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ABSTRACT 

The first chapter of this thesis begins by introducing methods for determining enantiopurity, 

followed by an in-depth discussion of how three-component self-assembly reactions between an 

amine, a chiral analyte, and 2-formylphenyl boronic acid (2-FPBA) can be used to produce stable 

iminoboronate ester (IBE) complexes. The extensive use of these three-component IBE assemblies 

for determining the enantiomeric excess of a range of chiral analytes using various analytical 

methods is discussed. A detailed review of the growing popularity of these supramolecular 

assembly motifs for formation of supramolecular stimuli-responsive materials and for the 

orthogonal derivatization of biomolecules is also described.  

Chapter 2 describes how 1H NMR spectroscopic analysis of IBE complexes derived from 2-FPBA, 

tert-butanesulfinamide, and BINOL revealed previously unknown concentration- and 

enantiopurity-dependent anisotropic effects. Unlike previous IBEs, decreased N→B coordination in 

BINOL-derived sulfinamide-IBE complexes results in their significant aggregation in solution. These 

aggregates contain mixtures of homochiral and heterochiral complexes, which means that chemical 

shift values in their 1H NMR spectra are dependent on the enantiopurity of the parent chiral 

sulfinamide, giving rise to a phenomenon termed in this thesis diastereomer aggregation-induced 

anisotropy (DAIA).  

Chapter 3 describes the optimisation of a new stepwise Bull-James protocol for accurately 

measuring the enantiopurity of chiral sulfinamides using three-component complexes derived from 

chiral pinanediol and 2-FPBA. This derivatisation approach affords a highly reliable protocol to 

determine the enantiomeric excess of a wide range of sulfinamides by 1H NMR spectroscopic 

analysis. Use of a fluorinated 2-FPBA template also enables the enantiomeric excess of chiral 

sulfinamides to be determined by 19F NMR spectroscopic analysis. Preliminary results on 

development of a new Bull-James derivatisation protocol to determine the enantiomeric excess of 

sterically-demanding α-quaternary amines are also described. 

The fourth chapter describes investigations into using N-oxides (e.g. dimethylaminopyridine-N-

oxide) as catalysts in Baeyer-Villiger (BV) oxidation reactions of ketones and α,β-unsaturated 

ketones for the efficient production of esters and vinyl esters. Mechanistic studies have revealed 

that N-oxides act as proton and phase-transfer catalysts in the BV oxidation reactions of electron-

rich ketones. These N-oxides function to accelerate nucleophilic delivery of mCPBA to the ketone 

carbonyl, whilst also suppressing epoxidation reactions of vinyl ester products. The discovery that 

N-oxides can catalyse degradation of the mCPBA oxidant resulted in trimethylamine N-oxide being 

identified as an improved 2nd generation catalyst for the BV oxidation of α,β-unsaturated ketones. 
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1. THE BULL-JAMES ASSEMBLY: EFFICIENT IMINOBORONATE COMPLEX 

FORMATION FOR CHIRAL DERIVATIZATION AND SUPRAMOLECULAR 

ASSEMBLY 

The research project described in the first half of this thesis describes the successful development 

of a new Bull-James three-component derivatization approach for determining the enantiomeric 

excess of chiral sulfinamides by NMR spectroscopic analysis. Consequently, this review chapter 

begins with a brief general introduction to methods for determining enantiomeric excess, followed 

by an in-depth discussion of how three-component self-assembly reactions between an amine, a 

chiral analyte, and 2-formylphenyl boronic acid (2-FPBA, 1) template can be used to produce stable 

iminoboronate ester (IBE) complexes. These assemblies can be used to determine the enantiomeric 

excess of a range of chiral analytes, as general supramolecular assembly motifs, for the formation 

of supramolecular stimuli responsive materials, and for the orthogonal derivatization of 

biomolecules (Scheme 1). 

 

Scheme 1: Three-component assembly of useful iminoboronate esters. 

 

1.1. Methods for determining enantiomeric excess 

Chiral compounds occur widely throughout chemistry and biology, comprising much of the 

biochemical machinery that underpins life, such as proteins, sugars, or DNA. As such, the 

stereochemistry of chiral biologically-active molecules is responsible for controlling their 

interactions with, and effects on, biological systems, with the availability of methods for their 

enantioselective synthesis critical to the fields of medicinal chemistry and drug design. 

Stereoselective synthesis is therefore paramount for the preparation of chiral molecules for 

numerous chemical and life science applications, with a range of chiral metal-containing catalysts, 

organocatalysts, biocatalysts, chiral auxiliaries, and chiral pool precursors routinely used to carry 

out enantioselective and diastereoselective syntheses. The importance of enantioselective catalysis 

was recognised in 2001 by the award of the Nobel Prize in Chemistry to K. B. Sharpless, W. S. 

Knowles, and R. Noyori for their work on “chirally catalysed reactions”.1 Key to the successful 

development of enantioselective synthetic methodologies is the ability of chemists to determine 

the enantiopurity of chiral products, which is most often expressed as their enantiomeric excess 

(ee, equation 1).2  
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 𝑒𝑒 =
[𝑅] − [𝑆]

[𝑅] + [𝑆]
× 100 (1) 

 

Many methods exist to determine the ee of small molecules, all of which rely on the action of a 

chiral inducer to create a diastereomeric environment which enables the enantiomers of a scalemic 

analyte to be distinguished. Chiral gas chromatography (GC) and liquid chromatography 

(HPLC/UPLC) are currently the most popular methods for determining the ee of small molecules, 

and have been the topic of many reviews.3–8 Briefly, two approaches to determining ee by 

chromatography exist: (i) direct analysis, whereby a chiral mobile or stationary phase (CSP) forms 

transient diastereomeric interactions with the chiral analytes that results in their enantiomers 

having different retention times; (ii) indirect analysis, whereby prior chiral derivatization of the 

enantiomers of a chiral analyte is used to irreversibly produce diastereomeric derivatives that can 

then be separated using an achiral stationary phase.9 Chiral stationary phases (CSPs) are typically 

preferred, and are usually composed of functionalised chiral materials derived from biopolymers, 

including cyclodextrin and cyclofructan CSPs for chiral GC analysis, and polysaccharide-, protein-, 

Pirkle- and crown ether-derived CSPs commonly used for chiral LC analysis.5,6 Chiral GC/LC analysis 

of ‘clean’ mixtures of chiral compounds that achieve baseline resolution of enantiomers provides 

highly reliable and accurate results, boasting minimal errors and high reproducibility for many 

different classes of chiral compound.5 However, extensive optimisation and screening is often 

required to achieve this, as each class of analyte will interact with each chiral system differently. 

Moreover, GC and LC equipment and their associated chiral columns are costly, with eventual 

degradation of the CSP over time leading to decreased resolving power and accuracy. Additionally, 

chiral chromatography can suffer from multiple additional sources of error, with separation 

processes potentially leading to degradation, racemisation, or epimerisation of analytes, whilst 

analysis of crude mixtures can result in co-elution of impurities with one or the other analyte 

stereoisomers. These effects can lead to spurious increases or decreases in peak integration, 

causing inaccurate ratios and thus incorrect ee determination.10,11 Although thorough screening, 

benchmarking, and optimisation of chromatographic methods can minimise these risks effectively, 

these additional time and resource requirements to develop new chromatography conditions for 

different types of chiral analytes can add significant barriers to entry when using HPLC or GC 

techniques for determining enantiomeric excess.12 

Generally less popular than chiral chromatography, optical methods provide a relatively low-cost 

rapid alternative to chromatographic techniques. Polarimetry was of course the first method 

capable of assessing enantiopurity and absolute configuration of chiral molecules, exploiting their 

ability to rotate the plane of polarised light (Figure 1).13 The optical rotation of a chiral compound 

is dependent on their aggregation, conformation, and solvent, which often leads to widely 

temperature-, concentration-, and purity-dependent measurements. Consequently, the use of 

polarimetry to measure ee can only be carried out on purified chiral analytes, with the presence of 

any impurities often leading to inaccurate results. Polarimetry is now rarely used as a means of 
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determining the ee of chiral molecules from first principles, although comparison of the sign and 

magnitude of rotation with previously reported values is often used to assign the absolute 

configuration of chiral molecules isolated from enantioselective reactions or natural sources. Other 

optical methods such as circular dichroism (CD), UV-Vis, and fluorescence spectroscopy that enable 

either direct or indirect detection of chirality have become much more popular in recent times, in 

particular for high-throughput applications to screen for effective enantioselective catalysts (vide 

infra).14–22  

 

Figure 1: Basic principles of polarimetry, as illustrated by the basic function of a polarimeter. 

Along the quest to develop new methods for determining enantiopurity (and absolute 

configuration), NMR has emerged as a convenient analytical technique.23,24 The growing popularity 

of these methodologies for chiral analysis can be attributed to the same general properties that 

make NMR spectroscopy a popular characterisation tool: practical simplicity, rapid sample 

preparation and analysis, minimal resource requirements, ubiquity of NMR spectrometers, variety 

of NMR-active nuclei, and good accuracy, amongst others. The NMR-active nuclei of enantiomeric 

species are, of course, isochronous in achiral media, and so diastereomeric differentiation must be 

induced for enantiomers to produce differentiated signals. This is done either by creating an 

asymmetric system using either chiral solvating agents (CSAs), or by converting the enantiomeric 

analytes into diastereomers using chiral derivatizing agents (CDAs). The use of CSAs for NMR 

spectroscopic analysis allows for direct detection of enantiomers without the need for separation 

or functionalisation of the analyte, with a chiral environment created by addition to the analytical 

sample of a CSA that is capable of reversible diastereomeric interactions with each enantiomer of 

the chiral analyte.25 This is illustrated well by the very first report of chiral solvation by William H. 

Pirkle in 1966 (Figure 2a), who observed that addition of (rac)-2,2,2-trifluoro-1-phenylethanol 2 to 

enantiopure α-methylbenzylamine 3a produced two sets of resonances in the 19F NMR spectrum.26 

Strong hydrogen bonding between the alcohol of the analyte and the basic amine of the solvent 

leads to the transient formation of distinct diastereomeric magnetic environments that results in 

each enantiomer experiencing anisochronous shielding/deshielding effects that lead to resolved 

chemical shifts for selected pairs of resonances. Following on from this initial discovery, Pirkle and 

others subsequently developed a range of related chiral solvating agents, including widely-used 

Pirkle’s alcohol 4, which can be used to determine the ee and absolute configuration (in some cases) 

of a wide range of analytes using 1H, 13C and 19F NMR spectroscopic analysis (Figure 2b).26–33 Since 

these developments, a broad range of functionalised small molecules have been discovered, 
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capable of inducing non-covalent interactions that enable them to act as chiral solvating agents. 

Selected examples are shown in Figure 2b, including BINOL-derived phosphoric acid 5 and chiral 

crown ether 6 that are commonly used as CSAs for amines;34,35 phthalimide-derived amino alcohol 

7 that is used for acids;36 α-hydroxy ketone 8 (in conjunction with 4-(dimethylamino)pyridine, 

DMAP) that can be used to determine the ee of secondary alcohols and acids;37 and BINOL 9 for 

determining the enantiopurity of numerous analytes, including alcohols, amines, acids, amino 

alcohols, and sulfinimines.38,39 This field of chiral analysis has also expanded to macrocyclic systems, 

adopting an approach similar to that of host-guest chemistry. In these instances, a macrocyclic CSA 

acts as a host, forming multiple non-covalent interactions with an analyte, thus creating a rigid 

chiral structure which induces significant chemical shift differences (Δδ).40–42 For example, BINOL-

derived macrocycle 10 is capable of forming multiple hydrogen bonding interactions with a variety 

of functionalities, enabling its use as a CSA for determining the ee of a range of analytes by 1H NMR 

spectroscopy (see Figure 2c).40 Computational study of optimised structures of the different 

enantiomers of sulfoxide 11 bound to CSA 10 clearly showed that hydrogen bonding of each analyte 

enantiomer to the host CSA affords diastereomeric complexes with significantly different 3D 

structures, which is responsible for the chemical shift differences that are observed. 

 

Figure 2: (a) Initial report of using a CSA to determine the ee of a chiral alcohol developed by W. H. Pirkle.26 
(b) Representative small molecule CSAs used to determine the ee's of a range of chiral analytes. (c) Macromolecular CSA 
(R)-10 (green) that makes hydrogen bonds to chiral analyte 11, with geometry-optimised structures bound to (S)-11 (red, 
top) and (R)-11 (magenta, bottom).40 

An alternative strategy involves the use of CSAs that can form strong ionic interactions with chiral 

analytes to produce diastereomeric ion-pair complexes, whose resonances are well resolved in 

their NMR spectra. For example, Suryaprakash and co-workers have shown that mixtures of 

(R)-BINOL 9, triphenyl borate 12, and a chiral amine (e.g. α-methylbenzylamine 3a) combine to 
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produce well-resolved diastereomeric salts comprised of a boronate anion containing two chiral 

BINOL ligands and the ammonium cation of the analyte (Scheme 2). 43,44 

 

Scheme 2: Suggested ion-pair complex CSA for determining the ee’s of chiral amine analytes developed by Suryaprakash 
et al.43,44 

One additional term often used in the context of chirality and enantiopurity determination is that 

of “chiral shift reagents” (CSRs). The use of this term has been actively avoided by the author 

throughout this thesis, as its use throughout the chemical literature is somewhat sporadic and non-

specific, in some instances being employed to generally describe any and all CDAs and CSAs,45–47 

whilst on other occasions referring more specifically non-covalent CSA-, ion-pairing-type or 

meta/ligand-based chiral differentiation systems. Most commonly, the term CSR is used to describe 

systems which form transient diastereomeric complexes (some similarity to the structures in 

Scheme 2 and Figure 2c), usually by complexation to metal ions. Metals from the lanthanide series 

are commonly used (e.g. Eu3+, Pr3+, Yb3+), which are sometimes referred to as “lanthanide shift 

reagents” (LSRs). These systems form rapidly equilibrating mixtures of diastereomeric analyte-

lanthanide complexes and uncomplexed analyte, inducing a diastereomeric paramagnetic shift in 

the analyte. Due to the nature of these interactions, the results obtained from LSRs are 

concentration-, enantiopurity-, and magnetic field-dependent. An early example is Eu(pvc)3 

(Scheme 3a), reported by Whiteside and Lewis in 1970, which is capable of inducing an impressive 

ΔδH of approximately 0.5 ppm for the benzylic methine proton of α-methylbenzylamine 3a, leading 

to baseline resolved signals sufficient for its enantiopurity to be measured. Some degree chemical 

shift anisochrony was also observed for all other 1H NMR environments, but none sufficient for ee 

determination. Another common LSR is nonchiral Eu(II) complex EuFOD, also known as Resolv-AlTM 

or Siever’s reagent (Scheme 3b), which is used in conjunction with other CSA/CSR reagents to 

amplify chiral shift behaviour be creating additional diastereomeric interactions, thus amplifying 

chiral shift by virtue of its paramagnetism. Other metal-derived CDA methods have also been 

developed, some of which function as CDA/CSA hybrids (Scheme 3c).48,49 
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Scheme 3: Examples of CSRs: (a) Eu(pvc)3 for determining the ee of α-methylbenzylamine 3a;50,51 (b) achiral LSR EuFOD; 
(c) ethene-platinum(II) complexes for unsaturated analytes.49 

The novel methodology for determining the ee of S-chiral sulfinamides described in this thesis falls 

within the category of CDAs, that rely on covalent modification of a chiral analyte to produce 

mixtures of diastereomeric species, in this case iminoboronates (IBs), whose ratios can determined 

by NMR spectroscopic analysis.52,53 This type of CDA approach was pioneered by Harry Mosher and 

Morton Raban in the 1960s54–58 with the introduction of widely used eponymous Mosher’s (α-

methoxy-α-trifluoromethylphenylacetic acid, MTPA, 13) and Raban’s (α-methoxyphenylacetic acid, 

MPA, 14) acids as CDAs for determining the ee's of chiral amines and alcohols (Scheme 4a).24,59–61 

The general approach for Mosher-type CDA analysis is shown in Scheme 4b, which requires initial 

electrophilic activation of the acid through stepwise formation of its corresponding acyl chloride, 

or the use of stoichiometric amide/ester coupling agents such as EDC. Coupling an enantiopure CDA 

with a scalemic analyte results in the formation of diastereomeric mixtures of amide or ester 

products that can be distinguished by 1H, 13C or 19F NMR spectroscopic analysis. This enables their 

diastereomeric ratio (dr) to be accurately determined by integration of pairs of diastereomeric 

resonances, with this dr value directly correlating to the ee of the parent chiral analyte. Extensive 

structural and computational investigations have been carried out on this class of CDAs to 

determine the origin of the chemical shift differences between their diastereomeric amides and 

esters.24,52,62–65 It is now well understood that a key part of these reagents is their phenyl/aryl motifs, 

which are responsible for both conformational control by steric interaction and differential 

anisotropic shielding effects in each diastereomer. This is shown for Mosher’s acid 13 in Scheme 

4b, with specific conformational arrangements and intramolecular interactions dependent on the 

exact structures of the CDA and chiral analyte employed. In this instance, derivatization produces 

diastereomeric products whose analyte methine protons and CF3 group are positioned syn to the 

carbonyl group, which aligns the two α-substituents of the analyte fragment anti- to the carbonyl 

group. The resultant steric clash between the phenyl substituent of diastereomer 15 and the largest 

substituent of the analyte (R1) leads to conformational distortion (relative to diastereomer 16), 
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leading to each trifluoromethyl group experiencing different shielding environments that lead to 

distinct signals in their 19F NMR spectra. This difference in conformation between the two 

diastereomers 15 and 16 also results in chemical shift differences in diastereomeric pairs of 

resonances in their 1H (and sometimes 13C) NMR spectra, whose relative integral ratios can then be 

used to determine the ee of the parent analyte. Though widely used, it must be noted that these 

classical CDA methods are time-consuming and often costly (e.g. 13 > £ 250/g from Merck), as pre-

functionalisation, workup, and purification by chromatography is usually required, all of which 

increase the risk of unwanted racemisation/epimerisation or kinetic resolution effects that can 

produce inaccurate ee values.66  

 

Scheme 4: (a) Common CDAs Mosher’s and Raban’s acids 13 and 14. (b) Mosher’s acid 13 for the chiral derivatization of 
alcohols and amines, with Newman-like projections showing chemically non-equivalent environments, R1 is the largest 
substituent. 

Mosher-type and Bull-James CDAs are by no means the only types of chiral derivatizing agents, with 

many different classes of CDA reported in the literature, a selection of which is shown in Scheme 5. 

The reactions used for derivatization of chiral analytes with CDAs need to be rapid and complete, 

and so it is unsurprising that CDAs usually contain reactive units such as acyl chlorides, anhydrides, 

sulfonyl chlorides, phosphorus chlorides, or chloroformates (e.g. Scheme 5a,b).24,67–69 Use of 

heteronuclear NMR to determine ee is becoming more common, moving beyond classical 1H, 13C 

and 19F NMR analysis to include 2H, 31P, 77Se, 125Te, or 195Pt nuclei (e.g. Scheme 5d, Scheme 3c 

above).49,70–74 Achiral CDAs also exist, which employ bifunctional linkers to tether two molecules of 

analyte together, exploiting the principle of ”statistical duplication” known as Horeau’s principle.75 

These assemblies give rise to four possible stereoisomers (2 sets of diastereomers) which can be 

identified by NMR, and whose ratio is statistically dependent on the enantiopurity of the analyte. 

An example of this type of CDA developed by the Bull group is shown in Scheme 5e, which uses a 

bis-boronic acid to determine the ee of diols.76 It is interesting to note that although Mosher-type 
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CDAs produce conformationally flexible diastereomers, most other approaches produce rigid 

diastereomeric products which maximise chemical shift differences that can be used to assign 

absolute configuration. Finally it should be noted that these same types of CDAs are also commonly 

used to generate diastereomers whose dr’s have been determined using other analytical 

techniques, such as circular dichroism, polarimetry, infrared spectroscopy and HPLC analysis.77–80 

 

Scheme 5: Selected CDA examples illustrating functional variety: (a) anhydrides;68 (b) phosphoryl chloride;69 (c) selenide;74 
(d) bis-boronic acid Horeau-based template.76 New bond between CDA and analyte in red. 

The Bull-James three-component assembly used for determining the ee of amines (and other 

analytes) relies on the formation of an imine bond between their amino groups and the aldehyde 

of 2-FPBA 1 template, a general approach previously reported for a number of imine-derived CDA 

systems for chiral analysis of both aldehydes and amines.81 These CDA systems rely on the relatively 

fast reactions between chiral aldehydes and amines to form diastereomeric imines, which allows 

rapid functionalisation of the chiral analyte. Imine condensation reactions between aryl amines 

and/or aryl aldehydes tend to be highly (E)-selective, producing imines with well-defined rigid 

structures, leading to diastereomeric imines with well-resolved NMR signals. Importantly, imine 

resonances in 1H NMR spectra tend to be well-removed from other signals, allowing these 

characteristic peaks to be integrated to accurately determine dr, mostly irrespective of analyte 

structure. For example, Dufrasne et al. have reported the use of monoterpenoid myternal 17 as a 
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CDA for determining the ee of α- and β-aryl amines and amino alcohols using 1H and 13C NMR 

spectroscopic analysis (Scheme 6a).82,83 They found that the resultant diastereomeric imine 

complexes exhibited several well-resolved 1H NMR signals that could be integrated to determine 

dr. Similarly, methodologies for determining the enantiopurity of amines have been reported using 

citronellal 18, lactate-derived 19, and binaphthyl aldehyde 20 (Scheme 6b).84–87 Larger systems that 

incorporate both imine condensation and hydrogen bonding interactions have also been 

developed, such as BINOL-urea CDA 21 developed by Kim and co-workers for chiral analysis of 

amino alcohol analytes 22 (Scheme 6c).88,89 Initial condensation forms diastereomeric imine 

complexes, which form strong rigidifying intramolecular hydrogen bonding interactions that 

amplify the chiral environment, thus amplifying the chemical shift differences between matched 

pairs of diastereomeric resonances. In this instance the imine has a dual function, acting both as 

the analyte-CDA linker and as a strong Lewis base, hydrogen-bonding to the proximal phenolic 

proton to rigidify the system. Both the imine and the benzylic methylene protons could be used for 

chiral analysis in this system, affording good chemical shift differences of up to 0.19 ppm. 

 

Scheme 6: (a) Myrtenal CDA developed by Dufrasne et al. to determine the ee’s of chiral amine analytes.82,83 (b) 
Representative examples of aldehyde/imine CDAs.84–87 (c) Dual functional aldehyde/imine CDA that incorporate both 
covalent and hydrogen-bonding.88,89 

Conversely, reversibility of these pairs allows the ee of a scalemic chiral aldehyde to be determined 

via imine functionalisation with an appropriate chiral amine auxiliary. For example, Gellman et al. 

showed that derivatization of an α-chiral aldehyde analyte with enantiopure 

(R)-α-methoxypropanamine 23 gave diastereomeric imines containing resolved resonances that 

could be used for dr analysis (Scheme 7).90 This CDA was used to determine the ee’s of a range of 

chiral aldehydes that were in good agreement with chiral GC measurements. This method required 

no purification or workup, enabling it to be used for direct analysis of crude reaction 

mixtures/products, thus allowing for rapid “in situ” measurements of ee. It is important to note that 



10 
 

the acidity of aldehyde α-protons could potentially lead to racemization over time, and so NMR 

spectra need to be recorded immediately after mixing in order to ensure accurate ee 

measurements. 

 

Scheme 7: CDA method for determining the ee of α-chiral aldehydes using (R)-β-amino-ether 23.90 

 

 

 

1.2. Inception of the Bull-James three-component 

derivatization approach 

Development of the versatile three-component iminoboronate ester methodology described in the 

remainder of this review has been pioneered by the Bull and James groups at the University of Bath 

(UK) over the last two decades. Its success has led to its widespread use by numerous other research 

groups for different supramolecular applications resulting in this type of reaction now being termed 

the “Bull-James assembly”. To date, this self-assembly methodology has found a wide range of 

applications, including: CDAs for determining the enantiomeric excess of a range of chiral analytes 

using NMR, optical, and electrochemical techniques; as a supramolecular self-assembly reaction to 

produce boracycles, chiral auxiliaries and ligands for stereoselective synthesis; the production of 

new types of polymers and stimuli-responsive materials; and as the basis of a new type of “click” 

chemistry methodology for modifying/functionalising peptides and proteins. 

The Bull group have had an interest in the development of asymmetric methodologies for the 

synthesis of chiral amines for many years, and have often needed to determine the ee of new types 

of chiral amines containing single stereocentres.91–96 One approach that they have commonly 

employed involves reaction of a scalemic amine with a CDA such as Mosher’s acid chloride 

(expensive, moisture sensitive, multiple steps, vide supra) to afford diastereomeric amide 

derivatives whose dr could then be determined by NMR spectroscopic analysis.54,56 Alternatively, 

the ee’s of these chiral amines (or their derivatives) could be determined using chiral HPLC analysis. 

The range of structures and functional groups present in the chiral amines produced in the Bull 

group meant that different CDAs or multiple expensive chiral HPLC columns often needed to be 

screened before a suitable system was identified to resolve the enantiomers of each different class 

of amine.3,7 Therefore, the Bull group were interested in identifying a practically simple, cheap, and 

rapid CDA approach that could be used to rapidly analyse the ee values of a wide range of chiral 

amines using NMR spectroscopic analysis. 
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The James group have been interested in chemical sensing and supramolecular chemistry for many 

years, having developed a wide range of self-assembled fluorescent sensors that employ the 

reversible binding of boronic acids (planar sp2 boron) to diol fragments to produce boronate ester 

complexes (tetrahedral sp3 boron) to induce a change in fluorescence response (Scheme 8a).97–102 

They have described that ortho-aminomethylphenylboronic acid sensors are particularly effective 

for the fluorescent, optical, and electrochemical sensing of sugars, with this class of sensors recently 

finding commercial applications for continuous monitoring of glucose levels in critical care 

patients.103,104 Diol complexation in this class of sensors is favoured by the presence of the proximal 

Lewis basic tertiary amino group,105 which binds to the boron centre to produce stable 

intramolecular aminoboronate ester complexes. Orthogonal binding of both the diol analyte and 

the amine to the boron centre occurs in a cooperative manner, with complexation of the 

diol producing a boronate ester with a more Lewis acidic sp2 boron centre, and the intramolecular 

N→B interaction increasing the overall stability of the complex. Complexation of these types of 

aminoboronic acid sensors to diols in aqueous/alcoholic media has been shown to produce solvent-

inserted aminoboronate complexes, whose formation results in fluorescence “turn-on” through 

elimination of “loose-bolt” internal conversion quenching of the fluorescence of the parent boronic 

acid probe (Scheme 8b).106,107 The versatility and strength of this type of aminoboronic acid 

complexation process has been exploited to produce many sensors for the fluorescent detection of 

a wide range of diols and sugars, as well as sensors for pH, anion, and reactive oxygen species 

sensing (Scheme 8c).97,102,108 The added stability of this type of aminoboronate ester complex has 

also been used as the basis of supramolecular assemblies for the generation of a wide range of 

hydrogels, boronic acid-appended porphyrins, amphiphiles, polymers, and covalent organic 

frameworks, amongst others.100,109,110 

 

Scheme 8: (a) Rapid complexation of a boronic acid with a vicinal diol reversibly affords a cyclic boronate ester. (b) 
Complexation of a diol to a non-fluorescent o-aminomethylphenylboronic acid sensor in water or an alcohol solvent 
results in formation of a solvent-inserted fluorescent boronic ester complex. Diol binding results in fluorescence “turn-
on” due to elimination of a “loose-bolt” effect that causes internal conversion quenching of the fluorescence of the un-
complexed boronic acid probe.106 (c) Representative o-aminomethylphenylboronic acid glucose/diol sensors developed 
by the James group.102,108 

Nomikai-inspired111 conversations during a research trip to Japan in 2002112 led James and Bull (and 

Arimori – PDRA in the groups) to realise that this type of boronate ester complexation chemistry 

could be exploited to develop a simple three-component protocol for determining the 

enantiopurity of chiral amines. Their simple idea was to react an achiral bifunctional template that 

contained a boronic acid and a proximal aldehyde group (purple) with a chiral 1,2-diol (blue) and a 
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scalemic amine (red) to selectively afford a pair of diastereomeric IBE complexes, whose dr could 

then be determined through the integration of pairs of diastereomeric signals in their 1H NMR 

spectrum. So long as no kinetic resolution occurred during the derivatization process, this dr value 

would be an accurate reflection of the ee of the parent scalemic amine. Moreover, the orthogonal 

three-component self-assembled nature of the protocol meant that it would be easy to adapt this 

derivatization approach to determine the ee of chiral diols and other chiral analytes (Scheme 9).  

 

Scheme 9: Design principles for a three-component derivatization protocol to produce an IBE-based CDA for determining 
the ee of a scalemic amine. 

 

1.3. Discovery and structural features of the Bull-James 

assembly 

1.3.1 Discovery of the Bull-James assembly CDA for determining the ee of amines 

A review of the literature revealed a promising report by Dunn et al.,113 who had described the 

stepwise synthesis of stable IBEs based on imine condensation of 2-FPBA 1114 with aniline 24 to 

afford an iminoboronic acid 25 intermediate that was then reacted with catechol 26 to afford 

iminoboronate ester 27 (Scheme 10). This precedent indicated that reaction of 2-FPBA 1 with a 

chiral diol and a scalemic amine could be used as the basis of a three-component derivatization 

protocol for determining the ee of chiral amines, as outlined in Scheme 9. 

 

Scheme 10: Stepwise three-component self-assembly of an achiral IBE complex 4 by Dunn et al.113  

This three-component assembly concept was initially investigated by mixing 2-FPBA 1, (S)-BINOL 9 

and (rac)-4-methoxy-α-methylbenzylamine 3b in CDCl3 with 4 Å molecular sieves (MS) to drive the 

condensation reactions to completion. Fortuitously, this reaction led to quantitative formation of a 

50:50 mixture of the diastereomeric IBE complexes (α-S,S)-28b and (α-R,S)-29b within 5 min (Figure 

3a),115 with complexation reactions of scalemic 4-methoxy-α-methylbenzylamine 3b of known ee 
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indicating that no kinetic resolution was occurring. Examination of the 1H NMR spectra revealed 

that the ee's of scalemic amines could be easily determined by integration of corresponding pairs 

of 1H NMR resonances originating from each of the IBE diastereomers that were formed. The imine 

(black, left), α-methine (red, centre left), p-methoxy (green, centre right), and α-methyl (blue, right) 

proton resonances of each diastereomer were fully baseline-resolved, exhibiting relatively large 

chemical shift differences ∆δH values of 0.11-0.21 ppm (Figure 3b). The presence of multiple well-

resolved diastereomeric peaks in these 1H NMR spectra enabled the integral ratios of multiple pairs 

of diastereomeric resonances to be used to accurately measure high ee values (> 95 % ee), thus 

minimising any risk of inaccuracy caused by baseline noise or the presence of impurities (Figure 3b).
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Figure 3: (a) Three-component assembly of 2-FPBA 1, (S)-BINOL 9 and (rac)-4-methoxy-α-methylbenzylamine 3b and 
observed ∆δH’s. (b) Expanded 1H NMR (500 MHz, CDCl3, 100 mM) spectra of diastereomeric complexes produced from 
reaction of 2-FPBA 1 with (S)-BINOL 9 and (S)-3b of 0, 80, 90, 95 and 98% ee. Spectra prepared following published 
procedure.116 

This three-component derivatization reaction was attractive from a practical standpoint, as it was 

moisture tolerant, employed cheap, commercially available, bench-stable reagents, and proceeded 

rapidly at room temperature (~5 min) in CDCl3 (common solvent for NMR spectroscopy), with no 

need for reaction workup or purification. Moreover, it produced diastereomeric IBEs whose 1H NMR 
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spectra exhibited multiple pairs of baseline-resolved diastereomeric proton resonances with large 

∆δH values which meant that their dr could be analysed using low field NMR spectrometers (e.g. 

250 MHz). Furthermore, the imine signals appeared in a region of the 1H NMR spectrum that was 

well removed from any other resonances, thus limiting the risk of overlapping peaks resulting in 

inaccurate integration values. These initial results indicated that this self-assembling CDA stood a 

strong chance of being applicable for determining the ee of a wide range of chiral amines, with its 

combinatorial three-component nature affording the opportunity to change the chiral diol 

component used for derivatization to maximise the signal resolution of pairs of diastereomeric 

peaks as required (vide infra). The modular nature of this CDA also afforded the opportunity to use 

an enantiopure amine as a chiral reporter to analyse the ee of chiral diols, or any other chiral analyte 

that might show orthogonal reactivity for either the boronic acid or formyl groups of the 2-FPBA 

template.109 

 

1.3.2 Structural and mechanistic features of IBE complex formation  

Since the initial reports describing the use of this three-component method to determine the ee's 

of amines, significant structural and mechanistic work has been carried out to understand the 

efficiency of the self-assembling pathways leading to formation of these stable IBE complexes. X-

ray crystallographic analysis of the diastereomeric IBEs (α-S,S)-28a and (α-R,S)-29a produced in the 

three-component assembly reaction of (S)-BINOL 9, 2-FPBA 1, and enantiopure α-

methylbenzylamine 3a (Figure 4) revealed N-B distances of 1.656 Å and 1.642 Å respectively, clearly 

indicating the presence of strong N→B coordination bonds that confer structural rigidity.117 This 

was further confirmed by 11B NMR spectroscopy which revealed upfield ‘tetrahedral boron’ signals 

for both complexes. This rigidity leads to the benzylic C-H bonds being positioned directly above 

the boronate centres to minimise steric interaction with the BINOL ligand. Differences in the 1H 

NMR chemical shifts of the α-methyl protons of the diastereomers can be explained by the 

homochiral complex (α-S,S)-28a experiencing anisotropic shielding effects from the BINOL naphthyl 

moiety that are not present in the heterochiral (α-S,R)-29a complex. Similar variations in local 

anisotropic shielding effects between diastereomeric complexes are responsible for the different 

chemical shifts of multiple pairs of diastereomeric proton resonances observed in their 1H NMR 

spectra. The ease of crystallisation of Bull-James-assembled IBEs also provides the opportunity to 

determine the absolute configuration of a chiral amine (or diol) analyte through X-ray crystal 

analysis of a diastereomerically-pure IBE complex prepared from a chiral diol (or amine) of known 

absolute configuration. 
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Figure 4: X-Ray crystal structures of IBEs (α-S,S)-28a and (α-R,S)-29a.117 

A simplified achiral three-component system using 2-FPBA 1, catechol 26, and benzylamine 30 was 

used by Anslyn and co-workers to explore the mechanism and kinetics of the stepwise formation 

of these self-assembled IBE complexes.118 1H and 11B NMR spectroscopic analysis of two- and three-

component reactions in acetonitrile - d3 (improved solubility of reagents/products) revealed the 

presence of a multistep reaction pathway leading to IBE complex formation (Scheme 11). These 

studies revealed that the 2-FPBA 1 template exists in equilibrium with its corresponding borate 1’ 

and benzoxaborole 1’’ species, with strong intramolecular binding of a lone pair of its aldehyde 

group to the boron centre, activating the aldehyde towards nucleophilic attack.119–121 Reaction of 

the aldehyde with an amine produces hemi-aminals 31’ and 31’’ that then eliminate water to 

produce iminoboronic acid 32. Subsequent addition of catechol then leads to formation of the 

desired achiral iminoboronate complex 33. Interestingly, a small amount of the unproductive 

(Z)-imine 32 (no intramolecular N → B coordination) was observed in the two-component 

complexation reaction, which is consumed through equilibration to (E)-IBE 33 upon addition of 

catechol. Similar reaction pathways and intermediates have been suggested and observed by 

others, including important works by Sporzyński and Yatsimirisky.122–124 

 

Scheme 11: Stepwise mechanism of the three-component assembly of 2-FPBA 1, benzylamine 30 and catechol 26 in 
CD3CN.118 



17 
 

In order to further evaluate the nature of the self-assembly processes operating in these 

complexation reactions, the observed binding constants for each individual two- and three-

component assembly step in methanol were calculated (Scheme 12). These data clearly revealed 

that guest binding of the diol and amine to the 2-FPBA host is a cooperative process, as 

demonstrated by the dramatic increase in binding affinities when moving from two- to three-

component assemblies. This difference in reactivity was observed upon binding of catechol 26 to 

the boron centre, as equimolar mixtures of the diol and 2-FPBA 1 did not lead to quantitative 

formation of formyl boronate ester 34 (K2 = 112 M-1), whereas addition of catechol 26 to 

iminoboronic acid 32 strongly favoured formation of iminoboronate ester 33 (K3
 = 2.45 × 103

 M-1). 

Similarly, addition of benzylamine to boronate ester 34 to give iminoboronate ester 33 (K4 = 2.40 × 

104 M-1) was more favoured than addition of benzylamine 30 to 2-FPBA 1 to afford imine 32 

(K1 = 1100 M-1) by an order of magnitude. This further confirms that the strength of binding of the 

diol to the boron centre to produce a boronate ester complex is increased by the presence of a 

proximal imine functionality (and vice versa). These complexation results are consistent with results 

reported by Gillingham et al. to explain the efficiency of bioorthogonal iminoboronate 

complexation reactions (vide infra), as well as explanations provided to explain the reaction 

pathways of analogues of o-aminomethylphenylboronic acid complexes.125–127 

 

Scheme 12: Observed binding constants for intermediates generated in the three-component assembly reaction of 
2-FPBA 1, benzylamine 30, and catechol 26 in CD3OD.118 

 

1.4. Three-component assembly for determining ee by NMR 

spectroscopic analysis  

1.4.1 Primary amines 

The optimal conditions (enantiopure BINOL, CDCl3, 4 Å molecular sieves, 5 min) that were 

established to determine the ee of 4-methoxy-α-methylbenzene 3b were then applied to determine 

the enantiopurities of a wide array of primary chiral amine analytes (Scheme 13).115 This 
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derivatization approach shows good scope, affording a series of diastereomeric IBEs 28 and 29 

whose 1H NMR spectra all exhibited at least one pair of well-resolved diastereomeric signals that 

could be integrated to determine their dr’s. Complexation using scalemic samples confirmed that 

none of these chiral amines underwent any kinetic resolution (or epimerisation) during the 

derivatization process, thus allowing this new CDA to be used to accurately measure the ee’s of a 

wide range of chiral amine analytes. Impressively, this derivatization method was found to be 

effective for analysing the ee of primary amines containing remote stereocentres up to 5 carbon 

atoms removed from the complexed amino group, and direct analysis of chiral ammonium salts 

could be achieved through incorporation of Cs2CO3 (1.1 equiv.) as a base for neutralisation. A 

subsequent report by Urriolabeitia and co-workers described that derivatization of enantiopure 

phenylglycine methyl ester salts (more labile α-stereocentre) resulted in formation of mixtures of 

diastereomeric IBEs when derivatization reactions were left for extended periods of time (> 1 h).128 

This issue was subsequently solved by switching the base used for amine salt neutralisation from 

Cs2CO3 to less-soluble K2CO3, which allowed racemisation-free derivatization of chiral amine salts 

containing potentially labile stereocentres to be carried out.129 

 

Scheme 13: Three-component assembly reaction of 2-FPBA 1, (S)-BINOL 9 and (rac)-amines 3 to afford diastereomeric 
IBEs 28 and 29 with 1H NMR (300 MHz, CDCl3, 66.7 mM) ∆δH values quoted for selected pairs of diastereomeric 
resonances.115 
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Since these initial reports, this CDA method has been published as a general procedure in Nature 

Protocols,116 and has been used by the Bull group to validate the enantioselectivities of a number 

of new asymmetric methods for the production of chiral amines. Their first application was to 

confirm the enantiopurities of (R)-[α-2H]-phenylalanine methyl esters generated by alkylation of 

the aza-enolate of deuterated Schöllkopf’s bis-lactim ether 35 (Scheme 14).130 This CDA method 

has also been used to confirm the enantiopurities of α- and β-amino esters 36 and 37 prepared 

using asymmetric Strecker (Scheme 15) and enantioselective aza-conjugate addition reactions, 

respectively (Scheme 16).129,131 It has also been used to confirm the enantiopurity of a chiral 

α-methylbenzylamine-derived intermediate (R)-38 that was used for the synthesis of a chiral ligand 

used in the preparation of a pseudo-C3-symmetric titanium alkoxide propeller-like complex 

(Scheme 17).132 

  

Scheme 14: Three-component CDA method (using enantiopure (R)-BINOL 9) used to determine the ee’s of α-deuterated- 
α-amino esters 35 produced in asymmetric enolate alkylation reactions.130 

 

 

Scheme 15: Three-component CDA (using enantiopure (S)-BINOL 9) used to determine the ee’s of α-arylglycines 36 
produced in asymmetric Strecker reactions.129 
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Scheme 16: Three-component CDA (using enantiopure (R)-BINOL 9) used to determine the ee’s of tert-butyl β-amino 
esters 37 produced in enantioselective aza-conjugate addition reactions.131 

 

 

Scheme 17: Three-component CDA (using enantiopure BINOL 9) used to determine the ee of a tetradentate amine ligand 
(R)-38 used to prepare an enantiopure ‘propeller-like’ pseudo-C3-symmetric titanium alkoxide.132 

Other research groups have also used the Bull-James assembly to determine the ee of amines 

produced in various stereoselective protocols. Duggan et al., for instance, reported a novel 

synthesis of aliphatic α,α-difluoro-β3-amino esters 39 through addition of zinc enolates to chiral 

phenylglycine-derived imines (Scheme 18),133 with the three-component CDA approach then used 

to demonstrate that the N-Boc-deprotected amine products had ee’s of 80-92%. The ee of a chiral 

allyl amine intermediate 40, produced in an enantioselective Overman-rearrangement that was 

used to synthesise a transaminase BioA inhibitor (potential antitubercular agent), was also 

measured in this manner (Scheme 19).134 
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Scheme 18: Three-component CDA method (using enantiopure (S)-BINOL 9) used to determine the ee of an α,α-difluoro-
β3-amino esters 39 prepared using a sonocatalyed Reformatsky reaction.133 

 

 

Scheme 19: Three-component CDA method (using enantiopure BINOL 9) used to determine the ee of a chiral allylamine 
40 produced in an enantioselective Overman rearrangement reaction.134 

The Anslyn group have also employed NMR spectroscopic analysis of three-component IBE 

assemblies to benchmark the ee’s of amine analytes. These amines were subsequently used to 

develop a new CD method for high-throughput ee determination based on formation of 

diastereomeric chiral copper complexes that produce different metal-to-ligand charge transfer 

(MLCT) bands in the visible region of their CD spectra (Scheme 20).135 

 

Scheme 20: Three-component analysis used to benchmark the ee’s of chiral amines used to develop a MLCT CD assay for 
high-throughput determination of the ee's of primary amines (using (S)-BINOL 9).135 

Suryaprakash et al. have reported the use of the chiral diol fragments of RNA nucleosides as chiral 

selectors for determining the ee of a small range of amines,136 as shown for the complexation 

reaction of guanosine, 2-FPBA 1 and (rac)-α-methylbenzylamine 3a to produce the diastereomeric 

complexes 41 and 42 shown in Scheme 21. These complexation reactions required more forcing 

and solubilising reaction conditions (DMSO, 110 °C) to proceed to completion, and whilst the 

structural complexity of these diastereomeric IBEs afforded multiple resolved resonance pairs (red), 

800 MHz 1H NMR spectra were required to fully resolve them. 
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Scheme 21: Three-component assembly of 2-FPBA 1, guanosine, and (rac)-α-methylbenzylamine 3a. Pairs of 
diasteromeric protons that exhibited distinct resonances in a 800 MHz 1H NMR spectrum are shown in red.136 

Fossey and co-workers have exemplified the experimental simplicity and reproducibility of this 

NMR derivatization protocol by successfully using it as the basis of a research-informed 

undergraduate teaching class that was used to train a cohort of > 100 2nd year undergraduate 

students at the University of Birmingham (UK).137 An optimised iminoboronate protocol using 2-

FPBA 1, (R)-BINOL 9, and α-methylbenzylamine 3a was used as an educational tool to introduce the 

students to the principles of dynamic covalent supramolecular chemistry and methods of 

determining the enantiopurities of chiral molecules, whilst reinforcing their knowledge of carbonyl 

condensation chemistry and fundamental Lewis acid/base coordination processes. 

 

1.4.2 Diamines 

As alluded to previously, the Bull-James CDA protocol can be employed for a variety of analytes, 

and so was subsequently applied to determine the ee's of two widely used trans-diamines: 

trans-1,2-diphenylethane-1,2-diamine 43 and trans-cyclohexane-1,2-diamine 44.138 Reaction of 

diamine (rac)-43 with (R)-BINOL 9 and 2-FPBA 1 resulted in the formation of a pair of diastereomeric 

imidazolidines (R,R,R)-45 and (R,S,S)-46,139–141 which exhibited well-resolved pairs of diastereomeric 

signals for the amino (red) and benzylic (blue) protons proximal to their BINOL fragments being 

observed in their 1H NMR spectra (Scheme 22).138 Furthermore, these diastereomeric IBE 

complexes were found to be stable enough for N-H deuteration by addition of D2O, which resulted 

in simplified 1H NMR spectra that enabled more accurate determination of dr’s. 

 

Scheme 22: Three-component assembly of 2-FPBA 1, (R)-BINOL 9 and (rac)-trans-diphenylethylene diamine 43 to produce 
a pair of diastereomeric imidazolidine boronate esters 45 and 46 with 1H NMR (500 MHz, CDCl3) ∆δH of selected 
resonances.138 
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Unfortunately, applying this CDA approach to trans-cyclohexane-1,2-diamine 44 proved 

unsuccessful, with its derivatization with (S)-BINOL 9 and 2-FPBA 1 producing a mixture of products 

(Scheme 23). Although the heterochiral imidazolidine complex (S,R,R)-48 proved stable, increased 

steric demands within the homochiral complex resulted in formation of a dynamically equilibrating 

mixture of imidazolidine (S,S,S)-47 and its corresponding imine (S,S,S)-47’. A simple solution to this 

problem was achieved, through N-Boc-protection of the parent diamine 44 to afford N-Boc-diamine 

49, which then underwent IBE derivatization to afford the desired mixture of IBE diastereomers in 

the usual manner. 

 

Scheme 23: Three-component derivatization of 2-FPBA 1, (S)-BINOL 9 with (rac)-trans-cyclohexane-1,2-diamine 44 and 
(rac)-N-Boc-trans-cyclohexane-1,2-diamine 49 with 1H NMR (400 MHz, CDCl3, 80 mM) ∆δH of selected resonances.138 

 

1.4.3 Amino alcohols 

Attempts to apply the CDA methodology to 1,2-amino alcohols proved similarly problematic, with 

assembly of (S)-phenylglycinol 50, 2-FPBA 1 and (S)-BINOL 9 producing complex equilibrating 

mixtures of products (Scheme 24), including the desired IBE 51, oxazolidine boronate ester 52 and 

a larger polyboracycle 53.142 Once again, the problems caused by these competing complexations 

could be solved using a protection strategy, with O-silylation of the problematic alcohol 

functionality prior to assembly resulting in the three-component complexation proceeding 

smoothly to give the desired diastereomeric IBEs. A simple diol screen revealed that the best results 

were obtained when BINOL 9 was substituted by (rac)-(syn)-methyl 2,3-dihydroxy-3-

phenylpropionate 54, which was subsequently employed for the successful three-component 

derivatization of ten enantiopure O-silyl amino alcohol analytes 55. 
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Scheme 24: (a) Problematic three-component assembly of (S)-phenylglycinol 50, 2-FPBA 1, and (S)-BINOL 9. (b) Three-
component derivatization of 2-FPBA 1, (rac)-54 and O-silylated 1,2-amino alcohols 55 with 1H NMR (400 MHz, CDCl3, 
80 mM) ∆δH of selected resonances.142 

 

1.4.4 Hydroxylamines 

Bull-James assembly of chiral hydroxylamines 56 with 2-FPBA 1 and (rac)-BINOL 9 in the presence 

of a Cs2CO3 base gave mixtures of diastereomeric nitrono-boronate esters 57/58 (Scheme 25).143 

Unlike amines, which form five-membered IBEs containing an intramolecular N → B bond, 

hydroxylamines gave more stable diastereomeric six-membered nitrono-boronate ester complexes 

whose formation was favoured by both strong N-O and O-B bonds.113,144 These structures were 

confirmed by X-ray crystallography of (α-S,R)-58f, which revealed a bicyclic assembly containing a 

coplanar zwitterionic -C=N+-O-B— arrangement (Figure 5). This produces a rigid ring system that 

produces relatively large chemical shift differences for selected pairs of diastereomer resonances 

(up to 0.242 ppm) in their 1H NMR spectra. 
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Scheme 25: Three-component assembly of 2-FPBA 1, (rac)-BINOL 9, and hydroxylamines 56 to form diastereomeric 
nitrono-boronate ester complexes 57 and 58 with 1H NMR (500 MHz, CDCl3, 80-115 mM) ∆δH of selected resonances.143 

 

 

Figure 5: X-Ray crystal structure of (α-S,R)-58f, from (S)-4-chloro-α-methylbenzylamine 56f.143 

 

1.4.5 Diols 

The role of analyte and chiral reporter in the three-component CDA are broadly interchangeable, 

and so the Bull-James assembly has also been adapted to determine the ee’s of chiral 1,2- and 

1,3-diol analytes through use of an enantiopure amine chiral reporter (Scheme 26).145 

α-Methylbenzylamine (S)-3a was chosen as a cheap readily available chiral amine reporter for 

reaction with 2-FPBA 1 and a range of racemic chiral diols 59, which produced diastereomeric 

complexes (α-S,S,S)-60 and (α-S,R,R)-61, which exhibited one or more baseline-resolved pairs of 

signals for their IBE diastereomers in their 1H NMR spectra. 
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Scheme 26: Three-component assembly using 2-FPBA 1, (S)-α-methyl benzylamine 3a and (rac)-diols 59 with 1H NMR 
(300 MHz, CDCl3, 66.7 mM) ∆δH of selected resonances.145 

This method has also been published as a detailed general procedure in Nature Protocols,146 and 

has subsequently been applied to determine the ee of a range of chiral 1,2-diols by a number of 

research groups. One elegant example is the work by Watkins et al., who employed the CDA (using 

(S)-α-methylbenzylamine 3a) to determine the ee’s of a range of chiral furan and thiophene diols 

(62/63 and 64 respectively) prepared using Sharpless enantioselective ADmix dihydroxylation 

methodology, that were used for the first stereoselective synthesis of (+)-armillariol C 62 (Scheme 

27).147 Inoue et al. used enantioselective dihydroxylation reactions of α,β-unsaturated esters to 

prepare both enantiomers of syn-diol 65 (shown for ADmix-α), whose β-stereocentres were then 

inverted in two steps via cyclic organosulfate intermediates to afford their corresponding anti-diols 

66. The enantiopurities of all four diol stereoisomers were determined as 96-99% ee using three-

component chiral derivatization (using α-methylbenzylamine 3a), with these stereoisomers then 

transformed into the four corresponding stereoisomers of resolvin E3 (Scheme 28).148 Similarly, this 

CDA approach has been used to determine the enantiopurity of diol 67 (90% ee, single stereocentre, 

using both (R)- and (S)-3a) that was also produced in an enantioselective dihydroxylation reaction 

and subsequently used to prepare 3-oxo and 3β-hydroxytauranin (Scheme 29).149 
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Scheme 27: Three-component CDA method (using enantiopure (S)-α-methylbenzylamine 3a) used to determine the ee of 
both enantiomers of armillariol C 62 and analogues 63/64 that were produced using a Sharpless asymmetric 
dihydroxylation reaction.147 

 

 

Scheme 28: Three-component CDA method (using enantiopure α-methylbenzylamine 3a) used to determine the ee's of 
syn- and anti-diols 65 & 66 that were subsequently used to synthesis all four possible stereoisomers of resolvin E3 (shown 
for ADmix-α).148 

 

 

Scheme 29: Three-component CDA method (using enantiopure (R)- and (S)-α-methylbenzylamine 3a) used to determine 
the ee of diol 67 that was subsequently used for total syntheses of 3-oxo- and 3β-hydroxytauranin.149 
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Chopard et al. have used the three-component CDA to determine the enantiopurities of cis-diols 

68 and 69, produced from the microbial cis-dihydroxylation of naphthalenes and pyridinones. In 

this instance, the chiral amine reporter used for derivatization was optimised, which identified 

phenylglycine tert-butyl ester 70 as the chiral reporter that gave diastereomeric IBEs with the best 

∆δH values (Scheme 30).150 

 

Scheme 30: Three-component assembly for determining the enantiopurity of cis-diol arenes using phenylglycine 
tert-butyl ester 70 and 2-FPBA 1 with 1H NMR (250 MHz, CDCl3, 44 mM) ∆δH of selected resonances.150 

The three-component CDA was also used to measure the ee’s of cis-diols 72 and 73 produced in 

Sharpless dihydroxylation reactions by Anslyn et al. (Scheme 31).151,152 The ee’s of these diols were 

then used to benchmark indicator displacement UV-Vis assays for the high-throughput 

determination of yields and enantioselectivities of Sharpless dihydroxylation reactions. This 

approach employed reversible host/guest assemblies of an o-aminomethylphenylboronic acid 

sensor, in which the UV-VIS signal intensity is directly determined by the ee and concentration of 

the analyte.151,152 

 

Scheme 31: Indicator displacement assay used for UV-Vis and colorimetric determination of enantioselectivity and yield 
of cis-diols 72 and 73 produced in Sharpless dihydroxylation reactions.152 
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The Bull group have applied the CDA method to determine the ee of a range of chiral 1,3-diols 74 

synthesised in moderate to good ee by tandem hydroboration/reduction of β,γ-unsaturated esters 

(Scheme 32).153 The three-component assembly CDA has also been used by Herzon et al. to 

determine the ee of 1,3-diol 75 (92%) that was synthesised by catalytic reductive hydration of a 

chiral alkynylsilane by sequential hydration/hydrogenation using a novel half-sandwich ruthenium 

complex and formic acid (Scheme 33).154 

 

Scheme 32: Three-component CDA method (using enantiopure (S)-α -methylbenzylamine 3a) used to measure the ee’s 
of chiral 1,3-diols 74 formed in tandem chiral borane-mediated asymmetric hydroboration/reduction reactions of 
β,γ-unsaturated esters.153 

 

 

Scheme 33: Three-component CDA (using enantiopure α-methylbenzylamine 3a) to measure the ee of a 1,3-diol 75 
formed in a stereoselective reductive hydration reaction of an alkynyl alcohol catalysed by a half-sandwich ruthenium 
complex.154 

The three-component CDA has also been used to assess the enantiopurity of polymers containing 

diol fragments, with Kressler et al. reporting its application to determine the enantiopurities of 

poly(glycerol methacrylate)s (PGMAs, 76) that were prepared from enantiopure solketal 

methacrylate monomers using atom transfer radical polymerization (ATRP) reactions.155 

Enantiopure and racemic polymer chains were derivatised with α-methylbenzylamine 3a and 

2-FPBA 1 in DMSO - d6, to afford mixtures of iminoboronates (α-S,S)-77 and (α-S,R)-78 that exhibited 

several pairs of distinct diastereomeric resonances in their 1H NMR spectra (Figure 6). Peak 
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broadening caused by the polymeric backbone meant that baseline resolution was not observed, 

however the ∆δH’s of the polymer’s methine, exo methylene and endo methylene proton signals 

(Ha, Hb, Hc , respectively) were sufficiently different to enable qualitative assessment of the 

enantiopurity and absolute configurations of the PGMA side-chains of these polymers. 

