1
n

Fi
uik+1
n

,

for some constant Ck > 0. This upper bound tends to zero in probability when

ρk+1 < α− 1 + (2(2− α)− 2ε(α− 1))ρk = (α− 1) + cρk (6.47)

is satisfied. By the definition of ρk, this holds when

ck+1 − 1

c− 1
− 2 < c

ck − 1

c− 1
⇔ −1 +

k∑

j=1

cj <

k∑

j=1

cj ,

which is indeed the case. Finally, for k = K−1, again using the similar bound as in (6.44),
we find that the final term of the sum in (6.46) converges to zero in probability when
ρK−1 ∈ (1/2, 1). What remains to show, is that for all α ∈ (1, 3/2] there does exist a finite
K such that ρK−1 ∈ (1/2, 1). We distinguish two cases: α = 3/2 and α ∈ (1, 3/2). For the
first case, c < 1 for any choice of ε. This implies that ρk → 1/(4ε) as k tends to infinity,
so taking ε < 1/2 suffices. For α ∈ (1, 3/2), we can choose ε sufficiently small, such that
c > 1, so that ρk diverges. In both cases there therefore exists a K such that ρk > 1/2

for all k ≥ K − 1. Thus, in both cases, we can define K := inf{k ∈ N | ρk > 1/2}+ 1. The
only issue left to address regarding K, is that it is possible that ρK−1 > 1. However, in
that case we can simply choose ρK−1 = a, for any a ∈ (1/2, 1), since ρK−2 ≤ 1/2 < a by
the definition of K, and decreasing ρK−1 does not violate the constraint in (6.47) for
k = K − 2. We hence obtain the first line in (6.41).

The proof for the second line in (6.41) follows similarly. First, by letting i = i(n) tend
to infinity with n, we bound, conditionally on {i ≥ J},
∣∣∣∣
n∑

j=i

m

Sj
−

n∑

j=i

m

Zj

∣∣∣∣ ≤ C
n∑

j=i

j/M2
j ≤ C

n∑

j=i

j1−2/(α−1)+ε ≤ C̃i−2((2−α)/(α−1)−ε/2), (6.48)

for some constant C ≥ m+m0. We note that this bound is similar to the upper bound for
(c1i /c

1
n − 1)−∑n

j=i 1/(j + Sj/m) in (6.43). Also, both sums on the left-hand side of (6.48)
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converge almost surely, as α ∈ (1, 2). Thus, a similar approach, with the same indices
i0n, . . . , i

K
n can be used to obtain the desired result. Combining both statements in (6.41)

and using the triangle inequality and the continuous mapping theorem proves (6.40),
which together with Proposition 5.1 finishes the proof.

We now prove Proposition 6.2:

Proof of Proposition 6.2. The focus of the proof is on the PAFUD model, for which we
use the martingales Mk

n(i). The proof for the PAFRO model follows by setting m = 1,
and for the PAFFD model it follows in a similar fashion, where all upper bounds still hold
when the supermartingale M̃k

n(i) is to be used. We prove (6.3) first. Applying (6.28), a
pth moment bound for some p > 1 to be determined later, using Markov’s inequality and
Hölder’s inequality yields

PF (|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηun)

≤ PF
(

max
i∈[n]
|Zn(i)− EF [Zn(i)]| > ηun

)

≤ 1

(ηun)p

n∑

i=1

EF
[
|Zn(i)− EF [Zn(i)]|p

]

≤ 1

(ηun)p

n∑

i=1

EF
[
|Zn(i)− EF [Zn(i)]|2k

]p/(2k)
,

(6.49)

where k > p/2 is an integer. As Zn(i)−EF [Zn(i)] = (Zn(i) +Fi)−EF [Zn(i) +Fi] and 2k

is even, we find, using Hölder’s and Jensen’s inequality and setting Xn(i) := Zn(i) + Fi,

EF
[
|Zn(i)− EF [Zn(i)]|2k

]
=

2k∑

j=0

(
2k

j

)
EF [Xn(i)j ](−1)jEF [Xn(i)]2k−j

=

k∑

j=0

(
2k

2j

)
EF [Xn(i)2j ]EF [Xn(i)]2k−2j

−
k∑

j=1

(
2k

2j − 1

)
EF [Xn(i)2j−1]EF [Xn(i)]2k−(2j−1)

≤
k∑

j=0

(
2k

2j

)
EF [Xn(i)2k]−

k∑

j=1

(
2k

2j − 1

)
EF [Xn(i)]2k.

Using that
2k∑

j=0

(
2k

j

)
= 22k,

2k∑

j=0

(
2k

j

)
(−1)j = 0,

it follows that both sums in the last line of (6.49) equal 22k−1. We can thus bound (6.49)
from above by

22k−1

(ηun)p

n∑

i=1

(EF
[
(Zn(i) + Fi)2k

]
− EF [Zn(i) + Fi]2k)p/(2k). (6.50)

We now aim to bound the 2kth moment of Zn(i) + Fi. Since, for x ≥ 0, k ∈ N, x2k ≤∏2k
j=1(x+ (j − 1)) =

(
x+(2k−1)

2k

)
(2k)!, it follows from Lemma 6.3 that

EF
[
(Zn(i) + Fi)2k

]
≤ (c2kn )−1(2k)!EF [M2k

n (i)] =
c2ki∨n0

c2kn
(2k)!

(Zi∨n0
(i) + Fi + 2k − 1

2k

)
.
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We note that this inequality would still hold for the PAFFD model, when using the
supermartingales M̃k

n(i) and the sequences c̃kn(i). We thus obtain the upper bound

EF
[
(Zn(i) + Fi)2k

]
≤ c2ki∨n0

c2kn
(Zi∨n0

+ Fi)2k +
c2ki∨n0

c2kn
P2k−1(Zi∨n0

(i) + Fi),

where P2k−1(x) = (2k)!
(
x+2k−1

2k

)
− x2k is a polynomial of degree 2k − 1. Using (6.27), we

find

EF
[
(Zn(i) + Fi)2k

]
− EF [Zn(i) + Fi]2k ≤

(c2ki∨n0

c2kn
−
(c1i∨n0

c1n

)2k)
(Zi∨n0(i) + Fi)2k

+
c2ki∨n0

c2kn
P2k−1(Zi∨n0(i) + Fi).

(6.51)

Using the definition of ckn in (6.5) yields, for all 1 ≤ r ≤ n,

c2kr
c2kn

=

n−1∏

j=r∨n0

m∏

`=1

(
1 +

2k

m0 +m(j − n0) + (`− 1) + Sj

)

≤
n−1∏

j=r∨n0

m∏

`=1

(
1 +

1

m0 +m(j − n0) + (`− 1) + Sj

)2k

=
( c1r
c1n

)2k

.

(6.52)

Therefore, using this in (6.51) we obtain an upper bound that contains powers of Fi of
order at most 2k − 1. This is the essential step to proving concentration holds. Namely,
in (6.50), this upper bound yields an expression with powers of Fi of order at most
p(1 − 1/2k), which is just slightly less than p. The aim is, for every value of α > 2, to
find values p, k such that the p(1− 1/2k)th moment of F exists and such that the entire
expression in (6.50) still tends to zero.

Let us write

P2k−1(x) =

2k−1∑

`=0

C`x
`,

for non-negative constants C`. Combining (6.51) and (6.52) in (6.50), bounding Zi∨n0
(i)

from above by m0 and recalling that p/(2k) < 1, results in the upper bound

22k

(ηun)p

n∑

i=1

(c2ki
c2kn

)p/(2k) 2k−1∑

`=0

C̃
p/(2k)
` F`p/2ki , (6.53)

where the C̃` > 0 are constants. We focus on the term where ` = 2k − 1, as this is the
boundary case. All other cases follow analogously. For the first n0 terms, we can bound
c2ki from above by (i/n0)−p/θm . For n0 + 1 ≤ i ≤ n, we use (6.10) to bound c2ki /c

2k
n from

above. This yields for all terms, for some constant C > 0,

C̃
p/(2k)
2k−1 22k

(ηun)p

(
exp

{ mp

E[F ]

∞∑

j=n0

|Sj/j − E[F ] |
j − n0 + Sj

− C
}
∨ 1

) n∑

i=1

(nn0

i

)p/θm
Fp(1−1/2k)
i

≤ Ck,p,θm exp

{
mp

E[F ]

∞∑

j=n0

|Sj/j − E[F ] |
j − n0 + Sj

}
np/θm

upn

n∑

i=1

i−p/θmFp(1−1/2k)
i ,

(6.54)

for some constant Ck,p,θm . In the last line, the exponential term is almost surely finite,
as follows from the proof of Lemma 6.4. We now show that the fraction multiplied by
the sum converges to zero in mean when p and k are chosen in a specific way. That
is, for α > 2, set p := (1 + ε)(α − 1), where ε ∈ (0, 1/(α + 1)) and set k := dp/2e. First
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note that 2k > p, which was required for the Hölder inequality used in (6.49). We now
show that the p(1− 1/(2k))th moment of the fitness distribution exists. For this to hold,
α− 1 > p(1− 1/(2k)) needs to be satisfied, or, equivalently,

k <
p

2(p− (α− 1))
=

1 + ε

2ε
,

and, as ε ∈ (0, 1/(α+ 1)),

1 + ε

2ε
− p

2
=

1 + ε

2
(1/ε− (α− 1)) > 1 + ε.

It follows that, indeed,

(1 + ε)/(2ε) > p/2 + 1 + ε > dp/2e = k.

Hence, taking the mean, we obtain

np/θm

upn

n∑

i=1

i−p/θmE
[
Fp(1−1/(2k))
i

]
≤ Cn

p/θm

upn
n(1−p/θm)∨0,

with C > 0 a constant. This tends to zero with n, as un = n1/(α−1) ˜̀(n) for some slowly-
varying function ˜̀(n), and both p > α− 1 and θm > α− 1 hold. So, the last expression in
(6.54) consists of an almost surely finite random variable (the exponential term) and a
term that converges to zero mean, which implies that the entire expression converges
to zero in probability. The same argument holds also for all other values of ` in (6.53).
Thus, as n tends to infinity,

PF
(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηun

)
P−→ 0. (6.55)

As this conditional probability measure is bounded from above by one, it follows from
the dominated convergence theorem and (6.55) that (6.3) holds.

We now prove (6.4), so let α ∈ (1, 2). A different approach is required, so we write,
using (6.28), a union bound and Chebyshev’s inequality,

PF
(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
≤ PF

(
max
i∈[n]
|Zn(i)− EF [Zn(i)]| > ηn

)

≤
n∑

i=1

PF
(
|M1

n(i)− EF [M1
n(i)]| ≥ ηnc1n

)

≤ (ηnc1n)−2
n∑

i=1

VarF (M1
n(i)).

(6.56)

We now use the martingale property to split the variance in the variance of martingale
increments. To this end, we need to introduce some notation. Recall that Zn,j(i) is the
degree of i in Gn,j , the graph with n vertices where the n+ 1st vertex has connected j
half-edges with the first n vertices. Now, let us write

c1n,j(m) :=

n−1∏

r=n0

j∏

`=1

(
1− 1

m0 +m(r − n0) + (`− 1) + 1 + Sr

)
,

M1
n,j(i) := c1n−1,j(m)(Zn−1,j(i) + Fi).

If we let M` := M1
n,j(i), where n ≥ n0, j ∈ [m] are such that mn+ (j − 1) = `, it follows

from the proof of Lemma 6.3 that M` is a martingale for the PAFRO and PAFUD model.
Hence, we can then write the conditional variance of M1

n(i) as in (6.56) as

VarF (M1
n(i)) =

n∑

k=i+1∨n0+1

m∑

j=1

VarF (∆M1
k,j(i)), (6.57)
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where ∆M1
k,j(i) := M1

k,j(i) −M1
k,j−1(i), and where we note that M1

k,0(i) = M1
k−1,m(i) =

M1
k (i) for all k = i ∨ n0, . . . , n. We then obtain

VarF (∆M1
k,j(i))

= (c1k,j−1)2EF
[(
1k,j,i −

Zk−1,j−1(i) + Fi + 1k,j,i

m0 +m((k − 1)− n0) + (j − 1) + 1 + Sk−1

)2]
,

(6.58)

where 1k,j,i is the indicator of the event that vertex k connects its jth half-edge to vertex
i. We rewrite this to find the upper bound

VarF (∆M1
k,j(i)) ≤ EF

[(
1k,j,i −

Zk−1,j−1(i) + Fi
m0 +m((k − 1)− n0) + (j − 1) + Sk−1

)2]

= EF
[
Var(1k,j,i | Gk−1,j−1)

]

≤ EF
[ Zk−1,j−1(i) + Fi
m0 +m((k − 1)− n0) + (j − 1) + Sk−1

]
.

(6.59)

Combining this with (6.56) and (6.57) and switching summations yields

PF
(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
≤ (ηnc1n)−2mn,

This final expression tends to zero almost surely, as c1n converges almost surely when
α ∈ (1, 2), as follows from Lemma 6.4. For the PAFFD model, we can use similar steps.
We construct M̃` := M̃1

n,j(i) as above, with M̃1
n,j := c̃1n−1,j(m)(Zn−1,j(i) + Fi), and

c̃n,j(m) :=

n−1∏

r=n0

(
1− 1

m0 +m(r − n0) + Sr

)j
.

It again follows from the proof of Lemma 6.3 that M̃` is a supermartingale, thus yielding
(6.57) for M̃n(i). Then, all further steps can be applied for the PAFFD model as well,
where the equality in (6.57) becomes an upper bound and the denominator of the
fractions in (6.58) and (6.59) changes to m0 +m((k − 1)− n0) + Sk−1.

For the PAFRO model, an adapted final step is required, as the conditional moments
in (6.59) do not sum to one (when summing over i from 1 to k − 1). Rather, we set m to 1

and follow the same steps up to (6.59). Then, we obtain by switching the summations,

PF
(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
≤ (ηnc1n)−2

n∑

k=n0+1

k−1∑

i=1

EF [Zk−1(i) + Fi]
m0 + ((k − 1)− n0)

.

Now, in the same spirit as the steps from (4.5) through (4.6), we obtain the upper bound

(ηnc1n)−2
n∑

k=n0+1

k−1∑

i=1

(m0 + Fi)(m0 + k − n0)

(m0 + i ∨ n0 − n0)(m0 + (k − 1)− n0)
=: (c1n)−2Qn,

where, in n the last step, we separate this upper bound into a product of two quantities.
That is, we consider (c1n)−2 and the rest of the terms, Qn. Since c1n converges almost
surely when α ∈ (1, 2), it follows that (c1n)−2 does too. Then, it remains to show that Qn
converges to zero in mean. Hence, taking the mean with respect to the fitness random
variables yields

E[Qn] ≤ 2

(ηn)2

n∑

k=n0+1

k−1∑

i=1

m0 + E[F ]

m0 + i ∨ n0 − n0
≤ 1

(ηn)2

n∑

k=n0+1

(C1 + C2 log k) ≤ C̃1 + C̃2 log n

η2n
,
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which proves that Qn does indeed converge to zero in mean. We thus also obtain for the
PAFRO model that

PF
(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
P−→ 0.

Finally, like the argument made above (6.56), applying the dominated convergence
theorem proves (6.4) for all three models, which concludes the proof.

7 Proof of the maximum degree growth theorem

In this section, we use the results from Section 6 to prove Theorem 2.7.

Proof of Theorem 2.7. We start by proving (i) and (ii). This directly follows from Lemmas
6.3 and 6.4. As discussed after Lemma 6.3, the martingales (resp. supermartingales)
Mk
n(i) (resp. M̃k

n(i)) converge almost surely to ξki (resp. ξ̃ki ). Also, for the PAFFD model,
M1
n(i) converges almost surely to ξ1

i as well. By these two lemmas, c1nZn(i) = M1
n(i)−c1nFi

converges almost surely to ξ1
i for the PAFRO and PAFUD models, c̃1nZn(i) = M̃1

n(i)− c̃1nFi
converges almost surely to ξ̃1

i for the PAFFD model and c1n(m)n1/θm and c̃1n(m)n1/θm

converge almost surely to c1, c̃1, respectively, when E
[
F1+ε

]
<∞ for some ε > 0. Hence,

we can set ξi := (c1)−1ξ1
i for the PAFRO (note m = 1) and the PAFUD model, and

ξi := (c̃1)−1ξ̃1
i for the PAFFD model. Since c1 and c̃1 are finite almost surely, it follows

directly from Lemma 6.5 that ξi has no atom at zero for all i ∈ N for any of the three
models.

When α ∈ (1, 2), we note that c1n
a.s.−→ c1 without the need of rescaling and thus (2.9)

follows with Z∞(i) := ξ1
i /c1 − Fi, as Zn(i) = M1

n(i)/c1n − Fi, for the PAFRO and PAFUD
models and Z∞(i) := ξ̃1

i /c̃1 −Fi for the PAFFD model.
We now prove (iii). From the second inequality in (6.18) we obtain (c1n)k ≤ ckn when

k ≥ 1. Furthermore, from [16, Theorem 1] it follows that xk ≤ Γ(x + k)/Γ(x) for all
x > 0, k ≥ 1. Hence, (c1nZn(i))k ≤ ckn(Zn(i) + Fi)k ≤ Mk

n(i)Γ(k + 1) for k ≥ 1. Recall M
from Lemma 6.6. Clearly, M > θm when E

[
Fθm+ε

]
< ∞ for some ε > 0. So, if we let

k ∈ (θm,M), Lemma 6.6 yields

lim
i→∞

sup
n≥i

c1nZn(i) = 0 almost surely.

It then follows from Lemma 6.7, as c1nZn(i)
a.s.−→ ξ1

i and ξ1
i 6= ξ1

j almost surely for i 6= j,

max
i∈[n]

n−1/θmZn(i) = (n1/θmc1n)−1 max
i∈[n]

c1nZn(i)
a.s.−→ (c1)−1 sup

i≥1
ξ1
i = sup

i≥1
ξi, and In

a.s.−→ I,

for some almost surely finite random variable I. The same approach with M̃k
n(i) holds

for the PAFFD model.
We now turn to the convergence of maxi∈[n]Zn(i)/un and maxi∈[n]Zn(i)/n as in (iv)

and (v), respectively. This follows immediately by applying Slutsky’s theorem to the
results in Propositions 6.1 and 6.2. For the convergence of In/n as in (2.11) and (2.12),
we let 0 ≤ a < b ≤ 1 and define, using z(t, f) := f(t−1/θm − 1), the random variables

Q`(a) := max
(t,f)∈Π:0<t<a

z(t, f), Q(a, b) := max
(t,f)∈Π:a<t<b

z(t, f), Qr(b) := max
(t,f)∈Π:b<t<1

z(t, f),

and events

Mn(a, b) :=
{

max
an<i<bn

Zn(i)/un > ( max
1≤i≤an

Zn(i)/un ∨ max
bn≤i≤n

Zn(i)/un)
}
,

M(a, b) :=
{
Q(a, b) > Q`(a) ∨Qr(b)

}
.

(7.1)
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We can then conclude, for α ∈ (2, 1 + θm),

lim
n→∞

P(In/n ∈ (a, b)) = lim
n→∞

P(Mn(a, b)) = P(M(a, b)) , (7.2)

since it follows from the proof of Propositions 6.1 and 6.2 that the vector (Zn(i)/un)i∈[n]

converges in distribution when α ∈ (2, 1 + θm). Now, by the fact that Π is a PPP with
intensity measure ν(dt× dx) = dt× (α− 1)x−αdx, we find

P(Q(a, b) ≤ x) = exp

{
−
∫ b

a

∫ ∞

x(t−1/θm−1)−1

(α−1)s−αdsdt

}
= exp{−g(a, b)x−(α−1)}, (7.3)

where g(a, b) :=
∫ b
a

(t−1/θm − 1)α−1dt < ∞ for all 0 ≤ a ≤ b ≤ 1. Similarly, using the
independence property of PPPs,

P(Q`(a) ∨Qr(b) ≤ x) = exp{−(g(0, a) + g(b, 1))x−(α−1)}. (7.4)

Combining (7.3) and (7.4) in (7.2) by conditioning on Q`(a) ∨Qr(b), we obtain

lim
n→∞

P(In/n ∈ (a, b)) = 1−
∫ ∞

0

(α− 1)x−α(g(0, a) + g(b, 1)) exp{−g(0, 1)x−(α−1)}dx

=
g(a, b)

g(0, 1)
.

Then, using the variable transform s = x1/θm yields

g(a, b) = θm

∫ b1/θm

a1/θm
s(θm−(α−1))−1(1− s)α−1ds =

Γ(θm − (α− 1))Γ(α)

Γ(θm)
P
(
Bθm ∈ (a, b)

)
,

where Γ is the Gamma function, from which it follows that I
d
= Bθm , with B a Beta(θm −

(α − 1), α) random variable. Via a similar approach, redefining Mn(a, b) and M(a, b)

accordingly for α ∈ (1, 2), we can show In/n converges in distribution when α ∈ (1, 2),
though it is not possible to find an explicit expression for the law of I ′. Finally, we
address the joint convergence of (In/n,maxi∈[n]Zn(i)/un). We let 0 < c < d < ∞ and
define the events

En(a, b, c, d) =:
{

max
an<i<bn

Zn(i)/un ∈ (c, d)
}
, E(a, b, c, d) :=

{
Q(a, b) ∈ (c, d)

}
. (7.5)

We can then write, using these events and the events in (7.1) and letting A := (a, b)×(c, d),

P
(

(In/n,max
i∈[n]
Zn(i)/un) ∈ A

)
= P(Mn(a, b) ∩ En(a, b, c, d)) ,

which converges to P(M(a, b) ∩ E(a, b, c, d)) as n tends to infinity by the same argument
as provided for the limit in (7.2). Again, by conditioning on Q`(a)∨Qr(b) and using (7.4),
we find

P(M(a, b) ∩ E(a, b, c, d))

= P(E(a, b, c, d))P(Q`(a) ∨Qr(b) ≤ c)

+

∫ d

c

P(E(a, b, x, d)) (α− 1)x−α(g(0, a) + g(b, 1)) exp{−(g(0, a) + g(b, 1))x−(α−1)}dx.

Using (7.3), (7.4) and (7.5) the first term on the right-hand side equals

(exp{ − g(a, b)d−(α−1)} − exp{−g(a, b)c−(α−1)}) exp{−(g(0, a) + g(b, 1))c−(α−1)}
= exp{−g(a, b)d−(α−1) − (g(0, a) + g(b, 1))c−(α−1)} − exp{−g(0, 1)c−(α−1)}.

(7.6)
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For the second term, we realise we can write

P(E(a, b, x, d)) = P(Q(a, b) ∈ (x, d)) = P(Q(a, b) ≤ d))− P(Q(a, b) ≤ x) ,

so that we can split the integral into two parts. The first part, using (7.3) and (7.4),
becomes

P(Q(a, b) ≤ d)

∫ d

c

(α− 1)x−α(g(0, a) + g(b, 1)) exp{−(g(0, a) + g(b, 1))x−(α−1)}dx

= exp{−g(0, 1)d−(α−1)} − exp{−g(a, b)d−(α−1) − (g(0, a) + g(b, 1))c−(α−1)},
(7.7)

and the second part equals

∫ d

c

P(Q(a, b) ≤ x)(α− 1)x−α(g(0, a) + g(b, 1)) exp{−(g(0, a) + g(b, 1))x−(α−1)}dx

=

∫ d

c

(α− 1)x−α(g(0, a) + g(b, 1)) exp{−g(0, 1)x−(α−1)}dx

=
(

1− g(a, b)

g(0, 1)

)
(exp{−g(0, 1)d−(α−1)} − exp{−g(0, 1)c−(α−1)}).

(7.8)

Combining (7.6), (7.7) and (7.8), yields as n tends to infinity,

P
(

(In/n,max
i∈[n]
Zn(i)/un) ∈ A

)
→ g(a, b)

g(0, 1)
(exp{−g(0, 1)d−(α−1)} − exp{−g(0, 1)c−(α−1)})

= P(I ∈ (a, b))P
(

max
(t,f)∈Π

f(t−1/θm − 1) ∈ (c, d)
)
,

where the final step regarding the law of the maximum of the PPP, a Fréchet distri-
bution with shape parameter α − 1 and scale parameter g(0, 1)1/(α−1) = (Γ(θm − (α −
1))Γ(α)/Γ(θm))1/(α−1), follows from a similar argument as in (7.3). As before, redefining
the events in (7.1) and (7.5) accordingly and using the same steps yields the joint conver-
gence of (In/n,maxi∈[n]Zn(i)/n) when α ∈ (1, 2), which concludes the proof of Theorem
2.7.
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2.2 Conclusion

We presented a comprehensive and self-contained analysis of the degree distribution
and maximum degree of three variants of preferential attachment models with additive
fitness. In this presentation we outlined three different phases or regimes, for which
different behaviour can be observed.

Theorem 2.4 states the convergence of the degree-weighted fitness measure, the empiri-
cal fitness-in-degree distribution and the empirical degree distribution in the weak and
strong disorder regime, as well as at the critical point between these two regimes. Theo-
rem 2.6 further investigates the asymptotic behaviour of the limiting degree distribution
in the weak and strong disorder regimes and at the critical point between these two
regimes, showing it is a power law with a different exponent depending on the particular
regime. Importantly, it shows that the power-law exponent remains ‘unaffected’ by the
additive fitness (in comparison to the affine preferential attachment models discussed
in the introduction of the chapter) in the weak disorder regime, whereas the additive
fitness solely determines the power-law exponent in the strong disorder regime. The
behaviour at the critical point between the weak and strong regime, which is different
from the behaviour in either of the regimes, begs the question what the maximum
degree behaves like at this critical point.

The behaviour of the maximum degree in each of the three regimes is presented in
Theorem 2.7. The contrast with the behaviour of the degrees of fixed vertices, as
shown in Equations (2.8) and (2.9), provides clear insight in the differences between
the three regimes. In the extreme disorder regime, fixed vertices only attain a finite
degree almost surely, whereas the maximum degree vertex establishes connections with
a strictly positive proportion of all vertices in the graph and thus attracts a strictly
positive proportion of all edges in the graph. Though this behaviour can be compared
to the super-linear preferential attachment models studied in, among others, [120], the
main difference is that the location of the maximum degree keeps changing, and in fact
is of order n, due to the random environment. In the super-linear models, however,
persistence occurs.

In the strong disorder regime the location of the maximum degree grows linearly in n
as well, but the maximum degree grows sub-linear (though still faster than the degree
of any fixed vertex). Finally, in the weak disorder regime, the maximum degree grows
at the same rate as any fixed vertex and, as is the case for the affine preferential
attachment models discussed in the introduction of this chapter, persistence occurs,
where there exists a fixed vertex that attains the maximum degree for all but finitely
many steps. This is the most notable difference between the weak disorder regime and
the strong and extreme disorder regime and shows the effect of the random environment
most clearly.

An indirect comparison can be made between the three regimes of the phase transition
this model undergoes and the three phases observed in the Bianconi-Barabási model as
investigated in [23]. Roughly speaking, the weak, strong and extreme disorder regimes
can be compared to the first-mover-advantage, fit-get-richer and innovation-pays-off
phases, though the underlying conditions giving rise to these phases as well as the
behaviour observed in the two models is different.

To conclude, we have shown that the introduction of additive fitness to the preferential
attachment model allows for richer behaviour, which can serve as a more natural and
more detailed explanation of the underlying mechanisms governing real-world networks.
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Chapter 3

The maximal degree in random
recursive graphs with random
weights

In this chapter we consider weighted random graphs, a more general form of the
weighted recursive tree model defined in [71]. We investigate its degree distribution and
its maximum degree. Depending on the distribution of the vertex-weights, we either
use similar techniques to those developed in Chapter 2, or we adopt techniques used
in [44] for random recursive trees and directed acyclic graphs. The following preprint,
which is joint work with Marcel Ortgiese, is available on the arXiv [96].

3.1 Outline of the article

The weighted recursive graph model, as defined in the tree case in [71], is comparable
to the models discussed in the previous chapter. Again, we consider a graph process
(Gn)n∈N, starting with a single node and no edges, in which vertices enter the graph
one by one and connect to m ∈ N predecessors when they enter the graph. Also,
every vertex i ∈ N is assigned an i.i.d. positive fitness Wi, which we refer to as its
vertex-weight from now on. A new vertex n chooses each of the m predecessors to
connect to with a probability proportional to the vertex-weight of the predecessor. As in
Chapter 2, we also allow for a ‘Bernoulli’ model in which the new vertex connects to each
predecessor with a probability proportional to its vertex-weight and where connections
are negatively correlated. As in the previous chapter, we are interested in the behaviour
of the empirical degree distribution and the maximum degree distribution.

This model relates to the previously-investigated preferential attachment models with
additive fitness in the sense that this model omits the feedback effect of the increasing
degree. As shown in the Chapter 2, the fitness in these preferential attachment models
is only able to influence the overall behaviour of the graph in a significant way when its
distribution is sufficiently heavy-tailed. This is reflected in the three regimes discussed
there. The fitness affects the evolution of the graph in a very subtle way compared
to the much stronger preferential attachment mechanism that is at the heart of the
model, so that only heavy-tailed distributions have a significant impact. Here, we
study a model in which the preferential attachment mechanism is omitted, to allow for
the subtleties of the fitness/vertex-weight distribution to come through.

As a result, we are able to identify a large number of classes of vertex-weight distri-
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butions for which different behaviour of the degree distribution and maximum degree
can be observed. The most distinct difference in the behaviour of the maximum degree
can be observed between almost surely bounded and almost surely unbounded vertex-
weights. In the latter case, the fact that vertices with arbitrarily large vertex-weights
can appear implies the vertex-weights have a direct influence on the behaviour of the
maximum degree. Using techniques including point process convergence and extreme
value theory, we are able to obtain the behaviour of the maximum degree for many
classes of vertex-weight distributions with unbounded support.

In the case of almost surely bounded vertex-weights, we observe that the behaviour of
the maximum degree and the degree distribution is similar to the random recursive tree
(and the directed acyclic graph, its multigraph counterpart), which can be interpreted
as a weighted recursive graph where all vertex-weights are almost surely one. As the
weights are bounded, their influence on the graph process is significantly different from
the case where the weights are unbounded. Using only the fact that the vertex-weights
are bounded, we are able to obtain the first order behaviour of the maximum degree,
adapting techniques developed in [44] for the random recursive tree and directed acyclic
graph.

The techniques used in the analysis of the WRG model are robust, in the sense that
the results for the tree case (m = 1) follow directly from the analysis of the multigraph
case. This holds when the vertex-weights are unbounded as well as when the vertex-
weights are bounded. Though other techniques, such as embedding the graph process
in a continuous-time branching process, can also be used to analyse the tree case, these
techniques generally do not allow for an extension to the multigraph case.

In Section 2 we present the main results regarding the degree distribution and the
maximum degree. Section 4 is then devoted to proving the results related to the degree
distribution. Sections 5 and 6 provide the necessary technical results required to prove
the results related to the maximum degree, which is done in Section 7.
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THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH

RANDOM WEIGHTS

BAS LODEWIJKS AND MARCEL ORTGIESE

Abstract. We study a generalisation of the random recursive tree (RRT) model and
its multigraph counterpart, the uniform directed acyclic graph (DAG). Here, vertices are
equipped with a random vertex-weight representing initial inhomogeneities in the network,
so that a new vertex connects to one of the old vertices with a probability that is pro-
portional to their vertex-weight. We first identify the asymptotic degree distribution of a
uniformly chosen vertex for a general vertex-weight distribution. For the maximal degree,
we distinguish several classes that lead to different behaviour: For bounded vertex-weights
we obtain results for the maximal degree that are similar to those observed for RRTs and
DAGs. If the vertex-weights have unbounded support, then the maximal degree has to
satisfy the right balance between having a high vertex-weight and being born early.

For vertex-weights in the Fréchet maximum domain of attraction the first order be-
haviour of the maximal degree is random, while for those in the Gumbel maximum domain
of attraction the leading order is deterministic. Surprisingly, in the latter case, the second
order is random when considering vertices in a compact window in the optimal region,
while it becomes deterministic when considering all vertices.

1. Introduction

A random recursive tree (RRT) is a growing random tree model in which one starts with a
single vertex, denoted as the root, and for n ≥ 2, adds a vertex n which is then connected to
a vertex chosen uniformly at random among the vertices {1, . . . , n− 1}. Since the selection
is uniform, this model is also known as the uniform attachment tree or uniform random
recursive tree. Its multigraph counterpart known as uniform directed acyclic graphs (DAGs
or uniform DAGs) was introduced by Devroye and Lu in [8] and allows for an incoming
vertex to connect to k predecessors. The RRT was first introduced by Na and Rapoport in
1970 [23] and has since attracted a wealth of interest, uncovering the behaviour of many of
its properties, including, among others: the number of leaves, profile of the tree, height of
the tree, vertex degrees and the size of sub-trees. [27] and the more recent [9] provide good
surveys on the topic.

In this paper we study a more general model, the weighted recursive graph (WRG), which
can be interpreted as a random recursive tree (or uniform DAG) in a random environ-
ment. Here, we assign to every vertex a random, independent non-negative vertex-weight
and incoming vertices are connected to predecessors not uniformly at random but with a
probability proportional to the vertex-weights. The tree case of this model, the weighted
recursive tree (WRT), was originally introduced by Borovkov and Vatutin in [6] (with a
deterministic weight for the first vertex), as well as by Hiesmayr and Işlak in [15]. Another
type of WRT was introduced by Borovkov and Vatutin in [5], where the vertex-weights
have a specific product-form. These weighted recursive tree models have received far less
attention overall, though it allows for much more diverse behaviour.

Recent work on weighted recursive trees includes [21], [26] and [24] where the profile and
height of the tree are analysed as well as vertex degrees. Additionally, Iyer [18] and Iyer

Date: August 27, 2021.
Key words and phrases. Weighted recursive graph, Weighted random recursive tree, Random recursive

graph, Uniform DAG, Maximum degree, Degree distribution, Random environment.
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and Fountoulakis [11] study degree distributions of many weighted growing tree models and
the weighted recursive tree is a particular example.

In what follows we first analyse the degree distribution of a uniformly chosen vertex and
the behaviour of the maximum degree in WRGs, which recovers and extends results on the
degree distribution of RRTs and WRTs as well as the maximum degree in RRTs. Degree
distributions in RRTs have been studied in [12, 20, 22] and [23] and, as mentioned above,
Iyer (and Fountoulakis) study the degree distributions of a very general class of weighted
growing trees in [18] and [11]. In this paper we extend the results on degree distributions in
random recursive trees and weighted recursive trees to their multigraph counterparts, the
DAG and WRG models, respectively.

Szymański [28] was the first to obtain results on the growth rate of the maximum degree
in RRTs. These results were later extended in [8] and finer properties of high degrees were
analysed in [13], [1] and [10]. Recently, Banerjee and Bhamidi [3] studied the occurrence
of persistence in growing random networks. Here persistence means that there exists a
vertex in the network whose degree is maximal for all but finitely many steps. Also, [3]
presents results describing the growth rate of the location of the maximum degree (the
index of vertices attaining the maximum degree) in RRTs. In WRTs, the behaviour of
degrees and the maximum degree has received attention from Sénizergues in [26], where the
vertex-weights need not be i.i.d. random variables but can satisfy more general conditions.
In particular cases, it is shown that these graphs are equivalent in law to preferential
attachment models with additive fitness (PAF), also studied in [19].

Here, we extend and generalise the results of Devroye and Lu in [8] to WRGs and analyse the
growth of the maximal degree for a broad range of vertex-weights distributions. Moreover,
we identify the location of the maximal site in many cases, a result which was shown (among
others) for constant weight models in [3].

Our methods are related to the analysis of the preferential attachment with additive fitness
carried out in [19]. For these preferential attachment models, the attachment probabilities
are proportional to the degree plus a random weight (fitness). In these models, we dis-
tinguish three different regimes: first of all a weak disorder regime, where the preferential
attachment mechanism dominates (and there is persistence). This is closely related to the
work of [26], which in turn corresponds to a WRT where the partial sums of the weights
is at most of order nγ for γ ∈ (0, 1). Moreover, in [19] we identify a strong and extreme
disorder regime where the influence of the random weights takes over, which appears when
the distribution of the weights is sufficiently heavy-tailed.

For WRGs there is no preferential attachment component for the vertex-weights to com-
pete with so that the influence of the random weights is more immediate and already
appears for less heavy-tailed weights. More precisely, for the maximal degree we distin-
guish three regimes: for bounded weights the system behaves similarly to a RRT, whereas
for unbounded weights that are in the domain of attraction of a Gumbel distribution the
maximal degree grows faster and we can identify the time when the maximizing vertex
comes into the system. Finally, in the case when the weights are in the domain of attrac-
tion of a Fréchet distribution, the behaviour is similar to (but not exactly the same as) the
preferential attachment with additive fitness in the strong and extreme disorder regimes
and the leading asymptotics of the maximal degree is random and we identify the limit as
a functional of a Poisson point process. In contrast to the latter, in the case of Gumbel
weights, the first order growth of the degrees is deterministic and by comparison to the case
of the maximum of i.i.d. weights, it would be natural to conjecture that the second order is
random. We confirm this observation for two special sub-cases of Gumbel weights. How-
ever, this result is only true when we consider a compact window in the region of indices
that should correspond to the maximal one. Finally, we identify the true second order and,
somewhat surprisingly, it is also deterministic. This behaviour comes from the fact that we
have to consider a much larger optimal window than initially suspected.
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Our results for the degree distribution follow by adjusting the proofs in [19], as at least on
the level of degree distributions the WRG model is essentially a simpler model compared to
the PAF models. The results for the maximum degree in the case of bounded weights follow
with similar techniques as in [8], which can be extended to WRGs. The main contribution
of this paper is to understand the first and second order asymptotics of the maximal degree
in the case when the weights are unbounded and satisfy suitable regularity assumptions.
For unbounded weights, the system is driven by the competition between the benefit of
being an old vertex and so having time to accumulate a high degree and the benefit of
being a young vertex with a large weight. To understand the first order of growth (as
well as the second order when considering a compact window), we show concentration of
the degrees around the conditional means (when conditioning on the weights) and then in
a second step analyse the conditional mean degree using extreme value theory (similarly
as in [19]). However, as the weights have a more immediate impact, the results become
more dependent on the exact distribution of weights chosen and thus require more intricate
calculations. Finally, to obtain the true second order asymptotics in the Gumbel case, we
can no longer rely on the elegant tools of convergence to Poisson processes from extreme
value theory and instead have to carefully keep track of errors made in the corresponding
approximations.

Notation. Throughout the paper we use the following notation: we let N := {1, 2, . . .} be
the natural numbers, set N0 := {0, 1, . . .} to include zero and let [t] := {i ∈ N : i ≤ t} for
any t ≥ 1. For x ∈ R, we let dxe := inf{n ∈ Z : n ≥ x} and bxc := sup{n ∈ Z : n ≤
x}. Moreover, for sequences (an, bn)n∈N we say that an = o(bn), an ∼ bn, an = O(bn) if
limn→∞ an/bn = 0, limn→∞ an/bn = 1 and if there exist constants C > 0, n0 ∈ N such that

an ≤ Cbn for all n ≥ n0, respectively. For random variables X, (Xn)n∈N we denote Xn
d−→

X,Xn
P−→ X and Xn

a.s.−→ X for convergence in distribution, probability and almost sure

convergence of Xn to X, respectively. Also, we write Xn = oP(1) if Xn
P−→ 0. Throughout,

we denote by (Wi)i∈N i.d.d. random variables and use the conditional probability measure
PW (·) := P( · |(Wi)i∈N) and conditional expectation EW [·] := E [ · |(Wi)i∈N].

2. Definitions and main results

The Weighted Recursive Graph (WRG) model is a growing random graph model that is a
generalisation of the random recursive tree (RRT) and the uniform directed acyclic graph
(DAG) models in which vertices are assigned (random) weights and new vertices connect
with existing vertices with a probability proportional to the vertex-weights.

We define the WRG model as follows:

Definition 2.1 (Weighted Recursive Graph). Let (Wi)i≥1 be a sequence of i.i.d. copies of
a non-negative random variable W such that P(W > 0) = 1, let m ∈ N and set

Sn :=

n∑

i=1

Wi.

We construct the Weighted Recursive Graph as follows:

1) Initialise the graph with a single vertex 1, the root, and assign to the root a vertex-
weight W1. We let G1 denote this graph. .

2) For n ≥ 1, introduce a new vertex n+1 and assign to it the vertex-weight Wn+1 and
m half-edges. Conditionally on Gn, independently connect each half-edge to some
vertex i ∈ [n] with probability Wi/Sn. Let Gn+1 denote this graph.

We treat Gn as a directed graph, where edges are directed from new vertices towards old
vertices.
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Remark 2.2. (i) Note that the edge connection probabilities remain unchanged if we
multiply each weight by the same constant. In particular, we may assume, without loss of
generality, that x0 : sup{x ∈ R |P(W ≤ x) < 1} is either 1 (when the weights are almost
surely bounded) or ∞ (when the weights are almost surely unbounded. Similarly, in the
latter case of unbounded vertex-weights we can assume that E [W ] = 1.

(ii) It is possible to extend the definition of the WRG to the case of random out-degree
and the results presented in this paper still hold. Namely, we can allow that vertex n + 1
connects to every vertex i ∈ [n] independently with probability Wi/Sn. At the start of
sections dedicated to proving the results we present below, we discuss why the results hold
for the random out-degree model as well.

To formulate our results we need to assume that the distribution of the weights is sufficiently
regular, allowing us to control their extreme value behaviour.

Assumption 2.3 (Vertex-weight distributions). The vertex-weights W, (Wi)i∈N satisfy one
of the following conditions:

(Bounded) The vertex-weights are almost surely bounded, i.e.
x0 := sup{x ∈ R |P(W ≤ x) < 1} < ∞. Without loss of generality, we can
assume that x0 = 1.
Within this class, we can further identify vertex-weight distributions that be-
long to the Weibull maximum domain of attraction (MDA) and Gumbel MDA.

(Gumbel) The vertex-weights follow a distribution that belongs to the Gumbel maximum
domain of attraction (MDA) such that x0 = ∞. Without loss of generality,
E [W ] = 1. This implies that there exist sequences (an, bn)n∈N, such that

maxi∈[n]Wi − bn
an

d−→ Λ,

where Λ is a Gumbel random variable.
Within this class, we further distinguish the following three (non-exhaustive)
sub-classes:

(SV) bn ∼ `(log n) where ` is an increasing function that is slowly-varying
at infinity, i.e. limx→∞ `(cx)/`(x) = 1 for all c > 0.

(RV) There exist a, c1, τ > 0, and b ∈ R such that

P(W ≥ x) ∼ axbe−(x/c1)τ as x→∞.
(RaV) There exist a, c1 > 0, b ∈ R, and τ > 1 such that

P(W ≥ x) ∼ a(log x)be−(log(x)/c1)τ as x→∞.
(Fréchet) The vertex-weights follow a distribution that belongs to the Fréchet MDA.

Without loss of generality, E [W ] = 1 (given that E [W ] <∞ is satisfied). This
implies that there exists a non-negative function `(x) that is slowly-varying at
infinity and some α > 1, such that

P(W ≥ x) = `(x)x−(α−1).

Moreover, if we let un := sup{t ∈ R : P(W ≥ t) ≥ 1/n},

max
i∈[n]

Wi/un
d−→ Φα−1,

where Φα−1 is a Fréchet random variable with exponent α− 1.

Remark 2.4. Note that [29] shows (with a slight error in the paper in that the log a term
below is a log τ in [29]) that if the weight distribution satisfies the assumption (RV), then
we can choose

an = c2(log n)1/τ−1, bn = c1(log n)1/τ + an((b/τ) log log n+ b log c1 + log a), (2.1)
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for the same constants as above and c2 := c1/τ . Moreover, in the (RaV) sub-case, we can
choose

bn = exp{c1(log n)1/τ + c2(log n)1/τ−1((b/τ) log log n+ b log c1 + log a)},
an = c2(log n)1/τ−1bn,

(2.2)

In particular, the three sub-cases in the (Gumbel) case, (SV), (RV) and (RaV), can be
distinguished as bn = g(log n), an = g̃(log n), with g, g̃ slowly-varying, regularly-varying
and rapidly-varying functions at infinity, respectively. Note that in all cases, an and bn
itself are slowly varying at infinity. In the (RV) sub-case, we very often use the asymptotic

equivalence for bn, that is, bn ∼ c1(log n)1/τ . Moreover, in the (RaV) sub-case, we can

think of bn as exp{(log n)1/τ `(log n)} and an as c2(log n)1/τ−1bn.

Furthermore, as noted in the assumption, we recall that the three sub-cases within the
(Gumbel) case do not cover all possible distributions in the Gumbel MDA with unbounded
support. As an example, P(W ≥ x) = a exp{−(x/c1)τ + (x/c1)τ−1} as x → ∞ is a distri-
bution within the Gumbel MDA, but does not satisfy any of the three sub-cases. On the
other hand the (Bounded) and (Fréchet) classes are exhaustive.

We now present the results for the degree distribution and the maximum degree in the WRG
model. In comparison to the preferential attachment with additive fitness (PAF) models as
studied in [19], vertex-weights with a distribution with a ‘thin’ tail, i.e. distributions with
exponentially decaying tails or bounded support, now can also exert their influence on the
behaviour of the system.

Throughout, we write
Zn(i) := in-degree of vertex i in Gn.

We prefer to work with the in-degree as it then is easier to (in principle) generalize our
methods to graphs with random out-degree. Obviously, if the out-degree is fixed, we can
recover the results for the degree from our results for Zn(i).

The first result deals with the degree distribution of the WRG model. Let us first introduce
the following measures and quantities:

Γn :=
1

n

n∑

i=1

Zn(i)δWi , Γ(k)
n :=

1

n

n∑

i=1

1{Zn(i)=k}δWi , pn(k) := Γ(k)
n ([0,∞)),

where δ is a Dirac measure, and which correspond to the empirical weight distribution
of a vertex sampled weighted by its in-degree, then the joint empirical vertex-weight and
in-degree distribution and finally the empirical degree distribution. We can then formulate
the following theorem:

Theorem 2.5 (Degree distribution in WRGs). Consider the WRG model in Definition 2.1
and suppose that the vertex-weights have finite mean and denote their distribution by µ.
Then, for any k ∈ N0, almost surely as n→∞,

Γn → Γ, Γ(k)
n → Γ(k), and pn(k)→ pk, (2.3)

where the first two statements hold with respect to the topology of weak convergence and the
limits are given as

Γ(dx) :=
xm

E [W ]
µ(dx), Γ(k)(dx) =

E [W ] /m

E [W ] /m+ x

(
x

E [W ] /m+ x

)k
µ(dx), (2.4)

and

pk =

∫ ∞

0

E [W ] /m

E [W ] /m+ x

(
x

E [W ] /m+ x

)k
µ(dx). (2.5)

Finally, let the vertex-weight distribution be a power law as in the (Fréchet) case of As-
sumption 2.3 with α ∈ (1, 2), such that there exists an xl > 0 with µ(xl,∞) = 1, i.e.
the vertex-weights are bounded away from zero almost surely. Let Un be a vertex selected
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uniformly at random from [n], let ε > 0 and let En := {Zn(Un) = 0}. Then, for all n
sufficiently large,

P(En) ≥ 1− Cn−((2−α)∧(α−1))/α+ε, (2.6)

for some constant C > 0.

An important question regarding the degree distribution pk, as in (2.5), is its asymptotic
behaviour as k → ∞. As it turns out, the answer depends on the particular choice of
the distribution of the random variable W . Before presenting a theorem dedicated to the
asymptotic behaviour of the limiting degree distribution pk, we first introduce the following
general lemma, which allows us to distinguish several different sub-cases of bounded weights.

Lemma 2.6. Let W be a non-negative random variable such that x0 := sup{x > 0 :
P(W ≤ x) < 1} < ∞. Then, the distribution of W belongs to the Weibull (resp. Gumbel)
MDA if and only if (x0 −W )−1 is a non-negative random variable with a distribution with
unbounded support that belongs to the Fréchet (resp. Gumbel) MDA.

We are now ready to present the results on the asymptotics of pk.

Theorem 2.7 (Asymptotic behaviour of pk). Consider the WRG with vertex-weights
(Wi)i∈N, which are i.i.d. copies of a non-negative random variable W such that E [W ] <∞.
We consider the different cases of Assumption 2.3.

(Bounded) Let θm := 1 + E [W ] /m and recall that x0 = sup{x > 0 : P(W ≤ x) < 1} = 1.
• When W belongs to the Weibull MDA with parameter α > 1, for all
k > m/E [W ],

L(k)k−(α−1)θ−km ≤ pk ≤ L(k)k−(α−1)θ−km , (2.7)

where L,L are slowly varying at infinity.

• When W belongs to the Gumbel MDA,
(i) If (1−W )−1 satisfies the (RV) sub-case with parameter τ > 0, then

for γ := 1/(τ + 1),

pk = exp
{
− (1 + o(1))

τγ

1− γ
((1− θ−1

m )k

c1

)1−γ}
θ−km . (2.8)

(ii) If (1−W )−1 satisfies the (RaV) sub-case with parameter τ > 1,

pk = exp
{
−
( log k

c1

)τ(
1−τ(τ−1)

log log k

log k
+
Kτ,c1,θm

log k
(1+o(1))

)}
θ−km , (2.9)

where Kτ,c1,θm := τ log(ecτ1(1− θ−1
m )/τ).

• When W has an atom at x0, i.e. q0 = P(W = x0) > 0, set

sk := inf{x ∈ (0, 1) : exp{−(1− θ−1
m )(1− x)k} ≤ P(W ∈ (x, 1))},

rk := exp{−(1− θ−1
m )(1− sk)k}.

(2.10)

Then,

pk = q0(1− θ−1
m )θ−km (1 +O(rk)). (2.11)

(Gumbel) (i) If W satisfies the (RV) sub-case with parameter τ , then for γ := 1/(τ+1),

pk = exp
{
− τγ

1− γ
( k

c1m

)1−γ
(1 + o(1))

}
. (2.12)

(ii) If W satisfies the (RaV) sub-case with parameter τ > 1,

pk =
1

k
exp

{
−
( log(k/m)

c1

)τ(
1−τ(τ−1)

log log(k/m)

log(k/m)
+

Kτ,c1

log(k/m)
(1+o(1))

)}
, (2.13)

where Kτ,c1 := τ log(ecτ1/τ).
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(Fréchet) When α > 2,

`(k)k−α ≤ pk ≤ `(k)k−α, (2.14)

where `, ` are slowly varying at infinity.

Remark 2.8. We observe that the (Gumbel)-(SV) sub-case is not covered in Theorem 2.7.
This is due to the fact that this case only specifies the behaviour of the first order asymptotic
growth of the maximum of n vertex-weights, bn, and provides no details of the underlying
distribution of the vertex-weights. As a result, we are not able to obtain a precise asymptotic
expression for pk, though precise statements about its maximum degree can still be observed,
as follows later in this section.

The asymptotic behaviour of the degree distribution pk in Theorem 2.7 allows for a non-
rigorous estimation of the size of the maximum degree in Gn. As is the case for the degree
distribution, the behaviour of the maximum degree in the WRG model is highly dependent
on the underlying distribution of the vertex-weights as well, and on a heuristic level one
would expect the size of the maximum degree, say dn, to be such that

∑
k≥dn pk ≈ 1/n.

The following theorem makes this heuristic statement precise and states the first-order
growth rate of the maximum degree for three different classes of vertex-weight distributions.
In all classes, we find, up to the leading order in the asymptotic expression of pk, that∑

k≥dn pk ≈ 1/n is satisfied when considering the asymptotic expressions in Theorem 2.7.

Theorem 2.9 (Maximum degree in WRGs). Consider the WRG model as in Definition 2.1
and let In := inf{i ∈ [n] : Zn(i) ≥ Zn(j) for all j ∈ [n]}. We consider the different cases of
Assumption 2.3.

(Bounded) Let θm := 1 + E [W ] /m. Then,

maxi∈[n]Zn(i)

log n

a.s.−→ 1

log θm
.

(Gumbel) For sub-case (SV),
(

max
i∈[n]

Zn(i)

mbn log n
,
log In
log n

)
P−→ (1, 0). (2.15)

For sub-case (RV), let γ := 1/(τ + 1). Then,
(

max
i∈[n]

Zn(i)

m(1− γ)bnγ log n
,
log In
log n

)
a.s.−→ (1, γ). (2.16)

Finally, for sub-case (RaV), let tn := exp{−τ log n/ log(bn)}. Then,
(

max
i∈[n]

Zn(i)

mbtnn log(1/tn)
,
log In
log n

)
P−→ (1, 1). (2.17)

(Fréchet) Let Π be a Poisson point process (PPP) on (0, 1)× (0,∞) with intensity mea-
sure ν(dt,dx) := dt× (α− 1)x−αdx. Then, when α > 2,

(max
i∈[n]
Zn(i)/un, In/n)

d−→ (m max
(t,f)∈Π

f log(1/t), Iα), (2.18)

where mmax(t,f)∈Π f log(1/t) and Iα are independent, with Iα
d
= e−Wα and Wα

a Γ(α, 1) random variable, and where mmax(t,f)∈Π f log(1/t) has a Fréchet

distribution with shape parameter α − 1 and scale parameter mΓ(α)1/(α−1).
Finally, when α ∈ (1, 2),

(max
i∈[n]
Zn(i)/n, In/n)

d−→ (Z, I), (2.19)

for some random variable I with values in (0, 1) and where

Z = m max
(t,f)∈Π

f

∫ 1

t

(∫

(0,1)×(0,∞)
g1{u≤s} dΠ(u, g)

)−1

ds.
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Remark 2.10. (i) Note that the asymptotics of the maximal degrees are the result of
a non-trivial competition, where older vertices can achieve a higher degree because they
have been in the system for longer, while younger vertices have the chance to have a big
vertex-weight corresponding to a local maximum.

(ii) The result in (2.19) is equivalent to the behaviour of the PAF models with infinite mean
power-law fitness random variables, as presented in [19]. Here, the influence of the fitness
(vertex-weights) overpowers the preferential attachment mechanism so that the preferential
attachment graph behaves like a weighted recursive graph.

(iii) The result in (2.18) can actually be extended to hold jointly for the K largest degrees

and their locations as well, for any K ∈ N. The limits (Z(K), I
(K)
α ) of the Kth largest degree

and its location are independent, I
(K)
α

d
= e−W

(K)
α , where the (W

(K)
α )K∈N are i.i.d. Γ(α, 1)

random variables, and

P
(
Z(K) ≤ x

)
=

K−1∑

i=0

1

i!
(Γ(α)(x/m)−(α−1))i exp{−Γ(α)(x/m)−(α−1)}.

(iv) We conjecture that the convergence in (2.15) can be strengthened to almost sure
convergence. This is definitely the case for particular vertex-weight distributions that satisfy
the (Gumbel)-(SV) sub-case, e.g. W := logW ′, where W ′ satisfies the (Gumbel)-(RV)
sub-case.

(v) In (2.16) and (2.17) the rescaling of the maximum degree can be interpreted as m(1−
γ)c1γ

1/τ (log n)1+1/τ andme−1c−1
2 (log n)1−1/τ exp

{
c1(log n)1/τ

}
, respectively, since the lower

order terms of bn as in (2.1) and (2.2) can be ignored when considering only the first-order
behaviour of the maximum degree. As a result, it should be possible to weaken the assump-
tions on the tail-distribution in the (Gumbel)-(RV) and (Gumbel)-(RaV) sub-cases to
P(W ≥ x) = exp

{
− (x/c1)τ (1 + o(1))

}
and P(W ≥ x) = exp

{
− (log(x)/c1)τ (1 + o(1))

}
,

respectively, such that the results in (2.16) and (2.17) still hold.

A result we have been unable to prove, but which we conjecture to be true, is the convergence
of the location of the maximum degree in the WRG when the vertex-weights are almost
surely bounded, which would improve the result proved for the random recursive tree by
Banerjee and Bhamidi in [3] from convergence in probability to almost sure convergence
and would extend this result to the m-DAG model and the WRG model.

Conjecture 2.11 (Location of the maximum degree in WRGs with bounded weights). Con-
sider the WRG model as in Definition 2.1, let In := inf{i ∈ [n] : Zn(i) ≥ Zn(j) for all j ∈
[n]} and set θm := 1 + E [W ] /m. When the vertex-weights satisfy the (Bounded) case,

log In
log n

a.s.−→ 1− θm − 1

θm log(θm)
.

We now concentrate on the case of unbounded weights. In Theorem 2.9, we note that in
the (Fréchet) case the first order of the growth of the largest degree is random, while in
the (Gumbel) case, the first order is deterministic. This is a general feature which also
appears when considering the growth of the maximum of n i.i.d. weights (although the
particular normalizations and limits are different). For the i.i.d. case it is also known that
in the (Gumbel) case the second order is random. A natural conjecture would be that
the same is true in for this model. Our next result shows that if we consider the indices
in a compact window around the maximal one (as identified in Theorem 2.9), then this is
indeed true.

To formulate our results, we introduce the following notation: For 0 < s < t <∞, γ ∈ (0, 1)
and a strictly positive function f , define

Cn(γ, s, t, f) := {i ∈ [n] : sf(n)nγ ≤ i ≤ tf(n)nγ},
In(γ, s, t, f) := inf{i ∈ Cn(γ, s, t, f) : Zn(i) ≥ Zn(j) for all j ∈ Cn(γ, s, t, f)}. (2.20)
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We abuse notation to also write Cn(1, s, t, tn) and In(1, s, t, tn) when we deal with vertices
i such that stnn ≤ i ≤ ttnn for some sequence (tn)n∈N. We then present the following
theorem:

Theorem 2.12 (Random second order asymptotics in the Gumbel case). In the same
setting as in Theorem 2.9, we further assume that the vertex-weights fall into the sub-
case (RV). Let γ := 1/(τ + 1) and let ` be a strictly positive function such that
limn→∞ log(`(n))2/ log n = ζ0 for some ζ0 ∈ [0,∞). Furthermore, let Π be a Poisson point
process (PPP) on (0,∞)× R with intensity measure ν(dt,dx) := dt× e−xdx. Then, when
τ ∈ (0, 1),

(
max

i∈Cn(γ,s,t,`)

Zn(i)−m(1− γ)bnγ log n

m(1− γ)anγ log n
,
In(γ, s, t, `)

`(n)nγ

)
d−→
(

max
(v,w)∈Π
v∈[s,t]

w−log v− ζ0(τ + 1)2

2τ
, eU
)
,

(2.21)
where U ∼ Unif(log s, log t) and the maximum over the PPP follows a Gumbel distribution
with location parameter log log(t/s)− ζ0(τ + 1)2/2τ .

Finally, let us assume that the vertex-weights fall into the sub-class (RaV) and let
tn := exp{−τ log n/ log(bn)}. Then, for any 0 < s < t <∞ and with Π and U as above,

(
max

i∈Cn(1,s,t,tn)

Zn(i)−mbtnn log(1/tn)

matnn log(1/tn)
,
In(1, s, t, tn)

tnn

)
d−→
(

max
(v,w)∈Π
v∈[s,t]

w − log v, eU
)
, (2.22)

where now the maximum follows a Gumbel distribution with location parameter log log(t/s).

Remark 2.13 (The vertex with largest degree for (Gumbel) weights). The restriction
to τ ∈ (0, 1) comes from the fact our result only looks at the fluctuations coming from
the random weights and indeed the same statement is true for all τ > 0 when looking at
the conditional expected degrees (conditioned on the random weights), see Proposition 5.4
later on. By a central limit theorem-type argument we would expect that the fluctuations of
the degree around its conditional mean are of the order square root of its variance (which

is comparable to its mean and so of order (log n)(1/τ+1)/2), therefore if τ > 1 this term
would be larger than the fluctuations coming from the random weights (which are of order

(log n)1/τ ) and so we would expect a different scaling limit.

A standard Poisson process calculation (for more details see Section 3) shows that the
limit random variables describing the second order growth of the near-maximal degree in
Theorem 2.12 become infinite if we let s ↓ 0 and t → ∞. This phenomenon indicates
that we need to consider a much larger window of indices to capture the true second order
asymptotics of the maximal degree over the full set of indices. This fact also shows that
the competition between the advantages of older vertices compared to vertices with high
weight is very finely balanced. The following result captures the resulting effect on the
second order asymptotics.

Theorem 2.14 (Precise second order asymptotics in the Gumbel case). In the same setting
as in Theorem 2.9, we first assume that the vertex-weights fall into the sub-case (RV) and
let γ := 1/(τ + 1). For τ ∈ (0, 1],

max
i∈[n]

Zn(i)−m(1− γ)bnγ log n

m(1− γ)anγ log n log logn

P−→ 1

2
. (2.23)

Now assume that the vertex-weights fall into the sub-class (RaV) and let
tn := exp{−τ log n/ log(bn)}. If τ ∈ (1, 3],

max
i∈[n]

Zn(i)−mbtnn log(1/tn)

matnn log(1/tn) log log n

P−→ 1

2

(
1− 1

τ

)
, (2.24)
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whilst for τ > 3,

max
i∈[n]

Zn(i)−mbtnn log(1/tn)

matnn log(1/tn)(log n)1−3/τ

P−→ −τ(τ − 1)2

2c3
1

.

Remark 2.15. Though the result in (2.21) only holds for τ ∈ (0, 1), the result in (2.23)
turns out to hold for τ = 1 as well. This slight deviation is due to the fact that the additional
log log n term allows us to prove concentration of the maximum degree around the maximum
conditional mean degree, which cannot be done with the second order rescaling in (2.21)
when τ = 1.

As mentioned above, the problem of capturing the second order fluctuations in the (Gumbel)-
(RV) case when τ > 1 and for lighter tailed weights (including bounded weights) requires
different techniques and is currently on-going research.

Remark 2.16 (More general model formulation). As in [19], it is possible to prove some
of the results for a more general class of models. More specifically, the results in Theo-
rem 2.5 and the (Fréchet) case in Theorem 2.9 hold for a growing network that satisfies
the following conditions as well: let ∆Zn(i) := Zn+1(i)−Zn(i). For all n ∈ N:

(A1) EW [∆Zn(i)] = Wi/Sn1{i∈[n]}.

(A2) For all k ∈ N, ∃Ck > 0 such that EW
[∏k−1

j=0(∆Zn(i)− j)
]
≤ CkEW [∆Zn(i)].

(A3) supi=1,...,n n
∣∣PW (∆Zn(i) = 1)− EW [∆Zn(i)]

∣∣ a.s.−→ 0.
(A4) Conditionally on (Wi)i∈N, {∆Zn(i)}i∈[n] is negatively quadrant dependent in the

sense that for any i 6= j and k, l ∈ Z+,

PW (∆Zn(i) ≤ k,∆Zn(j) ≤ l) ≤ PW (∆Zn(i) ≤ k)PW (∆Zn(j) ≤ l) .

If we further assume that ∆Zn(i) ∈ {0, 1} then all the results presented in this paper hold
as well.

Outline of the paper
In Section 3 we provide a short overview and explain the intuitive idea of the proofs of
Theorem 2.5, 2.7, 2.9, 2.12 and 2.14. We then prove Theorem 2.5 and 2.7 in Section 4. In
Section 5, we state and prove several propositions regarding the maximum conditional mean
degree. We then discuss under which scaling the maximum degree concentrates around the
maximum conditional expected degree in Section 6. Finally, we use these results in Section 7
to prove the main theorems, Theorem 2.9, 2.12 and 2.14. For clarity, we split the proof
of Theorem 2.9 into three separate parts that deal with each of the cases outlined in the
theorem separately.

3. Overview of the proofs

First, since the proof of Theorem 2.5 heavily relies on the proof of Theorem 2.4 in [19],
we refer to [19, Section 3] for an overview of its proof. The same holds for Theorem 2.9,
the (Bounded) case, which follows the same strategy as the proof of Theorem 2 in [8]
but where we need to take extra care because of the random weights. Finally, the proof of
Theorem 2.7 is mainly computational in nature and we therefore do not include an overview
in this section.

Here, we provide an intuitive idea of the proof of Theorem 2.9, for the (Gumbel) and
(Fréchet) cases, as well as Theorem 2.12 and 2.14. In the (Gumbel) and (Fréchet) cases
of Theorem 2.9, the main idea consists of two ingredients: We first consider the asymptotics
of the conditional expected degree EW [Zn(i)] of a vertex i ∈ [n], where we condition on
the weights (Wi)i∈[n]. Then in a second step, we show that the degrees concentrate around
their conditional expected values.
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More precisely for the concentration argument, we show that

|max
i∈[n]
Zn(i)−max

i∈[n]
EW [Zn(i)]|/gn P−→ 0, (3.1)

for some suitable sequence (gn)n∈N such that gn diverges with n. What sequence gn is
sufficient depends on the different vertex-weight distribution cases, as outlined in Assump-
tion 2.3. For completeness, gn = mbn log n, gn = m(1− γ)bnγ log n, gn = mbtnn log(1/tn),
gn = un and gn = n for the (Gumbel)-(SV), (Gumbel)-(RV), (Gumbel)-(RaV) sub-
cases and the (Fréchet) case with α > 2 and α ∈ (1, 2), respectively. (3.1) follows by
applying standard large deviation bounds to |Zn(i)−EW [Zn(i)]| for all i ∈ [n], as in Propo-
sition 6.1. We can also construct a concentration argument when gn is equivalent to the
second order growth rate of the maximum, however in this case a more careful analysis of
the different terms in the large deviation bounds is required.

The bulk of the argument for our results is to show that the conditional expected degree
behave as we claim above. For the first order asymptotics as in Theorem 2.9, we have in
the (Gumbel) case,

max
i∈[n]

EW [Zn(i)]

gn

P−→ 1,

with gn as described above for the (SV), (RV) and (RaV) sub-cases, whereas for the
(Fréchet) case,

max
i∈[n]

EW [Zn(i)]

un

d−→ m max
(t,f)∈Π

f log(1/t),

max
i∈[n]

EW [Zn(i)]

n

d−→ m max
(t,f)∈Π

f

∫ 1

t

(∫

(0,1)×(0,∞)
g1{u≤s}d Π(u, g)

)−1

ds,

depending on whether α > 2 or α ∈ (0, 1). Together with (3.1), the results in Theorem 2.9
for the (Gumbel) and (Fréchet) cases follow. For the (Gumbel)-(RV) sub-case (and
probably the (Gumbel)-(SV) sub-case, too), the result can be strengthened to almost
sure convergence.

Let us delve a bit more into why the maximum conditional mean in-degree has the limits as
claimed above. We stress that, as stated in Remark 2.2, E [W ] = 1 for the cases we discuss
here. It is clear from the definition of the model that

EW [Zn(i)] = mWi

n−1∑

j=i

1/Sj ≈ mWi log(n/i),

for any i ∈ [n]. Let us start with the (Gumbel)-(RV) sub-case, where we recall that
γ := 1/(1 + τ). If we set

Πn :=
∑

i≥1

δ(i/n,(Wi−bn)/an),

where δ is a Dirac measure, then classical extreme value theory tells us that (see e.g. [25])

Πn ⇒ Π, (3.2)

where Π is a Poisson point process on (0,∞) × R with intensity measure ν(dt,dx) :=
dt × e−xdx. Then, if we consider i = t`(n)nγ and (Wi − b`(n)nγ )/a`(n)nγ = f where ` is a

strictly positive function such that log(`(n))2/ log n converges, it follows that

EW [Zn(i)] ≈ mWi log(n/i) = m(b`(n)nγ + a`(n)nγf) log(1/(tn1−γ`(n)))

≈ mc1γ
1/τ (1− γ)(log n)1/τ+1 +mc2γ

1/τ−1(f(1− γ)− τγ log t)(log n)1/τ

≈ m(1− γ)bnγ log n+m(1− γ)anγ log n(f − log t),

(3.3)

when using that an = c2(log n)1/τ−1 and bn ∼ c1(log n)1/τ , using a Taylor approximation
and leaving out all lower order terms. This yields the first order behaviour of the maximum
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12 LODEWIJKS AND ORTGIESE

conditional mean in-degree as well as its location nγ(1+o(1)). This is proved rigorously in
Proposition 5.4.

For the (SV) sub-case, as in Proposition 5.2, a similar approach as in (3.3) can be applied,
though we set i = tnβ, (Wi−bnβ )/anβ = f for any β ∈ (0, 1). We divide the right-hand side
of (3.3) by bn log n and observe that bnβ = `(log(nβ)) = `(β log n), so that it follows that
bnβ/bn converges to 1 with n for any fixed β ∈ (0, 1) since ` is slowly varying at infinity.
Then, the constant in front of the leading term is increasing in β, so that taking the limit
β ↓ 0 yields the required result.

Then, for the (RaV) sub-case, as in Proposition 5.5, we realise that the location of the
maximum should grow faster than nγ for any γ ∈ (0, 1), as the tails of these distribution
are heavier than those of any distribution in the (RV) sub-case. By a similar argument as
for the (SV) sub-case and using that now bnβ/bn converges to 0 with n, one might want to
set β = 1, that is, the location of the maximum degree is of order n. However, this would
imply that the growth rate of the maximum expected degree should be bn. This is not the
case, however, since for any t ∈ (0, 1), approximately,

max
i∈[n]

EW [Zn(i)]/bn ≥ (max
i∈[tn]

Wi/btn) log(1/t)btn/bn.

Since btn/bn converges to 1 for t fixed (bn is slowly varying) and the maximum converges
to 1 in probability, letting t tend to 0 shows scaling by just bn is insufficient. To find
the correct behaviour, we need to let t tend to zero with n, i.e. t = tn, such that btnn/bn
has a non-trivial limit (not 0 or 1). The sequence that satisfies this requirement is tn =
exp{−τ log n/ log(bn)}. This suggests that the location of the maximum degree is tnn and
that the maximum degree grows as btnn log(1/tn).

The second order growth rate for the (RaV) sub-case, as in Theorem 2.12, is obtained in a
similar way as in (3.3), where we now consider i = stnn and (Wi− btnn)/atnn = f for some
(s, f) ∈ (0,∞)× R. This yields

EW [Zn(i)] ≈ mWi log(n/i) = m(btnn + atnnf) log(1/stn)

= mbtnn log(1/tn) + (matnn log(1/tn)f −mbtnn log s) +matnnf log(1/s).

Here, the first order again appears in the first term on the right-hand side, and the second
order can be obtained by realising that btnn/(atnn log(1/tn))→ 1 as n tends to infinity. A
similar approach using the weak convergence of Πn to Π as in (3.2) allows us to obtain
the required limits. For the results of the (RV) sub-case in Theorem 2.12, we take a more
in-depth look at the approximation in (3.3). First, when subtracting the first term on the
right-hand side and dividing by m(1 − γ)anγ log n, we are left with exactly the functional
which is used in the maximum over the Poisson point process in (2.21). When combining
this with the weak convergence of Πn to Π the desired result follows. To understand how the
additional term in (2.21) arises, we include an extra lower order term in the approximation
in (3.3). That is,

EW [Zn(i)] ≈ mc1γ
1/τ (1− γ)(log n)1/τ+1 +mc2γ

1/τ−1(f(1− γ)− τγ log t)(log n)1/τ

−mc1
γ1/τ

1− γ
1 + τ

2
(log n)1/τ−1 log(`(n))2.

Hence, the requirement that limn→∞ log(`(n))2/ log n = ζ0 ensures that the last term on

the right-hand side does not grow faster than (log n)1/τ . Also, when divided by the second
order growth rate m(1 − γ)anγ log n, the last term converges to −(1 + τ)2ζ0/(2τ), exactly
the additional term found in (2.21).

Somewhat surprising is that for both the (RV) and (RaV) sub-cases, when we consider not
a compact window around the optimal index but instead all i ∈ [n], we find that the second
order correction as suggested above is insufficient, as can be observed in (2.23) and (2.24)
in Theorem 2.14. The reason this behaviour is observed, loosely speaking, is that we can
move away even further from what one would expect to be the optimal window, i.e. `(n)nγ
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THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 13

for ` that do not grow or decay ‘too quickly’ in the (RV) sub-case and tnn in the (RaV)
sub-case, and find higher degrees. As we have observed above, when setting s = 0, t = ∞
in the limit in (2.21), which would mimic considering all i ∈ [n] rather than the indices in a
compact window around nγ , we obtain sup(v,w)∈Πw− log v (when we would set ζ0 = 0). It
is readily checked that integrating the intensity measure ν over R+ ×R yields an infinitely
large rate. Hence, sup(v,w)∈Πw− log v =∞ almost surely, so that the second order scaling

(1− γ)anγ log n is insufficient when considering all i ∈ [n].

A more insightful argument is the following: consider the PPP limit as in (2.21) (with
ζ0 = 0) and (2.22). Its distribution depends only on the ratio t/s. Thus, for any integer
j ∈ N such that j = o(

√
log n),

max
ej−1nγ≤i≤ejnγ

Zn(i)−m(1− γ)bnγ log n

m(1− γ)anγ log n

d−→ Λj ,

where the (Λj)j∈N are i.i.d. standard Gumbel random variables (where the location parame-
ter equals 0). Their independence follows from the independence property of the PPP. Now,
as the Gumbel distribution satisfies the (Gumbel)-(RV) sub-case with τ = 1, c1 = 1, b = 0,
we can argue that, for any η > 0 and x ∈ R,

P
(

max
nγ≤i≤e(logn)

1/2−η
nγ

Zn(i)−m(1− γ)bnγ log n

m(1− γ)anγ log n
≤ x(1/2− η) log log n

)

= P
(

max
1≤j≤(logn)1/2−η

max
ej−1nγ≤i≤ejnγ

Zn(i)−m(1− γ)bnγ log n

m(1− γ)anγ log n
≤ x(1/2− η) log log n

)

≈ P
(

max
1≤j≤(logn)1/2−η

Λj ≤ x(1/2− η) log log n

)

= P(Λ1 ≤ x(1/2− η) log log n)(logn)1/2−η

= exp{−(log n)1/2−η exp{−x(1/2− η) log log n}},

which has limit 1 (resp. 0) if x > 1 (resp. x < 1). Then, as we can choose η arbitrarily
close to 0, the result in (2.23) follows. Here it is essential that j = o(

√
log n) to obtain the

correct limit. Note that making the approximation ≈ in the above argument rigorous is the
highly non-trivial part of the argument. The reason is that we cannot rely on the elegant
theory of convergence to a Poisson point processes, but have to explicitly control the errors
made in this approximation.

A similar reasoning can be applied for the (Gumbel)-(RaV) when τ ∈ (1, 3], where now

j = o((log n)(1−1/τ)/2) needs to be satisfied. When τ > 3, more care needs to be taken of
lower-order terms that appear in the double exponent, yielding a different scaling.

In the (Fréchet) case, we now set

Πn :=
n∑

i=1

δ(i/n,Wi/un),

where again Πn ⇒ Π, with Π a Poisson point process on (0, 1) × (0,∞) with intensity
measure ν(dt,dx) := dt× (α− 1)x−αdx. Now considering i = tn,Wi = fun, yields

EW [Zn(i)/un] ≈ mWi

un
log(n/i) = mf log(1/t),

which is the functional in the maximum in (2.18). Again, combining this with the weak
convergence of Πn yields the result. Finally, the heuristic idea for (2.19) is contained in [19,
Section 3] as well, since the rescaled maximum degree in the preferential attachment model
with additive fitness studied there has the same distributional limit when α ∈ (1, 2).
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14 LODEWIJKS AND ORTGIESE

4. The limiting degree sequence of weighted recursive graphs

In this section we prove Theorem 2.5 and 2.7. The proof of Theorem 2.5 follows the same
steps as the proof of [19, Theorem 2.4] and we simply give an overview of the steps that
need to be adjusted.

Proof of Theorem 2.5. First, we can, without loss of generality, assume that E [W ] = 1
when E [W ] < ∞ is satisfied. Let us start by discussing why the results hold for the
model with a random out-degree, as in Remark 2.2(ii), as well. In [19, Theorem 2.4],
the results also follow for a model with a random out-degree, the PAFRO model, and the
adjustments required for the proof to work for this model are all made in [19, Lemma
4.2]. These adjustments account for the fact that the expected total in-degree in Gn, i.e.∑n

i=1 E [Zn(i)], can be larger than m0 + m(n − n0) due to the random out-degree of each
vertex, so that

n∑

i=1

E
[ Zn(i) + Fi
m0 +m(n− n0) + Sn

]
> 1

is possible, where Fi is the fitness of vertex i. Hence, adjustments are required to show
that the sum of the expected connection probabilities does not exceed 1 ‘too much’. For
the WRG model, however, even with a random out-degree, we still have that

n∑

i=1

E [Wi/Sn] = 1,

as the in-degree does not play a role in the connection probabilities. Hence, the equivalence
of [19, Lemma 4.2] immediately holds for a model with such a random out-degree as well,
from which the entire proof follows analogously.

To adapt the proof in [19] to the WRG model, we set F̄n = Sn/n in this model, which
by the strong law of large numbers converges to 1 almost surely by our assumption that
E [W ] = 1. As the vertex-weights are non-negative, we let 0 < f < f ′ <∞ and F = [0,∞).
Set Xn := (1/n)

∑
i∈In Zn(i) and In := {i ∈ [n]|Wi ∈ (f, f ′]}. Now, following the same

steps, we arrive at the upper and lower bound

Xn+1 −Xn ≥
1

n+ 1

(
−Xn +

In
n

mf

Sn/n

)
+ ∆Rn,

Xn+1 −Xn ≤
1

n+ 1

(
−Xn +

In
n

mf ′

Sn/n

)
+ ∆Rn.

Using the law of large numbers and [7, Lemma 3.1], this results in the upper and lower
bound,

lim inf
n→∞

Xn ≥ mfµ((f, f ′]), lim sup
n→∞

Xn ≤ mf ′µ((f, f ′]),

almost surely. The almost sure convergence of Rn follows from [19, Lemma 4.2], which
proves the almost sure convergence of Γn in the weak? topology to Γ with a similar argument

as in [19]. In the remainder of the proof, we let Xn := Γ
(k)
n ((f, f ′]) = (1/n)

∑
i∈In 1{Zn(i)=k}.

Again, following the same steps as in [19], replacing the terms (k + Fi)/(nF̄n/m), (k +
f ′)/(F̄n/m) and (f ′ − Fi)/(nF̄n/m) in (4.12) by mWi/Sn,mf

′/(Sn/n),m(f ′ − Wi)/Sn,
respectively, it follows that we obtain the lower bound

Xn+1 −Xn ≥
1

n+ 1
(An −B′nXn) + ∆Rn,

where An, B
′
n almost surely converge to

A := m

∫

(f,f ′]
x Γ(k−1)(dx), B′ :=

1/m+ f ′

1/m
,

respectively, and where the almost sure convergence of Rn again follows from [19, Lemma
4.2]. For the proof of the convergence to these limits, in the arguments in the proof of
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Theorem 2.4 in [19], (4.14) through (4.18), change (k − 1 + x) to x and (k +Fi)/(nF̄n/m)
to mWi/Sn. With a similar approach, an upper bound on the recursion Xn+1−Xn can be
obtained with sequences An, Bn that converge to A and B, respectively, with B = 1 +mf .
Now, applying [7, Lemma 3.1] yields

lim inf
n→∞

Xn ≥
A

B′
=

1

1/m+ f ′

∫

(f,f ′]
x Γ(k−1)(dx),

lim sup
n→∞

Xn ≤
A

B
=

1

1/m+ f

∫

(f,f ′]
x Γ(k−1)(dx).

Analogous to the proof in [19], we then obtain

Γ(k)(dx) =
( x

x+ 1/m

)k
Γ(0)(dx).

With similar adjustments, it follows that

Γ(0)(dx) =
1/m

x+ 1/m
µ(dx),

from which (2.3), (2.4) and (2.5) follow. Now, we prove (2.6) for m = 1 (the proof for
m > 1 follows analogously). For the first steps, we can directly follow the proof of Theorem
2.6(iii) in [19]. Let β ∈ (0, (2− α)/(α− 1) ∧ 1). We obtain

P
(
Ecn ∩ {WUn ≤ nβ}

)
≤ 1

n

n−1∑

j=1

j∑

k=1

nβE
[

1

Sj
1{Wk≤nβ}

]
≤ Cnβ−1

n−1∑

j=1

jE
[

1

Mj

]
, (4.1)

where we bound Sj from below by the maximum vertex-weight Mj := maxi∈[j]Wi and
C > 0 is a constant. We can then bound the expected value of 1/Mj by

E [1/Mj ] ≤ P
(
Mj ≤ j1/(α−1)−ε

)
/xl + j−1/(α−1)+εP

(
Mj ≥ j1/(α−1)−ε

)
.

The second probability can be bounded by 1, and for j large, say j > j0 ∈ N, we can bound
the first probability from above by

P
(
Mj ≤ j1/(α−1)−ε

)
≤ exp{−j(α−1)ε/2},

which leads to the bound

E [1/Mj ] ≤ 1{j≤j0}/xl + 1{j>j0}(1 + 1/xl)j
−1/(α−1)+ε.

We then use this in (4.1) to obtain

P
(
Ecn ∩ {WUn ≤ nβ}

)
≤ C̃nβ−((2−α)/(α−1)∧1)+ε,

for some constant C̃ > 0. Combining this with

P
(
WUn ≥ nβ

)
= `(nβ)n−β/(α−1) ≤ n−β/(α−1)+ε,

for n sufficiently large, by [4, Proposition 1.3.6 (v)], yields

P(En) ≥ 1− n−β(α−1)+ε − C̃nβ−((2−α)/(α−1)∧1)+ε.

Taking C = 1 + C̃ and choosing the optimal value of β, namely β = ((2−α)/(α(α− 1)))∧
(1/α), yields the desired result and concludes the proof. �

Prior to proving Theorem 2.7, we prove Lemma 2.6 as stated in Section 2.

Proof of Lemma 2.6. Without loss of generality, we can set x0 = 1. The claim relating the
Weibull and Fréchet maximum domains of attractions follows directly from [25, Propositions
1.11 and 1.13] and the fact that P(W ≥ 1− 1/x) = P

(
(1−W )−1 ≥ x

)
.
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16 LODEWIJKS AND ORTGIESE

By [25, Corollary 1.7], the random variable W belongs to the Gumbel MDA if and only if
there exist a z0 < 1 and measurable functions c, g, f such that

lim
x→1

c(x) = ĉ > 0, lim
x→1

g(x) = 1,

and

P(W ≥ x) = c(x) exp
{
−
∫ x

z0

g(t)/f(t) dt
}
, z0 < x < 1,

with f , known as the auxiliary function, being absolutely continuous, f > 0 on (z0, 1) and
limx→1 f

′(x) = 0. [25, Lemma 1.2] states that limu↑1(1−u)−1f(u) = 0 holds for the function
f as well (though this is not a necessary condition for [25, Corollary 1.7]). We are required

to find a z̃0 < x̃0 and measurable functions c̃, g̃, f̃ with the same properties for the random
variable (1−W )−1 to prove one direction.

First, we readily have that x̃0 = sup{x > 0 : P
(
(1−W )−1 ≤ x

)
< 1} = ∞, so that

(1 −W )−1 has unbounded support. Then, take z̃0 = (1 − z0)−1 and note that z̃0 < ∞ as
z0 < 1. For any x > z̃0,

P
(
(1−W )−1 ≥ x

)
= P(W ≥ 1− 1/x)

= c(1− 1/x) exp
{
−
∫ 1−1/x

z0

g(t)/f(t) dt
}

= c(1− 1/x) exp
{
−
∫ x

z̃0

g(1− 1/u)/f(1− 1/u)u−2 du
}
.

We can thus set c̃(x) := c(1 − 1/x), g̃(x) := g(1 − 1/x), f̃(x) := f(1 − 1/x)x2. It directly

follows that f̃ is absolutely continuous and strictly positive on (z̃0,∞). Moreover,

lim
x→∞

c̃(x) = lim
x→∞

c(1− 1/x) = lim
u↑1

c(u) = ĉ, lim
x→∞

g̃(x) = lim
u↑1

g(u) = 1,

and

f̃ ′(x) = −f ′(1− 1/x) + 2xf(1− 1/x) = −f ′(1− 1/x) + 2(1− (1− 1/x))−1f(1− 1/x).

Hence, we find that

lim
x→∞

f̃ ′(x) = − lim
u↑1

f ′(u) + 2 lim
u↑1

(1− u)−1f(u) = 0,

so that all the conditions of [25, Corollary 1.7] are satisfied for the tail distribution of
(1−W )−1.

For the other direction, we use the other result of [25, Lemma 1.2], which states that
limu→∞ u−1f(u) = 0 when f is an auxiliary function for an unbounded distribution belong-
ing to the Gumbel MDA. With similar steps as above, the required result then follows as
well. �

We now prove Theorem 2.7.

Proof of Theorem 2.7. We know from Theorem 2.5, with µ the distribution of W , that

pk =

∫ ∞

0

E [W ] /m

E [W ] /m+ x

( x

E [W ] /m+ x

)k
µ(dx), (4.2)

for any choice of vertex-weights W such that E [W ] <∞.

In all cases of Theorem 2.7, we provide an upper and lower bound for pk by using the
assumptions on the tail distribution of the vertex-weights and the properties of the integrand
of (4.2). We first discuss the (Bounded) case, for which x0 = sup{x ≥ 0, µ(0, x) < 1} <∞,
so that we can, without loss of generality, set x0 = 1. In the final part, we then discuss
the (Gumbel) and (Fréchet) cases for which x0 =∞.

For the bounded case, we recall that E [W ] /m = θm − 1. It is straightforward to check
that the integrand in (4.2) is unimodal and maximised at x = E [W ] k/m. Thus, for
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k > m/E [W ], the integrand is increasing and maximal at x = 1. This directly yields, for
some non-negative sequence (sk)k∈N such that sk ↑ 1,

pk ≤
∫ sk

0

( sk
θm − 1 + sk

)k
µ(dx) +

∫ 1

sk

θm − 1

θm
θ−km µ(dx)

=
( θmsk
θm − 1 + sk

)k
θ−km +

θm − 1

θm
θ−km P(W ≥ sk)

≤ exp{−(1− θ−1
m )(1− sk)k}θ−km + (1− θ−1

m )θ−km P(W ≥ sk) .

(4.3)

For a lower bound, we again split the integral at sk, but only keep the second integral. This
yields

pk ≥ (1− θ−1
m )
(

1− (θm − 1)(1− sk)
θm − 1 + sk

)k
θ−km P(W ≥ sk) .

We now bound the second term from below by setting sk = 1− 1/tk and by writing
(

1− (θm − 1)/tk
θm − 1/tk

)k
= exp

{
k log

(
1− (θm − 1)/tk

θm − 1/tk

)}
= exp{−(1− θ−1

m )k/tk}(1 + o(1)),

provided that
√
k = o(tk) (otherwise the (1 + o(1)) is to be included in the exponent) so

that we arrive at

pk ≥ (1− θ−1
m ) exp{−(1− θ−1

m )k/tk}θ−km P(W ≥ 1− 1/tk) (1 + o(1)). (4.4)

We now prove (2.7) through (2.11), starting with (2.7). Since W belongs to the Weibull
MDA (with x0 = 1), (1−W )−1 belongs to the Fréchet MDA by Lemma 2.6, so that

P(W ≥ 1− 1/x) = P
(
(1−W )−1 ≥ x

)
= `(x)x−(α−1), (4.5)

for some slowly-varying function ` and α > 1. Thus, with the upper bound in (4.3) we
obtain

pk ≤
[

exp
{
− (1− θ−1

m )k/tk
}

+ (1− θ−1
m )`(tk) exp{−(α− 1) log tk}

]
θ−km .

We balance the two terms in the square brackets by setting tk = (1− θ−1
m )k/((α− 1) log k).

This yields

pk ≤
(
k−(α−1) + (1− θ−1

m )2−α(α− 1)α−1 log(k)α−1`(tk)k
−(α−1)

)
θ−km = L(k)k−(α−1)θ−km ,

where L(k) := 1 + (1 − θ−1
m )2−α(α − 1)α−1 log(k)α−1`(tk), which is slowly varying as tk is

regularly varying and ` is slowly varying, so that `(tk) is slowly varying by [4, Proposition
1.5.7.(ii)].

For a lower bound we use (4.4) and (4.5) and set tk = k to obtain

pk ≥ L(k)k−(α−1)θ−km ,

where L(k) := (1− θ−1
m )e−(1−θ−1

m )`(k), which proves the second part of (2.7).

To prove (2.8), we use an improved version of (4.3). Recall that γ = 1/(τ + 1). Then we

define sequences tk,j := djc
1−γ
1 ((1 − θ−1

m )k)γ , k, j ∈ [J ] for constants d1 < d2 < . . . < dJ
and some J ∈ N that we choose at the end. We also write f(x) := ((θm − 1)/(θm − 1 +
x))(x/(θm − 1 + x))k for simplicity. Then, we bound

pk ≤
∫ 1−1/tk,1

0
f(x)µ(dx) +

J−1∑

j=1

∫ 1−1/tk,j+1

1−1/tk,j

f(x)µ(dx) +

∫ 1

1−1/tk,J

f(x)µ(dx). (4.6)

As (1−W )−1 satisfies the (RV) sub-case, it follows that

P(W ≥ 1− 1/tk,j) = P
(
(1−W )−1 ≥ tk,j

)
= (1 + o(1))atbk,je

−(tk,j/c1)τ

= (1 + o(1))atbk,j exp
{
− dτj

((1− θ−1
m )k

c1

)1−γ}
.
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Also using that f(x) is increasing on [0, 1] when k > 1/(θm − 1) allow us to bound pk from
above even further by

f(1− 1/tk,1) +
J−1∑

j=1

f(1− 1/tk,j+1)P(W ≥ 1− 1/tk,j) + f(1)P(W ≥ 1− 1/tk,J)

≤ θm − 1

θk+1
m

[(
1− 1

tk,1

)k(
1− 1

θmtk,1

)−(k+1)
+

J−1∑

j=1

(
1− 1

tk,j+1

)k(
1− 1

θmtk,j+1

)−(k+1)

× atbk,j exp
{
− dτj

((1− θ−1
m )k

c1

)1−γ}
+ atbk,J exp

{
− dτJ

((1− θ−1
m )k

c1

)1−γ}]
(1 + o(1))

≤ (1− θ−1
m )θ−km

[
exp

{
− 1

d1

((1− θ−1
m )k

c1

)1−γ}

+
J−1∑

j=1

atbk,j exp
{
−
(
d−1
j+1 + dτj

)((1− θ−1
m )k

c1

)1−γ}

+ atbk,J exp
{
− dτJ

((1− θ−1
m )k

c1

)1−γ}]
(1 + o(1)).

Now, we note that the function g(t) = t−1 + tτ has a minimum at d∗ = τ−γ . Now, we
choose d1 < d∗ such that 1/d1 > g(d∗) = τγ/(1−γ) and similarly d∞ such that dτ∞ > g(d∗).
Given any ε > 0, we can now choose J sufficiently large such that for all d, d′ ∈ [d1, d

∗] with

|d−d′| ≤ (d∞−d1)/J , we have that |dτ−(d′)τ | < ε. Finally, we define dj = d1 + j
J (d∞−d1)

for j = 2, . . . , J . In particular, it follows that for any j = 1, . . . , J − 1,

d−1
j+1 + dτj > d−1

j+1 + dτj+1 − ε ≥ g(d∗)− ε = τγ/(1− γ)− ε.

Substituting into the bound for pk and using that tbk,j = dbjc
(1−γ)b
1 (1 − θm)γbkγb ≤ Ckγb

uniformly in j ∈ [J ] for some constant C > 0, we arrive at

pk ≤ (1− θ−1
m )θ−km exp

{
−
( τγ

1− γ − ε
)((1− θ−1

m )k

c1

)1−γ}(
1 +

J∑

j=1

aCkγb
)

≤ exp
{
−
( τγ

1− γ − 2ε
)((1− θ−1

m )k

c1

)1−γ}
θ−km ,

where the last inequality holds for k large enough.

For a lower bound, we use (4.4), but now with tk = c1−γ
1 ((1− θ−1

m )k/τ)γ . We thus obtain

pk ≥ (1− θbγ−1
m )τ−γbcb(1−γ)

1 kγb exp
{
− (τγ + τγ−1)

((1− θ−1
m )k

c1

)1−γ
(1 + o(1))

}
θ−km . (4.7)

As
√
k = o(tk) is not guaranteed for all values of τ > 0, we include the 1 + o(1) in the

exponent. We thus obtain

pk ≥ exp
{
− τγ

1− γ
((1− θ−1

m )k

c1

)1−γ
(1 + o(1))

}
θ−km ,

which together with (4.7) yields (2.8).

We now prove (2.9), for which a similar approach is applied. Again, we choose a sequence
tk,1 < . . . < tk,J with J = J(k) to be determined later. This time however, we take

tk,j = (dJ−j+1)−1(1− θ−1
m )k(log k)−(τ−1) for a sequence d1 < d2 < . . . < dJ to be fixed later

on, but such d1 is bounded in k and log(dJ) = o(log k). Then, by the same estimate as

107



THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 19

above but now using that (1−W )−1 satisfies the (RaV) sub-case, we obtain

pk ≤ (1− θ−1
m )θ−km

[
exp

{
− dJ(log k)τ−1

}

+
J−1∑

j=1

a(log tk,j)
b exp

{
− dJ−j(log k)τ−1 − (log(tk,j)/c1)τ

}

+ a(log tk,J)b exp{−(log(tk,J)/c1)τ}
]
(1 + o(1)).

(4.8)

Now, we use that by a Taylor expansion

(log tk,j/c1)τ ≥
( log k

c1

)τ(
1− τ(τ − 1)

log log k

log k

)
− τ

cτ1
log
( dJ−j+1

1− θ−1
m

)
(log k)τ−1.

Hence, we obtain that there exists a constant C > 0 such that

pk ≤ Cθ−km (log k)b∨0

[
exp

{
− dJ(log k)τ−1

}

+ exp
{
−
( log k

c1

)τ(
1− τ(τ − 1)

log log k

log k

)}

×
{ J−1∑

j=1

exp
{
−
(
dJ−j −

τ

cτ1
log
( dJ−j+1

1− θ−1
m

))
(log k)τ−1

}

+ exp
{ τ
cτ1

log
( d1

1− θ−1
m

)
(log k)τ−1

}}]
.

(4.9)

We eventually choose dJ such that dJ ≥ c−τ1 log k, so that we can neglect the first term.
Secondly, we notice that the function f(x) = x − τc−τ1 log(x/(1 − θ−1

m )) is minimised at
x∗ = τc−τ1 , so we choose d1 small enough such that τc−τ1 log(d1/(1 − θ−1

m )) < f(x∗) =
τc−τ1 log(ecτ1(1− θ−1

m )/τ). Therefore, we can neglect the first term and the term outside the
sum and can concentrate on the sum itself and so need to estimate

J−1∑

j=1

exp
{
−
(
dj −

τ

cτ1
log
( dj+1

1− θ−1
m

))
(log k)τ−1

}
(4.10)

Let d∞ be big enough such that τc−τ1 log(d/(1 − θ−1
m )) ≤ d/2 for all d ≥ d∞ and also big

enough such that d∞ ≥ 2(f(x∗) + 1). Given ε > 0, let J ′ be such that J ′ ≥ ε−1(d∞ − d1)
(note that J ′ does not depend on k). Then define dj = d1+(j/J ′)(d∞−d1) for j = 1, . . . , J ′.
Moreover, choose dj = d∞ + (j − J ′) for j ≥ J ′ + 1. Finally, choose J such that dJ−1 ≤
(log k)/(c1)τ ≤ dJ . We split the sum in (4.10) into summands smaller and bigger than J ′

and first consider

J ′−1∑

j=1

exp
{
−
(
dj −

τ

cτ1
log
( dj+1

1− θ−1
m

))
(log k)τ−1

}

≤
J ′−1∑

j=1

exp
{
−
(
dj+1 −

τ

cτ1
log
( dj+1

1− θ−1
m

)
− ε
)

(log k)τ−1
}

≤ J ′ exp
{
− (f(x∗)− ε

)
(log k)τ−1

}
.

108



20 LODEWIJKS AND ORTGIESE

Now, for the second sum we obtain by the assumptions on dj ,

J−1∑

j=J ′
exp

{
−
(
dj −

τ

cτ1
log
( dj+1

1− θ−1
m

))
(log k)τ−1

}

≤
J−1∑

j=J ′
exp

{
− (dj − dj+1/2)(log k)τ−1

}

≤
J−1∑

j=J ′
exp

{
−
(1

2
(d∞ + (j − J ′))− 1

2

)
(log k)τ−1

}

≤ exp
{
− 1

2
(d∞ − 1)(log k)τ−1

} ∞∑

j=0

exp
{
− j

2
(log k)τ−1

}

By the assumption, we have that (d∞ − 1)/2 ≥ f(x∗), so that combining the two last
estimates with (4.9), we obtain the upper bound

C1θ
−k
m (log k)b∨0 exp

{
−
( log k

c1

)τ(
1− τ(τ − 1)

log log k

log k

)
− (log k)τ−1(f(x∗)− ε)

}
, (4.11)

where C1 is some positive constant. This produces the required bound as we recall that
f(x∗) = τc−τ1 log(ecτ1(1− θ−1

m )/τ).

For a lower bound, we set tk = (1−θ−1
m )k/(x∗(log k)τ−1), where x∗ = τc−τ1 as before. Then,

we use (4.4) to find

pk ≥ (1− θ−1
m )a log(tk)

b exp{−(1− θ−1
m )k/tk − (log(tk)/c1)τ}θ−km (1 + o(1))

≥ C2 log(k)b exp
{
−
( log k

c1

)τ(
1− τ(τ − 1)

log log k

log k

)

− (x∗ − τc−τ1 log(x∗/(1− θ−1
m )))(log k)τ−1(1 + o(1))

}
θ−km ,

for some constant C2 > 0, which proves the lower bound in (2.9) since we recall that
f(x∗) = τc−τ1 log(ecτ1(1− θ−1

m )/τ).

Finally, we prove (2.11). As q0 = P(W = x0) = P(W = 1) > 0, we immediately obtain the
lower bound

pk ≥ q0(1− θ−1
m )θ−km .

For an upper bound, recall sk and rk from (2.10). Then, (4.3) yields

pk ≤ exp{−(1− θ−1
m )(1− sk)k}θ−km + (1− θ−1

m )θ−km µ((sk, 1)) + q0(1− θ−1
m )θ−km

= q0(1− θ−1
m )θ−km

(
1 +O

(
exp{−(1− θ−1

m )(1− sk)k} ∨ µ((sk, 1))
))
.

By the right-continuity of the tail distribution, we obtain that the maximum in the big O
notation equals exp{−(1− θ−1

m )(1− sk)k} by the definition of sk, which proves (2.11).

In the final part of the proof, we prove (2.12) through (2.14) for unbounded weights, i.e.
for which x0 =∞. Without loss of generality, we can now assume that E [W ] = 1, so that
the expression in (4.2) simplifies to

pk = E
[

1

1 +mW

( mW

1 +mW

)k]
=

∫ ∞

0

1

1 +mx

( mx

1 +mx

)k
µ(dx).

Recall that the integrand on the right-hand side is a unimodal function which obtains its
maximum at x = k/m. It thus is increasing (resp. decreasing) for x < k/m (resp. x > k/m).
The aim is (again) to identify an increasing, now diverging sequence sk such that sk ≤ k/m
and write pk as

pk =

∫ sk

0

1

1 +mx

( mx

1 +mx

)k
µ(dx) +

∫ ∞

sk

1

1 +mx

( mx

1 +mx

)k
µ(dx), (4.12)
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so that we can bound pk from above and below by

pk ≤
1

sk

(( msk
1 +msk

)k
+ P(W ≥ sk)

)
≤ 1

sk

(
exp

{
− k

msk
+

k

(msk)2

}
+ P(W ≥ sk)

)
,

pk ≥
( msk

1 +msk

)k ∫ ∞

sk

1

1 +mx
µ(dx) ≥

(
1− 1

msk

)k ∫ ∞

sk

1

1 +mx
µ(dx).

(4.13)

Here, we use that the expression in the expected values is increasing when W ≤ sk ≤ k/m
in the first term of upper bound, and for the lower bound we only consider the second
expected value in (4.12) and use that (x/(1 + x))k is increasing in x for any k ∈ N0. The
goal is then to choose sk such that the exponent and the tail probability in the upper bound
are of the same order, and to choose (a possibly different) sk for the lower bound such that
the product of the exponent and integral behaves similar to the upper bound.

For (2.12), however, we use an improved upper bound. As in (4.6), writing f(x) = (mx)k(1+

mx)−(k+1) and taking sequences sk,j , k, j ∈ N such that sk,j ≤ sk,j+1 and sk,j ≤ k/m (so
that f(sk,j) is increasing in j) for all j ∈ N and k large,

pk ≤
∫ sk,1

0
f(x)µ(dx) +

J−1∑

j=1

∫ sk,j+1

sk,j

f(x)µ(dx) +

∫ ∞

sk,J

f(x)µ(dx)

≤ f(sk,1) +
J−1∑

j=1

f(sk,j+1)P(W ≥ sk,j) + P(W ≥ sk,J) .

Then using similar bounds as in (4.13), we obtain the upper bound

1

sk,1
exp

{
− k

msk,1
+

k

(msk,1)2

}

+

J−1∑

j=1

1

sk,j+1
exp

{
− k

msk,j+1
+

k

(msk,j+1)2

}
asbk,j exp

{
− (sk,j/c1)τ

}
(1 + o(1))

+asb−1
k,J exp

{
− (sk,J/c1)τ

}
(1 + o(1)),

(4.14)

where J ≥ 2 is some large integer. We then set sk,j = djc
1−γ
1 (k/m)γ for some constants

d1 < d2 < . . . < dJ (so that sk,j ≤ sk,j+1 and sk,j ≤ k/m holds for all j ∈ N and all k
large) and note that this bound is similar to the one developed in the proof of the upper
bound in (2.8), but with 1− θ−1

m replaced by 1/m, some additional lower order terms in the
exponents and different constants. We can thus use the same approach to conclude that
for any fixed ε > 0, we can take J large enough such that we obtain the upper bound

pk ≤ exp
{
− (1− ε) τγ

1− γ
( k

c1m

)1−γ}( mγ

d1c
1−γ
1 kγ

+ ac
(b−1)(1−γ)
1 m−(b−1)γk(b−1)γ

J−1∑

j=1

dbjd
−1
j+1 + adb−1

J c
(1−γ)(b−1)
1 m−γ(b−1)kγ(b−1)

)

≤ exp{−(1− 2ε)
τγ

1− γ
( k

c1m

)1−γ}
.

(4.15)

For a lower bound we set sk = c1−γ
1 (k/(τm))γ and use (4.13) to obtain

pk ≥
(

1− (c1m)−(1−γ)(k/τ)−γ
)k ∫ ∞

sk

1

1 +mx
µ(dx). (4.16)

The first term can be written as

exp{k log(1− (c1m)−(1−γ)(k/τ)−γ)} = exp{−(c1m)−(1−γ)τγk1−γ(1 + o(1))}. (4.17)
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For the second term, we use that for any ε ∈ (0, τ) and all k sufficiently large,

(sk + s1−τ+ε
k )b = sbk(1 + o(1)),

(sk + s1−τ+ε
k

c1

)τ
≤ (sk/c1)τ + 2τsεk/c

τ
1 ,

so that P
(
W ≥ sk + s1−τ+ε

k

)
= o(P(W ≥ sk)). As a result we can bound the integral

in (4.16) from below by

1

m+ 1

∫ sk+s1−τ+εk

sk

x−1µ(dx) ≥ 1 + o(1)

(m+ 1)sk

(
P(W ≥ sk)− P

(
W ≥ sk + s1−τ+ε

k

) )

≥ a(1 + o(1))

m+ 1
sb−1
k exp

{
− (sk/c1)τ

}

≥ Kkγ(b−1) exp
{
− τγ−1(k/(c1m))1−γ}.

for some small constant K > 0. Combining this with (4.17) in (4.16), we arrive at

pk ≥ exp{−(c1m)−(1−γ)τγk1−γ(1 + o(1))}Kkγ(b−1) exp
{
− τγ−1(k/(c1m))1−γ}

= exp
{
− τγ

1− γ (k/(c1m))1−γ(1 + o(1))
}
.

Combined with (4.15) this proves (2.12).

For the (RaV) sub-case, we use a similar approach as for the (RV) sub-case. For j =

1, . . . , J , we now set sk,j = d−1
J−j+1(k/m)(log(k/m))−(τ−1) for a sequence d1 < d2 < . . . < dJ

and J to be determined later on, such that d1 is bounded in k and log dJ = o(log k).
Additionally, we use that the weights satisfy the (RaV) sub-case and use (4.14) to obtain

pk ≤
[ 1

sk,1
exp

{
− k

msk,1
+

k

(msk,1)2

}

+

J−1∑

j=1

1

sk,j+1
exp

{
− k

msk,j+1
+

k

(msk,j+1)2

}
a(log sk,j)

b exp
{
− (log(sk,j)/c1)τ

}

+ as−1
k,J log sbk,J exp

{
− (log(sk,J)/c1)τ

}]
(1 + o(1))

=
[
dJ
m log(k)τ−1

k
exp

{
− dJ(log(k/m))τ−1 + o(1)

}

+

J−1∑

j=1

adJ−j
m log(k)b+τ−1

k
exp

{
− dJ−j(log(k/m))τ−1 − (log(sk,j)/c1)τ + o(1)

}

+ ad1
m log(k)b+τ−1

k
exp

{
− (log(sk,J/c1)τ

}]
(1 + o(1)).

We find that determining the optimal value of the d1, . . . , dJ follows a similar approach as
in the case when (1−W )−1 satisfies the (RaV) sub-case in (4.8) through (4.11) (but with
k replaced with k/m in the exponent and 1− θ−1

m omitted). As a result, we obtain for any
ε > 0,

pk ≤ k−1 exp
{
−
( log(k/m)

c1

)τ(
1− τ(τ − 1)

log log(k/m)

log(k/m)
+
τ log(ecτ1/τ)− ε

log(k/m)

)}
. (4.18)

For a lower bound on pk we set sk = cτ1τ
−1(k/m)(log(k/m))−(τ−1). As sk/

√
k diverges, it

follows that we can improve the bound in (4.13) to find for some small constant C > 0,

pk ≥ C exp{−k/(msk)}
∫ ∞

sk

1

1 +mx
µ(dx) ≥ Cm exp{−k/(msk)}

∫ 2sk

sk

x−1 µ(dx), (4.19)

for some constant Cm > 0. Now, since τ > 1, when k is large,

(log(2sk)/c1)τ ≤ (log(sk)/c1)τ + 2τc−τ1 log 2(log sk)
τ−1,
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so that P(W ≥ 2sk) = o(P(W ≥ sk)). We can thus bound (4.19) from below by

Cm exp{−k/(msk)}(2sk)−1P(W ≥ sk) (1 + o(1))

≥ C2s
−1
k (log sk)

b exp{−(log(sk)/c1)τ − k/(msk)},
for some constant C2 > 0. Using the precise value of sk and a Taylor expansion of (log sk)

τ

yields

pk ≥ C2k
−1 exp

{
−
( log k

c1

)τ(
1− τ(τ − 1)

log log k

log k
+
τ log(ecτ1/τ)

log k
(1 + o(1))

)}
.

Combined with (4.18) this proves (2.13).

Finally, we prove (2.14). We first set sk = k/(m(α − 1 + ε) log k) for some ε > 0 (note
sk ≤ k/m). Then, using (4.13) we bound pk from above by

pk ≤ m(α− 1 + ε)k−1 log k
(
k−(α−1+ε)(1 + o(1)) + `(sk)(m(α− 1 + ε) log k)α−1k−(α−1)

)

= o(k−α) + L(k)k−α,

where L(k) := (m(α− 1 + ε) log k)α`(k/(m(α− 1 + ε) log k)) is slowly varying by [4, Propo-
sition 1.5.7 (ii)]. The required upper bound is obtained by taking `(k) := (1 + ε)L(k).

To conclude the proof, we construct a lower bound for pk. We set sk = k/m and use the
improved lower bound for pk as in the first line of (4.19) to obtain

pk ≥
C

e

∫ ∞

k/m

1

1 +mx
µ(dx) ≥ Cm

e(1 + 2k)
(P(W ≥ k/m)− P(W ≥ 2k/m))

=
Cm

3e
k−1`(k/m)(k/m)−(α−1)

(
1− `(2k/m)

`(k/m)
2−(α−1)

)
.