 

Figure 6: (a) Bull-James assembly used for derivatization of the diol side-chain of PGMAs 76. (b) Inset of 1H NMR (400 MHz, 
DMSO – d6, ~ 6 mM) spectra showing chemical shift variation of Ha, Hb and Hc resonances of complexes of (S)-PGMA 
(red), (R)-PGMA (blue) and (rac)-PGMA (black).155 Reproduced with permission from Elsevier. 

 

1.4.6 Hydroxyacids and diacids 

The groups of Chaudhari and Suryaprakash have also expanded the scope of the Bull-James 

assembly CDA by demonstrating that it can be used to determine the enantiopurities of 

hydroxyacids 79/80 and 1,4-diacids 81.156–158 Treatment of (rac)-α-hydroxyacids 79 (Scheme 34a) 

and (rac)-β-hydroxyacids 80 (Scheme 34b) with 2-FPBA 1 and α-methylbenzylamine 3a in MeO - d4 

resulted in mixtures of diastereomeric iminoboronate esters which showed modest to excellent 

∆δH (0.04-0.65 ppm) values in their 1H NMR spectra. As in previous reports, the role of analyte and 

reporter in these IBE complexes was found to be interchangeable, and so corresponding use of an 

enantiopure hydroxyacid could be used to determine the ee of scalemic amines. 
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Scheme 34: Three-component CDA for determining the enantiopurities of (a) α-hydroxyacids 79; and (b) β-hydroxyacids 
80 with 1H NMR (400 MHZ, MeOD–d4, ~300 mM) ∆δH of selected resonances.156–158 

This methodology was optimised further to improve resolution and sensitivity, with the chiral amine 

reporter used for IBE complex formation changed from α-methylbenzylamine 3a to axially chiral 

diamine BINAM 82.158 Three-component assembly of α-hydroxyacids 79, 2-FPBA 1 and BINAM 82 

produced diastereomeric IBEs which exhibited excellent chemical shift differences for pairs of 

diastereomeric resonances in their 1H, 13C{1H} and 11B NMR spectra (Scheme 35). Interestingly, the 

excellent chiral discrimination produced in this self-assembled system resulted in chemical shift 

differences being observed in an IBE complex derived from achiral substrate glyconic acid, which 

exhibited a ∆δH = 0.04 ppm value for the prochiral α-protons of its IBE complex. 
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Scheme 35: Three-component CDA for determining the enantiopurities of α-hydroxyacids 79 using 2-FPBA 1 and BINAM 
82 with selected 1H NMR (400 MHz, CDCl3, ~300 mM) ∆δH of selected resonances.158 

Simple conformational models of the IBE complexes formed in these systems were developed, 

allowing the absolute configuration of hydroxyacids to be predicted using either BINAM 82 or 

α-methylbenzylamine 3a as a chiral reporter.159,160 Following benchmarking, analysis of the relative 

signs of the ∆δH values, broadness of signals and 2D nOe interactions enabled the absolute 

configuration of a range of hydroxyacids and primary amines to be assigned using BINAM 82 as a 

chiral reporter. In those cases where assignment was hampered by significant signal overlap in the 
1H NMR spectra, these resonances could be successfully deconvoluted using simple 2D RES-TOCSY 
1H NMR experiments.161 

These three-component assembly protocols were also used to determine the ee’s of chiral 

1,4-diacids 81 (Scheme 36), resulting in moderate to excellent chemical shift differences 

(∆δH = 0.08-0.62 ppm) in the 1H NMR spectra of the diastereomeric IBEs of five diacid analytes.157 

Once again, the components of this assembly could be switched, enabling chiral diacids to be used 

to produce diastereomeric IBE complexes to determine the ee’s of chiral primary amines. In some 

instances, the large chemical shift differences observed in these diacid/amine-derived IBE 

complexes even led to full resolution of certain 13C{1H} NMR signals. 
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Scheme 36: Three-component CDA for determining the enantiopurity of 1,4-diacids 81 with 1H NMR (400 MHz, 
MeOD – d4, ~300 mM) ∆δH of selected resonances.157 

 

1.4.7 19F NMR spectroscopic analysis 

Fluorine was the first NMR-active heteronucleus to be studied for compatibility with the Bull-James 

assembly, due to the strength of its signal, its broad range of chemical shifts, and the simplicity of 
19F NMR spectra making it an excellent and widely-used NMR-active reporter. Bull and James first 

demonstrated incorporation of fluorine into their three-component assembly in 2009,162,163 with 

initial work focusing on using a fluorinated chiral amine reporter in the three-component protocol 

(Scheme 37). A range of diols 83, 4-fluoro-α-methylbenzylamine 4-F-3a and 2-FPBA 1 were 

derivatised to form 19F NMR-active complexes (α-S,S,S)-84 and (α-R,S,S)-85, which exhibited a ∆δF 

range of 0.05-0.75 ppm between diastereomers. A similar approach was subsequently employed 

by Suryaprakash et al. for analysis of hydroxyacid and diacid protocols, with CF3-appended chiral 

reporters and analytes affording diastereomeric complexes with non-equivalent 19F NMR signals 

that could be integrated to determine their dr.156,157 

 

Scheme 37: Three-component protocol using 2-FPBA 1, 4-fluoro-α-methylbenzylamine 4-F-3a and chiral diols 83 to 
produce fluorinated diastereomeric complexes with good 19F NMR (400 MHz, CDCl3, 66.7 mM) ∆δF values.162 
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A significant improvement to this fluorous approach was achieved by incorporating the fluorine 

reporter atom into the achiral 2-FPBA template to produce a generally applicable method for 

determining the ee of different classes of chiral analytes. 4-fluoro-2-formylphenylboronic acid 

(4-F-2-FPBA, 4-F-1) was synthesised and used in the three-component assembly protocol, 

producing fluorinated diastereomeric complexes 86/87 which afforded baseline-resolved signals in 

their 19F NMR spectra, allowing for ee determination of diols by both 19F and 1H NMR spectroscopic 

analysis (Figure 7). Similar results were reported by Suryaprakash et al. during their later work on 

applying this CDA to determine the enantiopurity of diacids (vide supra).157 

  

Figure 7: (a) Three-component protocol using 4-F-1, (rac)-α-methylbenzylamine 3a and chiral diols 83. (b) Expansion of 
1H (500 MHz, CDCl3, 66.7 mM) and 19F (470 MHz, CDCl3, 66.7 mM) NMR spectra of three-component assembly of 4-F-1, 
(R)-3a and a scalemic diol (red) at 80%, 90% and 98% ee.162 Adapted with permission from the American Chemical Society. 

Recently, Oe et al. have also reported the three-component assemblies of fluorinated 2-FPBA 

derivatives 3-F-1, 4-F-1 and 5-F-1 with (S)-BINOL 9 and α-methylbenzylamine 3a with the aim of 
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identifying diastereomeric IBEs with the greatest ∆δF values (Scheme 38).164 After establishing that 

5-F-1 was the best fluorinated template (93% conversion, ∆δF = 0.10 ppm for their model system), 

this system was optimised using excess BINOL and triethylamine (1.5 equiv. each) to minimize 

kinetic resolution and/or epimerisation of α-amino ester salts 88. 

 

Scheme 38: Modified Bull-James assembly of amino ester salts 88 with 5-F-1 and (S)-BINOL 9 with 19F NMR (376 MHz, 
CDCl3, 30 mM) ∆δF of selected resonances. *CD2Cl2 used as solvent.164 

 

1.4.8 Chalcogen NMR spectroscopic analysis 

Silva et al. have shown that incorporation of NMR-active chalcogens 77Se and 125Te into the analyte 

or chiral reporting unit can also be used to determine ee using three-component assembly 

protocols.165,166 Their initial report focused on derivatizing racemic chalcogen-containing amines 89 

(Scheme 39) with 2-FPBA 1 and (S)-BINOL 9 to afford pairs of iminoboronate complexes. 77Se{1H} 

and 125Te{1H} NMR spectroscopy of these complexes showed excellent chemical shift anisochrony 

for the diastereomeric IBE complexes formed, with ∆δSe values ranging from 26.2-34.4 ppm and 

∆δTe values ranging from 75.6-85.7 ppm. Although only racemic samples were employed in this 

work, the magnitude of chemical shift differences observed indicates that these systems would be 

useful for determining the ee of diol analytes. 
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Scheme 39: Three-component assembly of 2-FPBA 1, (S)-BINOL 5 and chalcogen containing amines 89, and the ∆δSe 
(99 MHz, CDCl3) and ∆δTe (132 MHz, CDCl3, 20 mM) values of their diastereomeric IBE complexes.166 

Subsequently, Silva et al. synthesised selenium-containing 3-phenylchalcogen-1,2-propanediol 90 

for use as a chiral reporter with 2-FPBA 1 and chiral amines 91 which gave pairs of diastereomeric 

IBEs, the majority of which exhibited baseline-resolved diastereomeric signals in their NMR spectra 

with chemical shift differences for ∆δSe and ∆δTe of 0-1.144 ppm and 0.43 ppm, respectively. 

(Scheme 40).165 Interestingly, the chemical shift differences observed in this instance were 100-fold 

smaller than in their previous work, implying that the chalcogen atoms occupy positions in space 

that are relatively remote from the amine stereocentres and so only experience small anisotropic 

shielding effects. Nevertheless, integration of diastereomeric 77Se NMR signals could be used to 

produce accurate measurements of the ee’s of scalemic samples of known enantiopurities (± 4%). 

 

Scheme 40: Three-component assembly of 2-FPBA 1, chalcogen containing diols (R)-90Se/Te and racemic amines 91 with 
∆δSe (99 MHz, CDCl3, 7.1 mM) and ∆δTe (132 MHz, CDCl3, 7.1 mM) values of their diastereomeric IBE complexes.165 
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1.5. Three-component assembly for determining ee by 

optical methods  

The Bull-James assembly has also been applied to the optical sensing of ee using methods that rely 

on CD, UV-Vis, or fluorescence spectroscopic analysis, with the aim of developing methods 

potentially applicable for high-throughput analysis.14,20 All of these approaches rely on exploiting 

differences in the spectroscopic response of diastereomeric IBE complexes, whose dr’s correspond 

to the ee of the parent chiral analyte used for the IBE complexation. 

 

1.5.1 Determining the ee of amines and diols using circular dichroism  

A collaboration between the Anslyn, Bull, and James groups in 2012 reported the use of circular 

dichroism spectroscopy to analyse diastereomeric IBE complexes formed from the three-

component self-assembly of chiral amines 92, chiral BINOL derivatives 93/94, and 2-FPBA 1 (Figure 

8a).167 As with many multicomponent host-guest assemblies, a strong CD signal was observed 

(Figure 8b), with a maximum difference in signal response between diastereomeric complexes 

produced from the enantiomers of α-methylbenzylamine 3a observed at 253 nm 

(98,941 deg.cm2/dmol). This enabled BINOL and two brominated derivatives to be employed as 

chiral reporters in an array of sensing ensembles, whose CD signals were processed using Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to produce chemometric 

statistical models that were capable of differentiating between different α-chiral amine analytes 

and determining their ee’s with an average error of ± 5.8% (Figure 8c, d). The use of PCA and LDA is 

widespread in the field of differential sensing as multivariate statistical tools which recognise and 

amplify patterns from large datasets.168 
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Figure 8: (a) Three-component assembly of 2-FPBA 1, BINOL-derivatives 93/94 and a chiral amine 92. (b) CD spectra of 
diastereomeric IBE complexes obtained from 2-FPBA 1, 6,6-dibromo-BINOL 93 and α-methylbenzylamine 3a. (c) 
Calibration curve for CD outputs of complexes produced from mixing (R)-BINOL 9, 2-FPBA 1 and (scl)- 3a of known ee. (d) 
LDA plot of chiral amine analytes.167 b, c, d Adapted with permission from the Royal Society of Chemistry. 

Subsequent to this report, Wolf et al. described a self-assembling system based on host complexes 

derived from 4-methoxy-2-FPBA (4-OMe-1) and non-chiral 2,2’-binaphthol 95 (Figure 9a).169 Two-

component assembly of chiral amines (1-cyclohexylethylamine 96 and 1-aminoindane 97) with 

4-OMe-1 gave iminoboronic acid complexes with only weak CD signals (dashed lines, Figure 9b). 

However, addition of 95 resulted in a large increase in the Cotton signals of the resultant IBEs, 

consistent with the self-assembly process controlling the helicity of its BINOL fragment (solid lines, 

Figure 9b). Although this system was not used for ee determination, the amplitude of signal change 

indicates this type of assembly is likely to be suitable for this purpose. 

(R)-93 host 

(S)-93 host 

(R)-93 host + (R)-3a 

(R)-93 host + (S)-3a 

(S)-93 host + (R)-3a 

(S)-93 host + (S)-3a 

b) c) 

d) 
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Figure 9: (a) Three-component assembly of 2,2’-binaphthol 95, 4-OMe-1 and a chiral amine to afford complexes for CD 
spectroscopic analysis. (b) CDA spectra produced from complexes derived from amines 96 (left) or 97 (right). Blue and 
red lines correspond to complexes produced from the (R)- or (S)-enantiomers of the amines, respectively. Dashed lines 
correspond to two-component complexes formed from 4-MeO-1 and the enantiomers of the amines 96 and 97. 
C = 37.5 μM.169 Adapted with permission from the American Chemical Society. 

 

1.5.2  Determining the ee of amines, amino alcohols and diols using fluorescence 

Collaborations between James and Anzenbacher have also led to the development of multiple Bull-

James assembly-derived fluorescent assays,170–173 with their practicality and versatility leading to 

their publication in Nature Protocols, validating its use as an effective method for the high-

throughput analysis of the ee of chiral diols, amino alcohols and amines produced in stereoselective 

reactions.174 Their first reports focused on the development of “turn-off” fluorescent assemblies 

using fluorescent host systems comprised of 2-FPBA 1 and 3,3’-diphenyl-2,2’-bi-1-naphthol 

(VANOL) or 2,2’-diphenyl-(4-biphenanthrol) (VAPOL) as chiral reporter diols for determining the 

ee’s of scalemic amines (Figure 10a).170–172 Interestingly, these extended aryl systems exhibited the 

same NMR chiral shift behaviour as seen in previous BINOL-based systems, with several sets of 

baseline-resolved signals observed for each pair of diastereomeric complexes in their 1H NMR 

spectra. This host system (2-FPBA 1 + chiral fluorescent diol) was found to be suitable for 

determining the ee of both amines and amino alcohols. In the case of amines (and amino 

acids/esters), IBE formation resulted in photoinduced electron transfer (PeT) quenching, leading to 

a “turn-off” fluorescence response (Figure 10b). As shown in Figure 10c, fluorescence intensity (FI) 

was dependent on the chirality of the amine analyte, which enabled ee values of amine samples to 

be correlated to changes in fluorescence intensity with good levels of accuracy (± 1-2%) (Figure 

10d). 
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Figure 10: (a) Three-component assembly of 2-FPBA 1, a chiral primary amine and a fluorescent diol. (b) The fluorescence 
(λex=335 nm) of a mixture of (S)-VANOL (40 μM) and 2-FPBA 1 (40 μM) in ahydrous EtCN decreases on addition of (R)-α-
methylbenzylamine 3a (0-80 μM). (c) Binding isotherms of (S)- and (R)-α-methylbenzylamine 3a to (S)-VANOL-2-FPBA 
host. (d) Qualitative LDA of amine, amino alcohol and amino acid enantiomers in EtCN.170 b, c, d reproduced with 
permission from John Wiley and Sons. 

This type of fluorescent three-component self-assembly platform was also applied to the analysis 

of the ee’s of amino alcohols, with formation of oxazolidine intermediates resulting in a red-shift of 

the fluorescence signal rather than PeT quenching (Figure 11a). Differential changes in fluorescent 

intensities were once again observed between the diastereomeric oxazolidine products produced 

(vide supra), thus allowing for the measurement of the enantiopurity of the parent amino alcohol 

analyte. This enabled ratiometric changes in fluorescence to be used to determine the ee’s of amino 

alcohols, as well as providing the ability to distinguish between amino alcohol and amine analytes. 

This is seen clearly in Figure 11b, with LDA affording large distances between clusters of 

enantiomers and functional groups of the parent analytes. Interestingly, these studies found that 

addition of polar/protic additives (water, citric acid, ethylene glycol, sucrose, glycerol) had a more 

pronounced effect on the equilibrium constants for formation of the heterochiral complexes over 

the homochiral complexes, indicating that the heterochiral complexes were less stable. This led to 

the discovery that these types of additives could be used to further discriminate between analyte 

enantiomers in these complexation reactions. 

b) 

c) d) 
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Figure 11: (a) Fluorescence spectra of the three-component assembly of 2-FPBA 1, (S)-VANOL and [(1S,2R)-(-)-cis-1-amino-
2-indanol (0-100 μM)]. (b) Qualitative LDA of chiral amine, amino alcohol and amino acid analytes.170 Reproduced with 
permission from John Wiley and Sons. 

Use of enantiopure L-tryptophan derivatives as fluorescent reporters for three-component 

complexation meant that these types of fluorescence assays could be adapted to determine the 

ee's of scalemic diols (Figure 12) to within a 2% error limit.172 As with amines and amino alcohols, 

the fluorescent profiles of the diastereomeric homochiral and heterochiral complexes produced 

from various classes of diols were sufficiently different to enable LDA to be used to accurately 

determine both their structures and ee values (Figure 12).  

 

 

 

 

Figure 12: (a) Three-component assembly of 2-FPBA 1, a chiral diol and a fluorescent tryptophanol derivative. (b) 
Qualitative LDA of 16 chiral diols showing 100% correct structural classification.172 Reproduced with permission from John 
Wiley and Sons. 

The practicality of this fluorescence methodology for high-throughput screening was demonstrated 

by measuring the enantiopurities of 14 samples of Atorvastatin (a hypercholesterolemia drug) of 

unknown ee’s using a high-throughput assay (Figure 13a), with quantitative linear regression 

analysis revealing accurate enantiopurity determination in all cases (R2=0.999). This type of 

fluorescence assay was also employed to analyse the ee of diols produced in Noyori asymmetric 

transfer hydrogenation reactions of benzil to hydrobenzoin (diol). In this case, an artificial neural 

network was developed that was used to correctly determine the absolute configuration, ee and 

b) 

a) b) 
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concentration of hydrobenzoin products (both crude and recrystallised) with high levels of accuracy 

(Figure 13b, c). 

  

Figure 13: (a) Standard graph of FI vs. ee of L-tryptophanol and 2-FPBA 1 assemblies (1:1, 40 mM) of atorvastatin of known 
(black) and unknown (blue and red) ee values. (b) Fluorescence titration profile of L-tryptophanol–2-FPBA (1:1, 40 mM) 
complexes with hydrobenzoin standards (inset: Standard curve of FI vs. ee). (c) HT fluorescence assay standard curves for 
FI readings from mixtures of hydrobenzoin of known ee in comparison with six hydrobenzoin samples of unknown ee 
(red, blue circles).172 Reproduced with permission from John Wiley and Sons. 

Most recently, Anzenbacher et al. have reported a dual chromophore indicator displacement assay 

which proved to be more sensitive for determining ee than the aforementioned “turn-off” 

systems.173 This approach employed a combination of two fluorescent dyes capable of orthogonal 

binding to the aldehyde and boronic acid fragments of the 2-FPBA template (Scheme 41). Initial 

assembly of L-tryptophanol and 6,7-dihydroxycoumarin produced a bichromophoric oxazolidine-

boronate complex, with intramolecular Förster resonance energy transfer (FRET)175 processes 

leading to weak fluorescence of its tryptophanol moiety and enhanced fluorescence of its coumarin 

fragment. Addition of a scalemic diol (or hydroxyacid) analyte results in displacement of the 

coumarin dye and separation of the FRET pair, which leads to fluorescent “turn on” of the 

tryptophanol fluorophore, and “turn off” of the dihydroxycoumarin (Scheme 41a). Since assembly 

of each enantiomer of the parent analyte proceeds diastereoselectively, each enantiomer leads to 

a different fluorescence response which can be used to determine the ee’s of a scalemic analyte. 

a) b) c) 
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Scheme 41: Displacement assays using bichromophoric three-component assemblies for determining the enantiopurities 
of a range of scalemic analytes: (a) Use of 2-FPBA 1, L-tryptophanol and 6,7-dihydroxycoumarin for the detection and ee 
analysis of diols and hydroxyacids. (b) Use of 2-FPBA 1, L-tryptophanol and (S)-VAPOL for the detection and ee analysis of 
amines and amino alcohols.173 

Alternatively, the use of (S)-VAPOL as a chiral reporter produced an IBE system suitable for 

determining the enantiopurity of amines and amino alcohols (Scheme 41b). In this case, the 

fluorescence of both fragments of the enantiopure oxazolidine sensor is likely to be quenched 

through PeT donation of the nitrogen lone pair of the oxazolidine fragment to the VAPOL fragment, 

although the exact mechanism of fluorescence and quenching was not determined. Addition of a 

scalemic amine analyte results in displacement of the L-tryptophanol unit producing an IBE complex 

that results in a fluorescence “turn-on” response, with the fluorescence of the VAPOL remaining 

“turned off”. Use of an amino alcohol analyte to afford an imidazoline-boronate ester complex also 

results in displacement and “turn-on” of tryptophanol, however the ensuing PeT process leads to 

amplification of the (S)-VAPOL fluorescent signal which is also “turned-on”. Since addition of the 

enantiomers of amine, amino ester, diol and hydroxyacid analytes to these chiral indicator 

displacement sensors result in different fluorescent responses, this bichromophoric Bull-James 

sensing system could be used to successfully classify the structures of 26 different analytes and 

accurately determine their absolute configurations and enantiopurities (Figure 14).  
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Figure 14: (a) Semi-quantitative LDA of fluorescence response data from displacement assays enables simultaneous 
determination of the ee values of four different types of amine, amino alcohol, α-hydroxyacid and diol analytes. (b) 
Qualitative LDA of the fluorescence response of 26 chiral amines, amino alcohols, diols and hydroxyacids (+ controls) in 
the displacement assay enabled their structures to be predicted with a 100% success rate.173 Reproduced with permission 
from the Royal Society of Chemistry. 

 

1.6. Three-component assembly for electrochemical 

determination of the ee of BINOL 

Finally, a collaboration with the Tucker group demonstrated that the ee of BINOL could be 

measured electrochemically through derivatization with a redox-active two-component 

iminoboronic acid complex derived from a ferrocene amine and 2-FPBA 1 (Figure 15a).176 It was 

found that the resultant diastereomeric complexes (α-R,R)-98 and (α-R,S)-99 exhibited significantly 

different electropotentials of 614 mV and 665 mV, respectively (Figure 15b). This difference 

allowed the ee of BINOL 9 to be determined with an error of ±3%, thus enabling minor enantiomers 

(< 5 %) to be detected, even at low concentrations. Crystallographic and 1H and 11B NMR 

spectroscopic analysis showed that whilst the homochiral diastereomeric complex (α-R,R)-98 

formed an intramolecular iminoboronate N→B bond, the more sterically hindered heterochiral 

complex (α-R,S)-99 did not, once again indicating that heterochiral IBE complexes are generally less 

stable (vide supra).171 This structural difference is responsible for the differences in their 

electrochemical behaviour, with the N→B bond of the homochiral complex resulting in (R)-BINOL 

5 being more tightly bound, with a ratio of binding strengths K(α-R,R)/K(α-R,S) of ≈ 19. Electrochemical 

oxidation of these IBEs results in the binding strength ratio K(α-R,R)
+/K(α-R,S)

+ dropping to only 2.5, thus 

indicating a much larger decrease in stability of the homochiral complex (α-R,R)-98. This difference 

is proposed to be due to weakening of the N→B coordination bond caused by the proximal positive 

a) b) 
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charge of its oxidised ferrocene fragment. Evidence for weakening of the N→B coordination bond 

of the homochiral (α-R,R)-98 complex was also provided by the larger positive shift in redox 

potential upon addition of (R)-BINOL 9 to iminoboronic acid (R)-100 (+95 mV for (α-R,R)-98 vs. 

+44 mV for (α-R,S)-99)). This indicates that the ferrocene unit of complex (α-R,R)-98 is harder to 

oxidise than (α-R,S)-99, in line with its imine-boron coordination bond withdrawing electron density 

from the ferrocene redox system. 

 

Figure 15: (a) Three-component assembly of 2-FPBA 1, redox-active ferrocene amine (R)-100 (pre-assembled) and BINOL 
9. (b) Square wave voltamograms of three-component ferrocene IBEs acquired in CH2Cl2 (0.1 M TBA · PF6); ((α-R,R)-98 
shown in purple) and (α-R,S)-99 shown in blue). (c) Plot of Eobs against ee for IBE complexes produced from (S)-BINOL 9 
showing a linear dependence between 60% and 98% ee.176 b, c Reproduced with permission from the American Chemical 
Society. 

 

1.7. IBE assemblies as synthetic tools 

The use of the Bull-James three-component assembly for determining enantiopurity is often 

credited as one of the first examples the use of orthogonal dynamic covalent bond formation to 

construct functional supramolecular assemblies.100,177–179 The power of these chiral iminoboronate 

systems for self-assembly has led to supramolecular constructs of this type being used to prepare 

new types of boron-containing materials and as a mechanism to control reactivity and 

stereoselectivity.180–183 

 

1.7.1 Self-assembled synthesis of polyheteroatomic boracycles 

The three-component assembly reaction of 2-FPBA 1 with (S)-BINOL 9 and (S)-leucinol 50a resulted 

in mixtures of imine and oxazolidine boronate products (vide supra),142 however oxazolidine 

boronate ester (S,2R,4S)-52a fractionally crystallised out of solution after the crude reaction 

mixture was allowed to stand overnight (Figure 16a).184 Carrying out a two-component assembly 
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using (R)-valinol 50b and 2-FPBA 1 produced bridged iminoboronate (R,R)-53b, comprised of two 

fused boracycle rings containing two tetrahedral boron centres and a bridging oxygen atom linker 

(Figure 16b), in the same manner as related systems reported by Westcott et al.185,186 Five additional 

chiral amino alcohols were used as substrates in this two-component self-assembly reaction in 

combination with either 2-FPBA 1 or 2-formyl furanylboronic acid 101, which gave the respective 

boracycles in excellent 84-96% isolated yields. Achiral aromatic amino alcohols 50g and 50h were 

also shown to form boracycles in quantitative yields, although their decreased reactivity required 

heating under Dean-Stark conditions for complexation reactions to proceed to completion. 

  

Figure 16: (a) X-Ray crystal structure of three-component assembly of (S,2R,2S)-52a formed from reaction of (S)-leucinol 
50a, BINOL 9 and 2-FPBA 1. (b) Two-component assembly of formyl aryl boronic acids and 1,2-amino alcohols 50. (c) X-
Ray crystal structures of (R,R)-53b and 53h viewed along and perpendicular to the boron-boron axis (left and right 
respectively).184 

Both types of fused bridged bicycles were characterised using X-Ray crystallography (Figure 16c), 

which revealed interesting structural variation between the two-component products produced 

from chiral or achiral amino alcohols. In the case of (R,R)-53b, the B-O-B linkage is positioned on 

the opposite face to the two non-bridging oxo-substituents, which creates a binding pocket walled 

by the non-bridging oxygens and side-chains, and capped by a bridging B-O-B bond. Conversely, all 

of the atoms of the O-B-O-B-O motif are present in the same plane for complex 53h, with all three 
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oxygen atoms sitting on the same side of the complex. These structural differences result in the 

pocket of the chiral complex containing two potentially coordinating oxygen atoms, whilst the 

pocket of the achiral complex is hydrophobic in nature. 

 

1.7.2 IBE templates for the formation of miniamyloids 

Geyer and co-workers have also reported the use of IBEs as bifunctional templating motifs for the 

controlled synthesis of Aβ-miniamyloids.187,188 A β-turn polypeptide mimic Hot=Tap composed of 

three cis-diol containing heterocyclic fragments (trimeric structure shown in Figure 17) was 

combined with excess amounts of 2-FPBA 1 and pentapeptide 102 under mild conditions to prepare 

three-component assemblies 103 containing three peptide fragments. This provided an excellent 

“one-pot” self-assembling alternative to previous methods for the synthesis of miniamyloids that 

previously required pre-functionalisation of the peptide prior to its attachment to the Hot=Tap 

backbone. Further work by the same group showed that this approach was broadly applicable to 

combine a wide range of peptides and Hot=Tap oligomers,188 with a number of these 

supramolecular assemblies exhibiting similar structures to amyloid fibrils that contribute protein 

misfolding diseases such as to Alzheimer’s disease. 

 

Figure 17: Synthesis of tripeptidic Aβ-miniamyloid 103 from the three-component assembly of 2-FPBA 1, pentapeptide 
102, and a trimeric Hot=Tap oligomer.187 

 

1.7.3 Chiral IBE ligands for asymmetric catalysis 

Three-component assemblies have also been used by the Taylor group, who employed IBE bond 

forming reactions for the combinatorial synthesis of a library of chiral phosphine ligands for 

enantioselective palladium-catalysed allylic acetate substitution reactions.189 They selected three 

achiral formyl boronic acid templates 104a-c, eleven diol ligands 105a-k (both chiral and achiral), 

and four chiral aminophosphines 106a-d to create a library of 100 phosphinoiminoboronate ligands 

107 (Scheme 42) that were individually screened as chiral ligands in palladium-catalysed allylic 

substitution reactions of (rac)-108 with diethyl malonate 109 (Scheme 43). A wide range of 

enantioselectivities were observed, with the best results obtained for ligands 107aaa and 107abc 



48 
 

which respectively produced (R)-110 in 90% ee and (S)-110 in 93% ee, a significant improvement on 

the 67% and 69% ee values obtained using non-iminoboronate aminophosphine ligands 1106a and 

106b. The sheer volume of data acquired using this combinatorial approach enabled Taylor and co-

workers to rapidly assign trends that would not have been so evident from a conventional stepwise 

ligand optimisation strategy. For instance, they were able to show that aliphatic diol ligands gave 

better stereocontrol as they decreased the Lewis acidity of the boron centre, which weakened the 

intramolecular N→B bond, thus facilitating stronger bidentate P,N-coordination of the ligand to the 

metal. 

 

Scheme 42: Combinatorial IBE reactions used for the combinatorial synthesis of 100 chiral phosphine ligands.189 

 

 

Scheme 43: Chiral phosphine-iminoboronate ligands afford enhanced enantioselectivities in palladium-catalysed allylic 
alkylation reactions.189 

 

1.7.4 IBE-derived chiral auxiliaries in CuAAc click reactions 

Fossey and co-workers have reported use of the Bull-James assembly for asymmetric synthesis, 

employing it to construct a chiral auxiliary for the kinetic resolution of alkyne amines using a 

copper(I)-catalysed azide-alkyne cycloaddition (CuAAc) reaction (Scheme 44).47 In this system, a 

racemic alkyne-containing primary amine 111 was self-assembled with 2-FPBA 1 and (R)-BINOL 9 

to form a mixture of diastereomeric iminoboronate complexes 112/113 that were subjected to 

CuAAc conditions using 0.5 equiv. of benzyl azide. This resulted in the alkyne fragment of the (α-

R,R)-112 diastereomer preferentially undergoing a stereoselective click reaction with a selectivity 

value of S = 4.1. Subsequent acid-catalysed hydrolysis of the IBE ester complexes then afforded 
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amino-azide (R)-114 in 39% ee and recovered amine (S)-111 in 29% ee. Although only moderate 

stereocontrol was achieved in this unoptimised ‘one-pot’ kinetic resolution reaction, the simplicity 

of installing and removing the chiral auxiliary in this type of system is noteworthy, particularly if 

more stereoselective transformations of these types of IBE complexes can be identified. 

 

Scheme 44: Formation of diastereomeric IBE complexes from alkyne (rac)-111 enables a CuAAc-catalysed click reaction 
to be used for their kinetic resolution.47 

 

1.7.5  Reversible radical coupling of iminoboronates 

McConnell et al. found that treatment of a pre-assembled N-aryl iminoboronate catechol ester 115 

with the single electron reductant Cp2Co resulted in radical homocoupling of its imino benzylic 

groups to afford amido-boronates (rac5)-116, (meso5)-116 and (rac6)-116 (Scheme 45).190 Kinetic 

analyses and structural studies revealed that 5-membered (rac5)-116 and (meso5)-116 were formed 

as kinetic products which then rearranged to 6-membered (rac6)-116 under thermodynamic 

control, leading to mixed time-, temperature-, and substrate-dependent ratios of product 116. 

These dimeric homo-coupled products were found to be less stable than their IBE precursors, with 

their treatment with an electron acceptor trityl cation (Ph3C)+ resulting in regeneration of the 

original IBE monomers. 
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Scheme 45: Reversible radical coupling of iminoboronates 115 to afford amidoboronates 116 (radical-coupled bond in 
red) under thermodynamic control.190 

 

1.8. Iminoboronate complexes for the formation of polymers 

and hydrogels 

1.8.1 Iminoboronate polymers 

Following their demonstration that the Bull-James assembly could be used to assess the chirality of 

polymers (vide supra), Kressler and co-workers have reported that derivatization of GMA 

monomers with 2-FPBA 1 and (S)-α-methylbenzylamine 3a gave iminoboronate GMA-IPB 

monomers, which could undergo radical or UV-initiated low-temperature ATRP polymerisation to 

afford iminoboronate ester polymers in one pot (Scheme 46).191 These polymers could then be 

decomplexed via treatment with a large excess of catechol 26 to afford simple p(GMA)s containing 

free diol units released by transesterification and elimination of catechol-iminoboronate (S)-117. A 

similar process could also be used to polymerise iminoboronate ester monomers containing two 

equiv. of 2-hydroxyethyl-methacrylate (HEMA), affording highly syndiotactic polymers 

(rr = 70.7−75.5% for pGMAs and 74.9−79.7% for pHEMAs). 
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Scheme 46: One-pot complexation and polymerisation of 2-FPBA 1, (S)-3a, and GMA to afford iminoboronate ester 
functionalised polymers that are decomplexed by treatment with catechol to afford pGMAs.191 

 

1.8.2 Dynamic, self-healing and stimuli-responsive polymers and hydrogels 

Iminoboronates have also been incorporated into polymeric systems as a structural element to 

facilitate cross-linking of polymer and hydrogel materials.192 For example, Raquez et al. have 

developed self-assembled imine-coordinated boroxine polymeric systems that are produced from 

reaction of a diamine, a polyether-containing terminal bis-cyclic carbonate unit and a 2-FPBA 

boroxine trimer 118 (Figure 18a). Ring opening of the terminal cyclic anhydride groups by one of 

the diamine amines results in a urethane bond, with the other amino group then reacting to form 

a highly cross-linked iminoboroxine complex IBPU.193–195 This self-assembly approach produces 

polymers with a high degree of stiffness (Young’s modulus = 551 MPa) and tensile strength (11 MPa) 

despite the labile nature of iminoboronates. These dynamic iminoboronate covalent bonds were 

found to confer self-healing properties to these materials, with heating/cooling and wetting/drying 

enabling broken imine or boroxine bonds to be reformed (Figure 18b). Similarly, changes in 

temperature and humidity can be used as stimuli to make or break the bonds used to construct the 

iminoboronate-boroxine hubs, thus creating stimuli-responsive materials which are re-mouldable 

under mild treatment conditions. This provides a simple alternative to common isocyanate-derived 

polyurethane self-healing and stimuli-responsive polymers, which have been shown to have 

potential applications as solid polymer electrolytes.196 Following these initial reports, functional 

variants of this core motif have been developed, based on substitution of the iminoboronate 

moieties with similar amino- and acrylamido-boronate motifs.197,198  
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Figure 18: Three-component self-assembly of Iminoboroxine-containing self-healing polymers and hydrogels. (a) 
Synthesis of an iminoboroxine polyurethane network polymer. (b) Self-healing and modular behaviour of iminoboroxine-
polyurethane polymers.192 Reproduced with permission from the American Chemical Society. 

This concept has been expanded further for the design of self-assembled IBE-containing polymers 

that are prepared from supramolecular assembly of 2-FPBA 1, guanosine (G), aminoglycosides, and 

potassium chloride (Figure 19). These stimuli-responsive hydrogels contain a large network of 

hydrogen-bonded K+-centred guanosine tetramers (G-quadruplexes), whose diol units are 

crosslinked through formation of iminoboronate ester groups with the amino groups of 

aminoglycoside units.199–203 These hydrogels were found to be responsive to multiple stimuli, with 

an increase in temperature or addition of potassium-chelating crown ethers resulting in disruption 

of the G-quadruplex arrays and release of the aminoglycoside bis-iminoboronate guanosine units. 

The iminoboronate bonds of these complexes are also responsive to disruption by other stimuli, 

with addition of aqueous acid leading to their hydrolysis to the 2-FPBA 1, amine, and diol 

components. Alternatively, the addition of glucose results in transesterification of the boronate 

ester, releasing a guanosine fragment and producing of new glucose-iminoboronate-

aminoglycoside species. Finally, the reactivity of boronates towards reactive oxygen and nitrogen 

species (ROS/RNS) may be exploited, with addition of hydrogen peroxide triggering oxidative 

deborylation to produce an iminophenol and boric acid, and releasing the guanosine fragment.204–

206 This multi-responsive behaviour has been exploited for drug delivery for selective release of 

antibacterial aminoglycosides and the anticancer drug Doxorubicin.199,203 CO2-responsive 

iminoboronate poly(oligo(ethylene glycol)) polymers have also been reported by Jiang and co-

workers, with bubbling of CO2 reversibly producing carbonic acid that triggers IBE bond hydrolysis, 

thusinducing depolymerisation processes that can be reversed by purging with N2 gas.207 This CO2-

dependent behaviour has been demonstrated in multiple systems (vide infra) using both 1H NMR 
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and fluorescence assays to measure the fragmentation/re-complexation of IBE systems upon 

sequential CO2/N2 bubbling. 

 

Figure 19: An aminoglycoside iminoboronate hydrogel assembled from guanosine, K+, an aminoglycoside and 2-FPBA 1. 
These materials are responsive to multiple external stimuli such as acids, glucose, H2O2, heat and crown ethers, all of 
which act on different structural elements of the hydrogel network.199 Reproduced with permission from John Wiley and 
Sons. 

 

1.8.3 Stimuli-responsive aggregates and micelles 

The Bull-James multicomponent approach has also been used to produce stimuli-responsive 

iminoboronate-containing nano-aggregates, micellar assemblies, and polymersomes that are 

stable in aqueous systems. Jiang and co-workers, for example, have reported the three-component 

assembly of poly(ethylene glycol) amine with 2-FPBA 1 and a nitrophenyl ethanediol (PEG-INEC) to 

produce amphipathic IBE complexes that self-assemble into nano-aggregates in aqueous systems 

(Figure 20).208 These nano-aggregates were found to be responsive to three common stimuli: light 

- which results in release of a nitrosoaryl α-hydroxy-ketone and an iminoboronic acid fragment; acid 

- which hydrolyses both the boronate ester and imine bonds to regenerate the original three-

components; and hydrogen peroxide - which oxidatively cleaves the boronate ester to give boric 

acid, o-hydroxy-benzaldehyde and nitrophenyl ethanediol. Therefore, different external stimuli can 

be used to trigger controlled decomposition of these aggregates, which is potentially useful for the 

selective release of encapsulated hydrophobic guest molecules. 

2-FPBA 1 
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Figure 20: Self-assembled PEG-iminoboronate polymeric nano-aggregates and their stimuli-responsive degradation by 
light, acid, or H2O2.208 

The same group have also reported the development of different iminoboronate aggregate 

systems, whose disassembly is triggered by the action of nucleophilic ROS or CO2-induced solvent 

acidification.209,210 For example, CO2-responsive N3-(OEG-IBCAPE)4 polymersomes are stable at 

physiological pH 7.4, however protonation of their tris-amine cores results in nano-aggregate 

disassembly at mildly acidic pH levels. This enabled iminoboronate ester linkers to be used to 

generate polymersomes attached to the diol unit of caffeic acid phenethyl ester (CAPE, anti-cancer 

drug, red) as a CO2-responsive drug delivery system (Figure 21). These polymersomes exhibited 

improved transport properties that enabled their delivery to CO2-rich HL-60 leukaemia cells that 

exhibit a mildly acidic environment. This acidity results in intracellular hydrolysis of the 

iminoboronate bonds of the polymersome aggregates, which leads to their disassembly and release 

of CAPE as a cytotoxic agent within the target cancer cells. Jiang et al. have most recently shown 

that that these structures are also responsive to tandem metalation of the triamine centre and ROS-

cleavage of the iminoboronate linker.211 The same transport principles have also been employed by 

Shi and co-workers for pH/GSH-responsive delivery of encapsulated capecitabine to HepG2 liver 

cancer cells.212 
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Figure 21: Self assembled prodrug N3-(OEG-IBCAPE)4 polymersomes and the stimuli-responsive CO2-triggered release of 
CAPE in cancer cells.210 Reproduced with permission from the Royal Society of Chemistry. 

 

1.9. Iminoboronate derivatives for biological targeting and 

tagging 

IB-type assemblies have also been employed for the functionalisation and tagging of the amino 

groups of peptides and proteins, with several recent specialised reviews having covered this topic 

in detail,213–216 with only a general overview of this area provided herein. The majority of 

bioorthogonal labelling reactions that have been reported to date are two-component in nature, 

involving reaction of 2-FPBA 1 (or 2-acetylphenylformyl boronic acid, 2-APBA 119) with amine or 

aminothiol residues of peptides or proteins to form imine/thioxazolidine bonds that are stabilised 

by the presence of a proximal boron centre (Scheme 47). These condensation reactions have been 

found to proceed with rate constants of over 102-103 M-1 s-1,217 which is orders of magnitude faster 

than many traditional alkyne-azide ‘click’ coupling reactions. Gois, Gillingham and Anslyn have 

carried out binding studies that clearly demonstrate that the proximal boron centre accelerates 

imine condensation reactions and stabilises imine complex formation, with additives or external 

stimuli (e.g. changes in pH, ROS, nucleophiles…) normally required to achieve hydrolysis, 

degradation, or decomplexation.125,126,218,219 For example, computational studies on the 

condensation of n-butylamine and 2-APBA 119 have shown that the adjacent boronic acid reduces 

the activation enthalpy for imine condensation drastically by 35-36 kcal/mol.218 
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Scheme 47: Diverse bioorthogonal IB conjugation chemistries of 2-FPBA- and 2-APBA-derived linkers. 

The most commonly employed amine-tagging systems involve generation of the two component 

iminoboronic acid assemblies A and B (pH interconvertible), both of which have been widely used 

to label the free ε-amine groups of lysine residues in peptides and proteins. This approach was 

pioneered in 2012 by Gois et al. who reported formation of an iminoboronic acid complex between 

the hormonal neuropeptide Somatostatin and 2-APBA 119 in ammonium acetate buffer (20 mM, 

pH 5.0-7.0) (Scheme 48).218 Following this success, they demonstrated that 2-APBA 119 could be 

used to successfully tag lysine groups present in lysozyme, cytochrome C, ribonuclease A, and 

myoglobin with a range of 2-formylaryl boronic acids. Improvements to this tagging approach have 

subsequently been reported based on the use of peptides/proteins containing α-nucleophiles such 

as hydrazides, acylhydrazides and alkoxyamines which react more rapidly to afford hydrazone and 

oxime linkers (C, D, E, Scheme 47) that are more hydrolytically stable.217,220–223 Similarly, 

multidentate coordination of bifunctional nucleophiles such as α-amino hydrazides or 

1,2-aminothiols to 2-FPBA/2-APBA templates have proved popular for producing stable 

bioconjugates containing tricyclic azadiborolidine boracycles (F, Scheme 47) and stabilised 

thioxazolidine linkers (G, Scheme 47).220,222,224–226 
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Scheme 48: Reaction of lysine groups in Somatostatin with 2-APBA 119.218 

Proof of concept studies have shown that stimulus-triggered decomplexation of these types of 

protein-boracycle conjugates can be achieved through treatment with fructose, dopamine, 

glutathione, aqueous acid, ROS/RNS, etc., with this reversibility exploited to induce partial or 

complete hydrolysis of intramolecular imine bonds to control ring-opening of cyclic peptides 

(Scheme 49). Since their inception, these types of stimuli-responsive two-component IB assemblies 

have been used to derivatize peptides, proteins, aminoglycosides, biological polyamines and amine-

rich membrane lipids for fluorescent tagging, targeted fluorophore, biomolecule and therapeutic 

delivery, covalent protein inhibition, and reversible biomolecule functionalization.227–235 

 

Scheme 49: A stimuli-responsive intramolecular iminoboronic acid bond can be used to control the cyclisation of an AF488 
fluorophore-appended peptide.227 

Witte et al. have very recently exploited the selectivity and reversibility of three-component 

hydrazide-derived assemblies to develop modular multicomponent chemical probes that can be 

used for protein tagging and/or labelling applications (Scheme 50).236 In this approach, 2-FPBA-

derived units containing amine-reactive “warhead” units (e.g. sulfonyl fluoride, epoxide, or azide, 
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121a-c) are reacted with a hydrazide ligand 120 containing a peptide recognition (e.g. streptavidin, 

Strp) to afford reactive ligand-linker IBE complexes 122. Attachment of these IBE complexes to the 

target protein through the recognition domain results in selective reaction of the reactive warhead 

with an amino group of the desired protein, resulting in irreversible tagging of the protein surface. 

Subsequent treatment of these protein-bound complexes with α-amino hydrazide fluorophores 

123 then results in a fast transamination reaction displacing the hydrazide targeting ligand to 

selectively produce highly stabilised fluorescent tricyclic azadiborolidine protein complexes (F, 

Scheme 47) that can then be imaged fluorescently. Conveniently, these linker-ligand complexes 

could be prepared by simply combining equimolar amounts of ligand and linker prior to 

administration to the desired protein, or even be prepared in situ by adding the ligand and linker 

separately to the protein mixture.  

 

Scheme 50: (a) Modular assembly of a warhead-ligand iminoboronate-hydrazide complex 122. (b) Ligand-directed 
covalent labelling of a protein by 122a and ligand exchange with an α-amino hydrazide fluorescent reporter 123.236 

The use of three-component strategies for tagging the amino groups of biomolecules has been less 

well explored (e.g. H, Scheme 42), although three recent reports demonstrate the potential of this 

approach for producing stable bioconjugates. In 2017, Hall and co-workers reported the 

development of a three-component-like click tagging approach, using a novel 

nopoldiol/arylboronate thiosemicarbazone/acyl (NAB-TAS) synergic system, where the 

thiosemicarbazide unit underwent rapid imine condensation to afford complex 126 that was 

stabilised by intramolecular formation of a boronate ester bond with the adjacent pendant 

nopoldiol (a popular “click” boronate motif). More recent characterisation work has shown that 
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these complexes undergo further intramolecular cyclization reactions, with the thiosemicarbazone 

nitrogen adding to the activated C=N, producing an additional triazolidine-thione ring as shown in 

structure 126’.237 This system was employed for live cell imaging by fluorescence microscopy using 

a SNAP-tag approach, in which HEK293T cancer cells were transiently transfected with the pSNAPf-

ADRβ2 plasmid, allowing 2-APBA-derivative 124 to be secured on the cell membrane, enabling 

‘click’ fluorescent tagging of these cells with 125 for visualisation using fluorescence microscopy at 

concentrations as low as 10 μM (Scheme 51).238 

 

Scheme 51: 2-APBA modification of HEK293T cancer cells and subsequent “three-component click NAB-TAS” 
boronate/thiosemicarbazone fluorescent labelling.238 

Further applications of this NAB-TAS approach have been very recently reported by the same group 

for in vivo targeting and imaging applications.237 An APBA motif was first introduced locally into 

mice by intradermal injection of a boronate-N-hydroxysuccinamide (NHS) adduct 127 that was 

capable of reacting with exogenous nucleophiles to anchor the acyl-boronate motif to the 

extracellular matrix. A near-infrared (NIR) cyanine-appended nopoldiol-thiosemicarbazone 

derivative 128 was then administered systemically through retro-orbital injection, which resulted 

in production of a strong highly localised fluorescent signal after 24 h, indicating successful NAB-

TAS-mediated targeted delivery of the fluorescent tag to the APBA-treated region.  
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Figure 22: (a) Structures of boronate-NHS 127 and diol-NIR 128 used for in vivo NAB-TAS coupling bioorthogonal targeting. 
(b) Schematic representation of labelling experiments. 127 is first anchored to the tissue extracellular matrix, and 128 is 
then administered systemically for click capture. (c) Representative in vivo images of mice before, 1 day after, and 1 week 
after administration of 128. Blue and red dashed circles indicate PBS and boronate−NHS injection sites, respectively.237 
Reproduced with permission from the American Chemical Society. 

Gois et al. have reported a “boron hot spot” (BHS) approach to selectively target the amino groups 

of N-terminal cysteine residues, which was developed to address some of the promiscuity and 

reversibility issues that are often observed when two-component iminoboronic acid complexation 

reactions are used to functionalise biomolecules (Scheme 52).239 They found that attachment of 3-

hydroxyquinolin-2(1H)-one (3HQ)/succinimide groups to the thiol units of N-terminal cysteine 

residues resulted in selective imine condensation of the N-terminal amino group with 2-FPBA 1. 

This was proposed to be due to the IB complex being stabilised by formation of an intramolecular 

B-O bond between the boronic acid and the BHS α-hydroxy-amide fragment of the S-appended 3HQ 

fragment, with further hydrogen bonding stabilisation from the succinimide (blue, Scheme 52). This 

boron hot spot approach was used to selectively tag 2-FPBA-modified c-ovalbumin with an 

impressive Ka value of 58,128 (±2) M-1, thus allowing for site-selective labelling of its free N-terminal 

amino groups in the presence of other lysine residues despite a large excess of 2-FPBA 1. This 

tagging approach was used to prepare glutathione-labile boron hot spot fluorescently-labelled 

protein conjugates that were capable of delivering their fluorescent payloads to HT29 cancer cells. 
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Scheme 52: Site-selective iminoboronate complexation of an N-terminal boron hot spot-modified c-ovalbumin.239 

Finally, a collaboration with Anslyn has reported the use of 2-FPBA 1 and hydroxylamine to 

irreversibly functionalise the catechol fragment of an L-Dopa-containing peptide derivative. 

Fluorescent tagging of the peptide containing a Cu(I) Sharpless-Huisgen ‘click’ appended 

benzaldehyde group was achieved through imine bond formation with the O-functionalised 

hydroxylamine residue of the CF488A dye. Subsequent addition of 2-FPBA 1 then templated 

irreversible three-component formation of a highly stable nitrono-boronate linker (vide supra) that 

was formed from incorporation of the catechol unit of the L-Dopa residue and the N-functionalised 

hydroxylamine group of the solubilising PEG side-chain (Scheme 53).45 

 

Scheme 53: Dual one-pot labelling of L-Dopa-containing peptide with a fluorescent dye and a solubilising PEG side-chain.45 

 

1.10. Conclusions and outlook on the Bull-James assembly 

The body of work presented in this review, which forms the basis of a publication in Coordination 

Chemistry Reviews,240 clearly highlights the versatility and practicality of iminoboronate assemblies, 

with potential applications across many fields of chemistry and chemical biology. From its initial 

discovery as a CDA for determining the ee's of chiral amines and diols, the Bull-James three-

component assembly has now been developed into a wide-ranging method for the chiral analysis 
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of a broad variety of analytes using NMR, CD, fluorescence, and electrochemical methods. Beyond 

analytical applications, iminoboronate assemblies have also proven popular as orthogonal self-

assembly tools for preparing boracycles, polymers, hydrogels and aggregates that exhibit stimuli-

responsive properties. Similarly, bioconjugation applications have also been demonstrated, with 

ongoing development of two- and three-component dynamic labelling methodologies showing 

great promise as a versatile tool for “click” modification of the free amino groups (or diols) of 

biomolecules. 

Although the original application of these IBE assemblies as analytical tools for determining 

enantiopurities continues to grow both in scope and popularity, it is likely that the potential 

chemical biology applications of these IB systems will be far wider ranging than was originally 

anticipated. Although it is expected that additional analytical IBE methods will be developed, some 

of which are reported in the chapters below, the future of these three-component iminoboronate 

ester assemblies clearly lies in their innate ability to act as reversible yet highly rigidified linkers. 

The prospect of expanding the use of these IBEs as easily ‘tuneable’ chiral auxiliaries for asymmetric 

synthesis is an exciting one and should lead to highly versatile, practically simple methodologies for 

a wide range of asymmetric transformations. It is also anticipated that the “click” and stimuli-

responsive capabilities of these boron-coordination complexes will lead to further development of 

wide-ranging bioorthogonal and materials-based systems, with increasingly wide-ranging sensing, 

tagging, theranostic, and logic-based applications. 
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2. DIASTEREOMER AGGREGATION INDUCED ANISOCHRONISM (DAIA) 

AFFECTS THE 1H NMR SPECTRA OF SULFINIMINOBORONATE ESTER 

COMPLEXES DERIVED FROM BINOL 

2.1. Introduction 

Having described how the Bull-James three-component assembly of iminoboronate esters can be 

used as a CDA to determine the ee of a wide range of chiral analytes by 1H and 19F NMR 

spectroscopic analysis, the Bull group were interested in investigating whether its scope could be 

broadened to other amine-type analytes. Of particular interest was assessing whether this method 

could be used to determine the ee of chiral primary sulfinamides, which are chiral at sulfur. 

Consequently, the following two chapters describe efforts to develop an effective Bull-James CDA 

method for determining the ee of sulfinamides, with this chapter beginning with a short overview 

of sulfinamides, looking at their asymmetric synthesis, applications, and reactivity. This chapter 

then moves on to detail how these studies led to the discovery that IBE assemblies derived from 

sulfinamides and BINOL form supramolecular aggregates in solution. 

 

2.1.1 Sulfinamides 

Sulfinamides are most commonly employed as “chiral ammonia sources” for the asymmetric 

synthesis of chiral products (usually amines) using traditional chiral auxiliary approaches.241–245 This 

is possible because sulfinamides are S-chiral, containing a stereogenic sulfur atom that 

complements more common carbon stereocentres that are found widely throughout Nature. 

Conserved chirality in sulfinamides arises despite their three-coordinate nature, with the presence 

of a configurationally stable sp3 hybridised lone pair enforcing a trigonal pyramidal structure at 

sulfur, as illustrated in the structures of Ellman’s and Davis’ sulfinamides 129a and 129b (Scheme 

54a). These structures are analogous to those of amines, which also adopt a tetrahedral 

conformation with an sp3 lone pair occupying the fourth coordination site (e.g. 

N,N-ethylmethylaniline, Scheme 54b).246 Although this tetrahedral geometry can clearly lead to two 

distinct nitrogen chiral centres, the barrier to inversion of tertiary amines is very low, generally 

estimated at < 10 kcal/mol,247 proceeding via a trigonal planar sp2-hybridised transition state (TS). 

Therefore, although individual tetrahedral conformations of amines may be chiral themselves, their 

rapid interconversion leads to non-conserved stereogenic centres, and so tertiary amines are not 

generally considered N-chiral molecules unless tetrahedrally enforced. This is much less of an issue 

for S-chiral structures such as sulfinamides, sulfoxides, and sulfinates, which experience a much 

higher barrier to pyramidal inversion, and therefore generally retain their stereochemistry unless 

exposed to forcing conditions. Inversion and racemisation of sulfinamides and sulfoxides will be 

discussed in more depth below in section 3.2.2. 
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Scheme 54: (a) Structures of Ellman's and Davis' sulfinamides 129a and 129b. (b) Chiral inversion of N,N-
ethylmethylaniline. 

The natural occurrence of sulfinamides is very limited, seemingly arising exclusively from post-

translational oxidative modifications of peptidic thiol residues.248 Two similar pathways for their 

biological formation have been reported to date (Scheme 55). Thiol-containing peptides and 

proteins, such as GSH, can be directly oxidised by exogenous nitroxyl (HNO) to form an N-

hydroxysulfenamide intermediate 130. Alternatively, this N-hydroxysulfenamide intermediate can 

be formed via oxidation of GSH by nitrous acid (HNO2) to produce S-nitrosothiol GSNO,249 which is 

then reduced by S-nitroso-glutathione reductase using NADH as a cofactor.248,250 Under oxidative 

stress conditions, where the relative concentration of GSH is low, the N-hydroxysulfenamide 

GSHNOH intermediate rearranges to produce its corresponding primary sulfinamide GSHONH2.248 

These post-translational modifications can severely affect the structure and function of affected 

proteins and peptides, as shown by Keceli et al. in a series of papers exploring the structure and 

reactivity of these products.251–253 Using a combination of 1H and 15N NMR spectroscopy, high-

resolution MS, and macromolecular modelling techniques, they showed that these modifications 

are in fact reversible in the presence of excess GSH or dithiothreitol (DTT), regenerating free thiols 

through reductive/rearrangement processes.252 The same studies also investigated the hydrolysis 

of these species to the corresponding sulfinic acids, concluding that protein environments and 

acidic conditions accelerated these processes. Following these and similar oxidation pathways, it is 

evident that the presence of sulfinamides in peptides and/or proteins can be considered as 

biomarkers of oxidative stress.254,255 
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Scheme 55: Biosynthesis of sulfinamides by post-translational oxidative modifications of GSH.248 

 

2.1.2 The use of chiral sulfinamides in asymmetric synthesis 

The most widespread use of primary sulfinamides is as chiral auxiliaries for the asymmetric 

synthesis of a wide range of chiral products, with the most popular Ellman’s 129a and Davis’ 129b 

sulfinamides having been used thousands of times by many different academic and industrial 

groups. The general synthetic strategy that is employed for these sulfinamide auxiliaries is 

presented in Scheme 56a. Firstly, a chiral sulfinamide 129 is condensed with the carbonyl group of 

an aldehyde (or ketone) to produce an N-sulfinyl imine (or sulfinimine) of general structure 130, 

which can then serve as a “chiral ammonia building block”. Nucleophilic attack by a suitable 

organometallic reagent results in its addition across the C=N bond to generate a substituted 

sulfinamide 131 containing a new α-amino stereocentre with high levels of diastereocontrol. These 

additions generally proceed with excellent facial selectivity due to a combination of the steric 

demand provided by the tert-butyl fragment, and the metal-coordinating and facial directing ability 

of the S=O oxygen (TS-1). Finally, the desired enantiopure amine 132 can then be liberated through 

acid-catalysed hydrolysis of the diastereomerically-pure sulfinamide 131. This final step results in 

racemisation of the stereogenic sulfur due to production of sulfinyl chloride/sulfinic acid cleavage 

products 133, although methodologies have been developed to enable recovery of enantiopure 

sulfinyl species.243,256–258 An example of the power of this approach is shown in the bidirectional 

peptide synthesis approach used in the total synthesis of the natural products azumamide A and 

azumamide E by Ganesan and co-workers (Scheme 56b).259 Condensation of aldehyde 134 with 

chiral sulfinamide (S)-129a gave (S)-sulfinimine 135, which was subjected to a stereoselective 

Mannich reaction using a propionate enolate to afford α-substituted β-amino ester 136 containing 

two new stereocentres with excellent levels of diastereocontrol. The O-PMB ester group of β-amino 

ester 136 was then oxidatively deprotected to afford its free acid group that underwent amide bond 

coupling with dipeptide D-Ala-D-Val-OAll to give tripeptidic 137. The N-sulfinyl group of tripeptide 

137 was subsequently hydrolysed under strong acidic conditions to produce a free amino group 

that underwent a second amide bond coupling reaction with N-Boc phenylalanine to produce 

tetrapeptide intermediate 138. This key tetrapeptide intermediate was then easily converted into 
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the macrocyclic peptides azumamide E and azumamide A using a series of cyclisation/deprotection 

reactions. 

 

Scheme 56: (a) General strategy for using sulfinamides as chiral auxiliaries for the asymmetric synthesis of chiral amines 
and their derivatives. (b) Asymmetric total syntheses of azumamides A and E by Ganesan et al.259  

Ellman’s sulfinamide is the most widely used chiral auxiliary in asymmetric synthesis, which has 

been used to prepare an impressive range of enantiopure amines, diamines, amino alcohols, α-

organometallic amines, α- and β-amino acid derivatives, and β-hydroxy ketones, with all of these 

transformations proceeding via sulfinimine intermediate 139 (for representative examples see 

Scheme 57a).257,260–266 This has led to its widespread use in large scale synthesis of chiral amines for 

the production of drugs and structurally challenging natural products (Scheme 56b, Scheme 

57b).267–270 
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Scheme 57: (a) Representative examples of the use of enantiopure sulfinamides as chiral auxiliaries for asymmetric 
synthesis. (b) Useful/high-value products synthesised using these methodologies (sulfinamide-derived atoms and 
sulfinamide-directed stereocentres in red).267–270 

In 2014 Guan et al. reported the use of Ellman’s sulfinamide as a chiral ammonia source for the 

conversion of racemic secondary alcohols (rac)-140 to enantiopure α-secondary sulfinamides 141 

(Scheme 58b) using a ‘borrowing hydrogen’ catalytic approach.271 In their elegant approach, a 

ruthenium catalyst (Ru-Macho) first oxidises a secondary alcohol substrate to an achiral ketone 

intermediate 142 which then reacts reversibly with sulfinamide (R)-129a to form chiral sulfinimine 

143, that is then reduced by the Ru-Macho catalyst to produce a secondary sulfinamide containing 

a new stereocentre. This ‘one-pot’ method was used to prepare a range of 18 chiral sulfinamides 

141 in moderate to good diastereoselectivities of 40-90% de, with acid catalysed hydrolysis of the 

S-N bonds of their purified major diastereomers then affording their corresponding enantiopure 

amines. 



68 
 

 

Scheme 58: “Borrowing hydrogen” approach for the diastereoselective synthesis of α-secondary sulfinamides from 
racemic alcohols by Deng et al.271 

 

2.1.3 The use of chiral sulfinamides as organocatalysts and chiral ligands 

Aside from their widespread use in chiral auxiliary chemistry, sulfinamides have also found 

application as organocatalysts or as ligands/additives in enantioselective catalytic systems, with 

some representative examples shown in Scheme 59. For instance, Ellman’s group integrated the 

sulfinamide moiety into N-sulfinyl urea motifs to produce chiral organocatalyst 142, which was used 

to catalyse the highly enantioselective conjugate addition of thioacetal acid to nitroalkenes 

(Scheme 59a).272,273 This organocatalytic methodology has since been expanded to incorporate a 

wider range of substitution patterns and other types of nucleophile (e.g. Meldrum’s acid), with 

organocatalyst 142 used in other types of reactions, such as enantioselective aza-Henry 

reactions.272,274–276 Increasingly, chiral sulfinamides have also been incorporated into ligands for 

metal-catalysed reactions, such as Fernández et al.’s recently published chiral SulfiSox ligand that 

was used for the enantioselective rhodium-catalysed 1,4-addition of arylboronic acids to 

α,β-unsaturated ketones to produce β-aryl-ketones in good yields and up to > 99% ee (Scheme 

59b).277  
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Scheme 59: Selected examples of enantioselective reactions catalysed by: (a) An N-sulfinyl urea organocatalyst 142.273 
(b) A rhodium catalyst containing a SulfiSox chiral ligand.277 

 

2.1.4 Methods for preparing chiral sulfinamides in enantiopure form 

Unfortunately, despite the popularity of primary sulfinamides for asymmetric synthesis requiring 

access to enantiopure materials, sulfinamide chiral auxiliaries are not available directly from the 

chiral pool. Consequently, multiple synthetic approaches have been developed for the preparation 

of chiral sulfinamides in enantiopure form.278 The simplest approach is of course to prepare racemic 

sulfinamides in a non-stereoselective manner, which can then be resolved into their corresponding 

enantiomers. Primary sulfinamides are easily prepared through simple amination of racemic methyl 

sulfinate 143 using a lithiated ammonia source such as Li/NH3 or LiHMDS (see Scheme 60a and 

section 3.1.4 for further discussion). Similarly, oxalyl chloride or thionyl chloride can be used to 

convert a sulfinic acid or metal sulfinate 144 into a sulfinyl chloride 145, with amine displacement 

then affording a racemic sulfinamide (rac)-129. More tailored approaches, such as Willis’ one-pot 

multicomponent strategy have also been used to prepare racemic sulfinamides,279 with reaction of 

organometallic reagents with DABCO·(SO2)2 (DABSO) producing metal sulfinate 144, and thionyl 

chloride producing sulfinyl chloride 145 that can be reacted with different amines to afford racemic 

primary, secondary or tertiary sulfinamides 146 in high yields (Scheme 60b).  

 

Scheme 60: Selected methods for the synthesis of racemic sulfinamides. 
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Racemic sulfinamides produced using these methods can be used when their enantiopurity is 

unimportant, however any biological or chiral auxiliary-based applications requires access to 

enantiopure sulfinamides. Resolution of racemic sulfinamides can be achieved using chiral 

preparative HPLC,280 which although suitable for carrying out enantiomer separations on a small 

scale, is not generally applicable for the preparation of large amounts of a chiral sulfinamide. Few 

examples of the direct classical resolution processes are found for the direct resolution of racemic 

sulfinamides, however a number of resolution methods have been developed to prepare ‘chiral at 

sulfur’ precursors that may then be transformed into enantiopure chiral sulfinamides. Shanghai 

TTBME Co. Ltd have recently reported that racemic p-toluenesulfinyl hydrazine 147, prepared from 

the corresponding sulfinyl chloride and hydrazine hydrate, can be resolved by co-crystallization with 

dibenzoyl-L-tartaric acid L-148 to afford sulfinyl hydrazine (R)-149 in 97.9% ee (Scheme 61a).281 

Subsequent reduction by zinc/acetic acid and recrystallisation afforded Davis’ sulfinamide (R)-129b 

(99.6 % ee). Alternatively, Deng et al. reported that formation of inclusion complexes of 

tert-butanethiosulfinate 150 with (R)-BINOL 9 allowed for successful diastereoselective 

recrystallisation of homochiral diastereomeric complex (R,R)-151 to be effected on a 60 mmol scale 

(Scheme 61b). Subsequent decomplexation of (R,R)-151 affords enantiopure tert-

butanethiosulfinate (R)-150, that could be converted into its corresponding tert-butanesulfinamide 

129a through treatment with LiNH2.
282 Kazlauskas et al. have reported that the protease Subtilisin 

E. can be used to for the kinetic resolution of (rac)-N-acyl arylsulfinamides (shown for Cbz-p-tolyl 

152), preferentially hydrolysing the amide bond of the (R)-152 enantiomer over its opposite (S)-152 

enantiomer. Although this method suffered from substrate specificity limitations, this biocatalytic 

route was used to synthesise a small range of arylsulfinamide analogues of (R)-129b and N-acyl 

arylsulfinamide (S)-152 in good yields and high enantiopurities (Scheme 61c), with the N-acyl 

arylsulfinamide (S)-152 converted into their corresponding arylsulfinamide (S)-129b via treatment 

with hydrazine.283,284 
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Scheme 61: Selected methods for the resolution of primary sulfinamide precursors: (a) Optical resolution of p-
toluenesulfinyl hydrazine (rac)-147 with L-148.281 (b) Optical resolution of tert-butanethiosulfinate (rac)-150 by co-
crystallisation with (R)-BINOL 9;282 (c) Subtilisin E. biocatalysed kinetic resolution of N-Cbz-(p-tolylsulfinamide) 152.283,284 
a Relative to the maximum 50% yield from racemic starting sample. b After recrystallization. 

One of the most efficient approaches for preparing enantiopure tert-butanesulfinamide 129a is the 

catalytic enantioselective sulfur oxidation methodology developed by Ellman to produce his widely 

used chiral auxiliary (Scheme 62).285,286 Treatment of symmetric di-tert-butyldisulfide 153 with a 

chiral salen ligand, vanadium catalyst, and stoichiometric oxidants (e.g. H2O2) is used to produce a 

chiral thiosulfinate (R)-154, which is then subjected to nucleophilic reaction with lithium amide 

(with resulting stereoinversion at sulfur), to afford chiral sulfinamide (R)-129a in high enantiopurity 

on a kilogram scale. This enantioselective oxidative approach is generally limited to the production 

of chiral Ellman’s sulfinamide 129a, as good levels of enantiocontrol rely on both the steric bias and 

crucially the conformational stability of the thiosulfinate intermediate 154, thus limiting this 

approach almost exclusively to tert-butyl substrates.278  
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Scheme 62: Ellman et al. synthesis of tert-butanesulfinamide (R)-129a through enantioselective oxidation of disulfide 
153.285,286 

Alternatively, chiral auxiliaries can be employed for the production of chiral sulfinamides (Scheme 

63), an approach which is used widely for industrial and large scale production of these reagents. 

For example, the secondary alcohol group of chiral quinine can be reacted with thionyl chloride to 

afford quinine sulfinyl chloride 155 with high levels of diastereocontrol, with this intermediate then 

reacting with p-tolylzinc chloride to afford the corresponding quinine sulfinate 156 with clean 

inversion of configuration (Scheme 63a). This intermediate can then react with LiHMDS as a 

nucleophilic ammonia source, with displacement of the quinine chiral auxiliary fragment, to afford 

Davis’ sulfinamide (R)-129b in excellent yield and enantiopurity.287 Other auxiliaries can also be 

used, such as (1R,2S,5R)-(-)-menthol, used to prepare Andersen’s reagent (1R,2S,5R,SS)-158 from 

sulfinyl chloride (rac)-157 (Scheme 63b).241,288–291 This menthyl sulfinate diastereomer can be 

separated from its more soluble minor diastereomer by recrystallization, and then converted into 

enantiopure (S)-129b sulfinamide via treatment with LiHMDS. These chiral auxiliary approaches are 

not limited to the preparation of enantiopure Davis’ p-toylsulfinamide 129b, with multiple reports 

of chiral auxiliary syntheses of chiral Ellman’s sulfinamide as well, including many recent works by 

Senanayake and co-workers.290,292 One such method is shown in Scheme 63c, in which a chiral 

phenol 159 is reacted with thionyl chloride, with the resulting sulfinyl chloride then being trapped 

intramolecularly by its N-tosyl group to produce benzo[1,2,3]oxathiazin-2-one 160 containing a 

defined sulfur stereocentre. Addition of tert-butyl Grignard to this intermediate then leads to 

formation of tert-butyl sulfinate 161 in high yield and diastereopurity, which is then reacted with 

LiHMDS to afford Elman’s sulfinamide 129a in high yield and enantiopurity. This method was shown 

to be highly effective and reproducible on > 10 kg scale, allowing for the synthesis of 129a at scale, 

using mild conditions that allowed for facile recovery of the chiral auxiliary 159. 
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Scheme 63: Selected asymmetric syntheses of Davis’ and Ellman’s sulfinamides using chiral auxiliary approaches.287,288,290 

 

2.1.5 Previous spectroscopic methods for determining the ee of sulfinamides 

The chiral nature of sulfinamides, their predominant use as chiral auxiliaries, and their synthesis via 

kinetic resolution or enantioselective processes leads to a general need for techniques to accurately 

determine their enantiopurity. The enantiopurity of a primary sulfinamide chiral auxiliary is critical 

if it is to be used for the asymmetric synthesis of single enantiomer products, since the use of an 

enantiomerically impure sulfinamide will necessarily lead to a scalemic product. Although literature 

procedures and commercial sources report the preparation of chiral sulfinamides in high ee, it is 

prudent to confirm the ee of any chiral auxiliaries that are synthesised or purchased prior to use 

(see section 3.2.2 for an example of this). This can be achieved using chiral HPLC methodologies,293 

which although effective can require significant method development time and financial 

investment when determining the ee of a new chiral sulfinamide (vide supra). An array of chiral 

HPLC conditions and columns have been reported to determine ee’s of different type of chiral 
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sulfinamide, with a general preference for normal-phase separation conditions using coated 

polysaccharide columns (e.g. Daicel Chiralpak).293–295  

Two reports on the use of chiral solvating agents that enabled the enantiopurity of sulfinamides to 

be determined by NMR spectroscopic analysis have also been reported previously in the 

literature.27,40 The first, by Pirkle and co-workers,27 employed enantiopure trifluorophenylethanol 

162 (a variant of Pirkle’s alcohol, vide supra), which induced anisochrony for all chemical shifts in 

the 100 MHz 1H NMR spectrum of N,N-dimethyl isopropyl sulfinamide 163, with significant chemical 

shift differences ∆δH = 0.13-0.46 ppm (1.3 – 4.6 Hz, reported in the original paper) for the 

diastereotopic methyl groups of its isopropyl functionality. Unfortunately, baseline resolution and 

determination of the ee’s of scalemic sulfinamides were not described in Pirkle’s report. A second 

CSA for 1H NMR spectroscopic analysis of the enantiopurity of chiral sulfinamides was reported 

more recently by Ema et al. (see Figure 2 for related work), who described the use of a chiral 

binaphthyl CSA (R)-164, which gave high chemical shift differences for the enantiomers of Ellman’s 

sulfinamide (approx. ∆δH = 0.24 ppm, data not described in original report).40 As with Pirkle’s 

report, this study served primarily as a proof of principle, focusing on the physical chemistry aspects 

of the system, rather than its potential application for accurately determining the ee of scalemic 

sulfinamides. An interesting report by Zhang, Liu et al. has demonstrated that the ee of Ellman’s 

and Davis’ sulfinamide can be determined by colorimetric and CD methods, using a L-glutamic acid 

amphiphilic diacetylene polymeric supramolecular gel as a spectroscopic reporter.296 Strong 

hydrogen bonding between the polymer’s glutamic acid moieties and the chiral sulfinamide 

functionality of the analyte resulted in significant CD and colour changes, with (S)-Ellman’s 

sulfinamide 129a turning the gel red, and the (R)-enantiomer maintaining the gel’s blue colour, thus 

allowing for accurate UV-Vis determination of the enantiopurity of (S)-129a from 0-100% ee. 

 

Scheme 64: Chiral CSAs that have been used to determine the ee of sulfinamides by NMR spectroscopic analysis.27,40 

 

2.2. Scalemic assemblies using BINOL 

With no previous CDA methods for determining the ee’s of sulfinamide chiral derivatizing agents 

the potential of the Bull-James assembly CDA methodology to determine the ee of this class of 

chiral amine analyte was explored. Though amine-derived and capable of similar reactivity, 

sulfinamides are far less nucleophilic, much bulkier, and generally less reactive that the traditional 

amine substrates of the Bull-James assembly, and so it was expected that additional optimisation 
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efforts would be needed to successfully produce sulfinamide three-component assemblies. Initial 

proof-of-concept experiments were carried out following a typical Bull-James three-component 

assembly procedure for the derivatisation of a simple primary amine (e.g., α-methylbenzylamine 

with 2-FPBA and BINOL, vide supra). Ellman’s sulfinamide 129a was chosen as the model 

sulfinamide substrate for these assembly reactions, due both to its popularity as a chiral auxiliary 

and the commercial availability of both its enantiomers (< £ 40 per gram for 25 g from Merck). 

Therefore, a simple one-pot assembly reaction of (S)-129a (50% ee), 2-FPBA 1 and (R)-BINOL 9 was 

carried out in deuterated chloroform for 1 h at room temperature (Scheme 65). 1H NMR 

spectroscopic analysis (Figure 23) revealed a new set of signals observed at 9.03 and 9.06 ppm, 

indicating that complexation had occurred to form a pair of sulfinamide-iminoboronate ester 

complexes 165 and 166 (or sulfiniminoboronate esters, SIBEs). The 73:27 ratio measured for the 

diastereomeric imine signals of this mixture of diastereomeric sulfiniminoboronate esters was 

consistent with the expected 3:1 heterochiral to homochiral ratio, indicating that no kinetic 

resolution had occurred. A promising chemical shift difference ∆δH of 0.023 ppm for the resonances 

of the diastereomeric imine peaks was observed. However, unlike conventional primary amines, 

the complexation reaction of the sulfinamide did not proceed to completion, halting at 85% 

conversion as indicated by the presence of 15% unreacted 2-FPBA 1 in the 1H NMR spectra (cf. 

aldehyde CH peak at 9.89 ppm). Additionally, although the imine protons of each SIBE diastereomer 

clearly exhibited distinct chemical shifts, these signals were broadened and were not completely 

baseline resolved in the 500 MHz 1H NMR spectra. 

 

Scheme 65: One-pot three-component Bull-James assembly of Ellman's sulfinamide (S)-129a (50% ee), 2-FPBA 1 and 
(R)-BINOL 9 in CDCl3. 
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Figure 23: 1H NMR (500 MHz, CDCl3, 100 mM) spectrum of the three-component assembly shown in Scheme 65. Inset: 
Expanded imine region. 

These conversion issues were later resolved following a thorough optimisation process, as 

described later in chapter 3, however the lack of baseline resolution seen in these original 

assemblies was puzzling, as BINOL had in most previous cases resulted in sharp, well-resolved 1H 

NMR imine signals. In order to investigate this complexation reaction further, a simple scalemic 

screening study was carried out, involving reaction of 2-FPBA 1 and (R)-BINOL 9 with Ellman’s 

sulfinamide 129a of varying enantiopurity, ranging from enantiopure (R)-129a to (S)-129a in 20% ee 

increments. This resulted in 11 distinct 1H NMR spectra which displayed a relatively small but 

significant variation in chemical shift and chemical shift difference for the diastereomeric imine 

resonances from one sample to the next (Figure 24). Importantly, this change in chemical shift as 

the ee of the sulfinamide was varied had not previously been observed for Bull-James assemblies 

of other types of chiral amine analyte.  

When enantiopure samples of either (S)- or (R)-sulfinamide 129a were combined with 2-FPBA 1 and 

enantiopure (R)-BINOL 9 in CDCl3 at 0.1 M, sulfiniminoboronate complexes with 1H NMR imine 

signals at 9.041 ppm ((SS,R)-166a heterochiral, blue, Table 1, entry 1) and 9.048 ppm ((RS,R)-165a 

homochiral, blue, Table 1 Entry 11) were formed, respectively, implying a baseline ∆δH chemical 

shift difference between the two diastereomers of -0.007 ppm. This chemical shift difference value 

was comparable to the -0.010 ppm ∆δH observed between the imine signals in the 50:50 mixture of 

diastereomeric sulfiniminoboronate complexes produced when a sample of (rac)-sulfinamide 129a 

was derivatised (Table 1, entry 6). Decreasing the er of the (S)-129a used in the derivatisation 

2-FPBA 1 

(RS,R)-165a 
+ 

(SS,R)-166a 
 

(R)-BINOL 9 

(RS,R)-165a 
+ 

(SS,R)-166a 
 

(R)-/(S)-129a 

(RS,R)-165a (SS,R)-166a 
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process led to the imine resonance of the heterochiral complex (SS,R)-166a shifting incrementally 

downfield by 0.017 ppm (see Figure 2) from 9.041 ppm for enantiopure (S)-129a (Table 1, Entry 1) 

to 9.058 ppm for a 10:90 er of (S)-129a:(R)-129a (Table 1, Entry 10). This was accompanied by a 

corresponding incremental upfield shift of -0.026 ppm (see Figure 2) in the chemical shift of the 

imine proton resonance of the homochiral complex (RS,R)-165a from 9.074 ppm for 90:10 er (S)-

129a:(R)-129a (Table 1, Entry 2) to 9.048 for enantiopure (R)-129a (Table 1, Entry 11). The opposing 

chemical shift trend of the heterochiral and homochiral complexes as the er of (S)-129a is varied 

from 100:0 to 10:90 results in their imine peaks coalescing into a single broad resonance at 9.052 

ppm when a sample of (S)-129a of 30:70 er is derivatised (Table 1, Entry 8). This er/dr-dependent 

chemical shift variation means that derivatisation of a sample of (S)-129a of 90:10 er produces an 

imine peak for the minor homochiral complex (RS,R)-165a that is downfield of the imine peak of the 

major heterochiral complex (SS,R)-166a (Table 1, Entry 2), with a large chemical shift difference 

∆δH = -0.030 ppm. Conversely, in a sample of (R)-129a of 90:10 er (i.e. 10:90 (S)-129a) the imine 

peak for the now major homochiral complex (RS,R)-165a is upfield of the peak for the minor 

heterochiral complex (SS,R)-166a (Table 1, Entry 10), albeit with a small ∆δH = +0.007 ppm that 

results in significantly overlapping peaks. Interestingly, the imine chemical shifts of both SIBE 

diastereomer complexes present in a diastereomerically impure mixture were more deshielded 

than when in their pure diastereomeric form. These trends were confirmed by repeating the 

complexation study using scalemic samples of sulfinamide 129a combined with the opposite diol 

atropisomer (S)-BINOL 9 (Figure 24b), which showed the same variation in chemical shift of the 

imine proton resonances of its heterochiral and homochiral complexes as the enantiopurity of the 

chiral sulfinamide 129a analyte was varied. As expected, use of (S)-BINOL 9 enantiomer as a chiral 

reporter in this second study led to mirroring of the imine chemical shift differences observed when 

(R)-BINOL 9 was used in the initial derivatisation study (cf. Figure 24a and b).  
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Figure 24: (a) Three-component assembly of 2-FPBA 1, BINOL 9 and Ellman's sulfinamide 129a (derivatisation reaction 
shown for (R)-BINOL 9). (b,c) Expanded imine region of the 1H NMR (500 MHz, CDCl3, 100 mM) spectra of homochiral and 
heterochiral sulfiniminoboronate complexes. (b) Complexes prepared using (R)-BINOL 9; (c) Complexes prepared using 
(S)-BINOL 9. Heterochiral diastereomers (SS,R)-/(RS,S)-166a labelled with hollow blue circles. Homochiral diastereomers 
(RS,R)-/(SS,S)-165a labelled with solid red circles. All chemical shifts referenced to TMS as an internal standard (~6 mM). 
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Table 1: 1H NMR chemical shifts and chemical shift differences of the imine resonances of the homochiral and heterochiral 
sulfiniminoboronate ester complexes formed in the complexation reactions of 2FPBA 1, (S)-BINOL 9, and sulfinamide 129a 
of varying er whose expanded NMR spectra are shown in Figure 24a (matched entry numbers).  

Entrya (S)-129a er 
Chemical shift δH (ppm)b 

∆δH (ppm)c 
(SS,R)-166a (RS,R)-165a 

1 100:0 9.041 N/A N/A 

2 90:10 9.044 9.074 -0.030 

3 80:20 9.045 9.071 -0.026 

4 70:30 9.046 9.071 -0.025 

5 60:40 9.046 9.063 -0.017 

6 50:50 9.051 9.061 -0.010 

7 40:60 9.051 9.057 -0.006 

8d 30:70 9.053 9.053 -- 

9 20:80 9.056 9.052 +0.004 

10 10:90 9.058 9.051 +0.007 

11 0:100 N/A 9.048 N/A 
a Data extracted by MestReNova from spectra shown in Figure 24a. b Chemical shift of the imine proton of the 
corresponding three-component complex. c A negative value for ΔδH indicates that the imine proton resonance of the 
homochiral iminoboronate ester complex was more deshielded. d Diastereomeric signals coalesced, therefore 
chemical shifts are estimated and chemical shift differences could not be measured. 

The unexpected nature of these enantiopurity-dependent chemical shift effects led to some 

concern that these effects might also be operating in previously reported Bull-James assembly 

reactions used to determine the ee of primary amines. Of particular concern was the fully coalesced 

imine signals present in the 1H NMR spectra of the complexes formed from assembly of sulfinamide 

(R)-129a of 70:30 er with (R)-BINOL (Table 1, entry 8), which, taken in isolation, could potentially be 

misconstrued to suggest that the parent scalemic sulfinamide analyte was enantiopure! Moreover, 

the “crossover” in chemical shifts that occurs for the imine resonances of the heterochiral and 

homochiral sulfiniminoboronate complexes could also potentially lead to incorrect assignments of 

the absolute configuration of chiral analytes by misguided analogy. Therefore, a scalemic screen of 

the original Bull-James assembly of α-methylbenzylamine 3a (varying er), 2-FPBA 1 and BINOL 9 was 

carried out (Figure 25), which fortunately revealed that no variation in imine 1H NMR chemical shift 

was observed upon varying the er of the parent amine. In all cases, the imine 1H NMR signals of 

both diastereomeric heterochiral and homochiral complexes (α-R,R)-28a and (α-S,R)-29a remained 

at constant chemical shifts of 8.08 ppm and 8.25 ppm, as the er of the α-methylbenzylamine 3a was 

varied. This confirms that prior Bull-James assembly protocols do not suffer from the effects 

described in this chapter, and remain robust and accurate approaches for determining ee. 
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Figure 25: Expanded imine region of the 1H NMR (500 MHz, CDCl3, 100 mM) spectra of the iminoboronate esters resulting 
from the three-component assembly of α-methylbenzylamine 3a of differing er ((S)-3a top left, (R)-3a bottom right), 
2-FPBA 1 and (R)-BINOL 9. Chemical shifts referenced to TMS internal standard (~6 mM). 

 

2.3. The role of aggregation effects on the NMR 

spectroscopic analysis of BINOL-derived sulfiniminoboronates 

2.3.1 Diastereomer aggregation-induced anisochronism (DAIA) 

These results led us to propose that the unusual variation in chemical shift as the er of the 

sulfinamide analyte changed was being caused by dynamic solution-state equilibration between 

non-equivalent mixed aggregate states of diastereomeric homochiral and heterochiral 

sulfiniminoboronate complexes in solution. Although often overlooked, related variation in 

chemical shift values has been reported for scalemic mixtures of enantiomers in achiral 

environments, in a process that is commonly referred to as Self-Disproportionation of Enantiomers 

(SDE).297,298 Simply put, SDE occurs when the enantiomers present in a scalemic sample self-

associate to produce enantioenriched fractions/environments/aggregates, as first reported by 

Cundy and Crooks in 1983,299 and named by Soloshonok in 2006.298 In some cases this type of SDE 

events can be useful, such as when stereoselective aggregation events are exploited for the 

fractional crystallization of scalemic mixtures to produce enantiomerically-enriched crystalline 

products, underpinning Wallach’s rule for instance.300–302 For example, the crystal structures of 
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hetero-dimeric crystals of thalidomide 167 are denser and more stable than their corresponding 

heterodimeric crystals, which results in heterodimeric thalidomide crystals preferentially 

crystalising from solution. This means that the selective precipitation and solubility of heterochiral 

dimers over time can result in the enantiopurity of scalemic thalidomide in solution increasing over 

time, including in vivo (Scheme 66a).303 SDE effects have also been found to facilitate ee 

enhancement in sublimation processes,304,305 including an impressive early 1967 report of the 

enantioenrichment of (R)-168 from 12% ee to 74% ee in the sublimate (Scheme 66b),306,307 and more 

recent works by Soloshonok et al. studying relative rates of enantioenrichment by SDE 

sublimation,305,308 such as the ee-dependent purification behaviour of hydroxyamide 169 (Scheme 

66c).305 These effects have also been shown to impact the behaviour and properties of a wide range 

of aggregating chiral compounds, influencing aspects of ultracentrifugation, sublimation, melting, 

and distillation processes to facilitate purification and analytical processes, or contribute towards 

inconsistent results.297,298,309 

 

Scheme 66: Examples of SDE effects: (a) Inequivalent crystal packing of thalidomide 167 diastereomers.303 (b) 
Enantioenrichment of (R)-168 by sublimation.307 (c) Enantiopurification of α-hydroxyamide (S)-169 by sublimation.305 

The effects of SDE have also been observed directly in preparative chromatography and HPLC, as 

well as solution- and solid-state NMR, where they are referred to as enantioselective self‐

disproportionation on achiral phase (ESDA) and self-induced diastereomeric anisochronism (SIDA), 

respectively.297,300,310 As with the sublimation examples described above, SDE-derived self-induced 

recognition of enantiomers (SIRE) phenomena that give rise to ESDA and SIDA can be exploited for 

analytical NMR purposes, as recently reviewed by Soloshonok et al.311 and Szántay et al., 

respectively.312 In a scalemic system, an enantiomer can exist either as a simple monomer, can self-

associate to afford a homochiral dimer (or aggregate), or it can associate with its mirror enantiomer 
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to afford a heterochiral dimer (or aggregate). Since these association events are often highly 

concentration- and enantiopurity-dependent, the NMR spectra of non-enantiopure mixtures with 

different er’s can sometimes appear different, with different enantiomers even exhibiting distinct 

spectra in scalemic samples in some cases. These effects have been extensively reviewed and 

explored,312 with several recent works by Klika describing SIDA NMR effects for a range of chiral 

compounds.308,310,313 These effects can potentially be a significant source of error and unreliability, 

leading either to inaccurate enantiopurity assessment, or unsuccessful chromatographic 

purification.24,310,314,315 Selected examples of the consequences of these effects are shown in Figure 

26. Trifluoromethylated amidoester (R)-170 exhibits significant ESDA effects, with chromatographic 

purification of a scalemic sample of 66.6% ee using simple flash chromatography over unmodified 

silica, resulting in early fractions eluting with a significantly reduced 8.1% ee, with the enantiopurity 

of subsequent fractions gradually increasing to produce enantiopure (R)-170 in the final eluted 

fraction (Figure 26a). Examples of SIDA NMR effects are shown in Figure 26b and Figure 26c, with 

the first example revealing distinct 13C NMR signals for the minor and major isomers of non-

enantiopure (R)-171 that coalesce to a single peak in the racemate, and the second example 

showing distinctly different spectra and chemical shifts in the 1H NMR spectra of samples of 172 of 

varying ee. 

 

Figure 26: (a) ESDA-enabled enantiopurification of (R)-170 by achiral chromatography.298 (b) SIDA effects in the 13C{1H} 
NMR (201 MHz, 10 °C, CDCl3, 200 mM) spectra of (R)-171 at varying ee.312 Reproduced with permission from Elsevier Ltd. 
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(c) SIDA effects in the 1H NMR spectra of 172, showing spectra of arbitrary ee (top 2) and enantiopure (bottom two) 
samples.313 Reproduced with permission from MDPI.  

This work therefore proposes that the chemical shift drift observed in the 1H NMR spectra of the 

diastereomeric homochiral and heterochiral BINOL sulfiniminoboronate complexes in this study are 

also caused by SIDA-like aggregation effects, however this terminology has previously been 

reserved to describe NMR chemical shift variations caused by SIRE effects between enantiomers in 

achiral systems. As no reports of SIDA-type effects influencing the chemical shifts of diastereomeric 

complexes in solution could be found, this work now proposes a new term Diastereomer 

Aggregation Induced Anisochronism (DAIA) to describe this class of SIDA-like effect. At this stage it 

should be noted that the term “aggregation” used throughout this thesis refers to any assembly of 

molecules resulting from the aggregation of two or more “monomers”. This includes all aggregated 

states from simple dimers/trimers to larger aggregated species no longer in solution (e.g. small 

particles or droplets in suspension), as the exact nature of these supramolecular systems has not 

yet been determined. As it is clear that these DAIA phenomena have a pronounced effect on the 

shift and shape of the SIBE imine resonances of the diastereomeric homochiral and heterochiral 

SIBEs, this chapter will now consider the principles underpinning DAIA effects using the three-

component Bull-James assembly as an exemplar. Three-component assembly of enantiopure (R)-

BINOL 9, 2-FPBA 1 and Ellman’s sulfinamide 129a (varying er) will produce varying amounts of 

homochiral (RS,R)-165 and heterochiral (SS,R)-166. These two diastereomeric complexes represent 

the monomeric species in the DAIA system, and are assigned as either a homochiral (RS,R)-monomer 

(red, solid edges) or heterochiral (SR,R)-monomer (blue, dashed edges) (Scheme 67). For simplicity, 

only this one pair of diastereomers, derived from (R)-BINOL 9. Assemblies of the opposite 

enantiomeric system (from (S)-BINOL 9) would exhibit the same properties and aggregation effects. 

 

Scheme 67: Schematic abbreviation of diastereomeric sulfiniminoboronates present in the three-component assembly of 
(R)-BINOL 9, 2-FPBA 1 and Ellman's sulfinamide 129a. 

When enantiopure samples of sulfinamide (R)-129a (or (S)-129a) are used in the derivatisation 

process with 2-FPBA 1 and (R)-BINOL 9, then monomeric (RS,R)-165a (or (SS,R)-166a) is formed that 

can reversibly aggregate to produce mixtures containing homomeric dimers, trimers and higher-

order aggregates in solution (Figure 27). Rapid equilibration between these monomeric and 
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oligomeric complexes leads to partial broadening of the imine signals whose chemical shifts are 

determined by time-averaged contributions from all the monomer and aggregate forms that are 

present. 

 

Figure 27: Reversible homomeric aggregation of enantiopure (RS,R)-165a and (SS,R)-166a complexes. 

Conversely, when a scalemic sample of the sulfinamide is used as an analyte, then a mixture of 

diastereomeric sulfiniminoboronate esters (RS,R)-165a and (SS,R)-166a will be produced, with these 

monomeric species now aggregating to form either homomeric aggregates or mixed heteromeric 

aggregates that contain both types of monomer (Figure 28). The ratio of the different homomeric 

and heteromeric aggregates formed will be dependent on the er of the parent sulfinamide analyte 

that is derivatised. Use of a sulfinamide with a high er will favour formation of large amounts of 

homomeric aggregate (derived from the major enantiomer), with only small amounts of 

heteromeric aggregates formed that contain the majority of the minor sulfiniminoboronate 

diastereomer. Conversely, derivatisation of a racemic sulfinamide (or a sulfinamide with low er) will 

increase the amount heteromeric aggregate present in solution. The chemical shifts of the imine 

protons of the homochiral and heterochiral complexes formed from a scalemic sample will be 

determined by time-averaged contributions of all the rapidly interconverting monomeric and 

aggregate forms that are present, each of which will contribute its own distinct anisotropic 

shielding/deshielding effects. Therefore, diastereopurity-dependent variation in the ratio of 

monomeric species to homomeric/heteromeric aggregates in solution can result in significant 

changes in the chemical shifts of the imine protons of the homochiral and heterochiral complexes 

that are present. Examination of the 1H NMR data shown in Figure 24 indicates that the imine 

protons in a heterochiral aggregate (e.g. at high dr) are more deshielded than when they are part 

of a homochiral aggregate (e.g. at low dr). Some consideration was also given to possible variation 

in the rates of formation of each SIBE, which could lead to kinetic resolution effects, which could 

also affect chemical shifts and peak shape. This possibility was dismissed, however, as the dr’s 

measured throughout this and the next chapter remained consistent with the initial er of the 

analyte. Further discussion of kinetic resolution in SIBEs, as well as evidence showing it does not 

appreciably occur can be found later in chapter 3. Additionally, the rate/extent of aggregation was 

also considered, as it is conceivable that extended reaction times, delays prior to analysis, or longer 
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NMR experiments could lead to further equilibration or aggregation. Fortunately, no variation was 

seen between spectra of the same samples recorded at different times. 

 

Figure 28: Reversible homomeric and heteromeric aggregation of scalemic (RS,R)-165a and (SS,R)-166a monomers. 

 

2.3.2 Prior reports of concentration-dependent chemical shift variations 

The presence of DAIA effects in these sulfinimine-BINOL boronate ester system is consistent with 

previous observations of SIDA effects in the literature, with SIDA-like behaviour previously reported 

for other BINOL and large conjugated π-systems.310,314,316 Aggregation-induced effects have also 

been implicated once before other iminoboronate assemblies, with Silva et al. reporting that the 

chemical shift differences and variable peak shapes of diastereomeric BINOL-derived seleno-

iminoboronate complexes derived from (rac)-89b were improved on dilution enabling baseline 

resolution of diastereomeric α-amino methyl signals in their 1H NMR spectra at 1.0 mM (Figure 29a, 

see resonances in blue).166 In this instance, however, Silva et al. dismissed these minor aggregation 

effects as being caused by the presence of the chalcogen moiety, having previously seen similar 

effects in other chalcogen-based NMR assemblies, however the results presented in this chapter 

suggest that this may in fact have been an early sign of BINOL-IBE DAIA. 
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Figure 29: (a) Three-component assembly of 2-FPBA 1, (R)-BINOL 9 and selenium containing amine (rac)-89b. (b) 
Expanded 1H NMR (500 MH, CDCl3) spectra of the assembly three-component assembly shown in (a) at varying 
concentrations, with ‘diastereomeric peaks’ corresponding to the α-amino methyl signals shown in blue dashed circle. 
Reproduced with permission from Elsevier Ltd.166 

Although large concentration-dependent chemical shift drifts are often observed for resonances 

attributed to H-bonding protons, caused by increased/decreased rates of proton exchange and 

acid/base equilibria, these effects are less frequently observed for non-exchangeable protons.317–

319 To the best of our knowledge, only a handful of publications have previously reported these 

effects for aromatic/conjugated protons, with these reports describing concentration-dependent 

chemical shift variation of aromatic signals in pure samples (examples in Figure 30).320–325  

 

Figure 30: Selected examples of concentration-dependent 1H NMR chemical shift drift of non-exchangeable protons. A 
negative sign indicates a downfield shift at lower concentrations. a Estimated from figures, data not tabulated in original 
report.321,323 

 

2.3.3 Concentration-dependent chemical shift variation of SIBEs 

In order to provide further evidence for the DAIA hypothesis, the aggregation behaviour of BINOL 

sulfiniminoboronate complexes was further studied, by examining whether changes in 

concentration would significantly affect the chemical shifts of their imine protons.317,323,324,326 1H 

NMR spectroscopic analysis of samples of diastereopure (RS,R)-165a and (SS,R)-166a at different 

concentrations was carried out, which revealed a significant upfield shift in the chemical shift of 

their imine protons as their concentrations decreased (Figure 31, 31, Table 2). The chemical shift of 
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the imine proton of the heterochiral diastereomer (SS,R)-166a at a concentration of 100 mM 

appeared at 9.041 ppm, shifting incrementally on dilution, moving 0.345 ppm upfield to 8.696 ppm 

at a 100-fold lower 1.0 mM concentration of (SS,R)-166a (Figure 31b). Similarly, the imine signal of 

(RS,R)-165a at a concentration of 100 mM appeared at 9.041 ppm, moving 0.361 ppm upfield to 

8.687 for a 1.0 mM concentration (Figure 31c). Variation in the chemical shift of the imine protons 

of the two diastereomeric complexes on dilution was found to be non-linear, leading to smaller 

changes in the chemical shift differences of their imine protons as more dilute solutions were 

analysed. This meant that a maximum base |∆δH| value of 0.022 ppm for their imine protons was 

observed at a 50 mM concentration, whilst identical chemical shifts were observed at a lower 

2.5 mM concentration. Interestingly, a crossover event was observed at the lowest 1.0 mM 

concentration, with a small ∆δH = +0.009 ppm occurring, with the imine proton of the (RS,R)-165a 

diastereomer now resonating slightly upfield relative to the imine proton of its (SS,R)-166a 

counterpart. These large concentration-dependent variations in chemical shift indicate that both 

diastereomeric sulfiniminoboronate ester complexes aggregate significantly at high concentrations, 

with intermolecular anisotropic shielding effects within these aggregates responsible for their imine 

protons being more deshielded at higher concentrations. Changing sample concentration also leads 

to variation in the concentration of TMS and water, and so control experiments were carried out to 

ensure these incidental changes were not responsible for the results presented in this chapter. In 

all cases little to no change in the NMR spectra was observed, however for consistency and 

reproducibility TMS concentration is listed throughout this report whenever possible.  
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Figure 31: (a) Three-component assembly of 2-FPBA 1, BINOL 9 and sulfinamide 129a (reaction shown for (R)-BINOL 9). 
(b) Expanded imine region of the 1H NMR (500 MHz, CDCl3) spectra of heterochiral sulfiniminoboronate complex 
(SS,R)-166a acquired at different concentrations. (c) Expanded imine region of the 1H NMR (500 MHz, CDCl3) spectra of 
homochiral complex sulfiniminoboronate (RS,R)-165a acquired at different concentrations. Chemical shifts referenced to 
TMS internal standard (~6 mM in original 100 mM stock solution). 
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Figure 32: Plot of chemical shifts of imine protons versus concentration (log scale) of (RS,R)-165a (red, solid line) and 
(SS,R)-166a (blue, dashed line) (chemical shift data from Figure 31). 

 

Table 2: Chemical shifts and “base ∆δH” of the sulfiniminoboronate 1H NMR signals of Figure 31. 

Entrya Concentration 
Chemical shift δH (ppm)b Base ∆δH

c 

 (ppm) (SS,R)-166a (RS,R)-165a 

1 100 mM 9.041 9.048 -0.007 

2 50 mM 9.003 9.025 -0.022 

3 25 mM 8.948 8.967 -0.019 

4 12.5 mM 8.889 8.896 -0.007 

5 5.0 mM 8.786 8.804 -0.018 

6 2.5 mM 8.734 8.734 0.000 

7 1.0 mM 8.696 8.687 +0.009 
a Data extracted by MestReNova from spectra shown in Figure 31. b Chemical shift of the imine proton of the 
heterochiral and homochiral complexes. c A negative value for ΔδH indicates that the imine proton resonance of the 
homochiral iminoboronate ester complex was more deshielded. 

The same dilution experiments were then carried out on a 50:50 mixture of (RS,R)-165a and 

(SS,R)-166a produced from the derivatisation of a racemic sample of Ellman’s sulfinamide 129a with 

2-FPBA 1 and (R)-BINOL 9 (Figure 33). The same general trend was again observed, with the imine 

signals of (RS,R)-165a and (SS,R)-166a shifting from 9.061 ppm and 9.051 ppm at 100 mM, 

respectively, to 8.693 ppm at 1.0 mM, or a 0.368 ppm and 0.358 ppm change, respectively. 

Interestingly, the partially overlapped peaks for the imine resonances of both the diastereomers 

were only distinguishable at concentrations of 100 mM and 50 mM, with both imines coalescing 
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into a single resonance at a concentration of 25 mM and below. One key observation can be made 

from these data: a chemical shift difference between the diastereomeric imine resonances only 

arises at higher concentration, becoming either negligible or vanishing entirely at lower 

concentrations. This suggests that the increased proportion of aggregate species at higher 

concentrations are almost entirely responsible for the observed chemical shift differences, whilst 

the monomeric forms which dominates at low concentrations exhibit indistinguishable ∆δH values 

for their imine resonances. Therefore, it can be deduced that the chemical shift differences are 

caused primarily by intermolecular shielding/deshielding interactions between molecules present 

within organised aggregates rather than classical intramolecular anisotropic shielding/deshielding 

effects. This highlights a sharp contrast between sulfiniminoboronate esters and other IBEs, which 

do not suffer from DAIA (see Figure 25). 

a) 

 

b) 

Entry Concentration 
Chemical shift δH (ppm)a 

(RS,R)-165a (SS,R)-166a 

1 100 mM 9.061 9.051 

2 50 mM 9.040 9.034 

3 25 mM 9.074b 

4 12.5 mM 8.883b 

5 5.0 mM 8.809 b 

6 2.5 mM 8.728 b 

7 1.0 mM 8.693 b 
a Chemical shift of the imine proton of the three-component 
products. b Diastereomeric signals coalesced, therefore 
chemical shifts are estimated, and chemical shift difference 
could not be measured. 

Figure 33: (a) Expanded imine region of the 1H NMR (500 MHz, CDCl3) spectra of three-component assemblies of 2-FPBA 
1, (R)-BINOL 9, and (rac)-Ellman's sulfinamide 129a, with samples diluted from 100 mM to 1.0 mM (top to bottom); 
chemical shifts referenced to TMS intermal standard (~6 mM in original 10\0 mM stock solution). (b) Chemical shifts of 
the sulfiniminoboronate 1H NMR imine signals. 

The observations in this chapter and the literature reports above raise potentially quite significant 

concerns about NMR spectroscopic protocols used to determine the ee and assign the configuration 

of chiral compounds, particularly those that contain functional groups that have the propensity to 

aggregated in solution. As already highlighted in the scalemic and concentration screening 

experiments, these DAIA effects could potentially lead to incorrect enantiomeric purity 

determination or incorrect assignments of absolute configurations. For example, looking at Figure 

33a above, different conclusions would be drawn if the same three-component analysis of 

(rac)-sulfinamide 129a were carried out at a concentration of 100 mM or < 50 mM. In the first case, 

two peaks of equal intensity for (RS,R)-165a and (SS,R)-166a are observed at 9.061 ppm and 

9.051 ppm, respectively, as expected for derivatization of a racemic sample. On the other hand, at 

a concentration below 25 mM, only one imine signal is observed, which would lead to the incorrect 

100 mM 

50 mM 

25 mM 

12.5 mM 

5.0 mM 

2.5 mM 

1.0 mM 

 



91 
 

conclusion that only one diastereomeric complex was present, and that an enantiopure analyte had 

been used! Additionally, the absence of chemical shift difference at lower concentrations could 

have led to an entirely different research outcome, as had these experiments initially been carried 

out at lower concentrations, preliminary results would have indicated a complete lack of 

diastereomeric resolution, leading to the premature termination of the successful project detailed 

in this and the following chapter. This simple yet striking example highlights the significant risk of 

experimental error posed by DAIA-induced chemical shift variation. 

Therefore, considering this example, and drawing on previous precedent for other SIDA-affected 

systems, the author now suggests that a simple set of dilution experiments should be carried out 

whenever NMR spectroscopy is used to determine the enantiopurity of new chiral compound is 

determined, which should easily identify any risk of DAIA-related misassignment occurring. 

Furthermore, considering the large > 0.35 ppm concentration-dependent variation in chemical 

shifts observed in Figure 31-31, the author now recommends that the concentrations of NMR 

solutions of chiral compounds whose ee’s or configuration have been determined using CDA 

methods should be reported, as is currently the case when ee determination is carried out using 

other spectroscopic characterisation methods (e.g., fluorescence, UV-VIS CD, polarimetry, etc…). 

Moreover, considering that in diastereopure samples each SIBE diastereomer is in essence just a 

stereopure compound, this chemical shift variation would also indicate that this precaution should 

be extended to all NMR spectroscopic data for any chiral compound, regardless of enantiopurity 

measurements, in order to avoid any potential structural misassignments between pure samples of 

different concentrations. For this reason, the concentration of all NMR samples throughout these 

first three chapters are listed where possible. 

 

2.3.4 DOSY NMR studies of BINOL-sulfiniminoboronate aggregation 

In order to support the theory that that these concentration-dependent chemical shift effects were 

indeed due to aggregation-based changes, 1H NMR diffusion-ordered spectroscopy (DOSY) was 

used to calculate the diffusion coefficients (D) of (RS,R)-165a and (SS,R)-166a (see spectra in Figure 

31). These DOSY experiments were based on a similar method to that employed previously by Klika 

et al. to show preferential heterochiral SIDA aggregation of enantiomers.313 As shown in Figure 34 

and Table 3, a diffusion coefficient of 7.75 × 10-10 m2/s was calculated for the highest 100 mM 

concentration of heterochiral (SS,R)-166a, increasing progressively to 11.5 × 10-10 m2/s as the 

concentration was decreased to 1.0 mM. A comparable change in diffusion constant was also 

observed on dilution of (RS,R)-165a, increasing progressively from 7.89 × 10-10 m2/s at 100 mM to 

11.2 × 10-10 m2/s at 1.0 mM. These measurements are consistent with larger aggregated species 

being present at higher concentrations (slower diffusion), and smaller aggregated species being 

present at lower concentrations (faster diffusion). These data are also consistent with the premise 

that reversible aggregation events are responsible for the observed chemical shift variations of the 

imine proton resonances of both diastereomers. The D values of (RS,R)-165a were used to predict 
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the hydrodynamic radius (Rhyd) and molecular weight (MW) of the species present in solution.327,328 

These calculations confirmed a gradual decrease in predicted Rhyd from 7.56 Å at 100 mM to 5.94 Å 

at 1.0 mM, which corresponds to an approximate change in MW from 682.32 g/mol at 100 mM to 

331.50 g/mol at 1.0 mM. Although the predicted MW of 331.50 g/mol for (RS,R)-165a at a 1.0 mM 

concentration is clearly incorrect (cf. actual SIBE MW = 504.43 g/mol), this error in magnitude is to 

be expected, especially with ‘poorly-behaved’ aggregating compounds. This is because the model 

set used to develop the method employed for these calculations explicitly excluded compounds 

known to aggregate.327,328 However, the relative change in the magnitudes of the measured 

hydrodynamic radii at different concentrations clearly indicate that a significant change in average 

aggregate size occurs as the sample is diluted. The calculated 20% decrease in hydrodynamic radius 

from 100 mM to 1.0 mM may not seem significant as a standalone figure, but as this implies an 

approximately 50% decrease in average aggregate volume, it is evident that BINOL-SIBEs aggregate 

at higher concentrations.  

  

Figure 34: Plot of diffusion coefficient D versus concentration (log scale) of diastereopure sulfiniminoboronate derived 
from 2-FPBA 1, (R)-BINOL 9, and either (S)-129a (blue, dashed line) or (R)-129a (red, solid line) (500 MHz, 25 °C, CDCl3, 
calculated using Bruker Dynamics Center software). Error bars represent 95% confidence interval. 
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Table 3: Diffusion coefficients and calculated predicted hydrodynamic radii and molecular weights for (SS,R)-166a and 
(RS,R)-165a derived from DOSY 1H NMR at different concentrations. 