As ` is slowly-varying at infinity, is follows that the last term can be bounded from below
by a constant, as the fraction converges to one, and that `(k/m) ≥ `(k)/2, when k is large.
As a result,

pk ≥ C2`(k)k−α =: `(k)k−α,

where C2 > 0 is a suitable constant. �

5. The maximum conditional mean degree in WRGs

It turns out that the analysis of the maximum degree of WRGs can be carried out via
the maximum of the conditional mean degrees under certain assumptions on the vertex-
weight distribution. For WRGs it is necessary for the vertex-weights to have unbounded
support. To this end, we formulate four propositions to describe the behaviour of the
maximum conditional mean degree when the vertex-weights satisfy the different conditions
in Assumption 2.3. Let us first introduce an important quantity, namely the location of the
maximum conditional mean degree,

Ĩn := inf{i ∈ [n] : EW [Zn(i)] ≥ EW [Zn(j)] for all j ∈ [n]}.
Furthermore, it is important to note that, as Zn(i) is a sum of indicator random variables
for any i ∈ [n], its conditional mean equals

EW [Zn(i)] = mWi

n−1∑

j=i

1

Sj
, (5.1)

where we recall that Sj =
∑j

`=1W`. This is also true when we work with the model with a
random out-degree, as discussed in Remark 2.2(ii), so that all the results in the upcoming
propositions also hold for this model when setting m = 1.

Another important result that we use throughout the proofs of the propositions is the
following lemma. We note that the conditions in the lemma are satisfied for all cases in
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Assumption 2.3 such that E [W ] <∞. A similar result (under a different condition) can be
found in [2, Theorem 1].

Lemma 5.1. Let W1, . . . , be i.i.d. non-negative random variables such that Wi > 0 a.s.
and E

[
W 1+ε

]
< ∞ for some ε > 0. Moreover, we assume that E [Wi] = 1 and write

Sn =
∑n

i=1Wi. Then, there exists an almost surely finite random variable Y such that

n−1∑

j=1

1

Sj
− log n

a.s.−→ Y. (5.2)

Proof. We first write

n−1∑

j=1

1

Sj
− log n =

n−1∑

j=1

j − Sj
jSj

+
n−1∑

j=1

1

j
− log n =:

n−1∑

j=1

j − Sj
jSj

+ En, (5.3)

where En is deterministic and converges to the Euler-Mascheroni constant. Therefore,
it suffices to show that the first sum on the right hand side is almost surely absolutely
convergent.

By the strong law of large numbers and since E [Wi] = 1, almost surely there exists J such
that that Sj >

1
2j for all j ≥ J almost surely. So, we can bound almost surely,

n−1∑

j=1

|j − Sj |
jSj

≤
J−1∑

j=1

|j − Sj |
jSj

+ 2
n−1∑

j=J

|j − Sj |
j2

.

The first term is finite almost surely as each Wi > 0 as. We now claim that the second
term has a finite mean. Namely, using the ε from the assumption,

E



n−1∑

j=J

|j − Sj |
j2


 ≤

∞∑

j=1

1

j2
E
[
|j − Sj |1+ε

]1/(1+ε) ≤
∞∑

j=1

cε
j2
j1/(1+ε),

which is summable, where cε > 0 is a constant and where we use a Zygmund-Marcinkiewicz
bound, see [14, Corollary 8.2] in the last step (note this bound can only be used for ε ∈ (0, 1],
but when ε > 1 we can always take a smaller value of ε such that the assumptions of the
lemma are still satisfied). Therefore, the sum on the right hand side in (5.3) is almost surely
(absolutely) convergent, which completes the proof. �

Finally, we recall that it suffices to state the proofs of the results below for m = 1 only, as
the expected degrees scale linearly with m, see (5.1).

Proposition 5.2. Consider the WRG model as in Definition 2.1 and suppose the vertex-
weights satisfy the (Gumbel)-(SV) sub-case in Assumption 2.3. Then,

(
max
i∈[n]

EW [Zn(i)]

mbn log n
,
log Ĩn
log n

)
P−→ (1, 0). (5.4)

Proof. Let β ∈ (0, 1). Using (5.1) with m = 1 and restricting the maximum to only vertices
i ∈ [n1−β], we can bound

max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn log n
≥ max

i∈[n1−β ]

Wi
∑n−1

j=dn1−βe 1/Sj

bn log n
=
(

max
i∈[n1−β ]

Wi

bn1−β

)∑n−1
j=dn1−βe 1/Sj

log n

bn1−β

bn
.

We then note that bn1−β/bn = `((1 − β) log n)/`(log n) → 1 as n tends to infinity, since `
is slowly varying at infinity. Furthermore, the maximum on the right-hand side tends to 1
in probability and the fraction in the middle converges to β almost surely by (5.2). Thus,
with high probability,

max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn log n
≥ β, (5.5)
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where we note that we can choose β arbitrarily close to 1. Furthermore, we can immediately
obtain an upper bound of the form

max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn log n
≤
(

max
i∈[n]

Wi

bn

)∑n−1
j=1 1/Sj

log n
.

Here, both the maximum and the second fraction tend to one, the former in probability
and the latter almost surely. Hence, with high probability,

max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn log n
≤ 1 + η,

for any η > 0. Together with (5.5) this yields the first part of (5.4). Now, for the second
part, let ε > 0 and let us define the event, for η < ε,

En :=

{
max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn log n
≥ 1− η

}
,

which holds with high probability by (5.5) as we can choose β > 1−η. With this definition,

P

(
log Ĩn
log n

> ε

)
= P

({ log Ĩn
log n

> ε
}
∩ En

)
+ P(Ecn)

≤ P

(
max
i>nε

Wi
∑n−1

j=i 1/Sj

bn log n
≥ 1− η

)
+ P(Ecn) .

By (5.5) the second probability on the right-hand side tends to zero with n. What remains
to show is that the same holds for the first probability. Via an upper bound where we
substitute j = bnεc for j = i in the summation, we immediately obtain

P

(
max
i>nε

Wi
∑n−1

j=i 1/Sj

bn log n
≥ 1− η

)
≤ P

((
max
i>nε

Wi

bn

)∑n−1
j=bnεc 1/Sj

log n
≥ 1− η

)
→ 0.

Indeed, the maximum over the fitness values scaled by bn tends to one in probability, and
the sum scaled by log n converges to 1 − ε almost surely, so that the product of the two
converges to 1− ε < 1− η in probability. This concludes the proof. �

Before we turn our attention to the maximum conditional mean in-degree in the WRG
model for the (Gumbel)-(RV) sub-case, we first inspect the behaviour of maxima of i.i.d.
vertex-weights in this class:

Lemma 5.3 (Almost sure convergence of rescaled maximum vertex-weight). Let (Wi)i∈N
be i.i.d. random variables that satisfy the (Gumbel)-(RV) sub-case in Assumption 2.3.
Then,

max
i∈[n]

Wi

bn

a.s.−→ 1.

Proof. The almost sure convergence holds for a particular case of a distribution in the (Gumbel)-
(RV) sub-case, as follows from [17, Lemma 4.1]. That is, when the vertex-weights are i.i.d.
copies of a random variable W with distribution

P(W ≥ x) = exp{−xτ}, (5.6)

with τ ∈ (0, 1]. We observe that this is indeed a particular example of the (Gumbel)-(RV)
sub-case, with c1 = a = 1, b = 0, τ ∈ (0, 1] and where the asymptotic equivalence of the
tail distribution is replaced with an equality. Lemma 4.1 in [17] provides an almost sure
lower and upper bound for the maximum of n i.i.d. random variables with a distribution
as in (5.6). The leading order term in these bounds is asymptotically equal to bn (with
c1 = a = 1, b = 0, τ ∈ (0, 1]), from which the statement of the lemma follows.

We observe that Lemma 4.1 in [17] can be easily extended to hold for any τ > 1 as well,
in which case only lower order terms may need to be adjusted slightly, so that the leading

114



26 LODEWIJKS AND ORTGIESE

order terms are still asymptotically equivalent to bn. Thus, it remains to show that for any
τ > 0, we can extend the case c1 = a = 1, b = 0 to any c1, a > 0, b ∈ R.

To that end, let (Wi)i∈N be i.i.d. copies of a random variable W with a tail distribution
as in the (Gumbel)-(RV) sub-case. This implies that there exists a function ` such that
`(x)→ 1 as x→∞, and

P(W ≥ x) = `(x)axbe−(x/c1)τ .

Let (Xi)i∈N be i.i.d. copies of a random variable X with a tail distribution as in (5.6), which
are also independent of the Wi. As follows from [17, Lemma 4.1] and the first steps of the
proof,

max
i∈[n]

Xi

bn

a.s.−→ 1. (5.7)

Let us write bn(X), bn(W ) to distinguish between the respective first order growth-rate
sequences of X and W , respectively. Define the functions f, h : R→ R as f(x) := x(c−τ1 −
(b log x+ log a)/xτ )1/τ and h(x) := (f(x)τ − log(`(x)))1/τ , so that for all x > 0,

P(W ≥ x) = `(x)axb exp{−(x/c1)τ} = `(x) exp{−f(x)τ} = exp{−h(x)τ} = P(X ≥ h(x)) .

Hence, W
d
= h←(X), where h← is the generalised inverse of h, defined as h←(x) := inf{y ∈

R : h(y) ≥ x}, x ∈ R. We can write h as

h(x) = f(x)
(

1− log(`(x))

f(x)τ

)1/τ

= x
(
c−τ1 −

b log x+ log a

xτ

)1/τ(
1− log(`(x))

(x/c1)τ − (b log x+ log a)

)1/τ

=: xL(x).

Note that L(x)→ 1/c1 as x tends to infinity, so that h is regularly varying at infinity with

exponent 1. [4, Theorem 1.5.12] then tells us that there exists a slowly-varying function L̃
such that

lim
x→∞

L̃(x)L(xL̃(x)) = 1, (5.8)

which implies that h←(x) ∼ L̃(x)x and that L̃(x) converges to c1. Since h← is increasing,
we obtain

max
i∈[n]

Wi

bn(W )
=

h←(maxi∈[n]Xi)

L̃(maxi∈[n]Xi) maxi∈[n]Xi

maxi∈[n]Xi

bn(X)

bn(X)

bn(W )
L̃(max

i∈[n]
Xi)

a.s.−→ 1,

since the maximum over Xi tends to infinity with n almost surely, bn(X)/bn(W ) ∼ 1/c1,
by (5.7) and (5.8) and the continuous mapping theorem. �

With this lemma at hand, we now investigate the maximum conditional mean in-degree of
the WRG when the vertex-weights satisfy the (Gumbel)-(RV) sub-case.

Proposition 5.4. Consider the WRG model as in Definition 2.1, suppose the vertex-
weights satisfy the (Gumbel)-(RV) sub-case in Assumption 2.3 and recall the sets Cn
from (2.20). Let γ := 1/(τ + 1), let ` be a strictly positive function such that for some
ζ0 ∈ [0,∞),

lim
n→∞

log(`(n))2

log n
= ζ0, (5.9)

and let Π be a PPP on (0,∞) × R with intensity measure ν(dt,dx) := dt × e−xdx. Then,
for any 0 < s < t <∞, as n→∞,

(
max
i∈[n]

EW [Zn(i)]

m(1− γ)bnγ log n
,
log Ĩn
log n

)
a.s.−→ (1, γ),

max
i∈Cn(γ,s,t,`)

EW [Zn(i)]−m(1− γ)bnγ log n

m(1− γ)anγ log n

d−→ max
(v,w)∈Π
v∈(s,t)

w − log v − ζ0(τ + 1)2

2τ
.

(5.10)
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Furthermore,

max
i∈[n]

EW [Zn(i)]−m(1− γ)bnγ log n

m(1− γ)anγ log n log logn

P−→ 1

2
. (5.11)

Proof. We start by proving the first order growth rate of the maximum, as in the first line
of (5.10). We can immediately construct the lower bound

maxi∈[n]Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
≥

maxi∈[nγ ]Wi
∑n−1

j=nγ 1/Sj

(1− γ)bnγ log n
, (5.12)

and the right-hand side converges almost surely to 1 by (5.2) and Lemma 5.3. For an upper
bound, we first define the sequence (ε̃k)k∈Z+ as

ε̃k =
γ

2

(
1−

( 1− γ
1− (γ − ε̃k−1)

)τ)
+

1

2
ε̃k−1, k ≥ 1, ε̃0 = γ. (5.13)

This sequence is defined in such a way that it is decreasing and tends to zero with k, and
the maximum over indices i such that nγ−ε̃k−1 ≤ i ≤ nγ−ε̃k is almost surely bounded away
from 1: For any k ≥ 1, we obtain the upper bound

max
i∈[nγ−ε̃k ]

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
= max

1≤j≤k
max

nγ−ε̃j−1≤i≤nγ−ε̃j

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n

≤ max
1≤j≤k

[(
max

i∈[nγ−ε̃j ]

Wi

b
nγ−ε̃j

)∑n−1

j=nγ−ε̃j−1
1/Sj

(1− γ) log n

b
nγ−ε̃j

bnγ

]
,

(5.14)

which, using the asymptotics of bn, (5.2) and Lemma 5.3 converges almost surely to

ck := max
1≤j≤k

1− (γ − ε̃j−1)

1− γ
(γ − ε̃j

γ

)1/τ
, (5.15)

which is strictly smaller than one by the choice of the sequence (ε̃k)k≥0. Now, by writing,
for some η > 0 to be specified later,

En :=

{
max
i∈[n]

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
≥ 1− η

}
,

which holds almost surely for all n large by (5.12), we obtain, for any ε > 0,

{ log Ĩn
log n

< γ − ε
}
⊆
({ log Ĩn

log n
< γ − ε

}
∩ En

)
∪ Ecn

⊆
{

max
i<nγ−ε

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
≥ 1− η

}
∪ Ecn.

The second event in the union on the right-hand side holds for finitely many n only, almost
surely. For the first event in the union, we use (5.14) for a fixed k large enough such that
ε̃k < ε to obtain

{
max
i<nγ−ε

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
≥ 1− η

}
⊆
{

max
i<nγ−ε̃k

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
≥ 1− η

}
(5.16)

If we then choose η small enough such that

ck = max
1≤j≤k

2−1/τ
((1− (γ − ε̃j−1))τ (γ − ε̃j−1)

(1− γ)τγ
+ 1
)1/τ

= 2−1/τ
((1− (γ − ε̃k−1))τ (γ − ε̃k−1)

(1− γ)τγ
+ 1
)1/τ

< 1− η,

which is possible due to the fact that the expression on the left of the second line is increasing
to 1 in k, we find that the event on the right-hand side of (5.16) holds for finitely many n

only. Thus, almost surely, the event {log(Ĩn)/ log n < γ− ε} holds for finitely many n only,
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irrespective of the value of ε. With a similar argument, and using a sequence (εk)k∈Z+ ,
defined as

εk =
1− γ

2

(
1−

(γ + εk−1

γ

)−1/τ)
+

1

2
εk−1, k ≥ 1, ε0 = 1− γ,

we find that the maximum is not obtained at nγ+ε ≤ i ≤ n for any ε > 0 almost surely as
well, which proves the second part of the first line of (5.10). This also allows for a tighter
upper bound of the maximum. On the event that the maximum is obtained at an index i
such that nγ−ε ≤ i ≤ nγ+ε,

maxi∈[n]Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
= max

nγ−ε≤i≤nγ+ε
Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ log n
≤ max

i∈[nγ+ε]

Wi

bnγ+ε

∑n−1
j=nγ−ε 1/Sj

(1− γ) log n

bnγ+ε

bnγ
,

which, again using the asymptotics of bn, (5.2) and Lemma 5.3 converges almost surely to

(1 + ε/(1− γ))(1 + ε/γ)1/τ . This upper bound decreases to 1 as ε tends to zero, so that the
upper bound can be chosen arbitrarily close to 1 by choosing ε sufficiently small. Hence,
the left-hand side exceeds 1 + δ, for any δ > 0, only finitely many times. As the event on
which this upper bound is constructed holds almost surely eventually for all n, for any fixed
ε > 0, the first part of the first line of (5.10) follows.

Restricted second-order fluctuations. We now turn to the second line of (5.10), which
deals with the second order growth rate of the maximum conditional mean with indices
in a specific compact range. For ease of writing, we omit the arguments and write Cn :=
Cn(β, s, t, `).

We use results from extreme value theory regarding the convergence of particular point
processes to obtain the results. Let us define the point process

Πn :=

n∑

i=1

δ(i/n,(Wi−bn)/an).

By [25, Corollary 4.19], when the Wi are i.i.d. random variables in the Gumbel maximum
domain of attraction (which is the case for the (Gumbel)-(RV) sub-case), then Πn has a
weak limit Π in the vague topology, a PPP on (0,∞) × (−∞,∞] with intensity measure
ν(dt,dx) = dt × e−xdx. Here, we understand the topology on (−∞,∞] such that sets of
the form [a,∞] for a ∈ R are compact and we are crucially using that the measure e−xdx
is finite on these compact sets.

Rather than considering the time-scale n and all i ∈ [n], we consider the time-scale `(n)nγ

and i ∈ Cn, and show that the rescaled conditional mean in-degrees can be written as a
continuous functional of the point process Π`(n)nγ with vanishing error terms. Thus, we
write

Wi
∑n−1

j=i 1/Sj − b`(n)nγ log(n1−γ/`(n))

a`(n)nγ log(n1−γ/`(n))
=
Wi − b`(n)nγ

a`(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/`(n))
− log

( i

`(n)nγ

)

+
b`(n)nγ

a`(n)nγ log(n1−γ/`(n))

( n−1∑

j=i

1/Sj − log(n/i)
)

−
( b`(n)nγ

a`(n)nγ log(n1−γ/`(n))
−
)

log(i/`(n)nγ).

We then let, for 0 < s < t <∞, f ∈ R,

C̃n(f) := {i ∈ Cn : (Wi − b`(n)nγ )/a`(n)nγ ≥ f}. (5.17)
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Then, for Cn (as well as C̃n(f)), we can bound

∣∣∣∣max
i∈Cn

Wi
∑n−1

j=i 1/Sj − b`(n)nγ log(n1−γ/`(n))

a`(n)nγ log(n1−γ/`(n))

−max
i∈Cn

(
(Wi − b`(n)nγ )

∑n−1
j=i 1/Sj

a`(n)nγ log(n1−γ/`(n))
− log

( i

`(n)nγ

))∣∣∣∣

from above by

b`(n)nγ

a`(n)nγ log(n1−γ/`(n))
max
i∈Cn

∣∣∣
n−1∑

j=i

1/Sj − log(n/i)
∣∣∣

+
∣∣∣

b`(n)nγ

a`(n)nγ log(n1−γ/`(n))
− 1
∣∣∣max
i∈Cn
| log(i/`(n)nγ)|.

(5.18)

Since limn→∞ log(`(n))/ log n = 0 by (5.9), it immediately follows that `(n)nγ = nγ+o(1).
Since bn = g(log n), an = g̃(log n) with g, g̃ regularly-varying (see Remark 2.4), it follows
that b`(n)nγ ∼ bnγ , a`(n)nγ ∼ anγ , log(n1−γ/`(n)) ∼ (1 − γ) log n, so that the first fraction
on the first line and the term on the second line in absolute value tend to one and zero,
respectively. It also follows from (5.2) that

∑n−1
j=i 1/Sj − log(n/i) converges almost surely

for any fixed i ∈ N, so the maximum on the second line tends to zero almost surely, as the
sequence in the absolute value is a Cauchy sequence almost surely (and all i ∈ Cn tend to
infinity with n). Finally, we can bound the maximum on the last line by max{| log t|, | log s|},
so that the entire expression in (5.18) converges to zero almost surely. As a result, we obtain

∣∣∣∣max
i∈Cn

Wi
∑n−1

j=i 1/Sj − b`(n)nγ log(n1−γ/`(n))

a`(n)nγ log(n1−γ/`(n))

−max
i∈Cn

[
(Wi − b`(n)nγ )

a`(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/`(n))
− log

( i

`(n)nγ

)]∣∣∣∣
a.s.−→ 0.

(5.19)

From the weak convergence of Πn
d−→ Π in the vague topology, it follows that

∑

i∈C̃n

δ
(
i/(`(n)nγ),

Wi − b`(n)nγ

a`(n)nγ

)
⇒

∑

(v,w)∈Π
v∈[s,t],w≥f

δ((v, w)),

on the space of point measures equipped with the vague topology, where δ(·) is a Dirac
measure. It is straight-forward to extend this convergence (using that [s, t] × [f,∞] is a
compact set) to show that

∑

i∈C̃n

δ
(
i/(`(n)nγ),

Wi − b`(n)nγ

a`(n)nγ
,

∑n−1
j=i 1/Sj

log(n1−γ/`(n))

)
⇒

∑

(v,w)∈Π
v∈[s,t],w≥f

δ((v, w, 1)).

Hence, combining this with the continuous mapping theorem and (5.19) yields

max
i∈C̃n

Wi − b`(n)nγ

a`(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/`(n))
− log

( i

`(n)nγ

)
d−→ max

(v,w)∈Π
v∈[s,t],w≥f

(
w − log v

)
, (5.20)

as element-wise multiplication and taking the maximum of a finite number of elements is
a continuous operation (which uses that by [25, Proposition 3.13] vague convergence on a
compact set is the same as pointwise convergence). Now, we intend to show that the same
result holds when considering i ∈ Cn, that is, the distributional convergence still holds
when omitting the constraint on the size of the Wi (see (5.17)). Let η > 0 be fixed, and
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for any closed D ⊂ R, let let Dη := {x ∈ R | infy∈D |x− y| ≤ η} be its η-enlargement. We
define the random variables and events

Xn,i :=
Wi − b`(n)nγ

a`(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/`(n))
− log(i/(`(n)nγ)), i ∈ [n],

En(η) := {|max
i∈Cn

Xn,i − max
i∈C̃n(f)

Xn,i| < η}, An(η) := {max
i∈Cn

Xn,i ∈ Dη},

and note that D0 = D, by definition of Dη. The aim is to show that

lim sup
n→∞

P(An(0)) = lim sup
n→∞

P
(

max
i∈Cn

Xn,i ∈ D
)
≤ P

(
max

(v,w)∈Π
v∈[s,t]

(w − log v) ∈ D
)
, (5.21)

as the Portmanteau lemma then yields

max
i∈Cn(γ,s,t,`(n))

Wi − b`(n)nγ

a`(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/`(n))
− log(i/(`(n)nγ))

d−→ max
(v,w)∈Π
v∈[s,t]

w − log v. (5.22)

To achieve (5.21), we first use the events En(η) to bound

P(An(0)) ≤ P(An(0) ∩ En(η)) + P(En(η)c) , (5.23)

and then show that the second probability on the right-hand side converges to zero and
the first probability on the right-hand side converges to the right-hand side of (5.21) when
n→∞ and η ↓ 0.

We first deal with the first probability on the right-hand side. Note that this probability
can be bounded from above by

P(An(0) ∩ En(η)) ≤ P
(

max
i∈C̃n(f)

Xn,i ∈ Dη

)
,

due to the definition of the event En(η). From (5.20) we then obtain that

lim sup
n→∞

P
(

max
i∈C̃n

Xn,i ∈ Dη

)
= P

(
max

(v,w)∈Π
v∈[s,t],w≥f

w − log v ∈ Dη

)
. (5.24)

What remains is to remove the restriction that w ≥ f of the maximum. Note that∣∣∣ max
(v,w)∈Π
v∈[s,t]

(
w − log v

)
− max

(v,w)∈Π
v∈[s,t],w≥f

(
w − log v

)∣∣∣ ≤ max
{

0, max
(v,w)∈Π

v∈[s,t],w≤f

w − log v
}

≤ max
{

0, f − log s
}
,

(5.25)

which tends to zero almost surely when f → −∞. Hence, using (5.24) and (5.25), we obtain

lim
f→−∞

lim sup
n→∞

P
(

max
i∈C̃n

Xn,i ∈ Dη

)
≤ P

(
max

(v,w)∈Π
v∈[s,t]

(w − log v) ∈ Dη

)
. (5.26)

We then show that the second probability on the right-hand side of (5.23) tends to zero.
We bound ∣∣∣max

i∈Cn
Xn,i − max

i∈C̃n(f)
Xn,i

∣∣∣ ≤ max
{

0, max
i∈Cn\C̃n(f)

Xn,i

}
. (5.27)

As we intend to let f go to −∞, we can assume f < 0. Then, as (Wi − b`(n)nγ )/a`(n)nγ <

f < 0 for all i ∈ Cn\C̃n(f), we obtain the upper bound

∣∣∣max
i∈Cn

Xn,i − max
i∈C̃n(f)

Xn,i

∣∣∣ ≤ max

{
0, f

∑n−1
j=t`(n)nγ 1/Sj

log(n1−γ/`(n))
− log s

}
,

and the right-hand side converges almost surely to max{0, f − log s} as n tends to infinity.
Then, as f tends to −∞, this maximum tends to zero. So, the absolute value on the left-
hand side of (5.27) tends to zero in probability, and therefore the second probability on
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the right-hand side of (5.23) converges to zero as n → ∞, then f → −∞ for any η > 0.
Combining this with (5.26) and (5.23), we obtain

lim sup
n→∞

P(An(0)) ≤ P
(

max
(v,w)∈Π
v∈[s,t]

(w − log v) ∈ Dη

)
.

We can then take the limit η ↓ 0 on the right-hand side, since the properties of the Poisson
point process imply that the maximum does not hit the boundary of D almost surely
and by the continuity of the probability measure P. We thus arrive at (5.21) which then
implies (5.22) via the Portmanteau lemma. Together with (5.19) and Slutsky’s theorem, it
follows that

max
i∈Cn(γ,s,t,˜̀(n))

Wi
∑n−1

j=i 1/Sj − b`(n)nγ log(n1−γ/`(n))

a`(n)nγ log(n1−γ/`(n))

d−→ max
(v,w)∈Π
v∈(s,t)

w − log v,

so that the same results hold for the re-scaled maximum conditional mean degree by (5.1).
What remains is to show that the same result is obtained when `(n)nγ is replaced with
nγ in the first and second order rescaling, from which the second line of (5.10) follows. To
obtain this, we show that

lim
n→∞

(1− γ)anγ log n

a`(n)nγ log(n1−γ/`(n))
= 1,

lim
n→∞

b`(n)nγ log(n1−γ/`(n))− (1− γ)bnγ log n

(1− γ)anγ log n
= −ζ0(τ + 1)2

2τ
,

(5.28)

after which the Convergence-to-Types theorem [25, Proposition 0.2] yields the required
result.

we now prove (5.28). First, it immediately follows from Remark 2.4 that

a`(n)nγ log(n1−γ/`(n))

(1− γ)anγ log n
=
(

1 +
log(`(n))

γ log n

)1/τ−1(
1− log(`(n))

(1− γ) log n

)
→ 1,

since we assume that log(`(n))2/ log n→ ζ0, so that the first condition in (5.28) is satisfied.
Then,

b`(n)nγ − bnγ

= c1(γ log n)1/τ
[(

1 +
log(`(n))

γ log n

)1/τ
− 1
]

+
c1

τ
(γ log n)1/τ−1

[(
1 +

log(`(n))

γ log n

)1/τ−1
− 1
]( b
τ

log(γ log n) + b log c1 + log a
)

+
bc1

τ2
(γ log n)1/τ−1

(
1 +

log(`(n))

γ log n

)1/τ−1
log
(

1 +
log(`(n))

γ log n

)
.

Also,

b`(n)nγ log(`(n)) = c1(γ log n)1/τ log(`(n))
(

1 +
log(`(n))

γ log n

)1/τ

+
c1

τ
(γ log n)1/τ−1 log(`(n))

(
1 +

log(`(n))

γ log n

)1/τ−1[ b
τ

log(γ log n)

+ b log c1 +
b

τ
log
(

1 +
log(`(n))

γ log n

)
+ log a

]
.
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Using Taylor expansions for the terms containing 1 + log(`(n))/(γ log n) in both these
expressions and combining them, yields

b`(n)nγ log(n1−γ/`(n))− bnγ (1− γ) log n

= (b`(n)nγ − bnγ )(1− γ) log n− b`(n)nγ log(`(n))

= − c1(τ + 1)

2τ
(γ log n)1/τ−1 log(`(n))2 +

c1b

τ
(γ log n)1/τ−1 log(`(n))

− c1

( b
τ

log(γ log n) + b log c1 + log a
)

(γ log n)1/τ−1 log(`(n)) + xn,

where xn consists of lower order terms such that xn = o((log n)1/τ−1 log(`(n))). Thus, we
obtain

b`(n)nγ log(n1−γ/`(n))− (1− γ)bnγ log n

(1− γ)anγ log n
∼ − ((τ + 1) log(`(n)))2

2τ log n
+
b(τ + 1)

τ

log(`(n))

log n

− (τ + 1)
[ b
τ

log(γ log n) + log
(
acb1
)] log(`(n))

log n
.

Since (log `(n))2/ log n converges to ζ0 ∈ [0,∞), it follows that the second condition in (5.28)
is indeed satisfied.

Unrestricted second order fluctuations. We finally prove (5.11), which describes the second
order fluctuations when the index set is allowed to range the full set [n]. We first remark
that it suffices to study maxi∈[n]Wi log(n/i) rather than maxi∈[n] EW [Zn(i)]. This is due to
the following:

|maxi∈[n] EW [Zn(i)]−maxi∈[n]Wi log(n/i)|
an log n log logn

≤
maxi∈[n]Wi

an log n log log n

∣∣∣
n−1∑

j=i

1/Sj − log(n/i)
∣∣∣

=
1

an log n log log n
max
i∈[n]

Wi|Yn − Yi|,

where Yn :=
∑n−1

j=1 1/Sj − log n. By (5.2), Yn converges almost surely to Y , which is almost
surely finite as well. Hence, supi∈N Yi is almost surely finite, too. This yields the upper
bound

maxi∈[n]Wi

an log n

|Yn|+ supi∈N |Yi|
log log n

.

The first fraction converges almost surely by Lemma 5.3 and as an log n ∼ bn/τ , and the
second fraction converges to zero almost surely. We thus find that

1

an log n log logn
|max
i∈[n]

EW [Zn(i)]−max
i∈[n]

Wi log(n/i)| a.s.−→ 0, (5.29)

and thus it suffices to prove that

max
i∈[n]

Wi log(n/i)− (1− γ)bnγ log n

(1− γ)anγ log n log logn

P−→ 1

2
. (5.30)

Therefore, we set for i ∈ [n].

Xn,i :=
Wi log(n/i)− (1− γ)bnγ log n

(1− γ)anγ log n log logn
.

For an upper bound on the maximum of the Xn,i, we consider different ranges of indices
i separately. We concentrate on the range i ≥ nγ , the case i ≤ nγ follows by completely
analogous arguments. For a lower bound on the maximum, we choose a convenient range
of indices.

Let ε ∈ (0, 1− γ). First of all, we notice that by the same argument as in the proof of the
first line of (5.10), there exists a constant C < 1 (which is similar to the constant in (5.15))

121



THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 33

such that almost surely

max
nγ+ε<i≤n

Wi log(n/i) ≤ C(1− γ)bnγ log n.

It then follows that the rescaled maximum diverges to −∞ almost surely.

As the next step, we consider the range of nγ ≤ i ≤ eknnγ , where kn =
√

log n log log n.
This turns out to give the main contribution to the maximum of the Xn,i. We now fix
x > 1/2 and let δ > 0. Then,

P
(

max
nγ≤i≤eknnγ

Wi log(n/i)− (1− γ)bnγ log n

(1− γ)anγ log n log logn
≤ x

)

=
eknnγ∏

i=nγ

P
(
Wi ≤

1− γ
1− log i/ log n

(bnγ + anγx log log n)

)

≥ exp

{
− (1 + δ)

eknnγ∑

i=nγ

P
(
W ≥ 1− γ

1− log i/ log n
(bnγ + anγx log log n)

)}

≥ exp

{
− (1 + δ)

kn∑

j=1

ejnγ∑

i=ej−1nγ

P
(
W ≥ 1− γ

1− γ − (j − 1)/ log n
(bnγ + anγx log log n)

)}
,

(5.31)

where we use that 1− y ≥ e−(1+δ)y for all y sufficiently small and that the tail probability
is decreasing to zero, uniformly in i, in the last two steps. Since the probability is no longer
dependent on i, we can also omit the inner sum and replace it by bejnγc − dej−1nγe ≤
(e − 1)ej−1nγ . Also using that P(W ≥ y) ≤ (1 + δ)ayb exp{−(y/c1)τ} for all y sufficiently
large, it follows that for any x ∈ R and n sufficiently large we obtain the lower bound

exp

{
− (1 + δ)2a(e− 1)

kn∑

j=1

ej−1nγ
( 1− γ

1− γ − (j − 1)/ log n
(bnγ + anγx log log n)

)b

× exp
{
−
( 1

c1

1− γ
1− γ − (j − 1)/ log n

(bnγ + anγx log logn)
)τ}}

.

(5.32)

We first bound the fraction (1 − γ)/(1 − γ) − (j − 1)/ log n) from above by 1 + δ if b ≥ 0
and from below by 1 if b < 0, which holds uniformly in j for n large, in the outer exponent.
Then, when we combine all other terms that contain j, we find

exp
{

(j − 1)−
( (1− γ) log n

(1− γ) log n− (j − 1)

)τ(bnγ + anγx log logn

c1

)τ}
. (5.33)

Define en := (1− γ) log n, then we have by a Taylor expansion that there exists a constant
Cτ > 0 such that uniformly for |y| ≤ en/2, we have that

1 + τ
y

en
+
τ(1 + τ)

2

( y
en

)2
≤
( en

en − y
)τ
≤ 1 + τ

y

en
+ Cτ

( y
en

)2
. (5.34)

We also need that again by a Taylor expansion and the explicit form of an, bn as stated in
Remark 2.4, we have that

(bnγ + anγx log logn

c1

)τ
= (bnγ/c1)τ

(
1 + τ

anγ

bnγ
x log log n(1 + o(1))

)

= (bnγ/c1)τ + x log log n(1 + o(1)),

and similarly since γ = 1/(1 + τ),

(bnγ/c1)τ

en
=

1

(1− γ)

log nγ

log n
+O

( log logn

log n

)
=

1

τ
+O

( log logn

log n

)
.
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Combining all these estimates, we obtain the following upper bound on (5.33):

exp
{
j − 1−

(
1 + τ

j − 1

en
+
τ(1 + τ)

2

(j − 1

en

)2)
((bnγ/c1)τ + x log logn(1 + o(1)))

}

= exp
{
− (bnγ/c1)τ − x(log log n)(1 + o(1))

− (j − 1)O
( log log n

log n

)
− (1 + τ)(j − 1)2

2(1− γ) log n
(1 + o(1))

}

≤ exp
{
− (bnγ/c1)τ − x(log log n)(1 + o(1)) + o(1)

}
,

(5.35)

where we used in the last step that j ≤ kn = o(log n/ log log n) and the last term in the
exponent is negative. Hence, combining this with (5.31) and (5.32), we obtain

P
(

max
nγ≤i≤eknnγ

Wi log(n/i)− (1− γ)bnγ log n

(1− γ)anγ log n log logn
≤ x

)

≥ exp
{
− (1 + δ)2+b∨0a(e− 1)knn

γ(bnγ )b exp{−(bnγ/c1)τ − x(log log n)(1 + o(1))
}

= exp
{
− (1 + δ)2+b∨0(e− 1)kn(log n)−x(1+o(1))

}
,

where we used that nP(W > bn) ∼ anbbne−(bn/c1)τ ∼ 1 (see e.g. [25, Equation (1.1’)] with
x = 0). Hence, by our choice of kn =

√
log n log logn and x > 1/2, the latter expression

converges to 1 and we have shown that for any η > 0, with high probability,

max
nγ≤i≤eknnγ

Xn,i ≤
1

2
+ η.

Next, we consider an upper bound on the maximum for the range eknnγ ≤ i ≤ nγ+ε, where
ε ∈ (0, 1−γ) and kn =

√
log n log logn are as above. Again, we take x ∈ R and use the same

idea as in the first step. This time, however, we need to be more careful in the intermediate
step (5.35). For kn ≤ j ≤ ε log n, we obtain an upper bound on the expression in (5.33)

exp
{

(j − 1)−
( (1− γ) log n

(1− γ) log n− (j − 1)

)τ(bnγ + anγx log log n

c1

)τ}

≤ exp
{
− (bnγ/c1)τ − x(log log n)(1 + o(1))

− (j − 1)O
( log log n

log n

)
− (1 + τ)(j − 1)2

2(1− γ) log n
(1 + o(1))

}

≤ exp
{
− (bnγ/c1)τ − x(log log n)(1 + o(1)) + C1(j − 1)

log logn

log n
− C2(j − 1)2 1

log n

}
,

for suitable constants C1, C2 > 0. We now note that the right-hand side is decreasing in j as
long as j > (C1)/(2C2) log log n. However, kn � log log n, so that we obtain the following
upper bound on the previous display that holds uniformly for kn ≤ j ≤ ε log n,

exp
{
− (bnγ/c1)τ − x(log log n)(1 + o(1)) + C1kn

log logn

log n
− C2k

2
n

1

log n

}
.

Using this bound in the same way as before (following the analogous steps as in (5.31)
and (5.32)) we obtain for any x ∈ R,

P
(

max
eknnγ≤i≤nγ+ε

Wi log(n/i)− (1− γ)bnγ log n

(1− γ)anγ log n log logn
≤ x

)

≥ exp
{
− (1 + δ)2+b∨0(e− 1)ε(log n)1−x(1+o(1)) exp

{
C1kn

log log n

log n
− C2k

2
n

1

log n

}}

Finally, since kn =
√

log n log logn, the right-hand side converges to 1. Therefore, we have
shown that for any x ∈ R, with high probability

max
eknnγ≤i≤nγ+ε

Xn,i ≤ x.
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In a similar way to the upper bound, we can construct a lower bound on the maximum
by restricting to the indices 1 ≤ i ≤ k′n, where k′n =

√
log n/(log log n). In this case, we

consider x < 1/2 and use k′n instead of kn in the argument above. We omit the (1 + δ)
term in (5.31), bound the probability from below using (1− δ) rather than (1 + δ), use the
upper bound in (5.34) and obtain thus

P
(

max
nγ≤i≤ek

′
nnγ

Wi log(n/i)− (1− γ)bnγ log n

(1− γ)anγ log n log log n
≤ x

)

≤ exp
{
− (1− δ)1+b∧0(e− 1)k′n(log n)−x(1+o(1)) exp

{
− Cτ

2τ(1− γ)

(k′n)2

log n
(1 + o(1))

}}
.

The latter term converges to zero as x < 1/2 and therefore, we have shown that for any
η > 0, with high probability

max
i∈[n]

Xn,i ≥ max
1≤i≤ek

′
nnγ

Xn,i ≥
1

2
− η.

This completes the argument for all nγ ≤ i ≤ n. The argument for 1 ≤ i ≤ nγ works
completely analogously, so that we have shown (5.30), which completes the proof. �
Proposition 5.5. Consider the WRG model as in Definition 2.1 and suppose the vertex-
weights satisfy the (Gumbel)-(RaV) sub-case in Assumption 2.3 and let
tn := exp{−τ log n/ log(bn)}. Then,

(
max
i∈[n]

EW [Zn(i)]

mbtnn log(1/tn)
,
log Ĩn
log n

)
P−→ (1, 1). (5.36)

Moreover, recall Cn from (2.20) and let Π be a PPP on (0,∞)× R with intensity measure
ν(dt,dx) := dt× e−xdx. Then, for any 0 < s < t <∞,

max
i∈Cn(1,s,t,tn)

EW [Zn(i)]−mbtnn log(1/tn)

matnn log(1/tn)

d−→ max
(v,w)∈Π
v∈(s,t)

w − log v, (5.37)

and, when τ ∈ (1, 3],

max
i∈[n]

EW [Zn(i)]−mbtnn log(1/tn)

matnn log(1/tn) log log n

P−→ 1

2

(
1− 1

τ

)
, (5.38)

whilst for τ > 3,

max
i∈[n]

EW [Zn(i)]−mbtnn log(1/tn)

matnn log(1/tn)(log n)1−3/τ

P−→ −τ(τ − 1)2

2c3
1

. (5.39)

Proof. First, we show that, similar to (5.29),

∣∣∣max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn
−max

i∈[n]

Wi

bn
log(n/i)

∣∣∣ P−→ 0, (5.40)

so that in what follows we can work with the rightmost expression in the absolute value
rather than the leftmost. This directly follows from writing the absolute value as

∣∣∣max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn
−max

i∈[n]

Wi

bn
log
(n
i

)∣∣∣ ≤ max
i∈[n]

Wi

bn

∣∣∣
n−1∑

j=i

1

Sj
− log

(n
i

)∣∣∣ = max
i∈[n]

Wi

bn
|Yn − Yi|,

where Yn :=
∑n−1

j=1 1/Sj − log n, which converges almost surely by (5.2). We then split the

maximum into two parts to obtain the upper bound, for any γ ∈ (0, 1),

max
i∈[nγ ]

Wi

bnγ
(|Yn|+ sup

j≥1
|Yj |)

bnγ

bn
+ max
nγ≤i≤n

Wi

bn
max
nγ≤i≤n

|Yn − Yi|.

The first maximum converges to 1 in probability, the term in the brackets converges almost
surely and the second fraction tends to zero, as we recall from Remark 2.4 that bn = g(log n)
with g a rapidly-varying function at infinity. This implies, for any γ ∈ (0, 1), by the
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definition of a rapidly-varying function, that bnγ/bn = g(γ log n)/g(log n) converges to
zero with n. Similarly, the second maximum converges to 1 in probability and the third
maximum tends to zero almost surely, as Yn is a Cauchy sequence almost surely. In total,
the entire expression tends to zero in probability.

For the next part, we define

`(x) := c1 + c2x
−1
( b
τ

log x+ b log c1 + log a
)
.

Then, as we are working in the (Gumbel)-(RaV) sub-case in Assumption 2.3, we can write

bn = exp{(log n)1/τ `(log n)}.
Using tn we can show that for any fixed r ∈ R or r = r(n) that does not grow ‘too quickly’
with n, btrnn/bn ∼ e−r. Namely, uniformly in r = r(n) ≤ C log log(bn) (for any constant
C > 0),

btrnn

bn
= exp

{
(log n)1/τ

((
1 + r

log tn
log n

)1/τ
`
(

log n
(

1 + r
log tn
log n

))
− `(log n)

)}

∼ exp
{

(log n)1/τ
(
`
(

log n
(

1 + r
log tn
log n

))
− `(log n)

)

+ (1/τ)r log tn(log n)1/τ−1`
(

log n
(

1 + r
log tn
log n

))}
,

(5.41)

where we applied a Taylor approximation to (1 + r log tn/ log n)1/τ , which holds uniformly
in r as long as r = o(log n/ log tn) = o(log bn). It is elementary to show that for such r,
the first term in the exponent on the last line of (5.41) tends to zero. Thus, uniformly in
r ≤ C log log(bn),

btrnn

bn
∼ exp

{
− r `(log n(1 + r log tn/ log n))

`(log n)

}
∼ e−r, (5.42)

where the last step follows a similar argument to the one used to show that the first term
on the right-hand side of (5.41) tends to zero.

We thus note that by (5.42) and (5.40) it suffices to show that

max
i∈[n]

Wi log(n/i)

bn log(1/tn)

P−→ 1/e, (5.43)

to prove (5.36).

We start by providing a lower bound to the left-hand side of (5.43). For some fixed r > 0,
we write

max
i∈[n]

Wi log(n/i)

bn log(1/tn)
≥ max

i∈[trnn]

Wi

btrnn

log(n/(trnn))

log(1/tn)

btrnn

bn
= max

i∈[trnn]

Wi

btrnn
r
btrnn

bn
.

By (5.42), it follows that this lower bound converges in probability to re−r. To maximise
this expression, we choose r = 1 giving the value 1/e as claimed.

For an upper bound, we split the maximum into multiple parts which cover different ranges
of the indices i. First, for ease of writing, let us denote

Xn,i :=
Wi log(n/i)

bn log(1/tn)
.

Fix ε > 0, then set N = d2 log log(bn)/εe, and define

r0 = e−1, and ri = r0 + εi for i = 1, . . . , N.

Then,

max
i∈[n]

Xn,i ≤ max
{

max
i∈[t

rN
n n]

Xn,i, max
k=1,...,N

max
t
rk
n n<i≤trk−1

n n

Xn,i, max
t
r0
n n<i≤n

Xn,i

}
. (5.44)
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We now bound each of these three parts separately. We start with the middle term and
note that for k ∈ {1, . . . , N},

max
t
rk
n n<i≤trk−1

n n

Xn,i = max
t
rk
n n<i≤trk−1

n n

Wi log(n/i)

bn log(1/tn)
≤ rk

b
t
rk−1
n n

bn
max

t
rk
n n<i≤trk−1

n n

Wi

b
t
rk−1
n n

.

If we now define for k = 0, . . . , N ,

An(k) := max
t
rk+1
n n<i≤trkn n

Wi

btrkn n

,

then, by (5.42), we have that

max
k=1,...,N

max
t
rk
n n<i≤trk−1

n n

Xn,i ≤ (1 + ε) max
k=1,...,N

rke
−rk−1An(k − 1)

≤ (1 + ε) sup
x≥1/e

xe−x+ε max
k=0,...,N−1

An(k)

≤ (1 + ε)e−1+ε max
k=0,...,N−1

An(k),

. (5.45)

using as before that x 7→ xe−x is maximised at x = 1. Similarly, we can bound the the last
term in (5.44) as

max
t
r0
n n<i≤n

Xn,i ≤ r0 max
t
r0
n n<i≤n

Wi

bn
= e−1An,

where we recall that r0 = 1/e and we set An := maxtr0n n<i≤nWi/bn. Finally, for the first

term in (5.44), we get that

max
i∈[t

rN
n n]

Xn,i ≤
btrNn n

bn

log n

log(1/tn)
max

i∈[t
rN
n n]

Wi

btrNn n

≤ 1 + ε

τ
e−rN log(bn) max

i∈[t
rN
n n]

Wi

btrNn n

. (5.46)

Now using that rN ≥ 2 log log(bn) by definition, we find that the right-hand side is oP(1).

Combining (5.44) with the estimates in (5.45)-(5.46), we obtain

max
i∈[n]

Xn,i ≤ (1 + ε)e−1+ε max
{

max
k=0...,N−1

An(k), An

}
. (5.47)

Since ε > 0 is arbitrary, it suffices to show that the maximum on the right-hand side is
bounded by 1+ε with high probability. Using that the random variables follow a distribution
as in the (Gumbel)-(RaV) case in Assumption 2.3, we can write, using a union bound
and a large C > 0,

P
(

max
i∈[n]

Wi

bn
≥ 1 + ε

)
≤ Cn log((1 + ε)bn)b exp{−(log((1 + ε)bn)/c1)τ}

= Cn log((1 + ε)bn)b exp
{
− (log(bn)/c1)τ

(
1 +

log(1 + ε)

log(bn)

)τ}
.

We now use the expression of bn as in the (Gumbel)-(RaV) case in Assumption 2.3 to
obtain the upper bound

C̃ log(bn)b exp
{

log n
(

1−
(

1 +
(b/τ) log log n+ b log c1 + log τ

τ log n

)τ(
1 +

log(1 + ε)

log(bn)

)τ)}
,

where C̃ > 0 is a suitable constant. Using a Taylor approximation on the terms in the
exponent and using the asymptotics of log(bn), we find an upper bound

K1(log n)b/τ exp{−K2(log n)1−1/τ}, (5.48)

for some constants K1,K2 > 0 and n sufficiently large. Note that this expression tends to
zero as τ > 1. Now, we aim to apply this bound to the maximum in (5.47). First, we use
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a union bound to arrive at

P
(

max
{

max
k=0,...,N−1

An(k), An

}
≥ 1 + ε

)
≤

N−1∑

k=0

P
(

max
i∈[t

rk
n n]

Wi/btrkn n ≥ 1 + ε
)

+ P
(

max
i∈[n]

Wi/bn ≥ 1 + ε
)
.

The last term tends to zero with n. For the sum we use (5.48) and note that this upper
bound tends to zero slowest for k = N − 1, so that we obtain the upper bound

N−1∑

k=0

P
(

max
i∈[t

rk
n n]

Wi/btrkn n ≥ 1 + ε
)
≤ NK1 log(t

rN−1
n n)b/τ exp{−K2 log(t

rN−1
n n)1−1/τ}

≤ K3 log log(bn)(log n)b/τ exp{−K4(log n)1−1/τ},
for some constants K3,K4, since rN−1 = O(log log(bn)), which again tends to zero with n
as τ > 1.

Finally, we prove the convergence of log(Ĩn)/ log n. Let η ∈ (0, 1). Then, the event

En :=

{
max
i∈[n]

EW [Zn(i)]

btnn log(1/tn)
≥ η

}

holds with high probability by the above. Using this and (5.40) yields, for ε > 0,

P

(
log Ĩn
log n

< 1− ε
)
≤ P

({ log Ĩn
log n

< 1− ε
}
∩ En

)
+ P(Ecn)

≤ P
(

max
i<n1−ε

Wi log(n/i)

btnn log(1/tn)
≥ η

)
+ P(Ecn) .

The second probability tends to zero with n and the first can be bounded from above by

P
(

max
i≤n1−ε

Wi

bn1−ε

bn1−ε log(bn)

btnn
≥ τη

)
. (5.49)

Now,

bn1−ε log(bn)

btnn
∼ exp

{
1 + (log n)1/τ `(log n)

(
(1− ε)1/τ `((1− ε) log n)

`(log n)
− 1
)

+ log log(bn)
}
,

which, since ` is a slowly-varying function at infinity and (1− ε)1/τ < 1, tends to zero with
n. As the maximum in (5.49) tends to 1 in probability, we obtain that the probability
in (5.49) tends to zero with n.

To prove (5.37) we use a similar argument as in the proof of Proposition 5.4, as distributions
satisfying the (Gumbel)-(RaV) sub-case also fall in the Gumbel MDA. Namely, we can
write

Wi
∑n−1

j=i 1/Sj − btnn log(1/tn)

atnn log(1/tn)
=
Wi − btnn
atnn

∑n−1
j=i 1/Sj

log(1/tn)
− log

( i

tnn

)

+
btnn

atnn log(1/tn)

( n−1∑

j=i

1/Sj − log(n/i)
)

−
( btnn
atnn log(1/tn)

− 1
)

log
( i

tnn

)
,

so that
∣∣∣∣max
i∈Cn

Wi
∑n−1

j=i 1/Sj − btnn log(1/tn)

atnn log(1/tn)
−max

i∈Cn

(Wi − btnn
atnn

∑n−1
j=i 1/Sj

log(1/tn)
− log

( i

tnn

))∣∣∣∣

≤ btnn
atnn log(1/tn)

max
i∈Cn

∣∣∣∣
n−1∑

j=i

1

Sj
− log(n/i)

∣∣∣∣+
∣∣∣ btnn
atnn log(1/tn)

− 1
∣∣∣max
i∈Cn

∣∣∣ log
( i

tnn

)∣∣∣,
(5.50)
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where we omit the arguments of Cn(1, s, t, tn) for brevity. We now note that, in the (RaV)

sub-case, an := c2(log n)1/τ−1bn, which yields

btnn
atnn log(1/tn)

=
(
c2 log(tnn)1/τ−1 log(1/tn)

)−1
∼
(
c2(log n)1/τ−1 τ log n

log(bn)

)−1
∼ `(log n)

c1
,

which converges to 1 as n tends to infinity. Here, we use that c1 = c2τ , and that log(bn) =

(log n)1/τ `(log n), with limx→∞ `(x) = c1. It follows, with a similar argument as in the proof
of Proposition 5.4, that the right-hand side of (5.50) converges to zero almost surely. Now,
the rest of the proof of (5.37) follows the exact same approach as the proof of Proposition 5.4.

Finally, we prove (5.38) and (5.39). Again, we study maxi∈[n]Wi log(n/i) rather than
maxi∈[n] EW [Zn(i)]. The general approach is similar to the proof of (5.11) in Proposition 5.4,
though the details differ. We first consider the case τ ∈ (1, 3] and then tend to the case
τ > 3. In both cases, we prove a lower and upper bound. Moreover, for the lower bound
we need only consider indices tnn ≤ i ≤ ekntnn for a particular choice of kn.

Fix τ ∈ (1, 3], x ∈ R and let kn :=
√

(τ − 1)/c1

√
(log n)1−1/τ log logn. We bound

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log log n
≤ x

)

= P
(

max
tnn≤i≤ekn tnn

Wi log(n/i) ≤ log(1/tn)(btnn + atnnx log logn)

)

=

ekn tnn∏

i=tnn

(
1− P

(
W ≥ log(1/tn)

log(n/i)
(btnn + atnnx log logn)

))

≤ exp

{
−

ekn tnn∑

i=tnn

P
(
W ≥ log(1/tn)

log(n/i)
(btnn + atnn log logn)

)}

≤ exp

{
−

kn∑

j=1

ejtnn∑

i=ej−1tnn

P
(
W ≥ log(1/tn)

log(1/tn)− j (btnn + atnnx log log n)

)}
.

(5.51)

We then obtain an upper bound by bounding the probability from below. So, for δ > 0
small and n large, we arrive at the upper bound

exp

{
− (1− δ)a(e− 1)

kn∑

j=1

ej−1tnn
(

log
( log(1/tn)

log(1/tn)− j (btnn + atnnx log logn)
))b

× exp
{
−
(

log
( log(1/tn)

log(1/tn)− j (btnn + atnnx log log n)
)
/c1

)τ}}
.

(5.52)

As log(1/tn)/(log(1/tn)− j) = 1 + o(1) uniformly in j, we can write the inner exponent as

−
(

log
( log(1/tn)

log(1/tn)− j (btnn + atnnx log log n)
)
/c1

)τ

= −
(
− 1

c1
log
(

1− j

log(1/tn)

)
+

1

c1
log(btnn + atnnx log logn)

)τ

= −
( ∞∑

`=1

1

`c1

( j

log(1/tn)

)`
+ log(tnn)1/τ +

1

τ
log(tnn)1/τ−1 log

(
a(c1(log tnn)1/τ )b

)

+
∞∑

`=1

(−1)`−1 1

`c1

(
c2 log(tnn)1/τ−1x log log n

)`
)τ
.
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Taking out a factor log(tnn)1/τ then yields

− log(tnn)

(
1 +

∞∑

`=1

1

`c1

( j

log(1/tn)

)`
log(tnn)−1/τ +

log
(
a(c1(log tnn)1/τ )b

)

τ log(tnn)

+

∞∑

`=1

(−1)`−1 1

`c1

(
c2 log(tnn)1/τ−1x log log n

)`
log(tnn)−1/τ

)τ

= − log(tnn)− log
(
a(c1(log tnn)1/τ )b

)
− x log log n− log(tnn)1−1/τ

c2 log(1/tn)
j

− log(tnn)1−1/τ

2c2 log(1/tn)2
j2(1 + o(1)) + o(1).