Entry 
Concentration 

(C) 

Diffusion coefficient 

(D / 10-10 m2/s)a 
Predicted Rhyd

 

(RS,R)-165a (Å)b 

Predicted MW  

(RS,R)-165a 
(g/mol)b (SS,R)-166a (RS,R)-165a 

1 100 mM 7.75 7.89 7.56 682.32 

2 50 mM 8.42 8.37 7.24 602.27 

3 25 mM 9.73 9.46 6.66 466.90 

4 12.5 mM 10.2 9.99 6.42 417.58 

5 5.0 mM 10.8 10.7 6.12 363.33 

6 2.5 mM 11.4 11.1 5.98 337.51 

7 1.0 mM 11.5 11.2 5.94 331.50 
a Data extracted by MestReNova and Bruker Dynamics Center. b Calculated using Manchester NMR Methodology 
Group’s SEGWE calculator. 

Having confirmed the aggregation behaviour of BINOL-derived sulfiniminoboronates, it was 

important to confirm that diastereomeric iminoboronate ester complexes produced from 

complexation of standard chiral amines with BINOL (that do not display enantiopurity-dependent 

DAIA effects, vide supra) were not aggregating in solution (Figure 25). Derivatisation of (S)-α-

methylbenzylamine 3a with (R)-BINOL 9 gave iminoboronate ester (α-S,R)-29a (Scheme 68), whose 
1H/DOSY NMR spectra were then acquired at different concentrations from 100 mM to 5.0 mM. 

These spectra revealed only a slight variation in the chemical shift of the imine proton resonance 

of (α-S,R)-29a as it was diluted, with only a slight increase in diffusion coefficient D upon dilution, 

from 7.17 × 10-10 m2/s at 100 mM to 8.23 × 10-10 m2/s at 5 mM. This small change in D is likely due 

to decreased viscosity upon dilution,329 indicating that no significant concentration-dependent 

aggregation of ‘conventional’ amine-derived IBEs occurs, which is consistent with a lack of DAIA in 

the NMR spectra of their scalemic samples (Figure 25). 

 

Scheme 68: Three-component assembly of α-methylbenzylamine (S)-3a, 2-FPBA 1 and (R)-BINOL 9. Chemical shifts 
referenced to TMS internal standard (~6 mM in 100 mM stock solution). * 10-10 m2/s; data extracted by MestReNova and 
Bruker Dynamics Center, and calculated from an average of the imine, methine, and methyl signals. 

A final set of DOSY NMR experiments was then carried out to investigate the diffusion coefficients 

of homomeric and heteromeric sulfiniminoboronate aggregates in samples from scalemic 

sulfinamide. Similarly to experiments described by Klika et al. during their work on SIDA effects 

(vide supra),313 DOSY NMR was used to explore whether any differences in the diffusion behaviour 

of the major and minor diastereomeric species would be observed as their dr’s were varied. 
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Therefore, the diffusion coefficient of diastereomeric SIBEs were measured in a 100 mM sample 

prepared from 90:10 er (S)-129a, 2-FPBA 1 and (R)-BINOL 9 (Scheme 69). This er was chosen as it 

produced the largest chemical shift difference between the imine resonances of its diastereomeric 

complexes (see Table 1), and so would enable accurate comparisons of DOSY integration values 

derived from baseline-resolved imine peaks. Moreover, the large excess of heterochiral (SS,R)-166a 

in this sample meant that it would be primarily present in its homomeric aggregation state, whilst 

aggregates of the minor homochiral (RS,R)-165a would be dominated by its heteromeric 

aggregation state, thus allowing us to compare the diffusion of homomeric and heteromeric 

aggregates in the same sample. The D values of the diastereomeric complexes were found to be 

comparable, with D = 8.00 × 10-10 m2/s for (SS,R)-66a and D = 7.87 × 10-10 m2/s for (RS,R)-165a. It is 

interesting to note that in both cases the measured diffusion coefficients are comparable to the 

“baseline D” values for diastereomerically-pure mixtures of (SS,R)-166a and (RS,R)-165a. (cf. 7.75 

and 7.89 × 10-10 m2/s, Table 3), indicating no significant preference for the formation of either 

heteromeric or homomeric aggregation in diastereomerically impure mixtures.  

 

Scheme 69: Three-component assembly of (S)-129a (90:10 er), 2-FPBA 1 and (R)-BINOL 9. 1H NMR (500 MHz, CDCl3, 
100 mM) chemical shifts referenced to TMS intermal standard (~6 mM). Data extracted by MestReNova and Bruker 
Dynamics Center, and calculated from an average of the imine, methine, and methyl signals. 

  

2.3.5 Structural rationale for DAIA of sulfiniminoboronates 

Attention was then turned towards what supramolecular aggregation phenomena might be 

responsible for the DAIA chemical shift variation effects that were only observed for the imine 

protons of the diastereomeric SIBE system. As discussed before,  the availability of the sulfinamide 

nitrogen lone pair is decreased compared to amine analytes, with tert-butyl-sulfinamide 129a being 

sterically hindered at its α-amino position. It was reasoned that these structural features might be 

sufficient to seriously weaken the N → B coordination bond in the corresponding 

sulfiniminoboronate complexes, allowing for free rotation around the aryl-boron and aryl-imine 

bonds of the complexes resulting in greater conformational flexibility that would favour 

aggregation. 11B NMR spectroscopic analysis revealed 11B chemical shifts of 29.0 ppm for both 

(RS,R)-165a and (SS,R)-166a, in stark contrast to the 12.5 ppm and 12.7 ppm normally observed for 

IBEs 28a/29a derived from standard amines (e.g. α-methylbenzylamine 3a) (Scheme 70). These 

results indicate that the N→B bond found in amine-derived BINOL IBEs (δB ca. 10-15 ppm, 

tetrahedral) are not found in the corresponding BINOL SIBEs (δB ca. 30 ppm, trigonal planar). 
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Looking at the 1H NMR chemical shift of the imine protons of all four species, the SIBE signals are 

significantly more deshielded (9.04 ppm, 9.05 ppm) than the corresponding IBE imine resonances 

(8.08 ppm, 8.25 ppm), which highlights the greater electron-withdrawing (i.e. N→B destabilising) 

nature of sulfinimines over imines. These structural and NMR variations between SIBEs and IBEs 

support the conjecture that decreased availability of the sulfinamide amino lone pair impacts the 

ability of SIBEs to complex at the boron centre, resulting in non-coordinated SIBE species, as drawn 

throughout this thesis. This lack of intramolecular N→B bonding is likely to impact strongly on the 

nature of the aggregation effects observed, affording greater conformational flexibility to SIBEs 

than conventional IBEs whose N→B bonds mean they are much more rigid and compact, and so 

much less likely to aggregate. Conversely, lack of N→B coordination in SIBEs leads to far more 

flexible structures, with multiple electron acceptor and electron donor sites that are then free to 

act cooperatively to produce the observed aggregates. Additionally, the SIBE sulfinimine/imine 

nitrogen lone pair remains free to coordinate to other species, whilst being tied up in in boron 

complexation in IBEs, affording SIBEs additional opportunities for intermolecular polar interactions. 

 

Scheme 70: Imine 1H and 11B NMR (500/160 MHz, CDCl3, 100 mM) chemical shifts of (R)-BINOL-derived SIBEs and IBEs. 
a Literature values.330 

It was then considered whether the coordination/complexation boron centre might vary depending 

on its concentration, with intramolecular N→B coordination favouring monomeric species at low 

concentrations, and intermolecular interactions favouring formation of aggregates at higher 

concentration (Scheme 71). However, measuring the 11B NMR chemical shift of (SS,R)-166a over the 

same range of concentrations as previous screening experiments revealed a consistent chemical 

shift δB = 28.5 – 29.0 ppm from 100 mM to 1 mM (Scheme 70), thus indicating that the sp2 

hybridisation state of the boron centre remains predominantly uncoordinated in both its 

monomeric and aggregated form.  
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Scheme 71: Possible structural variation of BINOL-SIBEs at varying concentrations. Left: Aggregate state caused by various 

intermolecular interactions. Right: Monomeric form with (discounted experimentally) and without intramolecular N→B 

coordination. 

The sulfinamide complexation reactions were then carried out in benzene - d6 and acetonitrile - d3 

in order to determine what effect π-stacking and solvent polarity might have on the aggregation 

process (Table 4). As for the CDCl3 complexation experiments, the 1H NMR spectra of the 

diastereomeric SIBE (SS,R)-166a complexes in deuterated benzene showed significant chemical shift 

drift of their imine resonances, with corresponding variation in their diffusion coefficients also 

observed. Interestingly, these variations did not mirror the chemical shift trend in CDCl3, with the 

imine δH value first increasing from 9.56 ppm to 9.60 ppm as the concentration dropped from 

100 mM to 25 mM, before dropping to 9.40 ppm as the concentration fell to 5.0 mM. DOSY 

measurements revealed that the diffusion coefficient of the complex first rose as the concentration 

fell from 100 mM to 25 mM, then dropped significantly from 25 mM to 5.0 mM, with the 

hydrodynamic radius fluctuating between 6.39 Å and 6.89 Å. Previous studies have shown that 

aggregation-based chemical shift drift caused by solution-state π-stacking interactions in large 

conjugated systems can be supressed by carrying out 1H NMR spectroscopic analysis in 

benzene - d6.325 As benzene itself is a π-system, its use as a solvent is expected to saturate any π-

stacking sites of the SIBEs in solution, therefore preventing any significant intermolecular π-stacking 

aggregation events. Significant disruption to aggregation (i.e. larger D, smaller Rhyd) would therefore 

indicate that SIBE aggregation was dominated by π-stacking interactions. These results, 

therefore,indicate that π-stacking interactions are not likely the driving force behind the overall 

aggregation/DAIA behaviour of these BINOL SIBEs, since benzene does not appear to have 

significantly decreased DAIA aggregation of (SS,R)-166a. Carrying out the corresponding 

concentration-dependent NMR analysis of SIBE (SS,R)-166a in more polar CD3CN revealed no 

chemical shift variation as the concentration was decreased, with consistent imine proton 

resonances of 8.72-8.73 ppm obtained in all cases. Furthermore, the diffusion coefficients of 

(SS,R)-166a in CD3CN were higher than in CDCl3 or C6D6 (even accounting for viscosity), implying 
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significantly smaller SIBE species (cf. Rhyd = 6.12 Å for 5.0 mM (SS,R)-166a in CDCl3 vs Rhyd = 6.27 Å for 

100 mM in CD3CN), thus indicating that (SS,R)-166a is more monomeric in CD3CN than in CDCl3/C6D6. 

Since acetonitrile would not be expected to disrupt either hydrogen-bonding or π-stacking 

interactions, it therefore seemed fair to exclude both of these types of intermolecular interaction 

as the major drivers controlling aggregation. It was therefore concluded that polar/surfactant-type 

interactions are responsible for the aggregation of (SS,R)-166a in CDCl3 and deuterated benzene, as 

they are disrupted by the increased polarity of the acetonitrile solvent (ε = 35.688).331 Therefore, it 

is proposed that the aggregation effects observed in BINOL-SIBEs reported in this chapter are driven 

primarily by polar interactions between their polar zwitterionic sulfinimine “head-group” moieties 

of the SIBEs, with the aryl rings of the BINOL and template acting as lipophilic “tail-groups” that are 

arranged in defined conformations that affect the magnetic environment of the imine protons, to 

influence their chemical shifts. This polarity and “headgroup” behaviour is consistent with other 

reports of sulfinamide crystal structures, as seen in Figure 35, which shows clustering of the 

sulfinamide functionality in the crystal structure of Davis’ sulfinamide (R)-129b, including an NH–
−OS hydrogen bond (see section 3.1.3 for another example).  

Table 4: Imine 1H NMR δH, D, and Rhyd of (SS,R)-166a in CDCl3, C6D6 and CD3CN assembled following the usual conditions. 

 

Entry C 

CDCl3 

(ε = 4.7113) a 

C6D6 

(ε = 2.2706) a 

CD3CN 

(ε = 35.688)a 

δH
b Dc Rhyd

d δH
b Dc Rhyd

d δH
b Dc Rhyd

d 

1 100 mM 9.04 7.75 7.55 9.56 6.34 7.60 8.73 13.3 6.27 

2 25 mM 8.95 9.73 6.66 9.60 8.09 6.39 8.73 15.6 5.58 

3 5.0 mM 8.79 10.8 6.12 9.40 7.27 6.89 8.72 15.9 5.50 
a Dielectric constants for the non-deuterated solvents, values from Gaussian reference.332 b Referenced to TMS internal 
standard (~6 mM in 100 mM stock solution). c Data extracted by Bruker Dynamics Center, unts: 10-10 m2/s. d Calculated 
using Manchester NMR Methodology Group’s SEGWE calculator, units: Å. 
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Figure 35: Crystal packing of Davis’ sulfinamide (R)-129b showing clustering of polar sulfinamide “headgroup”, including 
H-bonding (red dashed line).333 

Since the concentration-dependent aggregation of BINOL-SIBEs appeared to be suppressed by 

carrying out their assembly and 1H NMR analysis in CD3CN, a three-component assembly study of 

2-FPBA 1, (R)-BINOL 9 and scalemic Ellman’s sulfinamide 129a in CD3CN was carried out (Figure 36). 

As is clearly visible in Figure 36, no distinct diastereomeric SIBE imine 1H NMR resonances were 

observed, with all five 500 MHz 1H NMR spectra showing a single singlet resonance at 8.73 ppm, 

regardless of their diastereomeric composition. Although slight broadening of the imine signal was 

observed in diastereomerically impure systems, it is clear that CD3CN is unsuited as a solvent for 

determining the enantiomeric excess of sulfinamides using a BINOL-SIBE CDA approach. However, 

the fact that the imine signals of both non-aggregated diastereomers are fully overlapped in CD3CN, 

once again suggests that the presence of aggregated complexes in CDCl3 and C6D6 is responsible for 

the chemical shift anisotropy observed for the imine protons of the BINOL sulfiniminoboronate 

diastereomers in these systems. As before, this is concerning, as the use of CD3CN as the solvent 

for this method could lead to the incorrect conclusion that the sulfinamide analyte is enantiopure. 

Additionally, early development of this method in CD3CN could again potentially have led to the 

termination of the project. 
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(RS,R)-165a : (SS,R)-166a 
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0:100 

 

Figure 36: Expanded imine region of the 1H NMR (500 MHz, CD3CN, 100 mM) spectra of homochiral and heterochiral 
sulfiniminoboronate complexes (RS,R)-165a and (SS,R)-166a at various ratios assembled in the usual manner. 

 

2.3.6  Guidelines for avoiding SIDA and DAIA effects 

The results presented in the previous few sections clearly paint a potentially concerning picture of 

inaccuracy and spurious errors when considering the NMR characterisation of chiral compounds. 

Of particular concern is the potential to incorrectly assign enantiopurity and absolute configuration 

when employing CDA NMR methodologies. Consequently, the author would like to put forward the 

following guidelines and control experiments to ensure accurate reporting of NMR characterisation 

data for chiral compounds, and reliable determination of enantiomeric excess by NMR 

spectroscopic methods. 
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DAIA/SIDA Effect Risk Control experiment/measures 

Concentration-

dependent δ 

Incorrect  

structural assignment 

- Report sample concentration in NMR 

characterisation data 

- Preferred: measure spectra at several 

concentrations, covering 2 orders of 

magnitude 

Enantio-/diastereo-

purity-dependent δ 

Incorrect structural 

assignment 

- Acquire spectra at enantiopure, scalemic, 

and racemic ratios 

Overlapped/coalesced 

diastereomeric peaks  

Incorrect 

enantiopurity 

measurement 

- For new substrates/methods corroborate 

er/dr with additional methods (e.g. other 

resonances/nuclei, αD, HPLC, etc…) 

Diastereomeric signal 

crossover 

Incorrect ee or 

absolute configuration 

- For new substrates/methods corroborate 

with additional methods (e.g. other 

resonances/nuclei, αD, HPLC, etc…) 

- Avoid assigning absolute configuration by 

analogy or without additional structural data 

 

2.4. Conclusions, future work, and outlook 

The research described in this chapter describes unexpected and unprecedented concentration- 

and dr-dependent chemical shift variations in the 1H NMR spectra of diastereomeric BINOL-derived 

sulfiniminoboronate esters. These studies revealed that the chemical shift differences between 

diastereomeric imine signals of BINOL-SIBEs varied between samples of different dr, with imine 

peak coalescence and cross-over being observed. This work has shown that this anomalous 

behaviour is caused by aggregation of diastereomeric BINOL-derived SIBEs, in a phenomenon newly 

termed diastereomer aggregation-induced anisotropy (DAIA). These DAIA effects have been 

carefully studied using a combination of 11B, 1H 1D and DOSY NMR spectroscopic studies, with these 

analytical results showing that significant SIBE aggregation occurs at high concentrations, with 

lower SIBE concentrations favouring monomeric species. Concentration and solvent studies 

strongly indicate that SIBE aggregation in non-polar solvents occurs primarily through polar 

interactions of their zwitterionic sulfinimine “head-groups”, with their more lipophilic aromatic tail 

groups aligning themselves to exert anisotropic shielding/deshielding effect on the imine protons 

of each diastereomer. Although the evidence for aggregation is fairly compelling, further work is 

now underway to better understand and characterise these features. Spectroscopic methods are 

currently being considered, such as UV-Vis to assess whether SIBEs are aggregating in solution or 

instead forming non-soluble species. Additionally, if this is the case dynamic light scattering (DLS) 

experiments will be carried out to attempt to characterise the size of these aggregate species. This 

aggregationprocess appears to be facilitated by the absence of N → B coordination in 

sulfiniminoboronate esters, rendering these molecules more flexible, less coordinatively saturated, 
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and therefore more prone to intermolecular interactions. Reassuringly, conventional IBEs derived 

from amines do not aggregate to any significant extent in solution, and therefore do not suffer from 

DAIA-induced chemical shift variation. This observations raises some interesting questions on the 

nature and in particular the lability of N→B bonds in IBEs and related species, and so further 

investigations using IR and 15N NMR spectroscopic methods are now being considered. Additionally, 

previously reported IBE structures are now being revisited to further understand the nature of the 

N→B bond in different systems, and ensure correct characterisation and reporting of these 

complex structures. 

Ongoing attempts to grow homomeric and heteromeric crystals of each of the BINOL-

sulfiniminoboronate complexes are currently underway in order to better understand the exact 

nature of the aggregation process. The possibilities that DAIA affords for carrying out efficient 

diastereomeric purification through sublimation or recrystallisation processes will also be 

investigated, as has previously been done in SIDA-susceptible systems (vide supra). Finally, this case 

study of aggregation-induced anisotropy suggests that care should be taken in interpreting results 

when CDA NMR protocols are used to generate diastereomeric products to determine the ee’s of 

new types of chiral compounds, or even more generally any new class of analyte/solute. To quote 

a recent publication by Klika et al. discussing SIDA effects: “Due care should be taken with respect 

to conditions, particularly the concentration, when measuring NMR spectra of chiral 

compounds”.313 Similar advice was put forward by Mitra et al. in 1998 after observing 

concentration-dependent chemical shifts in quinolines (vide supra): “lack of consideration of the 

concentration of the NMR sample could lead to incorrect conclusions pertaining to the structural 

identity of a given molecule […] it is thus important to give the solute concentration when reporting 

NMR spectra.”323 This advice resonates strongly with the results presented in this chapter, which 

highlight the need for more rigor and consistency in the reporting and interpretation of NMR data 

- in particular taking care to report concentration values when CDA NMR protocols are used to 

determine the enantiopurities of chiral compounds, and more generally when the structural 

characterisation of new chiral compounds is reported. 
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3. THE BULL-JAMES ASSEMBLY FOR DETERMINING THE ENANTIOPURITY OF 

SULFINAMIDES BY NMR SPECTROSCOPY 

3.1. Bull-James assembly of sulfinamides for 1H NMR analysis 

3.1.1 Diol chiral reporter optimization 

As shown in the previous chapter, BINOL 9 was found to be an unsuitable chiral diol reporter for 

use in the Bull-James CDA assembly of sulfinamides, due to a lack of baseline resolution and variable 

DAIA aggregation effects. Therefore, the first step towards developing a functional sulfinamide CDA 

protocol was to find an alternative chiral diol which would maximise baseline resolution and peak 

sharpness, whilst eliminating any problematic DAIA effects. To achieve this, eight commercially 

available chiral diols (including BINOL 9, 1.2 equiv.) containing a range of steric and 

aliphatic/aromatic groups were screened in three-component reactions with tert-

butanesulfinamide 129a and 2-FPBA 1 (slight excess of diol, Table 5). All eight diols self-assembled 

with limited 3-85% conversion to produce diastereomeric sulfiniminoboronate complexes. All pairs 

of diastereomeric assemblies exhibited measurable chemical shift differences, again indicating the 

robustness and versatility of this type of Bull-James three-component derivatisation approach. Only 

diols 178, 179 and 180 (Table 5, entries 6-8) led to full baseline resolution, with three-component 

assembly of analyte 129a, 2-FPBA 1, and pinanediol (1R,2R,3S,5R)-180 resulting in an impressive 

∆δH of -0.085 ppm, which was a 7-fold increase in ∆δH over the original BINOL-based assembly (cf. 

0.012 ppm). Direct visual comparison of the imine regions of the 1H NMR spectra of BINOL- and 

pinanediol-derived SIBE complexes reveals this significant improvement in both chemical shift 

difference and line width on moving from BINOL to pinanediol as the chiral reporter (Figure 37). 

Thus, pinanediol was chosen as the most suitable diol chiral reporter to carry out further three-

component derivatizations of sulfinamides. It is interesting to note the significantly higher 

conversion achieved for BINOL, which will be discussed in more depth in section 3.1.3. 
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Table 5: Chemical shift differences ΔδH 1H NMR (500 MHz, dried CDCl3, 100 mM) spectra of diastereomeric iminoboronate 

complexes of Ellman's sulfinamide 129a (75:25 (S):(R)), 2-FPBA 1 and a range of enantiopure diols. 

 

Entrya Diol Conv.b ∆δH (ppm)c,d 

1 (R)-9 

 

85% -0.012 

2 (S)-174 
 

4% +0.006 

3 (R,R)-175 
 

15% +0.027 

4 (S)-176 
 

3% +0.010 

5 (S)-177 

 

10% +0.014 

6e (S)-178 

 

23% +0.037 

7e (S)-179 

 

9% +0.047 

8e (1R,2R,3S,5R)-180 
 

30% -0.085 

a Reactions carried out on 0.1 mmol of sulfinamide at 0.1 M concentration. b Determined by 1H NMR integration of 
imine/aldehyde peaks. c ΔδH is the difference in chemical shifts of the imine protons of the pairs of diastereomeric 
iminoboronate ester complexes for each chiral diol. d A negative value for ΔδH indicates that the imine proton 
resonance of the homochiral iminoboronate ester complex was most deshielded. e Full baseline resolution observed 
for the imine resonances of their respective diastereomeric iminoboronate esters. 
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Figure 37: Expanded imine region of the 1H NMR (500 MHz, CDCl3, 100 mM) spectra of complexes formed from the three-
component assembly of 2-FPBA 1, 75:25 er (S)-Ellman’s sulfinamide 129a, and (R)-BINOL 9 (a) or (1S,2S,3R,5S)-pinanediol 
180 (b) (same scale) 

 

3.1.2 Development of a stepwise process 

With the issue of baseline resolution resolved, attention turned to addressing the issue of 

incomplete conversion. Unfortunately, despite the well-documented stability of pinanediol-

boronate esters,334,335 once again that the complexation reactions did not go to full completion, 

instead resulting in varying levels of completion which did not change over time. As described at 

length in chapter 1, two distinct condensation steps are involved in Bull-James three-component 

assemblies: imine condensation and boronate ester condensation. Considering the widespread use 

of the latter in the supramolecular assembly of analogous aminoboronate esters, and the success 

of many prior Bull-James assembly processes (vide supra), it appeared unlikely that the 

condensation of the diol chiral reporter with the boronic acid template was the problematic step. 

Sulfinimine condensations, on the other hand, are well known to be difficult to drive to completion, 

often requiring the addition of dehydrating agents, Lewis acids, or forcing conditions (e.g. Dean-

Stark, heating, microwave).244,336–338 This is due to the relatively low nucleophilicity of the 

sulfinamide nitrogen atom, which is isosteric to a primary amide functionality. For these assemblies, 

four products could potentially be formed upon simultaneous mixing of the three components 

(Scheme 72): a sulfiniminoboronic acid 181, formed from two-component assembly of the 

sulfinamide 129a and 2-FPBA 1; a formyl boronate ester 182, formed by two-component assembly 

of the diol 180 and 2-FPBA 1; and the two desired three-component diastereomeric 

sulfiniminoboronate complexes 183a (homochiral) and 184a (heterochiral). To ensure that any 

mechanistic postulates were accurate, all four products were synthesised and characterised 

independently using NMR spectroscopy and high-resolution mass spectrometry. Pleasingly, the 1H 

NMR chemical shifts of the imine/aldehyde protons of all four species were found to be different, 

which meant that 1H NMR spectroscopy could be used to track formation of the two- and three-

component assemblies. 

a) b) 
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Scheme 72: 2-FPBA-derived two- and three-component products and intermediates in the three-component assembly of 
1, 9 and 180, and associated 11B NMR chemical shifts and diagnostic imine/formyl 1H NMR chemical shifts. 2-FPBA 1 and 
amine (R)-3a-derived IBE (α-R,R)-28a also shown for comparison. Only diastereomers from (R)-BINOL 9 and (1R,2R,3S,5R)-
180 shown for clarity. 

A series of experiments were therefore carried out to better understand this condensation process 

and identify conditions that would lead to complete conversion of Ellman’s sulfinamide (R)-129a 

(33% ee), 2-FPBA 1, and pinanediol 180 to the desired diastereomeric SIBE complexes (Table 6). 

Reaction of the three components in CDCl3 for 1 h gave a 70:30 mixture of two-component formyl 

boronate ester 182 and three-component sulfiniminoboronate esters 183a/184a (Table 6, entry 1). 

Addition of MgSO4 as a drying agent only marginally increased the amount of 183a/184a formed to 

40% (Table 6, entry 2). The two-component reaction of 2-FPBA 1 with pinanediol 180 was found to 

give boronate ester 182 in 100% conversion after 10 minutes (Table 6, entry 3). No reaction was 

observed when sulfinamide 129a was added to a solution of preformed boronate ester 182 in CDCl3 

(Table 6, entry 4), indicating that boronate ester 6 is unreactive towards imine bond formation 

under these conditions. Two-component reaction of Ellman’s sulfinamide 129a and 2-FPBA 1 

proceeded more slowly, affording sulfiniminoboronic acid 181 in 89% yield after 1 h, increasing to 

94% in the presence of MgSO4 (Table 6, entries 5 and 6). Finally, premixing sulfinamide 129a, 2-FPBA 

1 and MgSO4 in CDCl3 for 1 h, followed by addition of pinanediol 180 gave 93% conversion to afford 

the desired three-component sulfiniminoboronate esters 183a/184a, and the two-component 

boronate ester 182 in 7% yield (Table 6, entry 7).  
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Table 6: Optimization study of the three-component assembly reaction of Ellman's sulfinamide 129a with 2-FPBA 1 and 
pinanediol 180. 

 

Entrya Reagents MgSO4 
Product Ratiosb 

1 182 181 183a/184a 

1 129a + 1 + 180 - -- 70% 0% 30% 

2 129a + 1 + 180 + -- 60% 0% 40% 

3 1 + 180 - -- 100% -- -- 

4c Premix 1 + 180, then add 129a - -- 100% 0% 0% 

5 129a + 1 - 11% -- 89% -- 

6 129a + 1 + 6% -- 94% -- 

7d Premix 129a + 1, then add 180 + -- 7% 0% 93% 
a 2-FPBA 1 added to a premixed suspension of sulfinamide and diol to allow for accurate t0 starting point. b Determined 
by 1H NMR spectroscopic analysis using imine/formyl signals in Scheme 72. c 1 and 180 premixed for 10 min. d 129a and 1 
premixed for 1 h. 

These results prompted us to develop a new ‘stepwise’ three-component derivatization procedure, 

involving the reaction of (rac)-Ellman’s sulfinamide 129a and 1.2 equiv. of 2-FPBA 1 in CDCl3 at room 

temperate for 1 h in the presence of MgSO4 to maximize formation of reactive imine 181. This was 

followed by addition of excess 1.3 equiv. of (1R,2R,3S,5R)-pinanediol 180 to give a 50:50 mixture of 

diastereomeric sulfiniminoboronate esters 183a/184a in 99% conversion (Scheme 73).  

 

Scheme 73: Two-step three-component assembly of 2-FPBA 1, Ellman's sulfinamide (rac)-129a, and (1R,2R,3S,5R)-180. 

To ensure that this novel stepwise three-component assembly afforded consistent results, free 

from the DAIA effects observed for BINOL-derived assemblies in chapter 2, scalemic samples of 

Ellman’s sulfinamide were subjected to these optimised conditions, with er’s ranging from 
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enantiopure (R)-129a to (S)-129a in eight increments (Figure 38). In all cases, the integration of the 

imine signals in the 1H NMR was consistent with the expected dr, with these 1H NMR spectra 

indicating this new pinanediol-derived system was free of DAIA-induced diastereopurity-dependent 

chemical shift drift. 

 

Figure 38: Expanded imine region of the 1H NMR (500 MHz, CDCl3, 0.1 M) spectra of three-component assemblies of 
2-FPBA 1, (1R,2R,3S,5R)-pinanediol 180 and (R)-/(S)-Ellman's sulfinamide 129a following the procedure in Scheme 73. 
Chemical shifts referenced to TMS internal standard (~ 6 mM). 

To further ensure reliability and absence of DAIA effects, a set of concentration screening 

experiments was carried out for (SS,3aR,4R,6R,7aS)-184a, which also failed to produce any 

significant chemical shift variation in either its 1H or 11B NMR spectra (Figure 39a-b), further 

indicating that no aggregation was occurring. Upon dilution from 100 mM to 25 mM and 5.0 mM 

the diffusion coefficient D of the sulfiniminoboronate was seen to only vary slightly from 8.17 × 10-10 

to 8.92 × 10-10 m2/s and 8.93 × 10-10 m2/s, respectively. These concentration-dependent changes 

were significantly smaller than was observed for the BINOL-derived complexes reported in the 

previous chapter (cf. D = 7.89 × 10-10 m2/s to 10.7 × 10-10 m2/s for (RS,R)-165a), indicating 

significantly less aggregation of the new pinanediol-derived sulfiniminoboronates compared to 

those derived from BINOL (small change in D likely caused by the change in viscosity).329,339 

Moreover, following the findings that diastereomeric imine signals of BINOL-SIBEs were 

indistinguishable in CD3CN (vide supra), a short series of scalemic screening experiments was 

carried out in CD3CN to ensure the robustness of the new method (Figure 39c). The 1H NMR spectra 

of the assemblies of 2-FPBA 1, (1S,2S,3R,5S)-180 and sulfinamide 129a at varying er clearly showed 

well-defined diastereomeric imine signals in pinanediol-derived SIBEs in CD3CN. Interestingly, a 

slight increase in ∆δH was observed when compared to CDCl3, with ∆δH = -0.109 ppm for the imine 

(S)-129a 100% ee 

(S)-129a 90% ee 

(S)-129a 80% ee 

(S)-129a 50% ee  

(rac)-129a 0% ee 

(R)-129a 50% ee 

(R)-129a 80% ee 

(R)-129a 90% ee 

(R)-129a 100% ee 
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protons (cf. -0.085 ppm in CDCl3), however for reasons of consistency and cost, CDCl3 was used for 

further development of this methodology for analysing the enantiopurity of sulfinamides.  

a) 
 

100 mM 

 

 

c) 

129a (er) (S):(R) 

100:0 

72:25 

50:50 

25:75 

0:100 

 

25 mM 

5.0 mM 

 

  

b) C (mM) D (m2/s) δB (ppm) 

100 8.17 × 10-10 30.7 

25 8.92 × 10-10 30.6 

5.0 8.93 × 10-10 30.4 

Figure 39: (a) Expanded imine region of the 1H NMR (500 MHz, CDCl3) spectra of three-component assemblies of 2-FPBA 
1, (1R,2R,3S,5R)-pinanediol 180 and (S)-Ellman's sulfinamide 129a at 100 mM, 25 mM and 5.0 mM concentrations 
following the procedure in Scheme 73. Chemical shifts referenced to TMS (~6 mM) intermal standard. (b) 1H DOSY 
diffusion coefficients and 11B NMR chemical shifts of the same samples. (c) Expanded imine region of the 1H NMR 
(500 MHz, CD3CN) spectra of three-component assemblies of 2-FPBA 1, (1S,2S,3R,5S)-pinanediol 180 and Ellman's 
sulfinamide 129a of varying er. 

 

3.1.3 Mechanistic and structural considerations 

The optimisation experiments described in Table 6 clearly suggest that quasi-irreversible formation 

of boronate ester 182 is significantly faster than reversible formation of imine 181, with only 

sulfiniminoboronic acid 7 competent to react further to afford the desired SIBEs 183a/184a in the 

three-component derivatization reaction (Table 6). This is in stark contrast to the observations by 

Anslyn et al. regarding the assembly of 2-FPBA 1, benzylamine 30 and catechol 26 (see section 

1.3.2), which showed that the boronate ester and imine condensation steps in traditional 

assemblies proceeded at a near-identical rate (112 M-1 and 110 M-1, respectively).118 Looking at the 
11B NMR chemical shifts of the four intermediates provides us with some explanation for these 

observations (Scheme 72). As in the BINOL-sulfinamide iminoboronates of the previous chapter, 

the 11B NMR chemical shift indicates that pinanediol-derived SIBEs are also devoid of an 

iminoboronate N→B bond, since in all cases the 11B chemical shifts of the boron atoms were ca. 30 

ppm, which is indicative of a planar trivalent neutral sp2 boronic species. This does not, however 

indicate that no coordination is possible, but rather that any N→B interactions are at best short-

lived. This is for instance visible for the parent 2-FPBA 1, which has a non-coordinated 11B NMR 

chemical shift of 28.4 ppm, but nonetheless has clear O→B interactions, as indicated by the 
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formylboronic acid-benzoxaborole equilibrium and the significantly increased electrophilicity of the 

aldehyde (vide supra). Although many attempts were made to grow pinanediol-

sulfiniminoboronate crystals, none were successful, and even upon evaporation to dryness these 

products remained oils, suggesting they may in fact not be crystalline in nature, which is likely due 

to their lack of N→ B coordination and increased conformational flexibility. This structural 

information sheds some light on the difficulties faced in achieving high conversions in the 

sulfinimine condensation step. Despite the lack of permanent N→B coordination, it is evident that 

the proximal boron atom contributes to the sulfinimine condensation, as also occurs for 

conventional amine analytes. This is made apparent by the rapid high conversions achieved by the 

stepwise approach under mild nucleophilic conditions, compared to the harsh catalytic and/or 

water-scavenging conditions required for the same sulfinimine condensation reaction to occur with 

benzaldehyde 185 (cf. Scheme 74a & b).340,341 

 

Scheme 74: (a) Optimised stepwise three-component assembly of 129a, 2-FPBA 1 and (1R,2R,3S,5R)-180 (vide supra). (b) 
Typical literature procedures for the sulfinimine condensation of Ellman's sulfinamide 129a and benzaldehyde 185.340,341 

In the case of SIBE three-component assembly, reaction of 2-FPBA 1 with sulfinamides proceeds 

under milder conditions due to the adjacent boronic acid acting as an intramolecular Lewis acid 

catalyst to facilitate nucleophilic attack of the sulfinamide at the carbonyl group of 2-FPBA 1 

(Scheme 75a). This condensation process is still relatively slow however, due to the inherently low 

nucleophilicity and steric demand of the sulfinamide nucleophile. Once two-component 

sulfiniminoboronic acid 181 formation has been achieved, 11B NMR spectroscopic data shows that 

no significant N→B coordination occurs, presumably due to the same factors of decreased Lewis 

basicity and steric bulk. Following NMR analysis, crystals of the sulfiniminoboronic acid 181 were 

grown by slow evaporation from CDCl3/n-hexane, allowing us to further confirm this structural 

postulate. As shown in Figure 40a, no N→B coordination is seen in the crystal structure of (S)-181, 

be it intramolecular or intermolecular. Instead, the boronic acid, ring, and sulfinimine sit on the 

same plane, creating an extended O-B-C=C-C=N-S+-O− conjugated fragment (red, Figure 40a). The 
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opposite enantiomer (R)-181 derived from (R)-Ellman’s sulfinamide 129a was also grown (see 

Appendix A). It is interesting to note that the crystal structures show strong “bidentate” hydrogen 

bonding interactions between the sulfinamide oxygen and the acidic boronic acid protons, 

illustrating the polarity of the sulfinimine functionality, as well as the ability of its O− group to donate 

electron density to form strong hydrogen bonds (Figure 40b). This observation provides some 

additional support for the previous suggestion that the sulfinimine functionality can act as a “polar 

headgroup” in non-coordinated BINOL-SIBEs to facilitate aggregation. Although N→B interactions 

in iminoboronic acids have been regularly assigned by NMR spectroscopy,118,217 they are not 

regularly observed in crystal structures, with only one previous example of an X-ray crystal structure 

of a sulfiniminoboronic acid reported in the literature – a polyoxometalate (POM) 186, which 

exhibited an alternative strong intramolecular hydrogen bonding interaction between its imine 

nitrogen lone pair and a boronic acid proton (Figure 40c).342 In this case, the lack of N→B bonding 

was explained by a combination of weakened boronate Lewis acidity compared to its corresponding 

boronate ester, and general steric repulsion caused by the large POM group resulting in the 6-

membered hydrogen bonded state dominating. It is particularly interesting that intermolecular 

hydrogen bonding is preferred in sulfiniminoboronic acid 181, with no intramolecular bonding 

observed (good agreement with 11B NMR data, vide supra), as this indicates how non-Lewis basic 

the lone pair of the sulfinimine nitrogen atom actually is. 

Following the alternate pathway, if pinanediol boronate ester 182 forms first, the significantly 

increased steric bulk of the pinanediol ligand is simply too high for the bulky and weakly-

nucleophilic sulfinamide to overcome, and so since no internal Lewis acid catalysis can occur, the 

sulfinimine condensation cannot proceed (Scheme 75b). An alternative explanation was originally 

suggested, proposing that the increased Lewis acidity of the boronate ester might be responsible, 

by over-stabilising reactive intermediate 187, thus halting the sulfinamide reaction.294 It must be 

noted that incomplete conversion was observed for all diols screened in Table 5, and that successful 

assembly of pinanediol-IBEs is knows for other analytes/substrates,162,237,238 and so it appears only 

slight steric bulk is sufficient to halt this sulfinimine condensation step, highlighting the sheer size 

of sulfinamides and weakness of the coordination in these systems. Boronate ester condensations 

are of course trivial for both 2-FPBA 1 and sulfiniminoboronic acid 181.  
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Scheme 75: Suggested reaction pathways for the three-component assembly of 2-FPBA 1, Ellman's sulfinamide 129a and 
(1R,2R,3S,5R)-180, that are consistent with structural features and the data generated in the experiments described in 
Table 6. 

 

  

Figure 40: X-Ray crystal structure of iminoboronic acids: sulfiniminoboronic acid (S)-181 (a) single molecule, (b) multiple 
molecules illustrating intermolecular H-bonding; (c) polyoxometalate IBE 186 showing hydrogen bonding interactions 
(dashed lines; H’s omitted for clarity), adapted with permission from the Royal Society of Chemistry.342 
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These mechanistic proposals are consistent with the high 85% conversion observed in one-pot 

BINOL-sulfinamide Bull-James assemblies, as opposed to the 3-30% yields observed for other diols 

(see Table 5), which indicates a likely mechanistic deviation between the formation of BINOL-SIBE 

and other SIBE assemblies. The Bull and James groups have previously observed that BINOL 

does not condense to form boronate esters with simple boronic acids, instead requiring 

cooperative N→B coordination in order to produce stable BINOL boronate esters (unpublished), an 

observation supported indirectly by literature reports of donor-coordinated BINOL boronate 

esters.343 It is believed that this is caused by the axial chirality of the BINOL diol, whose hydroxyl 

groups cannot readily achieve the planarity required to condense with a planar sp2 boronic acid 

boron centre. These observations were confirmed for this assembly system by two-component 

assembly of 2-FPBA 1 and (R)-BINOL 9, which showed no appreciable formation of boronate ester 

188 under standard assembly conditions (Scheme 76a). This indicates either that the BINOL 

boronate ester is not stable, or that its formation incurs a significant kinetic barrier. Stepwise 

assembly reactions showed that comparable conversion to the expected BINOL-SIBEs occurred in 

all systems, regardless of order of addition or number of steps (Scheme 76b). This leads to the 

conclusion that the one-pot one-step three-component assembly of BINOL 9, 2-FPBA 1 and Ellman’s 

sulfinamide 129a proceeds in an inherently stepwise manner, with initial sulfinimine condensation 

to produce sulfiniminoboronic acid 181 (vide supra) unobstructed by the presence of BINOL 9, 

unlike for other diols. As this sulfiniminoboronic acid intermediate 181 contains a proximal Lewis 

basic nitrogen lone pair in the sulfinimine moiety, it is now capable of undergoing boronate 

ester complexation with BINOL 9 to produce SIBEs 165/166. However, 11B has shown that no lasting 

N→B coordination occurs in the assembled SIBE (vide supra), and so for all intents and purposes 

the sulfinimine and boronate esters of SIBEs exist as entirely separate functional groups in these 

complexes, exhibiting little to no IBE character. Therefore, these results suggest that BINOL 

boronate esters are not inherently unstable, and do not require stabilising IBE complexation to 

exist, but instead that their formation is kinetically/enthalpically limited. The proximal N→B donor 

of the sulfinimine provides sufficient interaction to induce transient tetrahedral character at the 

boron centre, serving to lower the activation energy barrier for BINOL-boronate ester formation, 

thus catalysing this process intramolecularly. 11B NMR spectroscopy has been used in an attempt 

to observe the suspected transient N→B coordination of sulfiniminoboronic acid 181 by recording 

spectra with varying concentration (100 mM – 1.0 mM) and at variable temperatures (33 mM, -45 °C 

– 45 °C), but unfortunately no new sp3 11B NMR resonances were observed. 
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Scheme 76: Two-and three-component assemblies of (R)-BINOL 9, 2-FPBA 1 and Ellman's sulfinamide 129a (75:25 (S):(R)). 

One additional structural observation can be made regarding the lack of N→B coordination, in 

that it simplifies and eliminates some issues of structural complexity and divergence. Were a strong 

N→B bond present (e.g. 138a’), the resulting tetravalent boronate centre would also be define 

chiral centre, leading to 8 possible stereoisomers of SIBE 183a’, two of which are shown in Figure 

41 (both derived from (R)-129a and (1R,2R,3S,5R)-180). Lack of N→B coordination instead allows 

for free rotation around the B-C bond, negating this issue entirely. Of course, this issue arises only 

from the use of non-symmetrical pinanediol 180, and use of a symmetrical chiral diol such as BINOL 

9 as in the previous chapter would not cause these types of issues. Interestingly, examples of 

standard IBEs with defined N→B bonds derived from non-symmetrical chiral diols are known (vide 

supra), which do not exhibit any issues of structural divergence at the chiral boron centre, with no 

additional stereoisomers observed. This implies IBE complexes may be more labile than currently 

assumed, with an N→B bond that is easily broken and reformed to rapidly equilibrate between 

both stereoisomeric forms of the boronate centre, either producing time-averaged NMR 

resonances of thermodynamic mixtures of both isomers, or equilibrating exclusively to the more 

favourable diastereomer to afford a single set of signals. Additionally, the formation of stable IBEs 

could simply be highly selective, producing exclusively one boron stereoisomer which does not 

equilibrate. To the best of our knowledge, these considerations have not yet been carefully studied 

or taken into consideration in functional IBE systems reported, and so future work will need to be 

carried out to gain a better understanding of the selectivity of equilibration of IBE boron centres. 
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Figure 41: Comparison of SIBEs in the absence (183a) and presence (183a') of an N-B coordination bond, producing chiral 
boron centres in the latter (assemblies derived from (S)-129a and (1R,2R,3S,5R)-180) 

  

3.1.4 Sulfinamide analyte scope 

Having developed an optimised two-step procedure for the Bull-James assembly of 

tert-butanesulfinamide 129a, its general applicability was demonstrated on a range of sulfinamide 

substrates. As sulfinamides are used almost exclusively as chiral auxiliaries, only Ellman’s and Davis’ 

sulfinamides 129a and 129b are cheaply and readily commercially available, and so an additional 

six (rac)-sulfinamide substrates were synthesised. These were synthesised in two steps from 

commercial thiols following the well-established oxidation-amination route, using the synthetic 

procedures previously described by Liu, Qin and co-workers (Scheme 77).344 First, a thiol 189 is 

oxidised by two equiv. of N-bromosuccinimide (NBS) in DCM/MeOH, to afford the corresponding 

methyl sulfinate 190 in near-quantitative yields and in high purity. Thus, this intermediate could be 

carried forward through the next step following a simple silica plug to remove the succinimide by-

product. As shown in chapter 2 section 2.1.4, sulfinates are typically converted to primary 

sulfinamides by direct amination with lithium amide nucleophiles. In this case, LiHMDS was used as 

a practically-simple lithium amide, successfully effecting the amination of all six methyl sulfinates 

to afford the desired primary sulfinamides 129c-h in 5-72% yield. It should be noted that in the case 

of 129g and 129h, poorer yields were obtained due to purification issues rather than poor yields at 

either stage of the reaction. For 129g, the low melting point (41-42 °C) and lipophilic/surfactant 

nature of the hexanesulfinamide led to difficult and inefficient recrystallisation. In the case of 2-

pyridine sulfinamide 129h, although good mass retention and purity was observed for the crude 

products of each step, subsequent degradation was observed for both 190h and 129h, which may 

be due to homosubstitution/polymerisation of the product caused by the presence of the 

nucleophilic nitrogen of the pyridine ring. 
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Scheme 77: Two-step synthesis of sulfinamides 129 from thiols 188 via methyl sulfinates 189. Procedure adapted from 
Liu, Qin and co-workers.344 Lower yields caused by: a low crystallinity; b suspected self-polymerisation. 

From a mechanistic standpoint, neither reaction in this process is novel, and so only a brief 

description of the mechanism of each step will be discussed here. Oxidation of the thiol to the 

sulfinate proceeds through multiple oxidation and substitution steps (Scheme 78). First, thiol 188 

undergoes electrophilic bromination to form sulfenyl bromide 191 using an approach that is 

commonly used to synthesise sulfenyl halides in CH2Cl2 in high yield.345,346 In this case, since this 

reaction is carried out in methanol, the sulfenyl bromide 191 is quickly converted into methyl 

sulfenate 192. An alternative pathway may also be envisaged, wherein sulfenyl bromide 191 reacts 

instead with thiol starting material 188 to afford symmetrical disulfide 193,347 that then undergoes 

oxidation and displacement by methanol to afford the required methyl sulfenate 192 and sulfenyl 

halide 191.348 Once methyl sulfenate 192 is formed, further electrophilic oxidation by NBS produces 

a cationic bromo-sulfenate 194, which can undergo halo-substitution by methanol to produce 

dimethoxysulfenylium cation 195. Bromide anions can then effect nucleophilic attack at the methyl 

group of the oxosulfenium resonance form 195’ to produce the desired methyl sufinate 189 and 

bromomethane as a by-product. 

 

Scheme 78: Proposed mechanism for the oxidative synthesis of methyl sulfinates from thiols by NBS in methanol (adapted 
from Montelongo et al. and Hashemi et al.) 347,349 

The subsequent amination reaction proceeds in two reaction steps (Scheme 79). LiHMDS first adds 

to methyl sulfinate 189, displacing methoxide to produce N,N-bis(trimethylsilyl)-sulfinamide 196, 

with clean inversion of chirality at the sulfur centre. Although this type of transformation is often 

described as a simple SN2 substitution reaction, significant mechanistic and computational evidence 
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exists that indicate that these substrates undergo a two-step addition-elimination process, similarly 

to higher oxidation-state sulfonates and sulfonyl halides.350–353 This reaction therefore proceeds via 

an unsymmetrical trigonal bipyramidal tetracoordinate intermediate 197 (not a transition state), 

with the nucleophile (HMDS) and leaving group (MeO−) at opposing apical positions, and the 

oxygen, R substituent, and lone pair positioned equatorially.350 Once formed, 

N,N-bis(trimethylsilyl)-sulfinamide 196 is readily converted to the desired sulfinamide 129 through 

cleavage of its labile N-Si bonds by a mildly acidic aqueous workup. 

 

Scheme 79: Sequential amination and hydrolysis of methyl sulfinates by LiHMDS and NH4Cl (aq.) to afford sulfinamides 
with full stereoinversion (shown for (S)-129). 

With these six racemic sulfinamides 129c-h in hand, they were subjected to the one-pot stepwise 

three-component assembly protocol, along with Davis’ sulfinamide 129b (racemate prepared from 

combining commercial enantiopure samples). In all instances, the analytes were converted to the 

corresponding sulfiniminoboronate esters 183b-h/184b-h in good to excellent 55-99% yields, with 

analysis of the 1H NMR spectra of these mixtures revealing that the imine signals of all pairs of 

diastereomeric sulfiniminoboronate esters were fully baseline-resolved with good chemical shift 

differences ∆δH ≥ 0.057 (Table 7). The clear sulfinamide substrate-dependent degree of conversion 

to diastereomeric SIBEs meant it was crucial to confirm that no dynamic kinetic resolution was 

occurring. The measured dr of the SIBEs in each sample clearly demonstrated this, with dr values 

between 49:51 and 51:49, which is clearly well within experimental error of the 50:50 dr expected 

for a racemic analyte. General control experiments were also carried out (not shown), varying time, 

concentration, stoichiometry, and conversion, which returned the expected dr in all cases. Due to 

the stepwise nature of the process, kinetic resolution is not possible during the imine condensation 

step, and can only occur after addition of the chiral pinanediol. The boronate ester reaction is 

extremely fast and excess diol is used, and so the risk of any kinetic resolution occurring is 

minimised. Moreover, once the diol has been added, unreacted 2-FPBA 1 is quickly converted into 

boronate ester 182, which has been shown to be unreactive towards sulfinimine condensation with 

either enantiomer of Ellman’s sulfinamide 129a (vide supra). This effectively “seals” the system, 

which is comprised of generally unreactive species, containing a fixed amount of 

sulfiniminoboronate with a fixed dr. 
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Table 7: Three-component assembly of diastereomeric iminoboronate complexes of 2-FPBA 1, (1R,2R,3S,5R)-pinanediol 
180, and racemic sulfinamides 183/184. 

 

Entry Sulfinamide Conversion (%)a dra ∆δH (ppm)b 

1 (rac)-129a 

 

99 50:50 0.085 

2 (rac)-129b 

 

62 49:51 0.069 

3 (rac)-129c 

 

98 50:50 0.061 

4 (rac)-129d 

 

97 51:49 0.077 

5 (rac)-129e 

 

63 50:50 0.057 

6 (rac)-129f 

 

69 50:50 0.070 

7 (rac)-129g 
 

80 50:50 0.062 

8 (rac)-129h 

 

55 50:50 0.061 

a Conversion and dr determined by 1H NMR spectroscopic analysis. b ΔδH is the difference in chemical shifts of the imine 
protons of the pairs of diastereomeric iminoboronate ester complexes 183/184 for each chiral diol. 

 

3.2. Bull-James assembly of sulfinamides for 19F NMR 

analysis 

3.2.1 Screen and optimization of fluorinated templates 

As previously discussed, Bull-James assembly CDAs have been successfully adapted into fluorous 

methodologies in the past, by incorporation of a fluorine atom into either the chiral reporter or 

ligand fragments, or more successfully through use of a fluorinated 2-FPBA template for 19F NMR 

spectroscopic analysis. Building on this work, this project aimed to demonstrate that a 19F NMR 
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spectroscopic approach could also be applied to the chiral analysis of sulfinamides. Although the 

Bull and James groups originally reported the derivatisation of chiral amines with 4-fluoro-2-FPBA 

4-F-1,162 Oe and co-workers showed that in the case of amino acid ester hydrochloride analytes use 

of 5-fluoro-2-FPBA 5-F-1 fluorinated template gave the best results, achieving the largest ∆δF and 

conversion (see section 1.4.7).164 Given this divergent precedent, it seemed prudent to synthesise 

and screen all four possible regioisomers of fluorinated-2-FPBA for the formation of SIBEs (Scheme 

80). As none were commercially available, these templates were synthesised in two steps from 

commercially available 2-bromo-fluorobenzaldehydes 198a-d following the two-step method of 

Kowalska et al., in a similar manner to the previous synthesis by the Bull group.120,162,354 Firstly, the 

different fluoro-bromobenzaldehydes were stirred in methanol in the presence of trimethyl 

orthoformate and catalytic sulfuric acid to produce the desired dimethyl acetals 199a-d in excellent 

88-95% yield. In this instance, trimethyl orthoformate acts to both form the acetal and remove 

water from the system, driving the reaction to completion through formation of a methyl formate 

by-product. These acetals were then subjected to a lithiation/borylation step, by first effecting a 

lithium-halogen exchange with their bromide substituents using n-BuLi to produce lithiated 

fluorobenzene 200, which was subsequently quenched with trimethyl borate to produce dimethoxy 

boronate ester 201. Finally, a global deprotection step was then carried out, involving acid catalysed 

hydrolysis of both their acetal and boronic ester functionalities to produce all four formyl boronic 

acids F-1 in 28 60% yield.  

 

Scheme 80: Two-step lithiation/borylation synthesis of fluoro-2-FPBAs F-1 from bromobenzaldehydes 198a-d. 

As previously shown when discussing the mechanisms of Bull-James assemblies (see section 1.3.2), 

2-formylphenylboronic acids exist in an equilibrium with their tautomeric benzoxaboroles, in a 

process that is driven by the activation of the aldehyde towards nucleophilic attack by water. 

Benzoxaboroles were seen for all four isomers of F-2-FPBA, with the ratio of F-1 to F-1’’ drastically 

affected by the location of the fluorine substituent, ranging from 60:40 for 3-F-1 to 96:4 for 5-F-1. 

These values are comparable to those previously reported by Kowalska et al.,120 with the slight 

variation easily accounted for by varying levels of water in the substrates or solvent (Scheme 81). 

However, reversible equilibration with their aldehydes meant that the presence of these 

benzoxaborole tautomers did not affect the ability of these fluorinated 2-FPBAs to function as 

effective templates in SIBE forming reactions, although this may account for the variable conversion 

observed by us (vide infra) and Oe (vide supra).164 
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Scheme 81: Tautomeric equilibrium of 2-FPBA derivatives. a Literature values from Kowalska et al., 2016.120 

With all four fluoro-2-FPBAs in hand, each was separately employed in a three-component 

assembly with Ellman’s sulfinamide 129a to assess their suitability as fluorinated templates for 

carrying out 19F NMR analysis of dr’s (Table 8, entries 1-4). Pleasingly, use of the new stepwise one-

pot derivatisation conditions resulted in reaction of all four fluorinated templates achieving 88-99% 

conversion to the corresponding diastereomeric fluorinated SIBEs when they were reacted in three-

component reactions with sulfinamide 129a and pinanediol 180. The dr of the resulting complexes 

was determined by both 1H and 19F NMR spectroscopy, confirming once again that no kinetic 

resolution was occurring, with all dr’s found to be between 65:35 and 69:31, in good agreement 

with the known 33% ee of the parent sulfinamide analyte (expected 67:33 dr). Different baseline-

resolved diastereomeric chemical shift differences ∆δH/∆δF were observed for each of the four 

fluorinated templates, with 4-F-1 consistently producing diastereomeric fluorinated SIBEs with the 

lowest chemical shift differences, exhibiting a ∆δH value for their imine resonances of -0.029 ppm 

and a ∆δF value of only 0.170 ppm, respectively (Table 8, entry 4). Conversely, use of 3-F-1 produced 

fluorinated SIBEs with the biggest differences in chemical shift, producing a respectable ∆δH for 

their imine resonances of -0.064 ppm and a remarkable ∆δF of -2.328 ppm, respectively (Table 8, 

entry 1). Consequently, 3-F-1 was selected as the fluorinated template to derivatize three further 

(rac)-sulfinamides 129b-d, all of which afforded diastereomeric sulfiniminoboronates with 

consistently high ∆δH and ∆δF and conserved 50:50 diastereomeric ratio (Table 8, entries 5-7). 
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Table 8: Three-component assembly of sulfinamides 129a-d with fluorinated FPBA derivatives and pinanediol 180. 

 

Entry (rac)-Sulfinamide 2-FPBA Conversion (%)a drb ΔδH
 (ppm)c,d ΔδF (ppm)d,e,f

 

1  
(R)-129a  

(75:25 er) 

 
3-F-1 

88 
68:32 

68:32 
-0.064 -2.328 

2  
(R)-129a  

(75:25 er) 

 
4-F-1 

99 
65:35 

66:34 
-0.029 -0.170 

3  
(R)-129a 

(75:25 er)  
 

5-F-1 

99 
66:34 

67:33 
-0.079 +0.197 

4 
(R)-129a 

(75:25 er)  
6-F-1 

94 
69:31 

68:32 
-0.201 -0.578 

5 
 

(rac)-129b 
 

3-F-1 

37 
49:41 

49:41 
-0.063 -1.188 

6 
 

(rac)-129c 
 

3-F-1 

87 
50:50 

50:50 
0.042 1.457 

7 
 

(rac)-129d 
 

3-F-1 

40 
51:49 

51:49 
0.070 1.365 

a Conversion determined by 1H NMR spectroscopy. b dr determined by both 1H (top) and 19F (bottom) NMR spectroscopy. 
c ΔδH is the chemical shift difference between the imine protons of the diastereomeric sulfiniminoboronate esters in 
their 1H NMR spectra. d A negative value indicates that the homochiral complex was most deshielded. e ΔδF is the 
chemical shift difference between the fluorine resonances of the diastereomeric sulfiniminoboronate esters. f 
Quantitative 19F{1H} NMR experiments carried out using a T1 relaxation time of 30 s. 
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The detection limits of this new dual proton/fluorous approach were then assessed by carrying out 

the self-assembly reaction of 3-F-1 and enantiopure pinanediol (1R,2R,3S,5R)-180 with Ellman’s 

sulfinamide (R)-129a at relatively high ee levels of 75%, 90% and 96%, which were prepared from 

enantiopure commercial samples (Figure 42). Analysis of the resultant mixtures of 

sulfiniminoboronate esters revealed diastereomeric excesses (de) of 75%, 91% and 95% (1H NMR) 

and 73%, 89% and 95% (19F NMR), respectively, all of which were well within usual error limits when 

using chiral derivatizing agents to determine ee’s by NMR spectroscopy. 

 

        

Figure 42: (a) Three-component assembly of 3-F-1, (1R,2R,3S,5R)-180 and (R)-129a (75%, 90% and 96% ee). (b) Expanded 
1H NMR spectra of complexes formed from reaction the reaction in (a). (c) Expanded 19F{1H} NMR spectra of 
diastereomeric complexes formed from reaction in (a). 

 

3.2.2 Case example: Determining the ee of a commercial sample of ‘enantiopure’ Davis’ 

sulfinamide  

Having optimised and established the general applicability of the new CDA method, the new 

stepwise three-component CDA protocol was used to assess the enantiomeric excess of commercial 

samples of enantiopure (R)- and (S)-Davis’ sulfinamide 129b (purchased from Sigma-Aldrich). Both 

(R)-129a ee 

96% 

90% 

75% 

b) c) 
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1H and 19F{1H} NMR analysis revealed that these “enantiopure” reagents were in fact scalemic, 

returning values of 90% ee for (R)-129b and 94% ee for (S)-129b, with both 1H and 19F NMR results 

in perfect agreement for each sample (Figure 43). Although the agreement between both nuclei 

strongly indicates these results are accurate, they were further confirmed by chiral HPLC analysis 

(see Appendix B). The discovery that these ‘sold as enantiopure’ sulfinamides were in fact scalemic 

was an important finding, as these ‘enantiopure’ Davis’ sulfinamide chiral auxiliaries are primarily 

employed as chiral auxiliaries for the asymmetric synthesis of chiral amines that are used in drug-

discovery applications. Use of 90% ee sulfinamide 129b as a chiral auxiliary would in most cases 

produce a 90% ee product, with the presence of the minor enantiomeric product having significant 

potential toxicity/regulatory issues if used to prepare drug molecules. 

 

       

Figure 43: (a) Three-component assembly of 3-F-1, (1R,2R,3S,5R)-180 and (R)-129b (varying ee). Expanded 1H (left) and 
19F{1H} (right) NMR spectra of diastereomeric complexes formed from the reaction in (a) using commercial ‘enantiopure’ 
samples of Davis’ sulfinamide (R)-129b (b) and (S)-129b (c), revealing ‘true enantiopurities’ of 90% and 94% ee, 
respectively. (d) Identical assembly with (rac)-129b for comparison purposes. 

Sigma-Aldrich are a reputable chemical supplier who have rigorous testing procedures in place to 

determine the enantiopurity of any chiral compounds that they sell, so it was hypothesised that 

b) 

c) 

d) 
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‘aged’ samples of Davis’ sulfinamide might have partially racemised over time. As discussed 

previously, these primary sulfinamides are considered to be configurationally stable, however only 

very limited work into their racemisation has been reported in the literature. The only significant 

aryl-sulfinamide racemization study found in the literature was carried out by Cram et al. in 1972, 

who reported that S,N-aryl sulfinamides such as 202 could racemise rapidly in solution at room 

temperature, through an N-aryl radical cleavage addition mechanism (see Scheme 82 for details).355 

This dissociative mechanism was supported by both kinetic and crossbreeding experiments, with 

no apparent indication of pyramidal inversion, despite the potential of the extended aniline-

toluylsulfinamide conjugated system. However, since this racemization mechanism is heavily 

dependent on the generation of stable N-aryl radical 203, it is unlikely to occur in primary 

sulfinamide systems due to the short lifetime and instability of the required amino radical •NH2. 

 

Scheme 82: Radical-chain racemization of aryl sulfinamides proposed by Cram et al.355  

Studies on and exploitation of the racemization/inversion of chiral sulfoxides are far more 

common,356,357 with aryl sulfoxides such as methyl phenyl sulfoxide 205 (most similar to Davis’ 

sulfinamide 129b) thought to racemize via a pyramidal S-inversion mechanism (Scheme 83a).358,359 

Experimental and theoretical works are in good agreement on this, reporting comparable 

experimental and theoretical activation energies ∆G‡ of 41.44 kcal/mol and 40.83 kcal/mol for 205, 

respectively (very high barrier).358 These inversion reactions proceed via an S-planar trigonal 

bipyramidal transition state TS-3, in which the sulfur lone pair resides in an axial p-orbital, with 

adjacent aromatic systems shown to stabilise the transition state through resonance stabilisation, 

with para-electron-withdrawing substrates racemising faster than para-electron-donating species. 

This inversion process has also been shown to be catalysed by the presence of acid, likely through 

reversible protonation of the sulfoxide O− group, which further stabilises the transition state. Similar 

sulfur inversion processes are also known for related aryl thiosulfinates, with unwanted 

racemisation events the reason why enantioselective oxidation protocols are not generally used to 

synthesise Davis’ auxiliary 129b (see section 2.1.4).360 Although no discussion of the pyramidal 

inversion of primary sulfinamides could be found in the literature, it seems plausible that aryl 

sulfinamides such as (S)-129b could also undergo the same racemisation process, proceeding via 

trigonal bipyramidal transition state TS-4, with resonance stabilisation from its p-toluyl substituent 

lowering the barrier to inversion (Scheme 83b). Unlike sulfoxides, however, sulfinamides contain 

an amino group, which will significantly disfavour formation of TS-4 by creating a disfavoured 4-

electron system with a filled antibonding π* orbital, as shown in the molecular orbital (MO) 
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interaction diagram below. One would therefore expect sulfinamide pyramidal inversions to 

proceed via a higher energy transition state than their corresponding sulfoxide analogues, thus 

leading to more configurationally stable S-stereocentres. 

 

Scheme 83: Racemisation by pyramidal atom inversion of chiral sulfoxide 205 (a), and sulfinamide 129b (b, proposed) and 
disfavoured p-p MO interaction in TS-4. a Literature values.358 

Since measurements of the ee of samples of both sulfinamides 129a and 129b carried out 

throughout this project over a period of many months returned consistent values, with no apparent 

change in enantiopurity over this period, it would appear that thermal racemisation of primary 

sulfinamides at room temperature is slow. Therefore, in order to investigate whether thermal 

racemisation in solution could potentially result in racemisation of the sulfur stereocentres of 

sulfinamides, commercial samples of Davis’ sulfinamide (S)-129b (94% ee) and Ellman’s sulfinamide 

(S)-129a (> 99% ee) stirred them in CHCl3 (0.1 M) at room temperature. Aliquots of these solutions 

were then removed over time, and their ee’s determined using the new stepwise Bull-James 

assembly method using template 3-F-1 and pinanediol (1S,2S,3R,5S)-180, which revealed that no 

racemization was occurring over time. Crystalline samples of both sulfinamides were also heated 

at 65 °C in air (in a thermostated oven), with no racemisation of solid Ellman’s sulfinamide (S)-129a 

(> 99% ee) observed after a week in the oven. However, the ee value of Davis’ sulfinamide (S)-129b 

changed significantly over time at 65 °C, dropping from 94% to 44% ee (72:28 er) after just 48 h, 

and being completely racemised after days. Therefore, these results suggest that aryl sulfinamides 

are more stereo-labile than is appreciated in the chemical literature, with potentially serious 

implications for any synthetic procedures employing Davis’ auxiliary for extended periods of time 

or at high temperature. 
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Scheme 84: Preliminary studies on the thermal configurational stability of Ellman's and Davis' sulfinamides 129a and 
129b. ee determined using stepwise Bull-James assembly with 3-F-2-FPBA 3-F-1 and (1S,2S,3R,5S)-pinanediol 180. 

Finally, it should be briefly noted that both solid sulfinamide samples heated in the oven for an 

extended period of time slowly underwent discoloration and visible degradation to a brown/orange 

slightly sticky residue. The thermal rearrangement of primary sulfinamides at high temperatures is 

a known process, with Arava et al. reporting that simply heating (R)-129a in toluene at reflux for 

48 h affords sulfonamide 206 in 70% yield (Scheme 85).361 Extended heating at lower temperatures 

(65 °C, air, thermostated oven) was also found to lead to significant rearrangement of 129a to 206. 

It therefore seems likely that this type of rearrangement would be take place upon extended 

heating at 65 °C, albeit more slowly than at the higher temperatures reported in the literature. 

Although no efforts were made to quantify, isolate, or characterise the thermal degradation 

products, new singlet resonances were observed in the 1.30-1.40 ppm region of 

tert-butanesulfinamide samples (partially overlapping with analyte/SIBE signals), which is 

consistent with the chemical shifts expected for N-thio-sulfonamide 206.  

 

Scheme 85: Thermal rearrangement of (R)-tert-butanesulfinamide (R)-129a to sulfonamide 206 reported by Arava et al., 
and proposed mechanism.361 

 

3.3. Bull-James assembly of non-sulfinamide analytes 

3.3.1 Pinanediol as a general chiral reporter 

Considering the impressive 1H NMR chemical shift differences achieved in sulfinamide Bull-James 

assemblies with pinanediol 180 as the diol chiral reporter, it seemed a logical step to revisit some 

of the previous Bull-James CDA assemblies, this time employing pinanediol as the third component. 

Four classes of analytes were identified: amines,115,116 diamines,138 hydroxylamines,143 and O-silyl 

amino alcohols.142 Although cheap chiral amines and diamines are commercially available, chiral 

hydroxylamines and O-silyl amino alcohols are not, and so enantiopure samples of both 
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enantiomers of chiral N-phenylethyl hydroxylamine 56a and O-TBDMS-phenylpropanamine 55a 

needed to be prepared following known literature procedures. Both hydroxylamine 56a 

enantiomers were prepared in two steps from the corresponding enantiopure α-

methylbenzylamine 3a according to a previously published method by Wovkulich et al. (Scheme 

86a).143,362 Chiral amine 3a was subjected to imine condensation with p-anisaldehyde to afford a 

chiral imine, that was then oxidised in one pot using meta-chloroperbenzoic acid (mCPBA) to afford 

oxaziridine 207. The second step then involved ring opening of oxaziridine 207 with hydroxylamine 

to afford hydroxylamines (R)-56a and (S)-56a in 48% and 51% yields over two steps, respectively. 

The synthesis of O-TBDMS-phenylpropanamine 55a was carried out in a single step from 

enantiopure 1,2-amino alcohol 50a, which was treated with TBDMS-Cl in the presence of a catalytic 

amount of DMAP to afford the desired enantiopure protected products (R)-55a and (S)-55a in 50% 

and 46% yields, respectively (Scheme 86b).  

 

Scheme 86: Synthesis of enantiopure hydroxylamines 56a and O-TBDMS amino alcohols 55a analytes (shown for (R)-
starting materials for clarity). 

All four classes of analyte were then subjected to one-pot three-component assembly with 2-FPBA 

1 and (1R,2R,3S,5R)-pinanediol 180, using scalemic amine samples of 50% ee (prepared from the 

enantiopure products, Scheme 87). Assembly of the amine 3a, hydroxylamine 56a, and O-silyl 

amino alcohol 55a proceeded smoothly to afford the expected diastereomeric iminoboronate 

complexes, with well-conserved 3:1 dr’s. In the case of the amine analyte 3a, the 1H NMR signals 

for the imine and α-methyl protons could be used to determine enantiopurity, with good chemical 

shift differences of 0.032 ppm and 0.233 ppm respectively, comparable to those observed with 

BINOL (cf. 0.17 and 0.21).142 Although the α-methine proton saw an impressive ∆δH = 0.561 ppm 

(cf. 0.10 ppm for BINOL 9),145 these signals overlapped in part with pinanediol peaks, and so could 

not be used to determine enantiopurity. The assembly of hydroxylamines 56a produced resolved 

signals for the imine protons of their IBE diastereomers, albeit with a relatively low chemical shift 

difference of 0.018 ppm. Once again, although the α-methine 1H NMR signal exhibited an 

impressive ∆δH = 0.209 ppm (cf. 0.059 ppm for BINOL 9),143 overlap with unreacted pinanediol 

peaks meant these resonances could not be integrated to determine ee. The assembly of O-silylated 

amino alcohols 55a with a pinanediol chiral reporter also resulted in several differentiated 

diastereomeric 1H NMR signals, with the clear imine singlets exhibiting a baseline-resolved chemical 
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shift difference of 0.017 ppm, comparable to the 0.02 ppm achieved with the original 

trans-3-phenylglyceric acid methyl ester ligand (t3PGAME).142 Although the vast majority of other 

signals seemed to be differentiated, the diastereotopicity of the analyte protons and the crowded 

nature of the aliphatic region of these spectra led to no additional clearly useable resonances for 

determining ee. Finally, the 1H NMR spectrum resulting from the assembly of trans-

diphenylethylene diamine 20 resulted in a complex mixture of products, with multiple overlapping 

peaks and no clearly defined diastereomeric complexes. The increased strain of this type of 

imidazolidine has already been discussed at length (see section 1.4.2), and it follows that the 

increased steric bulk of pinanediol over BINOL138 leads to incomplete conversion and formation of 

complex mixtures of imidazolidine and imine products. Therefore, whilst derivatisation of 

sulfinamides, chiral amines, hydroxylamines, and O-silyl-amino alcohols using enantiopure 

pinanediol 180 and 2-FPBA 1 produces diastereomeric IBE complexes whose imine resonances are 

well resolved in their 1H NMR spectra, the added steric demand of pinanediol means that it is 

probably wise to avoid its general use as a chiral selector when the ee’s of sterically demanding 

chiral substrates need to be determined. Use of the initially optimised diol is therefore still 

recommended for determining the ee of known Bull-James analytes. 

 

Scheme 87: Three-component assembly of 2-FPBA 1, (1R,2R,3S,5R)-180, and various known analytes and previously 
reported and resulting ∆δH’s.138,142,143,145 * Not suitable for determining ee due to overlap with adjacent peaks. 

 

3.3.2 Preliminary investigations into the Bull-James assembly of α-quaternary amino 

acids 

Building on the successful Bull-James derivatisation of poorly-nucleophilic bulky sulfinamide 

analytes, attention was turned towards developing a method to measure the enantiopurity of 

sterically-demanding α-quaternary amino esters, which are widely used as chiral building blocks in 
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the fields of medicinal chemistry, peptidomimetics/foldamer, are of interest to origin-of-life 

scientists, and are found in natural products.363–369 Interestingly, despite the broad range of 

applications of the Bull-James assembly to determine the ee of chiral amines, its use to measure 

the ee of α-quaternary species has never been reported to date. Although the nucleophilicity of 

these substrates should be comparable to other types of amine analytes, it was anticipated that 

the sterically-encumbered nature of the α-amino position could lead to decreased reactivity, with 

possible disruption of N → B coordination as seen for sulfinamides. Unfortunately, chiral 

α-quaternary amino esters are expensive (e.g. > £200/g for 500 mg α-methyl-L-valine), and so 

preliminary assembly studies were carried out using achiral 2-aminoisobutyric acid methyl ester 

hydrochloride 208 (synthesised in-house from Aib, Scheme 88a) to assess whether this class of 

quaternary amine substrates would successfully assemble with the template (Scheme 88b). 

Pleasingly, equimolar reaction of 208 with 2-FPBA 1 and (S)-178 in CDCl3 achieved 52% conversion 

to a new α-quaternary IBE product (S)-209, as indicated by the presence of a new 1H NMR singlet 

imine resonance at 8.55 ppm. A quick series of experiments demonstrated that an increased 

reaction time of 1 h only led to a marginal increase in conversion to 56%, however addition of 3 Å 

molecular sieves afforded (S)-209 in 75% yield after only 10 min. 

 

Scheme 88: (a) Synthesis of 208 from Aib. (b)Three-component assemblies of 208, 2-FPBA 1 and (S)-178. 

Following these promising preliminary results, the assembly of commercially-available (rac)-α-

methyl phenylalanine methyl ester hydrochloride (rac)-210 with 2-FPBA 1 and (S)-178 in the 

presence of K2CO3 was carried out (Table 9). Again, limited 52% conversion to the desired IBEs 211a 

and 212a was observed. However, to our delight, two singlet peaks at 8.249 ppm and 8.292 ppm 

were produced with a chemical shift difference ∆δH = 0.043 ppm for the imine resonances of the 

diastereomeric IBE complexes. As for Aib methyl ester hydrochloride 208, conversion could be 

significantly improved to 81% by addition of 3 Å MS (Table 9, entry 1). Unfortunately, small amounts 

of overlap were observed between the diastereomeric resonances, and so a short diol screen was 

carried out in an attempt to further maximise ∆δH. Pleasingly, most diols reacted to form the desired 

IBEs in limited 28-52% yield, with measurable chemical shift differences in all but two instances 

(BINOL 9 and 1,3-butanediol 176, Table 9, entries 4 and 6). 1-Phenylpropane-1,3-diol 128 was the 
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only chiral reporter to produce fully baseline-resolved diastereomeric imine resonances in the 1H 

NMR spectrum (Table 9, entry 8). Interestingly, this screen supports the earlier observation that 

pinanediol 180 appears generally unsuitable as a chiral reporter for sterically-crowded analytes, as 

it was found to only produce a small ∆δH = 0.010 ppm with no baseline resolution. Although a 

smaller chemical shift difference was produced by phenylpropanediol 179 than by original diol 128, 

its noticeably sharper singlet peaks led to baseline resolution where the latter did not (Figure 44). 

Therefore, having optimised the diol chiral reporter and demonstrated that conversion could be 

improved to high levels, it is clear that the Bull-James assembly CDA approach is likely to be a viable 

method for determine the ee of α-quaternary amino acids/esters, and by extension sterically-

demanding α-quaternary amines and amine derivatives. 
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Table 9: Chemical shift differences ΔδH in the 500 MHz 1H NMR spectra of diastereomeric iminoboronate complexes of 

(rac)-ammonium chloride 210 (50% ee), 2-FPBA 1, and a range of enantiopure diols. 

 

Entrya Diol Conv.b ∆δH (ppm)c,d 

1d (S)-128 

 

52% 

(81%)e 
0.043 

2 (S)-174 
 

44% 0.019 

3 (R,R)-175 
 

33% 0.006 

4 (S)-176 
 

--f -- f 

5 (rac)-212 
 

27% 0.004 

6 (R)-9 

 

-- f -- f 

7 (1R,2R,3S,5R)-180 
 

30% 0.010 

8d (S)-179 

 

28% 0.028 

a Reactions carried out on 0.1 mmol of amino ester at 0.1 M concentration. b Determined by 1H NMR integration of 
imine/aldehyde peaks. c ΔδH is the difference in the chemical shifts of the imine protons of the pairs of diastereomeric 
iminoboronate ester complexes 211/212 for each chiral diol. d Full baseline resolution observed for the imine 
resonances of the diastereomeric IBEs. e Conversion achieved by addition of 3 Å MS. f Indistinguishable mixtures of 
products observed in the 1H NMR spectra. 
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Figure 44: Expanded imine region of the 1H NMR spectra of complexes formed from the three-component assembly of 2-
FPBA 1, (rac)-210, and (rac)-phenylethanediol 128 (a) or (R)-phenylpropanediol 179 (b). Same scale for both spectra. 

 

3.4. Conclusions and future work 

In conclusion, the third chapter of this thesis describes the successful optimisation, development 

and testing of a novel three-component stepwise Bull-James assembly chiral derivatizing agent 

methodology for determining the ee of chiral primary sulfinamides by 1H NMR spectroscopic 

analysis. The popularity of primary sulfinamides, predominantly employed as chiral auxiliaries, 

leads us to believe that this novel CDA method, that was published in The Journal of Organic 

Chemistry,294 will be of use to many synthetic research groups. 

Building on results arising from formation of the DAIA-affected BINOL-SIBE complexes described in 

chapter two, a diol chiral reporter screen was carried out to maximise the chemical shift difference 

between diastereomeric imine resonances, which identified pinanediol as the optimal ligand for 

the three-component assembly of sulfinamides and 2-FPBA 1. Next, a series of optimisation 

experiments determined that optimal conditions for these assemblies required a modified two-step 

process, wherein the analyte and 2-FPBA template were first combined in a high-yielding two-

component assembly, followed by addition of the pinanediol reporter to produce the desired SIBE 

products. The unexpected revelation that N→B coordination was absent in SIBEs, along with the 

optimisation studies, provided key insights into the likely mechanisms behind formation of these 

assemblies. The scope of this new methodology was demonstrated by successfully derivatizing a 

series of eight chiral sulfinamides. Further expansion of the methodology to 19F NMR spectroscopy 

was achieved by incorporation of a fluorine atom into the 2-FPBA template, with screening 

experiments revealing that 3-F-1 was the optimal fluorinated template for these sulfinamides, 

achieving excellent ∆δF values in all cases. Throughout this work, great care has been taken to 

ensure that no racemisation, kinetic resolution, or DAIA-effects occur, thus ensuring that this novel 

stepwise protocol for the derivatization of sulfinamides is robust, accurate, and reliable.  

The excellent detection limits of this method were illustrated for analysis of the ee of commercial 

samples of Davis’ sulfinamide 129b, which revealed both enantiomers were not in fact enantiopure 

as advertised, instead ranging from 90-96% ee. A brief investigation into the thermolability of Davis 

a) b) 
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sulfinamide showed it was not as configurationally stable as the wider chemical literature might 

imply, racemizing fully over a period of 7 days at 65 °C. Since the enantiopurity of chiral auxiliaries 

is crucial for the successful development and implementation of asymmetric syntheses, this is a 

potentially very important observation, with work now underway to better understand this 

racemization process and design analogues of Davis’ sulfinamide with increased configurational 

stability by introducing either electron-donating groups or ortho-substituents (e.g., 213 or 214, 

Scheme 89).  

 

Scheme 89: Proposed structures of Davis' sulfinamide analogues with increased chiral stability. 

Finally, preliminary results have been reported for the three-component assembly of α-methyl 

phenylalanine methyl ester hydrochloride, with a diol screen revealing that (R)-phenylpropanediol 

179 was the best chiral reporter, producing a chemical shift difference for the corresponding 

diastereomeric IBE imine resonances of 0.028 ppm with full baseline resolution. Further 

optimisation of this method should yield a versatile CDA approach suitable for determining the 

enantiomeric excess of a range of α-quaternary amine derivatives, which are known to often be ill-

suited to more classical Mosher-type CDA analysis. Structural work will also provide interesting 

insight into the absence, presence or strength of an IBE N→B bond in these systems, building on 

these new discoveries on the behaviour of sterically-demanding and non-coordinated IBEs. 
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4. N-OXIDE-CATALYSED BAEYER-VILLIGER OXIDATION REACTIONS OF 

KETONES AND α,β-UNSATURATED KETONES 

The remaining research and discussion chapter in this thesis describes a project looking at using 

N-oxides as catalysts for carrying out Baeyer-Villiger (BV) oxidation reactions, which was carried out 

in parallel to the work on Bull-James IBE assemblies described in the preceding three chapters. The 

work presented focuses on the optimisation of new catalytic BV oxidation protocols for the 

oxidation of ketones and α,β-unsaturated ketones that produce esters and vinyl esters in good 

yields. It begins with a brief introduction to the Baeyer-Villiger oxidation reaction of ketones and 

α,β-unsaturated ketones, discusses the reactivity profiles of vinyl esters, before providing a 

summary of previous work on the development of N-oxides as catalysts for BV reactions in the Bull 

group. This section is then followed by a discussion of new investigations into optimising these 

catalytic BV reactions for the synthesis of vinyl esters in good yields, with mechanistic investigations 

into the role of the N-oxide catalyst in these BV reactions, and their unexpected degradation effects 

on mCPBA leading to identification of new 2nd generation conditions for carrying out N-oxide 

catalysed BV reactions. 

 

4.1. The Baeyer-Villiger oxidation reaction and its use for the 

synthesis of vinyl esters 

4.1.1 The Baeyer-Villiger oxidation reaction 

Now a staple of organic synthesis, Baeyer-Villiger oxidation reactions of ketones were first 

described in 1899 by Adolf von Baeyer and Victor Villiger.370 In their seminal paper, they reported 

the solvent-free conversion of cyclic ketones to lactones using Caro’s acid (peroxymonosulfonic 

acid, H2SO5), demonstrating its use for the BV oxidation of cyclohexanone and a range of terpenoid 

ketones (Scheme 90).  

 

Scheme 90: Original report of the Baeyer-Villiger oxidation of terpenoids and cyclohexanone by Caro's acid.370 

Since this initial report, the scope of the BV oxidation reaction has been expanded widely, so that 

it is now one of the most useful synthetic reactions available in the organic chemists’ larder of 
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chemical transformations. A wide range of oxidants and/or catalysts are available to carry out a 

variety of BV reactions, including peroxides, peracids, peroxyimidic acids, Baeyer-Villigerase 

enzymes, MOFs, and zeolites. This means numerous BV protocols are available to oxidise many 

classes of ketone, with many of these methods demonstrating good functional tolerance, tuneable 

selectivity, and high levels of stereocontrol.371–374 This versatility means the BV oxidation is now a 

ubiquitous reaction in organic synthesis, with applications ranging from its use for lab-scale total 

syntheses of natural products such as (-)-acetomycin,375 through to industrial production of bulk 

chemicals such as ε-caprolactone that is produced using peracetic acid on a 50,000 tonne scale 

annually (Scheme 91).376  

 

Scheme 91: Representative applications of the Baeyer-Villiger oxidation reaction. (a) Total synthesis of (-)-acetomycin.375 
(b) Industrial production of ε-caprolactone.376 

Many mechanisms were initially proposed for the Baeyer-Villiger oxidation, with all but three 

mechanisms discounted by 1950, with the three remaining intermediates for the BV oxidation of 

benzophenone shown in Scheme 92.377 Both Baeyer and Villiger’s dioxirane 215 and Wittig and 

Pieper’s peroxide intermediates 216 require initial transfer of an oxygen atom from the peroxide 

to the ketone carbonyl oxygen, whilst the Criegee intermediate 217 requires nucleophilic attack of 

the peracid at the carbonyl carbon atom. This latter mechanism was eventually confirmed in 1953 

by Doering and Dorfman, who studied the product distribution resulting from BV oxidation of 
18O-labelled benzophenone, with the resultant isotopic distribution confirming that the BV 

oxidation reaction proceeds via a Criegee intermediate.378 

 

Scheme 92: Three potential intermediates proposed for the Baeyer-Villiger oxidation of benzophenone, as suggested by 
Doering and Speers.377 

It is now widely accepted that classical Baeyer-Villiger reactions proceed via a two-step mechanism, 

which involves nucleophilic attack of the carbonyl by the peroxyacid, with associated proton 

transfer, resulting in a Criegee intermediate 217/220. One of the carbon substituents then migrates 
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to the proximal oxygen atom, with concomitant cleavage of the weak peroxide bond occurring to 

produce an ester product (Scheme 93). 

 

Scheme 93: Simplified mechanism of the Baeyer-Villiger oxidation reaction. 

BV oxidation of a symmetric ketone such as 218 will produce a symmetric-substituted ester 220, 

however, non-symmetric ketones can potentially form two distinct ester products (depending on 

which group migrates), with ester product ratios dependent on the migratory preference of the 

ketone’s substituents. Work by Friess, Doering and Speers established the following migratory 

aptitude: tertiary alkyl > cyclohexyl > secondary alkyl > benzyl > phenyl > primary alkyl > methyl. 

Further investigations into the migration of substituted phenyl/aryl groups led to a secondary scale 

of migratory preference for substituted aryl groups: p-OMe > p-Me > p-H > p-Cl > p-Br > p-NO2.377,379 

As shown in Scheme 94, migration of non-aromatic groups occurs in a concerted manner, which is 

triggered by anti-periplanar alignment of the peracid and the migrating group (different mechanism 

for aryl migration, vide infra). The ensuing alignment of the C-C bonding σ- and O-O antibonding 

σ*-orbitals allows electron migration from the former to the latter, with the migratory process 

driven by cleavage of the weak peroxide bond to produce stable ester and carboxylate/carboxylic 

acid products. These migration steps proceed via transition states such as TS-5, which contains a 

significant partial positive charge that is delocalised over the forming ester group and the migrating 

fragment. The ability of the migrating group to stabilise this charge is therefore crucial to lowering 

the overall energy of the transition state, leading to the observed trend whereby ‘stabilising’ 

tertiary alkyl groups migrate preferentially over ‘non-stabilising’ primary methyl groups. This 

explanation was originally postulated by Doering et al. nearly 70 years ago, and it has impressively 

stood the test of time, with this mechanistic proposal verified by more recent experimental and 

computational studies.380–382 

 

Scheme 94: Migration step for the Baeyer-Villiger oxidation of pinacolone using peracetic acid as oxidant. 
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Migratory aptitude trends become even more pronounced when an aromatic group migrates, as 

π-participation from electron-rich systems can lower the transition state energy through a two-step 

migration process (Scheme 95).383 In this instance, the aromatic π-system present in Criegee 

intermediate 221 can act as an internal nucleophile to attack the peroxide in an intramolecular 

fashion to eliminate a carboxylate leaving group. The resulting formal positive charge is now 

delocalised across the 5-atom conjugated system of stabilised arenium intermediate 222, resulting 

in significant stabilisation of this intermediate (not a transition state). This non-aromatic 

phenonium intermediate can then collapse to afford ester 223, resulting in rearomatisation and 

overall migration of the aryl unit. From these mechanistic considerations, it is evident that electron-

rich aromatic systems will produce a more stabilised transition state intermediate, whilst electron-

poor systems will tend to destabilise the transition state, thus explaining the reactivity trends 

observed in the 1950s. 

 

Scheme 95: Mechanism of the migration of aromatic substituents in the Baeyer-Villiger reaction.383 

 

4.1.2 Syntheses and applications of vinyl esters 

The synthetic versatility of vinyl esters and their presence as fragments in medicinally-active natural 

products (Figure 45) makes the availability of high yielding Baeyer-Villiger oxidation methodologies 

for their production highly desirable.384–386  

 

Figure 45: Examples of medicinally active natural products containing vinyl ester functionalities.384–386 

The vinyl ester functionality is also synthetically useful, as its carbonyl group readily reacts with 

water or alcohol nucleophiles to produce new acid or ester products, respectively. However, 

contrary to classical ester groups, these reactions do not produce acid and alcohol by-products, as 

the resulting enol/enolate cleavage product rapidly tautomerizes to its corresponding aldehyde. 

This has the key benefit of rendering vinyl ester hydrolysis/alcoholysis processes essentially 

irreversible (Scheme 96), with vinyl esters commonly used as transesterification agents in 

polymerisation reactions and enzyme-catalysed kinetic resolution reactions that require 

irreversible reactions (Scheme 97).387,388 
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Scheme 96: General mechanism of nucleophilic attack of vinyl esters that produces aldehyde cleavage products. 

 

 

Scheme 97: Representative uses of vinyl esters – (a) Enzyme‐catalysed transesterification of vinyl esters for the selective 
acylation of cellulose.387 (b) Irreversible lipase-catalysed kinetic resolution of (rac)-α-aryl-carboxylic acids.388 

Vinyl acetate 224 is by far the most widely produced vinyl ester, with an estimated annual 

production of over 6,000,000 tons (> $7b per year), that is produced through of two different gas-

phase processes (Scheme 98). The most widely used method employs palladium/alkali metal 

complexes to catalyse addition of acetic acid to acetylene using dehydrogenative/oxidative 

processes (80% production), whilst a Zn(OAc)2/activated charcoal catalyst is also used to add acetic 

acid across acetylene (~20% production).389,390 Catalytic coupling of carboxylic acids with alkynes or 

alkenes (in the presence of an oxidant) has also been used for the synthesis of more complex vinyl 

esters, however these reactions often produce unwanted mixtures of (E)- and (Z)-vinyl esters 225. 

Use of terminal alkynes can also lead to formation of Markovnikov products 226, whilst terminal 

alkenes can undergo allylic ‘inner-sphere’ reactions to produce allylic esters 227. Even greater 

complications arise when disubstituted alkene substrates are employed, often leading to formation 

of complex mixtures of products (e.g. 228-231, Scheme 99).391–394 

 

Scheme 98: Industrial-production of vinyl acetate from acetic acid.389 
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Scheme 99: Metal-catalysed syntheses of vinyl esters from carboxylic acids.391–394 

 

4.1.3 Early Baeyer-Villiger oxidation reactions of enone systems 

An alternative method for preparing vinyl esters is to use a peroxide/peroxyacid to carry out a 

Baeyer-Villiger oxidation reaction of an α,β-unsaturated ketone, which is the approach that will be 

investigated in this chapter. This BV method was first described in 1925 by Jacob Böeseken at the 

University of Delft (Figure 46).395,396 Building on alkene/enone epoxidation approaches published 

earlier that century (i.e. Prilezhaev/Prileschajew and Weitz-Scheffer electrophilic and nucleophilic 

oxidation reactions, respectively),397,398 Böeseken reported that reaction of benzalacetone (E)-232 

with peracetic acid (PAA) resulted in the formation of a new oxidised product, which he eventually 

identified as vinyl ester (E)-233 after 5 years of pain-staking characterisation/mechanistic work 

(Scheme 100b).399–403 This transformation was referred to as the “Böeseken oxidation”,404 although 

like many of Böeseken’s methods this name is no longer in 

widespread use, with this transformation now subsumed 

under the broader umbrella of Baeyer-Villiger oxidations. 

 

Scheme 100: (a) Böeseken oxidation of benzalacetone (E)-232 to afford 
vinyl ester (E)-233. 

Böeseken subsequently demonstrated that these peracid conditions could be used to successfully 

oxidise dibenzalacetone and α-methyl benzalacetone to their corresponding esters (Scheme 

101a),399,401 with this BV reaction used regularly during the mid-20th century for both synthetic and 

structural elucidation purposes (Scheme 101b,c).405,406  

 
Figure 46: Prof. Jacob Böeseken at the 
University of Delft (source: Ernst Homburg 
collection) 
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Scheme 101: (a) Original Böeseken oxidation of a variety α,β-unsaturated ketones.399,401 (b) Böeseken oxidation of 
benzylidene cyclopentanone by Walton;405 (c) Böeseken oxidation for structural elucidation of corticosteroids.406  

Although this type of BV approach has not found widespread popularity for transforming 

conventional α,β-unsaturated ketones into vinyl esters, the synthetic potential of this type of BV 

oxidation reaction has been realised for transforming aryl aldehydes and aryl ketones into their 

corresponding formyl and acyl esters, respectively. For instance, Böeseken showed that BV 

oxidation oxidations of benzaldehyde and acetophenone derivatives 234 could be used to produce 

their corresponding phenol esters 235 (Scheme 102),407,408 with these esters then commonly 

hydrolysed to produce their corresponding phenols 236. This alternative to the Dakin oxidation 

reaction (acid used instead of base, better functional group tolerance) has been applied to 

transform a range of aryl aldehydes for the synthesis of commercial phenol products (after 

hydrolysis of formate ester intermediates) such as sesamol and p-cresol (Scheme 102b,c). 409–411  

 

Scheme 102: (a) Original Böeseken oxidation and hydrolysis of vanillin derivatives 234 for the synthesis of phenols 
236.407,408 (b,c) Patented Böeseken oxidations of benzaldehyde derivatives for: (a) BV oxidation of piperanol to sesamol;410 
(b) BV oxidation of p-tolualdehyde to p-cresol.411 
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4.1.4 Baeyer-Villiger methods for the synthesis of vinyl esters 

Excluding these early reports by Böeseken and subsequent sporadic reports in the literature, only 

a handful of other approaches describing the Baeyer-Villiger oxidation of α,β-unsaturated ketones 

have been reported in the literature, both of which suffer from significant practical and/or substrate 

scope limitations. In 1987, Syper and co-workers reported the use of benzeneselenic acid as a 

catalyst for the BV oxidation of α,β-unsaturated aldehydes 237 using hydrogen peroxide as an 

oxidant (Scheme 103a).412 Syper reported that bis(2-nitrophenyl) diselenide and H2O2 (aq. 30-90%) 

could be used to produce a range of vinyl formate esters 238 in poor to good yields, with significant 

amounts of rearranged α-O-formyl ketones 239 produced in a number of cases. Building on this 

work, Guzmán and co-workers later reported use of catalytic amounts of selenium dioxide for the 

oxidation of β-aryl substituted α,β-unsaturated cyclic ketones 240 to produce cyclic vinyl esters 241 

(Scheme 103b),413 with low loadings of SeO2 and a small excess of hydrogen peroxide required to 

achieve good yields. Subsequent 77Se NMR spectroscopic studies revealed that the selenide 

precatalyst (e.g. (PhSe)2, 242) is first oxidised to the corresponding benzeneseleninoperoxoic 

anhydride 243 by H2O2, which is then subsequently hydrolysed in situ to form 

benzeneseleninoperoxoic acid 245 (active species) and benzeneselenic acid 244.414 This latter 

species 244 is also formed as the reduced by-product of the Baeyer-Villiger oxidation reaction, and 

is then re-oxidised by H2O2 to reform the active oxidant 245 (Scheme 103c).  

 

Scheme 103: Early examples of organoselenium-catalysed BV oxidation reactions of α,β-unsaturated ketones. (a) BV 
oxidation of α,β-unsaturated aldehydes 237 by Syper.412 (b) BV oxidation of β-aryl substituted α,β-unsaturated cyclic 
ketones 240 Guzmán et al.413 (c) In situ generation and recycling of seleninoperoxoic acid 245 from diselenide precatalyst 
242.414 

More recently (between 2014-2016), Yu et al. have published several new reports of 

organoselenium-catalysed BV oxidation reactions of vinyl ketones,414–416 employing 5 mol% phenyl 

diselenide (PhSe)2 to carry out BV oxidation of a range of twelve 2-methylenecyclobutanones 246 
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using a large excess of H2O2 (5.0 equiv.) to synthesise twelve alkylidene lactones 247 in 42-82% 

yields (Scheme 104a).414 Yu et al. subsequently reported that dibenzyldiselenide (PhCH2Se)2 could 

be employed for the synthesis of a broad range of vinyl esters 249 from their corresponding enones 

248 in good yields (Scheme 104b).416 Finally, their most recent report described oxidation of the 

terpenoid β-ionone 250, which features an extended α,β,γ,δ-unsaturated diene system (Scheme 

104c).415 Careful optimisation of the diselenide precatalyst revealed that a (PhCH2Se)2/H2O2 system 

could be used to selectively carry out a Baeyer-Villiger oxidation reaction to afford vinyl ester 251. 

Conversely, use of bis-trifluoromethylated diaryl diselenide [3,5-(CF3)2C6H3Se]2 resulted in 

epoxidation of the more electron-rich γ,δ-alkene bond of β-ionone 250 to form epoxide 252. 

Although good selectivities and impressive yields were achieved in these oxidative processes, 

extended reaction times (24 h) were necessary for full conversion, and a large excess of oxidant 

was required in all cases (4-5 equiv.). Moreover, the selenium reagents used in these Baeyer-Villiger 

reactions are toxic, relatively expensive, and are infamously associated with noxious odour issues 

that make them notoriously unpleasant to use. 

 

Scheme 104: Organoselenium-mediated BV oxidation reactions reported by Yu et al.414–416 

One other general Baeyer-Villiger method for the oxidation of α,β-unsaturated ketones 253 has 

been reported, with Concellón et al. describing use of Oxone® (potassium monopersulfate triple 

salt, KHSO5·1/2KHSO4·1/2K2SO5) as a BV oxidant (Scheme 105).417 Although capable of good to high 

yields for a range of vinyl esters 254, this method is restricted to the synthesis of trans-vinyl 

acetates, with reactions performed in DMF under an inert/dry N2 atmosphere. Many of these BV 

reactions required extended reaction times (up to 72 h), as well substrate-dependent 

reoptimisation of the amount of oxidant used in each case. Interestingly, this study reported that 
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mCPBA was a more reactive oxidant than Oxone® in some of these BV reactions (vide infra), 

however Oxone® was found to be more selective for vinyl ester formation. 

 

Scheme 105: Oxone-mediated Baeyer-Villiger oxidation of trans-α,β-unsaturated methyl ketones by Amo et al. * 9% α,β-
epoxyketone also produced.417 

 

4.1.5  N-oxide catalysed BV reactions  

Concurrent to these selenide and Oxone®-mediated Baeyer-Villiger oxidation reactions of enones, 

the Bull group had previously investigated the use of N-oxides as catalysts in BV oxidation protocols 

for the production of esters and vinyl esters. The results of these previous studies are reported in 

full in Dr Ruth Lawrence’s 2016 PhD thesis entitled ‘N-Oxides as Organocatalysts for the Baeyer-

Villiger Oxidation and Bromination Reactions’.418 These studies revealed that addition of 20 mol% 

DMAP to standard mCPBA-mediated Baeyer-Villiger reactions of ketones led to formation of DMAP 

N-oxide (DMAPO) in situ (Scheme 106a), which was found to be a competent organocatalyst for 

facilitating these types of BV oxidation reaction. Therefore, a novel catalytic BV oxidation protocol 

was established, whereby addition of catalytic amounts of DMAP/DMAPO to standard mCPBA 

mediated Baeyer-Villiger reactions could be used to facilitate conversion of electron-rich ketones 

257 into their corresponding esters 258 under mild reaction conditions in relatively short reaction 

times (Scheme 106b, unpublished). 
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Scheme 106: (a) mCPBA-mediated oxidation of DMAP to DMAPO. (b) Novel DMAPO-catalysed BV oxidation methodology 
previously developed by the Bull group (unpublished).  

Some mechanistic investigations were carried out as part of this work, which determined that N-

oxide-mediated rate acceleration of BV oxidation reactions only occurred for electron-rich ketones 

(e.g. p-methoxyacetophenone 263, Scheme 107), whilst addition of DMAP to BV oxidation reactions 

of electron-deficient ketones (e.g. acetophenone 264) resulted in slower BV reactions (see Scheme 

107). As discussed, the presence of electron-rich ketone substituents resulted in a more facile 

migration step, whilst electron-deficient ketone substituents resulted in slower migration of the 

Criegee intermediate. These trends were used to confirm that DMAPO acts as an organocatalyst to 

catalyse the initial addition step of BV reactions that involve nucleophilic attack of mCPBA at the 

ketone carbonyl, meaning that N-oxides only catalyse BV reactions of ketone substrates whose 

peracid addition step is rate-limiting. 

 

Scheme 107: Effects of DMAPO on the Baeyer-Villiger oxidation of different types of ketone: (a) DMAPO catalyses the 
Baeyer-Villiger reactions of ketones whose initial peracid addition step is rate-limiting; (b) DMAPO suppresses the Baeyer-
Villiger reactions of ketones whose second migration step is rate-limiting. 

Following this discovery, these DMAPO-catalysed conditions were applied to the Baeyer-Villiger 

oxidation of a range of arylidene α,β-unsaturated ketones to successfully produce a range of 11 

vinyl esters in 53-90% yields (Scheme 108a). N-oxide-mediated catalysis of the BV oxidation 
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reactions of these arylidene substrates are consistent with the postulate that the DMAPO catalyst 

acts predominantly to accelerate the initial mCPBA addition step. Firstly, it is expected that addition 

of a peracid to a conjugated α,β-unsaturated ketone substrate would be relatively slow, as alkene-

ketone conjugation decreases the reactivity of the carbonyl carbon towards nucleophilic attack. 

Secondly, as discussed for the aryl phenonium BV oxidation reactions above, π-participation from 

the aryl-vinyl benzylidene ketone substituent in the Criegee intermediate 267 has the potential to 

generate a stabilised benzylic cationic intermediate 268 with partial aromatic character (Scheme 

108b, cf. aryl stabilisation mechanism shown in Scheme 95). To the best of our knowledge, this 

possible migration mechanism has never been explored systematically, with only a brief suggestion 

of this type of stabilisation mechanism reported in a 1952 report by Wenkert and Rubin.419 One of 

the key limitations of the BV oxidation reactions of α,β-unsaturated ketones is the capacity of the 

alkene bonds of the vinyl ester products they produce to undergo further epoxidation reactions. 

Furthermore, the epoxides that are generated are also susceptible to further 

rearrangement/oxidation reactions which can all combine to produce complex mixtures of 

products (vide infra). Therefore, one of the key benefits of the new N-oxide-catalysed BV 

methodology is the ability of DMAPO to supress formation of undesired epoxyesters 266 and their 

decomposition products. Unfortunately, although successful in affording good yields of ester and 

vinyl ester products in short reaction times, the catalytic role of the N-oxides in these BV reactions 

remained unclear. This also meant that it was still unclear whether fully optimised BV conditions 

had been identified for the BV oxidation of ketones/α,β-unsaturated ketones in these systems. 

 

Scheme 108: (a) DMAPO-catalysed Baeyer-Villiger oxidation of arylidene mono-ketones. (b) Suggested stepwise migration 
step in the BV oxidation reaction of benzylideneacetone 232. 
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4.2. Reoptimisation of DMAPO-catalysed BV oxidation 

reactions 

4.2.1 Reinvestigation of the DMAPO-mediated BV oxidation reaction of p-

methoxyacetophenone 263 

The general instability and explosive nature of pure peroxides and peroxyacids means that 

commercially-available mCPBA is traditionally sold/used as a 70-80 wt% mixture, with its remaining 

content comprised of approximately 15-25 wt% meta-chlorobenzoic acid (mCBA) and water 

(approximately 5 wt%).420 This means that unless otherwise explicitly stated, the mCPBA used in 

the BV experiments throughout this thesis was approximately 75 wt% pure, as confirmed by 

iodometric titration on receipt from the supplier (and regularly throughout the course of this 

study).421 Initial reinvestigation of the DMAPO-mediated BV oxidation reactions revealed that the 

sampling procedure previously used to calculate ketone conversion values was flawed.418 Repeating 

some of these BV reactions revealed inconsistencies/reproducibility issues with the yields of vinyl 

esters and ketones produced, which was traced to issues associated with the reaction work-up 

procedure used to monitor substrate conversion levels. In the original experimental design, ketone 

(non-enone) substrate conversion levels were calculated by removal of solvent in vacuo at 40 °C 

(on a rotary evaporator), followed by analysis of the crude reaction product by 1H NMR 

spectroscopic analysis. The DMAPO-catalysed BV reactions carried out proceed over relatively short 

periods of time at room temperature (vide supra), and so the increased temperature of the rotary 

evaporator water bath (between 40-50 °C), combined with the increasing concentration of the 

reaction mixture as evaporation proceeded, meant that the BV reaction was still occurring (and 

likely being accelerated) during the work-up/sampling process. Therefore, these original sampling 

conditions meant that BV conversion values were not only dependent on the temperature of the 

rotary evaporator water bath and length of evaporation, but also dependent on the initial 

concentration, reagent stoichiometries, and degree of conversion. Therefore, a combination of 

these variables was contributing to incorrect/unrepeatable conversion levels when the original 

crude BV reactions were repeated.  

Consequently, it was necessary to redetermine the conversion levels of the DMAPO-catalysed BV 

reactions using a new ‘direct’ reaction sampling procedure based on removal of an aliquot from the 

reaction mixture (approx. 20 µL), followed by dilution with CDCl3 and immediate analysis (within 

30 min, control experiments carried out to ensure reaction stopped on dilution) by 1H NMR 

spectroscopy (Table 10). This new sampling regime was initially demonstrated for the BV oxidation 

reaction of p-methoxyacetophenone 263 to p-acetoxy anisole 259, which proceeded with a clean 

reaction profile (no side-reactions or degradation products), and so an internal standard was not 

required. This new monitoring procedure largely confirmed the data from the original DMAPO-

catalysed BV study of p-methoxyacetophenone 263, except that slightly decreased conversion 

values were found in most cases (as expected). A screen of amine/amine-N-oxide catalysts (Table 

1, Entries 2-8) confirmed that the DMAPO-catalysed BV oxidation reactions of 263 were indeed 

effective in a range of solvents (Table 1, Entries 9-15). Use of DMAP or preformed DMAPO 
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(monohydrate, commercial) gave comparable conversion values of 61% and 59% respectively 

(Table 10, entries 7-8), confirming that amine precatalysts underwent in situ oxidation to form 

active N-oxide organocatalysts. A quick catalyst loading screen using this new monitoring method 

(Table 10, entries 7 and 16-19) also confirmed that an increase in catalytic activity up to 20 mol% 

DMAPO was followed by a sharp drop-off in conversion values from 61% to 22% when DMAP 

loading was increased from 20% to 50%, thus confirming lower conversion rates in BV oxidation 

reactions at higher DMAPO catalyst loadings (vide infra).  
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Table 10: Comparison of the conversion levels determined for the DMAPO-catalysed BV oxidation of 
p-methoxyacetophenone 263 using different sampling methods (evaporation or aliquoting). 

 

Entrya Catalyst/Precatalyst (mol%) Solvent 
Conversion (%)b,c 

Evaporation418 Aliquot 

1 None Toluene 20 18 

2 Trimethylamine N-oxide TMNO (20) Toluene 65 61 

3 NEt3 (20) Toluene 40 38 

4 DIPEA (20) Toluene 44 53 

5 N-methylpiperidine (20) Toluene 55 54 

6 Pyridine (20) Toluene 54 17 

7 DMAP (20) Toluene 87 61 

8d DMAPO (20) Toluene 89 59 

9 DMAP (20) Hexane 80 (25) 69 (25) 

10 DMAP (20) DCM 86 (20) 38 (20) 

11 DMAP (20) Trifluorotoluene 86 (63) 65 (63) 

12 DMAP (20) Acetonitrile 87 (55) 71 (55) 

13 DMAP (20) EtOAc 30 (50) 59 (50) 

14 DMAP (20) EtOH 89 (33) 80 (40) 

15 DMAP (20) Et2O 41 (14) 70 (14) 

16 DMAP (5) Toluene -e 55 

17 DMAP (10) Toluene - e 56 

18 DMAP (30) Toluene - e 41 

19 DMAP (50) Toluene - e 22 

a mCPBA and catalyst/precatalyst were premixed for 15 min. b Values in brackets correspond to conversions for 
uncatalysed BV reactions. c Remaining mass balance comprised of unreacted ketone 263. d DMAPO monohydrate used. 
e

 Experiments not carried out in previous work. 

Further consideration revealed that the design of the previous BV screening experiments used to 

identify optimal catalyst loading conditions for N-oxide-catalysed BV reactions was also potentially 

flawed. For example, the BV screening results shown in Table 10 employed 1.5 equiv. of mCPBA in 
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all cases, regardless of the precatalyst loading (which mirrored the original BV study). This meant 

that a full 1.5 equiv. of mCPBA oxidant was available in catalyst-free systems (Table 10, entry 1), 

and when preformed N-oxides were used (Table 10, entries 2 and 8). However, those BV protocols 

that employ an amine precatalyst require initial consumption of mCPBA to produce the 

corresponding N-oxide catalyst in situ. For instance, use of 20 mol% DMAP as a catalyst (100% 

conversion to DMAPO) meant that only a maximum 1.3 equiv. of mCPBA would be available to carry 

out the desired BV oxidation reaction (cf. 1.5 equiv. mCPBA available in preformed N-oxide catalyst 

BV reactions). This disparity in the amount of mCPBA available between BV reactions using different 

precatalyst loadings had the potential to cause inaccuracies when comparing conversion data. 