(5.53)

Now, for ` ∈ {1, 2},
1

`c2

j` log(tnn)1−1/τ

log(1/tn)`
=

j`

`c2
c`2(log n)−(`−1)(1−1/τ)

(
1 +

log tn
log n

)1−1/τ( log(bn)

c1(log n)1/τ

)`

=
j`

`

(
c2(log n)−(1−1/τ)

)`−1
(

1− τ − 1

log(bn)
(1 +O((log n)−1/τ ))

)

×
(

1 +
1

τ
(log n)−1 log

(
a(c1(log n)1/τ )b

))`
,

where the last two terms are both (1 + O((log n)−1/τ )). So, we obtain for the right hand
side of (5.53)

− log(tnn)− log
(
a(c1(log tnn)1/τ )b

)
− x log logn− j2

2
c2(log n)−(1−1/τ)

− j
(

1 +
1

τ
(log n)−1 log

(
a(c1(log n)1/τ )b

)
− τ − 1

log(bn)

)
+ o(1),

(5.54)

uniformly in j ∈ [kn], where we note that the final o(1) term vanishes uniformly in j since
τ ∈ (1, 3]. Using this in (5.52), we arrive at

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log log n
≤ x

)

≤ exp
{
− (1− δ)(1− 1/e)

kn∑

j=1

(log n)−x(1 + o(1)) exp
{

enj − dnj2
}}
,

(5.55)

where

en :=
τ − 1

log(bn)
− 1

τ
(log n)−1 log

(
a(c1(log n)1/τ )b

)
, dn :=

c2

2(log n)1−1/τ
.

The expression enj − dnj2 is increasing for j ≤ en/(2dn) = o(kn), so bound the sum from
below by

kn∑

j=1

eenj−dnj2 =

kn∑

j=1

exp
{
− dn

(
j − en

2dn

)2
+

e2
n

4dn

}

≥ exp
{

e2
n/(4dn)

}∫ kn

0
exp

{
− dn

(
y − en

2dn

)2}
dy.

Set µn := en/(2dn), σn := 1/
√

2dn and let Xn ∼ N (µn, σ
2
n) be a normal random variable.

Then, we can write this as

exp
{

e2
n/(4dn)

}
σn
√

2π

∫ kn

0

1

σn
√

2π
exp

{
− 1

2

(y − µn
σn

)2}
dy

= exp
{

e2
n/(4dn)

}
σn
√

2πP(Xn ∈ (0, kn)) ,
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Let Z ∼ N (0, 1) be a standard normal. We can then write the last line as

exp
{

e2
n/(4dn)

}
σn
√

2πP
(
Z ∈

(
− µn
σn
,
kn − µn
σn

))
. (5.56)

It is clear that for τ ≤ 3,

e2
n

4dn
=
τ(τ − 1)2

2c3
1

(log n)1−3/τ (1 + o(1)),

kn − µn
σn

=
√

(1− 1/τ) log log n(1 + o(1)),

µn
σn

=

√
τ(τ − 1)2

c3
1

(log n)(1−3/τ)/2(1 + o(1)).

(5.57)

It thus follows that, when τ ∈ (1, 3], the probability as well as the exponential term in (5.56)
converge to a strictly positive constant. So, for some K > 0, we bound the expression
in (5.56) from below by

Kσn =
K√
c2

(log n)(1−1/τ)/2.

Using this in (5.55) finally yields the lower bound

exp
{
− (1− δ)(1− 1/e)(log n)(1−1/τ)/2−x(1 + o(1))

}
,

which converges to zero for any x < (1− 1/τ)/2. We thus arrive at, with high probability,

max
i∈[n]

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log log n
≥ 1

2

(
1− 1

τ

)
+ η,

for any η > 0.

To prove a matching upper bound, we split the set [n] into four parts: the indices 1 ≤ i ≤
e−kntnn, e−kntnn ≤ i ≤ tnn, tnn ≤ i ≤ ekntnn and ekntnn ≤ i ≤ n. We prove an upper
bound for all four ranges of indices, a union bound then concludes the proof. The proof for
the first two ranges of indices is analogous to the proof for the latter two, so we focus on the
latter two. Let us start with the range tnn ≤ i ≤ ekntnn. We can use the same approach
as above, though with minor adaptations. First, using that 1 − y ≥ exp{−(1 + δ)y} for y
sufficiently small and δ > 0 fixed, we obtain

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log log n
≤ x

)

≥ exp

{
− (1 + δ)

kn∑

j=1

ejtnn∑

i=ej−1tnn

P
(
W ≥ log(1/tn)

log(1/tn)− (j − 1)
(btnn + atnnx log log n)

)}
.

We then bound the probability from above and use the same Taylor expansions to obtain
a lower bound of the same form as (5.52). We bound the sum over j from above by

kn∑

j=1

een(j−1)−dn(j−1)2 ≤ exp
{

e2
n/(4dn)

}
σn
√

2πP(Xn ∈ (0, kn)) ,

where dn, en, µn, σn and Xn are as above. With a similar argument, we obtain an upper
bound

K̃(log n)(1−1/τ)/2,

for some appropriate constant K̃ > 0. We thus obtain

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log log n
≤ x

)
≥ exp

{
−(1+δ)2(e−1)(log n)(1−1/τ)/2−x)

}
,

which converges to one for any x > (1− 1/τ)/2.
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To prove an upper bound for the range ekntnn ≤ i ≤ n, a slight adaptation is required. We
write,

P
(

max
ekn tnn≤i≤n

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log log n
≤ x

)

≥ exp

{
− (1 + δ)

log(1/tn)−kn∑

j=1

ej+kn tnn∑

i=ej−1+kn tnn

P
(
W ≥ log(1/tn)(btnn + atnnx log log n)

log(1/tn)− (j − 1 + kn)

)}
,

and bound the probability from above by

(1 + δ)a
(

log
( log(1/tn)

log(1/tn)− (j − 1 + kn)
(btnn + atnnx log logn)

))b

× exp
{
−
(

log
( log(1/tn)

log(1/tn)− (j − 1 + kn)
(btnn + atnnx log logn)

)
/c1

)τ}
.

Since the fraction log(1/tn)/(log(1/tn)− (j − 1 + kn)) is no longer 1 + o(1) uniformly in j,
we treat this term somewhat differently. We write the exponent as

−(log(btnn)/c1)τ − x log logn(1 + o(1))

+
1

c2
log(tnn)1−1/τ log

(
1− j − 1 + kn

log(1/tn)

)(
1 +O

( log logn

(log n)1/τ

))
.

Then using that as before tnna(log(btnn))b exp
{
−(btnn/c1)τ

}
∼ 1, this yields a lower bound

exp
{
− (1 + δ)2(e− 1)

log(1/tn)−kn∑

j=1

(log n)−x(1+o(1))(1 + o(1))

× exp
{
j − 1 + kn +

log(tnn)1−1/τ

c2
log
(

1− j − 1 + kn
log(1/tn)

)(
1 +O

( log logn

(log n)1/τ

))}}
.

(5.58)

The mapping x 7→ x + fn log(1 − x/gn), x < gn, for some sequences fn, gn, is maximised

at x = gn − fn. In this case, with fn := c−1
2 log(tnn)1−1/τ , gn = log(1/tn), the mapping is

maximised at

gn − fn =
τ(τ − 1)

c2
1

(log n)1−2/τ − τ3(τ − 1)

2c3
1

(log n)1−3/τ + o(1).

Since (log n)1−2/τ = o(kn) when τ ∈ (1, 3], as (1− 1/τ)/2 ≥ 1− 2/τ for τ ∈ (1, 3], it follows
that the inner exponent is largest when j = 1. This yields the lower bound

exp
{
− (1− δ)2(e− 1) log(1/tn)(log n)−x(1+o(1))(1 + o(1))

× exp
{(
−K1

kn
τ log n

log log n+
(τ − 1)kn

log bn
− 1

2

k2
n

log(1/tn)

)(
1 +O

( log log n

(log n)1/τ

))}}
,

for some small constant K1 > 0. The first two terms in the inner exponent are neg-
ligible (compared to the last term) by the choice of kn. The last term equals −((1 −
1/τ)/2) log log n(1 + o(1)), so that we finally obtain the lower bound

exp
{
−K2(log n)(1−1/τ)/2−x(1+o(1))

}
,

for some sufficiently large K2 > 0. It thus follows that for any x > (1 − 1/τ)/2 the lower
bound converges to one. Together with the result for the range of indices tnn ≤ i ≤ ekntnn
(and a similar result for 1 ≤ i ≤ tnn, with analogous proofs), the upper bound then follows,
and finishes the proof for the case τ ∈ (1, 3].

When τ > 3, we set kn := (τ(τ − 1)/c2
1)(log n)1−2/τ . For a lower bound on the maximum,

we again consider the indices tnn ≤ i ≤ ekntnn. The steps in (5.51) through (5.56) are

still valid when replacing log log n with (log n)1−3/τ . The only minor differences are that
en/dn ∼ kn rather than o(kn) and that the o(1) term in (5.54) needs to be replaced by
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O
(√

log log n(log n)1−5/τ
)
, though this changes nothing for the rest of the argument. The

second quantity in (5.57) does change, however. We now find that

kn − µn
σn

=

√
τ(τ − 1)2

c3
1

(log n)(1−5/τ)/2 log
(
a
(
c1(log n)1/τ

)b)

τ
(1 + o(1)).

As a result, the probability in (5.56) still converges to a constant, but now the exponential
term diverges. We thus obtain the lower bound

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn)(log n)1−3/τ
≤ x

)

≤ exp
{
− (1− δ)(1− 1/e)(log n)(1−1/τ)/2(1 + o(1))

× exp
{(τ(τ − 1)2

2c3
1

+ x
)

(log n)1−3/τ (1 + o(1)) +O
(√

log log n(log n)1−5/τ
)}}

,

which converges to zero for any x > −τ(τ − 1)2/(2c3
1).

To prove an upper bound, we again adjust the arguments for the τ ∈ (1, 3] case. Again,

we substitute (logn)1−3/τ for log log n. The lower bound on the probability for indices
tnn ≤ i ≤ ekntnn remains valid, so that we obtain a lower bound that converges to zero for
any x < −τ(τ − 1)2/(2c3

1).

For the range ekntnn ≤ i ≤ n, we find that the expression in (5.58) still holds (again when

switching (log n)1−3/τ for log log n). However, we improve on the accuracy of (5.58) by
including more terms of the Taylor expansion. This yields, for an appropriate constant
K3 > 0,

exp
{
−K3

log(1/tn)−kn∑

j=1

exp
{
j − 1 + kn +

1

c2
log(tnn)1−1/τ log

(
1− j − 1 + kn

log(1/tn)

)

+
τ(τ − 1)

2c2
1

log(tnn)1−2/τ
(

log
(

1− j − 1 + kn
log(1/tn)

))2
(1 + o(1)) + x(log n)1−3/τ

}}
.

As is the case when τ ∈ (1, 3], the inner exponent is largest when j = 1, yielding the lower
bound

exp
{
−K3 log(1/tn) exp

{
kn +

1

c2
log(tnn)1−1/τ log

(
1− kn

log(1/tn)

)
(1 + o(1))

+ x(log n)1−3/τ +O
(√

log log n(log n)1−5/τ
)}}

.

Now, applying a Taylor expansion to the logarithmic term, we can write the inner exponent
as

kn −
log(tnn)1−1/τ

c2 log(1/tn)
kn −

log(tnn)1−1/τ

2c2 log(1/tn)2
k2
n + x(log n)1−3/τ +O

(√
log log n(log n)1−5/τ

)

=
(
kn

τ − 1

c1(log n)1/τ
− c2

2
k2
n(log n)−(1−1/τ)

)
(1 + o(1)) + x(log n)1−3/τ + o

(
(log n)1−3/τ

)

=
τ(τ − 1)2

2c3
1

(log n)1−3/τ (1 + o(1)) + x(log n)1−3/τ + o
(
(log n)1/3−τ).

Concluding, we obtain the lower bound

exp
{
−K3 log(1/tn) exp

{(τ(τ − 1)2

2c3
1

(1 + o(1)) + x
)

(log n)1−3/τ + o
(
(log n)1/3−τ)}},

so that we obtain a limit of one when choosing any x < −τ(τ − 1)2/(2c3
1), which concludes

the proof. �
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Proposition 5.6. Consider the WRG model as in Definition 2.1 and suppose the vertex-
weights satisfy the (Fréchet) case in Assumption 2.3. Let Π be a PPP on (0, 1) × (0,∞)
with intensity measure ν(dt,dx) := dt× (α− 1)x−αdx, x > 0. When α > 2,

max
i∈[n]

EW [Zn(i)/un]
d−→ m max

(t,f)∈Π
f log(1/t),

and when α ∈ (1, 2),

max
i∈[n]

EW [Zn(i)/n]
d−→ m max

(t,f)∈Π
f

∫ 1

t

(∫

(0,1)×(0,∞)
g1{u≤s} dΠ(u, g)

)−1

ds.

Proof. First, let α > 2. We first claim that∣∣∣∣max
i∈[n]

EW [Zn(i)/un]−mmax
i∈[n]

Wi log(n/i)

un

∣∣∣∣
P−→ 0. (5.59)

The claim’s proof follows a similar structure as that of (5.40). Let us define the point
process

Πn :=

n∑

i=1

δ(i/n,Wi/un).

By [25], when the Wi are i.i.d. random variables in the Fréchet maximum domain of at-
traction with parameter α − 1, then Π is the weak limit of Πn. Since Wi log(n/i)/un is a
continuous mapping of (i/n,Wi/un) and since taking the maximum is a continuous mapping
too, it follows that

max
i∈[n]

Wi log(n/i)

un

d−→ max
(t,f)∈Π

f log(1/t),

which, together with (5.59), yields the desired result. We now consider α ∈ (1, 2). Note
that

max
i∈[n]

EW [Zn(i)/n] = mmax
i∈[n]

Wi

n

n−1∑

j=i

1

Sj
.

The distributional convergence of the maximum on the right-hand side to the desired limit
is proved in [19, Proposition 5.1], which concludes the proof. �

6. Concentration of the maximum degree

In this section we provide an important step to prove Theorems 2.9, 2.12 and 2.14: we
discuss the concentration of the maximum degree around the maximum conditional mean
degree, the behaviour of which is discussed in the previous section. To obtain this result, we
combine union bounds with precise large deviation bounds for |Zn(i)− EW [Zn(i)]|, i ∈ [n],
using that Zn(i) is a sum of independent indicator random variables. To this end, we
present the following proposition:

Proposition 6.1. Consider the WRG model as in Definition 2.1 and recall the vertex-
weight conditions as in Assumption 2.3. When the vertex-weights satisfy the (Gumbel)-
(SV) sub-case, for any η > 0,

lim
n→∞

P
(

max
i∈[n]

∣∣Zn(i)− EW [Zn(i)]
∣∣ ≥ ηbn log n

)
= 0. (6.1)

When the vertex-weights satisfy the (Gumbel)-(RV) sub-case,

max
i∈[n]

∣∣Zn(i)− EW [Zn(i)]
∣∣/bn log n

P−a.s.−→ 0. (6.2)

Furthermore, when the vertex-weights satisfy the (Gumbel)-(RaV) sub-case, let
tn := exp{−τ log n/ log(bn)}. Then, for any η > 0,

lim
n→∞

P
(

max
i∈[n]

∣∣Zn(i)− EW [Zn(i)]
∣∣ ≥ ηatnn log(1/tn)

)
= 0. (6.3)
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Now suppose the vertex-weights satisfy the (Fréchet) case. When α > 2, for any η > 0,

lim
n→∞

P
(

max
i∈[n]

∣∣Zn(i)− EW [Zn(i)]
∣∣ > ηun

)
= 0. (6.4)

Similarly, when α ∈ (1, 2), for any η > 0,

lim
n→∞

P
(

max
i∈[n]

∣∣Zn(i)− EW [Zn(i)]
∣∣ > ηn

)
= 0. (6.5)

Finally, again assume the vertex-weights satisfy the (Gumbel)-(RV) sub-case. Then, for
any τ ∈ (0, 1] and η > 0,

lim
n→∞

P
(∣∣max

i∈[n]
Zn(i)−max

i∈[n]
EW [Zn(i)]

∣∣ ≥ ηan log n log logn

)
= 0. (6.6)

Also, let ` be a strictly positive function such that limn→∞ log(`(n))2/ log n = ζ0 for some
ζ0 ∈ [0,∞). Recall Cn(γ, s, t, `) from (2.20). Then, for any 0 < s < t < ∞, τ ∈ (0, 1) and
η > 0,

lim
n→∞

P
(∣∣ max

i∈Cn(γ,s,t,`)
Zn(i)− max

i∈Cn(γ,s,t,`)
EW [Zn(i)]

∣∣ ≥ ηan log n

)
= 0. (6.7)

Remark 6.2. The first five results of Proposition 6.1, as in (6.1)-(6.5) directly imply
the concentration of the maximum degree due to the reversed triangle inequality for the
supremum norm. That is, for any In ⊆ [n],

∣∣max
i∈In
Zn(i)−max

i∈In
EW [Zn(i)]

∣∣ ≤ max
i∈In

∣∣Zn(i)− EW [Zn(i)]
∣∣.

Proof. We provide a proof for m = 1, as the proof for m > 1 follows in the same way. As
mentioned above the statement of Proposition 6.1, the aim is to provide large deviation
bounds for the quantities |Zn(i) − EW [Zn(i)]| for i ∈ [n], using that Zn(i) is a sum of
independent indicator random variables, combined with union bounds. For the results
in (6.1) through (6.5), rather crude bounds suffice. To prove the more subtle results for
the (Gumbel)-(RV) sub-case in (6.6) and (6.7), where the deviations around the maximum
conditional mean are of smaller order compared to (6.2), more careful union bounds and
large deviation bounds are provided.

Concentration under first-order scaling, convergence in probability. We start by proving the
results in which the degrees are scaled by the first order growth-rate and the convergence
holds in probability, as in (6.1), (6.3), (6.4) and (6.5). By using a large deviation bound
for a sum of independent Bernoulli random variables (recall that Zn(i) is such a sum), see
e.g. [16, Theorem 2.21], we obtain

PW
(∣∣Zn(i)− EW [Zn(i)]

∣∣ ≥ gn
)
≤ 2 exp

{
− g2

n

2(EW [Zn(i)] + gn)

}

≤ 2 exp
{
− g2

n

2(maxi∈[n] EW [Zn(i)] + gn)

}
,

(6.8)

for any non-negative sequence (gn)n∈N. We start by considering (6.1), so that gn = ηbn log n.
Hence, the fraction on the right-hand side is gnBn for some random variable Bn that
converges in probability to some positive constant (see Propositions 5.2). Using a union
bound then yields

PW
(

max
i∈[n]
|Zn(i)− EW [Zn(i)]| ≥ gn

)
≤

n∑

i=1

2 exp{−gnBn}

= 2 exp{log n(1− (gn/ log n)Bn)},
(6.9)
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As gn/ log n = ηbn diverges with n, it follows that this expression tends to zero in proba-
bility. For (6.3), we can also use (6.8) with gn = ηatnn log(1/tn) and we can write

g2
n

2(maxi∈[n] EW [Zn(i)] + gn)

=
(ηatnn log(1/tn))2

2btnn log(1/tn)(maxi∈[n] EW [Zn(i)]/(btnn log(1/tn)) + ηatnn/btnn)

=
η2

2

a2
tnn log(1/tn)

btnn
Bn,

where Bn converges in probability to a positive constant (see the proof of Proposition 5.5
and use the definition of an and bn in Remark 2.4). Since bn/btnn → e (again see the proof
of Proposition 5.5) and by the definition of an and bn in the (Gumbel)-(RaV) sub-case, it

follows that the right-hand side is at least Cbn(log n)1/τ−1 with high probability, for some

small constant C > 0. Replacing gn with Cbn(log n)1/τ−1, which grows faster than log n,
in (6.9) then yields the desired result. Finally, for (6.4) and (6.5), the same approach is valid
with gn = un and gn = n, respectively, though Bn now converges in distribution to some
random variable (see Proposition 5.6). Still, it follows that 1−η2(gn/ log n)Bn < 0 with high
probability, so that the right-hand side of (6.9) still converges to zero in probability. Then,
in all the above cases, using the dominated convergence theorem yields (6.1), (6.3), (6.4)
and (6.5).

Concentration under first order scaling, almost sure convergence. We now turn to the
almost sure result for the (Gumbel)-(RV) sub-case, as in (6.2). Similar to (6.9), we write
for any η > 0,

PW
(

max
i∈[n]
|Zn(i)− EW [Zn(i)]| ≥ ηgn

)
≤ 2 exp

{
log n− η2g2

n

2(maxi∈[n] EW [Zn(i)] + ηgn)

}
,

where gn = bn log n. By Proposition 5.4, we can almost surely bound this from above by

2 exp{log n− η2Cbn log n} ≤ 2 exp
{
− 1

2
η2Cbn log n

}
,

for some sufficiently small constant C > 0 and when n is at least N ∈ N, for some random
N . Thus, we can conclude that this upper bound is almost surely summable in n, as
bn tends to infinity with n. Since η is arbitrary, the PW -almost sure convergence to 0 is
established. Then, since

P
(
∀η > 0 ∃N ∈ N ∀n ≥ N : max

i∈[n]
|Zn(i)− EW [Zn(i)]| < ηgn

)

= E
[
PW
(
∀η > 0 ∃N ∈ N ∀n ≥ N : max

i∈[n]
|Zn(i)− EW [Zn(i)]| < ηgn

)]

= E [1] = 1,

(6.10)

the P-almost sure convergence follows as well.

Concentration under second order scaling. We now prove (6.6), which holds when the
following two claims are true:

PW
(

max
i∈[n]
Zn(i) ≥ max

i∈[n]
EW [Zn(i)] + ηan log n log log n

)
P−→ 0,

PW
(

max
i∈[n]
Zn(i) ≤ max

i∈[n]
EW [Zn(i)]− ηan log n log log n

)
P−→ 0.

(6.11)

As it turns out, we can prove the second claim with relative ease compared to the first claim,
so we defer it to the end of the proof. We first focus on proving the first line of (6.11).
Moreover, we first provide a proof for the case that τ ∈ (0, 3/4), on which we base a more
involved proof for all τ ∈ (0, 1].
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Let τ ∈ (0, 3/4). We use a union bound for the first line of (6.11) and split the sum into
two sets, defined as

C1
n := {i ∈ [n] : Wi < (1−√εn)bi}, C2

n := {i ∈ [n] : Wi ≥ (1−√εn)bi},

where εn = (log n)−c, for some c ∈ (0, 2) to be determined later on. The size of C2
n can be

controlled well enough, so that a precise union bound can be applied to this part. For the
other set, we claim that with high probability,

C1
n ⊆ {i ∈ [n] : EW [Zn(i)] ≤ (1−√εn) max

i∈[n]
EW [Zn(i)]} =: C̃1

n. (6.12)

Then, on the event that C1
n ⊆ C̃1

n, we are able to manipulate terms in the probability
to such an extent that we obtain an improved large deviation bound and show this part
converges to zero in probability as well.

Let us start by showing the with high probability inclusion of C1
n in C̃1

n. Take i ∈ C1
n.

Then,

EW [Zn(i)] = Wi

n−1∑

j=i

1

Sj
≤ (1−√εn)bi log(n/i)

(
1 +
|Yn − Yi|
log(n/i)

)
,

where Yn :=
∑n−1

j=1 1/Sj − log n. Furthermore, by Proposition 5.4, (5.11), with high proba-
bility

max
i∈[n]

EW [Zn(i)] ≥ (1− γ)bnγ log n
(

1 +
1/2− η
1− γ

log log n

log n

)
,

for any fixed η > 0. If thus suffices to show that when i ∈ C1
n, then with high probability

bi log(n/i)
(

1 +
|Yn − Yi|
log(n/i)

)
≤ (1− γ)bnγ log n

(
1 +

1/2− η
1− γ

log logn

log n

)
(6.13)

is satisfied for some η > 0. We show a stronger statement, namely that (6.13) holds
with high probability for any i ∈ [n]. We recall from (5.2) that Yn converges almost

surely. In particular, we have that, with high probability, maxi∈[n] Yi ≤ (log log n)1/2 and
maxlog logn≤i≤n |Yi − Yn| converges to 0 in probability. Note first that for i ≤ (log log n),

bi log(n/i)
(

1 +
|Yn − Yi|
log(n/i)

)
≤ (1− γ)bnγ log n

(
1 +

1/2− η
1− γ

log logn

log n

)
.

Next we consider log log n ≤ i ≤ nγ−ε or i ≥ nγ+ε for some ε > 0, when we get that with
high probability

bi log(n/i)
(

1 +
|Yn − Yi|
log(n/i)

)
≤ C(1− γ)bnγ log n,

for some C ∈ (0, 1), as follows from the proof of Proposition 5.4 ((5.15) to be more precise),
so that (6.13) is satisfied. It remains to prove that (6.13) is satisfied with high probability
when i = nγkn, where kn is sub-polynomial, in the sense that | log kn|/ log n→ 0. First, as
before, with high probability

1 +
|Yn − Yi|
log(n/i)

≤ 1 + η
log log(nγ)

log n
,

for any constant η > 0. Moreover, by Remark 2.4, for any η > 0,

(1− γ)bnγ log n ≥ c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ − η) log log(nγ)

(1− γ) log n

)
,
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for all n large. Finally, for n large,

bi log(n/i) = c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ) log log(nγkn) + b log c1 + log τ

(1− γ) log n

)

×
(

1− log kn
(1− γ) log n

)(
1 +

log kn
γ log n

)1/τ

≤ c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ) log log(nγ±η)

(1− γ) log n

)

≤ c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ + η) log log(nγ)

(1− γ) log n

)

as (1− x/(1− γ))(1 + x/γ)1/τ ≤ 1 for x ∈ [0, 1− γ] and where the ± sign depends on the
sign of b. Combining all of the above, we find for n large and with high probability,

bi log(n/i)
(

1 +
|Yn − Yi|
log(n/i)

)

≤ c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ + η) log log(nγ)

(1− γ) log n

)(
1 + η

log log(nγ)

log n

)

≤ c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ + η

1− γ + 2η
) log log(nγ)

log n

)
,

and

(1− γ)bnγ log n
(

1 +
1/2− η
1− γ

log log n

log n

)

≥ c1(1− γ) log n log(nγ)1/τ
(

1 +
(b/τ − η

1− γ +
1/2− η
1− γ − η

) log log(nγ)

log n

)
,

so that (6.13) is established with high probability for all i ∈ [n − 1], in particular for all
i ∈ C1

n, when η is sufficiently small.

As a second step, we control the size of C2
n. First, we fix an η > 0 and set I = max{I1, I2, I3},

where I1, I2, I3 ∈ N are such that

P(W ≥ (1−√εn)bi) ≤ (1 + η)a((1−√εn)bi)
b exp{−((1−√εn)bi/c1)τ}, i ≥ I1,

P(W ≥ bi) ≥ (1− η)abbi exp{−(bi/c1)τ}, i ≥ I2,

P(W ≥ bi) ≤ (1 + η)/i, i ≥ I3.

We note that I is well-defined, as bi is (eventually) increasing in i and diverges with i and
as bi is such that limi→∞ P(W ≥ bi) i = 1. We then arrive at

E
[
|C2
n|
]
≤ I +

n∑

i=I

(1 + η)a((1−√εn)bi)
b exp{−((1−√εn)bi/c1)τ}.

By writing (1−√εn)τ = 1− τ√εn(1 + o(1)), and as we can bound (1−√εn)b from above
by some sufficiently large constant C which depends only on b, we obtain

E
[
|C2
n|
]
≤ I + (1 + η)C

n∑

i=I

abbi exp{−(bi/c1)τ} exp{τ√εn(bi/c1)τ (1 + o(1))}

≤ I + (1 + η)2(1− η)−1C exp{τ√εn(bn/c1)τ (1 + o(1))}
n∑

i=I

i−1

≤ I + (1 + η)2(1− η)−1C exp{τ√εn log n(1 + o(1))} log n

= I + (1 + η)2(1− η)−1C exp{τ√εn log n(1 + o(1))}.
Since

√
εn log n = (log n)1−c/2 and c ∈ (0, 2), it follows by Markov’s inequality that for any

C3 > τ ,

|C2
n| exp{−C3(log n)1−c/2} P−→ 0. (6.14)
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We are now ready to prove the first line of (6.11). We use the sets C1
n, C̃

1
n and C2

n, in
particular (6.12) and (6.14) to obtain

PW
(

max
i∈[n]
Zn(i) ≥ max

i∈[n]
EW [Zn(i)] + ηan log n log logn

)

≤ PW
({

max
i∈[n]
Zn(i) ≥ max

i∈[n]
EW [Zn(i)] + ηan log n log log n

}
∩ {C1

n ⊆ C̃1
n}
)

+ P
(
C1
n 6⊆ C̃1

n

)

≤
∑

i∈C1
n

PW
(
{Zn(i) ≥ max

i∈[n]
EW [Zn(i)] + ηan log n log log n} ∩ {C1

n ⊆ C̃1
n}
)

+
∑

i∈C2
n

PW
(
Zn(i) ≥ max

i∈[n]
EW [Zn(i)] + ηan log n log logn

)
+ P

(
C1
n 6⊆ C̃1

n

)
.

As established in (6.12), the third probability converges to zero with n. For the first

probability we use that on {C1
n ⊆ C̃1

n}, EW [Zn(i)] ≤ (1−√εn) maxi∈[n] EW [Zn(i)], and for
the second probability we use that maxi∈[n] EW [Zn(i)] ≥ EW [Zn(i)] for any i ∈ [n] to find
the upper bound

∑

i∈C1
n

PW
(
Zn(i)− EW [Zn(i)] ≥ √εn max

i∈[n]
EW [Zn(i)] + ηan log n log log n

)

+
∑

i∈C2
n

PW (Zn(i)− EW [Zn(i)] ≥ ηan log n log log n) + o(1).
(6.15)

Now, applying a large deviation bound to (6.15) yields

∑

i∈C1
n

exp
{
−

(
√
εn maxi∈[n] EW [Zn(i)] + ηan log n log log n)2

2(EW [Zn(i)] +
√
εn maxi∈[n] EW [Zn(i)] + ηan log n log logn)

}

+
∑

i∈C2
n

exp
{
− (ηan log n log log n)2

2(EW [Zn(i)] + ηan log n log logn)

}
+ o(1).

(6.16)

In both exponents we bound the conditional mean in the denominator by the maximum
conditional mean. This yields the upper bound

n exp{−εnbn log nAn}+ |C2
n| exp

{
− η2a2

n log n(log log n)2

2bn
Bn

}
,

where both An, Bn converge in probability to positive constants. We now set c < 1/τ to
ensure that εnbn diverges, so that the first term converges to zero in probability. Thus,
c < (1/τ) ∧ 2 is required. We can write the second term as

|C2
n| exp{−C3(log n)1−c/2} exp{C3(log n)1−c/2 − (log n)1/τ−1(log log n)2B̃n},

where B̃n converges in probability to a positive constant. Now, by (6.14), the product of
the first two terms converges to zero in probability and the last term converges to zero in
probability when 1− c/2 < 1/τ − 1, or c > 4− 2/τ . We thus find that (6.11) is established
when we can find a c ∈ (0, 2) such that 4− 2/τ < c < 1/τ , which holds for all τ ∈ (0, 3/4).

We now extend this approach so that the first line of (6.11) can be achieved for all τ ∈ (0, 1].
To this end, we define the sequence (pk)k∈N as pk := (3/4)pk−1 + 1/(4cτ), k ≥ 1, and
p0 = 1/2. We solve the recursion to obtain

pk =
1

cτ
−
( 1

cτ
− 1

2

)(3

4

)k
, (6.17)

from which it immediately follows that pk is increasing when c < (1/τ) ∧ 2. Moreover, we
can rewrite the recursion as pk = pk−1/2 + (pk−1/2 + 1/(2cτ))/2, so that

pk ∈ (pk−1, pk−1/2 + 1/(2cτ)), k ≥ 1. (6.18)
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We also define, for some K ∈ N0 to be specified later, the sets

C1
n := {i ∈ [n] : Wi < (1− εp0n )bi},

Ckn := {i ∈ [n] : Wi ∈ [(1− εpk−1
n )bi, (1− εpkn )bi)}, k ∈ {2, . . . ,K},

C̃kn := {i ∈ [n] : EW [Zn(i)] ≤ (1− εpkn ) max
i∈[n]

EW [Zn(i)]}, k ∈ [K],

CK+1
n := {i ∈ [n] : Wi ≥ (1− εpKn )bi}.

By the same argument as provided for the proof of (6.12), it follows that for any fixed

k ∈ N, with high probability Ckn ⊆ C̃kn. Similar to the approach for τ ∈ (0, 3/4) we can
then bound

PW
(

max
i∈[n]
Zn(i) ≥ max

i∈[n]
EW [Zn(i)] + ηan log n log log n

)

≤
∑

i∈C1
n

PW
(
Zn(i)− EW [Zn(i)] ≥ εp0n max

i∈[n]
EW [Zn(i)] + ηan log n log log n

)

+

K∑

k=2

∑

i∈Ckn

PW
(
Zn(i)− EW [Zn(i)] ≥ εpkn max

i∈[n]
EW [Zn(i)] + ηan log n log log n

)

+
∑

i∈CK+1
n

PW
(
Zn(i)− EW [Zn(i)] ≥ ηan log n log log n

)
+ P

( K⋃

k=1

{Ckn 6⊆ C̃kn}
)
.

(6.19)

We do not include the sum over i ∈ C1
n in the double sum, as the upper bound we use is

slightly different for these terms. The last term converges to zero by using a union bound,
as established above (6.19) and since K is fixed. As in the simplified proof for τ ∈ (0, 3/4)
where K = 0, we require cpk < 1 for all k ∈ {0, 1, . . . ,K}, so that ηan log n log log n is
negligible compared to εpkn maxi∈[n] EW [Zn(i)]. Since pk is increasing, cpK < 1 suffices.
Using (6.17) yields that K cannot be too large, i.e. we need

(3

4

)K
>

1

c

(1

τ
− 1
)( 1

cτ
− 1

2

)−1
. (6.20)

We now again apply a large deviation bound as in (6.16). Furthermore, with an equivalent
approach that led to (6.14), we find with high probability an upper bound for (6.19) of the
form

n exp{−ε2p0
n bn log nA0,n}+

K∑

k=1

C exp{Ck(log n)1−cpk−1 − η2ε2pk
n bn log nAk,n}

+ C exp
{
CK+1(log n)1−cpK − η2a

2
n log n(log log n)2

bn
AK+1,n

}
+ o(1),

(6.21)

where C,C1, . . . , CK+1 > 0 are suitable constants and the Ak,n are random variables which
converge in probability to some strictly positive constants Ak, k ∈ {0, 1, . . . ,K + 1}. In
order for all these terms to converge to zero in probability, the following conditions need to
be met:

1/τ −2p0c > 0, 1− cpk−1 < −2cpk +1/τ +1, k ∈ [K], 1− cpK ≤ 1/τ −1. (6.22)

Since p0 = 1/2, it follows that c < (1/τ) ∧ 2 still needs to be satisfied. By the bounds
on pk in (6.18) the second condition is satisfied and the final condition holds when pK ≥
(2− 1/τ)/c, or (3

4

)K
≤ 2

1

c

(1

τ
− 1
)( 1

cτ
− 1

2

)−1
.

Together with (6.20) this yields

1

c

(1

τ
− 1
)( 1

cτ
− 1

2

)−1
<
(3

4

)K
≤ 2

c

(1

τ
− 1
)( 1

cτ
− 1

2

)−1
.

139



THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 51

Since the ratio of the lower and upper bound is exactly 2, such a K ∈ N0 can always be
found, as long as

1

c

(1

τ
− 1
)( 1

cτ
− 1

2

)−1
< 1,

which is satisfied for any τ ∈ (0, 1) when c < 2. It thus follows that (6.11) holds for all τ ∈
(0, 1). When τ = 1, the condition pK ≤ (2− 1/τ)c simplifies to pK ≥ 1/c, which, together
with the condition pK < 1/c implies that pK = 1/c is required. However, when τ = 1, the
limit of pK is 1/c, so that K needs to tend to infinity with n. Therefore, we repeat the
same arguments, but now take K = K(n) = d1/| log(3/4)|(log log log n− log log log log n)e.
We then need to check the following things:

(i) The conditions on pk and c are met.
(ii) The final probability in (6.19) converges to zero in probability with n.

(iii) All terms in (6.21) individually converge to zero with n, as well as when summing
them all together.

The first two conditions in (6.22) still need to be satisfied, and this is the case when K
grows with n as well. Furthermore, as τ = 1, pk < 1/c is satisfied for all k ∈ N, establishing
(i).

For (ii), we observe that by (6.13),

P
( K⋃

k=1

{Ckn 6⊆ C̃kn}
)

≤ P

(
n−1⋃

i=1

{
bi log(n/i)

(
1 +
|Yn − Yi|
log(n/i)

)
> (1− γ)bnγ log n

(
1 +

1/2− η
τ

log log n

log n

)})
,

for some small η > 0, and the decay of this probability to zero has been established in (6.13).

Finally, for (iii), we check the convergence of the terms in (6.21). The first term clearly
still converges to zero in probability. Then, for each term in the sum we note that the
constants Ck can all be chosen such that Ck < τ + δ for all k ∈ [K + 1] and any δ > 0.
Similarly, the random terms Ak,n, which converge in probability to positive constants Ak,
can also be shown to be bounded away from zero uniformly in k. This yields that we need
only consider the rate of divergence of the remaining terms. We write,

(log n)1−cpk−1 = (log n)(2−c)(2/3)(3/4)k = exp
{2

3
(2− c) exp{k log(3/4) + log log log n}

}
,

ε2pk
n bn log n ∼ (log n)(2−c)(3/4)k = exp{(2− c) exp{k log(3/4) + log log log n}},

where we recall that τ = 1 and thus the expression of pk is simplified. We note that
both terms diverge with n for each k ∈ [K] by the choice of K and since log(3/4) > −1.
Moreover, the latter term is dominant for every k ∈ [K], so that each term in the sum
in (6.21) tends to zero in probability. An upper bound for the entire sum is established
when setting pk−1 = pK−1, pk = pK and bounding (with high probability) Ck < τ + δ
Ak,n > δ, for some small δ > 0 uniformly in k. We then obtain the upper bound

C exp
{

logK − η2δ(log log n)3(2−c)/4(1 + o(1))
}
,

which converges to zero as logK is negligible compared to the double logarithmic term.
Now, for the final term in (6.21), we write as before,

(log n)1−cpK = exp{(1− c/2) exp{K log(3/4) + log log log n}} ≤ e(1−c/2) log log logn,

and (log log n)2 = exp{2 log log log n} so that the latter term dominates the former, which
yields the desired result.
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What remains is to prove the second line of (6.11) holds for any τ ∈ (0, 1] and η > 0. We
note that the event in the brackets occurs when

Zn(i) ≤ max
i∈[n]

EW [Zn(i)]− ηan log n log logn ∀i ∈ [n],

so that

PW
(

max
i∈[n]
Zn(i) ≤ max

i∈[n]
EW [Zn(i)]− ηan log n log logn

)

≤ PW
( ⋂

i∈[n]

{
Zn(i) ≤ max

i∈[n]
EW [Zn(i)]− ηan log n log logn

})

≤ PW
(
Zn(Ĩn) ≤ max

i∈[n]
EW [Zn(i)]− ηan log n log logn

)
,

where we recall that Ĩn := inf{i ∈ [n] : EW [Zn(i)] ≥ EW [Zn(j)] for all j ∈ [n]}. Since Ĩn is

determined by W1, . . . ,Wn, it follows that maxi∈[n] EW [Zn(i)] = EW [Zn(Ĩn)]. Thus,

PW
(
Zn(Ĩn) ≤ max

i∈[n]
EW [Zn(i)]− ηan log n log log n

)

≤ PW
(∣∣Zn(Ĩn)− EW [Zn(Ĩn)]

∣∣ ≥ ηan log n log log n
)

≤ VarW (Zn(Ĩn))

(ηan log n log logn)2

≤
maxi∈[n] EW [Zn(i)]

bn log n

bn
η2a2

n log n(log log n)2
,

which converges to zero almost surely, as the first fraction on the right-hand side converges
to a positive constant almost surely and the second fraction converges to zero, since τ ∈
(0, 1]. Therefore, the second statement in (6.11) holds and combining this with the first
statement of (6.11) and the dominated convergence theorem concludes the proof of (6.6).

Finally, (6.7) can be proved in a similar way as (6.6), though the case τ = 1 no longer holds
due to the absence of the log log n term. �

7. Proof of the main theorems

We now prove the main theorems, Theorem 2.9, 2.12 and 2.14. For clarity, we split the proof
of Theorem 2.9 into three parts, dealing with the (Bounded), (Gumbel) and (Fréchet)
cases separately, which all use somewhat different approaches. In all cases, the proof also
holds for the model with a random out-degree as discussed in Remark 2.2(ii) when setting
m = 1, as in this model the in-degree Zn(i) of each vertex i ∈ [n] can still be written as a
sum of independent indicator random variables.

7.1. Proof of Theorem 2.9, Bounded case. Before we prove the (Bounded) case of
Theorem 2.9, we state an adaptation of [8, Lemma 1]:

Lemma 7.1. Let An,i := {Zn(i) ≥ an} for some sequence (an)n∈N. Then,

PW

(
n⋃

i=1

An,i

)
≤

n∑

i=1

PW (An,i) , PW

(
n⋃

i=1

An,i

)
≥

∑n
i=1 PW (An,i)

1 +
∑n

i=1 PW (An,i)
,

and as a result,

PW

(
n⋃

i=1

An,i

)
P/a.s.−→





0, if
∑n

i=1 PW (An,i)
P/a.s.−→ 0,

1, if
∑n

i=1 PW (An,i)
P/a.s.−→ ∞.

Proof. The result directly follows by applying [8, Lemma 1] to the conditional probability
measure PW . �
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Proof of Theorem 2.9, (Bounded) case. The proof heavily relies on the proof of [8, The-
orem 2], which we adapt to work for WRGs. Before proving almost sure convergence,
we prove convergence in probability. We do this by providing an upper and lower bound
and show that these coincide. Then, using these bounds we prove almost sure conver-
gence. Let us start with the upper bound. We set an := c log n, with c > 1/ log θm and
let ε ∈ (0,min{m/E [W ] − c + c log(cE [W ] /m), cE [W ] /(me2), 1/2}). Note that the first
argument of the minimum equals zero when c = m/E [W ] and is positive otherwise. As
θm = 1 + E [W ] /m and c > 1/ log θm > m/E [W ], this minimum is strictly positive. Then,
we aim to show that

n∑

i=1

PW (Zn(i) ≥ an)
a.s.−→ 0, (7.1)

which implies via Lemma 7.1 and the dominated convergence theorem that

P
(

max
i∈[n]
Zn(i) ≥ an

)
→ 0. (7.2)

Using a Chernoff bound and the fact that Zn(i) is a sum of independent indicator random
variables, we have for any t > 0,

PW (Zn(i) ≥ an) ≤ e−tan
n−1∏

j=i

(Wi

Sj
et +

(
1− Wi

Sj

))m
≤ e−tan+(et−1)mWi(Hn−Hi),

where Hn :=
∑n−1

j=1 1/Sj . This expression is minimised for t = log(an)−log(mWi(Hn−Hi)),
which yields the upper bound

PW (Zn(i) ≥ an) ≤ ean(1−ui+log ui), (7.3)

with ui = mWi(Hn−Hi)/an. We note that the mapping x 7→ 1−x+ log x is increasing for
x ∈ (0, 1). Moreover, by (5.2), mHn/an < 1 holds almost surely for all sufficiently large n
by the choice of c. Then, as we can bound Wi from above by 1 almost surely and (Hn−Hi)
is decreasing in i, we find, almost surely, for n large and uniformly in i,

PW (Zn(i) ≥ an) ≤ exp{an(1−mHn/an + log(mHn/an)}
= exp{c log n(1−m/(cE [W ]) + log(m/(cE [W ])))(1 + o(1))}
= exp{− log n(m/E [W ]− c+ c log(cE [W ] /m))(1 + o(1))}.

Thus,
∑

i<nε

PW (Zn(i) ≥ an) ≤ exp{− log n(m/E [W ]− c+ c log(cE [W ] /m)− ε)(1 + o(1))}, (7.4)

which tends to zero almost surely as ε < m/E [W ]− c+ c log(cE [W ] /m). Similarly, again
using that Wi ≤ 1,mHn/an < 1 almost surely for n large,

∑

i>n1−ε
PW (Zn(i) ≥ an) ≤ n exp

{
an

(
1−

m(Hn −Hdn1−εe)

an
+ log

(m(Hn −Hdn1−εe)

an

)}
.

As Hn −Hdn1−εe = ε log n(1 + o(1)) almost surely for n large,
∑

i≥n1−ε
PW (Zn(i) ≥ an) ≤ n exp

{
c log n

(
1− εm

cE [W ]
+ log

( εm

cE [W ]

))
(1 + o(1))

}

= n−(−c+εm/E[W ]−c log(εm/(cE[W ]))−1)(1+o(1)),

(7.5)

which also tends to zero almost surely since ε < cE [W ] /(me2). It thus remains to prove
that ∑

nε≤i<n1−ε
PW (Zn(i) ≥ an)

a.s.−→ 0. (7.6)

We use the same bound as in (7.3), which holds uniformly in i ∈ [n] and we recall that
ui = mWi(Hn − Hi)/(c log n). In fact, we bound (7.3) from above further by using that
ui ≤ m(Hn − Hi)/(c log n) =: ũi almost surely. Define u : R → R by u(x) := m(1 −
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log x/ log n)/(cE [W ]) and φ : R→ R by φ(x) := 1−x+log x. Then, for nε ≤ i < n1−ε such

that i = nβ+o(1) for some β ∈ [ε, 1−ε] (where the o(1) is independent of β) and x ∈ [i, i+1),

|φ(ũi)− φ(u(x))| ≤ |ũi − u(x)|+ | log(ũi/u(x))|

=

∣∣∣∣
m

cE [W ]

(
1− log x

log n

)
− m

c log n

n−1∑

j=i

1

Sj

∣∣∣∣

+

∣∣∣∣ log

(
E [W ]

log n− log x

n−1∑

j=i

1

Sj

)∣∣∣∣.

(7.7)

By (5.2) and since i diverges with n,
∑n−1

j=i 1/Sj − log(n/i)/E [W ] = o(1) almost surely as

n→∞. Applying this to the right-hand side of (7.7) yields

|φ(ũi)− φ(u(x))| ≤ m

cE [W ]

∣∣∣ log x− log i

log n

∣∣∣+
∣∣∣ log

(
1 +

log x− log i+ o(1)

log n− log x

)∣∣∣.

Since x ≥ i ≥ nε and |x − i| ≤ 1, we thus obtain that, uniformly in nε ≤ i < n1−ε and
x ∈ [i, i+ 1), |φ(ũi)− φ(u(x))| = o(1/(nε log n)) almost surely as n→∞. Applying this to
the left-hand side of (7.6) together with (7.3) (using ũi rather than ui), we can bound the
sum from above by

∑

nε≤i<n1−ε
PW (Zn(i) ≥ an) ≤

∑

nε≤i<n1−ε
eanφ(ũi)

≤
∑

nε≤i<n1−ε

∫ i+1

i
eanφ(u(x))+an|φ(ũi)−φ(u(x))| dx

≤ (1 + o(1))

∫ n1−ε+1

nε
eanφ(u(x)) dx.

(7.8)

Recall that θm = 1+E [W ] /m and set θ̃m := 1+m/E [W ]. Using the variable transformation

w = θ̃m(log n− log x) and Stirling’s formula in the last line yields

(1 + o(1))
n1+c−c log θm

θ̃m(c log n)c logn

∫ (1−ε)θ̃m logn

εθ̃m logn+o(1)
wc logne−w dw

≤ o(1) + (1 + o(1))
n1+c−c log θm

θ̃m(c log n)c logn
Γ(1 + c log n)

∼ n1−c log θm

θ̃m

√
2πc log n,

which tends to zero by the choice of c. Hence, combining the above with (7.4) and (7.5)
yields (7.1) and hence (7.2).

Now, let an := dc log ne, bn := dδ log ne with c ∈ (0, 1/ log θm) and δ ∈ (0, 1/ log θm − c).
For i ∈ N fixed, we couple Zn(i) to a sequence of suitable random variables. Let (Pj)j≥2 be
independent Poisson random variables with mean mWi/Sj−1, j ≥ 2. Then, we can couple
Zn(i) to the Pj ’s to obtain

Zn(i) ≥
n∑

j=i+1

Pj1{Pj≤1} =
n∑

j=i+1

Pj −
n∑

j=i+1

Pj1{Pj>1} =: Wn(i)− Yn(i).

By Lemma 7.1 and the inequality

PW (Zn(i) ≥ an) ≥ PW (Wn(i) ≥ an + bn)− PW (Yn(i) ≥ bn) ,

it follows that we are required to prove that, for some ε, ξ > 0 sufficiently small,
∑

nε≤i≤n1−ε

Wi≥e−ξ

PW (Wn(i) ≥ an + bn)
P−→∞,

∑

nε≤i≤n1−ε
PW (Yn(i) ≥ bn)

P−→ 0, (7.9)
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as n tends to infinity, to obtain

PW
(

max
i∈[n]
Zn(i) ≥ an

)
P−→ 1.

Using the uniform integrability of the conditional probability measure then yields

lim
n→∞

P
(

max
i∈[n]
Zn(i) ≥ an

)
= 1,

which together with (7.2) proves convergence in probability of maxi∈[n]Zn(i)/ log n to
1/ log θm.

We first prove the first claim of (7.9). Note that Wn(i) is a Poisson random variable with

parameter mWi
∑n−1

j=i 1/Sj . We note that by the strong law of large numbers, for some

η ∈ (0, e1/(c+δ) − θm),

mWi

n−1∑

j=i

1/Sj ≥ mWi

n−1∑

j=i

1/(j(E [W ] + η)) ≥ (mWi/(E [W ] + η)) log(n/i) (7.10)

for all nε ≤ i ≤ n almost surely when n is sufficiently large. We can thus, for n large,
conclude that Wn(i) stochastically dominates Xn(i), where Xn(i) is a Poisson random
variable with a parameter equal to the right-hand side of (7.10). Then, also using that
Wi ≤ 1 almost surely, it follows that for i ≥ nε,

PW (Wn(i) ≥ an + bn) ≥ PW (Xn(i) ≥ an + bn)

≥ PW (Xn(i) = an + bn)

≥
( i
n

)m/(E[W ]+η)
W an+bn
i

((mWi/(E [W ] + η)) log(n/i))an+bn

(an + bn)!
.

We now sum over all i ∈ [n] such that nε ≤ i ≤ n1−ε,Wi ≥ e−ξ for some sufficiently small
ε, ξ > 0. By the lower bound on the vertex-weight, we obtain the further lower bound

∑

nε≤i≤n1−ε

Wi≥e−ξ

PW (Wn(i) ≥ an + bn)

≥
∑

nε≤i≤n1−ε
1{Wi≥e−ξ}e

−ξ(an+bn)
( i
n

)m/(E[W ]+η) ((m/(E [W ] + η)) log(n/i))an+bn

(an + bn)!

=: Tn.

(7.11)

We now claim that Tn
P−→ ∞. This follows from the fact that the mean of Tn diverges,

and that Tn concentrates around the mean. We first show the former statement. Let p =
p(ξ) = P

(
W ≥ e−ξ

)
. Note that, due to the fact that x0 = sup{x ∈ R : P(W ≤ x) < 1} = 1,

p > 0 for any ξ > 0. Hence,

E [Tn] =
p

eξ(an+bn)

( m

E [W ] + η

)an+bn 1

(an + bn)!

∑

nε≤i≤n1−ε

( i
n

)m/(E[W ]+η)
log(n/i)an+bn . (7.12)

Then, in a similar way as in (7.8), and applying a variable transformation t = (1 +
m/(E [W ] + η)) log(n/x),

∑

nε≤i≤n1−ε

( i
n

)m/(E[W ]+η)
(log(n/i))an+bn

= (1 + o(1))

∫ n1−ε

nε

(x
n

)m/(E[W ]+η)
log(n/x)an+bn dx

= (1 + o(1))n(an + bn)!
(

1 +
m

E [W ] + η

)−(an+bn+1)
∫ (1−ε)(1+m/(E[W ]+η))

ε(1+m/(E[W ]+η)) logn

e−ttan+bn

(an + bn)!
dt.
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We now identify the integral as the probability of the event {Yn ∈ (ε(1 + m/(E [W ] +
η)) log n, (1 − ε)(1 + m/(E [W ] + η)) log n)}, where Yn is a sum of an + bn + 1 rate one
exponential random variables. Since an + bn = (1 + o(1))(c + δ) log n, it follows from the
law of large numbers that this probability equals 1− o(1) when c+ δ ∈ (ε(1 +m/(E [W ] +
η)), (1−ε)(1+m/(E [W ]+η))), which is the case for ε, η sufficiently small. Thus, combining
the above with (7.12), we arrive at

E [Tn] ∼ pe−ξ(an+bn)
( m

E [W ] + η

)an+bn(
1 +

m

E [W ] + η

)−(an+bn)+1
n

= p
E [W ] + η

mθm + η
exp{log n(1− (1 + o(1))(c+ δ)(log(θm + η/m) + ξ))}

= p
E [W ] + η

mθm + η
n1−(1+o(1))(c+δ)(log(θm+η/m)+ξ).

(7.13)

By the choice of c and δ, the exponent is positive when η and ξ are sufficiently small. What
remains is to show that Tn concentrates around E [Tn]. Using a Chebyshev bound yields
for any ζ > 0 fixed,

P(|Tn/E [Tn]− 1| ≥ ζ) ≤ Var(Tn)

(ζE [Tn])2
, (7.14)

so that the result follows if Var(Tn) = o(E [Tn]2). Since Tn is a sum of weighted, independent
Bernoulli random variables, we readily have

Var(Tn) =
( m

E [W ] + η

)2(an+bn) p(1− p)e−2ξ(an+bn)

((an + bn)!)2

∑

nε≤i≤n1−ε

( i
n

)2m/(E[W ]+η)
log(n/i)2(an+bn).