However, since use of 20 mol% DMAP and DMAPO catalyst under otherwise identical conditions 

produced comparable 59% and 61% conversion levels (Table 10, entries 7 and 8), it appeared that 

small variations in the amount of excess mCPBA present in these BV reactions had little effect on 

overall ketone consumption rates. Nevertheless, a quick set of screening experiments were carried 

out, where the stoichiometry of the mCPBA oxidant was adjusted to allow for the amount of mCPBA 

consumed for precatalyst oxidation (Table 11). In all instances, 1.3 equiv. of mCPBA was added to 

the BV reactions, along with an extra ‘dose’ of mCPBA to account for the amount of oxidant 

consumed to oxidise the DMAP precatalyst to DMAPO in situ, with this approach classified as 

“catalyst-corrected” BV conditions. For example, a 10 mol% DMAP catalysed BV reaction was 

carried out using 1.4 equiv. mCPBA, with 0.1 equiv. of the mCPBA consumed to oxidise DMAP into 

DMAPO, leaving 1.3 equiv. of mCPBA available to carry out the BV reaction (Table 11, entry 3).  

These catalyst-corrected studies confirmed the following observations:  

• Addition of the N-oxide catalyst resulted in an increase in BV conversion levels, with 

maximum rate acceleration occurring at 20 mol% DMAPO catalyst loadings (Table 11, cf. 

entries 1-4).  

• Only small differences in conversion levels were observed between ‘standard’ and ‘catalyst-

corrected’ BV conditions, thus demonstrating the catalytic efficiency of the DMAPO catalyst 

in these reactions (Table 11, cf. entries 2-7).  

• A decrease in conversion was observed as catalyst loadings were increased above 20 mol% 

(Table 11, cf. entries 4-6).  

• Use of preformed 20 mol% DMAPO (1.3 equiv. mCPBA) for 30 min gave a lower 51% 

conversion than the 61% conversion obtained when 20 mol% DMAP precatalyst (1.5 equiv. 

mCPBA ≡ 1.3 equiv. mCPBA for BV reaction) was used (Table 11, cf. entries 4 and 7).  

The observations that DMAP-catalysed BV reactions (in situ DMAPO) gave slightly better conversion 

rates than pre-formed DMAPO-catalysed reactions led us to consider whether the extra 20 mol% 

mCBA generated as a by-product from rapid in situ conversion of DMAP to DMAPO might be 

generating a more acidic reaction mixture that was leading to a faster BV oxidation reaction. This 

hypothesis was explored by repeating the BV oxidation reaction using 20 mol% preformed DMAPO 
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and 1.3 equiv. mCPBA, in the presence of 20 mol% mCBA as an additive (Table 11, entry 8), which 

only gave a small increase in conversion levels from 51% to 54%.  

Table 11: mCPBA stoichiometry studies for the optimisation of reaction conditions for the DMAPO-catalysed BV oxidation 
of p-methoxyacetophenone 263. 

 

Entrya Catalyst/Precatalyst (mol%) mCPBA (equiv.) Conversion (%)b,c 

1 None 1.3 9 (18) 

2 DMAP (5) 1.35 50 (55) 

3 DMAP (10) 1.4 52 (56) 

4 DMAP (20) 1.5 61 (N/A) 

5 DMAP (30) 1.6 43 (41) 

6 DMAP (50) 1.8 27 (22) 

7 d DMAPO (20) 1.3 51 (59) 

8d DMAPO (20) + mCBA (20) 1.3 54  

9 d DMAPO (20) 1.3 (pure) 42 

10 d DMAPO (20) + mCBA (20) 1.3 (pure) 53 

11 None 1.3 (pure) 27 

12 None + mCBA (20) 1.3 (pure) 21 

13 None + H2O (5 wt%) 1.3 (pure) 10 

14e None + mCBA (20) + H2O (5 wt%) 1.3 (pure) 13 

15 d DMAPO (20) + H2O (5 wt%) 1.3 (pure) 53 

16 d,e DMAPO (20) + mCBA (20) + H2O (5 wt%) 1.3 (pure) 55 

a mCPBA and catalyst/precatalyst were premixed for 15 min. b Values in brackets correspond to conversions with 
uncorrected 1.5 equiv. mCPBA, from Table 10. c Remaining mass balance comprised of unreacted ketone 263. d DMAPO 
monohydrate used. e Systems designed to approximate the composition of commercial mCPBA. 

A batch of 75 wt% commercial mCPBA was then carefully purified by multiple washings with 

phosphate buffered saline (0.1 M, pH 7.5, (PBS)) to remove any mCBA that was present, followed 

by drying under vacuum to afford pure mCPBA (> 95%).422 This purified mCPBA (1.3 equiv.) was then 

used to carry out the BV oxidation of p-methoxyacetophenone 263 using preformed DMAPO 

(20 mol%) which resulted in a clear drop in conversion levels to 42% (Table 11, entry 9). This 42% 

conversion level was less than the 51% conversion achieved using commercial mCPBA and 20 mol% 
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DMAPO (Table 11, entry 7) and the 61% conversion obtained when 20 mol% DMAP was used with 

commercial mCPBA (cf. Table 10, entry 4). Inclusion of 20 mol% mCBA as an additive in a pure 

mCPBA reaction led to an increase in conversion from 42% to 53% (Table 11, cf. entries 9-10), thus 

providing good evidence of a co-catalytic role for mCBA in accelerating the rate of these N-oxide-

catalysed BV oxidation reactions. 

A series of control reactions was then carried out to further determine the effect of mCBA and 

water on uncatalysed BV reactions of p-methoxyacetophenone. Carrying out the BV oxidation of 

263 using purified mCPBA under catalyst-free conditions (Table 11, entry 11) achieved 27% 

conversion, which was three times the 9% conversion level obtained using commercial mCPBA 

(Table 11, entry 1). Addition of 20 mol% mCBA as an additive to a pure mCPBA reaction led to a 

slight decrease in conversion to 21% (Table 11, entry 12), whilst addition of 5 wt% water to a pure 

mCPBA reaction also caused conversion levels to decrease to 10% (Table 11, entry 13). Inclusion of 

both 20 mol% mCBA and 5 wt% water in a pure mCPBA reaction (still no N-oxide catalyst) led to 

13% conversion (Table 11, entry 14), with both water-doped reactions achieving low conversion 

levels similar to the 9% conversion level seen with commercial mCPBA. These control reactions 

indicate that whilst water has a clear suppressive effect on the uncatalysed BV oxidation of 263 in 

toluene, mCBA was more catalytically active in the presence of water. We reasoned that the greater 

accelerating effect of mCPBA in aqueous systems might be due to more efficient ionisation of mCBA 

at water/toluene interfaces serving to produce localised acidic environments that that could more 

efficiently promote the BV oxidation reaction. These water-doping experiments were then 

repeated in the presence of 20 mol% DMAPO (preformed, pure mCPBA, Table 11, entries 15-16), 

which showed that DMAPO efficiently catalyses the BV oxidation reaction of 263 in toluene in the 

presence of 5 wt% water, resulting in 53-55% conversion levels for the selective formation of ester 

259 after 30 min.  

These series of simple screening experiments provided us with a clearer picture of the roles that 

DMAPO, mCBA, and water play in the mCPBA-mediated BV oxidation reactions of 

p-methoxyacetophenone 263 in toluene, which allowed the following conclusions to be drawn: 

• DMAP and other amines are oxidised by mCPBA in situ to produce N-oxide species that are 

catalytically-active in BV reactions where initial nucleophilic attack of the mCPBA peracid is 

rate-determining.  

• Low loadings of DMAPO (< 20 mol%) were catalytic in all the BV reactions explored, 

regardless of mCPBA purity, mCBA/water content, or mCPBA loading levels used. 

• Increased loadings of DMAPO (> 20 mol%) led to a corresponding drop in conversion rates, 

even when higher loadings of mCPBA oxidant were used. 

• Slightly faster BV reactions occurred when both DMAPO and mCBA were present as 

cocatalysts. 

• Water and mCBA were inhibitory in the absence of any DMAPO catalyst.  
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• Optimal conversion levels after 30 min were achieved when DMAPO, mCBA and water were 

present in the BV reaction mixture (e.g. when commercial 75 wt% mCPBA was used). 

 

4.2.2 Reoptimisation of the DMAPO-catalysed oxidation of benzalacetone 232 

Having demonstrated the co-catalytic role and synergistic effect of DMAPO and mCBA in the BV 

oxidation reaction of conventional electron-rich ketones, attention was then turned to 

reinvestigating the conditions used in the DMAPO-catalysed BV oxidation reactions of 

α,β-unsaturated ketones. As for the catalytic BV reactions of conventional ketones, it was necessary 

to redetermine conversion values using the new ‘direct’ sampling regime. Unlike the ester 259 

produced from p-methoxyacetophenone 263, the vinyl ester 233 produced from BV oxidation of 

benzylideneacetone 232 using mCPBA is capable of undergoing a variety of side-reactions that can 

further affect the overall yield of its BV reaction (Scheme 109a).418,422,423 No direct epoxidation of 

enone 232 to α,β-epoxyketone 269 is observed, however benzylideneacetone 232 readily 

undergoes BV oxidation to produce β-phenyl vinyl ester 233, whose alkene functionality can react 

further with mCPBA to produce a relatively unstable α,β-epoxyester (rac)-266. Since epoxide 266 is 

synthetically equivalent to an O-acylated hemi-acetal, it can then rearrange via an acyl 

transfer/epoxide ring-opening mechanism to produce formyl acetate 270. Furthermore, formyl 

acetate 270 can then undergo a further Baeyer-Villiger oxidation reaction to produce 

formyloxyacetoxyphenylmethane FAPM (Scheme 109b, also see Scheme 103).412,423,424 Indeed, use 

of excess mCPBA (4.0 equiv. mCPBA, no DMAPO) and extended reaction times (24 h) can be used 

to produce FAPM in a high 84% yield, which the Bull group has shown can be used as a versatile 

N- and O-formylating agent.423,425–427  
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Scheme 109: (a) Oxidation and rearrangement products of benzylideneacetone 232. (b) Bull group synthesis of FAPM, a 
versatile formylating agent.423,424  

Given the range of products that can potentially be formed in the BV reactions of 

benzylideneacetone 232, all of its BV reactions were carried out in the presence of 

1,2,3,5 tetramethylbenzene (TetMB) as an internal NMR standard to calibrate product yields. A 

catalyst loading screen was first carried out using increasing amounts of DMAP precatalyst 

(0-100 mol%) and 1.3 equiv. loadings of BV-available mCPBA (1.3-2.3 equiv. mCPBA initially) (Table 

4). The uncatalysed BV reaction proceeded relatively slowly, achieving only 40% consumption of 

enone 232 after 30 min, with 30% selectivity for the formation of vinyl ester 233, with 10% of the 

unwanted epoxide 266 side-product also being formed (Table 12, entry 1). This lack of selectivity 

proved to be problematic when extended reaction times were used to try and drive the BV reaction 

to completion, with a 3 h reaction time resulting in 70% conversion to an almost equimolar mixture 

of vinyl ester 233 (33%) and epoxide 266 (37%) (Table 12, entry 2). Addition of 20 mol% DMAP 

precatalyst led to a significant acceleration of the BV reaction of enone 232, which now gave 92% 

conversion to mixed products after 30 min. The selectivity of this BV reaction was also greatly 

improved, with a 79% yield of vinyl ester 233 observed, with only 13% undesired epoxyester 266 

now present (83.5:16.5, approx,. ~6:1, Table 12, entry 3). Further increases in DMAPO catalyst 

loading led to a drop in conversion levels with use of 40% and 50 mol% DMAP only affording 80% 

and 61% conversion, respectively, whilst only 31% conversion levels were observed when 100 mol% 

DMPAO was used (Table 12, entries 5, 7, 9, 11). Despite a drop in total conversion levels down to 

only 61%, increasing catalyst loadings had the benefit of increasing reaction selectivity, with use of 

50 mol% DMAPO loadings producing a 59% vinyl ester 233 and only 2% epoxyester 266, equating 
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to a 96.6:3.4 ratio of 233:266, a five-fold increase in selectivity level over 20 mol% DMAP/DMAPO 

(Table 3, Entry 9). Carrying out catalytic BV reactions of 232 for 3 h confirmed that although 

increasing DMAPO catalyst loadings from 20 to 100 mol% resulted in lower conversion values, 

higher catalyst loadings resulted in in less epoxide side-product being produced (Table 12, cf. 

entries 4, 6, 8, 10). Therefore, these results appeared to demonstrate that the DMAPO catalyst 

exhibited a dual function in producing better yields of vinyl ester 233. Firstly, the DMAPO was acting 

as an organocatalyst (optimal for 20 mol% catalyst loading) to facilitate the initial rate determining 

step of the BV oxidation of enone 232 to produce vinyl ester 233. Secondly, DMAPO was also serving 

to suppress the undesired epoxidation pathway that converts vinyl ester 233 to epoxyester 266 

(and its decomposition/rearrangement products). These data led to the conclusion that catalyst 

loadings of between 20-50 mol% were optimal for carrying out DMAPO-catalysed BV oxidation 

reactions of α,β-unsaturated ester 232 that reliably gave vinyl ester 233 in good isolated 70-80% 

yields. 

Table 12: DMAPO-catalysed BV oxidation of benzalacetone 232. 

 

Entrya DMAP loading mCPBA loading Time 

Product distributionb 

Enone 
232 

Vinyl ester 

233 

Epoxyester 

266 

1 None 1.30 equiv. 30 min 60% 30% 10% 

2   3 h 30% 33% 37% 

3 20 mol% 1.50 equiv. 30 min 8% 79% 13% 

4   3 h - 82% 18% 

5 30 mol% 1.60 equiv. 30 min 12% 79% 9% 

6   3 h 5% 84% 11% 

7 40 mol% 1.70 equiv. 30 min 20% 74% 6% 

8   3 h 13% 81% 6% 

9 50 mol% 1.80 equiv. 30 min 39% 59% 2% 

10   3 h 33% 65% 2% 

11 100 mol% 2.30 equiv. 30 min 69% 31% - 

12   3 h 65% 35% - 

a mCPBA and catalyst/precatalyst were premixed for 15 min. b All distributions were referenced to a TetMB internal 
standard to ensure integration accounted for the entire mass balance. 
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4.3. DMAPO-catalysed BV oxidation reactions of enones 

4.3.1 DMAPO-catalysed BV oxidation of α,β-unsaturated ketones 

Armed with a better understanding of the catalytic/suppressive mode of action of the DMAPO 

organocatalyst, the reaction conditions for the BV oxidation of a range of α,β-unsaturated ketones 

were reinvestigated. Therefore, use of a 50 mol% loading of DMAP and 2.0 equiv. mCPBA for the 

BV oxidation reaction resulted in complete consumption of benzalacetone 232 after 2.5 h, 

reproducibly affording 76% isolated yields of vinyl ester 233. The utility of these improved 

conditions was then confirmed by carrying out BV oxidation of three additional α,β-unsaturated 

ketones to produce arylidene esters 271, 272, and 273 (Scheme 110), with comparable yields 

observed in all instances when compared to the original BV conditions (20 mol% DMAP, 1.5 equiv. 

mCPBA). Most importantly, increasing DMAP loadings to 50% resulted in less epoxide by-product 

being formed, and so chromatographic purification of the hydrolytically-sensitive vinyl esters was 

much easier than under the previous reaction conditions. Chalcone-derived phenyl vinyl ester 273 

was still only produced in a moderate 41% yield, which is due to the lower reactivity of the doubly 

conjugated ketone carbonyl of chalcone requiring extended reaction times to proceed to 

completion, which also led to greater epoxidation of chalcone over time. Importantly, no evidence 

of any phenyl acrylate ester 274 that could potentially be produced from competing phenyl 

migration was observed, thus indicating a strong migratory aptitude for the benzylidene moiety 

over the phenyl group in this sluggish BV reaction (cf. benzylic cationic intermediate BV mechanism 

shown in Scheme 108).  

 

Scheme 110: DMAPO-catalysed BV oxidation of β-aryl enones. Values in brackets show results for previously reported 
reaction conditions (20 mol% DMAP, 1.5 equiv. mCPBA) by the Bull group.418 

To further demonstrate the synthetic versatility of this method, it was then decided to apply the 

DMAPO-catalysed protocol to carry out BV reactions of some other α,β-unsaturated ketones which 

had not previously been oxidised using this method. The first substrate chosen was 

(Z)-benzalacetone (Z)-232, to confirm that its BV reaction would afford vinyl ester (Z)-233 

diastereoselectively as a single diastereomer with complete retention of its alkene geometry. (Z)-

benzalacetone 232 was synthesised in a single step via cis-hydrogenation of commercially available 
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α,β-ynone 275 using Lindlar’s catalyst (5 wt% Pd/CaCO3 poisoned with lead) under H2 (1 atm, 

balloon) in pentane in 40% isolated yield.428 Subsequent BV oxidation of (Z)-232 using standard 

DMAPO-catalysed conditions gave (Z)-styryl acetate 233 in 64% yield, with no evidence of any of 

the thermodynamically more stable (E)-233 being formed. The increased rate of BV reaction of 

(Z)-benzalacetone over (E)-benzalacetone 232 (cf. 45 min vs. 2.5 h for full consumption) implies a 

faster rate of nucleophilic addition of mCPBA to the ketone carbonyl of (Z)-232. This is consistent 

with the more sterically-hindered ketone group of (Z)-232 being distorted out of plane to its alkene 

functionality, thus decreasing conjugation and increasing the electrophilicity of its carbonyl. 

Evidence for this rationale comes from IR spectroscopic analysis, with the carbonyl stretching 

frequency of (Z)-232 measured at 1691 cm-1, whilst the (E)-232 diastereomer exhibits a strong 

absorption at 1655 cm-1, thus indicating decreased conjugation in (Z)-232. No competing alkene 

epoxidation of enone (Z)-232 or vinyl ester (Z)-233 to their corresponding epoxyketone or 

epoxyester products was observed under these BV conditions.  

 

Scheme 111: Synthesis of (Z)-233 by hydrogenation of ynone 275 and DMAPO-catalysed BV oxidation of (Z)-232. 

The catalytic BV reaction conditions were then used for the synthesis of α-bromo-vinyl ester 

(E)-279, as a potentially useful synthetic intermediate for use as a N-, O-, C-, or P-alkylating agent, 

or as a precursor to generate zinc enolates for use in Reformatsky-type reactions. The parent α-

bromo-ketone 277 was prepared in two steps via a literature procedure involving sulfuric acid-

catalysed O-acylation of benzalacetone (E)-232 with isopropenylacetate 276 to produce dienol 

acetate 277 in 66% yield, followed by α-bromination using NBS to give benzylidene bromoacetone 

278 in 97% yield.429 Subsequent DMAPO-catalysed BV oxidation of bromoenone 278 afforded the 

novel α-bromo vinyl ester 279 in 53% yield, that will be explored as a potential intermediate for the 

synthesis of nepetoidin B natural product analogues (see Figure 45 above and conclusion below). 

Attempts to carry out the N-oxide-catalysed BV oxidation of ynones and aliphatic enones were also 

made, however no unsaturated esters were obtained, further indicating the privileged nature of 

arylidene substrates in these type of N-oxide-catalysed BV reactions. 
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Scheme 112: Three-step synthesis of styryl bromoacetate (E)-279 from benzalacetone (E)-232. 

 

4.3.2 DMAPO-catalysed regioselective BV oxidation of β-ionone 250 

This new N-oxide-catalysed BV protocol was then benchmarked using β-ionone 250 as a substrate 

for the synthesis of vinyl ester 251 (cf. selenium-based BV methodology shown in Scheme 105). Use 

of standard DMAPO-catalysed conditions initially produced three products: γ,δ-epoxyketone 252; 

vinyl ester 251; and γ,δ-epoxyester 280 (Table 13). Interestingly, α,β-epoxide products 281 and 282 

were not produced, which is consistent with previous reports that only the more substituted 

electron-rich γ,δ-alkene of β-ionone 250 is epoxidized.430 Standard reaction conditions (rt, 1 h) led 

to 76% consumption of β-ionone 250, affording a 20% yield of the desired vinyl ester 251, along 

with 19% and 37% yields of epoxyketone 282 and epoxyester 280, respectively (Table 13, entry 1). 

Total consumption of β-ionone 250 was achieved by increasing the mCPBA loading to 3.0 equiv., 

which afforded a mixture of epoxyketone 251 and epoxyester 280 in a 23:77 ratio (Table 13, entry 

2). Carrying out these BV reactions at lower temperatures improved selectivity for formation of 

epoxyester 280 to 88% and 93% selectivities at 0 °C and -20 °C, respectively (Table 13, entries 3-4). 

Further cooling to -41 °C did not improve selectivity, with 66% consumption of β-ionone 250 after 

1 h resulting in formation of 23:43 epoxyketone 252: epoxyester 280 (Table 13, entry 5). Attempts 

to suppress γ,δ-epoxidation further by increasing the loading of DMAPO to 100 mol%, whilst using 

3.5 equiv. of mCPBA as oxidant) led to a significant drop in conversion and the production of 

mixtures of products (Table 13, entry 6). Conversely, simple removal of the DMAPO catalyst led to 

formation of a 92:8 mixture of epoxyketone 252 and epoxyester 280, with epoxyketone 252 being 

isolated in 84% yield (Table 13, entry 7). This result further confirms the ability of DMAPO to 

drastically suppress alkene epoxidation reactions. Attempts to drive this epoxidation selectivity 

further by cooling to 0 °C resulted in 71% consumption with no improvement in selectivity (65:6 

252:280, i.e. 91:9, cf. 92:8 at rt) (Table 13, entry 8). Addition of NaHCO3 (2.5 equiv.) also failed to 

improve selectivity for γ,δ-epoxyketone 252, instead resulting in only 77% conversion, with 23% 

epoxyketone 252, 34% epoxyester 280 and 20% vinyl ester 251 (Table 13, entry 9) produced in a 

similar ratio to the initial DMAPO-catalysed run. 
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Table 13: mCPBA-mediated oxidation of β-ionone to epoxides 252 and 280. 

 

Entrya Conditions 

Product distribution (isolated yields) 

Enone 
250 

Epoxyketone 
252 

Epoxyester 
280 

Vinyl ester 
251 

1 
mCPBA (1.8 equiv.) 
DMAP (50 mol%) 

rt, 1 h 
24% 19% 37% 20% 

2 
mCPBA (3.0 equiv.) 
DMAP (50 mol%) 

rt, 2 h 
- 23% 77% - 

3 
mCPBA (3.0 equiv.) 
DMAP (50 mol%) 

0 °C, 1.5 h 
- 12% 88% - 

4 
mCPBA (3.0 equiv.) 
DMAP (50 mol%) 

-20 °C, 1.5 h 
- 7% 93% (81%) - 

5b 
mCPBA (3.0 equiv.) 
DMAP (50 mol%) 

-41 °C, 1.5 h 
34% 23% 43% - 

6 
mCPBA (3.5 equiv.) 
DMAP (100 mol%) 

rt, 1.5 h 
23% 17% 46% 14% 

7 
mCPBA (1.3 equiv.) 

rt, 1 h 
- 92% (84%) 8% - 

8 
mCPBA (1.3 equiv.) 

0 °C, 2 h 
29% 65% 6% - 

9 
mCPBA (1.3 equiv.) 
NaHCO3 (2.5 equiv.) 

rt, 1 h 
23% 23% 34% 20% 

a mCPBA and DMAP were premixed for 15 min. b Reaction carried out at 0.1 M concentration due to low-temperature 
solubility issues. 

Therefore, two complementary protocols were identified that enabled selective oxidation of 

β-ionone 250, with treatment with 1.3 equiv., mCPBA (no DMAPO) affording an 84% yield of epoxy 

ketone 252 (cf. 84% yield of 252 using Yu’s complex selenide catalyst H2O2 system),415 whilst 

inclusion of 50 mol% DMAPO as an additive results in sequential BV oxidation and γ,δ-alkene 
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epoxidation to produce epoxyester 280 in 81% yield as a major product (previously reported as a 

side-product in low yields only).431,432 Attempts to develop a BV protocol that gave vinyl ester 251 

as the major product proved unsuccessful, with cooling to 0 °C, decreasing the amount of mCPBA 

oxidant to 1.0 equiv., or use of 100 mol% DMAP leading to complex mixtures of the vinyl ester 351 

(max 34%) along with β-ionone 250, γ,δ-epoxyketone 252, and epoxyester 280 by-products (Table 

14).  

Table 14: mCPBA-mediated BV oxidation of β-ionone 250. 

 

Entrya Conditions 

Product distribution (isolated yields) 

Enone 

250 

Epoxyketone 

252 

Epoxyester 

280 

Vinyl ester 
251 

1b 

mCPBA (1.8 equiv.) 

DMAP (50 mol%) 
rt, 1 h 

24% 19% 37% 20% 

2 

mCPBA (1.8 equiv.) 

DMAP (50 mol%) 
0 °C, 1 h 

20% 8% 38% 34% 

3 

mCPBA (1.5 equiv.) 

DMAP (50 mol%) 
rt, 1 h 

44% 11% 29% 26% 

4 

mCPBA (2.0 equiv.) 

DMAP (100 mol%) 
rt, 6 h 

65% 6% 25% 4% 

5 

mCPBA (2.0 equiv.) 

DMAP (100 mol%) 
0 °C , 6 h 

64% 4% 29% 4% 

a mCPBA and DMAP were premixed for 15 min. b See Table 13, entry 1. 

These product distributions, in conjunction with the absence of α,β-epoxides 281 and 282, provide 

some insight into the relative reactivities of the different functionalities of β-ionone 250 in these 

BV oxidation reactions. Firstly, the more nucleophilic γ,δ-alkene group of β-ionone 250 is clearly 

much easier to epoxidize than its α,β-alkene bond due to its increased substitution pattern and 

remoteness from the deactivating carbonyl group. Secondly, the uncatalysed background rate of 

the Baeyer-Villiger oxidation reactions of β-ionone 250 and epoxyketone 252 are slow, only 

occurring significantly in the presence of the DMAPO catalyst. Thirdly, treatment of epoxyketone 

252 with mCPBA (with or without DMAP/DMAPO) does not result in any BV reaction to produce 
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epoxy vinyl ester 280 (Scheme 113a), which means epoxyester 280 must be formed exclusively via 

BV oxidation of β-ionone 250 to vinyl ester 251 first, followed by epoxidation of the electron-rich 

γ,δ-alkene bond. This is consistent with the γ,δ-alkene bond of the vinyl ester 251 being more 

activated towards epoxidation by mCPBA than the corresponding γ,δ-alkene bond of β-ionone 250, 

and also explains why dienyl ester 251 could not be isolated as a major product from these reactions 

(see Scheme 113b for mechanistic summary). Furthermore, it is suggested that the BV oxidation of 

β-ionone 250 occurs via a stabilised allylic cation migration intermediate 283, similar to the benzylic 

intermediate proposed in benzylidene systems (vide supra). Finally, γ,δ-epoxyketone 252 does not 

undergo a BV oxidation because its ‘non-stabilised’ migratory transition state/intermediate is much 

higher in energy than the stabilised allylic species 283 generated in the BV oxidation reaction of 

β-ionone 250.  

 

Scheme 113: (a) Unreactive DMAPO-catalysed BV oxidation of epoxyenone 252. (b) Reaction map of DMAPO-
catalysed/suppressed oxidation reactions of β-ionone 250.  

These N-oxide-catalysed mCPBA-mediated BV reactions of α,β-unsaturated ketones complement 

the recent work by Kazmaier et al., who showed that α-methyl α,β-unsaturated aldehyde 284 (more 

nucleophilic, more stabilised) could be oxidised with purified mCPBA to produce α,β-unsaturated 

formate ester 285, or α,β-epoxyformate 286 as required (Scheme 110). They found that use of 

1.2 equiv. of purified mCPBA afforded a 74:26 mixture of vinyl ester 285 and epoxyester 286, for a 

67% isolated yield of vinyl formate ester 285. Increasing the oxidant loading to 2.5 equiv. of mCPBA 

drove the epoxidation further to produce epoxyester 286 in 98% selectivity, allowing it to be 

isolated in 85% isolated yield. Investigations are currently underway to determine whether the 
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inclusion of an N-oxide catalyst into the BV reaction of α,β-unsaturated aldehydes can be used to 

improve the yield of vinyl-formate ester 285. 

  

Scheme 114: Kazmaier et al.’s synthesis of α,β-unsaturated formate ester 285 and α,β-epoxyformate 286 using purified 
mCPBA.422 

 

4.4. Mechanistic investigations into DMAPO-catalysed BV 

oxidation reactions 

4.4.1 Mechanism of acid-catalysed BV oxidation reactions 

Following these synthetic developments, a better understanding of the mechanism of action of the 

N-oxide catalyst was needed, which led us to review previous approaches that had been developed 

to catalyse peracid-mediated BV reactions. Two general approaches have been investigated for the 

catalytic activation of BV oxidation reactions: electrophilic activation approaches and nucleophilic 

activation strategies (Figure 47).373,433 Electrophilic activation approaches employ a Brønsted or 

Lewis acid to coordinate to the carbonyl oxygen of either: (i) the ketone substrate, to activate it 

towards nucleophilic attack by the peracid (287); (ii) or the acid leaving group of the Criegee 

intermediate which promotes cleavage of the peroxide bond during the second migration step 

(288). Conversely, nucleophilic activation approaches are usually facilitated by a Lewis/Brønsted 

base that can: (iii) coordinate to (or deprotonate) the most acidic OH proton of the peracid during 

the addition step to increase its nucleophilicity (289); or (iv) deprotonate the alcohol group of the 

Criegee intermediate to trigger the migration step (290). Two examples of catalytic systems that 

have been developed are shown in Figure 47, with their mode of catalytic activation indicated. Note 

that in many cases multiple modes of activation are involved, and determining the exact mechanism 

is often not possible. 

 

Figure 47: Electrophilic and nucleophilic catalytic activation of the BV oxidation reaction. 
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Scheme 115: Representative examples of catalytic BV oxidation reactions. (a) BV oxidation of cyclic ketones catalysed by 
electrophilic activation of the substrate (i) and intermediate (ii) by Lewis-acidic [((dppe)Pt(CF3)CH2Cl2)ClO4].434 (b) 
NaHCO3-mediated nucleophilic activation (iii, iv) of cyclic ketones.435 

Previous studies had revealed that the N-oxide catalyst only accelerated BV reactions of ketones 

where initial nucleophilic addition of mCPBA to the ketone was known to be rate determining, and 

so it appeared that the N-oxide catalyst must be operating by either pathway (i) or pathway (iii). 

Experimental and computational mechanistic investigations into peracid-mediated BV reactions of 

ketones have previously shown that the addition step is catalysed by carboxylic acids (e.g. mCBA), 

and that dynamic hydrogen bonding and proton transfer events are crucial in lowering the 

transition state energy of the initial peracid addition step to the ketone carbonyl.381,382,436–438 For 

example, a study in 1997 by Okuno showed that BV oxidation of p-anisaldehyde and p-tolualdehyde 

291 in non-polar solvents could be catalysed by either acetic acid or trifluoroacetic acid (TFA), with 

relatively weak AcOH only catalysing the initial addition step, whilst stronger TFA could catalyse 

both the addition and migration steps.436 This study revealed that acid-catalysed BV reactions 

proceed via general acid catalysis, meaning that no formal protonation of the ketone substrate 

occurs prior to nucleophilic attack by the peracid. Interestingly, this was also suggested to be the 

case in aqueous media (where acid dissociation would be expected), indicating that this mode of 

catalysis is driven by discreet assemblies rather than non-specific pH/media effects.439 Okuno 

proposed that carboxylic acid-catalysed addition of the peracid to the ketone occurs via a concerted 

6-membered hydrogen bonded transition state TS-6 (Scheme 116a), with the bifunctional 

carboxylic acid acting to protonate the carbonyl of the ketone whilst simultaneously accepting the 

terminal OH proton of the peracid. Therefore, this ‘proton shuttling’ mechanism enables the 

carboxylic acid catalyst to increase the nucleophilicity of the peroxide whilst simultaneously 

activating the ketone carbonyl group towards nucleophilic attack. This transition state is highly 

favoured over non-catalysed transition states such as the forbidden 4-atom TS-7 that is often shown 

in textbooks, or the peracid-mediated TS-8 that is less effective at shuttling protons in the transition 

state (cf. pKa of mCPBA of 7.5 vs. pKa of mCBA of 3.82).440,441 However, there is some controversy 

regarding these non-acid-catalysed multimeric transition states, with Alvarez-Idaboy and co-

workers calculating prohibitively large energy barriers of 25 kcal/mol or more.381,437,438,442,443 These 
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findings have since been corroborated by other studies, which have confirmed that acid catalysis is 

highly effective at activating the initial addition step of BV oxidations, even when only mild acids 

are employed.437,442 Acid catalysis can also activate the migration step of BV reactions, although this 

appears to occur only when the migration step is relatively slow, and usually requires strong acid 

catalysts (e.g. TFA).377,436,437 This is because carboxylic acid-catalysed migration proceeds via a 9-

membered transition state TS-9, whose formation is only favoured when strong acids are employed 

(Scheme 116b). In the absence of a strong acid catalyst, migration occurs via a concerted 7-

membered hydrogen bonding transition state TS-10 in which the Criegee hydroxyl proton migrates 

intramolecularly to the carboxyl group of the acid by-product. Other acid-catalysed transition states 

for BV reactions have also been calculated, in which carboxylic acids catalyse the addition or 

migration steps through more complex proton shuttling effects in which the hydrogen bond 

acceptor of the acid is the carbonyl oxygen (Scheme 116c). This leads to larger 8- and 11-membered 

hydrogen-bonded transition states TS-11 and TS-12, which are some of lowest transition energies 

for standard BV oxidation reactions that have been calculated to date.381,442,443 

 

Scheme 116: (a,b) BV oxidation reaction of p-tolualdehyde 291 by peracetic acid according to Okuno.436 (c) Proton-
shuttling transition states proposed by Alvarez-Idaboy and co-workers.381,442,443 

Although N-oxides are known to be capable of acting as direct oxidants in other types of oxidative 

reaction,444 the Bull group have previously demonstrated that treatment of benzalacetone 232 with 
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stoichiometric amounts of DMAPO does not produce any vinyl ester 233 (or epoxide 269) product 

(Scheme 117a).418 Furthermore, 1H NMR spectroscopic studies have also demonstrated that 

treatment of DMAPO with mCPBA does not produce any detectable N-oxy-acyl-pyridinium 294 or 

N-hydroperoxy-pyridinium 295 species that could potentially be acting as a more reactive in situ-

generated BV oxidant (Scheme 117b). It was also confirmed that any hydrogen peroxide that might 

be formed as a by-product of the reaction of mCPBA and DMAPO (vide supra) was not a competent 

oxidant in these BV reactions.  

 

Scheme 117: (a) DMAPO does not catalyse BV oxidation or epoxidation of benzalacetone (E)-232. (b) Treatment of mCPBA 
with DMAPO did not produce any new DMAPO-derived oxidants. 

BV reactions of ketones that employ mCPBA (weaker acid) as a stoichiometric oxidant generate 

increasing amounts of mCBA (stronger acid) as the BV reaction proceeds towards completion. Since 

carboxylic acids such as mCBA are known to catalyse BV reactions, this meant that these BV 

oxidation reactions are potentially autocatalytic.437 As discussed, commercial mCPBA was used in 

initial studies of N-oxides as BV catalysts, which contains ~75% pure mCPBA with the remaining 

mass made up of mCBA (20%) and H2O (5%). Therefore, mCBA is always available as a potential 

cocatalyst in these DMAPO-catalysed reactions, with the similar pKa values of mCBA (pKa = 3.82) 

and DMAPOH+ (pKaH = 3.88) meaning that a near 1:1 equilibrium between DMAPO/mCBA and 

DMAPOH+/mCBA– is likely to be present in these biphasic BV reactions.441,445 

 

Scheme 118: Quaternary equilibrium mixture formed from mixing mCBA with DMAPO.445,446 

Having established that the N-oxide catalysts catalyse the first nucleophilic addition step of the BV 

reaction, it followed that DMAPO could be functioning as a Lewis base to increase the 

nucleophilicity of mCPBA (Figure 48a). In this respect, it should be noted note that recent 
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computational and experimental work has shown that N-oxides (such as trimethylamine N-oxide, 

TMNO) are excellent H-bond acceptors that are capable of making strong hydrogen bonding 

interactions with weak acids such as HCN or acetylene (pKa of and 9.2 and 25, respectively).447 

Alternatively, it is possible that the protonated DMAPOH+ equilibrium species could be acting as a 

Brønsted acid catalyst to activate the ketone carbonyl towards nucleophilic attack by the mCPBA 

nucleophile (Figure 48b). Either of these mechanisms would likely proceed via polarised/charged 

transition state/intermediates, and so any catalysed BV reaction would preferentially occur in the 

vicinity of the polar water-toluene interface, rather than proceeding in the non-polar toluene 

solvent. Some evidence for the formation of equilibrium mixtures in these systems was observed 

by carrying out 1H NMR spectroscopy of DMAPO/mCBA mixtures, which showed downfield shifts 

(ΔδH = +0.05 ppm, methyl resonances) for DMAPO resonances and upfield shifts for mCBA 

resonances (ΔδH = -0.06 ppm, 4-H) that were consistent with protonation of DMAPO (decreased 

shielding) and deprotonation of mCBA (increased shielding) (see Appendix C for spectra). This 

equilibrium process could also explain the apparent suppression of BV oxidation reactions of 

electron-poor systems (vide supra), since complexation would decrease the availability of the acid 

catalyst, which would then be less available to catalyse the rate determining migration step.  

 

Figure 48: Possible modes of action of N-oxides for the catalysis of BV oxidation reactions. (a) Nucleophilic activation of 
mCPBA by DMAPO. (b) Electrophilic activation of the ketone by DMAPOH+. 

Further evidence that formation of catalytically active DMAPOH+ species might be important in 

these BV oxidation reactions came from the difference in BV reactivity that was observed when 

different types of N-oxides were used as catalysts.418 Use of 20 mol% of electron-deficient 

4-nitropyridine N-oxide 298 (pKaH = -1.7) and pyridine N-oxide 299 (pKaH = 0.79) in the BV oxidation 

reaction of p-methoxybenzophenone 296 (relatively unreactive ketone, facile migration) gave only 

9 and 11% conversion to its corresponding ester 297 after 7 h, respectively. Conversely, use of more 

electron-rich DMAPO (pKaH = 3.88)448 resulted in 36% conversion to 297 after only 2 h, thus 

demonstrating its much greater catalytic activity (Figure 49). The significantly lower pKaH values of 

N-oxides 298 and 299 (< 1.0)448 means that they are likely to be essentially unprotonated by the 

mCBA (pKa = 3.82)441 under the BV reaction conditions, and so are unlikely to form the type of 

protonated N-oxide species (or quaternary mixtures) that can be formed when DMAPO is used as 

a catalyst. 
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Figure 49: Substituted pyridine N-oxides. a Conversion achieved when the coresponding N-oxide (formed in situ) is used 
as the catalyst for the BV oxidation of p-methoxybenzophenone 296. b Conversions from Dr Lawrence’s thesis. c See Table 
10, entries 6-7. d pKaH values from Makowksi et al.448 

Given the established role of carboxylic acids in catalysing BV oxidation reactions, it seems likely 

that DMAPOH+ might be acting as a more catalytically active replacement for the mCBA cocatalyst 

that had previously been proposed to be present in BV transition states. Incorporation of DMAPOH+ 

would create a favourable 6-membered hydrogen bonding ternary transition state TS-13 that could 

promote the first addition step of the BV reaction via a similar proton relay mechanism to carboxylic 

acids (Figure 50). In this case, DMAPOH+ would act as a Brønsted acid to protonate the lone pair of 

the ketone to activate it towards nucleophilic attack by mCPBA, whilst simultaneously acting as a 

Brønsted base to accept a proton from the incoming mCPBA to increase its overall nucleophilicity. 

Therefore, the DMAPOH+ catalyst would serve to create a concerted proton relay pathway that 

would minimise charge build up in the transition state and decrease the overall energy barrier of 

the mCPBA nucleophilic addition step (Figure 50). This mode of action is clearly directly analogous 

to the well-established catalytic mode of action of mild acids elucidated by Okuno (vide supra, TS-

6). Once again, the charged nature of the proposed DMAPOH+ catalyst would mean that that its 

involvement as proton relay catalyst would most likely occur at the toluene-water interface. 

 

Figure 50: (a) Previously proposed transition state showing how a carboxylic acid can act as a bifunctional proton relay 
catalyst to promote nucleophilic addition of mCPBA to ketones in BV reactions.436 (b) New transition state showing how 
DMAPOH+ might function as proton transfer relay catalyst in BV reactions 

Precedent for the ability of N-oxides to participate in catalytically-relevant hydrogen bonding 

networks comes from a report by Stark et al. who described that N-methylmorpholine N-oxide 

(NMO) could be used to catalyse tetrapropylammonium perruthenate-mediated (TPAP) oxidation 
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of alcohols to carboxylic acids (Scheme 119).449,450 They proposed that the high efficiency of this 

oxidative system was due to the water and NMO catalyst combining to form an N-oxide stabilised 

hydrogen bonding network that stabilised formation of the vicinal diol group of an aldehyde 

hydrate intermediate 300 that is then oxidised to its corresponding carboxylic acid.  

 

Scheme 119: NMO-catalysed oxidation of alcohols to carboxylic acids by TPAP in the presence of water.449,450 

Further evidence that DMAPO might be functioning as a proton transfer catalyst was obtained 

previously from deuterium labelling experiments, which revealed that treatment of 

α,β-unsaturated ketone (E)-232 with 5.0 mol% DMAPO in deuterated methanol resulted in 

significant deuterium incorporation into its methyl group over time (Scheme 120a).418 This contrasts 

with the uncatalysed system where no deuterium incorporation into α,β-unsaturated ketone 232 

was observed, thus suggesting that DMAPO facilitates deuterium incorporation into benzalacetone 

232 by acting as a Brønsted base to promote enolization via TS-14. 

 

Scheme 120: (a) Deuterium incorporation studies of benzalacetone (E)-232 with DMAPO and MeOD - d4. 
(b) DMAPO/DMAPOD+ acting as a catalyst to promote enol tautomerization.418  

 

4.4.2 Evidence that DMAPO can act as a phase-transfer catalyst in BV reactions 

These proposed mechanistic hypotheses for the catalytic activity of DMAPO in BV reactions would 

all proceed through polarised transition states, most likely to occur at the polar toluene-water 
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interfaces that are present in these biphasic BV oxidation reactions. Consequently, the relative 

solubilities of the different reactive components in toluene and water were studied to try and gain 

a better understanding of their effect on these BV oxidation reactions. The overall solubility of 

commercial mCPBA (containing approx. 20% mCBA and 5 wt% water) in toluene was relatively poor, 

leading to cloudy suspensions when added to toluene (and other BV reaction mixtures) (Figure 

51A). Direct comparison of the relative solubilities of pure mCPBA and mCBA in toluene revealed 

that whilst mCPBA was soluble in toluene (Figure 51B), mCBA was completely insoluble which 

persisted as an unchanged crystalline solid (Figure 51C). The solubility of zwitterionic DMAPO in 

toluene was also found to be low, remaining crystalline as for mCBA (Figure 51D). However, 

addition of mixtures of DMAPO and commercial mCPBA (containing 20-25% mCBA, Figure 51E) or 

DMAPO and mCBA (Figure 51F) to toluene resulted in rapid dissolution/dispersion of all 

components to produce cloudy surfactant-like mixtures. This suggests that surfactant/phase-

transfer-like quaternary mixtures are formed when DMAPO and mCBA interact in these systems 

(see acid-base mechanism shown in Scheme 118). Interestingly, whilst all three individual 

components were white solids, combination of mixtures of DMAPO/mCPBA/mCBA in toluene 

resulted in suspensions that exhibited a yellow hue that was localised around water droplets that 

were dispersed throughout the toluene solvent, which coalesced on standing (Figure 51E, 

commercial mCPBA). This observation indicates that toluene-soluble mCPBA is interacting with the 

quaternary DMAPO/mCBA mixtures present at the toluene-water interface. Supporting this 

hypothesis, mixing pure mCPBA and DMAPO in toluene resulted in a faint yellow homogenous 

solution (Figure 51G), thus indicating that intermolecular hydrogen bonding interactions between 

DMAPO and mCPBA were occurring. Addition of 5 wt% water to a pure mixture mCPBA and DMAPO 

produced a cloudy mixture with a significantly increased yellow colour, as seen previously for the 

mixture of DMAPO with commercial mCPBA (Figure 51H, cf. E). These observations strongly support 

the suggestion that solubilising hydrogen bonding interactions are formed between DMAPO and 

mCPBA (and mCBA), which is consistent with a previous report describing that trans-α-sillbazole N-

oxide 301 can reversibly generate stable crystalline hydrogen bonded complexes with peracetic 

acid.451 
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Figure 51: Various DMAPO-catalysed BV reaction components added to 1 mL toluene: A – 75 wt% mCPBA (61 mg, partially 
soluble); B – pure mCPBA (44 mg, soluble); C – mCBA ( 6.3 mg, insoluble); D – DMAPO (6.2 mg, insoluble); E – 75 wt% 
mCPBA + DMAPO (61 mg + 6.2 mg, cloudy dispersion, yellow after 15+ min); F – DMAPO + mCBA (6.2 mg + 6.3 mg, cloudy 
dispersion); G – DMAPO + mCPBA (6.2 mg, 44 mg, slightly coloured solution); H – DMAPO + mCPBA + H2O (6.2 mg, 44 mg, 
5 µL, slightly coloured cloudy dispersion). DMAPO monohydrate used. 

 

 

Scheme 121: Oxidation of trans-α-stilbazole 301 to its corresponding N-oxide 302 forms a reversible complex with 
peracetic acid.451 

Initial addition of p-methoxyacetophenone 263 to a cloudy suspension of commercial mCPBA and 

DMAPO in toluene led to no initial change in appearance (Figure 52A). However, once 

approximately 65% BV oxidation of p-methoxyacetophenone 263 had occurred (~45 min), large 

amounts of a crystalline white solid was found to precipitate out (Figure 52B). This precipitate was 

filtered off and analysed by 1H NMR spectroscopic analysis, which revealed that it was essentially 

pure mCBA. This is consistent with consumption of mCPBA in the BV reaction resulting in generation 

of large amounts of mCBA by-product, whose concentration eventually reaches a saturation point 

where it precipitates out and so is no longer available to act as a catalyst in the BV reaction.  
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Figure 52: DMAPO-catalysed BV oxidation reaction of p-methoxyacetophenone 263 by mCPBA at t0 (A) and 45 min (B). 

The ability of mCPBA to facilitate dissolution of DMAPO in toluene provides evidence that DMAPO 

could potentially be acting as a hydrogen bonding phase transfer catalyst (PTC) to promote the BV 

reactions. Unfortunately, due to complexity arising from the bi-/tri-phasic nature of this reaction, 

and the complicated side-reactions later discovered (see section 4.5), conclusive conclusions could 

be drawn at this stage, however the author feels the results presented throughout this chapter are 

consistent with the proton- and phase-transfer mechanisms suggested. Moreover, this hypothesis 

is consistent with the amphoteric surfactant-like properties of N-oxides whose hydrogen bonding 

properties have previously been exploited to prepare lubricant and cosmetic products.452 For 

example, lauryldimethylamine N-oxide (LDAO) is used as a detergent to solubilise aggregating 

proteins, whilst the antimicrobial surfactant properties of N-oxides means they are widely used as 

antimicrobial components in detergents.453,454 Similarly, NMO is widely employed as an ionic 

solvent on an industrial scale in the Lyocell process, with the hydrogen bonding properties of NMO 

facilitating pulp solubilisation to generate cellulose fibres that can then be processed into fabrics.455 

Precedent for the use of N-oxides as PTCs in catalysis also exists, with Meng and co-workers having 

reported use of 2.5 mol% cinchona-alkaloid-derived N-oxide 304 as a chiral PTC to catalyse the 

enantioselective α-benzoylation of enolates of β-keto-esters 303 (or amides) to afford α-

benzoyloxy β-keto esters 305 in high yields and high enantioselectivities (Scheme 122).456,457 
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Scheme 122: (a) Examples of surfactant amine N-oxides. (b) Enantioselective α-benzoyloxylation of β-keto esters by 
chincona-derived N-oxide phase transfer catalyst 304.456 

Given this precedent, it was hypothesized that a more lipophilic surfactant-like 

4-dioctylaminopyridine N-oxide (DOAPO) analogue might be a better ‘phase-transfer’ N-oxide 

catalyst in BV reactions. It was reasoned that the zwitterionic N-oxide fragment of DOAPO would 

act as a polar headgroup, whilst its two N-octyl chains would provide lipophilic tail groups, thus 

conferring DOAPO with good surfactant-like properties (Scheme 123). After a variety of 

unsuccessful SNAr-based attempts, it was found that treatment of 4-aminopyridine 306 with 

2.5 equiv. of sodium hydride and 2.5 equiv. of 1-bromooctane 307 at reflux in THF successfully 

afforded DOAP in 47% yield (Scheme 123c) (cf.14% yield for DOAP obtained using an SNAr between 

4-chloropyridine and dioctylamine).458 Use of this surfactant-like DOAPO as a catalyst in the BV 

oxidation reaction of p-methoxyacetophenone 263 gave similar selectivity profiles to those 

observed for DMAPO, however its decreased reactivity levels (45% after 30 min with 20 mol% 

DOAP, vs. 61% with DMAP) meant that it appeared to provide no benefit over existing N-oxide 

catalysts (e.g. TMNO) that had been identified previously. 



171 
 

 

Scheme 123: Successful synthesis of DOAP from 4-aminopyridine 306 and 1-bromooctane 307. 

The implications of these reactions and observations on the mechanism of the DMAPO-catalysed 

BV oxidation reactions were then evaluated, which enabled us to propose an improved mechanistic 

hypothesis that seemingly explains these experimental results. It is proposed that DMAPO interacts 

with the mCBA at the toluene water droplet interface, resulting in an acid-base equilibrium being 

established that generates both DMAPO and protonated DMAPOH+ species in the vicinity of the 

boundary layer. The more polar environment at the aqueous droplet-toluene interface means that 

any N-oxide catalysis of these BV reactions will occur preferentially in this boundary region (as 

suggested by the yellow hue observed at the surface of dispersed water droplets). The presence of 

both DMAP (Brønsted base) and DMAPOH+ (Brønsted acid) species at this interface can then 

combine to establish hydrogen bonding networks that function to shuttle protons between the 

mCPBA nucleophile and the mCBA by-product to minimise charge build up in the BV transition state, 

thus lowering the energy of the initial addition step of the BV pathway (see Figure 53).  
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Figure 53: Schematic representation of the proposed mechanism of biphasic DMAPO-catalysed aqueous/toluene BV 
oxidation reactions of p-methoxyacetophenone 263 to p-acetoxy anisole 259. The DMAPO and/or the DMAPOH+ species 
produce a hydrogen bond network that lowers the transition state energy of the BV reaction. The DMAPO component 
may potentially act through coordination to the acidic hydrogen of the hydroxyl group of mCPBA to increase its 
nucleophilicity. The DMAPOH+ component can potentially act as a Brønsted acid to protonate the carbonyl lone pair of 
ketone 263, thus increasing its reactivity towards nucleophilic attack by mCPBA. Incorporation of DMAPOH+ into the BV 
transition state may also facilitate proton transfer from the mCPBA nucleophile to the ketone substrate to form the 
Criegee intermediate. 

 

4.4.3 DMAPO acts as a proton transfer catalyst to suppress epoxidation of vinyl esters 

Next, this study focused on the observation that DMAPO exhibited a dual catalytic and suppressive 

role in the BV reactions of α,β-unsaturated ketones, acting both as a catalyst to promote the BV 

reaction and as an inhibitor to suppress competing epoxidation reactions of vinyl ester (E)-232 (see 

Table 12). This was done in a series of experiments using mCPBA and vinyl ester (E)-233 as starting 

material to confirm that epoxidation of vinyl ester was suppressed by DMAPO (Table 15). In the 

absence of DMAPO, treatment of vinyl ester 233 with 1.0 equiv. of mCPBA in toluene at room 

temperature resulted in epoxidation of vinyl ester 233 to produce epoxyester 266 in 26% yield after 

30 min (Table 15, entry 1). As predicted, this epoxidation reaction was suppressed by addition of in 

situ-formed DMAPO, with 20 mol% catalyst loading resulting in epoxyester 266 being formed in a 

decreased 17% yield, whilst use of stoichiometric amounts of DMAPO resulted in only 3% 

epoxyester 266 being formed (Table 15, entries 2-4).  
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Table 15: DMAPO-mediated α,β-epoxidation of vinyl ester 233. 

 

Entrya Additive (mol%) mCPBA loading 

Product distributionb 

Vinyl ester 

233 

Epoxyester 

266 

Rearrangement 
products 

1 None 1.00 equiv. 74% 26% - 

2 DMAP (20) 1.20 equiv. 83% 17% - 

3 DMAP (50) 1.50 equiv. 92% 8% - 

4 DMAP (100) 2.00 equiv. 97% 3% - 

a mCPBA and catalyst/precatalyst were premixed for 15 min. b All distributions were referenced to a TetMB internal 
standard to ensure integration accounted for the entire mass balance. 

The mechanism of alkene epoxidation reactions using peracids is well known,397 with electron-rich 

alkene bonds acting as nucleophiles to attack the peracid’s most electrophilic oygen atom, which 

triggers a concerted elimination/proton transfer/oxidation pathway that produces the epoxide and 

an acid by-product. These reactions are accepted to proceed via a spiro/spiro-butterfly transition 

state TS-15 in which the alkene and peroxide are oriented orthogonally to each other (Scheme 

124b).459,460 This favours two key MO interactions: the primary πC=C→σ*O-O interaction responsible 

for the formation of epoxide, and a stabilising secondary nO→π*C=C electronic interaction between 

the distal oxygen lone pair and the alkene antibonding π* orbital. Relevant to the work in this 

chapter is the fact that these electrophilic epoxidation reactions can be catalysed by strong acids 

(eg. TFA),461 with specific acid catalysis (cf. general acid catalysis in first step of BV reaction) resulting 

in formal protonation of the peracid carbonyl oxygen which triggers nucleophilic attack of the 

peracid by the alkene (Scheme 124c).462,463 Computational and experimental studies have shown 

that prior protonation of the peracid significantly decreases the activation barrier of alkene 

epoxidation, with Bach et al. calculating a 12.4 kcal/mol decrease in activation barrier (from 18.8 to 

6.4 kcal/mol) for the epoxidation of ethene by performic acid (PFA) via TS-16 when fully protonated 

performic acid was modelled in a polar environment.462 However, formal protonation of mCPBA is 

unlikely to occur in non-polar hydrophobic solvents such as toluene, although peracid protonation 

could potentially occur at the toluene-water interfaces present in these BV reactions. On the other, 

strong hydrogen bonding between the carbonyl of the peracid and performic acid (general acid 

catalysis) is likely, and would produce TS-17 (Scheme 124d) that was calculated to decrease the 

energy barrier for the epoxidation reaction of ethene by 3.0 kcal/mol. 
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Scheme 124: (a) General mechanism of the Prilezhaev electrophilic epoxidation of styrene by peracids. (b) Spiro butterfly 
transition state TS-15 showing key MO interactions. (c) TS-16 of the specific acid-catalysed epoxidation of alkenes by PFA. 
(d) TS-17 of the acid-catalysed epoxidation of alkenes by a pre-formed PFA-HF hydrogen-bonded complex. 

Increasing the concentration of DMAPO in these epoxidation reactions will result in preferential 

coordination of DMAPO (good hydrogen bond acceptor) to the acidic proton of undissociated 

mCBA, thus suppressing its ability to act as an acid catalyst of mCPBA-mediated alkene epoxidation 

reactions. Furthermore, coordination of DMAPO to the acidic proton of the mCPBA oxidant could 

also potentially disrupt formation of the intramolecular hydrogen-bond required for the spirocyclic 

TS of the alkene epoxidation to form. Importantly, mCPBA acts as an electrophilic oxidant in alkene 

epoxidation reactions, whilst it functions as a nucleophilic oxidant in BV reactions. This means that 

coordination of DMAPO to the most acidic hydroxyl proton of mCPBA will increase its 

nucleophilicity in the addition step of BV reactions of α,β-unsaturated ketones to catalyse 

formation of vinyl ester products. Conversely, coordination of DMAPO to the most acidic terminal 

mCPBA peracid proton will decrease the electrophilicity of the proximal peroxidic oxygen to 

suppress epoxidation of the vinyl ester alkene bond, thus allowing better yields of vinyl ester to be 

obtained. 

A general summary of these numerous observations and mechanistic postulates for the catalytic 

activity of DMAPO/DMAPOH+ is shown in Scheme 125. These experiments and literature searches 

suggest that: 

• DMAPO forms acid/base equilibrium mixtures with mCBA to produce Brønsted acidic 

DMAPOH+ (a). 

• DMAPO/DMAPOH+ acts as a PTC to promote BV oxidation at the aqueous/toluene 

interface. 
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• DMAPOH+ can act as a dual-function hydrogen bonding organocatalyst, as a Brønsted base 

for electrophilic activation of the peracid, and as a Brønsted acid for nucleophilic activation 

of the ketone, resulting in 6-memebered TS-13 (b). 

• Coordination of the N-oxide to the acid suppresses migration-limited reactions by reducing 

the availability of acid for catalysis, suppressing TS-9 (b). 

• DMAPO-acid coordination suppresses epoxidation by decreasing the availability 

of/weakening the acid required to catalyse this undesired process (c). 

 

Scheme 125: Summary of the proposed role of DMAPO in the BV oxidation reaction of p-methoxyacetophenone 263 and 
(E)-benzalacetone (E)-232. 

 

4.5. Degradation studies on DMAPO and mCPBA in BV 

reactions 

Having established a robust working hypothesis for the mechanism of action of DMAPO in the BV 

reactions of ketones and α,β-unsaturated ketones, the fact that catalyst loadings of > 20 mol% 

DMAPO resulted in lower ketone conversion levels was till puzzling. Further investigations into the 

DMAPO-catalysed BV oxidation reactions of p-methoxyacetophenone 263 using 1.3 equiv. mCPBA 

revealed that they slowed significantly at around 60-65% conversion levels, essentially halting at 

around 70-80%. Consequently, this decrease in conversion rate over time was investigated by 
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carrying out time-course monitoring of conversion levels of BV reactions of 

p-methoxyacetophenone 263 under different conditions (Figure 54). Use of 20 mol% DMAPO with 

1.3 equiv. of commercial mCPBA in the absence/presence of water (or additional mCBA) all gave 

essentially the same conversion levels after 1 h. Use of pure mCPBA initially led to a slightly 

increased reaction rate, but this BV reaction once again slowed at around 30 minutes, ultimately 

achieving the same overall conversion levels seen when commercial mCPBA was used.  

 

Figure 54: Reaction profiles of DMAPO-catalysed BV oxidation reactions of 263 in toluene using 1.3 equiv. mCPBA 
(commercial or purified) with and without H2O and mCBA. See 5.4.1 for example reaction conditions. 

Close examination of the 1H NMR spectra of crude reaction products revealed that no remaining 

mCPBA oxidant was present in any of these BV reactions after a couple of hours, which was 

surprising as at least 0.3 equiv. of mCPBA should be present even after total conversion. This led us 

to consider the fate of the ‘missing’ mCPBA in these BV oxidation reactions, whose degradation was 

confirmed by reacting 15 mol% preformed DMAPO with 1.0 equiv. of purified mCPBA in toluene 

(no ketone substrate) in the presence/absence of mCBA (20 mol%) (Scheme 126). 1H NMR 

spectroscopic analysis revealed that 17% conversion of mCPBA to mCBA occurred after 15 min, 

rising to 44% consumption of mCPBA after 1 h. Addition of just 20 mol% mCBA alongside the 

DMAPO in this reaction (comparable to commercial mCPBA composition) led total conversion of 

the mCPBA component in just 1 h. These results clearly indicated that mixtures of DMAPO and 

mCBA accelerated decomposition of mCPBA, thus providing a simple explanation for the 

incomplete conversion levels observed in BV reactions when higher DMAPO catalyst loadings were 

used, with reactions simply running out of mCPBA oxidant before they could reach completion.  
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Scheme 126: Stability of mCPBA towards standard DMAPO-catalysed BV oxidation reactions 

Close inspection of the 1H NMR spectra of these DMAPO/mCPBA control reactions revealed the 

presence of variable amounts of a new DMAPO-related species (~10-50% depending on reaction 

time and composition) that was identified as 4-(dimethylamino)pyridine N,N-bis-oxide DMAPO2. 

This assignment was based on the general downfield shift of all the signals of DMAPO2 relative to 

DMAPO, with a significant 0.22 ppm difference in the aryl 1H resonances (Hb) that are proximal to 

the dimethylamine oxide fragment (Scheme 127a). This postulate was further supported by HRMS 

analysis of the crude reaction mixture, which identified a new mass ion with a molecular ion of 

m/z = 155.0816, which is consistent with the expected m/z value of 155.0815 for the protonated 

cation of DMAPO2 [M+H]+ C7H11N2O2
+. The NMR spectroscopic data for N,N-bis-oxide DMAPO2 were 

also found to match previously-reported data for DMAPO2 which was previously produced through 

oxidation of DMAP using heterogeneous RuO2 graphene nanoplatelets.464 Although not anticipated, 

there is precedent for the oxidation of dimethylaniline nitrogen atoms to tertiary amine oxides, 

including examples of electron-poor systems such as 4-cyano-dimethylaniline N-oxide 309 

(electronically analogous to DMAPO2), that can be synthesised in high yield through treatment of 

308 with mCPBA at 0 °C (Scheme 127b).465  

 

Scheme 127: (a) Structures of DMAPO catalyst, observed DMAPO2 bis-N-oxide, and unobserved N-peroxo DMAPOOH. (b) 
Efficient N-oxidation of p-cyano dimethylaniline 308 by mCPBA by Jones et al.465 

Importantly, the degree of degradation of mCPBA by DMAPO in these BV reactions proceeded well 

beyond the levels that would be required for stoichiometric oxidation of 15 mol% DMAPO to 

DMAPO2, and so it became clear that DMAPO (or DMAPO2) must be catalysing mCPBA degradation. 

To further investigate this mCPBA consumption process, its stability was monitored in the presence 

of 15 mol% pyridine-N-oxide (PNO), trimethylamine-N-oxide (TMNO) and N-methyl-morpholine-N-
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oxide (NMO) (vide supra).418 As expected, a control reaction involving simply stirring mCPBA in 

toluene led to no appreciable degradation (Table 16, entries 1-2). Mixing 15 mol% PNO with pure 

mCPBA also resulted in no reaction occurring after 1 h with all the mCPBA remaining intact after 

1 h (Table 16, entry 6). Conversely, some mCPBA degradation was observed when both TMNO and 

NMO were exposed to mCPBA, with TMNO reducing mCPBA levels by ~25% after 1 h (Table 16, 

entry 8), whilst use of NMO resulted in 13%-24% mCPBA consumption after 1-2 h (Table 16, entry 

10). 

Table 16: Stability of pure mCPBA and various N-oxide catalysts under standard N-oxide catalyst reaction conditions (no 
ketone substrate). 

 

Entry Catalyst Time Conversion (%)a 

1 None 15 min 0% 

2  1 h 1% 

3 b DMAPO 15 min 17% 

4b  1 h 44% 

5 PNO 15 min 0% 

6  1 h 0% 

7c TMNO 15 min 24% 

8c  1 h 25% 

9c  2 h 45% 

10 NMO 1 h 13% 

11  2 h 24% 

a Remaining mass balance comprised of unreacted mCPBA. b See Scheme 126. c TMNO dihydrate used. 

The fact that 15 mol% DMAPO, TMNO and NMO resulted in consumption of > 15 mol% mCPBA 

oxidant indicated that they were all competent catalysts for producing mCBA. Consequently, a 

mechanistic hypothesis was proposed based on the ability of DMAPO/DMAPOH+ (or 

DMAPO2/DMAPO2H+) to act as a proton-shuttling organocatalyst to catalyse the decomposition of 

mCPBA (Scheme 128a). It is mechanistically plausible that DMAPOH+ would serve to catalyse 

nucleophilic addition of the OH group of one mCPBA molecule to the carbonyl of another mCPBA 

molecule to form a tetrahedral bis-peroxo intermediate 310. The peroxy fragment of intermediate 

310 would then eliminate oxygen with concomitant cleavage of the other peroxide bond to produce 

two molecules. of mCBA and one molecule of O2. This type of mechanism has previously been 
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shown for the decomposition of peracetic acid under mildly basic conditions,466 however it is 

possible that the hydrogen-bonding catalysis provided by DMAPO could allow this decomposition 

pathway to proceed in organic acidic media.  

An alternative mechanism for N-oxide-catalysed mCPBA degradation processes could be due to 

DMAPOH acting as a catalyst to facilitate simple hydrolysis of mCPBA by water. This pathway would 

involve DMAPOH+ acting as a proton transfer catalyst in the same way to facilitate nucleophilic 

attack of water at the carbonyl group of mCPBA (Scheme 128b). This would generate an unstable 

tetrahedral intermediate 311 that would then collapse to produce mCBA through elimination of 

hydrogen peroxide as a leaving group. Evidence for this type of acid-catalysed 

degradation/hydrolysis mechanism occurring for peracetic acid can be found in the chemical 

literature.467 Unfortunately, attempts to observe evolution of gaseous oxygen (bubbles/pressure 

build-up), or use of starch/iodide paper to identify the formation of aqueous hydrogen peroxide 

have so far both proven unsuccessful, and so further work is currently ongoing to elucidate the 

mechanism of DMAPO-catalysed mCPBA degradation.  

 

Scheme 128: (a) A DMAPOH+-catalysed dimerization mechanism for the degradation of mCPBA into mCBA and O2. (b) A 
DMAPOH+-catalysed hydrolysis mechanism for the degradation of mCPBA into mCBA and H2O2. 

 

4.6. Development of second generation N-oxide-catalysed 

BV oxidation conditions 

4.6.1 New N-oxide organocatalyst screens 

Although that N-oxides can catalyse competing decomposition of mCPBA oxidant in these BV 

reactions, it was apparent that the N-oxide initially catalysed BV reactions at a faster rate than it 

catalysed mCPBA decomposition. This meant that increasing the amount of mCPBA oxidant used in 

the N-oxide-catalysed BV reactions of standard ketones should result in their complete 

consumption to afford higher yields of ester products. This hypothesis was confirmed by carrying 
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out DMAPO catalysed BV oxidation of p-methoxyacetophenone 263 using 3.0 equiv. of mCPBA and 

20 mol% DMAP, which gave p-acetoxy anisole 259 in > 99% conversion after 1 h (> 95% mass 

recovery and purity of crude 259). 1H NMR analysis revealed that ~1.0 equiv. of mCPBA was present 

at the end of the BV reaction, indicating that ~2.0 equiv. of oxidant had been consumed (1.0 equiv. 

for the BV reaction, 1.0 equiv. mCPBA for the degradation pathway) (Scheme 129). This result 

represented a significant improvement on the previously reported conditions (20 mol% DMAP, 1.3 

equiv. mCPBA) for BV oxidation which took 4 h to produce 87% conversion to ester 263, with 

significant variability depending on batch, premixing time, mCPBA purity, etc…418  

 

Scheme 129: DMAPO-catalysed BV oxidation of p-methoxyacetophenone 263 using excess mCPBA to overcome mCPBA 
degradation pathway. 

Unfortunately, this N-oxide-catalysed protocol using excess mCPBA oxidant was not suitable for 

carrying out BV oxidation reactions of α,β-unsaturated ketones because of the propensity of their 

vinyl ester products to undergo further epoxidation reactions (see synthesis of FAPM above, 

Scheme 109). Having established that mCPBA was stable to PNO under the BV reaction conditions, 

its use as a less catalytically-active N-oxide, but more stable N-oxide catalyst for the BV oxidation 

of p-methoxyacetophenone 263 (vide supra) was reinvestigated, which might allow use of near-

stoichiometric amounts of mCPBA, rather than a three-fold excess. Pleasingly, use of 20 mol% 

preformed PNO (using 1.30 equiv. of purified mCPBA to simplify reaction profile analysis) led to 

good conversion of p-methoxyacetophenone 263 to ester 259, with conversion levels reaching 40% 

after 1 h and rising steadily over time to reach 88% conversion after 5 h (Table 17, entries 3-7). 

These values compare with 33% and 75% conversion obtained for the uncatalysed BV reaction of 

p-methoxyacetophenone 263 after 1 h and 5 h, respectively, thus demonstrating that use of PNO 

has a beneficial (if limited) effect on BV reactions of p-methoxyacetophenone 263 - despite its low 

overall catalytic activity. TMNO and NMO were also used as N-oxide catalysts for the BV reaction 

of p-methoxyacetophenone 263, which resulted in greater catalytic activity, with TMNO achieving 

63%, 78% and 83% conversion levels after 1, 2 and 3 h, respectively, whilst NMO produced slightly 

lower 54%-69% conversion levels over 1-2 h (Table 17, entries 8-12). The plateauing of conversion 

levels for the NMO catalyst is consistent with previous observations that NMO degrades the mCPBA 

oxidant, and so after a couple of hours little oxidant remains to carry out the desired BV reaction. 

In order to illustrate that the 2nd generation TMNO catalytic protocol was practically useful, 20 mol% 

TMNO and 1.3 equiv. of commercial mCPBA were used to produce p-acetoxy anisole 259 in 91% 

isolated yield (as before, mass recovery and purity after workup were > 95%). This was a clear 

improvement on both the previous DMAPO method,418 as well as the excess oxidant method that 

used 3.0 equiv. mCPBA. These new 2nd generation protocols were highly promising, as they 
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provided highly reproducible N-oxide-catalysed BV oxidation conditions that could be used to 

convert standard electron-rich ketones into ester products in good yields. 

Table 17: N-oxide catalysed BV oxidation reactions of p-methoxyacetophenone 263 using pure mCPBA. 

 

Entrya Catalyst Time Conversion (%)b,c 

1  PNO 1 h 40 (33) 

2  3 h 64 (61) 

3  5 h 88 (75) 

4d TMNO 1 h 63 (33) 

5d  2 h 78 (45) 

6d  3 h 83 (61) 

7 NMO 1 h 54 (33) 

8  2 h 69 (45) 

9d TMNO + 75 wt% mCPBA 1 h 56 

10d  3 h 79 

11d  5 h 97 [91% yield]e 

a mCPBA and catalyst pre-stirred for 15 min. b Conversions relative to initial stoichiometry of relevant components. 
c Values in brackets correspond to conversions for uncatalysed BV reactions. d TMNO dihydrate used. e Isolated yield. 

These new “2nd generation” N-oxide-catalysed BV oxidation conditions for the N-oxide catalysed BV 

oxidation of benzalacetone (E)-232 using 1.3 equiv. pure mCPBA (Table 18). Clear catalysis was 

observed in all cases, with some degree of selectivity observed for formation of vinyl ester 233 in 

all cases, thus indicating that varying degrees of N-oxide-mediated epoxidation suppression was 

occurring. As expected, PNO-catalysed BV reactions of benzalacetone 232 was sluggish, resulting in 

42% consumption of enone 232 in 30 min, which gave a 37:5 (86.5:13.5) ratio of vinyl ester 233 to 

epoxyester 266, rising to 64% conversion with a poorer 51:13 (74.5:25.5) selectivity for 233 over 

266 after 1.5 h, (Table 18, entries 1-2). TMNO and NMO proved to be more catalytically-active 

(Table 18, entries 3-6), achieving 66% and 75% consumption levels after 30 min, producing 61:5 and 

67:8 (91.8:9.2 and 88.1:11.9) selectivity levels for formation of vinyl ester 233 over epoxyester 266, 

respectively. These conversion levels increased over time, achieving 77% for TMNO and 89% for 

NMO after 3 h. Selectivity remained high when TMNO was used as the catalyst, producing an 

approximate 10:1 mixture of vinyl ester 233 to epoxyester 266 (71:7 = 90.1:9.9), whilst selectivity 

in the NMO-catalysed reaction dropped slightly to around 6:1 (76:13 = 82.9:17.1). Therefore, it 
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appears TMNO is not only competent at catalysing the initial BV oxidation reaction, it also 

suppresses most of the competing epoxidation reaction of vinyl ester 266 (as observed for DMAPO). 

Table 18: N-oxide catalysed BV oxidation reactions of (E)-benzalacetone 232 by pure mCPBA. 

 

Entrya Catalyst Time 

Product distributionb 

Enone 

232 

Vinyl ester 

233 

Epoxyester 

266 

1 PNO 30 min 58% 37% 5% 

2  1.5 h 36% 51% 13% 

3c TMNO 30 min 34% 61% 5% 

4c  1.5 h 22% 71% 7% 

5 NMO 30 min 25% 67% 8% 

6  1.5 h 11% 76% 13% 

a mCPBA and catalyst pre-stirred for 15 min. b All distributions were referenced to a TetMB internal standard to ensure 
integration accounted for the entire mass balance. c TMNO dihydrate used. 

A TMNO catalyst loading screen for the BV oxidation reaction of benzalacetone 232 was then 

carried out using 1.30 equiv. commercial mCPBA, with consumption levels increasing to a maximum 

level as the catalyst loading was raised from 0-20%. Promisingly, only a slight drop-off in conversion 

rates were observed as catalyst loadings were raised to 100 mol%, with higher levels of TMNO 

suppressing competing epoxide formation (albeit less effectively than DMAPO). 
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Table 19: TMNO-catalysed BV oxidation reactions of (E)-benzalacetone 232 by commercial mCPBA. 

 

Entrya,b TMNO loading Time 

Product distributionc 

Enone 

232 

Vinyl ester 

233 

Epoxyester 

266 

1d None 30 min 60% 30% 10% 

2d  1.5 h 30% 33% 37% 

3 5% 30 min 49% 46% 5% 

4  1.5 h 30% 57% 13% 

5 10% 30 min 36% 58% 6% 

6  1.5 h 19% 69% 12% 

7e 20% 30 min 24% 70% 7% 

8 e  1.5 h 10% 75% 15% 

9 50% 30 min 39% 58% 3% 

10  1.5 h 22% 72% 6% 

11 100% 30 min 48% 49% 3% 

12  1.5 h 30% 66% 4% 

a mCPBA and catalyst pre-stirred for 15 min. b TMNO dihydrate used. c All distributions were referenced to a TetMB internal 
standard to ensure integration accounted for the entire mass balance. d See Table 12. e See Table 18. 

Considering these catalyst screening results as a whole, it can be seen that TMNO is slightly less 

catalytically active towards the BV oxidation of benzalacetone 232, and slightly less effective as an 

inhibitor of the competing epoxidation pathway than DMAPO. This may be due to the decreased 

acidity of TMNOH+, which has a pKa of ~4.7 when compared to DMAPOH+ which has a pKa of 

3.88.445,468 This order of magnitude difference in acidity will perturb the equilibrium that exists 

between the different protonated N-oxide species and mCBA in these BV reactions (more TMNOH+ 

than DMAPOH+). Therefore, the lower levels of TMNO species present in BV reactions of 

α,β-unsaturated ketones means that this catalytic system is less effective at suppressing competing 

epoxidation reactions than DMAPO. The fact that the most rapid DMAPO-catalysed BV reactions 

are likely to contain more unprotonated DMAPO species suggest that unprotonated N-oxides play 

a critical role as hydrogen bond acceptors to increase the nucleophilicity of mCPBA in these N-oxide 

catalysed BV reactions. However, the lower reactivity of PNO (pKaH of 0.79,448 very little PNOH+ 
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present) in these BV reactions suggests that the presence protonated N-oxide species (such as 

DMAPOH+) also play a key synergistic role in facilitating these catalytic BV reactions. 

 

4.6.2 Second generation TMNO-catalysed BV oxidation reactions of α,β-unsaturated ketones 

Having demonstrated that TMNO was a more stable catalyst in the presence of mCPBA (unlike 

DMAPO which forms DMAPO2) which also resulted in less mCPBA decomposition over time, the 

potential of this slightly less reactive second generation N-oxide catalyst for the BV oxidation of a 

range of α,β-unsaturated ketones for the synthesis of a small series of vinyl esters was explored. 

Treatment of (E)-benzalacetone 232 with 1.5 equiv. mCPBA and 50 mol% TMNO dihydrate gave a 

good 77% isolated yield of (E)-styryl acetate 233 was achieved after 2.5 h. Similarly, applying these 

BV reaction conditions to (Z)-benzalacetone 232 led to 71% yield of (Z)-233 after 40 min, thus 

producing comparable results to those found in DMAPO-catalysed reactions (Scheme 130a). 

50 mol% TMNO was also found to be an effective ‘drop-in’ catalyst replacement for the bis-

oxidation of β-ionone 250 with use of 3.0 equiv. of mCPBA affording the corresponding 

γ,δ-epoxyester 280 with 94% selectivity and in 85% yield (cf. 93% selectivity and 81% yield with 

DMAPO) (Scheme 130b).  

 

Scheme 130: (a) TMNO-catalysed BV oxidation reaction of (E)- and (Z)-232 to the corresponding vinyl esters. (b) sequential 
BV oxidation and epoxidation of β-ionone 250. 

The applicability of these TMNO-catalysed Baeyer-Villiger oxidation conditions was then 

demosntrated for the BV oxidation of a range of geometric isomers of methyl substituted 

benzalacetone analogues 312-314 containing different trisubstituted and tetrasubstituted alkene 

substitution patterns. Consequently, a series of α-methyl benzylidene acetone (E)-312/(Z)-312, 

β-methyl benzylideneacetone (E)-313/(Z)-313, α,β-dimethylbenzylidene acetone (E)-314/(Z)-314 

derivatives of benzalacetone were prepared as substrates to carry out N-oxide catalysed BV 

reactions (Scheme 131). The configuration of each set of diastereomeric enones (and their synthetic 

intermediate precursors) was confirmed by comparison of their 1H NMR spectra to literature 

precedent (where possible) and from analysis of the 4JH-H and 5JH-H coupling constants and nOe 

interactions of their alkene and methyl resonances. 
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Scheme 131: (E)- and (Z)-diastereomers of α-methyl benzylidene acetone (E)-312/(Z)-312, β-methyl benzylideneacetone 
(E)-313/(Z)-313, and α,β-dimethylbenzylidene acetone (E)-314/(Z)-314. 

Diastereoselective synthesis of (E)-α-methyl benzylidene acetone (E)-312 was achieved in 44% yield 

using a sulfuric acid-catalysed Claisen-Schmidt condensation reaction between butanone 315 and 

benzaldehyde 185 in acetic acid under thermodynamic control (Scheme 132a).469 Attempts to 

synthesise (Z)-312 using a Horner-Wadsworth-Emmons (HWE) reaction between the anion of α-

methyl triethylphosphonoacetate 316 and benzaldehyde 185 produced a disappointing 9:1 ratio of 

diastereomers (E)-317 and (Z)-317, which proved to be essentially inseparable by chromatography 

at this ratio (Scheme 132b).  

 

Scheme 132: (a) Aldol condensation reaction for the synthesis of (E)-α-methyl benzylidene acetone (E)-312. (b) (E)-
selective HWE synthesis of 9:1 mixture of α-methyl benzylidene acetones (E)-317:(Z)-317. 

Consequently, an alternative four-step synthesis of (Z)-α-methyl-α,β-unsaturated ester (Z)-312 was 

devised based on a Peterson olefination methodology (Scheme 133). Treatment of the lithium 

enolate of ethyl propionate 318 with diphenylmethylchlorosilane (DPMSCl) resulted in formation 

of C-α-silyl ester 319 in 58% yield.470,471 Deprotonation of α-silyl ester 319 with LDA followed by 

addition of benzaldehyde 185 resulted in a Peterson olefination reaction to produce a 71:29 

mixture of the α,β-unsaturated esters (Z)-317 and (E)-317.472,473 This inseparable mixture was 

subsequently converted to a mixture of Weinreb amides using with Weinreb’s salt 320 and 

isopropylmagnesium chloride. Finally, treatment with MeMgBr produced a mixture of their 

corresponding α,β-unsaturated ketones (Z)-312 and (E)-312 (same dr), which was separated by 

chromatography to afford (Z)-312 in 26% yield over three steps ((E)-312 also isolated in 15% yield, 

41% combined yield over three steps).  
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Scheme 133: Four-step synthesis of (Z)-α-methyl benzylidene acetone (Z)-312. 

A similar three-step synthetic approach was employed to prepare β-methylated α,β-unsaturated 

ketones (E)-313 and (Z)-313 (Scheme 134). First, HWE reaction of the anion of triethylphosphonate 

ester 321 with acetophenone 322 was used to prepare a 6:1 diastereomeric mixture of unsaturated 

esters (E)-323 and (Z)-323, which could be separated by column chromatography to afford (E)-323 

in 69% yield and (Z)-323 in 12% yield, for a combined 81% yield. Each substrate was then converted 

into their corresponding Weinreb amides (E)-324 and (Z)-324 via separate treatment with 

Weinreb’s salt 320 and isopropylmagnesium chloride. Final addition of MeMgBr to each of the 

Weinreb amides then gave β-methyl benzylidenacetones (E)-313 and (Z)-313 in 80% and 66% yield 

over two steps, respectively.  

 

Scheme 134: Three-step syntheses of (E)- and (Z)-β-methyl benzylidene acetone (E)-313 and (Z)-313.  

Synthesis of the α,β-dimethyl-α,β-unsaturated ketones (E)-314 and (Z)-314 (Scheme 135) 

commenced with a sodium ethoxide-mediated HWE reaction between α-methyl 

triethylphosphonate 316 and acetophenone 322 which gave a 61:39 mixture of α,β-unsaturated 

esters (E)-325 and (Z)-325. This mixture was then separated by column chromatography to afford 

(E)-325 and (Z)-325 in 47% and 30% yields, respectively. These diastereomerically-pure esters 

(E)-325 and (Z)-325 were then separately converted into their corresponding Weinreb amides 

(E)-326 and (Z)-326 via treatment with Weinreb’s salt 320 and isopropylmagnesium chloride as 

above. Finally, separate reaction of Weinreb amides (E)-326 and (Z)-326 with MeMgBr gave the 
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desired (E)-α,β-dimethyl benzylidene acetone (E)-314 and (Z)-α,β-methyl benzylidene acetone 

(Z)-314 in 59% and 66% yields, respectively. 

 

Scheme 135: Three-step syntheses of (E)- and (Z)-α,β-dimethyl benzylidene acetone 314. 

Having synthesised all six possible isomers of methyl-benzalacetone 312-314, they were subjected 

to 50 mol% TMNO-catalysed BV oxidation reactions using 1.5 equiv. of mCPBA to produce their 

corresponding vinyl esters. The BV oxidation reactions of α-methyl (E)-312 and β-methyl (E)-313 

proceeded well, affording their desired vinyl esters (E)-327 and (E)-328 in good 79% and 72% yields, 

an improvement on the corresponding 66% and 60% yields that were obtained using DMAPO as a 

catalyst. BV oxidation reactions of both α-methyl (Z)-312 and β-methyl (Z)-313 diastereomers were 

also successful, affording their corresponding vinyl ester (Z)-327 and (Z)-328 in 71% and 38% yield, 

respectively. The BV oxidation reactions of both β-substituted substrates were carried out at 0 oC, 

as carrying out their BV reactions at room temperature resulted in preferential formation of their 

corresponding epoxides. BV oxidation of these β-methyl benzylidene acetone substrates proceeded 

faster than the α-methyl benzylidene acetone substrates, which is likely due to decreased steric 

hindrance towards nucleophilic attack of mCPBA at their carbonyl groups. BV oxidation of both 

dimethyl benzalacetone (E)-314 and (Z)-314 also required cooling to -20 °C and 0 °C to prevent over-

epoxidation pathways from dominating, which allowed dimethyl vinyl esters ((E)-329 and (Z)-329) 

to be obtained in modest 44% and 24% yields, respectively. The BV oxidation reactions of the 

dimethyl benzalacetone analogues were relatively slow, presumably due to significant steric 

crowding around their ketone groups. Although some of the isolated yields obtained are far from 

optimal, the successful syntheses of all six ‘methylated styryl acetates’ is a significant achievement, 

as these type of α-/β-substituted vinyl esters have never previously been synthesised using BV 

oxidation processes (pure α-methyl (Z)-327 and dimethyl (E)-329 and (Z)-329 are novel 

compounds), with alternative synthetic approaches more complex and often poorly 

diastereoselective (for some examples of non-selective syntheses of 312-313 see 474,475). 
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Scheme 136: DMAPO-catalysed BV oxidation of benzalacetone methylated analogues (E)- and (Z)-312-314. Values in 
brackets are yields from 1st generation DMAPO method, 1.8 equiv. mCPBA, 50 mol% DMAPO (see Scheme 110). * Denotes 
compounds not previously purified or reported in the literature. 

 

4.7. Conclusions  

This fourth chapter describes the development of novel DMAPO-catalysed BV oxidation 

methodology for ketones and α,β-unsaturated ketones, that enable good yields of ester and vinyl 

ester products to be produced, with these investigations also providing important insights into the 

role of the N-oxide catalyst in these BV oxidation reactions. Initial reoptimisation studies identified 

conditions that enabled DMAPO to be used as a catalyst for the BV reactions of a series of 

α,β-unsaturated ketones to afford vinyl esters, with this N-oxide shown to accelerate the first step 

of the BV reaction and inhibit competing epoxidation reactions of the vinyl ester products. Catalyst 

stability studies revealed that the dimethylamino group of DMAPO is oxidised by mCPBA to form 

DMAPO2 in these BV reactions, whilst it was also found that DMAPO/DMAPO2 decomposes the 

mCPBA oxidant. These issues could be resolved for the BV reactions of conventional ketones 

through the inclusion of excess mCPBA oxidant to drive reactions to completion. However, 

competing epoxidation reactions of the alkene bonds of the vinyl esters produced in BV reactions 

of α,β-unsaturated ketones meant that a new more stable TMNO catalyst was developed that 

resulted in less mCPBA decomposition which gave better yields of vinyl ester products.  
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Scheme 137: N-oxide catalysed Baeyer-Villiger oxidation of arylidene ketones for the synthesis of complex vinyl esters 

These results describe robust methodology that should be applicable for catalysing the BV reactions 

of a wide range of ketones and α,β-unsaturated ketones to provide esters and vinyl esters in 

improved yields in shorter times. Additionally, investigations into the mechanism of the N-oxide 

catalytic mechanism of DMAPO/TMNO suggest that they may also be useful as proton-transfer 

catalysts to facilitate other types of synthetic transformation where proton-transfer steps are rate 

determining (e.g. transesterification reactions). 

 

4.8. Future work 

Future work will concentrate on trying to identify the optimal stable N-oxide catalyst with improved 

reactivity in these mCPBA facilitated BV reactions of ketones and α,β-unsaturated ketones. In this 

respect, electron-rich pyridine N-oxides such as 4-methoxypyridine N-oxide (pkaH for 4-MeOPNOH+ 

= 2.04), 4-Hydroxypyridine N-oxide (pkaH for 4-HOPNO = 2.54) or 4-aminopyridine N-oxide (pkaH for 

4-APNO = 3.69) will be trialled, whose BV reactivity profiles are also likely to be useful in informing 

mechanistic understanding of these BV reactions further.448,476  

 

Figure 55: Proposed electron-rich pyridine N-oxide catalysts for BV oxidation reactions and associated pKaH’s.448,476 

Once a fully optimised N-oxide catalysed system has been identified, its utility will be demonstrated 

for BV oxidation of a wide range of ketones and α,β-unsaturated ketones to fully demonstrate its 

synthetic utility for medicinal chemistry and natural product applications. For example, the 

potential of this N-oxide-catalysed BV methodology complex vinyl ester building blocks will be 

explored for the synthesis of analogues of nepetoidin natural products that have been shown to 

exhibit important anti-oxidant, anti-fungal, anti-bacterial and anti-coagulant activities.385,477–489 
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Scheme 138: Proposed routes for the synthesis of nepetoidin B analogues. 
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5. EXPERIMENTAL 

At this point, the author wishes to briefly acknowledge and explain the context of this thesis. Quite 

clearly, this thesis describes work from two different research projects. This arose due to a variety 

of circumstances, including that the initial intended project on vinyl esters did not proceed as 

expected due to incorrect/imprecise precedent, as well as the serious disruption caused by the 

global Covid-19 pandemic (including 4 months of lost lab time). Therefore, the first three chapters 

arose from a very successful side-project carried out of the course of the second and third year of 

the PhD, with the lengthy and detailed literature review of the first chapter being written 

predominantly during the first national lockdown when access to labs was not allowed. The fourth 

and final research chapter presents work from the author’s original PhD project, focusing on the 

novel synthesis and applications of vinyl esters. As shown in that chapter, a number of assumptions 

and prior work were found to be inaccurate/incorrect, and so much of the work carried out at the 

beginning of this PhD were voided or set in a new context, and so it was decided to exclude them 

and other related vinyl ester side-projects for this thesis for the sake of brevity and clarity. 

  

5.1. General experimental details 

Unless preparative details are given, reagents and solvents were obtained from commercial 

suppliers and used without further purification. Reactions were performed without air exclusion or 

drying, at room temperature and with magnetic stirring, unless otherwise stated. Anhydrous MgSO4 

or Na2SO4 were used as a drying agent for organic solutions. Thin layer chromatography (TLC) was 

carried out on Macherey-Nagel aluminium-backed plates that were precoated with silica. 

Compounds were visualised by either quenching of UV fluorescence at 254 nm, or by staining 

(KMnO4, PMA, Curcumin,490 I2) dip followed by gentle heating. Purification by flash column 

chromatography was performed using high-purity grade silica gel (60 Å pore size, 40-75 μm particle 

size). In the context of purification, PE refers to Petroleum ether 40-60 °C.  

Capillary melting points are reported uncorrected to the nearest °C, and were determined using a 

Stuart digital SMP10 melting point apparatus. Optical rotations were measured using an Optical 

Activity Ltd AA-10 Series Automatic Polarimeter, with a path length of 1 dm, and with concentration 

(c) quoted in g/100 mL.  

Nuclear Magnetic Resonance (NMR) spectroscopy experiments were performed in deuterated 

solvent at 298 K (unless stated otherwise) on either a Bruker Avance, 300, 400 or 500 MHz 

spectrometer or an Agilent ProPulse 500 MHz spectrometer. 1H, 13C, 11B and 19F NMR chemical shifts 

(δ) are quoted in parts per million (ppm) and are referenced to either the residual solvent peak or 

tetramethylsilane (TMS) when possible. Coupling constants (J) are quoted in Hz.  
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Infrared (IR) spectra were recorded using a PerkinElmer Spectrum 100 FTIR spectrometer fitted 

with a Universal ATR FTIR accessory, with samples run neat and the most relevant, characteristic 

absorbances quoted as  in cm-1. 

High resolution mass spectrometry (HRMS) results were acquired on an externally calibrated Bruker 

Daltonics maXis HDTM UHR-TOF mass spectrometer coupled to an electrospray source (ESI-TOF), or 

an Agilent QTOF 6545 with Jetstream ESI. In most cases molecular ions were detected either in 

positive mode as their protonated, sodiated, or ammonium adduct forms, or in negative mode as 

the deprotonated of acetate adduct species. Comment and associated references are provided 

where more complex ionic forms were detected. 

All compounds that were synthesised or purified in this thesis are characterised below. Where 

compounds had been previously characterised in the literature, 1H NMR and 13C NMR spectroscopic 

analysis was carried out (where possible). 11B and 19F NMR spectra were also recorded where 

possible. Where appropriate, melting point (solid products) and optical rotation (enantiopure chiral 

compounds) were measured. In the case where compounds were novel (not known in the 

literature, or where complete and suitable characterisation data could not be found, full 

characterisation was carried out, including the above methods, as well as FTIR and HRMS. 

Agreement between experimental data and literature was assessed on a case by case basis, but is 

usually: within 2-3 degrees for uncorrected melting points; within 0.06 ppm for chemical shifts and 

0.2 Hz for coupling constants in 1H NMR spectra; within 1.0 ppm for 13C NMR chemical sifts. 

5.2. Experimental details for Bull-James assemblies in 

chapters 1-3 

5.2.1 NMR spectroscopy experimental details 

By default, all 1D 1H NMR spectra were generated from 8 scans, unless otherwise stated. For low-

concentration experiments, the number of scans was increased as follows: 16 scans for 12.5 mM; 

32 scans for 5.0 mM; 64 scans for 2.5 mM; and 128 scans for 1.0 mM. 

Quantitative fluorine NMR spectroscopy was carried using 16 scan proton-decoupled 19F{1H} NMR 

experiments, with an increased relaxation time T1 = 30 s. 

Diffusion measurements were made on a Bruker advance 500 MHz spectrometer, without sample 

spinning using the convection-compensated double-stimulated echo (DSTEBPGP3S) sequence491,492 

employing sine2 gradient pulses. The gradient strength was incremented linearly in 8 steps from 

10% to 90% power (4.491 to 61.75 G/cm); the diffusion delay big delta, ∆, was set to 50 ms; little 

delta, δ, to 2 ms; the eddy current delay, Te, to 5 ms; the recycle time (Aq + d1) totalled 7.45 s; and 

the number of scans per gradient increment was 16. 

Numerical values for D were calculated from the imine proton resonance integrations of IBE 

complexes using Dynamics Centre 2.5.2. MW and Rhyd were predicted from D using the Manchester 

NMR Methodology Group’s SEGWE calculator.327,328 
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5.2.2 Experimental details for the chiral derivatization of Ellman’s sulfinamide 129a 

with BINOL 9 

General procedure 1 for the three-component assembly of Ellman’s sulfinamide 129a, 2-FPBA 1 

and BINOL 9. 

Ellman’s sulfinamide 129 (1.0 mL, 0.1 M in CDCl3 with ~6 mM TMS) of known enantiopurity was 

added to a mixture of 2-FPBA 1 (15 mg, 0.10 mmol, 1.0 equiv.) and enantiopure (R)- or (S)-BINOL 9 

(34 mg, 0.11 mmol, 1.2 equiv.) and the mixture was left to stir for 1 h at room temperature. After 

this time, a 600 µL aliquot was removed and its 500 MHz 1H NMR spectrum was recorded 

immediately. 

Scalemic and racemic samples of Ellman’s sulfinamide 129a were prepared from commercially 

available enantiopure samples of (R)- and (S)-tert-butyl sulfinamide 129a. 100 mM solutions of 

enantiopure 129a in CDCl3 were prepared, and then combined to produce scalemic samples of 

129a, the ee of which was determined by the ratio of enantiopure stock solutions. 

For concentrations screening experiments dilute samples were prepared directly from this stock 

solution as follows (example illustrated for the preparation of a 25 mM sample): A 150 µL aliquot 

was removed from the stock solution and transferred to an NMR tube, before being diluted to 

600 µL with CDCl3 (525 µL, no added TMS). A 500 MHz 1H NMR spectrum was recorded immediately. 

 

5.2.3 Experimental details for the stepwise chiral derivatization of Ellman’s sulfinamide 

129a with pinanediol 180 

General procedure 2 for the three-component assembly of sulfinamides 129a, FPBA templates 

and pinanediol 180. 

A formylphenylboronic acid (0.12 mmol, 1.2 equiv.) and anhydrous MgSO4 (200 mg) were added to 

a stirred solution of sulfinamide 129a-h (0.1 mmol, 1.0 equiv.) in CDCl3 (1.0 mL, ~6 mM TMS internal 

standard). The reaction was stirred at room temperature for 1 h, before addition of pinanediol 180 

(22 mg, 0.13 mmol, 1.3 equiv.). The reaction was then stirred for a further 10 min, before the 

reaction was filtered and the 500 MHz 1H NMR spectrum and/or 470 MHz 19F spectrum of the 

resultant iminoboronate esters were acquired. 

Preparation of scalemic, racemic and dilute samples was carried out following the same procedure 

as detailed previously. 
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5.2.4  Procedures for the chiral derivatization of non-sulfinamide analytes 

General procedure 3 for three-component derivatization of 4-methoxy-α-methylbenzylamine 3b, 

as used to prepare the spectra for Figure 3, adapted from Pérez-Fuertes et al.116 

4-Methoxy-α-methylbenzylamine 3b (1.0 mL, 0.10 M in CDCl3 with ~6 mM TMS internal standard, 

variable ee) was added to 2-formylphenyl boronic acid 1 (15 mg, 0.10 mmol, 1.0 equiv.) and 

(S)-BINOL 9 (31.5 mg, 0.11 mmol, 1.1 equiv.). The reaction was stirred for 10 min before an aliquot 

(0.7 mL) was removed and the 500 MHz 1H NMR spectrum the resultant iminoboronate esters 

acquired. 

Preparation of scalemic, racemic and dilute samples was carried out following the same procedure 

as detailed previously.  

Three-component assemblies of amines, diamines and O-silyl amino alcohols with pinanediol 

(Scheme 87) were carried following the same general procedure with the appropriate reagents. The 

chiral derivatization of hydroxylamines was carried out with the addition of Cs2CO3 (49 mg, 

0.11 mmol) following the published methodology.143  

Three-component assembly of α-quaternary amino ester hydrochloride salts 208 and 210 was 

carried out using K2CO3 (2.0 equiv., 28 mg, 0.20 mmol). 

 

5.3. Synthetic and characterization details for chapter 3 

Where certain 13C signals could not be observed by 1D NMR due to low solubility, adjacent 

quadrupolar 11B nuclei or lack of adjacent 1H nuclei (no nOe enhancement), their chemical shift was 

deduced from 2D HMBC experiments, where possible. This approach was validated by variable 

temperature (VT) 1D NMR of boronate ester (3aS,4S,6S,7aR)-182 (see Appendix D). Formyl boronic 

acids were detected by HRMS as their deprotonated methyl hydrogen boronate ions [M+13]– (from 

substitution by methanol and deprotonation), as reported by Wang et al.493 

 

5.3.1 Synthesis of (rac)-sulfinamides 129c-h 

General procedure 4 for the synthesis of (rac)-sulfinamides 129c-h from thiols by the method of 

Di et al.348 

N-bromosuccinimide (2.0 equiv.) was added to a stirred solution of the thiol (1.0 equiv.) in 

CH2Cl2/MeOH (1:1, 0.1 M) at 0 °C. The reaction was allowed to warm to room temperature and 

reaction progress was monitored by TLC. Upon completion (15 min - 1 h) the reaction mixture was 

quenched and diluted by half through the addition of saturated Na2CO3. The layers were separated, 

and the aqueous phase extracted twice with CH2Cl2. The combined organics were then washed with 

brine, dried (MgSO4), filtered, and concentrated to dryness in vacuo to afford a methyl sulfinate 

product 189c-h as a clear oil. 
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The crude methyl sulfinate (1.0 equiv.) was dissolved in anhydrous THF (0.33 M) and cooled 

to -78 °C. LiHMDS (1.5 equiv., 1M in THF) was then added dropwise over 5 min and the reaction left 

to stir at -78 °C for 1.5 h. After this time the reaction was quenched with saturated NH4Cl, allowed 

to warm to room temperature and left to stir. After 30 min, the reaction was diluted with EtOAc, 

the aqueous phase extracted twice with EtOAc, and the combined organics were washed with 

brine, dried (MgSO4), filtered and concentrated in vacuo. The crude product was purified by either 

recrystallization or column chromatography to afford the desired sulfinamide 129c-h. 

 

(rac)-Cyclopentanesulfinamide 129c. 

 

General procedure 4 was followed using cyclopentanethiol (334 μL, 3.12 mmol). Recrystallisation 

from 1:10 EtOAc/n-hexane afforded the title compound 129c (299 mg, 2.24 mmol) as a white solid 

in 72% yield. All characterisation data were consistent with previous literature reports.344  

m.p.: 86-88 °C (lit.344 82-83 °C); IR (neat): 3189, 3089, 2957, 2868, 1450, 1166, 1001, 908, 697 cm-1; 

1H NMR (500 MHz, CDCl3) δH 3.91 (bs, 2H, -NH2), 3.05 (p, 1H, J = 7.5, SCH), 2.04 (dt, 2H, J = 13.9, 6.9, 

CH2), 1.98-1.88 (m, 2H, CH2), 1.83-1.59 (m, 4H, CH2); 13C{1H} NMR (126 MHz, CDCl3) δC 65.2, 27.7, 

26.1, 25.9, 25.6. 

 

(rac)-Naphthalene-2-sulfinamide 129d. 

 

General procedure 4 was followed using naphthalene-2-thiol (500 mg, 3.12 mmol). Recrystallisation 

from 2:1 EtOAc/n-hexane afforded the title compound 129d (408 mg, 2.13 mmol) as a white solid 

in 63% yield.  

m.p.: 134-138 °C (decomposed); IR (neat): 3292, 3155, 3063, 1589, 1560, 1500, 1344, 1014, 822, 

739 cm-1; 1H NMR (500 MHz, CDCl3) δH 8.34 (s, 1H,ArH), 7.99-7.89 (m, 3H, ArH), 7.71 (dd, 1H, ArH), 

7.65-7.55 (m, 2H, ArH); 4.34 (bs, 2H, -NH2); 13C{1H} NMR (126 MHz, CDCl3) δC 143.6, 134.6, 132.8, 

129.2, 129.0, 128.1, 128.1, 127.3, 125.8, 121.9; HRMS (ESI+): Calculated for [M+Na]+ C10H9NOSNa+: 

214.0297; Found: 214.0288. 

 



196 
 

(rac)-4-Fluorobenzenesulfinamide 129e.  

 

General procedure 4 was followed using 4-fluorothiophenol (332 μL, 3.12 mmol). Recrystallization 

from 1:1 EtOAc/n-hexane afforded the title compound 129e (268 mg, 1.68 mmol) as a white solid 

in 54% yield. Characterisation data were generally consistent with previous literature reports, 

despite some variation.494,495  

m.p.: 134-139 °C (lit.494,495 128, 144.8-146.8 °C); IR (neat): 3269, 3154, 3065, 1587, 1481, 1229, 1211, 

1156, 1087, 1005, 887, 834, 667 cm-1; 1H NMR (500 MHz, CDCl3) δH 7.79-7.71 (dd, 2H, J = 8.7, 5.1, 

ArH), 7.24-7.15 (app. t, exp. dd, 2H, J = 8.6 Hz, ArH), 4.32 (bs, 2H,NH2) ; 13C{1H} NMR (126 MHz, 

CDCl3) δC 164.6 (d, 1JF-C = 251.7), 142.2, 128.0 (d, 3JF-C = 9.0), 116.2 (d, 2JF-C = 22.4); 19F NMR (471 MHz, 

CDCl3) δF -113.8 (tt, J = 8.4, 5.1). 

 

(rac)-4-Methoxybenzenesulfinamide 129f. 

 

General procedure 4 was followed using 4-methoxythiophenol (383 μL, 3.12 mmol). 

Recrystallization from 1:2 EtOAc/n-hexane afforded the title compound 129f (262 mg, 1.53 mmol) 

as a white solid in 49% yield. All characterisation data were consistent with previous literature 

reports.283  

m.p.: 127-131 °C (lit.283 129-131 °C); IR (neat): 3261, 3067, 2840, 1591, 1490, 1450, 1245, 1025, 

1001, 823, 794 cm-1 ; 1H NMR (500 MHz, CDCl3) δH 7.68 (d, 2H, J = 8.8, ArH), 7.02 (d, 2H, J = 8.8, ArH), 

4.24 (bs, 2H, NH2), 3.87 (s, 3H, OCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 162.1, 138.0, 127.2, 114.4, 

55.7. 

 

(rac)-Hexane-1-sulfinamide 129g.  

 

General procedure 4 was followed using 1-hexanethiol (1.421 mL, 10.0 mmol). Recrystallization 

from n-hexane afforded the title compound 129g (356 mg, 2.38 mmol) as an off-white solid in 24% 

yield. Note: Although crude mass recovery was high, the low melting point of this novel sulfinamide 

led to significant issues during recrystallisation, leading to a decreased yield. 



197 
 

m.p.: 41-42 °C; IR (neat): 3282, 3200, 2954, 2924, 2849, 1553, 1464, 1417, 1066, 1035, 1001, 890 

cm-1; 1H NMR (500 MHz, CDCl3) δH 3.99 (bs, 2H, NH2), 2.73 (2 × ddd, 2H, J = 13.0, 8.5, 6.7, SCH2), 

1.79-1.63 (m, 2H, SCH2CH2), 1.50-1.37 (m, 2H, SCH2CH2CH2), 1.36-1.29 (m, 4H, MeCH2CH2), 0.91-

0.87 (m, 3H, CH3); 13C{1H} NMR (126 MHz, CDCl3) δC 57.9, 31.5, 28.4, 22.9, 22.5, 14.1; HRMS (ESI+): 

Calculated for [M+NH4]+ C6H19N2OS+: 167.1213; Found: 167.1215. 

 

(rac)-Pyridine-2-sulfinamide 129h. 

 

General procedure 4 was followed using 2-mercapto pyridine (1.998 g, 18.0 mmol). 

Recrystallization from CH2Cl2 afforded the title compound 129h (128 mg, 0.972 mmol) as a white 

solid in 5% yield. Characterisation data were generally consistent with previous literature reports, 

despite some variation.496 Note: Although crude mass recovery of the methyl sulfinate and 

sulfinamide were initially high, significant degradation was observed on standing and during 

handling, presumed to be undesired reaction/polymerization between the pyridine and the 

sulfinate/sulfinamide. 

m.p.: 102-104 °C (lit.496 98-100 °C); IR (neat): 3306, 3184, 3080, 1573, 1458, 1419, 1024, 991, 

775 cm-1; 1H NMR (500 MHz, CDCl3) δH 8.71 (ddd, 1H, J = 4.7, 4.7, 1.5, ArH), 7.99-7.89 (m, 2H, ArH), 

7.44 (ddd, 1H, J = 7.4, 4.7, 1.4, ArH), 4.66 (bs, 2H, NH2); 13C{1H} NMR (126 MHz, CDCl3) δC 164.5, 

150.0, 138.1, 125.6, 120.6; HRMS (ESI+): Calculated for [M+Na]+ C5H6N2OSNa+: 165.0093; Found: 

165.0094. 

 

5.3.2 Synthesis of fluoro-2-FPBA F-1 templates  

General procedure 5 for the synthesis of 1-bromo-2-(dimethoxymethyl)-fluorobenzenes 199a-d 

by the method of Kowalska et al.120 

H2SO4 (0.093 equiv., 0.47 mmol, 25 μL) and trimethyl orthoformate (1.3 equiv., 6.50 mmol, 711 μL) 

were added to a stirred solution of a 2-bromo-fluorobenzaldehyde 198 (1.0 equiv., 5.00 mmol, 

1.02 g) in MeOH (2.0 mL). The reaction was heated at reflux for 1.5 h, before cooling to room 

temperature and quenching with triethylamine (1.00 mL, 7.17 mmol). The volatiles were removed 

in vacuo, and the resulting mixture dissolved in water (30 mL) and extracted with Et2O (30 mL). The 

organics were washed with water (3 × 30 mL) and brine (30 mL), dried (MgSO4), filtered, and 

concentrated in vacuo to afford the desired dimethyl acetals 199a-d as clear oils. 
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2-Bromo-1-(dimethoxymethyl)-6-fluorobenzene 199a. 

 

General procedure 5 was followed using 2-bromo-6-fluorobenzaldehyde 198a (5.00 mmol, 1.02 g), 

affording the title compound 199a (1.09 g, 4.41 mmol) as a colourless oil in 88% yield.  

IR (neat): 2930, 2830, 1602, 1572, 1455, 1376, 1249, 1201, 1102, 1062, 168, 893, 781, 730 cm-1; 1H 

NMR (500 MHz, CDCl3) δH 7.73 (dt, 1H, J = 8.0, 1.1, ArH), 7.17 (td, 1H, J = 8.2, 5.6, ArH), 7.05 (dd, 1H, 

J = 10.4, 8.3, 1.2, ArH), 5.71 (d, 1H, J = 1.2, MeOCH), 3.49 (s, 6H, 2 × OCH3); 13C{1H} NMR (126 MHz, 

CDCl3) δC 161.5 (d, 1JF-C = 256.3), 131.0 (d, JF-C = 9.9), 129.2 (d, JF-C = 3.4), 125.4 (d, JF-C = 14.4), 123.5 

(d, JF-C = 5.3), 116.2 (d, JF-C = 23.0), 104.9, 55.7; 19F NMR (470 MHz, CDCl3) δF -111.1 (dd, J = 10.6, 

5.6); HRMS (ESI+): Calculated for [M+Na]+ C9H10O2BrFNa+: 270.9740; Found: 270.9749. 

 

2-Bromo-1-(dimethoxymethyl)-5-fluorobenzene 199b. 

 

General procedure 5 was followed using 2-bromo-5-fluorobenzaldehyde 198b (5.00 mmol, 1.02 g), 

affording the title compound 199b (1.16 g, 4.65 mmol) as a colourless oil in 95% yield.  

IR (neat): 2935, 2832, 1581, 1464, 1365, 1264,1154, 1095, 1055, 972, 880 cm-1; 1H NMR (300 MHz, 

CDCl3) δH 7.51 (dd, 1H, J = 8.8, 5.1, ArH), 7.35 (dd, 1H, J = 9.4, 3.1, ArH), 6.93, ddd, J = 8.8, 7.7, 3.1, 

ArH), 5.50 (d, 1H, J = 1.2, MeCOCH), 3.38 (s, 6H, 2 × OCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 162.1 

(d, 1JF-C = 247.2), 139.3 (d, JF-C = 7.0), 134.2 (d, JF-C = 7.7), 117.4 (d, JF-C = 22.7), 116.9 (d, JF-C = 3.2), 

115.9 (d, JF-C = 24.3), 102.4, 54.0; 19F NMR (470 MHz, CDCl3) δF -114.3; HRMS (ESI+): Calculated for 

[M+Na]+ C9H10O2BrFNa+: 270.9740; Found: 270.9748. 