Again writing the sum as an integral over x instead of i, and now using the variable
transformation t = (1 + 2m/(E [W ] + η)) log(n/x), we obtain that the sum equals

(1+o(1))n(2(an+bn))!
(

1+
2m

E [W ] + η

)−2(an+bn)−1
∫ (1−ε)(1+2m/(E[W ]+η)) logn

ε(1+2m/(E[W ]+η)) logn

e−tt2(an+bn)

(2(an + bn))!
dt.

We again interpret the integral as the probability of the event {Ỹn ∈ (ε(1 + 2m/(E [W ] +

η)) log n, (1 − ε)(1 + 2m/(E [W ] + η)) log n)}, where Ỹn is a sum of 2(an + bn) rate one
exponential random variables. Again, for η and ε sufficiently small, this probability is
1− o(1) by the law of large numbers. Thus, we obtain,

Var(Tn) = (1 + o(1))
p(1− p)(E [W ] + η)

m(θm + 1) + η
e−2ξ(an+bn)n

(2(an + bn))!

((an + bn)!)2
(1 + θm + η/m)−2(an+bn).

Using Stirling’s approximation for the factorial terms then yields

Var(Tn) ∼ p(1− p)(E [W ] + η)

(m(θm + 1) + η)
√
π(an + bn)

elogn+2(an+bn)(log 2−log(1+θm+η/m)−ξ)

=
p(1− p)(E [W ] + η)

(m(θm + 1) + η)
√
π(an + bn)

n1+2(c+δ)(1+o(1))(log 2−log(1+θm+η/m)−ξ).

Combining this with (7.13), we find that

Var(Tn)

E [Tn]2
≤ K√

an + bn
exp

{
log n

(
2(c+ δ)(1 + o(1)) log

( 2(θm + η/m)

1 + θm + η/m

)
− 1
)}
, (7.15)

where K > 0 is a suitable constant. The exponential terms decays with n when

c+ δ <
(

log
(

4
( θm + η/m

1 + θm + η/m

)2))−1
,

which is satisfied for any θm ∈ (1, 2] when η is sufficiently small, since c+ δ < 1/ log θm and

log θm > log
(

4
( θm + η/m

1 + θm + η/m

)2)
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holds for any θm ∈ (1, 2] when η is sufficiently small. Therefore, Tn/E [Tn]
P−→ 1, so that

Tn
P−→∞. This then implies the first statement in (7.9).

We now prove the second statement of (7.9). For a Poisson random variable P with mean
λ, we find that

E
[
P1{P>1}

]
= E [P ]− P(P = 1) = λ

(
1− e−λ

)
≤ λ2, (7.16)

and, for any t ∈ R, it follows from [8, Page 8] that

E
[
et(P1{P>1}−E[P1{P>1}])

]
≤ eλ

2e2t . (7.17)

Now, since Yn(i) =
∑n

j=i+1 Pj1{Pj>1}, where the Pj ’s are independent Poisson random

variables with mean mWi/Sj−1, using an upper bound inspired by (7.10) and using (7.16),
we obtain that almost surely for all n large and i ≥ nε,

EW [Yn(i)] ≤ m2

(E [W ]− η)2

n−1∑

j=i

1/j2 ≤ m2

(E [W ]− η)2(i− 1)
.

Then, for i ≥ nε and n large enough so that bn(i − 1) ≥ 4(m/(E [W ] − η))2, we write for
any t > 0 using (7.17),

PW (Yn(i) ≥ bn) ≤ PW (Yn(i)− EW [Yn(i)] ≥ bn/2)

≤ e−tbn/2EW [et(Yn(i)−EW [Yn(i)])]

≤ exp{−tbn/2 + e2tm2/((E [W ]− η)2(i− 1))}.
This upper bound is smallest for t = log(bn(i− 1)(E [W ]− η)2/(4m2))/2, which yields

PW (Yn(i) ≥ bn) ≤ exp
{bn

4
(1− log(bn(i− 1)(E [W ]− η)2/(4m2)))

}

=
( 4em2

bn(E [W ]− η)2(i− 1)

)bn/4 ≤ n−εbn/4,

when n is large enough such that bn ≥ 8em2/(E [W ] − η)2 and nε ≤ 2(nε − 1). It then
follows that ∑

nε≤i≤n1−ε
PW (Yn(i) ≥ bn) ≤ n1−εδ logn/4, (7.18)

which tends to zero with n almost surely. This finishes the proof of

max
i∈[n]
Zn(i)/ log n

P−→ 1/ log θm.

We now turn to the almost sure convergence. Let Zn := maxi∈[n]Zn(i). Similar to [8], we
use the bounds

inf
N≤n

Z2n

(n+ 1) log 2
≤ inf

2N≤n

Zn
log n

≤ sup
2N≤n

Zn
log n

≤ sup
N≤n

Z2n+1

n log 2
.

It thus follows that to prove the almost sure convergence of the rescaled maximum degree
Zn/ log n, it suffices to do so for the subsequence Z2n/(n log 2), for which we can obtain
stronger bounds due to the fact that 2n grows exponentially. To prove the almost sure
convergence of Z2n/(n log 2) to 1/ log θm, it thus suffices to prove

lim inf
n→∞

Z2n

(n+ 1) log 2
≥ 1

log θm
, lim sup

n→∞

Z2n+1

n log 2
≤ 1

log θm
, (7.19)

almost surely, which can be achieved with the bounds used to prove the convergence in
probability. Namely, for the upper bound, using (7.4), (7.5) and (7.8), we obtain for any
c > 1/ log θm, a sufficiently small ξ > 0 and some large constant C > 0,

2n+1∑

i=1

PW (Z2n+1(i)/(n log 2) ≥ c) ≤ 2e−ξn(1+o(1)) + (1 + o(1))C
√
ne−ξn,
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which is summable, so it follows from the Borel-Cantelli lemma that the upper bound
in (7.19) holds PW -almost surely. A similar approach as in (6.10) then yields the P-almost
sure convergence.

Similarly, for the lower bound in (7.19), we have for c < 1/ log θm by Lemma 7.1,

PW (Z2n/((n+ 1) log 2) < c) ≤ 1−
∑2n

i=1 PW (Z2n(i) ≥ c(n+ 1) log 2)

1 +
∑2n

i=1 PW (Z2n(i) ≥ c(n+ 1) log 2)

=
1

1 +
∑2n

i=1 PW (Z2n(i) ≥ c(n+ 1) log 2)
.

(7.20)

Similar to (7.9), we again bound the sum from below by

2n∑

i=1

PW (Z2n(i) ≥ c(n+ 1) log 2) ≥
∑

2εn≤i≤2(1−ε)n

Wi≥e−ξ

PW (W2n(i) ≥ (c+ δ)(n+ 1) log 2)

−
∑

2εn≤i≤2(1−ε)n

PW (Y2n(i) ≥ δ(n+ 1) log 2) .

First, by the bound in (7.18), we find that

1−
∑

2εn≤i≤2(1−ε)n

PW (Y2n(i) ≥ δ(n+ 1) log 2) ≥ 0,

almost surely for all n large. Then, we bound the sum of tail probabilities of the W2n(i)
from below by T2n , where we recall the definition of Tn from (7.11). Combining (7.14)
and (7.15), we find that T2n ≥ E [T2n ] /2 almost surely for all n large. Together with (7.13)
and (7.20), we thus obtain

PW (Z2n/((n+ 1) log 2) < c) ≤ C exp{−n log 2(1− (1 + o(1))(c+ δ)(log(θm + η/m) + ξ))},
for some constant C > 0, which is summable when η and ξ are sufficiently small, so that
the lower bound holds for all but finitely many n PW -almost surely by the Borel-Cantelli
lemma. Again, a similar argument as in (6.10) allows us to extend this to P-almost surely,
which concludes the proof. �

7.2. Proof of Theorem 2.9, (Gumbel) case. In this subsection we prove the (Gumbel)
case of Theorem 2.9, which combines the results obtained in Sections 5 and 6.

Proof of Theorem 2.9, (Gumbel) case. We only discuss the case m = 1, as the proof for
m > 1 follows analogously. Most of the proof directly follows by combining Proposi-
tions 5.2, 5.4 and 5.5 with Proposition 6.1, (6.1), (6.2) and (6.3). The one statement that
remains to be proved is that log(In)/ log n converges, either in probability or almost surely,
depending on the class of distributions the vertex-weight distribution is in, to some constant.
Let us start with the (Gumbel)-(RV) sub-case, as in (2.16).

We recall the sequence (ε̃k)k∈N0 in (5.13) and note that ε̃k is decreasing and tends to 0 with
k. Now, fix ε > 0 and let k be large enough such that ε̃k < ε. We are required to show that

∞∑

n=1

1{log In/ logn≤γ−ε} <∞, a.s.

First, we note that
{ log In

log n
≤ γ − ε

}
⊆
{ log In

log n
≤ γ − ε̃k

}

⊆
{

max
nγ−ε̃k≤i≤n

Zn(i)

(1− γ)bnγ log n
≤ max

i<nγ−ε̃k

Zn(i)

(1− γ)bnγ log n

}
.
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Let us denote the event on the right-hand side by An and, for η > 0, define the event

Cn :=
{

max
i∈[n]
|Zn(i)− EW [Zn(i)]| ≤ η

2
(1− γ)bnγ log n

}
.

We then have that An ⊆ (An ∩ Cn) ∪ Ccn, so that

∞∑

n=1

1{log In/ logn≤γ−ε} ≤
∞∑

n=1

1An ≤
∞∑

n=1

1An1Cn + 1Ccn .

We now use the concentration argument used to prove (6.2) in Proposition 6.1. It already
follows from (6.2) that only finitely many of the 1Ccn equal 1, so what remains is to show
that, almost surely, only finitely many of the product of indicators equal 1 as well. On Cn,

An ∩ Cn ⊆
{

max
nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ log n
≤ max

i<nγ−ε̃k

EW [Zn(i)]

(1− γ)bnγ log n
+ η
}
.

The limsup of the second maximum in the event on the right-hand side is almost surely at
most ck < 1, where ck is the quantity defined in (5.15). Then, we can directly bound the
first maximum from below by

max
nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ log n
≥ max

nγ−ε̃k≤i≤nγ
EW [Zn(i)]

(1− γ)bnγ log n
≥ max

nγ−εk≤i≤nγ
Wi

bnγ

∑n−1
i=nγ 1/Sj

(1− γ) log n
,

and the lower bound converges almost surely to 1 by (5.2) and Lemma 5.3. Hence, if we
take some δ ∈ (0, 1 − ck) and set η < δ/3, then almost surely there exists an N ∈ N such
that for all n ≥ N ,

max
i<nγ−ε̃k

EW [Zn(i)]

(1− γ)bnγ log n
< ck + δ/3, max

nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ log n
> 1− δ/3.

It follows that that the event
{

max
nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ log n
≤ max

i<nγ−ε̃k

EW [Zn(i)]

(1− γ)bnγ log n
+ η
}

almost surely does not hold for all n ≥ N . Thus, for any ε > 0 and for all n large,
log In/ log n ≥ γ−ε almost surely. With a similar approach, we can prove that log In/ log n ≤
γ + ε, so that the almost sure convergence to γ is established.

For the (Gumbel)-(SV) and (Gumbel)-(RaV) sub-cases, we intend to prove the conver-
gence of log In/ log n to 0 and 1 in probability, respectively. We provide a proof for the
former sub-case, and note that the proof for the latter sub-case follows in a similar way.

Let ε > 0. Then,

P(log In/ log n ≥ ε) = P(In ≥ nε) = P
(

max
nε≤i≤n

Zn(i)

bn log n
> max

1≤i<nε
Zn(i)

bn log n

)
. (7.21)

Again, we define the event, for η ∈ (ε/3) small,

Cn :=
{

max
i∈[n]
|Zn(i)− EW [Zn(i)]| ≤ ηbn log n/2

}
,

which holds with high probability due to (6.1). We can then further bound the right-hand
side in (7.21) from above by

P
({

max
nε≤i≤n

Zn(i)

bn log n
> max

1≤i<nε
Zn(i)

bn log n

}
∩ Cn

)
+ P(Ccn)

≤ P
(

max
nε≤i≤n

EW [Zn(i)]

bn log n
> max

1≤i<nε
EW [Zn(i)]

bn log n
− η
)

+ P(Ccn) .

(7.22)

In a similar way as in the proof of Proposition 5.2, as well as in the proof above for
the (Gumbel)-(RV) sub-case, we can bound the maximum of the conditional mean in-
degrees on the left-hand side from above and the maximum on the right-hand side from
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below by random quantities that converge in probability to fixed constants. Namely, for
ε > 0 and β ∈ (0, ε/3),

max
nε≤i≤n

EW [Zn(i)]

bn log n
≤ max

nε≤i≤n

Wi
∑n−1

j=nε 1/Sj

bn log n

P−→ 1− ε,

max
1≤i<nε

EW [Zn(i)]

bn log n
− η ≥ max

i∈[nβ ]

Wi
∑n−1

j=nβ 1/Sj

bn log n
− η P−→ 1− β − η,

so that, with high probability, the first quantity is at most 1−5ε/6 and the second quantity
is at least 1− (β+η)−ε/6 > 1−5ε/6 by the choice of β and η. It thus follows that the first
probability on the right-hand side of (7.22) tends to zero with n, and so does the second
probability (Cn holds with high probability), so that the claim follows. �

7.3. Proof of Theorem 2.9, (Fréchet) case. In this subsection we prove the (Fréchet)
case of Theorem 2.9, which combines the results obtained in Sections 5 and 6.

Proof of Theorem 2.9, (Fréchet) case. The proof of the convergence of maxi∈[n]Zn(i)/un
and maxi∈[n]Zn(i)/n as in (2.18) and (2.19), respectively, follows directly from Proposi-
tion 5.6 combined with (6.4) and (6.5) in Proposition 6.1. Then, the distributional con-
vergence of In/n to Iα and I as in (2.18) and (2.19), respectively, follows from the same
argument as in the proof of [19, Theorem 2.7]. In particular, we can conclude from that
proof that, when α > 2,

P(Iα ≤ t) =
g(0, t)

g(0, 1)
, where g(a, b) :=

∫ b

a
log(1/x)α−1 dx.

Finally, we note that when using the variable transformation w = log(1/x),

g(a, b) =

∫ log(1/a)

log(1/b)
wα−1e−w dw = Γ(α)P

(
e−Wα ∈ (a, b)

)
,

where Wα is a Γ(α, 1) random variable. Thus,

P(Iα ≤ t) =
g(0, t)

g(0, 1)
= P

(
e−Wα ≤ t

)
,

and mmax(t,f)∈Π f log(1/t) follows a Fréchet distribution with shape parameter α− 1 and

scale parameter mg(0, 1)1/(α−1) = mΓ(α)1/(α−1), which concludes the proof. �

7.4. Second order behaviour of the maximum degree in the (Gumbel)- (RV)
and (Gumbel)-(RaV) sub-cases. In this subsection, we prove Theorems 2.12 and 2.14:

Proof of Theorem 2.12. We only discuss the case m = 1, as the proof for m > 1 follows
analogously. Let us first deal with the results for the (Gumbel)-(RV) sub-case. The distri-
butional convergence of the rescaled maximum degree to the correct limit, as in (2.21), and
the convergence result in (2.23), directly follow by combining Proposition 5.4 with Proposi-
tion 6.1, (6.6) and (6.7). The one thing that remains to be proved is: In(γ, s, t, `)/(`(n)nγ)
converges in distribution, jointly with the maximum degree of vertices i ∈ Cn(γ, s, t, `), as
in (2.21).

The distributional convergence of In(γ, s, t, `)/(`(n)nγ) follows from the same argument as
in the proof of [19, Theorem 2.7], where now

g(a, b) := log(b/a). (7.23)

The joint convergence of In and maxi∈Cn Zn(i) when properly rescaled follows from [19,
Theorem 2.7] as well.

In a similar way as in the proof of [19, Theorem 2.7], with g as in (7.23), for x ∈ (s, t),

P(Iγ ∈ (s, x)) =
g(s, x)

g(s, t)
=

log(x/s)

log(t/s)
= P

(
eU ∈ (s, x)

)
,

149



THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 61

where U ∼ Unif(log s, log t). Finally, for any x ∈ R,

P
(

max
(v,w)∈Π
v∈(s,t)

w − log v ≤ x
)

= exp
{
−
∫ t

s

∫ ∞

x+log v
e−w dwdv

}
= exp

{
− e−(x−log log(t/s))

}
,

which proves that the distributional limits as described in (2.21) and (2.22) have the desired
distributions. �
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[15] E. Hiesmayr and U. Işlak. Asymptotic results on Hoppe trees and their variations. J. Appl. Probab.,
57(2):441–457, 2020.

[16] R. van der Hofstad. Random graphs and complex networks. Vol. 1. Cambridge Series in Statistical and
Probabilistic Mathematics, [43]. Cambridge University Press, Cambridge, 2017.

[17] R. van der Hofstad, P. Mörters, and N. Sidorova. Weak and almost sure limits for the parabolic Anderson
model with heavy tailed potentials. Ann. Appl. Probab., 18(6):2450–2494, 2008.

[18] T. Iyer. Degree distributions in recursive trees with fitnesses. Preprint, arXiv:2005.02197, 2020.
[19] B. Lodewijks and M. Ortgiese. A phase transition for preferential attachment models with additive

fitness. Electron. J. Probab., 25:Paper No. 146, 54, 2020.
[20] H. M. Mahmoud. Evolution of random search trees. Wiley-Interscience Series in Discrete Mathematics

and Optimization. John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication.
[21] C. Mailler and G. Uribe Bravo. Random walks with preferential relocations and fading memory: a

study through random recursive trees. J. Stat. Mech. Theory Exp., (9):093206, 49, 2019.
[22] A. Meir and J. W. Moon. Recursive trees with no nodes of out-degree one. Congr. Numer., 66:49–62,

1988. Nineteenth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton
Rouge, LA, 1988).

[23] H. S. Na and A. Rapoport. Distribution of nodes of a tree by degree. Math. Biosci., 6:313–329, 1970.
[24] M. Pain and D. Sénizergues. Correction terms for the height of weighted recursive trees. arXiv preprint

arXiv:2101.01156, 2021.
[25] S. I. Resnick. Extreme values, regular variation and point processes. Springer Series in Operations

Research and Financial Engineering. Springer, New York, 2008. Reprint of the 1987 original.
[26] D. Sénizergues. Geometry of weighted recursive and affine preferential attachment trees. Preprint,

arXiv:1904.07115, 2019.

[27] R. T. Smythe and H. M. Mahmoud. A survey of recursive trees. Teor. Ĭmov̄ır. Mat. Stat., (51):1–29,
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3.2 Conclusion

We studied the weighted recursive graph in this chapter, in particular its degree dis-
tribution and the maximum degree. For the degree distribution, we have proved in
Theorem 2.5 that a limiting degree distribution exists when the vertex-weight distri-
bution has a finite mean, and in the case of an infinite mean power-law vertex-weight
distribution we show a typical vertex is with high probability a leaf. The latter result
is very comparable to the result in the extreme disorder regime provided in the pre-
vious chapter for preferential attachment models with fitness. Moreover, we provide
an asymptotic expression for the limiting degree distribution in Theorem 2.7 for many
classes of vertex-weight distributions, which are closely linked to maximum domains of
attractions. This will prove useful in the upcoming chapter as well.

For the maximum degree, we establish first-order behaviour for a wide range of vertex-
weight distributions in Theorem 2.8 and also establish the asymptotic size of the vertex
label which attains the maximum degree in most cases. As discussed at the start
of this chapter, the omission of the preferential mechanism in the weighted recursive
graph allows for much richer behaviour compared to the preferential attachment models
studied in the previous chapter, as the more subtle effects of the vertex-weights are
able to appear. The main point of interest in Theorem 2.8 is the difference in the
behaviour of the maximum degree when the vertex-weights are almost surely bounded
or almost surely unbounded. In the latter case, the vertex label (its age) and the size of
vertex-weights determine the growth of degrees and which vertices have large degrees.
In the former case, the size of the vertex-weight is less significant, at least to first
order, and we observe behaviour that is much closer to what can be observed for the
random recursive tree and directed acyclic graph, see [44]. This behaviour is induced
by competition between vertices to acquire edges and vertices getting sufficiently lucky
by obtaining high degrees.

An interesting observation in Theorem 2.8 is the behaviour of the maximum degree in
the case the vertex-weights follow a power-law distribution with an infinite mean, as in
Equation (2.20). Here, we see that the joint limiting distribution of the rescaled maxi-
mum degree and its rescaled vertex label are the same as in the case of the preferential
attachment models discussed in the previous chapter (Theorem 2.7, Equation (2.12)).
Intuitively, this is due to the fact that the effect of the fitness is able to overpower the
preferential attachment mechanism completely, in the sense that the influence of the
in-degree of vertices on evolution of the maximum degree is negligible compared to the
effect of the fitness, and can be observed in the degree distribution as well, as discussed
above. This can be interpreted as the opposite of what happens in the weak disorder
regime for these preferential attachment models, where the influence of the fitness is
almost negligible.

Finally, Theorems 2.11 and 2.13 provide insight in the second-order behaviour of the
maximum degree for particular vertex-weight distributions in the Gumbel maximum
domain of attraction. A somewhat surprising but interesting result here is that the
different rescaling and vertex ranges used lead to random and deterministic limits
Theorem 2.11 and 2.13, respectively.
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Chapter 4

Fine asymptotics for the
maximum degree in weighted
recursive trees with bounded
random weights

In this chapter we develop new methods to obtain more refined asymptotics for the
maximum degree in weighted recursive trees. This extends the result presented in
Theorem 2.8, the Bounded case, in Chapter 3 and also extends known results for
random recursive trees. The following draft is joint work with Laura Eslava and Marcel
Ortgiese.

4.1 Outline of the article

Properties of the weighted recursive graph model are studied in the previous chapter
for a wide range of vertex-weight distributions. In this chapter we extend these results
for the weighted recursive tree model by investigating the finer asymptotics of the
maximum degree when the vertex-weights are almost surely bounded. The weighted
recursive tree model is a specific case of the weighted recursive graph model studied in
the previous chapter, where every vertex connects to exactly one predecessor, yielding a
tree. Here, we develop new methods to analyse the degree distribution of the weighted
recursive tree model that allow us to obtain more detailed results when the vertex-
weights are almost surely bounded.

As is proved in the previous chapter, the maximum degree in the weighted recursive
tree is asymptotically logθ n, where θ := 1 + E [W ] with E [W ] the mean of the vertex-
weight distribution, and this result can be obtained by assuming the vertex-weights
are almost surely bounded only. In this chapter we discuss the finer asymptotics of
the maximum degree for which the underlying vertex-weight distribution plays a more
important role.

The methods used in the previous chapter to prove the first-order asymptotics of the
maximum degree make use of the conditional negative correlation between degrees.
These methods are not sufficient to obtain more detailed results, however. Instead,
asymptotic independence of the degrees of vertices selected uniformly at random is
proved in this chapter, which follows from a more precise understanding of the conver-
gence of the degree distribution. Moreover, we prove that the fraction of vertices with
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degree k in the weighted recursive tree of size n is asymptotically equal to the limit pk
(which was identified in the previous chapter) for fixed k as well as for k that diverge
with n and provide an error rate for the asymptotic expression uniformly in k = k(n),
under certain conditions on how quickly k(n) diverges.

Similarly to the previous chapter, we are then able to identify several classes of vertex-
weight distributions for which different behaviour of the finer asymptotics of the max-
imum degree can be proved. This is carried out by combining the asymptotic inde-
pendence with precise asymptotic expression of the limiting degree distribution, which
are outlined and proved in the previous chapter, and with techniques developed for
random recursive trees in [3].

The main results of the paper are formulated in Section 2. Section 4 presents two
examples for which more detailed results are obtained. The main technical results are
developed in Section 5, which are then used in Sections 6 and 7 to prove the main
results and the results presented in Section 4.
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FINE ASYMPTOTICS FOR THE MAXIMUM DEGREE IN WEIGHTED

RECURSIVE TREES WITH BOUNDED RANDOM WEIGHTS

LAURA ESLAVA†, BAS LODEWIJKS?, AND MARCEL ORTGIESE?

Abstract. A weighted recursive tree is an evolving tree in which vertices are assigned
random vertex-weights and new vertices connect to a predecessor with a probability pro-
portional to its weight. Here, we study the maximum degree and near-maximum degrees
in weighted recursive trees when the vertex-weights are almost surely bounded. We are
able to specify higher-order corrections to the first order growth of the maximum degree
established in prior work. The accuracy of the results depends on the behaviour of the
weight distribution near the largest possible value and in some cases we manage to find
the corrections up to random order. Additionally, we describe the tail distribution of
the maximum degree and establish asymptotic normality of the number of vertices with
near-maximum degree. Our analysis extends the results proved for random recursive trees
(where the weights are constant) to the case of random weights. The main technical result
shows that the degrees of several uniformly chosen vertices are asymptotically independent
with explicit error corrections.

1. Introduction

The Weighted Recursive Tree model (WRT), first introduced by Borovkov and Vatutin [4],
is a recursive tree process (Tn, n ∈ N) and a generalisation of the random recursive tree
model. Here we consider a variation, first studied by Hiesmayr and Işlak [10], where the
first vertex does not necessarily have weight one. Let (Wi)i∈N be a sequence of positive
vertex-weights. Initialise the process with the tree T1, which consists of the vertex 1 (which
denotes the root), and assign vertex-weight W1 to it. Recursively, at every step n ≥ 2, we
obtain Tn by adding to Tn−1 the vertex n, assigning vertex-weight Wn to it and connecting n
to a vertex i ∈ [n−1], which, conditionally on the vertex-weights W1, . . . ,Wn−1, is selected
with a probability proportional to Wi. In this paper, we consider edges to be directed
towards the vertex with the smaller label. We note that allowing every vertex to connect
to m ∈ N many predecessors, each one selected independently, yields the more general
Weighted Recursive Graph model (WRG) introduced in [13]. The focus of this paper is the
WRT model in the case which the vertex-weights are bounded random variables.

Lodewijks and Ortgiese [13] established that, in the case of positive, bounded random
vertex-weights, the maximum degree ∆n of the WRG model grows logarithmically and

that ∆n/ log n
a.s.−→ 1/ log θm, where θm := 1 +E [W ] /m with E [W ] the mean of the vertex-

weight distribution and m ∈ N the out-degree of each vertex. Note that setting m = 1
yields the result for the WRT model. In this paper, we improve on this result by describing
higher-order asymptotic behaviour of the maximum degree when the vertex-weights are
almost surely bounded. In this case we are able to distinguish several classes of vertex-
weight distributions for which different higher-order behaviour can be observed.

Beyond the initial work of Borovkov and Vatutin and also Hiesmayr and Işlak studying the
height, depth and size of branches of the WRT model, other properties such as the degree
distribution, large and maximum degrees, and weighted profile and height of the tree have
been studied. Mailler and Uribe Bravo [15], as well as Sénizergues [17] and Sénizergues
and Pain [16] study the weighted profile and height of the WRT model. Mailler and Uribe

Date: August 27, 2021.
Key words and phrases. Weighted recursive graph, Random recursive graph, Uniform DAG, Maximum

degree, Degree distribution, Random environment.
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Bravo consider random vertex-weights with particular distributions, whereas Sénizergues
and Pain allow for a more general model with both sequences of deterministic as well as
random weights.

Iyer [11] and the more general work by Fountoulakis and Iyer [7] study the degree distri-
bution of a large class of evolving weighted random trees, and Lodewijks and Ortgiese [13]
study the degree distribution of the WRG model. In both cases, the WRT model is a
particular example of the models studied and all results prove the existence of an almost
sure limiting degree distribution for the empirical degree distribution.

Finally, Lodewijks and Ortgiese [13] also study the maximum degree and the labels of the
maximum degree vertices of the WRG model for a large range of vertex-weight distributions.
In particular, a distinction between distributions with unbounded support and bounded
support is observed. In the former case the behaviour and size of the label of the maximum
degree is mainly controlled by a balance of vertices being old (i.e. having a small label) and
having a large vertex-weight. In the latter case, due to the fact that the vertex-weights are
bounded, the behaviour is instead controlled by a balance of vertices being old and having
a degree which significantly exceeds their mean degree.

A particular case of the WRT model is the Random Recursive Tree (RRT) model, which
is obtained when each vertex-weight equals one almost surely. As a result, techniques used
to study the maximum degree in the RRT model can be adapted to analyse the maximum
degree in the WRT model. Lodewijks and Ortgiese [13] demonstrate this by adapting the
approach of Devroye and Lu [5] for proving the almost sure convergence of the rescaled
maximum degree in the Directed Acyclic Graphs model (DAG) (the multigraph case of
the RRT model) and using it for the analysis of the maximum degree in the WRG model,
as discussed above. Hence, we survey the development of the properties of the maximum
degree of the RRT model.

Szymańsky was the first to study the maximum degree of the RRT model and proved
its convergence of the mean; E [∆n/ log n] → 1/ log 2. Later, Devroye and Lu [5] extend
this to almost sure convergence and extended this to the DAG model as well. Goh and
Schmutz [9] showed that ∆n−blog2 nc converges in distribution along suitable subsequences
and identified possible distributions for the limit. Adarrio-Berry and Eslava [1] provide a
precise characterisation of the subsequential limiting distribution of rescaled large degrees in
terms of a Poisson point process as well as a central limit theorem result for near-maximum
degrees (of order log2 n − in where in → ∞, in = o(log n)). Eslava [6] extends this to the
joint convergence of the degree and depth of high degree vertices.

In this paper we adapt part of the techniques developed by Adarrio-Berry and Eslava
in [1]. They consist of two main components: First, they establish an equivalence between
the RRT model and the Kingman n-coalescent and use this to provide a detailed asymptotic
description of the tail distribution of the degrees of k vertices selected uniformly at random,
for any k ∈ N. The Kingman n-coalescent is a process which starts with n trees, each
consisting of only a single root. Then, at every step 1 through n − 1, a pair of roots is
selected uniformly at random and independently of this selection, each possibility with
probability 1/2, one of the two roots is connected to the other with a directed edge. This
reduces the number of trees by one and, after n−1 steps, yields a directed tree. It turns out
that this directed tree is equal in law to the random recursive tree. In the n-coalescent all n
roots in the initialisation are equal in law and the degrees of the vertices are exchangeable.
This allows Adarrio-Berry and Eslava to obtain the degree tail distribution with a precise
error rate. Second, this precise tail distribution is used to obtain joint factorial moments
of the quantities

X
(n)
i := |{j ∈ [n] : Zn(j) = blog2 nc+ i}|, i ∈ Z,

X
(n)
≥i := |{j ∈ [n] : Zn(j) ≥ blog2 nc+ i}|, i ∈ Z,

(1.1)
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where Zn(j) denotes the in-degree of vertex j in the tree of size n. The joint factorial

moments of these X
(n)
i , X

(n)
i are used to identify the limiting distribution of high degrees in

the tree. The sub-sequential convergence, as mentioned above, is due to the floor function
applied to log2 n and the integer-valued in-degrees Zn(j).

For the WRT model, however, it provides no advantage to construct a ‘weighted’ Kingman
n-coalescent in order to obtain precise asymptotic expression for the tail distribution of
vertex degrees. As pairs of roots in the Kingman n-coalescent are selected uniformly at
random and hence the roots are equal in law, it is not necessary to keep track of which
roots are selected at what step. In a weighted version of the Kingman n-coalescent, pairs of
roots would have to be selected with probabilities proportional to their weights, so that it is
necessary to record which roots are selected at which step. As a result, a weighted Kingman
n-coalescent is not (more) useful in analysing the tail distribution of vertex degrees.

Instead, we improve results on the convergence of the empirical degree distribution of the
WRT model obtained by Iyer [11] and Lodewijks and Ortgiese [13]. We obtain a convergence
rate to the limiting degree distribution, the asymptotic empirical degree distribution for
degrees k = k(n) which diverge with n, as well as asymptotic independence of degrees of
vertices selected uniformly at random. We combine this with the joint factorial moments of
quantities similar to (1.1) and use the techniques developed by Adarrio-Berry and Eslava [1]
to derive fine asymptotics of the maximum degree in the WRT model.

Notation. Throughout the paper we use the following notation: we let N := {1, 2, . . .} be
the natural numbers, set N0 := {0, 1, . . .} to include zero and let [t] := {i ∈ N : i ≤ t} for
any t ≥ 1. For x ∈ R, we let dxe := inf{n ∈ Z : n ≥ x} and bxc := sup{n ∈ Z : n ≤ x},
and for x ∈ R, k ∈ N, let (x)k := x(x− 1)(x− 2) · · · (x− (k− 1)) and (x)(k) := x(x+ 1)(x+
2) · · · (x + (k − 1)). Moreover, for sequences (an, bn)n∈N such that bn is positive for all n
we say that an = o(bn), an ∼ bn, an = O(bn) if limn→∞ an/bn = 0, limn→∞ an/bn = 1 and if
there exists a constant C > 0 such that |an| ≤ Cbn for all n ∈ N, respectively. For random

variables X, (Xn)n∈N we denote Xn
d−→ X,Xn

P−→ X and Xn
a.s.−→ X for convergence in

distribution, probability and almost sure convergence of Xn to X, respectively. Also, we

write Xn = oP(1) if Xn
P−→ 0. Furthermore, we say a sequence of random variables (Xn)n∈N

is tight if for any ε > 0 there exists a Kε > 0 such that lim supn→∞ P(|Xn| ≥ Kε) < ε.
Finally, we use the conditional probability measure PW (·) := P( · |(Wi)i∈N) and conditional
expectation EW [·] := E [ · |(Wi)i∈N], where the (Wi)i∈N are the i.i.d. vertex-weights of the
WRT model.

2. Definitions and main results

The weighted recursive tree (WRT) model is a growing random tree model that generalises
the random recursive tree (RRT), in which vertices are assigned (random) weights and new
vertices connect with existing vertices with a probability proportional to the vertex-weights.

The definition of the WRT model follows the one in [10]:

Definition 2.1 (Weighted Recursive Tree). Let (Wi)i≥1 be a sequence of i.i.d. copies of a
positive random variable W such that P(W > 0) = 1 and set

Sn :=
n∑

i=1

Wi.

We construct the weighted recursive tree as follows:

1) Initialise the tree with a single vertex 1, denoted as the root, and assign to the root
a vertex-weight W1. Denote this tree by T1.

2) For n ≥ 1, introduce a new vertex n + 1 and assign to it the vertex-weight Wn+1.
Conditionally on Tn, connect to some i ∈ [n] with probability Wi/Sn. Denote the
resulting tree by Tn+1.
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4 ESLAVA, LODEWIJKS, AND ORTGIESE

We treat Tn as a directed tree, where edges are directed from new vertices towards old
vertices.

Remark 2.2. (i) Note that the edge connection probabilities are invariant under a rescaling
of the vertex-weights. In particular, we may without loss of generality assume for vertex-
weight distributions with bounded support that x0 := sup{x ∈ R |P(W ≤ x) < 1} = 1.

Lodewijks and Ortgiese studied certain properties of the Weighted Recursive Graph (WRG)
model in [13]. This is a more general version of the WRT model that allows every vertex
to connect to m ∈ N vertices when introduced, yielding a multigraph when m > 1. This
paper aims to recover and extend some of these results in the tree case (m = 1) when the
vertex-weights are almost surely bounded, i.e. x0 <∞. As stated in Remark 2.2(i), we can
set x0 = 1 without loss of generality. To formulate the results we need to assume that the
distribution of the weights is sufficiently regular, allowing us to control their extreme value
behaviour. In certain cases it is more convenient to formulate the assumptions in terms of
the distribution of the random variable (1−W )−1:

Assumption 2.3 (Vertex-weight distribution). The vertex-weights W, (Wi)i∈N are i.i.d.
strictly positive random variables, which are:

• Bounded from above almost surely, such that x0 := sup{x ∈ R|P(W ≤ x) < 1} = 1.
• Bounded away from zero almost surely: ∃w∗ ∈ (0, 1) such that P(W ≥ w∗) = 1.

Furthermore, the vertex-weights satisfy one of the following conditions:

(Atom) The vertex weights follow a distribution that has an atom at one, i.e. there
exists a q0 ∈ (0, 1] such that P(W = 1) = q0. (Note that q0 = 1 recovers the
RRT model)

(Weibull) The vertex-weights follow a distribution that belongs to the Weibull maximum
domain of attraction (MDA). This implies that there exist some α > 1 and
positive function ` which is slowly varying at infinity, such that

P(W ≥ 1− 1/x) = P
(
(1−W )−1 ≥ x

)
= `(x)x−(α−1), x ≥ (1− w∗)−1.

(Gumbel) The distribution belongs to the Gumbel maximum domain of attraction (MDA)
(and x0 = 1). This implies that there exist sequences (an, bn)n∈N, such that

maxi∈[n]Wi − bn
an

d−→ Λ,

where Λ is a Gumbel random variable.
Within this class, we further distinguish the following two sub-classes:
(RV) There exist a, c1, τ > 0, and b ∈ R such that

P(W > 1− 1/x) = P
(
(1−W )−1 > x

)
∼ axbe−(x/c1)τ as x→∞.

(RaV) There exist a, c1 > 0, b ∈ R, and τ > 1 such that

P(W > 1− 1/x) = P
(
(1−W )−1 > x

)
∼ a(log x)be−(log(x)/c1)

τ
as x→∞.

Remark 2.4. The assumption that the vertex-weights are bounded away from zero is
required only for a very specific part of the proof of Proposition 5.1. Though we were
unable to omit this assumption, we believe it is a mere technicality that can be overcome
or at the very least replaced by weaker conditions.

Throughout, we will write

Zn(i) := in-degree of vertex i in Tn.

Working with the in-degree allows us to (in principle) generalise our methods to graphs
with random out-degree, as mentioned in Remark 2.2. Obviously, if the out-degree is fixed,
we can recover the results for the degree from our results on the Zn(i).
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In [13], the following results are obtained for the WRG model: if we let θm := 1+E [W ] /m,
and

pk := E
[

θm − 1

θm − 1 +W

( W

θm − 1 +W

)k]
, p≥k :=

∞∑

j=k

pk = E
[( W

θm − 1 +W

)k]
, (2.1)

then almost surely for any k ∈ N fixed,

lim
n→∞

1

n

n∑

i=1

1{Zn(i)=k} = pk, lim
n→∞

1

n

n∑

i=1

1{Zn(i)≥k} = p≥k, (2.2)

whenever W follows a distribution with a finite mean. In particular, the above is satisfied
for all cases in Assumption 2.3. Moreover, if the vertex-weights are bounded almost surely
(without loss of generality x0 = 1),

max
i∈[n]

Zn(i)

logθm n

a.s.−→ 1.

In this paper we improve these results when considering the WRT model with almost surely
bounded weights (so that m = 1 and thus θ := θ1 = 1 + E [W ] ∈ (1, 2]).

First, we are able to extend the result in (2.2) to the case when k = k(n) that diverges
with n in the sense that the difference between both sides converges to zero in mean, under
certain constraints on k(n), and we obtain a convergence rate as well. Combining this result
with techniques developed by Addario-Berry and Eslava in [1] for random recursive trees
we are then able to identify the higher-order asymptotic behaviour of the maximum degree
depending on the cases in Assumption 2.3. Additionally, in certain cases we are able to
derive an asymptotic tail distribution for the maximum degree and obtain an asymptotic
normality result for the number of vertices with ‘near-maximal’ degrees (in certain cases).
These results can be extended to the model with a random out-degree as mentioned in
Remark 2.2 as well.

Define θ := 1 + E [W ] and

X
(n)
i := |{j ∈ [n] : Zn(j) = blogθ nc+ i}|,

X
(n)
≥i := |{j ∈ [n] : Zn(j) ≥ blogθ nc+ i}|.

(2.3)

For certain classes of vertex-weight distributions, we can prove the distributional conver-
gence of these quantities along subsequences, as is the case for the RRT model in [1]. This
result can be formulated in terms of convergence of point processes. Let Z∗ := Z ∪ {∞}
and endow Z∗ with the metric d(i, j) = |2−i− 2−j | and d(i,∞) = 2−i, i, j ∈ Z, and letM#

Z∗
be the space of bounded finite measures on Z∗. If we let P be a Poisson point process on
R with intensity measure λ(dx) := q0θ

−x log θ dx, q0 ∈ (0, 1], and define

Pε :=
∑

x∈P
δbx+εc, P(n) :=

∑

i∈[n]
δZn(i)−blogθ nc, εn := logθ n− blogθ nc, (2.4)

then we can provide conditions such that P(n`) converges weakly to Pε, for subsequences
(n`)`∈N such that εn` → ε as `→∞. We abuse notation to write Pε(i) = Pε({i}) = |{x ∈
P : bx+ εc = i}| = |{x ∈ P : x ∈ [i− ε, i+ 1− ε)}|.
We now state our main results, which we split into several theorems based on the cases in
Assumption 2.3.

Theorem 2.5 (High degrees in WRTs (Atom) case). Consider the WRT model in Defini-
tion 2.1 with vertex-weights (Wi)i∈[n] that satisfy the (Atom) case in Assumption 2.3 for
some q0 ∈ (0, 1]. Fix ε ∈ [0, 1]. Let (n`)`∈N be a positive integer sequence such that εn` → ε

as ` → ∞. Then P(n`) converges weakly in M#
Z∗ to Pε as ` → ∞. Equivalently, for any

i < i′ ∈ Z, jointly as `→∞,

(X
(n`)
i , X

(n`)
i+1 , . . . , X

(n`)
i′−1, X

(n`)
≥i′ )

d−→ (Pε(i),Pε(i+ 1), . . . ,Pε(i′ − 1),Pε([i′,∞)).
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6 ESLAVA, LODEWIJKS, AND ORTGIESE

We note that this result recovers and extends [1, Theorem 1.2], in which an equivalent result
is presented which only holds for the random recursive tree, i.e. the particular case of the
weighted recursive tree in which q0 := P(W = 1) = 1. In Theorem 2.5 we allow q0 ∈ (0, 1)
as well, under the additional assumption that P(W ≥ w∗) = 1 for some w∗ ∈ (0, 1).

When the vertex-weight distribution belongs to the Weibull MDA, we can prove convergence
in probability under a deterministic second-order scaling, but are unable to obtain what we
conjecture to be a random third-order term similar to the result in Theorem 2.5:

Theorem 2.6 (High degrees in WRTs, (Weibull) case). Consider the WRT model in Def-
inition 2.1 with vertex-weights (Wi)i∈[n] that satisfy the (Weibull) case in Assumption 2.3
for some α > 1. Then,

max
i∈[n]

Zn(i)− logθ n

logθ logθ n

P−→ −(α− 1).

Finally, when the vertex-weight distribution belongs to the Gumbel MDA, we have similar
results compared to the Weibull MDA case in the above theorem. Here we are also able
to obtain a deterministic second-order scaling and we provide bounds for the third- and
fourth-order behaviour of the maximum degree in a particular sub-case as well:

Theorem 2.7 (High degrees in WRTs, (Gumbel) case). Consider the WRT model in Def-
inition 2.1 with vertex-weights (Wi)i∈[n] that satisfy the (Gumbel) case in Assumption 2.3.
In the (RV) sub-case, recall γ := 1/(1 + τ). Then,

max
i∈[n]

Zn(i)− logθ n

(logθ n)1−γ
P−→ − τγ

(1− γ) log θ

(1− θ−1
c1

)1−γ
=: −Cθ,τ,c1 . (2.5)

In the (RaV) sub-case,

max
i∈[n]

Zn(i)− logθ n+ C1(logθ logθ n)τ − C2(logθ logθ n)τ−1 logθ logθ logθ n

(logθ logθ n)τ−1
P−→ C3, (2.6)

where
C1 := (log θ)τ−1c−τ1 , C2 := (log θ)τ−1τ(τ − 1)c−τ1 ,

C3 :=
(

logθ(log θ)(τ − 1) log θ − log(ecτ1(1− θ−1)/τ)
)
(log θ)τ−2τc−τ1 .

(2.7)

We see that only in the (Atom) case we are able to obtain the higher-order asymptotics up
to random order. This is due to the fact that, in this particular case, the vertices with high
degree all have vertex-weight one. In the other classes covered in Theorems 2.6 and 2.7
vertices with high degrees have a vertex-weight close to one, which causes their degrees
to grow slightly slower. This results in the higher-order asymptotics as observed in these
theorems.

We are able to obtain more precise results related to the maximum and near-maximum
degree vertices in the (Atom) case as well, which again recover and extend the results
in [1].

Theorem 2.8 (Asymptotic tail distribution for maximum degree in (Atom) case).
Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n] that satisfy the
(Atom) case in Assumption 2.3 for some q0 ∈ (0, 1]. Then, for any i = i(n) with i+logθ n <
(θ/(θ − 1)) log n and lim infn→∞ i > −∞,

P
(

max
j∈[n]
Zn(j) ≥ blogθ nc+ i

)
=
(
1− exp{−q0θ−i+εn}

)
(1 + o(1)).

Finally, we establish an asymptotic normality result for the number of vertices which have
‘near-maximum’ degrees. For a precise definition of ‘near-maximum’, we define sequences
(sk, rk)k∈N as

sk := inf
{
x ∈ (0, 1) : P(W ∈ (x, 1)) ≤ exp{−(1− θ−1)(1− x)k}

}
,

rk := exp{−(1− θ−1)(1− sk)k}.
(2.8)
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As a result, rk can be used as the error term in the asymptotic expression of p≥k (as in (2.1))
when the weight distribution satisfies the (Atom) case (see Theorem 5.3) and is essential in
quantifying how much smaller ‘near-maximum’ degrees are relative to the maximum degree
of the graph in this case. We note that rk is decreasing and converges to zero with k (see
Lemma 8.3), and that in the definition of sk, rk we can allow the index to be continuous
rather than just an integer (the proof of Lemma 8.3 can be adapted to still hold in this
case). We can then formulate the following theorem:

Theorem 2.9 (Asymptotic normality of near-maximum degree vertices, (Atom) case).
Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n] that satisfy the
(Atom) case in Assumption 2.3 for some q0 ∈ (0, 1]. Then, for i = i(n)→ −∞ such that
i = o(log n ∧ | log rlogθ n|),

X
(n)
i − q0(1− θ−1)θ−i+εn√
q0(1− θ−1)θ−i+εn

d−→ N(0, 1).

Remark 2.10. The constraint i = o(log n∧ log rlogθ n) can be simplified by providing more
information on the tail of the weight distribution. Only when W has an atom at one and
support bounded away from one do we have that o(log n ∧ log rlogθ n) = o(log n). That is,
when there exists an s ∈ (0, 1) such that P(W ∈ (s, 1)) = 0. In that case, we can set sk = s
and rk = exp{−(1− θ−1)(1− s)k} for all k large, so that

log rlogθ n = −(1− θ−1)(1− s) logθ n,

so that indeed o(log n ∧ log rlogθ n) = o(log n). In all other cases it follows that sk ↑ 1, so
that log rlogθ n = o(log n) and the constraint simplifies to i = o(log rlogθ n).

Outline of the paper
In Section 3 we provide a short overview and intuitive idea of the proofs of Theorems 2.5, 2.6,
2.7, 2.8 and 2.9. In Section 4 we discuss two examples of vertex-weight distributions which
satisfy the (Weibull) and (Gumbel) cases, respectively, for which more precise results can
be obtained. We then provide the key concepts and results that are used in the proofs of
the main theorems discussed in Section 2 in Section 5 and use these results to prove the
main theorems in Section 6. Finally, in Section 7 we provide the necessary techniques and
results, comparable to what is presented in Section 5, to prove the statements regarding
the examples of Section 4.

3. Intuitive idea of (the proof of) the main theorems

We provide a short intuitive idea as to why the results stated in Section 2 hold.

The main elements in obtaining a more precise understanding of the behaviour of the
maximum degree of the WRT are the following:

(i) A precise expression of the tail distribution of the in-degree of uniformly at random
selected vertices (v`)`∈[k], for any k ∈ N. That is,

P(Zn(v`) ≥ m`, ` ∈ [k]) =

k∏

`=1

p≥m`(1 + o(n−β)),

for some β > 0 and where the m` ∈ N are such that m` < c log n for some c ∈
(0, θ/(θ−1)). This extends (2.2) in the sense of convergence in mean to k ∈ N many
uniformly at random selected vertices rather than just one, and allows the m` to
grow with n rather than being fixed. Moreover, the error term 1 + o(n−β) extends
previously known results as well, for which no convergence rate was known.

(ii) The asymptotic behaviour of p≥k, as defined in (2.1), as k → ∞ for each case in
Assumption 2.3.
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(i), which is proved in Proposition 5.1, allows us to obtain bounds on the probability of the
event {maxj∈[n]Zn(j) ≥ kn} for any sequence kn →∞ as n→∞. These probabilities can
be expressed in terms of np≥kn (using union bounds and the Chung-Erdős inequality), as
is shown in Lemma 5.8. By (ii) we can then precisely quantify kn such that these bounds
either tend to zero or one, which implies whether {maxj∈[n]Zn(i) ≥ kn} does or does not
hold with high probability. This is the main approach for Theorems 2.6 and 2.7.

To obtain the random limits described in terms of the Poisson process Pε, as in Theorem 2.5,
we use a similar approach as in [1]. Both (i) and (ii) are still essential, but are now used

to obtain factorial moments of the quantities X
(n)
i and X

(n)
≥i , defined in (2.3), as shown in

Proposition 5.6. More specifically, for any i < i′ ∈ Z and ai, . . . , ai′ ∈ N0, and recalling
that (x)k := x(x− 1) . . . (x− (k − 1)),

E

[(
X

(n)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n)
i

)
ai

]
=
(
q0θ
−i′+εn

)ai′ i
′−1∏

k=i

(
q0(1− θ−1)θ−k+εn

)ak
(1 + o(1)). (3.1)

We stress that the specific form of the right-hand side is due to the underlying assumption
in Theorem 2.5 that the vertex-weight distribution has an atom at one, as in the (Atom)
case of Assumption 2.3. The error term can be specified in more detail, but we omit this as
it serves no further purpose here. The result essentially follows directly from these estimates
by observing that the right-hand side of (3.1) can be understood as the factorial moment
of the Poisson random variables Pε([i− ε, i+ 1− ε)), . . . ,Pε([i′− ε,∞)), when εn converges
to some ε.

The equality in (3.1) follows from the fact that X
(n)
i and X

(n)
≥i can be expressed as sums of

indicator random variables of disjoint events, so that their factorial means can be understood
via the probabilities in (i). Then, again using the asymptotic behaviour of p≥k (as in (ii)),
allows us to obtain the right-hand side of (3.1).

Finally, Theorems 2.8 and 2.9 are also a result of (3.1). This is due to the fact that the

events {maxj∈[n]Zn(j) ≥ blogθ nc+ i} can be understood via the events {X(n)
≥i > 0}. Again

using ideas similar to ones developed in [1] then allow us to obtain the results.

4. Examples

In this section we discuss some particular choices of distributions for the vertex-weights for
which more precise statements can be made compared to those stated in Section 2. The
reason we can improve on these more general results is due to a better understanding of
the asymptotic behaviour of pk and p≥k (see (2.1)) as k →∞. As discussed in Section 3, to
understand the asymptotic behaviour of the (near-)maximum degree(s) up to random order
a very precise asymptotic expression for p≥k is required. Though not possible in general
in the (Weibull) and (Gumbel) cases of Assumption 2.3, certain choices of vertex-weight
distributions do allow for a more explicit formulation of p≥k, yielding improved asymptotics.
The proofs of the results presented here are deferred to Section 7.

Example 4.1 (‘Beta’ distribution bounded away from zero). We consider a random variable
W with a tail distribution

P(W ≥ x) = Zw∗

∫ 1

x

Γ(α+ β)

Γ(α)Γ(β)
sα−1(1− s)β−1 ds, x ∈ [w∗, 1), (4.1)

for some α, β > 0, w∗ ∈ (0, 1) and where Zw∗ is a normalising term to ensure that
P(W ≥ w∗) = 1. W can be interpreted as a beta random variable, conditionally on
{W ≥ w∗}. We set, for θ := 1 + E [W ] ∈ (1, 2),

X
(n)
i := |{j ∈ [n] : Zn(j) = blogθ n− β logθ logθ nc+ i}|,

X
(n)
≥i := |{j ∈ [n] : Zn(j) ≥ blogθ n− β logθ logθ nc+ i}|,
εn := (logθ n− β logθ logθ n)− blogθ n− β logθ logθ nc.
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Then, we can formulate the following results.

Theorem 4.2. Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n]
whose distribution satisfies (4.1) for some α, β > 0, w∗ ∈ (0, 1) and fix ε ∈ (0, 1). Let (n`)`∈N
be an increasing integer sequence satisfying εn` → ε as `→∞ and let P be a Poisson point
process on R with intensity measure λ(x) = Zw∗(Γ(α + β)/Γ(α))(1 − θ−1)−βθ−x log θ dx.
Define

Pε :=
∑

x∈P
δbx+εc, P(n) :=

∑

i∈[n]
δZn(i)−blogθ n−β logθ logθ nc.

Then in M#
Z∗ (the space of bounded finite measures on Z∗ = Z ∪ {∞}), P(n`) converges

weakly to Pε as `→∞. Equivalently, for any i < i′ ∈ Z, jointly as `→∞,

(X
(n`)
i , X

(n`)
i+1 , . . . , X

(n`)
i′−1, X

(n`)
≥i′ )

d−→ (Pε(i),Pε(i+ 1), . . . ,Pε(i′ − 1),Pε([i′,∞)).

We remark that the second-order term β logθ logθ n is established in Theorem 2.6 as well
and that the above theorem recovers this result and extends it to the random third-order
term, which is similar to the result in Theorem 2.5.

Theorem 4.3. Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n]
whose distribution satisfies (4.1) for some α, β > 0, w∗ ∈ (0, 1). Then, for any i = i(n) with
i ∼ δ logθ n for some δ ∈ [0, 1/(θ−1)) (δ = 0 denotes i = o(log n)) and lim infn→∞ i > −∞,

P
(

max
j∈[n]
Zn(j) ≥ blogθ n− β logθ logθ nc+ i

)

=
(

1− exp
{
− Zw∗

Γ(α+ β)

Γ(α)

(1− θ−1)1−β
(θ − 1)(1 + δ)β

θ−i+1+εn
})

(1 + o(1)).

Theorem 4.4. Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n]
whose distribution satisfies (4.1) for some α, β > 0, w∗ ∈ (0, 1), and set cα,β,θ := Zw∗(Γ(α+

β)/Γ(α))(1− θ−1)1−β. Then, for i = i(n)→ −∞ such that i = o(log log n),

X
(n)
i − cα,β,θθ−i+εn√
cα,β,θθ−i+εn

d−→ N(0, 1).

The three theorems are the analogue of Theorems 2.5, 2.8 and 2.9, respectively, where we
now consider vertex-weights distributed according to a distribution as in (4.1) rather than
a distribution with an atom at one.

Example 4.5 (Fraction of ‘gamma’ random variables). We consider a random variable W
with a tail distribution

P(W ≥ x) = Zw∗(1− x)−be−x/(c1(1−x)), x ∈ [w∗, 1), (4.2)

for some b ∈ R, c1 > 0, w∗ ∈ (0, 1) and where Zw∗ is a normalising term to ensure that
P(W ≥ w∗) = 1. (1−W )−1 belongs to the Gumbel maximum domain of attraction, as

P
(
(1−W )−1 ≥ x

)
= P(W ≥ 1− 1/x) = Zw∗e

1/c1xbe−x/c1 , x ≥ (1− w∗)−1,
so that W belongs to the Gumbel MDA as well by [13, Lemma 2.6], and satisfies the

(Gumbel)-(RV) sub-case with a = Zw∗e
1/c1 , b ∈ R, c1 > 0, τ = 1. As a result X := (1 −

W )−1 is a ‘gamma’ random variable in the sense that its tail distribution is asymptotically
equal to that of a gamma random variable, up to constants. W can then be written as
W = (X − 1)/X, a fraction of these ‘gamma’ random variables.

Recall Cθ,τ,c1 from (2.5). We set, for θ := 1 + E [W ] ∈ (1, 2),

C := ec
−1
1 (1−θ−1)/2√πc−1/4+b/21 (1− θ−1)1/4+b/2, (4.3)
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and

X
(n)
i :=

∣∣{j ∈ [n] : Zn(j) =
⌊

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
⌋

+ i
}∣∣,

X
(n)
≥i :=

∣∣{j ∈ [n] : Zn(j) ≥
⌊

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
⌋

+ i
}∣∣,

εn :=
(

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
)

−
⌊

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
⌋
.

Then, we can formulate the following results.

Theorem 4.6. Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n]
whose distribution satisfies (4.2) for some b ∈ R, c1 > 0, w∗ ∈ (0, 1) and recall Cθ,τ,c1 and
C from (2.6) and (4.3), respectively. Then,

max
i∈[n]

Zn(i)− logθ n+ Cθ,1,c1
√

logθ n

logθ logθ n

P−→ b

2
+

1

4
. (4.4)

Furthermore, fix ε ∈ (0, 1) and let (n`)`∈N be an increasing integer sequence satisfying
εn` → ε as `→∞. Let P be a Poisson point process on R with intensity measure

λ(x) = Zw∗Cθ
C2
θ,1,c1

/2−x
log θ dx. Define

Pε :=
∑

x∈P
δbx+εc, P(n) :=

∑

i∈[n]
δZn(i)−blogθ n−Cθ,1,c1

√
logθ n+(b/2+1/4) logθ logθ nc

.

Then in M#
Z∗ (the space of bounded finite measures on Z∗ = Z ∪ {∞}), P(n`) converges

weakly to Pε as `→∞. Equivalently, for any i < i′ ∈ Z, jointly as `→∞,

(X
(n`)
i , X

(n`)
i+1 , . . . , X

(n`)
i′−1, X

(n`)
≥i′ )

d−→ (Pε(i),Pε(i+ 1), . . . ,Pε(i′ − 1),Pε([i′,∞)).

We remark that the second-order term in (4.4) is established in Theorem 2.7, (2.5), as well.
The above theorem recovers this former result and extends it to the third-order rescaling
and to the random fourth-order term, which is similar to the result in Theorem 2.5.

Theorem 4.7. Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n]
whose distribution satisfies (4.2) for some b ∈ R, c1 > 0, w∗ ∈ (0, 1) and recall Cθ,τ,c1 and

C from (2.6) and (4.3), respectively. Then, for any i = i(n) with i ∼ δ
√

logθ n for some

δ ≥ 0 (δ = 0 denotes i = o(
√

logθ n)) and lim infn→∞ i > −∞,

P
(

max
j∈[n]
Zn(j) ≥ blogθ n− Cθ,1,c1

√
logθ n+ (b/2 + 1/4) logθ logθ nc+ i

)

=
(

1− exp
{
− Zw∗

C

θ − 1
θ−i+1+εn+Cθ,1,c1 (Cθ,1,c1−δ)/2

})
(1 + o(1)).

Theorem 4.8. Consider the WRT model in Definition 2.1 with vertex-weights (Wi)i∈[n]
whose distribution satisfies (4.2) for some b ∈ R,1> 0, w∗ ∈ (0, 1), recall Cθ,τ,c1 and C

from (2.6) and (4.3), respectively, and set cθ,c1 := Zw∗Cθ
C2
θ,1,c1

/2
. Then, for i = i(n)→ −∞

such that i = o(log log n),

X
(n)
i − cθ,c1θ−i+εn√
cθ,c1θ

−i+εn
d−→ N(0, 1).

The three theorems are the analogue of Theorems 2.5, 2.8 and 2.9, respectively, where we
now consider vertex-weights distributed according to a distribution as in (4.2) rather than
a distribution with an atom at one.

In both examples we see that a better understanding of the asymptotic behaviour of the
tail of the degree distribution, (p≥k)k∈N0 , allows us to identify the higher-order asymptotic
behaviour of the (near-)maximum degree(s). It also shows that a higher order random
limit as in the sense of Theorems 4.2 and 4.6 is not expressed just by vertex-weights whose
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distribution has an atom at one, and we conjecture that this result is in fact universal for
all vertex-weights distributions with bounded support.

5. Degree tail distributions and factorial moments

In this section we state and prove the key elements required to prove the main results as
stated in Section 2. We stress that the results presented and proved in this section cover
all the classes introduced in Assumption 2.3 (in fact, they cover any vertex-weight W such
that sup{x > 0 : P(W ≤ x) < 1} = 1,P(W ≥ w∗) = 1 for some w∗ ∈ (0, 1)) and that the
distinction between the classes of Assumption 2.3 follows in Section 6.

5.1. Statement of results and main ideas. As discussed in Section 3, to understand
the asymptotic behaviour of the maximum degree and near-maximum degrees we require a
more precise understanding of the convergence in mean of the empirical degree distribution.
To that end, we present the following result:

Proposition 5.1 (Distribution of typical vertex degrees). Let W be a positive random
variable such that x0 := sup{x > 0 : P(W ≤ x) < 1} = 1 and such that there exists a
w∗ ∈ (0, 1) so that P(W ≥ w∗) = 1. Consider the WRT model in Definition 2.1 with
vertex-weights (Wi)i∈[n] which are i.i.d. copies of W , fix k ∈ N and let (v`)`∈[k] be k vertices
selected uniformly at random without replacement from [n]. For a fixed c ∈ (0, θ/(θ − 1)),
there exist β ≥ β′ > 0 such that uniformly over non-negative integers m` < c log n, ` ∈ [k],

P(Zn(v`) = m`, ` ∈ [k]) =

k∏

`=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`] (
1 + o

(
n−β

))
, (5.1)

and

P(Zn(v`) ≥ m`, ` ∈ [k]) =
k∏

`=1

E
[( W

E [W ] +W

)m`] (
1 + o

(
n−β

′))
. (5.2)

Remark 5.2. (i) In [5, Lemma 1], it is proved that the degrees (Zn(j))j∈[n] are nega-
tive quadrant dependent when considering the RRT model (the WRT with deterministic
weights, all equal to 1). That is, for any k ∈ N and j1 6= . . . 6= jk ∈ [n],m1, . . . ,mk ∈ N,

P

(
k⋂

`=1

Zn(j`) ≥ m`

)
≤

k∏

j=1

P(Zn(j`) ≥ m`) .

This property only holds for the conditional probability measure PW when considering the
WRT (or, more generally, the WRG) model, as follows from [13, Lemma 7.1], and can be
obtained ‘asymptotically’ for the probability measure P, as in the proof of [13, Theorem 2.8,
Bounded case]. Proposition 5.1 improves on this by establishing asymptotic independence
under the non-conditional probability measure P of the degrees of typical vertices, which
allows us to extend the results in [13] to more precise asymptotics.

(ii) We note that the result only requires the two main conditions in Assumption 2.3.
Hence, results for other vertex-weight distributions that do not satisfy any of the particular
cases outlined in this assumption can be obtained as well using the methods presented in
this paper.

(iii) The result in Proposition 5.1 improves on known results, especially those in [8, 11]. In
these papers similar techniques are used to prove a weaker result, in which the m` are not
allowed to diverge with n and where no convergence rate is provided.

To use this (tail) distribution of k typical vertices v1, . . . , vk, a precise expression for the
expected values on the right-hand side in Proposition 5.1 is required. Recall pk from (2.1).
The following theorem comes from [13, Theorem 2.7], in which the maximum degree of
weighted recursive graphs is studied for a large class of vertex-weight distribution and in
which asymptotic expressions of pk are presented.
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12 ESLAVA, LODEWIJKS, AND ORTGIESE

Theorem 5.3 ([13], Asymptotic behaviour of pk). Recall that θ := 1 +E [W ]. We consider
the different cases with respect to the vertex-weights as in Assumption 2.3, and can relax
the assumption that W is bounded away from zero, i.e. w∗ = 0 is allowed.

(Atom) Recall that q0 = P(W = 1) > 0 and recall rk from (2.8). Then,

pk = q0(1− θ−1)θ−k
(
1 +O(rk)

)
.

(Weibull) Recall that α > 1 is the power-law exponent. Then, for all k > 1/E [W ],

L(k)k−(α−1)θ−k ≤ pk ≤ L(k)k−(α−1)θ−k, (5.3)

where L,L are slowly varying at infinity.

(Gumbel) (i) If W satisfies the (RV) sub-case with parameter τ > 0, set γ := 1/(τ+1).
Then,

pk = exp
{
− τγ

1− γ
((1− θ−1)k

c1

)1−γ
(1 + o(1))

}
θ−k. (5.4)

(ii) If W satisfies the (RaV) sub-case with parameter τ > 1,

pk = exp
{
−
( log k

c1

)τ(
1− τ(τ − 1)

log log k

log k
+
Kτ,c1,θ

log k
(1 + o(1))

)}
θ−k. (5.5)

where Kτ,c1,θ := τ log(ecτ1(1− θ−1)/τ).

Remark 5.4. Equivalent upper and lower bounds can be obtained for p≥k, as in (2.1), by
adjusting constants only.

We also provide less precise but more general bounds on the degree distribution.

Lemma 5.5. Let W be a positive random variable with x0 := sup{x > 0 : P(W ≤ x) <
1} = 1. Then, for any ξ > 0 and k sufficiently large,

(θ + ξ)−k ≤ pk ≤ p≥k ≤ θ−k.

Proof. The upper bound on p≥k directly follows from the fact that x 7→ (x/(θ− 1 + x))k is
increasing in x, so that

p≥k = E
[( W

θ − 1 +W

)k]
≤
( x0
θ − 1 + x0

)k
= θ−k,

when x0 = 1. For the lower bound, let us take some δ ∈ (0, ξ/(θ − 1 + ξ)) and define

fk(θ, x) :=
E [W ]

E [W ] + x

( x

E [W ] + x

)k
=

θ − 1

θ − 1 + x

( x

θ − 1 + x

)k
. (5.6)

Note that pk = E [fk(θ,W )]. Then, since fk(θ, x) is increasing in x on (0, 1] for k sufficiently
large,

E [fk(θ,W )] ≥ E
[
fk(θ,W )1{W>1−δ}

]
≥ P(W > 1− δ) θ − 1

θ − δ
(1− δ
θ − δ

)k
.

We note that, since x0 = 1, P(W > 1− δ) > 0 for any δ > 0. Now, by the choice of δ,
(θ + ξ)(1− δ)/(θ − δ) > 1, so we can find some γ > 0 sufficiently small so that

E [fk(θ,W )] (θ + ξ)k ≥ P(W > 1− δ) θ − 1

θ − δ
((θ + ξ)(1− δ)

θ − δ
)k
≥ (1 + γ)k ≥ 1,

as required. �

Recall the definition of X
(n)
i , X

(n)
≥i and εn from (2.3) and (2.4), respectively. Proposition 5.1

combined with Theorem 5.3 then allows us to obtain the following result.
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Proposition 5.6 (Factorial moments for vertex-weights satisfying the (Atom) case).
Consider the WRT model as in Definition 2.1 with vertex-weights (Wi)i∈[n] that satisfy
the (Atom) case in Assumption 2.3 for some q0 ∈ (0, 1]. Recall rk from (2.8), recall
that θ := 1 + E [W ] and that (x)k := x(x − 1) · · · (x − (k − 1)) for x ∈ R, k ∈ N0. For
a fixed K ∈ N, c ∈ (0, θ/(θ − 1)), there exists a β > 0 such that the following holds.
For any i = i(n), i′ = i′(n) in Z such that 0 < i + logθ n < i′ + logθ n < c log n and

aj ∈ N0, j ∈ {i, . . . , i′} such that
∑i′

j=i aj = K,

E

[(
X

(n)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n)
k

)
ak

]
=
(
q0θ
−i′+εn

)ai′ i
′−1∏

k=i

(
q0(1− θ−1)θ−k+εn

)ak

×
(
1 +O

(
rblogθ nc+i ∨ n

−β)).
Remark 5.7. Related to Remark 2.10, the error term decays polynomially only if W has
an atom at one and support bounded away from one and logθ n+ i > η log n for some η > 0.
That is, when there exists an s ∈ (0, 1) such that P(W ∈ (s, 1)) = 0. In that case, sk ≤ s
and rk ≤ exp{−(1− θ−1)(1− s)k} for all k large, so that

rblogθ nc+i ∨ n
−β ≤ exp{−(1− θ−1)(1− s)η log n} ∨ n−β = n−min{η(1−θ−1)(1−s),β}.

In all other cases, the error term decays slower than polynomially.

Proof of Proposition 5.6 subject to Proposition 5.1. We closely follow the approach in [1,
Proposition 2.1], where an analogue result in presented and proved for the case q0 = 1, i.e.
for the random recursive tree. Set K ′ := K−ai′ and for each i ≤ k ≤ i′ and each u ∈ N such
that

∑k−1
`=i a` < u ≤∑k

`=i a`, let mu = blogθ nc+k. We note that mu < logθ n+i′ < c log n,
so that the results in Proposition 5.1 can be used. Also, let (vu)u∈[K] be K vertices selected
uniformly at random without replacement from [n], and define I := [K]\[K ′]. Then, as the

X
(n)
≥k and X

(n)
k can be expressed as sums of indicators,

E
[(
X

(n)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n)
k

)
ak

]
= (n)KP

(
Zn(vu) = mu,Zn(vw) ≥ mw, u ∈ [K ′], w ∈ I

)

= (n)K

K′∑

`=0

∑

S⊆[K′]
|S|=`

(−1)`P
(
Zn(vu) ≥ mu + 1{u∈S}, u ∈ [K]

)
,

(5.7)

where the second step follows from [1, Lemma 5.1] and is based on an inclusion-exclusion
argument. We can now use Proposition 5.1. First, we note that there exists a β > 0 such
that for non-negative integers m1, . . . ,mK < c log n,

P
(
Zn(vu) ≥ mu + 1{u∈S}, u ∈ [K]

)
=

K∏

u=1

E
[( W

E [W ] +W

)mu+1{u∈S}](
1 + o

(
n−β

))
. (5.8)

Now, by Theorem 5.3 and the definition of rk in (2.8) and as rk is decreasing by Lemma 8.3
in the Appendix, when |S| = `,

K∏

u=1

E
[( W

E [W ] +W

)mu+1{u∈S}]
= qK0 θ

−`−∑K
u=1mu

(
1 +O

(
rblogθ nc+i ∨ n

−β′)), (5.9)

as the smallest mu equals blogθ nc+ i. We have

(n)K

K′∑

`=0

∑

S⊆[K′]
|S|=`

(−1)`qK0 θ
−`−∑K

u=1mu = (n)Kq
K
0 θ
−∑K

u=1mu

K′∑

`=0

(
K ′

`

)
(−1)`θK

′−`

= (n)Kq
K
0 (1− θ−1)K′θ−

∑K
u=1mu .

(5.10)

168



14 ESLAVA, LODEWIJKS, AND ORTGIESE

We then observe that (n)K = θK logθ n(1 + O(1/n)). Moreover, we recall that K =∑i′
k=i ak,K

′ =
∑i′−1

k=i ak and mu = blogθ nc + k if
∑k−1

`=i a` ≤ u <
∑k

`=i a` for i ≤ ` ≤ i′,
and recall εn from (2.4). Using (5.10) combined with (5.8) and (5.9) in (5.7), we obtain

E
[(
X

(n)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n)
k

)
ak

]
= qK0 (1− θ−1)K′θK logθ n−

∑K
u=1mu

(
1 +O

(
rblogθ nc+i ∨ n

−β))

=
(
q0θ
−i′+εn

)ai′ i
′−1∏

k=i

(
q0(1− θ−1)θ−k+εn

)ak

×
(
1 +O

(
rblogθ nc+i ∨ n

−β)),
as desired. �

The next lemma builds on [13, Lemma 7.1] and [5, Lemma 1] and provides bounds on the
maximum degree that hold with high probability.

Lemma 5.8. Consider the WRT model in Definition 2.1. Fix c ∈ (0, θ/(θ − 1)) and let
(kn)n∈N be a non-negative, diverging integer sequence such that kn < c log n and let v1 be a
vertex selected uniformly at random from [n]. If limn→∞ nP(Zn(v1) ≥ kn) = 0, then

lim
n→∞

P
(

max
i∈[n]
Zn(i) ≥ kn

)
= 0.

Similarly, when instead limn→∞ nP(Zn(v1) ≥ kn) =∞,

lim
n→∞

P
(

max
i∈[n]
Zn(i) ≥ kn

)
= 1.

Remark 5.9. Similar to what is discussed in Remark 5.2(i), the result in this lemma is
stronger than the results presented in [13, Lemma 7.1] and [5, Lemma 1]. It extends the
latter to the WRT model rather than just the RRT model, and improves the former as the
result holds for the non-conditional probability measure P rather than PW , which is what
is used in [13]. Due to the difficulties of working with the conditional probability measure,
only a first order asymptotic result can be proved there. With the improved understanding
of the degree distribution, as in Proposition 5.1, the above result can be obtained, which
allows for finer asymptotics to be proved.

Proof of Lemma 5.8 subject to Proposition 5.1. The first result immediately follows from a
union bound and the fact that

nP(Zn(v1) ≥ kn) =
n∑

i=1

P(Zn(i) ≥ kn) . (5.11)

For the second result, let An,i := {Zn(i) ≥ kn}, i ∈ [n]. Then, by the Chung-Erdős
inequality,

P
(

max
i∈[n]
Zn(i) ≥ kn

)
= P(∪ni=1An,i) ≥

(∑n
i=1 P(An,i)

)2
∑

i 6=j P(An,i ∩An,j) +
∑n

i=1 P(An,i)
.

By (5.11) it follows that
∑n

i=1 P(An,i) = nP(Zn(v1) ≥ kn). Furthermore, by Proposition 5.1,
∑

i 6=j
P(An,i ∩An,j) = n(n− 1)P(An,v1 ∩An,v2) = (nP(An,v1))2(1 + o(1)),

where v2 is another vertex selected uniformly at random, unequal to v1. Note that the
condition that kn < c log n is required for this to hold. Together with the above lower
bound, these two observations yield

P(∪ni=1An,i) ≥
(nP(An,v1))2

(nP(An,v1))2(1 + o(1)) + nP(An,v1)
=

nP(An,v1)

nP(An,v1) (1 + o(1)) + 1
.
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Hence, when nP(An,v1) = nP(Zn(v1) ≥ kn) diverges with n, we obtain the desired result.
�

What remains is to prove Proposition 5.1. As the proof is rather long and involved, we
discuss the strategy of the proof first and take care of certain parts of the proof in separate
lemmas. The main part of the proof is dedicated to proving (5.1). Once this is estab-
lished, (5.2) follows without much effort. We thus focus on discussing the proof of (5.1).

The left-hand side of (5.1) can be expressed by conditioning on the values of the typical
vertices, and splitting between cases of young and old vertices. That is,

P(Zn(v`) = m`, ` ∈ [k]) =
1

(n)k

∑

1≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])]

=
1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])]

+
1

(n)k

∑

j∈In(ε)
E [PW (Zn(j`) = m`, ` ∈ [k])] ,

(5.12)

where for any ε ∈ (0, 1), In(ε) := {j = (j1, . . . , jk) : 1 ≤ j1 6= . . . 6= jk ≤ n, ∃i ∈ [k] ji <
n1−ε}. Splitting the sum on the first line into the two sums on the second and third line
allows us to deal with them in a different way. In the sum on the second line, in which all
indices are at least n1−ε, we can apply the law of large numbers on sums of vertex-weights
to gain more control over the conditional probability of the event {Zn(j`) = m`, ` ∈ [k]}.
The aim is to show that this first sum has the desired form, as on the right-hand side
of (5.1).

The sum on the third line, in which at least one of the indices takes on values strictly smaller
than n1−ε can be shown to be negligible compared to the first sum. Especially when m`

is large, this is non-trivial. To do this, we consider the tail events {Zn(j`) ≥ m`, ` ∈ [k]}
and use the negative quadrant dependence of the degrees (see Remark 5.2 and [13, Lemma
7.1]), so that we can deal with the more tractable probabilities PW (Zn(j`) ≥ m`) for ` ∈ [k],
rather than the probability of all tail degree events. Depending on whether the indices in
In(ε) are at most or at least n1−ε, we then use bounds similar to one developed in the proof
of [13, Lemma 7.1] or use an approach similar to what we use to bound the sum on the
second line of (5.12), respectively.

In the following lemma, we deal with the sum on the second line of (5.12).

Lemma 5.10. Let W be a positive random variable such that
x0 := sup{x > 0 : P(W ≤ x) < 1} = 1. Consider the WRT model in Definition 2.1
with vertex-weights (Wi)i∈[n] which are i.i.d. copies of W and fix k ∈ N, c ∈ (0, θ/(θ − 1)).
Then, there exist a β > 0 and ε ∈ (0, 1) such that uniformly over non-negative integers
m` < c log n, ` ∈ [k],

((n)k)
−1∑

n1−ε≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])] =

k∏

`=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)](
1 + o

(
n−β

))
.

We note that the assumption P(W ≥ w∗) = 1 for some w∗ ∈ (0, 1) is not required for this
result to hold. To prove this lemma, we sum over all possible m` vertices that connect to j`
for each ` ∈ [k] and use the fact that the j1, . . . , jk are at least n1−ε to precisely control the
connection probabilities and to evaluate the sums over all the possible m` vertices, ` ∈ [k],
as well as the sum over the indices j1, . . . , jk.

In the following lemma, we show the sum on the third line of (5.12) is negligible compared
to the sum on the second line.
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16 ESLAVA, LODEWIJKS, AND ORTGIESE

Lemma 5.11. Let W be a positive random variable such that x0 := sup{x > 0 : P(W ≤ x) <
1} = 1 and such that there exists a w∗ ∈ (0, 1) so that P(W ≥ w∗) = 1. Consider the WRT
model in Definition 2.1 with vertex-weights (Wi)i∈[n] which are i.i.d. copies of W and fix
k ∈ N, c ∈ (0, θ/(θ − 1)). Then, there exist an η > 0 and an ε ∈ (0, 1) such that uniformly
over non-negative integers m` < c log n, ` ∈ [k],

1

(n)k

∑

j∈In(ε)
E [PW (Zn(j`) = m`, ` ∈ [k])] = o

( k∏

`=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`]
n−η

)
,

where In(ε) := {j = (j1, . . . , jk) : 1 ≤ j1 6= . . . 6= jk ≤ n,∃ i ∈ [k] ji < n1−ε}.

Note that the assumption that the vertex-weights are bounded away from zero is required
in this lemma, where it was not necessary in Lemma 5.10. In fact, it is required for one
inequality in the proof only, which convinces us that it could be omitted with more work
or at the very least replaced by weaker assumptions.

It is clear that (5.2) in Proposition 5.1 immediately follows from using the results of Lem-
mas 5.10 and 5.11 in (5.12). In what follows we first prove Lemma 5.10 in Section 5.2, prove
Lemma 5.11 in Section 5.3 and finally complete the proof of Proposition 5.1 in Section 5.4.

5.2. Proof of Lemma 5.10.

Proof of Lemma 5.10. To prove the result we provide a matching upper bound and lower
bound (up to error terms) for

((n)k)
−1∑

n1−ε≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])] .

Upper bound
Let us introduce the event

En :=

{ j∑

`=1

W` ∈ ((1− ζn)E [W ] j, (1 + ζn)E [W ] j), ∀ n1−ε ≤ j ≤ n
}
, (5.13)

where ζn = n−δ(1−ε)/E [W ] for some δ ∈ (0, 1/2). By noting that S̃j :=
∑j

`=1W` − jE [W ]

is a martingale, that |S̃j − S̃j−1| ≤ 1 + E [W ] = θ and that ζn ≥ j−δ/E [W ] for j ≥ n1−ε,
we can use the Azuma-Hoeffding inequality to obtain

P(Ecn) ≤
∑

j≥n1−ε
P
(∣∣S̃j

∣∣ ≥ ζnjE [W ]
)
≤ 2

∑

j≥n1−ε
exp

{
− j1−2δ

2θ2

}
. (5.14)

Writing cθ := 1/(2θ2), we further bound the sum from above by

2

∫ ∞

bn1−εc
exp

{
− cθx1−2δ

}
dx = 2

c
−1/(1−2δ)
θ

1− 2δ
Γ
( 1

1− 2δ
, cθbn1−εc1−2δ

)
, (5.15)

where Γ(a, x) is the incomplete Gamma function, and we note that the right-hand side is

o(n−γ) for any γ > 0 (and thus of smaller order than
∏k
`=1 pm`n

−β for any β > 0 and
uniformly in m1, . . .mk < (θ/(θ − 1)) log n). This yields the upper bound

1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])]

≤ ((n)k)
−1 ∑

n1−ε≤j1 6=... 6=jk≤n
E[PW (Zn(j`) = m`, ` ∈ [k])1En ] +O

(
Γ
( 1

1− 2δ
, cθbn1−εc1−2δ

))
,

(5.16)

Now, to express the first term in (5.16) we consider ordered indices j`, ` ∈ [k], rather than
unordered ones. We provide details for the case n1−ε ≤ j1 < j2 < . . . < jk ≤ n and discuss
later on how the other permutations of j1, . . . , jk can be dealt with.
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Moreover, for every ` ∈ [k], we introduce the ordered indices j` < i1,` < . . . < im`,` ≤ n, ` ∈
[k], which denote the steps at which vertex ` increases it degree by one. Note that for every
` ∈ [k] these indices are distinct by definition, but we also require that is,` 6= it,j for any
`, j ∈ [k], s ∈ [m`], t ∈ [mj ] (equality is allowed only when ` = j and s = t). We denote this
constraint by adding a ∗ on the summation symbol.

Finally, we define jk+1 := n. Combining these additional steps, we arrive at

1

(n)k

∑

n1−ε≤j1<...<jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])1En ]

=
1

(n)k

∑

n1−ε≤j1<...<jk≤n

∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

mt∏

s=1

Wjt∑is,t−1
`=1 W`

×
k∏

u=1

ju+1∏

s=ju+1
s 6=i`,t,`∈[mt],t∈[k]

(
1−

∑u
`=1Wj`∑s−1
`=1W`

)
1En

]
.

We then include the terms where s = i`,t for ` ∈ [mt], t ∈ [k] in the second double product.
To do this, we need to change the first double product to

k∏

t=1

mt∏

s=1

Wjt∑is,t−1
`=1 W` −

∑k
`=1Wj`1{is,t>j`}

≤
k∏

t=1

mt∏

s=1

Wjt∑is,t−1
`=1 W` − k

, (5.17)

that is, we subtract the vertex-weight Wj` in the numerator when the vertex j` has already
been introduced by step is,t. In the upper bound we use that the weights are bounded from
above by one. We thus arrive at the upper bound

1

(n)k

∑

n1−ε≤j1<...<jk≤n

∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

mt∏

s=1

Wjt∑is,t−1
`=1 W` − k

×
k∏

u=1

ju+1∏

s=ju+1

(
1−

∑u
`=1Wj`∑s−1
`=1W`

)
1En

]
.

For ease of writing, we omit the first sum until we actually intend to sum over the indices
j1, . . . , jk. We use the bounds from the event En to bound

is,t−1∑

`=1

W` ≥ (is,t − 1)E [W ] (1− ζn),
s−1∑

`=1

W` ≤ sE [W ] (1 + ζn).

For n sufficiently large, we observe that (is,t− 1)E [W ] (1− ζn)− k ≥ is,tE [W ] (1− 2ζn), so
that we obtain

((n)k)
−1 ∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

mt∏

s=1

Wjt

is,t)E [W ] (1− 2ζn)

k∏

u=1

ju+1∏

s=ju+1

(
1−

∑u
`=1Wj`

sE [W ] (1 + ζn)

)
1En

]
.

Moreover, relabelling the vertex-weights Wjt to Wt for t ∈ [k] does not change the distribu-
tion of the terms within the expected value, so that the expected value remains unchanged.
We can also bound the indicator from above by one, to arrive at the upper bound

1

(n)k

∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

mt∏

s=1

Wt

is,tE [W ] (1− 2ζn)

k∏

u=1

ju+1∏

s=ju+1

(
1−

∑u
`=1W`

sE [W ] (1 + ζn)

)]
.
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18 ESLAVA, LODEWIJKS, AND ORTGIESE

We bound the final product from above by

ju+1∏

s=ju+1

(
1−

∑u
`=1W`

sE [W ] (1 + ζn)

)
≤ exp

{
− 1

E [W ] (1 + ζn)

ju+1∑

s=ju+1

∑u
`=1W`

s

}

≤ exp

{
− 1

E [W ] (1 + ζn)

u∑

`=1

W` log
( ju+1

ju + 1

)}

=
( ju+1

ju + 1

)−∑u
`=1W`/(E[W ](1+ζn))

.

(5.18)

As the weights are almost surely bounded by one, we thus find

ju+1∏

s=ju+1

(
1−

∑u
`=1W`

sE [W ] (1 + ζn)

)
≤
(ju+1

ju

)−∑u
`=1W`/(E[W ](1+ζn))(

1 +
1

ju

)k/(E[W ](1+ζn))

=
(ju+1

ju

)−∑u
`=1W`/(E[W ](1+ζn))(

1 +O
(
n−(1−ε)

))
.

As a result, we obtain the upper bound

((n)k)
−1 ∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

(( Wt

E [W ]

)mt mt∏

s=1

1

is,t(1− 2ζn)

) k∏

u=1

(ju+1

ju

)−∑u
`=1W`/(E[W ](1+ζn))

]

×
(

1 +O
(
n−(1−ε)

))

= ((n)k)
−1 ∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

(1− 2ζn)−
∑k
t=1mtE

[
k∏

t=1

( Wt

E [W ]

)mt

×
k∏

t=1

(
j
Wt/(E[W ](1+ζn))
t

mt∏

s=1

i−1s,t
)
n−

∑k
`=1W`/(E[W ](1+ζn))

](
1 +O

(
n−(1−ε)

))
,

where in the last step we recall that jk+1 = n. We then bound this from above even further
by no longer constraining the indices is,t to be distinct. That is, for different t1, t2 ∈ [k], we
allow is1,t1 = is2,t2 to hold for any s1 ∈ [mt1 ], s2 ∈ [mt2 ]. This yields

1

(n)k

∑

j`<i1,`<...<im`,`≤n,
`∈[k]

(1− 2ζn)−
∑k
t=1mtE

[
k∏

t=1

( Wt

E [W ]

)mt

×
k∏

t=1

(
j
Wt/(E[W ](1+ζn))
t

mt∏

s=1

i−1s,t
)
n−

∑k
`=1W`/(E[W ](1+ζn))

](
1 +O

(
n−(1−ε)

))
.

(5.19)

We set

at := Wt/(E [W ] (1 + ζn)),

and look at the terms

n−
∑k
t=1 at

(n)k

∑

j`<i1,`<...<im`,`≤n,
`∈[k]

k∏

t=1

(
(at(1 + ζn))mtjatt

mt∏

s=1

i−1s,t

)
. (5.20)

We bound the sums from above by multiple integrals, almost surely, which yields

n−
∑k
t=1 at

(n)k

k∏

t=1

(at(1 + ζn))mtjatt

∫ n

jt

∫ n

x1,t

· · ·
∫ n

xmt−1,t

mt∏

s=1

x−1s,t dxmt,t . . . dx1,t. (5.21)
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By repeated substitutions of the form ui,t = log(n/xi,t), i ∈ [mt − 1], we obtain

n−
∑k
t=1 at

(n)k

k∏

t=1

(at(1 + ζn))mtjatt
log(n/jt)

mt

mt!
.

Substituting this in (5.20) and reintroducing the sum over the indices j1, . . . , jk, we arrive
at

(1 + ζn)
∑k
t=1mt

(n)k
n−

∑k
t=1 at

k∏

t=1

amtt
∑

n1−ε≤j1<...<jk≤n

k∏

t=1

jatt
log(n/jt)

mt

mt!
. (5.22)

We observe that switching the order of the indices j1, . . . , jk achieves the same result as
permuting the m1, . . . ,mk and a1, . . . , ak. Hence, if we let π : [k] → [k] be a permutation,
then considering the indices n1−ε ≤ jπ(1) < jπ(2) < . . . < jπ(k) ≤ n yields a similar result

as in (5.22) but with a term j
aπ(t)
π(t) log(n/jπ(t))

mπ(t)/mπ(t)! in the final product. Since this

product is invariant to such permutations of the mt and at, the only thing that would
change is the summation order of the indices j1, . . . , jk. We will use this further on.

We then bound the sum over n1−ε ≤ j1 < . . . < jk ≤ n from above by multiple integrals as
well. First, we note that jatt log(n/jt)

mt is increasing up to jt = n exp{−mt/at}, at which
it is maximised, and decreasing for n exp{−mt/at} < jt ≤ n for all t ∈ [k]. To provide
the optimal bound, we want to know whether this maximum is attained in [n1−ε, n] or not.
That is, whether n exp{−mt/at} ∈ [n1−ε, n] or not. To this end, we consider two cases:

(1) mt = ct log n(1+o(1)) with ct ∈ [0, 1/(θ−1)], t ∈ [k] (ct = 0 denotes mt = o(log n)).
(2) mt = ct log n(1 + o(1)) with ct ∈ (1/(θ − 1), c), t ∈ [k].

Clearly, when c ≤ 1/(θ−1) the second case can be omitted, so that without loss of generality
we can assume c > 1/(θ − 1). Moreover, we can assume without loss of generality that all
terms m1, . . . ,mk satisfy the same case, as a mixture of different cases can be dealt with in
the same way, as will become clear in what follows. In the second case, it directly follows
that the maximum is almost surely attained at

n exp{−mt/at} ≤ n exp{−ct log n(θ − 1)(1 + o(1))} = n1−ct(θ−1)(1+o(1)) = o(1),

so that the summand jatt log(n/jt)
mt is almost surely decreasing in jt when n1−ε ≤ jt ≤ n.

In the first case, such a conclusion cannot be made in general and depends on the precise
value of Wt. Therefore, the first case requires a more involved approach. Throughout the
rest of the proof of the upper bound, we assume case (1) holds and discuss as we go along
what alterations to make when case (2) holds instead. In the first case, we use Corollary 8.2
(with g ≡ 1) to obtain the upper bound

n∑

jk>jk−1

k∏

t=1

jatt
log(n/jt)

mt

mt!
≤

k−1∏

t=1

jatt
log(n/jt)

mt

mt!

[∫ n

jk−1

xakk
log(n/xk)

mk

mk!
dxk +

2nak

amkk

]
. (5.23)

Here, we use that the integrand is maximised at x∗ = n exp{−mt/at}, that
(x∗)ak log(n/(x∗)mk)/mk! = nakmmk

k /((eak)
mkmk!) and that xx/(exΓ(x + 1)) ≤ 1 for any

x > 0. In case (2) the summand on the left-hand side is decreasing in jk, so that we
arrive at an upper bound without the additional error term nak/amkk . Using a substitution
yk := log(n/xk), we obtain

k−1∏

t=1

jatt
log(n/jt)

mt

mt!

[
n1+ak

(1 + ak)mk+1

∫ log(n/jk−1)

0

(1 + ak)
mk+1

mk! e(1+ak)yk
ymkk dyk + 4

nak

amkk

]

=

k−1∏

t=1

jatt
log(n/jt)

mt

mt!

[
n1+ak

(1 + ak)mk+1
PW (Yk < log(n/jk−1)) + 4

nak

amkk

]
,

(5.24)

where, conditionally on Wk, Yk is a Γ(mk+1, 1+ak) random variable. As mentioned above,
in the second case the second term in the square brackets can be omitted.
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The aim is to continue this approach for the summation over the remaining indices jk−1, . . .,
j1. We deal with the two terms we have here in different ways. Let us start with the second
term. We now use the exact same approach, but almost surely bound, for 2 ≤ t ≤ k − 1,
PW (Yt ≤ log(n/jt−1)) ≤ 1, and PW (Y1 ≤ ε log n) ≤ 1, where, conditionally on Wt, Yt is a
Γ(mt+ 1, 1 +at) random variable for each t ∈ [k−1]. Hence, for the second term we obtain

n∑

j1=dn1−εe
· · ·

n∑

jk−1=jk−2+1

nak

amkk

k−1∏

t=1

jatt
log(n/jt)

mt

mt!

≤ nak

amkk

k−1∏

t=1

( n1+at

(1 + at)mt+1
+ 4

nat

amtt

)

= nk−1+
∑k
t=1 at

k∏

t=1

1

amtt

k−1∏

t=1

( amtt
(1 + at)mt+1

+
4

n

)
.

(5.25)

Using this in (5.22) thus yields a term

1

n

k−1∏

t=1

( amtt
(1 + at)mt+1

+
4

n

)
(1 + ζn)

∑k
t=1mt

(
1 +O(1/n)

)
.

Again, if for any t ∈ [k − 1], mt satisfies case (2) the term 2/n can be omitted for that
specific value of t in the product. If mk satisfies case (2), then this entire term can be
omitted.

To continue the summation of the first term on the right-hand side of (5.24), we again use
Corollary 8.2 (now with g(x) = PW (Yk < log(n/x))), to obtain

n∑

jk−1=jk−2+1

k−1∏

t=1

jatt
log(n/jt)

mt

mt!

n1+ak

(1 + ak)mk+1
PW (Yk ≤ log(n/jk−1))

≤ n1+ak

(1 + ak)mk+1

k−2∏

t=1

jatt
log(n/jt)

mt

mt!

[
4
nak−1

a
mk−1

k−1

+

∫ n

jk−2

x
ak−1

k−1
log(n/xk−1)mk−1

mk−1!
PW (Yk < log(n/xk−1)) dxk−1

]
.

Using a substitution yk−1 := log(n/xk−1) yields

n1+ak

(1 + ak)mk+1

k−2∏

t=1

jatt
log(n/jt)

mt

mt!

[
4
nak−1

a
mk−1

k−1

+
n1+ak−1

(1 + ak−1)mk−1+1

∫ log(n/jk−2)

0

∫ yk−1

0

k∏

t=k−1

(1 + at)
mt+1

mt!
ymtt e−(1+at)yt dykdyk−1

]

= 2
n1+ak

(1 + ak)mk+1

nak−1

a
mk−1

k−1

k−2∏

t=1

jatt
log(n/jt)

mt

mt!

+

k∏

t=k−1

n1+at

(1 + at)mt+1
PW (Yk < Yk−1 < log(n/jk−2))

k−2∏

t=1

jatt
log(n/jt)

mt

mt!
.

Using the same approach as in (5.25) for the first term on the right-hand side yields the
upper bound

nk−1+
∑k
t=1 at

k∏

t=1

1

at

∏

t∈[k]
t6=k−1

( amtt
(1 + at)mt+1

+
4

n

)
.
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Using this in (5.22) yields the term

4

n

∏

t∈[k]
t6=k−1

( amtt
(1 + at)mt+1

+
4

n

)
(1 + ζn)

∑k
t=1mt

(
1 +O(1/n)

)
.

It thus follows that we can continue this approach summing over jk−2, . . . , j1 and use this
in (5.22) to obtain

k∏

t=1

amtt
(1 + at)mt+1

PW (Yk < . . . < Y1 < ε log n) (1 + ζn)
∑k
t=1mt

+O
( k∑

`=1

1

n

∏

t∈[k]
t6=`

( amtt
(1 + at)mt+1

+
4

n

))
,

where we note that we can omit the terms (1 + ζn)
∑k
t=1mt with the big O notation as they

are 1 + o(1) by the specific choice of ζn and the bound on m1, . . . ,mk. Finally, using his
in (5.20) and then in (5.19) yields the upper bound

E
[ k∏

t=1

amtt
(1 + at)mt+1

PW (Yk < . . . < Y1 < ε log n)

]( 1 + ζn
1− 2ζn

)∑k
t=1mt

×
(

1 +O
(
n−(1−ε)

))
+O

( k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

amtt
(1 + at)mt+1

]
+

4

n

))
,

(5.26)

where the term on the second line contains all the error terms created throughout and the
expected value can be included within the product by the independence of the at.

As mentioned below (5.22), any different order of the indices j1, . . . , jk results in a permu-
tation of m1, . . . ,mk and a1, . . . , ak. So, if we consider summing over n1−ε ≤ j1 6= . . . 6= jk
rather than the ordered indices n1−ε ≤ j1 < . . . < jk, we obtain the above term for all
permutations of the at,mt and Yt. That is, if we let Pk be the set of permutations on [k],
we obtain

∑

π∈Pk
E
[ k∏

t=1

amtt
(1 + at)mt+1

PW
(
Yπ(k) < . . . < Yπ(1) < ε log n

) ]( 1 + ζn
1− 2ζn

)∑k
t=1mt

×
(

1 +O
(
n−(1−ε)

))
+O

( k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E

[
a
mπ(t)
π(t)

(1 + aπ(t))
mπ(t)+1

]
+

4

n

))

=
k∏

t=1

E
[

amtt
(1 + at)mt+1

PW (Yt < ε log n)

]( 1 + ζn
1− 2ζn

)∑k
t=1mt

(
1 +O

(
n1−ε

))

+O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E

[
a
mπ(t)
π(t)

(1 + aπ(t))
mπ(t)+1

]
+

4

n

))
,

where the last step follows from the conditional independence of the Yt, the independence
of the at, and the fact that Yt 6= Ys almost surely for t 6= s. We can now simply bound the
conditional probability from above by one almost surely.

Since mt < c log n for all t ∈ [k], the fraction on the right of the expected value in the last

step is 1 + o(n−δ(1−ε)(1−ξ)) for any ξ > 0. Furthermore, within the expected values, we can
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write

amtt
(1 + at)mt+1

=
E [W ]

E [W ] +W

( W

E [W ] +W

)mt
(1 + ζn)

(
1− ζnE [W ]

E [W ] (1 + ζn) +W

)mt+1

=
E [W ]

E [W ] +W

( W

E [W ] +W

)mt
(1 + o(n−δ(1−ε)(1−ξ))),

(5.27)

almost surely. In total, combining this with (5.16) yields the final upper bound

k∏

`=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`]
(1 + o(n−β1)) +O

(
Γ
( 1

1− 2δ
, cθbn1−εc1−2δ

))

+O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]
+

4

n

))
,

(5.28)

for some β1 > 0. We then finally observe that by Lemma 5.5 and since we assumed that
mt = ct log n(1 + o(1)) with ct ∈ [0, 1/(θ − 1)] for all t ∈ [k],

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mt] ≥ 1

(θ + ξ)mt
≥ n− log(θ+ξ)(1+o(1))/(θ−1) ≥ 1

n1−γ
, (5.29)

for some small γ > 0. The final step can be made for ξ, γ sufficiently small, as log(x)/(x−
1) < 1 for all x ∈ (1, 2]. This implies that, for any ` ∈ [k] and for some sufficiently small
η > 0,

1

n

∏

t∈[k]
t6=`

(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]
+

4

n

)

=
1

n

∏

t∈[k]
t6=`

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]
(1 + o(1))

= o

(
n−η

k∏

t=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mt]
)
.

As a result, the second big O term in (5.28) can be incorporated in the o(n−β1) term when
β1 is taken sufficiently small and all mt satisfy case (1). When all the mt satisfy case (2),
then the second big O term can be omitted entirely. Moreover, since the term in the first
big O term is o(n−γ) for any γ > 0, this term can also be incorporated in the o(n−β1) term
as well, as m` < c log n for all ` ∈ [k]. We thus obtain for both cases that

P(Zn(v`) = m`, ` ∈ [k]) ≤
k∏

`=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`]
(1 + o(n−β1)). (5.30)

When the mt are such that some of the ct satisfy case (1) and some satisfy case (2), that
is, ct ∈ [0, 1/(θ − 1)] for some t ∈ [k] and ct ∈ (1/(θ − 1), c) for the other indices t, then a
combined approach can be used to yield (5.30).

Lower bound
We then focus on proving a similar lower bound. We define the event

Ẽn :=
{ j∑

`=k+1

W` ∈ (E [W ] (1− ζn)j,E [W ] (1 + ζn)j), ∀ n1−ε ≤ j ≤ n
}
.

With similar computations as in (5.14) it follows that P(Ẽn) = (1− o(n−γ)) for any γ > 0.
We obtain a lower bound for the probability of the event {Zn(v`) = m`, ` ∈ [k]} by omitting
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the second term in (5.16). This yields

1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])]

≥ ((n)k)
−1∑

n1−ε<j1 6=... 6=jk≤n

∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

mt∏

s=1

Wjt∑is,t−1
`=1 W`

k∏

u=1

ju+1∏

s=ju+1
s 6=i`,t,`∈[mt],t∈[k]

(
1−

∑u
`=1Wj`∑s−1
`=1 W`

)]
.

We again start by only considering the ordered indices n1−ε < j1 < . . . < jk and also omit
this sum for now for ease of writing. We also omit the constraint s 6= i`,t, ` ∈ [mt], t ∈ [k]
in the final product. As this introduces more terms smaller than one, we obtain a lower
bound. Then, in the two denominators, we bound the vertex-weights Wj1 , . . . ,Wjk from
above and below by one and zero, respectively, to obtain a lower bound

((n)k)
−1 ∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

mt∏

s=1

Wjt∑is,t−1
`=1 W`1{`6=jt,t∈[k]} + k

×
k∏

u=1

ju+1∏

s=ju+1

(
1−

∑u
`=1Wj`∑s−1

`=1 W`1{` 6=jt,t∈[k]}

)]
.

As a result, we can now swap the labels of Wjt and Wt for each t ∈ [k], which again
does not change the expected value, but it changes the value of the two denominators to∑is,t

`=k+1W`+k and
∑is,t

`=k+1W`, respectively. After this we introduce the indicator 1
Ẽn

and

use the bounds in Ẽn on these sums in the expected value to obtain a lower bound. Finally,

we note that the (relabelled) weights Wt, t ∈ [k], are independent of Ẽn so that we can take
the indicator out of the expected value. Combining all of the above steps, we arrive at the
lower bound

((n)k)
−1 ∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

E

[
k∏

t=1

( Wt

E [W ]

)mt mt∏

s=1

1

is,t(1 + 2ζn)

×
k∏

u=1

ju+1∏

s=ju+1

(
1−

∑u
`=1W`

(s− 1)E [W ] (1− ζn)

)]
P(Ẽn).

(5.31)

The 1 + 2ζn in the fraction on the first line arises from the fact that, for n sufficiently large,

(is,t − 1)(1 + ζn) + k ≤ is,t(1 + 2ζn). As stated above, P
(
Ẽn

)
= 1− o(n−γ) for any γ > 0.

Similar to the calculations in (5.18) and using log(1− x) ≥ −x− x2 for x small, we obtain
an almost sure lower bound for the final product for n sufficiently large of the form

ju+1∏

s=ju+1

(
1−

∑u
`=1W`

(s− 1)E [W ] (1− ζn)

)
≥ exp

{
− 1

E [W ] (1− ζn)

u∑

`=1

W`

ju+1∑

s=ju+1

1

s− 1

−
( 1

E [W ] (1− ζn)

u∑

`=1

W`

)2 ju+1∑

s=ju+1

1

(s− 1)2

}

≥
(ju+1

ju

)−∑u
`=1W`/(E[W ](1−ζn))(

1−O
(
n−(1−ε)

))
.

Using this in (5.31) yields the lower bound

((n)k)
−1 ∑∗

j`<i1,`<...<im`,`≤n,
`∈[k]

(1 + 2ζn)−
∑k
t=1mtE

[
k∏

t=1

( Wt

E [W ]

)mt(jt
n

)ãt mt∏

s=1

i−1s,t
)](

1−O
(
n−(1−ε)

))
,
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where ãt := Wt/(E [W ] (1 − ζn)). We now reintroduce the sum over the indices n1−ε ≤
j1 < . . . < jk ≤ n and bound the sum over the indices is,` from below. We note that the
expression in the expected value is decreasing in is,` and we restrict the range of the indices

to j` +
∑k

t=1mt < i1,` < . . . < im`,` ≤ n, ` ∈ [k], but no longer constrain the indices to be
distinct (so that we can drop the ∗ in the sum). In the distinct sums and the suggested
lower bound, the number of values the is,` take on equal

k∏

`=1

(
n− (j` − 1)−∑`−1

t=1mt

m`

)
and

k∏

`=1

(
n− (j` − 1)−∑k

t=1mt

m`

)
,

respectively. It is straightforward to see that the former allows for more possibilities than
the latter, as

(
b
c

)
>
(
a
c

)
when b > a ≥ c. As we omit the largest values of the expected value

(since it decreases in is,` and we omit the largest values of is,`), we thus arrive at the lower
bound

1

(n)k

∑

n1−ε<j1<...<jk≤n−
∑k
t=1mt

∑

j`+
∑k
t=1mt<i1,`<...<im`,`≤n,

`∈[k]

(1 + 2ζn)−
∑k
t=1mt

E

[
k∏

t=1

(ãt(1− ζn))mtjãtt

mt∏

s=1

i−1s,t n
−∑k

t=1 ãt

](
1−O

(
n−(1−ε)

))
,

(5.32)

where we also restrict the range of indices in the upper bound of the outer sum, as oth-
erwise there would be a contribution of zero from these values of j1, . . . , jk. We now use
similar techniques compared to the upper bound of the proof to switch from summation
to integration. However, due to the altered bounds on the range of the indices over which
we sum and the fact that we require lower bounds rather than upper bound, we face some
more technicalities.

For now, we omit the expected value and focus on the terms

∑

n1−ε<j1<...<jk≤n−
∑k
t=1mt

∑

j`+
∑k
t=1mt<i1,`<...<im`,`≤n,

`∈[k]

k∏

t=1

jãtt

mt∏

s=1

i−1s,t . (5.33)

We start by restricting the upper bound on the outer sum to n−2
∑k

t=1mt. This will prove
useful later. We then bound the sum over the indices is,t from below by

∑

j`+
∑k
t=1mt<i1,`<...<im`,`≤n

`∈[n]

k∏

t=1

mt∏

s=1

i−1s,t

≥
k∏

`=1

∫ n+1

j`+
∑k
t=1mt+1

∫ n+1

x1,`+1
· · ·
∫ n+1

xm`−1,`+1

m∏̀

s=1

x−1s,` dxm`,` . . . dx1,`

≥
k∏

`=1

∫ n+1

j`+
∑k
t=1mt+1

∫ n+1

x1,`+1
· · ·
∫ n+1

xm`−2,`+1

m`−1∏

s=1

x−1s,` log
( n+ 1

xm`−1,` + 1

)
dxm`−1,` . . . dx1,`.

The integrand can be bounded from below by using x−1m`−1,` ≥ (xm`−1,` + 1)−1. We also

restrict the upper integration bound of the innermost integral to n and use a variable
substitution ym`−1,` := xm`−1,` + 1 to obtain the lower bound

k∏

`=1

∫ n+1

j`+
∑k
t=1mt+1

∫ n+1

x1,`+1
· · ·
∫ n+1

xm`−3,`+1

1

2

m`−2∏

s=1

x−1s,` log
( n+ 1

xm`−2,` + 2

)2
dxm`−2,` . . . dx1,`.
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Continuing this approach eventually leads to

k∏

`=1

1

m`!
log
( n+ 1

j` +
∑k

t=1mt +m`

)m` ≥
k∏

`=1

1

m`!
log
( n

j` + 2
∑k

t=1mt

)m`
.

Substituting this in (5.33) with the restriction on the outer sum discussed above yields

∑

n1−ε<j1<...<jk≤n−2
∑k
t=1mt

k∏

`=1

jã``
1

m`!
log
( n

j` + 2
∑k

t=1mt

)m`
.

To simplify the summation over j1, . . . , jk, we write the summand as

k∏

`=1

(
j` + 2

k∑

t=1

mt

)ã` 1

m`!
log
( n

j` + 2
∑k

t=1mt

)m`(
1− 2

∑k
t=1mt

j` + 2
∑k

t=1mt

)ã`
.

Using that mt < c log n, j` ≥ n1−ε and xãt ≥ x1/(E[W ](1−ζn)) for x ∈ (0, 1), we obtain the
lower bound

k∏

`=1

(
j` + 2

k∑

t=1

mt

)ã` 1

m`!
log
( n

j` + 2
∑k

t=1mt

)m`(
1−O

( log n

n1−ε

))
.

We can then shift the bounds on the range of the sum to n1−ε + 2
∑k

t=1mt and n to obtain
the lower bound

∑

n1−ε+2
∑k
t=1mt<j1<...<jk≤n

k∏

`=1

jã``
1

m`!
log(n/j`)

m`
(

1−O
( log n

n1−ε

))
.

We can now use a similar approach as for the upper bound in (5.23) through (5.26) by
considering the cases (1) and (2). Assuming case (1) holds for all m1, . . . ,mk and using
Corollary 8.2, we obtain the lower bound

n∑

j1=dn1−εe+2
∑k
t=1mt

n∑

j2=j1+1

· · ·
n∑

jk=kk−1+1

k∏

`=1

jã``
1

m`!
log(n/j`)

m`

≥
n∑

j1=dn1−εe+2
∑k
t=1mt

n∑

j2=j1+1

· · ·
n∑

jk−1=jk−2+1

k−1∏

`=1

jã``
1

m`!
log(n/j`)

m`

×
[ ∫ n

jk−1+1

xãkk
mk!

log(n/j`)
mk dxk − 4

nã`

am``

]
,

and we again have for case (2) that the error term in the square brackets can be omitted.
Following the same approach as in the upper bound, (5.23) through (5.26), but subtracting
the error term rather than adding it, we thus obtain the lower bound

∑

n1−ε<j1<...<jk≤n−2
∑k
t=1mt

k∏

`=1

jã``
1

m`!
log
( n

j` + 2
∑k

t=1mt

)m`

≥ nk+
∑k
t=1 ãt

k∏

t=1

(
1−O

(
n−(1−ε) log n

))

(1 + ãt)mt+1
PW

(
Ỹk < . . . < Ỹ1 < log

( n

dn1−εe+ 2
∑k

t=1mt

))

+O
(
nk+

∑k
t=1 ãt

k∑

`=1

1

n

∏

t∈[k]
t6=`

( 1

(1 + ãt)mt+1
− 4

nãmtt

))
,
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where, conditionally on Wt, Ỹt is a Γ(mt+ 1, 1 + ãt) random variable for each t ∈ [k]. Using
this in (5.32) then finally yields the lower bound

E

[
k∏

t=1

ãmtt
(1 + ãt)mt+1

PW

(
Ỹk < . . . < Ỹ1 < log

( n

dn1−εe+ 2
∑k

t=1mt

))]

×
(

1 +O
(
n−δ(1−ξ)(1−ε)

))
+O

( k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

ãmtt
(1 + ãt)mt+1

]
− 4

n

))
,

where we use, as in the upper bound, that ((1−ζn)/(1+2ζn))
∑k
t=1mt = 1−o(n−δ(1−ξ)(1−ε)).

If we then consider the summation over indices n1−ε ≤ j1 6= . . . 6= jk rather than n1−ε ≤
j1 < . . . < jk we obtain, as in the upper bound,

k∏

t=1

E

[
ãmtt

(1 + ãt)mt+1
PW
(
Ỹt < log

( n

dn1−εe+ 2
∑k

t=1mt

))] (
1− o

(
n−δ(1−ξ)(1−ε)

))

−O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E

[
ã
mπ(t)
π(t)

(1 + ãπ(t))
mπ(t)+1

]
− 4

n

))
.

With a similar reasoning as in (5.27) and using that mt < c log n for all t ∈ [k], we can
bound the expected value from below for large n as

k∏

t=1

E
[

E [W ]

E [W ] +Wt

( Wt

E [W ] +Wt

)mt
PW
(
Ỹt < ε(1− ξ) log n

)](
1− o

(
n−δ(1−ξ)(1−ε)

))

+O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]− 4

n

))
,

(5.34)

for any ξ ∈ (0, 1). Unlike in the upper bound, we cannot trivially omit the conditional
probability. Rather, it remains to show that it can be bounded from below by an indicator,

at the cost of an additional error term. Since, conditionally on Wt, Ỹt ∼ Γ(mt + 1, 1 + ãt),

it follows that (again conditionally on Wt) (1 + ãt)Ỹt
d
= Xt, where Xt ∼ Γ(mt + 1, 1). We

can thus write

PW
(
Ỹt ≤ ε(1− ξ) log n

)
= PW (Xt ≤ ε(1− ξ)(1 + ãt) log n) ≥ P(Xt ≤ ε(1− ξ) log n) ,

almost surely, where the final lower bound is obtained by bounding ãt from below by zero.
As the event on the right-hand side no longer depends on the vertex-weights, we can also
omit the conditional probability. In the case that mt = o(log n) for all t ∈ [k], by using the
Chernoff inequality we then conclude that for n sufficiently large, almost surely,

P(Xt ≤ ε(1− ξ) log n) ≥ 1− n−ε(1−ξ)/22mt+1 = 1− n−ε(1−ξ)(1+o(1))/2. (5.35)

Using this in (5.34), we thus arrive at the lower bound

k∏

t=1

E
[

E [W ]

E [W ] +Wt

( Wt

E [W ] +Wt

)mt] (
1− o

(
n−δ(1−ξ)(1−ε)∧ε(1−ξ)/4

))

+O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]− 4

n

))
.

(5.36)

Then, via the same reasoning as in (5.29), the big O term can be included in the error
term when the mt are o(log n). We thus establish (5.1) when the mt are o(log n) by
combining (5.30), (5.36) and the above and by setting β := β1∧(ε(1−ξ)/4)∧δ(1−ε)(1−ξ).
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It thus remains to prove (5.1) when (some of) the mt grow faster. The upper bound in (5.30)
suffices in this case as well. For the lower bound, (5.34) still holds and we can deal with all
mt such that mt = o(log n) as in (5.35), so that we can assume without loss of generality
that mt ≥ η log n for some η ∈ (0, c) for all t ∈ [k]. Or, more specifically, we assume that
mt ∼ ct log n for some ct ∈ (0, c) for all t ∈ [k] (so that taking η < mint∈[k] ct yields the
same result). Then, we bound

PW (Xt ≤ ε(1− ξ)(1 + ãt) log n) ≥ P
(
Xt ≤

ctε

1− µ log n
)
1{1+ãt>ct/((1−µ)(1−ξ))}, (5.37)

where µ ∈ (0, 1) is a small constant and where we again can switch to the non-conditional
probability measure P in the last step as there are no vertex-weights involved in the prob-
ability. Now, by choosing ε ∈ (1− µ, 1) we can obtain a bound on the rate of convergence
to one by applying a standard large deviation bound. Let (Vi)i∈N be i.i.d. exponential rate
1 random variables and let I(a) := a − 1 − log(a) be their rate function. Then, as we can
think of Xt as the sum of V1, . . . , Vmt+1,

P
(
Xt ≥

ctε

1− µ log n
)

= P

(
mt+1∑

i=1

Vi ≥ (mt + 1)
ctε log n

(1− µ)(mt + 1)

)

≤ exp
{
− (mt + 1)I

( ctε log n

(1− µ)(mt + 1)

)}
.

In the first step, we express the upper bound within the probability in terms of the mean of
the sum of random variables, which equals mt + 1. We then use the large deviations bound
in the second step, which we can do as the argument of I is strictly greater than 1 when n
is sufficiently large (as mt + 1 ∼ ct log n) and ε ∈ (1−µ, 1) is sufficiently close to one. Since
I(ctε log n/((1−µ)(mt + 1))) = (ε/(1−µ)− 1− log(ε/(1−µ)))(1 + o(1)), we thus arrive at

P
(
Xt ≥

ctε

1− µ log n
)
≤ e−ct logn(ε/(1−µ)−1−log(ε/(1−µ)))(1+o(1)) = n−ct,µ,ε(1+o(1)),

where ct,µ,ε := ct(ε/(1 − µ) − 1 − log(ε/(1 − µ))) > 0 as ε > 1 − µ. When combining this
with (5.37) in (5.34) and recalling that ãt = Wt/(E [W ] (1 − ζn)) ≥ Wt/E [W ], we obtain
the lower bound

1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E [PW (Zn(j`) = m`, ` ∈ [k])]

≥
k∏

t=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mt
1{W>(ct/((1−µ)(1−ξ))−1)E[W ]}

]
(1 + o(n−β2))

+O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]− 4

n

))
,

for some β2 < mint∈[k] ct,µε ∧ δ(1− ε)(1− ξ) ∧ (ε(1− ξ)/4). We can then replace ct in the
indicator by c̃ := maxt∈[k] ct to obtain a further lower bound. The indicator in the expected
value then is non-zero with positive probability when (c̃/((1−µ)(1− ξ))− 1)E [W ] < 1, or,
equivalently, c̃ < (1− µ)(1− ξ)θ/(θ − 1). We can therefore take any c1, . . . , ck < θ/(θ − 1)
and set µ and ξ small enough for this inequality to be satisfied.

We now argue that at the cost of an additional error term, we can omit the indicator in
the expected value. We recall that we assumed that η log n ≤ m` ≤ c log n for all ` ∈ [k]
for some η ∈ (0, c). Recall fk(θ,W ) from (5.6) and note that pk = E [fk(θ,W )]. Let us
also set a := c̃/((1 − µ)(1 − ξ)) − 1)E [W ] and note that by the above, a ∈ (0, 1). Since
m` > 1/E [W ] (this implies fm`(θ, x) is increasing in x), for n large,

E [fm`(θ,W )] = E
[
fm`(θ,W )(1{W>a} + 1{W≤a})

]
≤ E

[
fm`(θ,W )1{W>a}

]
+ fm`(θ, a).
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We then bound

fm`(θ, a) ≤
( a

θ − 1 + a

)m` ≤ (θ + ξ)−m` ,

for some sufficiently small ξ > 0, as a ∈ (0, 1) and the fraction is strictly increasing in a.
Since it follows from the proof of Lemma 5.5 that E [fk(θ,W )] (θ+ξ)k diverges exponentially
fast as k tends to infinity when W is bounded by one, it then follows that

E
[
fm`(θ,W )1{W>a}

]
≥ E [fm`(θ,W )]− (θ + ξ)−m` = E [fm`(θ,W )] (1− o((1 + γ)−m`)),

for some small γ > 0. As m` ≥ η log n for all ` ∈ [k] it then follows that 1−o((1+γ)−m`)) =

1− o(n−β̃2) for some β̃2 > 0. We thus obtain the lower bound

k∏

t=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mt]
(1 + o(n−β2∧β̃2))

+O
( ∑

π∈Pk

k∑

`=1

1

n

∏

t∈[k]
t6=`

(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)mπ(t)]− 4

n

))
.

Finally, with a similar reasoning as in (5.29), we can either include the big O term in

the error term 1 + o(n−β2∧β̃2) in case (1) or omit it completely in case (2). Again, a
combination of mt which satisfy either case (1) or case (2) can be dealt with by combining
both approaches. The proof of (5.1) is then concluded by combining the upper bound

in (5.30) and the lower bound above and setting β := β1∧β2∧β̃2∧(ε(1−ξ)/4)∧δ(1−ε)(1−ξ).
�

5.3. Proof of Lemma 5.11.

Proof of Lemma 5.11. We aim to bound

1

(n)k

∑

j∈In(ε)
E [PW (Zn(j`) = m`, ` ∈ [k])] , (5.38)

where we recall that In(ε) := {j = (j1, . . . , jk) : 1 ≤ j1 6= . . . 6= jk ≤ n,∃ i ∈ [k] ji < n1−ε}.
We first assume that m` = c` log n(1 + o(1)) for some c` ∈ [0, 1/ log θ) for all ` ∈ [k], where
c` = 0 denotes that m` = o(log n). We define

In(ε, i) := {j ∈ In(ε) : |{` ∈ [k] : j` < n1−ε}| = i}, i ∈ [k],

that is, In(ε, i) denotes the set of indices j = (j1, . . . , jk) such that exactly i of the indices
are smaller than n1−ε, and note that In(ε) = In(ε, 1) ∪ · · · ∪ In(ε, k). We then write

1

(n)k

∑

j∈In(ε)
E [P(Zn(j`) = m`, ` ∈ [k])] =

k∑

i=1

1

(n)k

∑

j∈In(ε,i)
E [PW (Zn(j`) = m`, ` ∈ [k])] ,

and bound the probability on the right-hand side from above by omitting all events {Zn(j`) =
m`} whenever j` < n1−ε. This leaves us with

k−1∑

i=1

1

(n)k
ni(1−ε)

∑

S⊆[k]
|S|=k−i

∑∗

n1−ε≤j`≤n
`∈S

E [PW (Zn(j`) = m`, ` ∈ S)] +
nk(1−ε)

(n)k
, (5.39)

where we recall that the ∗ on the second sum symbol denotes that we only consider distinct
values of j`, ` ∈ S. We isolated the case i = k here as in this case no indices are larger than
n1−ε and we hence bound the probability from above by one, whereas i = k would yield a
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contribution of zero in the triple sum. The inner sum can then be dealt with in the same
manner as in the derivation of the upper bound in (5.30), to yield an upper bound

k−1∑

i=1

n−iε
∑

S⊆[k]
|S|=k−i

∏

`∈S
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`]
(1 + o

(
n−β

))
+ 2n−kε,

for some β > 0. It thus remains to show that for any m` = c` log n(1 + o(1)) with c` ∈
[0, 1/ log θ) we can take ε sufficiently close to one and a small η > 0, such that

n−ε = o
(
E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`]
n−η

)
.

By Lemma 5.5, we have for any ξ > 0 and n sufficiently large, that

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`] ≥ (θ + ξ)−m` = n−c` log(θ+ξ)(1+o(1)),

and n−ε = o(n−η−c` log(θ+ξ)(1+o(1))) when we choose η and ξ sufficiently small and ε suffi-
ciently close to 1, since c` log θ < 1 for any ` ∈ [k]. As a result,

1

(n)k

∑

j∈In(ε)
E [PW (Zn(j`) = m`, ` ∈ [k])] = o

( k∏

`=1

E
[

E [W ]

E [W ] +W

( W

E [W ] +W

)m`]
n−η

)
.

We now assume that m` = c` log n(1 + o(1)) with c` ∈ [1/ log θ, θ/(θ− 1)) for all ` ∈ [k]. In
this case, the crude bound used above no longer suffices. Now, the aim is to use a similar
approach as in the start of the proof of [13, Theorem 2.9, Bounded case] and combine this
with the assumption that W ≥ w∗ > 0 almost surely for some w∗ ∈ (0, 1). First, we
consider the set of indices In(ε, k). To make use of the negative quadrant dependence of
the degrees (Zn(i))i∈[n] (see Remark 5.2 and [13, Lemma 7.1]), we create an upper bound
by considering the event {Zn(j`) ≥ m`, ` ∈ [k]}. Then, using the tail distribution and the
negative quadrant dependency of the degrees under the conditional probability measure PW
yields

1

(n)k

∑

j∈In(ε,k)
P(Zn(j`) = m`, ` ∈ [k]) ≤ 1

(n)k

∑

1≤j1 6=... 6=jk<n1−ε
E

[
k∏

`=1

PW (Zn(j`) ≥ m`)

]
.

We then also allow the indices j1, . . . , jk to take any value between 1 and n1−ε, to obtain
the upper bound

1

(n)k
E




k∏

`=1

( ∑

i<n1−ε
PW (Zn(i) ≥ m`)

)
 .

As in the proof of [13, Theorem 2.9, Bounded case], we apply a Chernoff bound to the
conditional probability measure PW to obtain

1

(n)k
E

[
k∏

`=1

( ∑

i<n1−ε
PW (Zn(i) ≥ m`)

)]
≤ 1

(n)k
E

[
k∏

`=1

( ∑

i<n1−ε
exp{m`(1−ui,`+log ui,`)}

)]
,

where ui,` := Wi(Hn − Hi)/m` and Hn :=
∑n−1

j=1 1/Sj . We then introduce the constants

δ ∈ (0, 1/2), C > kc−1θ θ log(θ)/(θ − 1) (with cθ := 1/(2θ2)), the sequence

ζ ′n := (C log n)−δ/(1−2δ)/E [W ], n ∈ N, and introduce the event

E′n :=

{ j∑

`=1

W` ≥ jE [W ] (1− ζ ′n), ∀ (C log n)1/(1−2δ) ≤ j ≤ n
}
.

The event E′n is similar to the event En introduced in (5.13), but considers a larger range
of indices j. The particular choice of the lower bound on the indices j follows from the fact
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that we want as much control over the partial sums of the vertex-weights as possible, but
need to ensure that P((E′n)c) decays sufficiently fast, which we can achieve via this choice.

We can use the event E′n in the expected value to arrive at the upper bound

1

(n)k
E




k∏

`=1

( ∑

i<n1−ε
exp{m`(1− ui,` + log ui,`)}

)
1E′n


+ P

(
(E′n)c

)
. (5.40)

We defer the proof that P((E′n)c) decays sufficiently fast for now and focus on the first term.
We bound ui,` from above by

ui,` ≤
Hn

m`
=

1

m`

[ ∑

j<(C logn)1/(1−2δ)

1

Sj
+

n∑

j=d(C logn)1/(1−2δ)e

1

Sj

]
,

and using Wi ≥ w∗ almost surely for all i ∈ N as well as the bound in the event E′n then
yields

ui,` ≤
1

m`

[1− 2δ

w∗
log(C log n) +

1

E [W ]
log
( n

d(C log n)1/(1−2δ)e
)]

(1 + o(1)) =
1 + o(1)

c`E [W ]
.

Since E [W ] = θ− 1 and c` ≥ 1/ log θ, it follows that 1/(c`E [W ]) ≤ log θ/(θ− 1) < 1 for all
θ ∈ (1, 2]. Since x 7→ 1 − x + log x is increasing for x ∈ (0, 1) we can thus use this upper
bound in the first term of (5.40) to bound it from above by

1

(n)k

k∏

`=1

( ∑

i<n1−ε
exp

{
c` log n

(
1− 1

c`E [W ]
+ log

( 1

c`E [W ]

))
(1 + o(1))

})

≤ 1

(n)k

k∏

`=1

exp
{

log n
(

(1− ε) + c`

(
1− 1

c`E [W ]
+ log

( 1

c`E [W ]

)))
(1 + o(1))

}

≤ exp
{

log n(1 + o(1))
k∑

`=1

(
− ε+ c`

(
1− 1

c`E [W ]
+ log

( 1

c`E [W ]

)))}
.

We then require that

exp
{

log n(1 + o(1))

k∑

`=1

(
− ε+ c`

(
1− 1

c`E [W ]
+ log

( 1

c`E [W ]

)))}

= o
(
n−η

k∏

`=1

pm`

)
,

(5.41)

for some η > 0. As, by Lemma 5.5, pm` ≥ (θ+ ξ)−m` = exp{− log n(1 + o(1))c` log(θ+ ξ)},
it suffices to show that

k∑

`=1

(
− ε+ c`

(
1− 1

c`E [W ]
+ log

( 1

c`E [W ]

)))
< −

k∑

`=1

c` log(θ + ξ), (5.42)

when ξ is sufficiently small and ε sufficiently close to one. We show that this strict inequality
can be achieved for each term individually, by arguing that we can choose ε ∈ (0, 1) such
that

ε > c`

(
1− 1

c`(θ − 1)
+ log

( θ + ξ

c`(θ − 1)

))
, ` ∈ [k],

where we note that we have written E [W ] as θ − 1. The right-hand side is increasing in c`
when c` ∈ [1/ log θ, θ/(θ − 1)), so that all k inequalities are satisfied when we solve

ε > c̃
(

1− 1

c̃(θ − 1)
+ log

( θ + ξ

c̃(θ − 1)

))
,
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with c̃ := max`∈[k] c`. We now show that the right-hand side strictly smaller than one when
ξ is sufficiently small. We write

c̃
(

1− 1

c̃(θ − 1)
+ log

( θ + ξ

c̃(θ − 1)

))
= c̃
(

1− 1

c̃(θ − 1)
+ log

( θ

c̃(θ − 1)

))
+ c̃ log

(
1 +

ξ

θ

)

≤ c̃
(

1− 1

c̃(θ − 1)
+ log

( θ

c̃(θ − 1)

))
+

ξ

θ − 1
,

where the final upper bound follows from the fact that log(1 + x) ≤ x for x > −1 and
c̃ < θ/(θ − 1). We denote the first term on the right-hand side by κ = κ(c̃, θ). As κ is
increasing in c̃ when c̃ ∈ [1/ log θ, θ/(θ−1)) (which is the case when c` ∈ [1/ log θ, θ/(θ−1))
for all ` ∈ [k]), we have κ < 1, as c̃ < θ/(θ − 1). Thus, setting ξ < (1 − κ)(θ − 1)/2 we
achieve the desired result. Now, taking ε ∈ (κ+ ξ/(θ − 1), 1), we arrive at (5.41) for some
small η > 0. It thus follows that

1

(n)k

∑

j∈In(ε,k)
E [PW (Zn(j`) = m`, ` ∈ [k])] = o

(
n−η

k∏

`=1

pm`

)
, (5.43)

for some small η > 0.

We now consider the remaining sets In(ε, 1), . . . , In(ε, k − 1) and aim to bound

1

(n)k

k−1∑

i=1

∑

j∈In(ε,i)
P(Zn(j`) ≥ m`, ` ∈ [k]) .

Again, using the negative quadrant dependence and introducing the events E′n and En
(recall En from (5.13)) yields the upper bound

1

(n)k

k−1∑

i=1

∑

j∈In(ε,i)
E

[
1E′n∩En

k∏

`=1

PW (Zn(j`) ≥ m`)

]
+ P

(
(E′n)c

)
+ P(Ecn) .

The aim is to treat the probabilities of indices which are at most n1−ε in the same way as
when dealing with the indices in In(ε, k) to reach a bound as in (5.41), for which we use the
event E′n. For the indices which are larger than n1−ε such an upper bound will not suffice.
Instead, we aim to bound PW (Zn(j`) ≥ m`) when n1−ε ≤ j` ≤ n in a similar way as we
bounded PW (Zn(j`) = m`) from above in the proof of Lemma 5.10, for which we use En.

First, we split the summation over In(ε, i) over all possible configurations of indices with
are at most and at least n1−ε, similar to (5.39). That is,

1

(n)k

k−1∑

i=1

∑

j∈In(ε,i)
E

[
1E′n1En

k∏

`=1

PW (Zn(j`) ≥ m`)

]

=
1

(n)k

k−1∑

i=1

∑

S⊆[k]
|S|=i

∑∗

1≤j`<n1−ε
`∈S

∑∗

n1−ε≤j`≤n
`∈[k]\S

E

[
1E′n∩En

∏

`∈S
PW (Zn(j`) ≥ m`)

∏

`∈[k]\S
PW (Zn(j`) ≥ m`)

]
.

Using the event E′n, we can follow similar steps as above to bound the sum over the indices j`
and the product of probabilities PW (Zn(j`) ≥ m`) for ` ∈ S from above by the deterministic
upper bound

exp
{

log n(1 + o(1))
∑

`∈S

(
− ε+ c`

(
1− 1

c`E [W ]
+ log

( 1

c`E [W ]

)))}
=: nC(S)(1+o(1)),

which yields

k−1∑

i=1

ni

(n)k

∑

S⊆[k]
|S|=i

nC(S)(1+o(1))
∑∗

n1−ε≤j`≤n
`∈[k]\S

E


1En

∏

`∈[k]\S
PW (Zn(j`) ≥ m`)


 . (5.44)
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We now proceed to bound each individual probability PW (Zn(j`) ≥ m`) when ` ∈ [k]\S.
This follows a similar approach to the upper bound of PW (Zn(j`) = m`) in the proof of
Lemma 5.10, with a couple of modifications. Introducing indices j` < i1 < . . . < im` ≤ n,
which denote the steps at which vertex j` increases its degree, we can write

PW (Zn(j`) ≥ m`) =
∑

j`<i1<...<im`≤n

m∏̀

t=1

Wj`∑it−1
r=1 Wr

im`−1∏

s=j+1
s 6=it,t∈[m`]

(
1− Wj`∑s−1

r=1Wr

)
.

The second product, in comparison to dealing with the event {Zn(j`) = m`}, goes up to
im`−1 instead of n. This is due to the fact that we now only need to control the connections
vertex j does and does not make up to its mth

` connection. Using the same idea as in (5.17)
and using the event En, we obtain the upper bound

∑

j`<i1<...<im`≤n

m∏̀

t=1

Wj`

(it − 1)E [W ] (1− ζn)− 1

im`−1∏

s=j+1

(
1− Wj`

sE [W ] (1 + ζn)

)

≤
∑

j`<i1<...<im`≤n

m∏̀

t=1

Wj`

itE [W ] (1− 2ζn)

im`−1∏

s=j+1

(
1− Wj`

sE [W ] (1 + ζn)

)
.

The last step follows from the fact that (it − 1)(1− ζn)E [W ]− 1 ≥ it(1− 2ζn)E [W ] for n
sufficiently large. Using this in the expected value of (5.44) yields

∑∗

n1−ε≤j`≤n
`∈[k]\S

E


 ∏

`∈[k]\S

( ∑

j`<i1<...<im`≤n

m∏̀

t=1

Wj`

itE [W ] (1− 2ζn)

im`−1∏

s=j+1

(
1− Wj`

sE [W ] (1 + ζn)

))

 .

We can now relabel the vertex-weights Wj` by W`, ` ∈ [k]\S. This does not change the
expected value and is possible since the indices j`, ` ∈ [k]\S are distinct. Directly after this,
we omit the requirement that the indices j` are distinct, which is now of no consequence as
the weights have been relabelled already. We hence arrive at the upper bound

∏

`∈[k]\S
E

[ ∑

n1−ε≤j`≤n

∑

j`<i1<...<im`≤n

m∏̀

t=1

W`

itE [W ] (1− 2ζn)

im`−1∏

s=j+1

(
1− W`

sE [W ] (1 + ζn)

)]
, (5.45)

where the product can be taken out of the expected value due to the independence of the
vertex-weightsW1, . . .W`. As a result, we can deal with each of expected values individually.
Following the same approach as in (5.18) and setting a` := W`/(E [W ] (1 + ζn)), we obtain
the upper bound

E

[ ∑

n1−ε≤j`≤n

∑

j`<i1<...<im`≤n

m∏̀

t=1

W`

itE [W ] (1− 2ζn)

( im`
j`

)−a`
](

1 +O
(
n−(1−ε)

))

= E

[
am``

∑

n1−ε≤j`≤n

∑

j`<i1<...<im`≤n

m∏̀

t=1

i−1t
( im`
j`

)−a`
]( 1 + ζn

1− 2ζn

)m`(
1 +O

(
n−(1−ε)

))
.

(5.46)

We then observe that the summand of the inner sum over the indices i1, . . . , im` is decreas-
ing, so that we can bound it from above almost surely by the multiple integrals

∫ n

j`

∫ n

x1

· · ·
∫ n

xm`−1

m`−1∏

t=1

x−1t x−(1+a`)m`
dxm` . . . dx1 =: Im` .

Calculating the value of the innermost integral yields the recursion

Im` =
Im`−1
a`
− 1

na`a`

∫ n

j`

∫ n

x1

· · ·
∫ n

xm`−2

m`−1∏

t=1

x−1t dxm`−1 . . . dx1 =
Im`−1
a`
− log(n/j`)

m`−1

na`a`(m` − 1)!
,
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where the last step follows from (5.21). By continuing the recursion we find that

Im` =
I1

am`−1`

−n−a`
m`−1∑

s=1

am`−s`

log(n/j`)
m`−s

(m` − s)!
= a−m`` j−a``

(
1−
( n
j`

)−a`m`−1∑

s=0

as`
log(n/j`)

s

s!

)
.

Multiplying this with the am`` ja` in the expected value in (5.46), we arrive at

1−
m`−1∑

s=0

(n/j`)
−a` (a` log(n/j`))

s

s!
= PW (P (a`) ≥ m`) ,

where, conditionally on W`, P (a`) ∼ Poi(a` log(n/j`)). We now use the following duality
between Poisson and gamma random variables. Let X ∼ Γ(m`, 1) be a gamma random
variable. We can also interpret X as a sum of m` rate one exponential random variables.
Then, conditionally on W`, the event {P (a`) ≥ m`} can be thought of as the event that in
a rate one Poisson process at least m` particles have arrived before time a` log(n/j`). This
is equivalent to the sum of the first m` inter-arrival times (which are rate one exponen-
tially distributed) being at most a` log(n/j`). As we mentioned, this sum of m` rate one
exponential random variables is, in law, identical to X, so

PW (P (a`) ≥ m`) = PW (X ≤ a` log(n/j`)) = PW (X/a` ≤ log(n/j`)) = PW (Y ≤ log(n/j`)) ,

where, conditionally on W`, Y ∼ Γ(m`, a`). Then, by the choice of ζn, ((1 + ζn)/(1 −
2ζn))m` = 1 +O

(
n−δ(1−ε) log n

)
. Using both these results in (5.46), we arrive at

E

[ ∑

n1−ε≤j`≤n
PW (Y ≤ log(n/j`))

](
1 +O

(
n−δ(1−ε) log n

))
. (5.47)

As the conditional probability is decreasing in j`, we can bound the sum from above by an
integral almost surely to obtain

∫ n

bn1−εc
PW (Y ≤ log(n/x)) dx =

∫ n

bn1−εc

∫ log(n/x)

0

am``
m`!

ym`−1e−a`y dydx

=

∫ log(n/bn1−εc)

0

∫ ne−y

bn1−εc

am``
m`!

ym`−1e−a`y dxdy

= n

∫ log(n/(bn1−εc

0

am``
m`!

ym`−1e−(1+a`)y dy

= n
( a`

1 + a`

)m`
PW
(
Y ′ ≤ log

(
n/bn1−εc

))
.

Here, we switch the integration over x and y in the second step and let Y ′, conditionally
on W`, be a Γ(m`, 1 + a`) random variable. We can then bound the conditional probability
from above by one almost surely. Combining this almost sure upper bound with (5.47)
in (5.45), we arrive at

nk−|S|
∏

`∈[k]\S
E
[( a`

1 + a`

)m`](
1 +O

(
n−δ(1−ε) log n

))
. (5.48)

Finally, with the same steps as in (5.27), we obtain

nk−|S|
∏

`∈[k]\S
E
[( W

E [W ] +W

)m`] (
1 + o

(
n−δ(1−ε)(1−ξ)

))
,
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for any ξ > 0. We then use this bound in (5.44) to find, for some positive constant K, the
upper bound

K
k−1∑

i=1

∑

S⊆[k]
|S|=i

nC(S)(1+o(1))
∏

`∈[k]\S
E
[( W

E [W ] +W

)m`]
= K

k−1∑

i=1

∑

S⊆[k]
|S|=i

nC(S)(1+o(1))
∏

`∈[k]\S
p≥m` .

By Remark 5.4, the tail probability p≥m` = O(pm`) and by (5.42) we have nC(S)(1+o(1)) =

o
(
n−η(S)

∏
`∈S pm`

)
for some η(S) > 0. Combined, this yields

1

(n)k

k−1∑

i=1

∑

j∈In(ε,i)
E

[
1E′n1En

k∏

`=1

PW (Zn(j`) ≥ m`)

]
≤ K

k−1∑

i=1

∑

S⊆[k]
|S|=i

nC(S)(1+o(1))
∏

`∈[k]\S
p≥m`

= o
(
n−η̃

k∏

`=1

pm`
)
,

with

η̃ := min
S⊆[k]

1≤|S|≤k−1

(
C(S)−

∑

`∈S
log(θ + ξ)c`

)
,

which is strictly positive when ξ is sufficiently small and ε is set sufficiently close to one,
similar to what is discussed above. Combining this with the fact that P((E′n)c) and P(Ecn)

are o
(
n−η

∏k
`=1 pm`

)
uniformly in m1, . . . ,mk < c log n for some η > 0 (we prove this for

the former probability at the end, and for the latter probability this follows from (5.15)),
and the result in (5.43), we finally conclude that

1

(n)k

∑

j∈In(ε)
E [PW (Zn(j`) = m`, ` ∈ [k])] =

1

(n)k

∑

j∈In(ε,k)
E [PW (Zn(j`) = m`, ` ∈ [k])]

+
1

(n)k

k−1∑

i=1

∑

j∈In(ε,i)
E [PW (Zn(j`) = m`, ` ∈ [k])]

= o
(
n−η

k∏

`=1

pm`

)
,

for some η > 0 in the case that m` = c` log n(1 + o(1)) with c` ∈ [1/ log θ, θ/(θ − 1)) for all
` ∈ [k] as well.

When the m` do not all behave the same, that is, for some ` ∈ [k] c` ∈ [0, 1/ log θ) and
for some c` ∈ [1/ log θ, θ/(θ − 1)), we can use a combination of the approaches outlined for
either of the cases.

It remains to prove that P((E′n)c) decays sufficiently fast. By a union bound and using the
same approach as in (5.14) and (5.15), we find that for some positive constant Cθ,δ,

P
(
(E′n)c

)
≤

∞∑

j=d(C logn)1/(1−2δ)e
exp

{
− cθj1−2δ

}
≤ Cθ,δΓ

( 1

1− 2δ
, cθb(C log n)1/(1−2δ)c1−2δ

)
.

Using that Γ(s, x) = xs−1e−x(1 + o(1)) for a fixed s ∈ R and as x tends to infinity, we
obtain

P
(
(E′n)c

)
≤ Cθ,δ

(
cθC log n

)2δ/(1−2δ)
exp

{
− cθb(C log n)1/(1−2δ)c1−2δ

}
(1 + o(1))

= C̃θ,δ(log n)2δ/(1−2δ) exp{−cθC log n}(1 + o(1))

= n−cθC(1+o(1)).

(5.49)
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As mentioned when introducing the event E′n in (5.40), the choice of C yields P((E′n)c) ≤
n−(kθ log(θ)/(θ−1)+η) for n large and η sufficiently small, so that P((E′n)c) = o(

∏k
`=1 pm`n

−η)
for any choice of m` < (θ/(θ − 1)) log n(1 + o(1)), ` ∈ [k], which concludes the proof. �

5.4. Proof of Proposition 5.1. We finally prove Proposition 5.1, using Lemmas 5.10
and 5.11.

Proof of Proposition 5.1. As discussed before, (5.1) directly follows from (5.12) combined
with Lemmas 5.10 and 5.11. Using (5.1), we then prove (5.2). For ease of writing, we recall
that

pk := E
[

θ − 1

θ − 1 +W

( W

θ − 1 +W

)k]
, p≥k := E

[( W

θ − 1 +W

)k]
.

We start by assuming that m` = c` log n(1 + o(1)) with c` ∈ (0, c) for each ` ∈ [k]. We
discuss how to adjust the proof when m` = o(log n) for some or all ` ∈ [k] at the end.

For each ` ∈ [k] take an η` ∈ (0, c − c`) so that d(1 + η`)m`e < c log n. Then, we use the
upper bound

P(Zn(v`) ≥ m`, ` ∈ [k]) ≤
b(1+η1)m1c∑

j1=m1

· · ·
b(1+ηk)mk)c∑

jk=mk

P(Zn(v`) = j`, ` ∈ [k])

+
k∑

i=1

P(Zn(vi) ≥ d(1 + ηi)mie,Zn(v`) ≥ m`, ` 6= i) .

(5.50)

We first discuss the first term on the right-hand side. As (5.1) holds uniformly in m1, . . . ,mk

< c log n, we find

b(1+η1)m1c∑

j1=m1

· · ·
b(1+ηk)mk)c∑

jk=mk

P(Zn(v`) = j`, ` ∈ [k]) =

b(1+η1)m1c∑

j1=m1

· · ·
b(1+ηk)mk)c∑

jk=mk

k∏

`=1

pj`
(
1 + o

(
n−β

))

=

k∏

`=1

(
p≥m` − p≥b(1+η`)m`c

)(
1 + o

(
n−β

))

≤
k∏

`=1

pm`
(
1 + o

(
n−β

))
.

(5.51)

To finish the upper bound, it remains to show the the term on the second line of (5.50) can
be incorporated in the o

(
n−β

)
term, and it suffices to show this can be done for each term

in the sum, independent of the value of i. Using the negative quadrant dependence of the
degrees under the conditional probability measure PW (see Remark 5.2 and [13, Lemma
7.1]), we find

P(Zn(vi) ≥ d(1 + ηi)mie,Zn(v`) ≥ m`, ` ∈ [k]\{i})

=
1

(n)k

∑

1≤j1 6=... 6=jk≤n
E
[
PW (Zn(ji) ≥ d(1 + ηi)mie)

∏

`∈[k]\{i}
PW (Zn(j`) ≥ m`)

]

=
1

(n)k

∑

j∈In(ε)
E
[
PW (Zn(ji) ≥ d(1 + ηi)mie)

∏

`∈[k]\{i}
PW (Zn(j`) ≥ m`)

]

+
1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E
[
PW (Zn(ji) ≥ d(1 + ηi)mie)

∏

`∈[k]\{i}
PW (Zn(j`) ≥ m`)

]
.

The first term in the last step can be included in the little o term in (5.51) (even when
considering mi rather than d(1 + ηi)mie in the probability), as follows from computations
similar to the ones in (5.38) through (5.49), combined with Remark 5.4 (which states that
p≥k = O(pk)). It remains to show that the same holds for the second term in the last step.
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Again, we use an argument similar to the steps performed in (5.44) through (5.48) to arrive
at

1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E
[
PW (Zn(ji) ≥ d(1 + ηi)mie)

∏

`∈[k]\{i}
PW (Zn(j`) ≥ m`)

]

≤ Kp≥d(1+ηi)mie
∏

`∈[k]\{i}
p≥m` ,

for some positive constant K. By Lemma 5.5 we have the inequalities

p≥d(1+ηi)mie ≤ θ−d(1+ηi)mie ≤ θ−miθ−ηimi , p≥mi ≥ (θ + ξ)−mi ,

for any ξ > 0. As a result, taking ξ ∈ (0, θ(θηi −1)) and setting φi := 1− (1 + ξ/θ)θ−ηi > 0,
we obtain

p≥d(1+ηi)mie ≤ (θ + ξ)−mi
(
(1 + ξ/θ)θ−ηi

)mi ≤ p≥mi(1− φi)mi . (5.52)

As mi = ci log n(1 + o(1)), it follows that (1− φi)mi = n−ci log(1/(1−φi))(1+o(1)), so that

1

(n)k

∑

n1−ε≤j1 6=... 6=jk≤n
E
[
PW (Zn(ji) ≥ d(1 + ηi)mie)

∏

`∈[k]\{i}
PW (Zn(j`) ≥ m`)

]

can be incorporated in the little o term in (5.51) for each i ∈ [k] when we take a β′ <
β ∧mini∈[k] ci log(1/(1− φi)). This yields

P(Zn(v`) ≥ m`, ` ∈ [k]) ≤
k∏

`=1

E
[( W

θ − 1 +W

)m`] (
1 + o

(
n−β

′))
. (5.53)

For a lower bound, we can omit the second line of (5.50) and use (5.51) to immediately
obtain

P(Zn(v`) ≥ m`, ` ∈ [k]) ≥
b(1+η1)m1c∑

j1=m1

· · ·
b(1+ηk)mk)c∑

jk=mk

P(Zn(v`) = i`, ` ∈ [k])

=
k∏

`=1

(
p≥m` − p≥b(1+η`)m`c

)(
1 + o

(
n−β

))
.

Again using (5.52) yields p≥m` − p≥b(1+η`)m`c = p≥m`
(
1 + o

(
n−β

′))
when we set β′ <

β ∧ mini∈[k] ci log(1/(1 − φi)). Combined with (5.53) this yields (5.2) and concludes the
proof. �

6. Proofs of the main theorems

With the tools developed in Section 5, in particular Propositions 5.1 and 5.6 and Lemma 5.8,
we now prove the main results formulated in Section 2.

First, we prove the main result for high degree vertices when the vertex-weight distribution
has an atom at one, as in the (Atom) case.

Proof of Theorem 2.5. The proof follows the same argument as [1, Theorem 1.2]. For an
integer subsequence (n`)`∈N such that εn` → ε as ` → ∞, it suffices to prove that for any
i < i′ ∈ Z,

(X
(n`)
i , X

(n`)
i+1 , . . . , X

(n`)
i′−1, X

(n`)
≥i′ )

d−→ (Pε(i),Pε(i+1), . . . ,Pε(i′−1),Pε([i′,∞)) as `→∞
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holds. We obtain this via the convergence of the factorial moments ofX
(n`)
i , . . . , X

(n`)
i′−1, X

(n`)
≥i′ .

Recall rk in (2.8). By Proposition 5.6, for any non-negative integers ai, . . . , ai′ ,

E

[(
X

(n`)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n`)
k

)
ak

]
=
(
q0θ
−i′+εn`

)ai′ i
′−1∏

k=i

(
q0(1− θ−1)θ−k+εn`

)ak

×
(
1 +O

(
rblogθ n`c+i ∨ n

−β
`

))

→
(
q0θ
−i′+ε

)ai′ i
′−1∏

k=i

(
q0(1− θ−1)θ−k+ε

)ak
,

as `→∞. By using the properties of Poisson processes, it follows that the limit equals

E

[
(
Pε[i′,∞)

)
ai′

i′−1∏

k=i

(
Pε(k)

)
ak

]
,

due to the particular form of the intensity measure of the Poisson process P (which is used
in the definition of the Poisson process Pε). The result then follows from [12, Theorem
6.10]. �

For the results for the (Weibull) and (Gumbel) cases, as outlined in Theorems 2.6 and 2.7,
respectively, we combine the asymptotic behaviour of p≥k in Theorem 5.3 with Proposi-
tion 5.1 and Lemma 5.8.

Proof of Theorem 2.6. To establish the convergence in probability, it follows from Lemma 5.8
that we need only consider nP(Zn(v1) ≥ kn) for some adequate integer-valued kn such that
kn < c log n for some c ∈ (0, θ/(θ − 1)) and where v1 is a vertex selected from [n] uni-
formly at random. By Proposition 5.1, this quantity equals np≥kn(1 + o(1)). Then, we
use Theorem 5.3 and Remark 5.4 to obtain that, when W satisfies the (Weibull) case in
Assumption 2.3, this quantity is at most

nC L(kn)k−(α−1)n θ−kn ,

where C > 1 is a constant. Now fix an arbitrary η > 0 and set kn := blogθ n− (α− 1)(1−
η) logθ logθ nc. This yields

nC L(logθ n(1 + o(1)))(logθ n)−(α−1)θ−blogθ n−(α−1)(1−η) logθ logθ nc(1 + o(1))

≤ C2L(logθ n)(logθ n)−(α−1)(logθ n)(α−1)(1−η)

= C2L(logθ n)(logθ n)−(α−1)η.

(6.1)

Here, C2 > 0 is a suitable constant and we use that kn = logθ n(1 + o(1)) in the first step.
Furthermore, we use [2, Theorem 1.5.2], which states that for a slowly-varying function L,
L(λx)/L(x) converges to one uniformly in λ on any interval [a, b] such that 0 < a ≤ b <∞.
As a result, L(logθ n(1 + o(1))) ≤ cL(logθ n) for some constant c > 1 and n sufficiently
large. Finally, we use [2, Proposition 1.3.6 (v)] to obtain that for any η > 0, the final line
of (6.1) tends to zero with n. This shows that for any η > 0, with high probability,

max
j∈[n]

Zn(j)− logθ n

logθ logθ n
≤ −(α− 1)(1− η)

holds, due to the first result in Lemma 5.8. A similar approach, when setting kn :=
blogθ n− (α− 1)(1 + η) logθ logθ nc, yields

nP(Zn(v1) ≥ kn)→∞,
so that for any η > 0, with high probability,

max
j∈[n]

Zn(j)− logθ n

logθ logθ n
≥ −(α− 1)(1 + η)

holds. Together, these two bounds prove the desired result. �
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Proof of Theorem 2.7. The proof of this theorem follows a similar approach to the proof of
Theorem 2.6. That is, we again apply the results from Theorem 5.3 together with the fact
that

nP(Zn(v1) ≥ kn) = np≥kn(1 + o(1)),

for some adequate integer-valued kn such that kn < c log n for some c ∈ (0, θ/(θ − 1)), as
follows from Proposition 5.1 and Lemma 5.8. In the (Gumbel)-(RV) sub-case, we know
that

p≥kn = exp
{
− τγ

1− γ
((1− θ−1)kn

c1

)1−γ
(1 + o(1))

}
θ−kn , (6.2)

where we recall that γ = 1/(τ + 1). To prove the desired results, we first set kn = blogθ n−
(1+η)Cθ,τ,c1(logθ n)1−γc for any η > 0, where we recall Cθ,τ,c1 from (2.5). Using this in (6.2)
then yields

np≥kn =
n

θkn
e− log(θ)Cθ,τ,c1k

1−γ
n (1+o(1)) ≥ eη log(θ)Cθ,τ,c1 (logθ n)

1−γ(1+o(1)),

where we use that k1−γn = (logθ n)1−γ(1 + o(1)) in the last step. Hence, nP(Zn(v1) ≥ kn)
diverges. We thus conclude from Lemma 5.8 that

max
j∈[n]

Zn(j)− logθ n

(logθ n)1−γ
≥ −(1 + η)Cθ,τ,c1

holds with high probability. A similar approach, setting
kn := dlogθ n−(1−η)Cθ,τ,c1(logθ n)1−γe and combining this with the first result of Lemma 5.8
yields

max
j∈[n]

Zn(j)− logθ n

(logθ n)1−γ
≤ −(1− η)Cθ,τ,c1

holds with high probability. Together, these two bounds prove (2.5). To prove (2.6) we
apply the same methodology but use the asymptotic expression of pk (and p≥k by adjusting
constants), as in (5.5). We recall the constants C1, C2, C3 from (2.7) and set kn =: dlogθ n−
C1(logθ logθ n)τ+C2(logθ logθ n)τ−1 logθ logθ logθ n+(C3+η)(logθ logθ n)τ−1e, for any η > 0.
Then, (5.5) yields

np≥kn =
n

θkn
exp

{
−
( log kn

c1

)τ(
1 +

τ(τ − 1) log log kn
log kn

− Kτ,c1,θ

log kn
(1 + o(1))

)}
.

Using Taylor expansions, we obtain

−
( log kn

c1

)τ
= −

( log logθ n

c1

)τ
+ o(1) = − log(θ)C1(logθ logθ n)τ + o(1),

τ(τ − 1)

cτ1
(log kn)τ−1 log log kn =

τ(τ − 1)

cτ1
(log logθ n)τ−1 log log logθ n+ o(1)

= log(θ)C2(logθ logθ n)τ−1 logθ logθ logθ n

+ (logθ(log θ))(log θ)τ
τ(τ − 1)

cτ1
(logθ logθ n)τ−1 + o(1),

−Kτ,c1,θ

cτ1
(log kn)τ−1 = − Kτ,c1,θ

cτ1
(log logθ n)τ−1 + o(1)

= − (log θ)τ−1
Kτ,c1,θ

cτ1
(log logθ n)τ−1 + o(1),

where we recall Kτ,c1,θ from (5.5) in Theorem 5.3, so that

n exp
{
−
( log kn

c1

)τ
+
τ(τ − 1)

cτ1
(log kn)τ−1 log log kn −

Kτ,c1,θ

cτ1
(log kn)τ−1(1 + o(1))

}
θ−kn

= n exp
{
− log(θ)C1(logθ logθ n)τ + log(θ)C2(logθ logθ n)τ−1 logθ logθ logθ n

+ log(θ)C3(logθ logθ n)τ−1(1 + o(1))
}
θ−kn

≤ exp
{
− (η − o(1))(logθ logθ n)τ−1

}
,
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where we use that kn ≥ logθ n−C1(logθ logθ n)τ +C2(logθ logθ n)τ−1 logθ logθ logθ n+(C3 +
η)(logθ logθ n)τ−1 in the last step. As the right-hand side tends to zero with n, Lemma 5.8
yields for any fixed η > 0, with high probability,

max
i∈[n]

Zn(i)−
(

logθ n− C1(logθ logθ n)τ + C2(logθ logθ n)τ−1 logθ logθ logθ n
)

(logθ logθ n)τ−1
≤ C3 + η.

With a similar approach, setting

kn = blogθ n−C1(logθ logθ n)τ+C2(logθ logθ n)τ−1 logθ logθ logθ n+(C3−η)(logθ logθ n)τ−1c,

we can obtain that for any fixed η > 0, with high probability,

max
i∈[n]

Zn(i)−
(

logθ n− C1(logθ logθ n)τ + C2(logθ logθ n)τ−1 logθ logθ logθ n
)

(logθ logθ n)τ−1
≥ C3 − η.

Together these two bounds yield (2.6), which concludes the proof. �

Proof of Theorem 2.8. The proof follows the same approach as the proof of [1, Theorem
1.3]. We thus need to consider two cases: i = O(1) and i → ∞ such that i + logθ n <
(θ/(θ − 1)) log n and lim infn→∞ i > −∞. For the former case, as exp{−q0θ−i+εn} = O(1),
it suffices to prove

P
(

max
j∈[n]
Zn(j) ≥ blogθ nc+ i

)
− (1− exp{−q0θ−i+εn})→ 0 as n→∞.

By the definition of X
(n)
≥i in (2.3), this is equivalent to

P
(
X

(n)
≥i = 0

)
− exp{−q0θ−i+εn} → 0 as n→∞. (6.3)

This follows from Theorem 2.5 and the subsubsequence principle. That is, if we assume
the convergence in (6.3) does not hold, then there exists a subsequence (n`)`∈N and a δ > 0
such that

P
(
X

(n`)
≥i = 0

)
− exp{−q0θ−i+εn`} > δ ∀ ` ∈ N. (6.4)

However, as εn` is bounded, there exists a subsubsequence εn`k such that εn`k → ε for some

ε ∈ (0, 1]. Then, by Theorem 2.5, the statement in (6.4) is false, from which the result
follows

In the latter case, we need only consider E
[
X

(n)
≥i
]

and E
[(
X

(n)
≥i
)
2

]
, as

E
[
X

(n)
≥i
]
− 1

2
E
[(
X

(n)
≥i
)
2

]
≤ P

(
X

(n)
≥i > 0

)
≤ E

[
X

(n)
≥i
]
, (6.5)

again see [1, Theorem 1.3] and its proof for more details. By Proposition 5.6, we have that

E
[
X

(n)
≥i
]

= q0θ
−i+εn(1 + o(1)), E

[(
X

(n)
≥i
)
2

]
=
(
q0θ
−i+εn)2(1 + o(1)).

Hence, as i→∞ and εn is bounded,

E
[
X

(n)
≥i
]

=
(
1− exp

{
q0θ
−i+εn})(1 + o(1)),

E
[
X

(n)
≥i
]
− 1

2
E
[(
X

(n)
≥i
)
2

]
=
(
1− exp

{
q0θ
−i+εn})(1 + o(1)).

Combining this with (6.5) yields the desired result. �

Proof of Theorem 2.9. The proof follows the same argument as the proof of [1, Theorem
1.4], which is based on [3, Theorem 1.24]. Let 1 ≤ a ≤ b be integers. Then, by Proposi-
tion 5.6 and since i = o(log n),

E
[(
X

(n)
i

)
a

]
−
(
q0(1− θ−1)θ−i+εn

)a
= O

(
θ−ia

(
rblogθ n+ic ∨ n

−β)).
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It then remains to show that the right-hand side is in fact o(θib). We note that i =
o(log rlogθ n ∧ log n), so that we can write the right-hand side as

O
(
(rlogθ n)1−ia log θ/ log rlogθ n ∨ n−β−ia log θ/ logn

)
= O

(
(rlogθ n)1−o(1) ∨ n−β−o(1)

)
= o(θib),

by the constraints on i, from which the result follows. �

7. Technical details of examples

In this section we discuss some technical details of the examples discussed in Section 4. In
particular, for each example we provide a precise asymptotic expression of pk and p≥k as
well as a key element that leads to the results in Section 4. That is, for each of the examples
we state and prove the analogue of Proposition 5.6. The three theorems presented in each
of the examples in Section 4 mimic three of the theorems presented in Section 2. That
is, Theorems 4.2 and 4.6 are the analogue of Theorems 2.5, Theorems 4.3 and 4.7 are the
analogue of Theorem 2.8 and Theorems 4.4 and 4.8 are the analogue of Theorem 2.9. As a
result, their proofs are very similar to the proofs of Theorems 2.5, 2.8 and 2.9, so we omit
proving the theorems stated in Section 4.

7.1. Example 4.1, beta distribution bounded away from zero. Let the distribution
of W satisfy (4.1) for some α, β > 0, w∗ ∈ (0, 1). We prove a result on (the tail of) the
limiting degree distribution and provide additional building blocks required to prove the
results in Example 4.1.

Lemma 7.1. Let the distribution of W satisfy (4.1) for some α, β > 0, w∗ ∈ (0, 1) and
recall pk, p≥k from (2.1). Then,

pk = Zw∗
Γ(α+ β)

Γ(α)
(1− θ−1)1−βk−βθ−k

(
1 +O(1/k)

)
,

p≥k = Zw∗
Γ(α+ β)

Γ(α)
(1− θ−1)−βk−βθ−k

(
1 +O(1/k)

)
.

(7.1)

Note that this Lemma improves on the bounds in (5.3) by providing a precise multiplicative
constant, rather than two slowly-varying functions that are (possibly) of different order.

Proof. By the distribution of W , we immediately obtain that

pk =

∫ 1

w∗
(θ − 1)xk(θ − 1 + x)−(k+1)Zw∗

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx,

where Γ is the gamma function. Let us denote the integrand by f(x, k). We first consider
the asymptotic behaviour of the integral when its lower bound on the integration variable x
is zero, and show that it is equal to the right-hand side of the first equation in (7.1). Then,
we show that ∫ w∗

0
f(x, k) dx = o

(∫ 1

w∗
f(x, k) dx

)
,

which combined yields the desired result. So, we start with
∫ 1

0
(θ − 1)xk(θ − 1 + x)−(k+1) Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx

= (θ − 1)−k
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
xk+α−1(1− x)β−1(1 + x/(θ − 1))−(k+1) dx,

(7.2)

where we omit Zw∗ for ease of writing. We now use Euler’s integral representation of the
hypergeometric function. That is, for a, b, c, z ∈ C such that Re(c) > Re(b) > 0 and z is
not a real number greater than one,

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dx =

Γ(c− b)Γ(b)

Γ(c)
2F1(a, b, c, z),
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where 2F1 is the hypergeometric function. Applying this in (7.2), we thus obtain

(θ − 1)−k
Γ(α+ β)Γ(k + α)

Γ(α)Γ(k + α+ β)
2F1(k + 1, k + α, k + α+ β,−1/(θ − 1)).

We then use one of the Euler transformations of the hypergeometric function,

2F1(a, b, c, z) = (1− z)c−a−b2F1(c− a, c− b, c, z),
to arrive at

θ−k
Γ(α+ β)Γ(k + α)

Γ(α)Γ(k + α+ β)

( θ

θ − 1

)β−1
2F1(α+ β − 1, β, k + α+ β,−1/(θ − 1)). (7.3)

We directly find a particular case in which we can find the value of the hypergeometric
function explicitly, namely when α + β = 1. When α + β = 1, we find that the hypergeo-
metric function on the right-hand side of (7.3) equals one as the first argument equals zero,
independent of the other arguments, so that we arrive at

(1− θ−1)1−βΓ(k + α)

Γ(α)Γ(k + 1)
θ−k =

(1− θ−1)1−β
Γ(α)

k−βθ−k
(
1 +O(1/k)

)
,

since Γ(x+a)/Γ(x) = xa
(
1+O(1/x)

)
as x→∞ and α = 1−β in this particular case. When

α+ β 6= 1, we can obtain a similar expression. First, we use one of Pfaff’s transformations
for the hypergeometric function,

2F1(a, b, c, z) = (1− z)−b2F1(b, c− a, c, z/(z − 1)).

Then, applying this to the right-hand side of (7.3), so that z/(z − 1) = 1/θ ∈ (−1, 1), we
can express the hypergeometric function as a power series. Namely, for z such that |z| < 1,

2F1(a, b, c, z) =

∞∑

j=0

a(j)b(j)

c(j)
zj

Γ(j)
,

where a(j) :=
∏j
`=1(a + (` − 1)) (and similarly for b(j), c(j)). Thus, combining the Pfaff

transformation and the power series representation yields

2F1(α+ β − 1, β, k + α+ β,−1/(θ − 1)) =
( θ

θ − 1

)−β ∞∑

j=0

β(j)(k + 1)(j)

(k + α+ β)(j)
θ−j

j!
. (7.4)

From the α+ β = 1 case, we immediately distil that
∞∑

j=0

β(j)

j!
θ−j =

( θ

θ − 1

)β
. (7.5)

The aim is to show that for k large, the series in (7.4) is close to (θ/(θ− 1))β for any choice
of α, β > 0, so that the entire term in (7.4) is close to one. We consider two cases, namely
α + β < 1 and α + β > 1. Let us start with the latter. We immediately obtain the upper
bound (k+α+β)(j) > (k+ 1)(j), so that using (7.5) yields that the right-hand side of (7.4)
is at most one. For a lower bound, we note that

(k + 1)(j)

(k + α+ β)(j)
=

j∏

`=1

(
1− α+ β − 1

k + α+ β + (`− 1)

)
≥
(

1− α+ β − 1

k + α+ β

)j
,

as the fraction in the second step in decreasing in `, since α + β − 1 > 0. We thus obtain
the lower bound

( θ

θ − 1

)−β ∞∑

j=0

β(j)(k + 1)(j)

(k + α+ β)(j)
θ−j

j!
≥
( θ

θ − 1

)−β ∞∑

j=0

β(j)

j!

((
1− α+ β − 1

k + α+ β

)1

θ

)j
,

which, as in (7.5), equals
( θ − 1

θ − 1 + α+β−1
k+α+β

)β
=
(

1− α+ β − 1

(θ − 1)(k + α+ β) + (α+ β − 1)

)β
= 1−O(1/k).
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A similar approach can be used for α+ β < 1, where one would have an elementary lower
bound and an upper bound that is 1 +O(1/k). In total, combining the above in (7.4) and
then in (7.3) yields

∫ 1

0
f(x, k) dx = Zw∗

Γ(α+ β)

Γ(α)
(1− θ−1)1−βk−βθ−k

(
1 +O(1/k)

)
.

We then consider
∫ w∗

0
(θ − 1)xk(θ − 1 + x)−(k+1)Zw∗

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx.

We bound the term (1 − x)β−1 from above by (1 − w∗)(β−1)∧0. Since xk+α−1(1 + x/(θ −
1))−(k+1) is increasing for x ∈ (0, 1) when k is sufficiently large, we obtain the upper bound

(θ − 1)−kZw∗
Γ(α+ β)

Γ(α)Γ(β)
(1− w∗)(β−1)∧0(w∗)k+α

(
1 +

w∗

θ − 1

)−(k+1)

= Zw∗
Γ(α+ β)

Γ(α)Γ(β)
(1− w∗)(β−1)∧0(w∗)α

(
1 +

w∗

θ − 1

)−1( w∗

θ − 1 + w∗

)k
.

Since w∗/(θ − 1 + w∗) is increasing in w∗, it is strictly smaller than 1/θ. Hence,
∫ w∗

0
(θ − 1)xk(θ − 1 + x)−(k+1)Zw∗

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx = o

(
θ−kk−(1+β)

)
,

independent of the value of β, so that

pk =

∫ 1

0
(θ − 1)xk(θ − 1 + x)−(k+1)Zw∗

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx

−
∫ w∗

0
(θ − 1)xk(θ − 1 + x)−(k+1)Zw∗

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx

= Zw∗
Γ(α+ β)

Γ(α)
(1− θ−1)1−βk−βθ−k

(
1 +O(1/k)

)
− o
(
θ−kk−(1+β)

)

= Zw∗
Γ(α+ β)

Γ(α)
(1− θ−1)1−βk−βθ−k

(
1 +O(1/k)

)
.

which proves the first line of (7.1).

An equivalent computation can be performed for
∫ 1

0
xk(θ − 1 + x)−kZw∗

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx, (7.6)

to obtain that it equals

θ−kZw∗
Γ(α+ β)Γ(k + α)

Γ(α)Γ(k + α+ β)

( θ

θ − 1

)β
2F1(α+ β, β, k + α+ β,−1/(θ − 1))

= θ−kZw∗
Γ(α+ β)Γ(k + α)

Γ(α)Γ(k + α+ β)
2F1(β, k, k + α+ β, 1/θ)

= θ−kZw∗
Γ(α+ β)Γ(k + α)

Γ(α)Γ(k + α+ β)

∞∑

j=0

β(j)k(j)

(k + α+ β)(j)
θ−j

j!
.

In this case an equivalent approach for bounding the sum on the right-hand side works for
all α, β > 0. Hence, for (7.6) we obtain the asymptotic expression

Zw∗
Γ(α+ β)

Γ(α)
(1− θ−1)−βk−βθ−k

(
1 +O(1/k)

)
.

Via the same we can show that the integral from zero to w∗ is asymptotically negligible,
which finishes the proof. �
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Recall that in this example we set

X
(n)
i := |{j ∈ [n] : Zn(j) = blogθ n− β logθ logθ nc+ i}|,

X
(n)
≥i := |{j ∈ [n] : Zn(j) ≥ blogθ n− β logθ logθ nc+ i}|,
εn := (logθ n− β logθ logθ n)− blogθ n− β logθ logθ nc.

We then state the analogue of Proposition 5.6.

Proposition 7.2. Consider the WRT model as in Definition 2.1 with vertex-weights
(Wi)i∈[n] whose distribution satisfies (4.1) for some α, β > 0, w∗ ∈ (0, 1). For a fixed
K ∈ N, c ∈ (0, θ/(θ − 1)), the following holds. For any i, i′ = i(n), i′(n) in Z such that
0 < logθ n+ i < logθ n+ i′ < c log n and i, i′ ∼ δ logθ n, for some δ ∈ (−1, c log θ − 1) ∪ {0}
(δ = 0 denotes i, i′ = o(log n)) and for ai, . . . , ai′ ∈ N0 satisfying ai + · · ·+ ai′ = K,

E
[(
X

(n`)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n`)
k

)
ak

]

=
(
Zw∗

Γ(α+ β)

Γ(α)

(1− θ−1)1−β
(θ − 1)(1 + δ)β

θ−i
′+1+εn

)ai′ i
′−1∏

k=i

(
Zw∗

Γ(α+ β)

Γ(α)

(1− θ−1)1−β
(1 + δ)β

θ−k+εn
)ak

×
(

1 +O
( log logn

log n
∨ |i− δ logθ n| ∨ |i′ − δ logθ n|

log n

))
.

Proof. Set K ′ := K − ai′ and for each i ≤ k ≤ i′ and for each u such that
∑k−1

`=i a` <

u ≤∑k
`=i a`, let mu = blogθ n− logθ logθ nc+ k. Also, let (vu)u∈[K] be K vertices selected

uniformly at random without replacement from [n]. Then, as the X
(n)
≥k and X

(n)
k can be

expressed as sums of indicators, following the same steps as in the proof of Proposition 5.6,

E

[(
X

(n)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n)
k

)
ak

]
= (n)K

K′∑

`=0

∑

S⊆[K′]
|S|=`

(−1)`P
(
deg(vu) ≥ mu + 1{u∈S}, u ∈ [K]

)
.

By Proposition 5.1,

P
(
deg(v`) ≥ mu + 1{u∈S}, u ∈ [K]

)
=

K∏

u=1

E
[( W

E [W ] +W

)mu+1{u∈S}]
(1 + o(n−β)),

for some β > 0. By Lemma 7.1, when |S| = `,

K∏

u=1

E
[( W

E [W ] +W

)mu+1{u∈S}]

=
(
Zw∗

Γ(α+ β)

Γ(α)
(1− θ−1)−β

)K
θ−

∑K
u=1mu−`

K∏

u=1

(mu + 1{u∈S})
−β(1 +O(1/ log n)).

Here, we are able to obtain the error term 1−O(1/ log n) due to the fact that logθ n+ i >
η log n for some η ∈ (0, 1 + δ) when n is large. Moreover, as i, i′ ∼ δ logθ n and thus
mu ∼ (1 + δ) logθ n for each u ∈ [K],

K∏

u=1

(mu+1{u∈S})
−β = ((1+δ) logθ n)−βK

(
1+O

( log log n

log n
∨ |i− δ logθ n| ∨ |i′ − δ logθ n|

log n

))
,
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uniformly in S (and `). We thus arrive at

(n)K

K′∑

`=0

∑

S⊆[K′]
|S|=`

(−1)`
(
Zw∗

Γ(α+ β)

Γ(α)
(1− θ−1)−β(1 + δ)−β(logθ n)−β

)K
θ−

∑K
u=1mu−`

×
(

1 +O
( log log n

log n
∨ |i− δ logθ n| ∨ |i′ − δ logθ n|

log n

))

=
(
Zw∗

Γ(α+ β)(1− θ−1)1−β
Γ(α)(θ − 1)(1 + δ)β

θ−i
′+1+εn

)ai′ i
′−1∏

k=i

(
Zw∗

Γ(α+ β)(1− θ−1)1−β
Γ(α)(1 + δ)β

θ−k+εn
)ak

×
(

1 +O
( log log n

log n
∨ |i− δ logθ n| ∨ |i′ − δ logθ n|

log n

))
,

where the last step follows from a similar argument as in the proof of Proposition 5.6. �

With Proposition 7.2 at hand, the proofs of Theorems 4.2, 4.3 and 4.4 follow the same
approach as the proofs of Theorems 2.5, 2.8 and 2.9, respectively.

7.2. Example 4.5, fraction of ‘gamma-like’ random variables. Let the distribution
of W satisfy (4.2) for some α, β > 0, w∗ ∈ (0, 1). We prove a result on (the tail of) the
limiting degree distribution and provide additional building blocks required to prove the
results in Example 4.5.

Lemma 7.3. Let the distribution of W satisfy (4.2) and recall pk, p≥k, C from (2.1) and (4.3),
respectively. Then,

pk = Zw∗(1− θ−1)Ckb/2+1/4e−2
√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))
,

p≥k = Zw∗Ck
b/2+1/4e−2

√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))
.

Note that this Lemma improves on the bounds in (5.4) by providing a polynomial correction
term and a precise multiplicative constant.

Proof. We start by proving the equality for p≥k and then show the similar result for pk.
By (4.2), we obtain the following expression for p≥k.

p≥k =

∫ 1

w∗
xk(θ − 1 + x)−kZw∗c

−1
1 (1− x)−(2+b)e−c

−1
1 x/(1−x) dx

−
∫ 1

w∗
xk(θ − 1 + x)−kZw∗b(1− x)−(1+b)e−c

−1
1 x/(1−x) dx.

(7.7)

The second integral is of a similar form as the first, with a different constant in front and
a different polynomial exponent. We hence only provide an explicit analysis of the first
integral. As in the proof of Lemma 7.1, we start by considering the integral

∫ 1

0
xk(θ − 1 + x)−kc−11 (1− x)−(2+b)e−c

−1
1 x/(1−x) dx, (7.8)

where we omit the constant Zw∗ for ease of writing, and then show that the integral from
zero up to w∗ is asymptotically negligible compared to the integral from zero to one. Using
a variable transform u = x/(1− x), we find that (7.8) equals

θ−kc−11

∫ ∞

0
uk(1 + u)b−k

(
1− 1

θ(1 + u)

)−k
e−c

−1
1 u du.

We now define Xu to be a negative binomial random variable with parameters k and
pu := (θ(1 + u))−1, for any u > 0. As the sum over the probability mass function of Xu is
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one irrespectively of the value of u, we obtain that the above equals

θ−kc−11

∫ ∞

0

∞∑

j=0

(
j + k − 1

j

)
pju(1− pu)kuk(1 + u)b−k

(
1− 1

θ(1 + u)

)−k
e−c

−1
1 u du

= θ−kc−11

∫ ∞

0

∞∑

j=0

(
j + k − 1

j

)
θ−juk(1 + u)b−(j+k)e−c

−1
1 u du

= θ−kc−11

∞∑

j=0

(
j + k − 1

j

)
θ−jΓ(k + 1)U(k + 1, 2 + b− j, c−11 ),

where U(a, b, z) is the confluent hypergeometric function of the second kind, defined as

U(a, b, z) :=
1

Γ(a)

∫ ∞

0
xa−1(1 + x)b−a−1e−zx dx,

whenever Re(a) > 0. Using the Kummer transform U(a, b, z) = z1−bU(1 + a − b, 2 − b, z)
yields

θ−kc−11

∞∑

j=0

(
j + k − 1

j

)
θ−jΓ(k + 1) c

b−(j−1)
1 U(j + k − b, j − b, c−11 ).

Again using the definition of the confluent hypergeometric function of the second kind, we
obtain

cb1θ
−k

∞∑

j=0

Γ(j + k)Γ(k + 1)

Γ(k)Γ(j + 1)Γ(j + k − b)(c1θ)
−j
∫ ∞

0
uj+k−b−1(1 + u)−(k+1)e−c

−1
1 u du

= cb1kθ
−k Γ(k)

Γ(k − b)
∞∑

j=0

Γ(j + k)Γ(k − b)
Γ(j + k − b)Γ(k)

1

j!
(c1θ)

−j
∫ ∞

0
uj+k−b−1(1 + u)−(k+1)e−c

−1
1 u du

= cb1kθ
−k Γ(k)

Γ(k − b)
∞∑

j=0

(k)(j)

(k − b)(j)
1

j!
(c1θ)

−j
∫ ∞

0
uj+k−b−1(1 + u)−(k+1)e−c

−1
1 u du,

where (x)(j) := x(x+ 1) · · · (x+ (j − 1)), x ∈ R, j ∈ N0. When can then bound

(k)(j)

(k − b)(j) ≥





1 if k > b ≥ 0,(
k
k−b

)j
if b < 0.

and
(k)(j)

(k − b)(j) ≤





1 if b < 0,(
k
k−b

)j
if k > b ≥ 0.

(7.9)

As the bounds are symmetric, we can assume that b ≥ 0 without loss of generality; the
other case follows similarly. We deal with the lower bound first. This yields

cb1kθ
−k Γ(k)

Γ(k − b)
∞∑

j=0

1

j!
(c1θ)

−j
∫ ∞

0
uj+k−b−1(1 + u)−(k+1)e−c

−1
1 u du

= cb1kθ
−k Γ(k)

Γ(k − b)

∫ ∞

0
uk−b−1(1 + u)−(k+1)e−c

−1
1 (1−θ−1)u du

= cb1kθ
−k Γ(k)

Γ(k − b)Γ(k − b)U(k − b,−b, c−11 (1− θ−1)).

(7.10)

It follows from [18, (3.12) and (3.15)] that, when a > d/2 is large and d, z are bounded,

Γ(a)U(a, d, z2) = 2ez
2/2
(2z

u

)1−d
K1−d(uz)

(
1 +O(1/u)

)
,

where u = 2
√
a− d/2 and K1−d(uz) is a modified Bessel function. Combined with the

asymptotic expression for the modified Bessel function as in [14, (10.40.2)], we obtain

Γ(a)U(a, d, z2) = 2

√
π

2uz
ez

2/2−uz
(2z

u

)1−d(
1 +O(1/u)

)
. (7.11)
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In this particular case, it yields

Γ(k − b)U(k − b,−b, c−11 (1− θ−1))

= ec
−1
1 (1−θ−1)/2√π(c−11 (1− θ−1))1/4+b/2k−b/2−3/4e−2

√
c−1
1 (1−θ−1)k

(
1 +O

(
1/
√
k
))
.

Using this, as well as Γ(k)/Γ(k − b) = kb(1 +O(1/k)), in (7.10), we arrive at

ec
−1
1 (1−θ−1)/2√πc−1/4+b/21 ((1− θ−1)k)1/4+b/2e−2

√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))
.

We then tend to the upper bound in (7.9) for b ≥ 0, which yields

cb1kθ
−k Γ(k)

Γ(k − b)
∞∑

j=0

1

j!

((c1θ)
−1k

k − b
)j ∫ ∞

0
uj+k−b−1(1 + u)−(k+1)e−c

−1
1 u du

= cb1kθ
−k Γ(k)

Γ(k − b)

∫ ∞

0
uk−b−1(1 + u)−(k+1)e−(c

−1
1 (1−θ−1)−(c1θ)−1b/(k−b))u du

= cb1kθ
−k Γ(k)

Γ(k − b)Γ(k − b)U(k − b,−b, c−11 (1− θ−1)− (c1θ)
−1b/(k − b)).

From the asymptotic results in (7.11) we find that

U
(
k − b,−b, 1

c1

(
1− θ−1

)
− 1

c1θ

b

k − b
)

= U
(
k − b,−b, 1

c1

(
1− θ−1

))(
1 +O(1/

√
k)
)
,

so that the lower and upper bound match up to error terms (of the same order). By (7.11),
we thus arrive at∫ 1

0
xk(θ − 1 + x)−kZw∗c

−1
1 (1− x)−(2+b)e−c

−1
1 x/(1−x) dx

= Zw∗e
c−1
1 (1−θ−1)/2√πc−1/4+b/21 ((1− θ−1)k)1/4+b/2e−2

√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))

= Zw∗Ck
1/4+b/2e−2

√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))
.

Then, we bound
∫ w∗

0
xk(θ − 1 + x)−kZw∗c

−1
1 (1− x)−(2+b)e−c

−1
1 x/(1−x) dx

≤ Zw∗

c1
(1− w∗)−((2+b)∨0)

∫ w∗

0
xk(θ − 1 + x)−k dx

≤ Zw∗

c1
(1− w∗)−((2+b)∨0)w∗

( w∗

θ − 1 + w∗

)k
,

where we use that x 7→ (x/(θ − 1 + x))k is increasing in x. This also implies that w∗/(θ −
1 + w∗) < 1/θ, so that
∫ w∗

0
xk(θ− 1 +x)−kZw∗c

−1
1 (1−x)−(2+b)e−c

−1
1 x/(1−x) dx = o

(
θ−ke−2

√
c−1
1 (1−θ−1)k1/4+b/2

)
,

independent of the values of c1, b and θ. As a result,
∫ 1

w∗
xk(θ − 1 + x)−kZw∗c

−1
1 (1− x)−(2+b)e−c

−1
1 x/(1−x) dx

= Zw∗Ck
1/4+b/2e−2

√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))
.

(7.12)

Finally, when considering the second integral in (7.7), we observe its integrand is similar to

that of the first integral but with a different constant in front and with a constant b̃ = b−1
in the polynomial exponent. We can thus follow the exact same steps as for the first integral
in (7.7) to conclude that it can be included in the O(1/

√
k) term in (7.12). In total,

p≥k = Zw∗Ck
1/4+b/2e−2

√
c−1
1 (1−θ−1)kθ−k

(
1 +O

(
1/
√
k
))
,

as required.
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We now show the result for pk, which uses the above steps with several minor adjustments.
First,

pk = Zw∗(θ − 1)

∫ 1

w∗
xk(θ − 1 + x)−(k+1)c−11 (1− x)−(2+b)e−c

−1
1 x/(1−x) dx

− Zw∗(θ − 1)

∫ 1

w∗
xk(θ − 1 + x)−(k+1)b(1− x)−(b+1)e−c

−1
1 x/(1−x) dx.

(7.13)

As for the proof of the asymptotic expression of p≥k, we consider the first integral only as
the second one is of lower order. Moreover, we again consider the first integral with a lower
bound of zero for the integration variable x. So, omitting Zw∗ for now, we have

(θ − 1)

∫ 1

0
xk(θ − 1 + x)−(k+1)c−11 (1− x)−(2+b)ec

−1
1 x/(1−x) dx

= (1− θ−1)c−11 θ−k
∫ ∞

0
uk(1 + u)b−k

(
1− 1

θ(1 + u)

)−(k+1)
e−c

−1
1 u du

= (1− θ−1)c−11 θ−k
∞∑

j=0

(
j + k

j

)
θ−j

∫ ∞

0
uk(1 + u)b−(j+k)e−c

−1
1 u du

= (1− θ−1)c−11 θ−k
∞∑

j=0

(
j + k

j

)
θ−jΓ(k + 1)U(k + 1, 2 + b− j, c−11 )

= (1− θ−1)cb1θ−k
∞∑

j=0

(
j + k

j

)
(c1θ)

−jΓ(k + 1)U(k + j − b, j − b, c−11 )

= (1− θ−1)cb1θ−k
Γ(k + 1)

Γ(k − b)
∞∑

j=0

(k + 1)(j)

(k − b)(j)
(c1θ)

−j

j!

∫ ∞

0
uk+j−b−1(1 + u)−(k+1)e−c

−1
1 u du.

Similar to (7.9), we bound

(k − 1)(j)

(k − b)(j) ≥





1 if k > b ≥ −1,(
k+1
k−b

)j
if b < −1.

and
(k)(j)

(k − b)(j) ≤





1 if b < −1,(
k+1
k−b

)j
if k > b ≥ −1.

Again, we assume without loss of generality that b ≥ −1. Moreover, we only concern
ourselves with the lower bound on (k + 1)(j)/(k − b)(j) when b ≥ −1, since we obtain
a matching upper bound with the required error term when using the upper bound on
(k+ 1)(j)/(k− b)(j) when b ≥ −1, as in the proof for p≥k. Thus, we obtain the lower bound

(1− θ−1)cb1θ−k
Γ(k + 1)

Γ(k − b)
∞∑

j=0

(c1θ)
−j

j!

∫ ∞

0
uk+j−b−1(1 + u)−(k+1)e−c

−1
1 u du

= (1− θ−1)cb1kθ−k
Γ(k)

Γ(k − b)

∫ ∞

0
uk+j−b−1(1 + u)−(k+1)e−c

−1
1 (1−θ−1)u du,

which, up to the constant (1− θ−1), is the exact same expression as in (7.10). As discussed

above, using the upper bound on (k + 1)(j)/(k − b)(j) yields a matching upper bound (up
to error terms). Then, the same approach as in the proof of p≥k can be used to show that

∫ w∗

0
xk(θ − 1 + x)−(k+1)c−11 (1− x)b−2ec

−1
1 x/(1−x) dx = o

(
θ−ke2

√
c−1
1 (1−θ−1)kk−1/4+b/2

)
,

so that the integral from w∗ to 1 is asymptotically equivalent to the integral from 0 to
1. Following the same steps as above for the second integral in (7.13), we find it can be
included in the error term as well. Hence, the result follows. �
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Recall that in this example we set

X
(n)
i :=

∣∣{j ∈ [n] : Zn(j) =
⌊

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
⌋

+ i
}∣∣,

X
(n)
≥i :=

∣∣{j ∈ [n] : Zn(j) ≥
⌊

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
⌋

+ i
}∣∣,

εn :=
(

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
)

−
⌊

logθ n− Cθ,1,c1
√

logθ n+ (b/2 + 1/4) logθ logθ n
⌋
.

We then state the analogue of Proposition 5.6.

Proposition 7.4. Consider the WRT model as in Definition 2.1 with vertex-weights
(Wi)i∈[n] whose distribution satisfies (4.2) for some b ∈ R, c1 > 0, w∗ ∈ (0, 1). For a fixed
K ∈ N, c ∈ (1, θ/(θ − 1)) the following holds. For any i, i′ = i(n), i′(n) in Z such that

0 < logθ n + i < logθ n + i′ < c logθ n and i, i′ ∼ δ
√

logθ n for some δ ∈ R (δ = 0 denotes

i, i′ = o(
√

logθ n)) and for ai, . . . , ai′ ∈ N0 satisfying ai + . . .+ ai′ = K,

E
[(
X

(n`)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n`)
k

)
ak

]

=
( Z̃

θ − 1
θ−i

′+1+εn+Cθ,1,c1 (Cθ,1,c1−δ)/2
)ai′ i

′−1∏

k=i

(
Z̃θ−k+εn+Cθ,1,c1 (Cθ,1,c1−δ)/2

)ak

×
(

1 +O
( logθ logθ n√

logθ n
∨ |i−

√
logθ n| ∨ |i′ −

√
logθ n|√

logθ n

))
,

with Z̃ := Zw∗C.

Proof. Set K ′ := K − ai′ and for each i ≤ k ≤ i′ and for each u such that
∑k−1

`=i a` < u ≤∑k
`=i a`, let mu =

⌊
logθ n−Cθ,1,c1

√
logθ n+ (b/2 + 1/4) logθ logθ n

⌋
+k. Also, let (vu)u∈[K]

be K vertices selected uniformly at random without replacement from [n]. Then, as the

X
(n)
≥k and X

(n)
k can be expressed as sums of indicators, using the same steps as in the proof

of Proposition 5.6,

E

[(
X

(n)
≥i′
)
ai′

i′−1∏

k=i

(
X

(n)
k

)
ak

]
= (n)K

K′∑

`=0

∑

S⊆[K′]
|S|=`

(−1)`P
(
deg(vu) ≥ mu + 1{u∈S}, u ∈ [K]

)
.

By Proposition 5.1,

P
(
deg(v`) ≥ mu + 1{u∈S}, u ∈ [K]

)
=

K∏

u=1

E
[( W

E [W ] +W

)mu+1{u∈S}]
(1 + o(n−β)),

for some β > 0. By Lemma 7.3 (and recalling the constant C in (4.3)), when |S| = `,

K∏

u=1

E
[( W

E [W ] +W

)mu+1{u∈S}]

= Z̃Kθ−
∑K
u=1mu−` exp

{
− 2

K∑

u=1

√
1− θ−1
c1

(
mu + 1{u∈S}

)} K∏

u=1

(mu + 1{u∈S})
b/2+1/4

× (1 +O(1/
√

log n)).

Here, we are able to obtain the error term 1 +O(1/
√

log n) due to the fact that logθ n+ i >

η log n for some η > 0 when n is large. We note that Cθ,1,c1 log θ = 2
√
c−11 (1− θ−1). As
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i, i′ ∼ δ
√

logθ n,

K∏

u=1

(mu + 1{u∈S})
b/2+1/4 = (logθ n)K(b/2+1/4)

(
1 +O

(
1/
√

logθ n
))
,

uniformly in S (and `). Moreover, again uniform in S and `,

exp

{
− Cθ,1,c1 log θ

K∑

u=1

√
mu + 1{u∈S}

}

= exp
{
−
(
Cθ,1,c1 log θ

√
logθ n−

Cθ,1,c1 − δ
2

)}K

×
(

1 +O
( logθ logθ n√

logθ n
∨ |i−

√
logθ n| ∨ |i′ −

√
logθ n|√

logθ n

))
.

This last step follows from the fact that the first-order term of mu is logθ n and its second-
order term is −(Cθ,1,c1 − δ)

√
logθ n. Finally, its lower-order terms are logθ logθ n + (|i −√

logθ n| ∨ |i′ −
√

logθ n|). Then using a Taylor expansion for the square root yields the
result. Combining all of the above, we thus arrive at

(n)K

K′∑

`=0

∑

S⊆[K′]
|S|=`

(−1)`
(
Z̃(logθ n)b/2+1/4 exp

{
−
(
Cθ,1,c1 log θ

(√
logθ n−

Cθ,1,c1 − δ
2

))})K

× θ−
∑K
u=1mu−`

(
1 +O

( logθ logθ n√
logθ n

∨ |i−
√

logθ n| ∨ |i′ −
√

logθ n|√
logθ n

))

=
( Z̃

θ − 1
θ−i

′+1+εn+Cθ,1,c1 (Cθ,1,c1−δ)/2
)ai′ i

′−1∏

k=i

(
Z̃θ−k+εn+Cθ,1,c1 (Cθ,1,c1−δ)/2

)ak

×
(

1 +O
( logθ logθ n√

logθ n
∨ |i−

√
logθ n| ∨ |i′ −

√
logθ n|√

logθ n

))
,

where the last step follows from a similar argument as in the proof of Proposition 5.6. �

With Proposition 7.4 at hand, the proofs of Theorems 4.6, 4.7 and 4.8 follow the same
approach as the proofs of Theorems 2.5, 2.8 and 2.9.
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8. Appendix

Lemma 8.1. Fix `, n ∈ N0 such that ` < n. Suppose f : R→ R is increasing on [`, n+ 1],
and g : R→ R decreasing on [`− 1, n] and both f and g are positive and integrable. Then,

∫ n

`−1
f(x)g(x) dx− 2f(n)g(`− 1) ≤

n∑

k=`

f(k)g(k) ≤
∫ n

`−1
f(x)g(x) dx+ 2f(n+ 1)g(`− 1).

Proof. We only prove the upper bound, the lower bound follows from an analogous ap-
proach. By definition for k ∈ {`, . . . , n} and x ∈ [k − 1, k],

f(k) ≤ f(x+ 1) and g(k) ≤ g(x).

Integrating both sides gives

f(k)g(k) ≤
∫ k

k−1
f(x+ 1)g(x) dx

≤
∫ k

k−1
f(x)g(x) dx+ g(`− 1)

∫ k

k−1
f(x+ 1)− f(x) dx

≤
∫ k

k−1
f(x)g(x) dx+ g(`− 1)(f(k + 1)− f(k − 1)).

Hence, summing from ` to n gives

n∑

k=`

f(k)g(k) ≤
∫ n

`−1
f(x)g(x) dx+ g(`− 1)

n∑

k=`

(f(k + 1)− f(k − 1))

≤
∫ n

`−1
f(x)g(x) dx+ 2f(n+ 1)g(`− 1),

as required. �

Corollary 8.2. Fix `, n ∈ N such that ` < n. Suppose f : R → R is a positive integrable
function, increasing on [`, x∗] and decreasing on [x∗, n], where x∗ is not necessarily an
integer. Suppose g : R→ [0, 1] is a positive, integrable function, decreasing on [`, n+ 1] and
bounded by 1. Then,

∫ n

`
f(x)g(x) dx− 4f(x∗) ≤

n∑

k=`+1

f(k)g(k) ≤
∫ n

`
f(x)g(x) dx+ 4f(x∗).
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Proof. We only prove the upper bound, the lower bound follows from an analogous ap-
proach. Note that f is increasing on [`, bx∗c], so that by Lemma 8.1

bx∗c−1∑

k=`+1

f(k)g(k) ≤
∫ bx∗c−1

`
f(x)g(x) dx+ 2f(x∗),

where we used that g is decreasing and bounded by 1.

Also, note that by the fact that f and g are both decreasing on [x∗, n],

n∑

k=dx∗e+1

f(k)g(k) ≤
∫ n

dx∗e
f(x)g(x) dx.

It remains to bound f(bx∗c)g(bx∗c) + f(dx∗e)g(dx∗e). We use that f is maximised at x∗

and that g is bounded by one to obtain the upper bound 2f(x∗). Combining all of the
above and including in the integrals in the upper bounds the range [bx∗c−1, dx∗e], we thus
obtain

n∑

k=`+1

f(k)g(k) ≤
∫ n

`
f(x)g(x) dx+ 4f(x∗),

as required. �

Lemma 8.3. Consider the sequences (sk, rk)k∈N in (2.8). These sequences have the follow-
ing properties:

(i) sk is increasing,
(ii) rk is decreasing and limk→∞ rk = 0.

Proof. (i) Assume that sk+1 < sk for some k ∈ N and take x ∈ (sk+1, sk). By the definition
of sk+1, sk and the choice of x,

P(W ∈ (x, 1)) ≤ e−(1−θ
−1)(1−x)(k+1) < e−(1−θ

−1)(1−x)k < P(W ∈ (x, 1)) ,

which leads to a contradiction.

(ii) Assume that sk < sk+1 (otherwise the claim is immediately clear). Note that since the
function P(W ∈ (x, 1)) is càdlàg, we have for any x < sk,

P(W ∈ (sk, 1)) ≤ rk ≤ lim
y↑sk

P(W ∈ (y, 1)) ≤ P(W ∈ (x, 1)) .

Hence, we have that for any x ∈ (sk, sk+1).

rk ≥ P(W ∈ (sk, 1)) ≥ P(W ∈ (x, 1)) ≥ rk+1.

For the second part, since sk is increasing by (i), we have that sk → s∗ ∈ (0, 1]. Suppose
that s∗ ∈ (0, 1). Then, for k sufficiently large, we have sk ≤ (1 + s∗)/2 and so rk ≤
e−(1−θ

−1)(1−s∗)k/2 and so rk converges to 0.

Therefore, we can assume that sk ↑ 1. Let k0 be such the smallest k such that sk < sk+1.
Such a k0 exists, otherwise s∗ < 1 since each sk < 1. Then, for k ≥ k0, let `k be the largest
integer such that s`k < sk. The assumption that sk ↑ 1 also excludes that s`k is eventually
constant and so `k →∞. In particular, we can argue as in (8) to see that

rk ≤ P(W ∈ (s`k , 1)) .

Moreover, as s`k → 1 as k →∞, we deduce that rk → 0. �
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4.2 Conclusion

In this chapter we investigated the properties of the maximum degree of the weighted
recursive tree when the weights are almost surely bounded. This extends the results
provided in the previous chapter, where only a first-order result for bounded weights
was provided. Using a different approach, extending the results related to the degree
distribution presented in the previous chapter, we were able to extend the analysis of
the maximum degree to finer asymptotics.

The main approach was to obtain precise asymptotics for number of vertices with degree
exceeding k when k is allowed to grow with n. Combining this with asymptotics of
the limiting degree distribution enabled us to establish a more precise understanding
of the behaviour of the maximum degree.

We focussed on three main classes of vertex-weight distributions: (i) distributions with
an atom at one (recall that we can without loss of generality assume that bounded
weights have their essential supremum at one), (ii) distributions in the Weibull domain
of attraction and (iii) distributions in the Gumbel domain of attraction.

In case (i) we observe behaviour similar to that observed for the random recursive tree,
in the sense that the maximum degree is random to second order and that the limit can
be described only along certain subsequences, as presented in Theorem 2.5. Moreover,
this result leads to a precise understanding of the tail distribution of the maximum
degree, as well as the number of ‘near-maximum’ degrees, which is asymptotically
normal. These results are presented in Theorems 2.8 and 2.9, respectively.

In the second case we obtain a deterministic and negative second order correction term,
as presented in Theorem 2.5. Compared to (i) this negative second order correction
term can be explained by the fact that a much smaller proportion of vertices has a
vertex-weight close to one, whereas a positive proportion of all vertices has a vertex-
weight of exactly one in case (i). This implies that these vertices are able to acquire
edges at a faster rate compared to case (ii). Hence, the maximum degree has a negative
second order correction term. The same follows for case (iii), though the precise cor-
rection term depends on the assumptions on the distribution, as presented in Theorem
2.6, and for particular distributions even finer asymptotics can be obtained.

We also distinguished two examples of vertex-weight distributions that fall in the
Weibull and Gumbel maximum domain of attraction for which we were able to ex-
tend the results presented in Section 2. In Theorems 4.1 through 4.4 we discussed the
properties of the maximum degree and near-maximum degrees when the vertex-weights
follow a beta distribution bounded away from zero, and in Theorem 4.6 through 4.8
we discussed the case when vertex-weights follow a particular distribution that can be
interpreted as a fraction of ‘gamma-like’ random variables. In both cases, we obtained
more precise correction terms up to random order, in which case the behaviour was
similar to case (i). This begs the question whether such behaviour is universal for all
vertex-weight distributions with finite support.
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Chapter 5

Conclusion and open problems

In this thesis we have studied two types of models of evolving random graphs in ran-
dom environment: preferential attachment models with additive fitness and weighted
recursive graphs. The focus of the research has been to develop tools to analyse their
degree distribution and high degrees and to distinguish their properties under influence
of the random environment.

In Chapter 2 we studied preferential attachment models with additive fitness and pre-
sented a phase transition for the behaviour of the degree distribution and maximum
degree. We used novel approaches to extend the results known so far related to the
degree distribution and maximum degree. Our analysis provides an explanation as to
why, when and how the properties of this model in random environment, the degree
distribution and maximum degree specifically, differ significantly from its counterpart
without random environment, and shows the random environment allows for richer
behaviour to be observed.

Chapters 3 and 4 focussed on the degree distribution and high degrees in weighted
recursive graphs and weighted recursive trees (the tree case of the model), respectively.
Again, we were able to outline different conditions on the random environment for
which different behaviour can be observed for the degree distribution and high degrees.
In Chapter 3 we investigated the properties of weighted recursive graphs for a large
range of vertex-weight distributions, and were able to specify the size of the maximum
degree to first order, and in particular cases to second order as well. The location
of the maximum degree has been analysed for distributions with unbounded support.
Chapter 4 provided a more in-depth look into the particular case of distributions with
bounded support. Here, we were able to obtain more precise and refined asymptotics
for high degrees by developing improved results related to the degree distribution,
which we then translated to high degrees. Again, these chapters clearly show how the
presence of a random environment allows for a wider range of behaviour to be observed
compared to the random recursive tree, the counterpart of the weighted recursive tree
without random environment.

Beyond the influence of the random environment on the properties of the models stud-
ied, it also provides a much more natural and realistic model of real-world networks,
where the connectivity of vertices is allowed to develop differently over time. The pres-
ence of fitness or weights allows for more heterogeneity in real-world networks to be
reflected in the models and therefore, on a conceptual level, is desirable over linear
of affine preferential attachment models and the random recursive tree and directed
acyclic graph models. On top of that, the additive nature of the fitness in the prefer-
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ential attachment models in Chapter 2 allows the models to remain tractable, whereas
multiplicative preferential attachment models can be much more difficult to analyse to
the same extent.

As is only natural, in search of answers to the questions described above during the
PhD research carried out by the author, many more questions came to light that we
were not able to address or answer yet. Here, we would like to discuss some of these
open problems which form interesting possibilities for further research.

Preferential attachment models with additive fitness
The results presented in Theorem 2.7 in Chapter 2 describe several regimes in which
significantly different behaviour can be observed for the preferential attachment models
with additive fitness studied in that chapter. In particular, Equation (2.10) provides the
almost sure limit of the rescaled maximum degree in the weak disorder regime, as the
supremum supi≥1 ξi of the individual limits of the rescaled degrees (ξi)i∈N described in
Equation (2.8). It would be interesting to see whether more information and properties
can be extracted from these limits. As an example, Sénizergues is able to obtain explicit
distributional identities for these limits for some particular choices of deterministic
fitness sequences in [128]: whenever the fitness values are of the form (F1,F2,F3, . . .) =
(a, b, b, . . .) with a > −1, b > 0, the limits ξi satisfy the recursion ξi = βiξi+1, where
ξi is the almost sure limit of Zn(i)/n1/θm , i ∈ N, and βi is a Beta(

∑i
j=1Fj + j,Fj+1)

random variable which is independent of ξi+1. This recursion is also known as the
Mittag-Lefler Markov chain family introduced by Goldschmidt and Haas [64] and also
studied by James [81] in the context of preferential attachment models. We observe
that in the precise model description in [128] vertex two always connects to vertex
one, independently of the fitness of vertex one, so that Zn(1) ≥ 1 for all n ≥ 2 and
hence Zn(2) + F1 ≥ 0, so that despite a (possibly) negative fitness F1 the connection
probabilities are still well-defined.

The other example provided by Sénizergues entails a periodic fitness sequence

(F1,F2, . . . ,F`+1,F`+2, . . . ,F2`+1, . . .) = (a, b1, . . . , b`, b1, . . . , b`, . . .),

for any a > −1, ` ∈ N, b1, . . . , b` ∈ N (note that ` = 1 recovers the previous example for
which b ∈ N). In this case, the limits ξi can be described using an Intertwined Product
of Generalised Gamma Processes, defined in [128].

In the case of random fitness values, we wonder if such precise distributional identities
can be obtained for the limiting random variables ξi as well. Instead of the martingale
techniques used in Chapter 2 to obtain the almost sure convergence Zn(i)/n1/θm

a.s.−→
ξi, i ∈ N (Equation 2.8), other approaches using, for example, Pólya urns might be
required, as this is what Sénizergues uses for the two examples described above.

The same holds for the limit of the rescaled maximum degree and the rescaled location
of the maximum degree in the extreme disorder regime, in Equation (2.12) of Theorem
2.7. Though an explicit representation of the limit in terms of a function of a Poisson
point process is presented, we do not know anything about its distribution or other
properties. Even less is known about the limit of the rescaled location.

Next to identifying the limit, fluctuations around the limit of the maximum degree are
also interesting to investigate. Móri shows in [112, Theorem 4.1] that the maximum
degree exhibits a central limit theorem with a mixed normal distribution as the limit.
That is, if we set µ := supi≥1 ξi and m = 1,

n1/(2θ1)
(

max
i∈[n]
Zn(i)/n1/θ1 − µ)

d−→ N
(
0,
√
µ
)
, (5.0.1)
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where N (0,
√
µ) is defined as

√
µZ with Z a standard normal random variable inde-

pendent of µ. Note that this results holds when Fi = β > 0 almost surely for all i ∈ N
only, i.e. for the affine preferential attachment model. A more general result is obtained
by Sénizergues in [128, Proposition 32] for preferential attachment trees in with fitness
sequences in the weak disorder regime. The martingale techniques used to analyse the
weak disorder regime in Chapter 2 is based on the martingale techniques developed by
Móri. The proof of (5.0.1) in [112] are based on the Doob-Meyer decomposition of the
submartingale maxi∈[n]M1

n(i) into a convergent martingale and a predictable increas-
ing process, where we recall the martingales M1

n(i) in Chapter 2, Lemma 6.3, and note
that a maximum of martingales is a submartingale. On the other hand, Sénizergues
applies Pólya urn techniques to obtain the more general result. It is not clear whether
such techniques can be adapted to obtain these results for the case in which m > 1,
which does not yield a tree but a multi-graph.

Finally, in the phase transition described for the preferential attachment models with
fitness in Chapter 2, the cases when α = 1 + θm and α = 2, no results are known
for the behaviour of the degrees of fixed vertices and the maximum degree, and when
α = 2 no results are known for the degree distribution as well. When α = 1 + θm we
expect behaviour similar to what is described for the weak or strong disorder regime
to be observed (as in Equations (2.8) and (2.10) or (2.8) and (2.11), respectively), and
when α = 2 we expect behaviour similar to what is described for the strong or extreme
disorder regime to be observed (as in Equations (2.8) and (2.11) or (2.9) and (2.12),
respectively), though possibly with a different rescaling due to the effect of the slowly-
varying function of the fitness distribution, similarly to (ii) in Theorem 2.6. Which of
the regimes describes the behaviour best, depends on the particular form of the slowly-
varying function `. Moreover, when α = 2, we expect the limiting degree distribution
p(k) to behave as in case (ii) of Theorem 2.6 or for a result similar to what is described
in case (iii) to be observed. That is, p(k) = Θ(`(k)k−2) or the proportion of leaves in
the graph converges to one in mean, respectively.

The difficulty in establishing the behaviour of the degree distribution, degree evolution
of fixed vertices and the maximum degree in the cases α = 1 + θm and α = 2 lies in
the fact that (the proofs of) most preliminary results developed in Chapter 2 required
to prove Theorems 2.4, 2.6 and 2.7 break down when either α = 1 + θm or α = 2. For
example, Proposition 5.2 and Lemma 5.4 require that α < 2, the results in Proposition
6.1, (6.1) and (6.2), require α < 1+θm and α < 2, respectively, the results in Proposition
6.2, (6.3) and (6.4), require α < 1+θm and α < 2, respectively, and Lemma 6.6 requires
α > 1+θm. Also, the limiting random variables of the rescaled location of the maximum
degree and the rescaled maximum degree are ill-defined when α = 1+θm. More careful
and refined analysis is required to unveil this behaviour.

Beyond the properties of the degree distribution and maximum degree, one could won-
der how the random environment influences other properties of these preferential at-
tachment models, such as typical distances. Though we have a good understanding
of typical distances in this model when the degree distribution has infinite variance
and finite mean or when the fitness distribution has an infinite mean, the mathematics
we developed was not complete yet and details need to be fleshed out. In the former
case, when τ := (α ∧ (1 + θm)) ∈ (2, 3) we conjecture to observe double logarithmic
typical distances with a constant that depends on the power-law exponent of the degree
distribution, much like what is observed in affine preferential attachment models (see
e.g. [73] for an overview). To be more precise, if dG(·, ·) denotes the graph distance
metric on a graph G, then for the sequence of random graphs (Gn)n∈N obtained via the
PAFUD or PAFFD constructions with m > 2 or the PAFRO construction described in
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Chapter 2,
dGn(vn1 , v

n
2 )

log logn

P−→ 1

| log(τ − 2)| , (5.0.2)

where vn1 , v
n
2 are two vertices selected uniformly at random from [n] without replace-

ment. We note that, most likely, an additional assumption on the fitness distribution
is required as well, namely that its support is bounded away from zero. This implies
that newly introduced vertices (with in-degree zero) cannot be arbitrarily unattractive,
which could cause these vertices to form longer paths. When all vertices have a fitness
of at least δ > 0, however, we expect typical distances to behave as in (5.0.2). This
agrees with the behaviour of typical distances in affine preferential attachment models
(we again refer to [73] for an overview), but shows that in the strong disorder regime,
when α ∈ (2, 1 + θm) and hence τ = α < 1 + θm, typical distances are significantly
shorter compared to the affine model in which the affine parameter δ is set to equal
E [F ]. This is caused by the fact that high degrees in the strong disorder regime are
significantly larger, as described by Theorem 2.6 in Chapter 2, so that the graph is
better connected and shorter graph distances between vertices can be observed.

In the latter case, when the fitness random variables follow an infinite mean power-law
distribution and we consider the PAFUD or PAFFD constructions with m > 2 or the
PAFRO construction described in Chapter 2, we conjecture typical distances to be
2, 3 or 4 with high probability, similar to what is observed for typical distances in the
configuration model with infinite mean degrees [52]. We also conjecture this to be true
for typical distances in weighted recursive graphs with m > 1, as we observe from the
proof of Proposition 6.1, Equation (6.2), that the (mean) degrees in the PAF model
and the WRG model behave the same in the large graph limit. These short distances
are caused by the emergence of a small set of vertices with extremely large fitness (or
weights, in the WRG model) which enables them to obtain very high degree and hence
connect vertices with very short paths.

For the diameter of the graph, we would expect to observe similar behaviour, though
we do not have an intuitive argument as to why this is the case. That is, in the weak
disorder regime the diameter is of the same order as in affine preferential attachment
models, in the strong disorder regime the diameter is of the same order, but converges
to a smaller constant, and in the extreme disorder the diameter is bounded with high
probability.

The height of the preferential attachment tree with additive fitness is studied by
Sénizergues in [128] and by Sénizergues and Pain in [121]. By the equivalence between
PAF trees and the WRT model discussed in Section 1.4, the results on the height of the
WRT model hold for PAF trees as well in the weak disorder regime. The equivalence
between the two models does not hold in the strong and extreme disorder regime, and
here nothing is known about the height of the PAF tree. In the strong disorder, though
the largest degrees in the graph grow at a faster rate compared to affine preferential
attachment models, the maximum degree has a label of order n rather than O(1). It is
not quite clear what the effect of both of these observations is on the height of the tree.
In the extreme disorder regime, the tree is essentially made up of many stars, which
are the vertices with the highest fitness values. We expect the height in this model to
be bounded, just like typical distances are bounded.

Finally, the local weak limit for the PAF model as introduced by Lo [95] is only proved
to hold when the fitness distribution has bounded support, though Lo states that fitness
distributions with a exponentially decaying tail can also be allowed. More precise and
involved techniques are required to deal with the more heavy-tailed fitness distributions,
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and we expect the same local weak limit to arise for any fitness distribution with finite
mean. When the fitness distribution has infinite mean, it is not quite clear what the
local weak limit should be.

Weighted recursive graphs
In Chapter 3 we studied the properties of the degree distribution and maximum degree
of the weighted recursive graph. We expect that the convergence in probability of
the rescaled maximum degree, as in Equation (2.15) can be improved to almost sure
convergence in the Gumbel-SV sub-case. Moreover, it would be interesting to see if
higher-order asymptotics can be obtained for the maximum degree in the Gumbel-RV
and Gumbel-RaV sub-cases beyond what is presented in Theorems 2.11 and 2.13. Also,
in the Gumbel-RV sub-case, we are not able to obtain a second-order correction term
when τ > 1. This is mainly due to the fact that fluctuations of the degrees around
their conditional means are of higher-order than the second-order asymptotics of the
conditional means themselves when τ > 1. A different approach, possibly as developed
in Chapter 4 could resolve this and allow for a more refined asymptotic understanding
of the maximum degree in this case.

The main question of interest related to Chapter 3 is whether the results for the maxi-
mum degree in Theorem 2.8 can be obtained under weaker assumptions on the vertex-
weight distributions in the Gumbel maximum domain of attraction (MDA) as well. In
Chapter 3 we considered three different sub-cases, but these are not exhaustive. That
is, there are many distributions which do not satisfy either of the SV, RV or RaV
sub-cases but do belong to the Gumbel MDA. As we state in Remark 2.9(v), we expect
WRGs with vertex-weight with such distributions to exert similar behaviour at least
to first order. However, the second (and higher) order behaviour of the maximum for
such distributions is most likely different. For particular choices of vertex-weight dis-
tributions we expect it to be possible to obtain similar results with the same techniques
developed in Chapter 3, though we deem it unlikely to be able to obtain results for a
more general representation of vertex-weights distributions in the Gumbel MDA, for
example using the representation by Resnick [126, Corollary 1.7].

In the Bounded case, we discuss the growth rate of the location of the maximum degree
in Conjecture 2.10, something we were unable to prove. Intuitively, the maximum
degree grows much faster than the mean degree of any vertex, so it arises from a large
deviation event in which a vertex is able to increase its degree significantly beyond its
mean degree. Which vertices are best equipped depends on an intricate balance: it is
most likely for ‘old’ vertices (i.e. vertices with a ‘small’ label) to have a degree that is
sufficiently large (i.e. of the order log n/ log θm) to attain the maximum degree in the
graph, but there are not many vertices with a ‘small’ label. At the same time, there
are many ‘young’ vertices, but as they are so young it is even less likely for one of these
vertices to attain the maximum degree. In the end, we expect vertices with labels of
the order nβ, with β := 1 − (θm − 1)/(θm log θm) to satisfy this balance of age and
number of vertices.

In Chapter 4 we develop more refined techniques to analyse the degree distribution and
large degrees in weighted recursive trees (WRT). Despite this more precise approach,
we require the additional assumption that the vertex-weights are bounded away from
zero. As this has no influence on the behaviour of high degrees at all, and since we only
need this assumption for one particular inequality, we expect this assumption to be
purely of a technical nature. We hope to be able to omit this assumption in the future.
Furthermore, as is the case in Chapter 3, we wonder if more general assumptions on
the vertex-weight distribution can be made in the case the distribution belongs to the
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Gumbel MDA, and whether higher-order corrections for the maximum degree can be
obtained for such distributions as well.

Also, though the focus in Chapter 4 is on vertex-weight distributions with bounded
support, one could try to use the same approach to obtain higher-order asymptotics of
the maximum degree when the vertex-weight distribution has unbounded support. This
would require a more careful proof of mostly Proposition 5.1 in Chapter 4. However,
for these techniques to be used to obtain a better understanding of the asymptotics
of the maximum degree, more precise asymptotic expressions of the limiting degree
distribution, as in Theorem 2.7 in Chapter 3, would be required as well.

we recall that at the end of Section 4 in Chapter 4 we discuss how a Poisson point
process limit arises as the higher-order limit of the rescaled high degrees. Though we
are only able to establish this for vertex-weight distributions with an atom at one and
for two specific other examples, we conjecture this result to hold universally. More
detailed results on the asymptotic expression of the limiting degree distribution pk, as
presented in Theorem 2.7 in Chapter 3, would be required to confirm or refute this
claim.

Finally, for both the PAF models discuss in Chapter 2 and the WRG and WRT models
discussed in Chapters 3 and 4 it is possible to use other techniques to analyse the
behaviour of these models. Most notably, in the case of PAF trees and the WRT model,
embedding these evolving trees in continuous-time branching processes (CTBP) could
be especially fruitful in extending the results presented in this thesis. The theory of
CTBPs is generally considered to be very strong and useful in many applications, among
which analysing evolving tree models. Among others, CTBPs are used by Senkevich
et. al [129] to study competing growth processes, Fountoulakis and Iyer [56] to study a
general class of weighted recursive trees, Bhamidi [14] and Banerjee and Bhamidi [11]
to study a general class of preferential attachment models and Garavaglia et. al [60] to
study a preferential attachment tree model with multiplicative fitness and ageing.

Especially in the case of the more general description of vertex-weight distributions
in the Gumbel MDA, as discussed as a possible improvement of the results presented
in Chapters 3 and 4, this could be particularly useful (a more general description of
vertex-weight distribution in the Gumbel MDA is used in [129], for example).

Finally, beyond extending the results presented in this thesis for the WRG model, it
would be interesting to study the local weak limit of the WRG model. The techniques
developed by Lo to construct the local weak limit of the PAF model in [95] should also
suffice to obtain the local weak limit for the WRG model. Especially in the case of
infinite mean vertex-weights, it would be exciting to see whether the local weak limit
for the WRG and PAF models is the same.
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[65] A. Grauer, L. Lüchtrath, and M. Yarrow. Preferential attachment with location-
based choice: Degree distribution in the noncondensation phase. arXiv preprint
arXiv:1905.08481, 2019.

[66] L. Gugelmann, K. Panagiotou, and U. Peter. Random hyperbolic graphs: degree
sequence and clustering. In International Colloquium on Automata, Languages,
and Programming, pages 573–585. Springer, 2012.

[67] L. de Haan and A. Ferreira. Extreme value theory. Springer Series in Operations
Research and Financial Engineering. Springer, New York, 2006. An introduction.

[68] J. Haslegrave and J. Jordan. Preferential attachment with choice. Random Struc-
tures Algorithms, 48(4):751–766, 2016.

[69] J. Haslegrave and J. Jordan. Non-convergence of proportions of types in a prefer-
ential attachment graph with three co-existing types. Electron. Commun. Probab.,
23:Paper No. 54, 12, 2018.

218



[70] J. Haslegrave, J. Jordan, and M. Yarrow. Condensation in preferential attachment
models with location-based choice. Random Structures Algorithms, 56(3):775–
795, 2020.
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