 

2-Bromo-1-(dimethoxymethyl)-4-fluorobenzene 199c.  

 

General procedure 5 was followed using 2-bromo-4-fluorobenzaldehyde 198c (5.00 mmol, 1.02 g), 

affording the title compound 199c (1.16 g, 4.65 mmol) as a colourless oil in 93% yield.  
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IR (neat): 2937, 2826, 1599, 1484, 1361, 1226, 1193, 1103, 1054, 982, 857, 812 cm-1; 1H NMR 

(500 MHz, CDCl3) δH 7.60 (dd, 1H, J = 8.7, 6.2, ArH), 7.31 (dd, 1H, J = 8.2, 2.6, ArH), 7.05 (td, J = 8.3, 

2.6, ArH), 5.52 (s, 1H, MeOCH), 3.37 (s, 6H, 2 × OCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 162.5 (d, 

1JF-C = 251.8), 133.2 (d, JF-C = 3.6), 129.7 (d, JF-C = 8.5), 123.2 (d, JF-C = 9.4), 120.2 (d, JF-C = 24.8), 114.5 

(d, JF-C = 20.9), 102.6, 54.0; 19F NMR (470 MHz, CDCl3) δF -111.4; HRMS (ESI+): Calculated for [M+Na]+ 

C9H10O2BrFNa+: 270.9740; Found: 270.9747. 

 

2-Bromo-1-(dimethoxymethyl)-3-fluorobenzene 199d.  

 

General procedure 5 was followed using 2-bromo-3-fluorobenzaldehyde 198d (5.00 mmol, 1.02 g), 

affording the title compound 199d (1.18 g, 4.75 mmol) as a colourless oil in 95% yield.  

IR (neat): 2959, 2835, 1577, 1464, 1436, 1357, 1261, 1115, 1035, 1004, 825, 776 cm-1; 1H NMR 

(500 MHz, CDCl3) δH 7.43-7.39 (m, 1H, ArH), 7.34-7.28 (m, 1H, ArH), 7.14-7.09 (m, 1H, ArH), 5.57 (s, 

1H, MeOCH), 3.39 (s, 6H, 2 × OCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 159.2 (d, 1JF-C = 246.5), 139.4, 

128.3 (d, JF-C = 7.9), 123.7 (d, JF-C = 3.3), 116.5 (d, JF-C = 22.6), 110.2 (d, JF-C = 21.3), 102.6 (d, JF-C = 3.6), 

54.1; 19F NMR (470 MHz, CDCl3) δF -105.5 (dd, J = 8.3, 5.1); HRMS (ESI+): Calculated for [M+Na]+ 

C9H10O2BrFNa+: 270.9740; Found: 270.9741. 

 

General procedure 6 for the synthesis of fluoro-2-formylphenyl boronic acids F-1 by the method 

of Kowalska et al. 120 

n-Butyllithium (2.5 M in THF, 1.15 equiv.) was added dropwise (15 min) to a stirred solution of a 

fluoro-1-bromo-2-(dimethoxymethyl)-fluorobenzene 199 (1.0 equiv.) in anhydrous Et2O/THF (5:1 

mixture, 0.33 M) under an inert N2 atmosphere. The resultant solution was then cooled to -78 °C, 

and stirred for 1 h, before addition of trimethyl borate (1.15 equiv.). The reaction was warmed to 

room temperature and allowed to stir for 15 min, before acidifying to pH 3 using HCl (3M, aq.). The 

reaction was diluted with Et2O, and the aqueous phase extracted 3 times. The combined organics 

were washed with brine, dried over MgSO4, and concentrated to dryness, with the resultant crude 

product recrystallised from EtOAc/hexane to afford the desired formyl boronic acid F-1 (observed 

in tautomeric equilibrium with the related benzoxaborole minor product by NMR). Note: Due to the 

inherent reactivity of 2-FPBA and its derivatives towards nucleophilic attack, therefore fresh spectra 

should be prepared for NMR analysis in acetone – d6, and acetone should not be used as a solvent 

for handling/transferring/dissolving these compounds, as aldol condensation will occur. 
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(3-Fluoro-2-formylphenyl)boronic acid 3-F-1.  

 

General procedure 6 was followed using 1-bromo-2-(dimethoxymethyl)-3-fluorobenzene 199a 

(1.09 g, 4.41 mmol), affording the title compound 3-F-1 (444 mg, 2.64 mmol) as a white solid in 60% 

yield. 40% benzoxaborole tautomer was observed in the NMR spectrum. All characterisation data 

were consistent with previous literature reports.119 

m.p.: 125-128 °C (lit.119 127-129 °C); IR (neat): 3309, 3071, 2943, 1675, 1561, 1427, 1294, 1235, 

1184, 1083, 908, 825, 793, 732 cm-1; 1H NMR (500 MHz, acetone–d6) δH 10.38 (s, 1H, OCH, major), 

8.42 (bs, 1H, BOH, minor), 7.77-7.61 (m, 1H, ArH, major), 7.54-7.41 (m, 2H major + 1H minor, ArH), 

7.32 (bs, 2H, BOH, major), 7.26 (ddd, 1H, J = 11.2, 8.3, 1.1, ArH, major), 7.21 (ddd, 1H, J = 9.8, 7.9, 

1.1, ArH, minor), 6.45 (s, 1H, HCO, minor), 6.13 (bs, 1H, COH, minor); 11B NMR (375.5 MHz, acetone–

d6) δB 31.2 (minor), 29.5 (major); 19F NMR (470 MHz, acetone–d6) δF -120.8 (dd, J = 9.9, 4.2, minor), 

-122.4 (dd, J = 121.1, 5.3, major). HRMS (ESI-): Calculated for [M-H2O+OMe]– C8H7FBO3
–: 181.0478; 

Found: 181.0475. 13C NMR spectrum is not reported, as the signal intensity was too weak due to 

the combined effect of tautomerization, 19F splitting and the adjacent 11B. 

 

(4-Fluoro-2-formylphenyl)boronic acid 4-F-1. 

 

General procedure 6 was followed using 1-bromo-2-(dimethoxymethyl)-4-fluorobenzene 199b 

(1.18 g, 4.75 mmol), affording the title compound 4-F-1 (410 mg, 2.44 mmol) as a white solid in 55% 

yield. 9% benzoxaborole tautomer was observed in the NMR spectrum. All characterisation data 

were consistent with previous literature reports.162 

m.p.: 123-126 °C (lit.162 123-125 °C); IR (neat): 3217, 1670, 1601, 1578, 1428, 1366, 1339, 1273, 

1221, 1156, 1088, 1039, 886, 829, 768, 727 cm-1; 1H NMR (500 MHz, acetone-d6) δH 10.33 (s, 1H, 

OCH, major), 8.28 (bs, 1H, BOH, minor), 7.93 (dd, 1H, J = 8.3, 5.9, ArH, major), 7.74 (bs, 2H, BOH, 

major), 7.74 (dd, 1H, J = 8.0, 5.7, ArH, minor), 7.66 (dd, 1H, J = 9.6, 7.2, ArH, major), 7.44 (td, J = 8.4, 

2.7, ArH, major), 7.21-7.13 (m, 2H, ArH, minor); 11B NMR (375.5 MHz, acetone–d6) δB 31.3 (minor), 

28.9 (major); 19F NMR (470 MHz, acetone–d6) δF -111.2 (minor), -111.7 (major); HRMS (ESI-): 

Calculated for [M-H2O+OMe]– C8H7FBO3
–: 181.0478; Found: 181.0471. 13C NMR spectrum is not 

reported, as the signal intensity was too weak due to the combined effect of tautomerization, 19F 

splitting and the adjacent 11B. 
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(5-Fluoro-2-formylphenyl)boronic acid 5-F-1.  

 

General procedure 6 was followed using 1-bromo-2-(dimethoxymethyl)-5-fluorobenzene 199c 

(1.16 g, 4.65 mmol), affording the title compound 5-F-1 (388 mg, 2.31 mmol) as a white solid in 50% 

yield. 4% benzoxaborole tautomer was observed in the NMR spectrum. 

m.p.: 126-131 °C; IR (neat): 3309, 3069, 1669, 1596, 1571, 1419, 1344, 1226, 1167, 1103, 1044, 905, 

797, 737, 692 cm-1; 1H NMR (500 MHz, acetone-d6) δH 10.17 (s, 1H, OCH, major), 8.06 (m, 1H major 

+ 1H minor, ArH), 7.84 (s, 2H, BOH, major), 7.56 (dd, 1H, J = 9.5, 2.7, ArH, major), 7.50 (dd, 1H, 

J = 8.3, 4.7, ArH, minor), 7.37 (td, 1H, J = 8.4, 2.7, ArH, major), 7.31-7.22 (m, 1H, ArH, minor), 6.27 

(bs, 1H, OCH, minor) (some signals not observed due to low concentration of minor tautomer)19; 
11B NMR (375.5 MHz, acetone–d6) δB 28.9 (major), 20.2 (minor); 19F NMR (470 MHz, acetone-d6) δF 

-106.7 (dd, J = 8.1, 8.1, major), -116.1 (minor); HRMS (ESI-): Calculated for [M-H2O+OMe]– 

C8H7FBO3
–: 181.0478; Found: 181.0473. 13C NMR spectrum is not reported, as the signal intensity 

was too weak due to the combined effect of tautomerization, 19F splitting and the adjacent 11B. 

 

(6-Fluoro-2-formylphenyl)boronic acid 6-F-1. 

 

General procedure 6 was followed using 1-bromo-2-(dimethoxymethyl)-6-fluorobenzene 199d 

(1.18 g, 4.75 mmol), affording the title compound 6-F-1 (223 mg, 1.33 mmol) as a white solid in 28% 

yield. 7% benzoxaborole tautomer was observed in the NMR spectrum. 

m.p.: 153-156 °C; IR (neat): 3255, 2848, 1674, 1601, 1567, 1451, 1324, 1301, 1231, 1213, 1160, 

1040, 786, 730, 681 cm-1; 1H NMR (500 MHz, acetone-d6) δH 10.04 (d, 1H, J = 2.3, OCH, major), 7.75 

(d, 1H, J = 7.4, ArH, major), 7.64-7.54 (m, 1H major + 1H minor, ArH), 7.38-7.24 (m, 1H major + 1H 

minor, ArH), 7.06 (t, 1H, J = 8.1, ArH, major), 6.26 (bs, 1H, OCH, minor) (some signals not observed 

due to low concentration of minor tautomer19); 11B NMR (375.5 MHz, acetone–d6) δB 29.3 (major), 

20.2 (minor); 19F NMR (470 MHz, acetone-d6) δF -105.6 (minor), -106.1 (t, J = 6.7, major); HRMS 

(ESI-): Calculated for [M-H2O+OMe]– C8H7FBO3
–: 181.0478; Found: 181.0473. 13C NMR spectrum is 

not reported, as the signal intensity was too weak due to the combined effect of tautomerization, 
19F splitting and the adjacent 11B. 
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5.3.3 Synthesis and characterization of two-and three-component products 

General procedure 7 for the synthesis of 2-formyl boronate esters 182 and 3-F-182.  

(1S,2S,3R,5S)-Pinanediol 180 (1.0 equiv.) was added to a stirred suspension of a 2-formylbenzene 

boronic acid 2 (1.1 equiv.) in CHCl3 (0.10 M). After 15 min, the reaction was diluted with an 

equivalent amount of CH2Cl2 and passed through a silica plug. The plug was washed with CH2Cl2 

until no more product eluted and the solvent removed in vacuo to afford the desired boronate ester 

as a clear oil. 

 

2-((3aS,4S,6S,7aR)-3a,5,5-Trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-2-

yl)benzaldehyde 182.  

 

General procedure 7 was followed using 2-FPBA 1 (83 mg, 0.55 mmol) and (1S, 2S, 3R, 5S)-

pinanediol 180 (85 mg, 0.5 mmol), affording the title compound (3aS,4S,6S,7aR)-182 (110 mg, 

0.39 mmol) as a clear oil in 70% yield.  

[α]D
23= +18 (c 1.0, CHCl3); IR (neat): 2921, 2870, 1693, 1593, 1488, 1370, 1337, 1236, 1076, 754, 666 

cm-1; 1H NMR (500 MHz, CDCl3) δH 10.55 (s, 1H, OCH), 7.98-7.95 (m, 1H, ArH), 7.90-7.86 (m, 1H,ArH), 

7.62-7.53 (m, 2H, ArH), 4.52 (dd, 1H, J = 8.8, 1.9, H-7a), 2.48-2.39 (m, 1H, H-7), 2.32-2.23 (m, 1H, 

H-8), 2.16 (dd, 1H, J = 6.0, 4.9, H-4), 2.04-1.94 (m, 2H, H-6 + H-7), 1.53 (s, 3H, H-9), 1.33 (d, 1H, 

J = 10.8, H-8), 1.32 (s, 3H, H-10/11), 0.90 (s, 3H, H-10/11); 13C{1H} NMR (126 MHz, CDCl3) δC 194.7, 

141.4, 135.7, 133.1, 131.9 (deduced from HMBC, confirmed by -15 °C VT NMR), 130.8, 128.0, 86.9, 

78.6, 51.5, 39.7, 38.4, 35.5, 28.7, 27.2, 26.6, 24.2; 11B NMR (375.5 MHz, CDCl3) δB 30.7; HRMS (ESI+): 

Calculated for [M+Na]+ C17H21BO3Na+: 307.1479+; Found: 307.1493. 

 

2-fluoro-6-((3aS,4S,6S,7aR)-3a,5,5-Trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-

2-yl)benzaldehyde 3-F-182.  

 

General procedure 7 was followed using 3-fluoro-2-FPBA 3-F-1 (47 mg, 0.28 mmol) and 

(1S,2S,3R,5S)-pinanediol 180 (96 mg, 0.25 mmol), affording the title compound (3aS,4S,6S,7aR)-3-

F-182 (73 mg, 0.39 mmol) as a clear oil in 96% yield.  
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[α]D
23= +20 (c 1.0, CHCl3); IR (neat): 2918, 2869, 1695, 1568, 1480, 1439, 1339, 1238, 1029, 794, 

666 cm-1; 1H NMR (500 MHz, CDCl3) δH 10.43 (d, 1H, J = 1.0, OCHC), 7.58 (ddd, 1H, J = 8.3, 7.2, 5.2, 

ArH), 7.40 (d, 1H, J = 7.2, ArH), 7.17 (ddd, 1H, J = 10.6, 8.3, 1.0, ArH), 4.55 (dd, 1H, J = 8.8, 2.0, H-

7a), 2.48-2.38 (m, 1H, H-7), 2.37-2.27 (m, 1H, H-8), 2.17-2.11 (m, 1H, H-4), 2.06-1.96 (m, 2H, H-6 

and H-7), 1.58 (s, 3H, H-9), 1.55 (d, 1H, J = 10.8, H-8), 1.34 (s, 3H, H-10/11), 0.91 (s, 3H, H-10/11); 

13C{1H} NMR (126 MHz, CDCl3) δC 189.0 (d, JF-C = 6.2), 164.3 (d, 1JF-C = 259.8), 135.7 (d, JF-C = 8.7), 

129.1 (d, JF-C = 3.8), 127.8 (d, JF-C = 6.9), 121.6 (deduced from HMBC), 117.5 (d, JF-C = 20.9), 86.6, 78.8, 

51.7, 39.7, 38.5, 35.5, 28.4, 27.3, 26.5, 24.2; 11B NMR (375.5 MHz, CDCl3) δB 30.9; 19F NMR (470 MHz, 

CDCl3) δF -121.0 (dd, J = 10.5, 5.3); HRMS (ESI+): Calculated for [M+Na]+ C17H20BO3FNa+: 325.1385; 

Found: 325.1381. 

 

2-(tert-Butylsulfinyl)-1H-1λ4,2 λ 4-benzo[c][1,2]azaborole-1,1-diol (S)-181. 

 

(R)-Ellman’s sulfinamide 129a (33 mg, 0.27 mmol, 1.35 equiv.) was added to a stirred suspension of 

2-formylbenzene boronic acid 2-F-1 (30 mg, 0.20 mmol, 1.0 equiv.) and MgSO4 (500 mg) in CDCl3 

(2.0 mL) and the reaction stirred for 2 h, before filtering through a cottonwool-celite plug. The title 

compound (S)-181 was formed in solution in 95% yield (5% 2-FPBA 1 and 0.45 equiv. (S)-129a 

remaining in solution). The product was analysed and characterised as is in solution and was not 

isolated. 

1H NMR (500 MHz, CDCl3) δH 9.12 (s, 1H, NCH), 8.15-8.10 (m, 1H, ArH), 7.96-7.89 (m, 1H, ArH), 

7.59-7.53 (m, 2H, ArH), 7.19 (bs, 1H,2 × OH), 1.30 (s, 9H, 3 × CH3), 0.88 (s, 3H, H-10/11); 13C NMR 

(126 MHz, CDCl3) δC 167.3, 138.0, 137.2, 134.7 (deduced by HMBC), 132.1, 132.0, 130.8, 58.3,22.6. 
11B NMR (375.5 MHz, CDCl3) δB 28.6; HRMS (ESI+): Calculated for [M-2H2O+2MeOH+Na]+ 

C13H20BNO3SNa+: 304.1149, Found 304.1138. IR and specific rotation data were not acquired due to 

the presence of significant residual (R)-129a. Slow evaporation from CDCl3/n-hexane afforded white 

crystals suitable for X-ray crystallography (see Appendix A). 

 

General procedure 8 for the synthesis of tert-butyl sulfiniminoboronates 183a and 184a. 

Enantiopure tert-butyl sulfinamide 129a (61 mg, 0.50 mmol, 1.0 equiv.) was added to a stirred 

suspension of 2-formylbenzene boronic acid 1 (90 mg, 0.60 mmol, 1.2 equiv.) and MgSO4 (1.00 g) 

in CHCl3 (5.0 mL) and the reaction stirred for 2 h, before (1R,2R,3S,5R)-pinanediol 180 (111 mg, 

0.65 mmol, 1.3 equiv.) was added. After 10 min, the reaction was filtered and concentrated to 

dryness in vacuo and the residue purified by chromatography (0.5% MeOH in 1:1 CH2Cl2/n-hexane) 
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afforded the desired sulfiniminoboronate ester as a clear oil. The low stability of these complexes 

to the purification conditions employed meant that small amounts of 2-formyl boronate ester 182 

remained. 

 

(R)-2-Methyl-N-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2]

dioxaborol-2-yl)benzylidene)propane-2-sulfinamide 183.  

 

General procedure 8 was followed using (R)-Ellman’s sulfinamide 129a (61 mg, 0.50 mmol), 

affording the title compound (RS,3aR,4R,6R,7aS)-183a (24 mg, 0.062 mmol) as a clear oil in 12% 

yield, as a 89:11 mixture with the related formyl boronate ester (3aR,4R,6R,7aS)-182.  

1H NMR (500 MHz, CDCl3) δH 9.36 (s, 1H, NCH), 8.13-8.06 (m, 1H, ArH), 7.94-7.88 (m, 1H, ArH), 

7.54-7.46 (m, 2H, ArH), 4.51 (dd, 1H, J = 8.8, 2.0, H-7a), 2.48-2.37 (m, 1H, H-7), 2.29-2.21 (m, 1H, H-

8), 2.18 (dd, 1H, J = 6.1, 5.1, H-4), 2.02 (ddd, 1H, J = 14.7, 3.4, 2.0, H-7), 1.97-1.97 (m, 1H, H-6), 1.51 

(s, 3H,H-9), 1.30 (s, 3H, H-10/11), 1.26 (s, 9H, tert-butyl), 1.23 (d, 1H, J = 10.9, H-8), 0.88 (s, 3H, H-

10/11); 11B NMR (375.5 MHz, CDCl3) δB 30.5; HRMS (ESI+): Calculated for [M+H]+ C21H31BNO3S: 

388.2116, Found 388.2118; Calculated for [M+Na]+ C21H30BNO3SNa+: 410.1936; Found: 410.1940. 

IR and specific rotation data were not acquired due to the presence of significant residual 

(3aR,4R,6R,7aS)-182. 13C NMR spectra are not reported, as this impurity and the adjacent 11B 

nucleus led to unassignable spectra. 

 

(S)-2-Methyl-N-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2]d

ioxaborol-2-yl)benzylidene)propane-2-sulfinamide 184a.  

 

General procedure 8 was followed using (S)-Ellman’s sulfinamide 129a, affording the title 

compound (SS,3aR,4R,6R,7aS)-184a (37 mg, 0.096 mg) as a clear oil in 19% yield, as a 96:4 mixture 

with the related formyl boronate ester (3aR,4R,6R,7aS)-182.  

1H NMR (500 MHz, CDCl3) δH 9.27 (s, 1H, NCH), 8.08-8.03 (m, 1H, ArH), 7.90-7.83 (m, 1H, ArH), 

7.54-7.47 (m, 2H, ArH), 4.51 (dd, 1H, J = 8.7, 1.9, H-7a), 2.49-2.38 (m, 1H, H-7), 2.32-2.21 (m, 1H, H-

8), 2.17 (dd, 1H, J = 6.0, 5.0, H-4), 2.09-1.91 (m, 2H H-7 + H-6), 1.51 (s, 3H, H-9), 1.31 (s, 3H, H-
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10/11), 1.28-1.22 (m, 12H, tert-butyl + H-8), 0.88 (s, 3H, H10/11); 11B NMR (375.5 MHz, CDCl3) δB 

31.2; HRMS (ESI+): Calculated for [M+H]+ C21H31BNO3S+: 388.2116, Found 388.2112; Calculated for 

[M+Na]+ C21H30BNO3S: 410.1936; Found: 410.1937; IR and specific rotation data were not acquired 

due to the presence of significant residual (3aR,4R,6R,7aS)-182. 13C NMR spectra are not reported, 

as this impurity and the adjacent 11B nucleus led to unassignable spectra. 

 

5.3.4 Synthesis and characterization of non-sulfinamide analytes 

General procedure 9 for the enantioselective synthesis of α-(methylbenzyl)hydroxylamines by 

the method of Tickell et al.143  

MgSO4 (2.0 g) and p-anisaldehyde (501 µL, 4.12 mmol, 1.0 equiv.) were added to a solution of the 

enantiopure amine (531 µL, 4.12 mmol, 1.0 equiv.) in MeOH (25 mL). The mixture was stirred for 

24 h, filtered and the solvent evaporated under reduced pressure. The residue was then dissolved 

in anhydrous CH2Cl2 (5 mL), cooled to 0 °C and a solution of mCPBA (75% purity, 1.138 g, 4.94 mmol, 

1.2 equiv.) in anhydrous CH2Cl2 (30 mL) was added dropwise. The reaction was stirred for 1 h at 

0 °C, before warming to room temperature and stirring for a further 3 h. The resultant white 

suspension was filtered, and the filtrate was neutralised with NaHCO3 (sat. aq., 20 mL) and washed 

with brine (20 mL). The organic layer was dried over MgSO4 and the solvent evaporated under 

reduced pressure to yield the oxaziridine intermediate. The crude oxaziridine was subsequently 

dissolved in anhydrous MeOH (20 mL) and hydroxylamine hydrochloride (573 mg, 8.24 mmol, 

2.0 equiv.) was added, and the mixture was stirred for 16 h. After this time, CHCl3 (20 mL) was added 

to precipitate unreacted hydroxylamine hydrochloride, and the solution was filtered and solvent 

removed in vacuo. Water (20 mL) and Et2O (20 mL) were added to the residue and the aqueous 

layer extracted repeatedly with Et2O (10 × 20 mL). The aqueous layer was saturated with NaHCO3 

and extracted with Et2O (3 × 20 mL). The combined organic layers were then dried over MgSO4 and 

concentrated to dryness in vacuo. The crude product was purified by recrystallization from 1:4 

CHCl3/hexane. 

 

(R)-N-(1-Phenylethyl)hydroxylamine (R)-56a. 

 

General procedure 9 was followed using (R)-α-methylbenzylamine (R)-3a, to afford the title 

compound (R)-56a (271 mg, 1.98 mmol) as a fluffy white solid in 48% yield. All characterisation data 

were consistent with previous literature reports.143 

m.p.: 98-99 °C (lit.143 96-99 °C); [α]D
23= +32 (c 1.0, CHCl3; lit.143 +37, c 1.0, CH2Cl2, 22 °C); 1H NMR 

(500 MHz, CDCl3) δH 7.40-7.27 (m, 5H, ArH), 4.18 (q, 1H, J = 6.7, ArCH), 1.42 (d, 3H, J = 6.7, CH3). 
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(S)-N-(1-Phenylethyl)hydroxylamine (S)-56a. 

 

General procedure 9 was followed using (S)-α-methylbenzylamine (S)-3a, to afford the title 

compound (S)-56a (288 mg, 2.14 mmol) as a fluffy white solid in 51% yield. All characterisation data 

were consistent with previous literature reports.497 

m.p.: 96-97 °C (lit.497 97-98 °C); [α]D
23= -33 (c 1.0, CHCl3; lit.497 -34.6, c 1.0, CHCl3, 25 °C); 1H NMR 

(500 MHz, CDCl3) δH 7.40-7.27 (m, 5H, ArH), 4.18 (q, 1H, J = 6.7, ArCH), 1.41 (d, 3H, J = 6.7, CH3). 

 

General procedure 10 for the synthesis of O-silyl amino alcohols. 

tert-Butyldimethylsilylchloride (302 mg, 2.0 mmol, 1.0 equiv.), N,N-dimethylaminopyridine (24 mg, 

0.4 mmol, 0.2 equiv.), triethylamine (557 µL, 4.0 mmol, 2.0 equiv.) and the enantiopure 2-amino-3-

phenylpropan-1-ol (302 mg, 2.0 mmol,1.0 equiv.) were dissolved in CH2Cl2 (5 mL) and left to stir for 

16 h. After this time, the reaction was quenched with H2O (10 mL), diluted with CH2Cl2 (10 mL) and 

separated. The aqueous phased was extracted with CH2Cl2 twice more (2 × 10 mL), and the 

combined organics were washed with brine (20 mL), dried (MgSO4), filtered, and concentrated to 

dryness in vacuo. The crude product was purified by flash column chromatography (SiO2, 0-10% 

MeOH in CHCl2) to afford the desired product. 

 

(R)-1-((tert-Butyldimethylsilyl)oxy)-3-phenylpropan-2-amine (R)-55a. 

 

General procedure 10 was followed using (R)-2-amino-3-phenylpropan-1-ol (R)-50 to afford the title 

compound (R)-55a (263 mg, 0.99 mmol) as a pale yellow oil in 50% yield. All characterisation data 

were consistent with previous literature reports.498 

[α]D
23= +4 (c 1.0, CHCl3; lit.498 -3.6 for (S)-55a, c 1.0, CHCl3, 25 °C); 1H NMR (300 MHz, CDCl3) δH 7.30-

7.12 (m, 5H, ArH), 3.53 (dd, 1H, J = 9.7, 4.3, OCH2), 3.48-3.34 (m, 1H, OCH2), 3.11-2.96 (bm, 1H, 

H2NCH), 2.74 (dd, 1H, J = 13.3, 5.4, PhCH2), 2.47 (dd, 1H, J = 13.3, 8.3, PhCH2), 0.85 (s, 9H, SiC(CH3)3), 

0.00 (s, 6H, 2 × SiCH3). 
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(S)-1-((tert-Butyldimethylsilyl)oxy)-3-phenylpropan-2-amine (S)-55a. 

 

General procedure 10 was followed using (S)-2-amino-3-phenylpropan-1-ol (S)-50a, to afford the 

title compound (S)-55a (242 mg, 0.92 mmol) as a pale yellow oil in 46% yield. All characterisation 

data were consistent with previous literature reports.498,499 

[α]D
23= -4 (c 1.0, CHCl3; lit.498 -3.6, c 1.0, CHCl3, 25 °C); 1H NMR (500 MHz, CDCl3) δH 7.35-7.27 (m, 2H, 

ArH), 7.27-7.17 (m, 3H, ArH), 3.58 (d, 1H, J = 9.7, 4.3, OCH2), 3.45 (dd, 1H, J = 9.7, 6.5, OCH2), 2.80 

(dd, 1H, J = 13.4, 5.4, PhCH2), 2.54 (ddd, 1H, J = 13.4, 8.3, 2.0, PhCH2), 0.91 (s, 9H, SiC(CH3)3), 0.06 

(s, 6H, 2 × SiCH3). 

 

Methyl 2-amino-2-methylpropanoate hydrochloride 208. 

 

2-Aminoisobutyric acid (Aib, 1.03 g, 10.0 mmol, 1.0 equiv.) was dissolved in MeOH (20 mL), and the 

stirred solution was cooled to 0 °C. Thionyl chloride (SOCl2, 800 µL, 20.0 mmol, 2.0 equiv.) was 

added dropwise over 5 min. The reaction was heated to reflux for 2 h. After this time, the reaction 

was cooled to room temperature and concentrated to dryness in vacuo to afford the title compound 

208 (1.51 g, 9.80 mmol) as a white solid in 98% yield. All characterisation data were consistent with 

previous literature reports.500,501 

m.p.: 180-182 °C (lit.500 181 °C); 1H NMR (500 MHz, DMSO-d6) δH 8.57 (bs, 3H, NH3), 3.76 (s, 3H, 

OCh3), 1.47 (s, 6H, 2 × NCCH3). 

 

5.4. Synthetic and characterization details for chapter 4 

5.4.1 General experimental details for screening/sampling experiments 

General procedure 11 for the screening and optimisation of BV oxidation reactions 

(representative example for Table 10, entry 7). 

Commercial mCPBA (75 wt%, 69 mg, 0.30 mmol) was suspended in toluene (720 μL) and stirred 

until a homogeneously cloudy mixture was formed. DMAP (0.5 M in toluene, 80 μL, 0.040 mmol) 

was added to the mixture, and the reaction was allowed to stir for 15 min. After this time, 

p-methoxyacetophenone 263 (1.0 M in toluene, 200 μL, 0.20 mmol) was added, and the reaction 

was stirred for 30 min. After this time an aliquot (~20 μL) was removed and diluted up to 600 μL 

with CDCl3. A 1H NMR spectrum was recorded immediately. 
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Representative general procedure 11 was used for all screening experiments in chapter 4, with the 

following modifications: 

When precatalysts/catalysts other than DMAP were employed that were not soluble in toluene, a 

stock solution was not used, and the catalyst was instead added to the reaction as a solid, and 

800 μL of toluene were used. 

Where benzalacetone (E)-232 or styryl acetate (E)-233 were used as the substrate, they were added 

as a stock solution in toluene containing TetMB internal standard (200 μL, 1.0 M substrate, 0.25 M 

TetMB). 

For DMAP and DOAP precatalyst screens, the precatalyst was also added as a stock solution (0.5 M 

in toluene). In all instances the initial volume of toluene added was selected to ensure the reaction 

concentration was 0.2 M following substrate addition. 

 

5.4.2 General synthetic procedures 

General procedure 12 for the synthesis of Weinreb amides from esters. 

The desired ester (1.0 equiv.) and N,O-dimethylhydroxylamine hydrochloride 320 (1.5 equiv.) were 

added to anhydrous THF (0.4 M in ester) under an inert N2 atmosphere. The reaction was cooled to 

0 °C and isopropylmagnesium chloride (2.0 M in THF, 3.0 equiv.) was added dropwise over 10 min. 

The reaction was the allowed to warm to room temperature and stirred for 16 h. The reaction was 

then cooled back to 0 °C and quenched with NH4Cl and diluted by half with EtOAc. The layers were 

separated, and the aqueous phase was extracted twice more with EtOAc. The combined organics 

were washed with brine, dried (Na2SO4) and purified by silica plug (DCM then 10% MeOH/DCM) 

afforded the desired Weinreb amide in sufficient purity for the subsequent synthetic steps. 1H NMR 

spectroscopic analysis was performed for all Weinreb amides to assess purity exclusively, and so 

further characterisation as not systematically carried out. 

 

General procedure 13 for the addition of MeMgBr to Weinreb amides. 

The desired Weinreb amide (1.0 equiv.) was dissolved in ahydrous THF (0.2 M) under an inert N2 

atmosphere and cooled to 0 °C. MeMgBr in THF (2.5 equiv.) was added dropwise over 5 min, and 

the reaction was stirred for 10 min before warming to room temperature and allowing to stir for 

4 h. After this time, the reaction was cooled to 0 °C, quenched with NH4Cl and diluted by half with 

EtOAc. The phases were separated, and the aqueous layer was extracted with EtOAc once more. 

The combined organics were washed with water then brine, dried (MgSO4), filtered, and 

concentrated to dryness in vacuo. Purification by flash column chromatography (SiO2) afforded the 

desired methyl ketone. 
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General procedure 14 for the DMAPO-catalysed Baeyer-Villiger oxidation of α,β-unsaturated 

ketones. 

mCPBA (2.0 equiv.) was added to a solution of DMAP (0.5 equiv.) in toluene (0.2 M), and the 

suspension was stirred for 15 min, becoming a pale yellow solution. After this time, the desired 

α,β-unsaturated ketone was added, and the reaction was monitored by TLC until total consumption 

of this starting material. The reaction mixture was quenched by diluting by half with EtOAc and 

sodium metabisulfite (Na2S2O5, sat. aq.) and stirring for 10 min (until potassium iodide starch test 

paper showed no colour). The layers were separated, and the aqueous layer was extracted once 

more with EtOAc. The combined organics were washed three times with NaHCO3 (sat. aq.), brine, 

dried (MgSO4), filtered, and concentrated to dryness in vacuo. Purification by flash column 

chromatography afforded the desired vinyl ester product. 

 

General procedure 15 for the TMNO-catalysed Baeyer-Villiger oxidation of α,β-unsaturated 

ketones. 

TMNO·2H2O (0.5 equiv.) was added to a suspension of mCPBA (1.5 equiv.) in toluene (0.2 M), and 

the desired α,β-unsaturated ketone was added, and the reaction was monitored by TLC until total 

consumption of this starting material. The reaction mixture was quenched by diluting by half with 

EtOAc and sodium metabisulfite (Na2S2O5, sat. aq.) and stirring for 10 min (until potassium iodide 

starch test paper showed no colour). The layers were separated, and the aqueous layer was 

extracted once more with EtOAc. The combined organics were washed three times with NaHCO3 

(sat. aq.), brine, dried (MgSO4), filtered, and concentrated to dryness in vacuo. Purification by flash 

column chromatography afforded the desired vinyl ester product. 

 

5.4.3 Purification and titration of mCPBA 

Purification of commercial mCPBA following the procedure of Aggarwal et al.502 

 

Commercial mCPBA (~75 wt% purity, 3.35 g; 2.513 active mCPBA, 14.6 mmol) was dissolved in Et2O 

(30 mL) and washed with pH 7.5 PBS buffer (0.1 M aq., 3 × 15 mL). The organic layer was dried over 

MgSO4 and concentrated to dryness in vacuo in a 0 °C water bath before further drying under high 

vacuum overnight to afford pure mCPBA as a white solid (2.008 g, 11.6 mmol, 80% mass recovery 

mCPBA, > 95% pure by NMR). Caution: mCPBA is potentially explosive at higher > 85%purity and on 

exposure to heat. Purified mCPBA was stored in a padded cotton wool-lined box at -20 °C in the 

freezer. 
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1H NMR (400 MHz, CDCl3) δH 11.55 (s, 1H,OOH), 7.99 (t, 1H, J = 2.0, ArH), 7.89 (ddd, 1H, J = 7.9, 1.3, 

1.3, ArH), 7.63 (ddd, 1H, J = 8.0, 2.0, 1.1, ArH), 7.46 (t, 1H, J = 7.9, ArH). 13C{1H} NMR (101 MHz, 

CDCl3) δC 167.1, 135.3, 134.6, 130.4, 129.5, 127.5, 127.0. 

 

Iodometric titration of mCPBA purity/content following the procedure of Olofsson et al.421 

Commercial samples of mCPBA were titrated on receipt from the supplier and intermittently 

thereafter. NaI (1.500 g) was dissolved in distilled water (50 mL). A solution of commercial mCPBA 

(300 mg) in chloroform (5.0 mL) and glacial acetic acid (5.0 mL) was added to the solution and the 

mixture was stirred vigorously. This solution was then titrated with Na2S2O3 (aq., 0.100 M), and end-

point was determined when the persistent brown/yellow colour disappeared. 1.0 mL of the Na2S2O3 

solution accounts of 8.6 mg of pure mCPBA. 

In all instances fresh commercial mCPBA was found to contain 74-78 wt% mCPBA, and so mCPBA 

was presumed to be 75 wt% pure throughout this thesis, unless otherwise stated. 

 

5.4.4 Synthesis of DOAP 

N,N-Dioctylpyridin-4-amine DOAP. 

 

Note: The reaction was carried out with a dry condenser and behind a blast-shield. 

4-Aminopyridine 306 (1.410 g, 15 mmol, 1.0 equiv.) and 1-bromooctane 307 (6.478 mL, 37.5 mmol, 

2.5 equiv.) were dissolved in ahydrous THF (15 mL) under an inert N2 atmosphere. Sodium hydride 

(60 wt% in mineral oil, 2.880 g, 36 mmol, 2.4 equiv.) was added in six batches, waiting for 

effervescence to stop between each batch (approx. every 5 min). After stirring at room temperature 

for 30 min, the reaction was slowly warmed to 66 °C in 5 °C increments, allowing the reaction to 

equilibrate at each increment for 10 min. The reaction was refluxed for 6 h, and then allowed to 

cool to room temperature slowly (left in oil bath). The reaction was cooled to 0 °C and quenches by 

dropwise addition of NH4Cl (sat. aq., 10 mL) over 30 min. The mixture was then diluted with DCM 

(30 mL), and the layers were separated, and the aqueous phase was washed twice more with DCM 

(2 × 30 mL). The combined organics were dried (Na2SO4) and concentrated to dryness in vacuo and 

purified by flash column chromatography (SiO2, 2% MeOH/2% NEt3 in DCM) to afford the title 

compound DOAP(1.120 g, 7.05 mmol) as a brown oil in 47% yield. Characterisation data were 

consistent with previous literature reports.458 

Rf: 0.42 (5% MeOH/DCM, significant streaking); 1H NMR (300 MHz, CDCl3) δH 8.24 – 8.06 (m, 2H, 

ArH), 6.52 – 6.35 (m, 2H, ArH), 3.33 – 3.21 (t, 4H, J = 7.8, 2 × NCH2), 1.70 – 1.48 (m, 4H, 2 × NCH2CH2), 
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1.36 – 1.21 (m, 20H, AlkH), 0.94 – 0.83 (m, 6H, 2 × CH3); 13C{1H} NMR (101 MHz, CDCl3) δC 152.8, 

149.4, 106.5, 50.4, 31.94, 29.6, 29.4, 27.2, 27.1, 22.8, 14.2. 

 

5.4.5 Synthesis of monosubstituted α,β-unsaturated ketones 

 

(Z)-4-Phenylbut-3-en-2-one (Z)-232. 

 

Following the procedure of Trombini et al.:428 4-phenylbut-3-yn-2-one 275 (720 µL, 5.0 mmol) was 

dissolved in n-pentane (5.0 mL). Lindlar’s catalyst (10 wt% Pd, 70 mg) was added and the solution 

was degassed thoroughly by N2 bubbling for 15 min and put under inter N2 atmosphere. The 

reaction was then put under H2 atmosphere by bubbling H2 for 10 min and leaving under a balloon 

of 2 gas. After 96 h the reaction was purged by bubbling N2 and filtered over a pad of celite. The 

crude product was purified by flash column chromatography (SiO2, 10% Et2O/PE) to afford the title 

compounds (Z)-232 (467 mg, 3.2 mmol) as a yellow oil in 64% yield. Characterisation data were 

consistent with previous literature reports.428 

Rf: 0.21 (SiO2, 15% Et2O/PE); IR (neat) 2928, 1691 (C=O), 1605, 1353, 1182, 1163, 774, 691 cm-1; 1H 

NMR (500 MHz, DMSO-d6) δH 7.55 – 7.49 (m, 2H, ArH), 7.39 – 7.33 (m, 3H, ArH), 6.88 (d, 1H, J = 12.7, 

PhCH), 6.28 (d, 1H, J = 12.8, PHCHCH), 2.15 (s, 3H, CH3), 13C{1H} NMR (126 MHz, DMSO-d6) δC 200.2, 

138.8, 135.1, 129.3, 129.0, 128.6, 128.2, 30.9. Note: NMR spectra of (Z)-232 were recorded in 

DMSO-d6 as rapid isomerisation to (E)-232 was observed in CDCl3. 

 

(E)-4-Phenylbuta-1,3-dien-2-yl acetate (E)-277. 

 

Following the procedure of Isobe et al.:429 Sulfuric acid (3 drops) was added to a stirred solution of 

(E)-benzalacetone (E)-232 (620 mg, 4.2 mmol, 1.0 equiv.) in isopropenylacetate 276 (10 mL, 

92 mmol, excess/solvent). The reaction was heated to reflux for 2.5 h. After this time the reaction 

was allowed to cool to rt, diluted with water (10 mL) and Et2O (10 mL). The layers were separated 

and the organic phase was extracted with Et2O twice more (2 × 10 mL). The combined organics 

were washed with brine (20 mL), dried (Na2SO4) and concentrated in vacuo (including isopropenyl 

acetate). The crude product was purified by column chromatography (SiO2, 0-30% EtOAc/PE) to 

afford the title compound (E)-277 (524 mg, 2.8 mmol) as a yellow oil in 66% yield. Characterisation 

data were consistent with previous literature reports.429 
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Rf: 0.24 (SiO2, 20% EtOAc/PE); 1H NMR (500 MHz, CDCl3) δH 7.45 – 7.40 (m, 2H, ArH), 7.37 – 7.32 (m, 

2H, ArH), 7.29 – 7.24 (m, 1H), 6.67 (d, 1H, J = 16.0, PhCH), 6.61 (d, 1H, J = 16.0, OCCH), 5.14 (d, 1H, 

J = 1.7, trans-OCCH2), 4.99 (dd, 1H, J = 1.7, 0.5, cis-OCCH2), 2.32 (s, 3H, CH3). 13C NMR (126 MHz, 

CDCl3) δC 168.9, 152.0, 136.1, 130.0, 128.8, 128.4, 127.0, 122.7, 106.3, 21.1. 

 

(E)-1-Bromo-4-phenylbut-3-en-2-one (E)-278. 

 

Following the procedure of Isobe et al.:429 Dienolacetate (E)-277 (515 mg, 2.70 mmol, 1.0 equiv.) 

was dissolved in THF (15 mL) and cooled to 0 °C, and N-bromosuccinimide (817 mg, 4.6 mmol, 

1.7 equiv.) and water (83 µL) were added. After stirring for 5 min the reaction was armed to rt, and 

the reaction was left to stir for 45 min. After this time, the reaction was cooled to 0 °C and quenched 

with NaHCO3 (sat. aq., 20 mL) and the aqueous phase was extracted with Et2O (3 × 30 mL), and the 

combined organics were washed with NaHCO3 (2 × 30 mL), brine, dried (MgSO4), filtered, and 

concentrated in vacuo. The crude product was passed through a silica plug (SiO2, DCM) and 

concentrated in vacuo to afford he title compound (E)-278 (590 mg, 2.62 mmol) as a brown oil in 

97% yield. Characterisation data were consistent with previous literature reports.429 

Rf: 0.44 (SiO2, EtOAc/PE); 1H NMR (500 MHz, CDCl3) δH 7.72 (d, 1H, J = 16.0, PhCH), 7.63 – 7.58 (m, 

2H, ArH), 7.46 – 7.40 (m, 3H, ArH), 6.97 (d, 1H, J = 16.0, PhCHCH), 4.10 (s, 2H, CH3); 13C{1H} NMR 

(126 MHz, CDCl3) δC 191.1, 145.6, 134.1, 131.3, 129.2, 128.8, 122.4, 33.2. 

 

5.4.6 Synthesis of polysubstituted “methylated benzalacetones” 

(E)-3-Methyl-4-phenylbut-3-en-2-one (E)-312. 

 

Following the procedure of Clososki et al.:469 2-butanone 315 (448 µL, 5.0 mmol, 2.0 equiv.) and 

benzaldehyde 185 (255 µL, 2.5 mmol, 1.0 equiv.) were dissolved in glacial acetic acid (10 mL) and 

stirred at room temperature. Sulfuric acid (131 µL, 2.4 mmol, 0.96 equiv.) was added dropwise, and 

the reaction was stirred for 16 h. After this time the reaction was poured onto ice (approx. 5 mL) 

and neutralised to pH 8 with NaHCO3 (sat. aq.). The mixture was extracted with EtOAc (3 × 10 mL), 

and the combined organics were washed with NaHCO3 (sat. aq., 20 mL), brine (20 mL) and dried 

(Na2SO4). Purification by flash column chromatography (SiO2, 15% Et2O/PE) afforded the title 

compounds (E)-312 (175 mg, 1.1 mmol) as a yellow oil in 44% yield. Characterization data were 

consistent with previous literature reports.469 
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Rf = 0.29 (SiO2, 15% Et2O/PE); 1H NMR (500 MHz, CDCl3) δH 7.53 (q, 1H, J = 1.4, PhCH), 7.45 – 7.40 

(m, 4H, ArH), 7.38 – 7.33 (m, 1H, ArH), 2.48 (s, 3H, C(O)CH3), 2.07 (d, 3H, J = 1.4, C(O)CCH3); 13C{1H} 

NMR (126 MHz, CDCl3) δC 200.4, 139.8, 137.9, 136.1, 129.8, 128.7, 128.6, 26.0, 13.1. 

 

(rac)-Ethyl 2-(methyldiphenylsilyl)propanoate (rac)-319.  

 

Following the procedure of Larson et al.:471 Diisopropylamine (1.65 mL, 12 mmol, 1.2 equiv.) was 

dissolved in anhydrous THF (25 mL) under inert N2 atmosphere and cooled to -78 °C. n-BuLi (2.5 M 

in THF, 4.8 mL, 12 mmol, 1.2 equiv.) was added dropwise over 20 min, and the reaction was warmed 

to room temperature, stirred for 5 min and cooled back down to – 78 °C. Ethyl propionate 318 

(1.16 mL, 10 mmol, 1.0 equiv.) was then added dropwise over 5 min and allowed to stir for 30 min 

until a persistent bright orange colour developed. DPMSCl (2.103 mL, 10 mmol, 1.0 equiv.) was then 

added dropwise over 5 min and reaction was stirred for 1 h before warming to room temperature 

and stirring for a further 2 h. After this time the reaction was cooled to 0 °C and quenched slowly 

with HCl (1.5 M aq., 10 mL). This mixture was extracted twice with Et2O (2 × 30 mL), and the 

combined organics were washed with brine, dried (MgSO4), filtered, and purified by flash column 

chromatography (SiO2, 5-20% Et2O/PE) afforded the title compound (rac)-319 (1.727 g, 5.8 mmol) 

as a colourless oil in 58% yield. Characterization data were consistent with previous literature 

reports.503 

Rf = 0.14 (SiO2, 12% Et2O/PE); 1H NMR (400 MHz, CDCl3) δH 7.60 – 7.52 (m, 4H, ArH), 7.44 – 7.32 (m, 

6H, ArH), 3.98 – 3.80 (m, 2H, OCH2 diastereotopic), 2.65 (q, 1H, J = 7.2, C(O)CH), 1.25 (d, 3H, J = 7.2, 

SiCHCH3), 0.96 (t, 3H, J = 7.1, OCH2CH3), 0.66 (s, 3H, SiCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 176.0, 

135.0, 134.9, 134.8, 134.5, 129.8, 129.7, 128.0, 127.9, 60.1, 29.1, 14.1, 12.1, -5.4. Note: Additional 

peaks in the 13C aromatic region are due to diastereotopicity of the DPMS phenyl rings. 

 

(Z)-3-Methyl-4-phenylbut-3-en-2-one (Z)-312 (telescoped synthesis from (rac)-319 to (Z)-312). 

 

Adapted from the procedure of Larson et al.:470 Diisopropylamine (734 µL, 5.2 mmol, 1.30 equiv.) 

was dissolved in anhydrous THF (6.0 mL) under inert N2 atmosphere and cooled to -78 °C. n-BuLi 

(2.5 M in THF, 2.08 mL, 5.2 mmol, 1.30 equiv.) was added dropwise over 5 min, and the reaction 

was warmed to room temperature, stirred for 5 min and cooled back down to -78 °C. A solution of 

C-silyl ester (rac)-319 (1.492 g, 5.0 mmol, 1.25 equiv.) in anhydrous THF (10 mL) was added 
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dropwise to this solution over ten minutes before stirring at that temperature for 1 h, before 

dropwise addition of benzaldehyde (407 µL, 4.0 mmol, 1.0 equiv.) over 5 min. The reaction was 

allowed to warm to room temperature and stirred for 16 h. After this time, the reaction was 

quenched dropwise with NH4Cl (sat. aq. 10 mL) and extracted with Et2O (3 × 10 mL). The combined 

organics were washed with brine, dried (MgSO4), filtered, and purification by flash column 

chromatography afforded a 71:29 mixture of (Z)-:(E)-317 (600 mg, 3.16 mmol) as a yellow oil in 61% 

yield. 

General procedure 12 was followed using the 71:29 (E)-/(Z)-317 (600 mg, 3.16 mmol) mixture 

obtained, affording the corresponding Weinreb amide intermediate as an (E)/(Z) mixture in 

quantitative yield. No further purification was carried out. General procedure 13 was followed using 

this crude material (490 mg, 2.39 mmol). Purification by flash column chromatography (SiO2, 7% 

Et2O/PE) afforded the title compound (Z)-312 (160 mg, 1.00 mmol) as a yellow oil in 42% yield over 

2 steps, 26% yield over three steps. 

Rf = 0.39 (SiO2, 15% Et2O/PE), 0.21 (SiO2, 50% DCM/PE); IR (neat) 2920, 1686, 1142, 1363, 1202, 

1101, 757, 699 cm-1; 1H NMR (500 MHz, CDCl3) δH 7.34 – 7.27 (m, 3H, ArH), 7.20 – 7.17 (m, 2H, ArH), 

6.75 (s, 1H, C(O)CH), 2.03 (d, 3H, J = 1.6, PhCCH3), 2.01 (s, 3H, C(O)CH3); 13C{1H} NMR (126 MHz, 

CDCl3) δC 207.3, 140.0, 136.7, 132.0, 128.6, 128.6, 128.6, 128.5, 128.47, 128.5, 128.0, 30.1, 21.3; 

HRMS (ESI-): Calculated for [M+CH3CO2]– C13H15O3
– 219.1016; Found 219.1015. 

 

Ethyl (E)-3-phenylbut-2-enoate (E)-323. 

 

Sodium hydride (60% in mineral oil, 6.00 g, 150 mmol, 1.5 equiv.) was suspended in anhydrous THF 

(250 mL) at 0 °C under an inert N2 atmosphere. Triethyl phosphonoacetate 321 (29.76 mL, 150 

mmol, 1.5 equiv.) was added dropwise over 5 min, and the reaction was warmed to room 

temperature and stirred for 45 min until the mixture had become a clear yellow solution. After 

cooling again to 0 °C, acetophenone 322 (11.67 mL , 100 mmol, 1.0 equiv.) was added, and the 

reaction was stirred for 15 min, warmed to room temperature and left to stir for 16 h. After this 

time, the reaction was quenched by addition of water (50 mL) and the mixture was concentrated 

down to approx. 100 mL in vacuo, before diluting further with H2O (50 mL) and EtOAc (50 mL). The 

layers were separated, and the aqueous phase was extracted twice more with EtOAc (50 mL). The 

combined organics were washed with water and brine (100 mL each), dried (MgSO4), filtered, and 

purified by flash column chromatography (SiO2, 0-10% Et2O/PE) to afford the title compound (E)-

323 (13.05 g, 68.6 mmol) as a colourless oil in 69% yield. Characterization data were consistent with 

previous literature reports.504 
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Rf: 0.38 (SiO2, 15% Et2O/PE); 1H NMR (500 MHz, CDCl3) δH 7.55-7.45 (m, 2H, ArH), 7.42-7.30 (m, 3H, 

ArH), 6.13 (q, 1H, J = 1.3, C(O)CH), 4.22 (q, 2H, J = 7.1, OCH2), 2.58 (d, 3H, J = 1.3, PhCCH3), 1.32 (t, J 

= 7.1, OCH2CH3); 13C NMR (126 MHz, CDCl3) δC 167.1, 155.7, 142.4, 129.1, 128.7, 126.5, 117.4, 60.0, 

18.1, 14.5. 

 

(E)-N-Methoxy-N-methyl-3-phenylbut-2-enamide (E)-324. 

 

General procedure 12 was followed using (E)-323 (974 mg, 5.12 mmol). Purification by flash column 

chromatography (SiO2, 5-15% EtOAc/PE, 2% NEt3) to afford the title compound (E)-324 (1.006 g, 

4.97 mmol) as a bright yellow oil in 95% yield. Characterization data were consistent with previous 

literature reports.504 

Rf: 0.15 (SiO2, 10% EtOAc/PE); 1H NMR (500 MHz, CDCl3) δH 7.51-7.45 (m, 2H, ArH), 7.42-7.33 (m, 

3H, ArH), 6.58 (s, 1H, C(O)CH), 3.71 (s, 3H, -OCH3), 3.27 (s, 3H, -NCH3), 2.53 (d, J = 1.4, ArCCH3); 
13C{1H} NMR (126 MHz, CDCl3) δC 167.8, 152.2, 143.1, 128.7, 128.6, 126.5, 116.0, 61.8, 32.3, 18.2. 

 

(E)-4-Phenylpent-3-en-2-one (E)-313. 

 

General procedure 13 was followed using (E)-324 (646 mg, 3.15 mmol). Purification by flash column 

chromatography (SiO2, 5% EtOAc/PE) afforded the title compound (E)-313 (425 mg, 2.65 mmol) as 

a yellow oil in 84% yield. Characterization data were consistent with previous literature reports.504 

Rf: 0.26 (SiO2, 5% EtOAc/PE); 1H NMR (500 MHz, CDCl3) δH 7.55-7.42 (m, 2H, ArH), 7.46-7.30 (m, 3H, 

ArH), 6.51 (q, 1H, J = 1.3, ArCCH), 2.54 (d, 3H, J = 1.3, ArCCH3), 2.30 (s, 3H, C(O)CH3); 13C{1H} (126 

MHz, CDCl3) δC 199.1, 154.1, 142.7, 129.3, 128.7, 126.7, 124.7, 32.4, 18.5. 
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Ethyl (Z)-2-methyl-3-phenylbut-2-enoate (Z)-323. 

 

From the reaction above, the title compound (Z)-323 (3.42 g, 18 mmol) was isolated as a major side-

product as a colourless oil in 12% yield. Characterization data were consistent with previous 

literature reports.504 

1H NMR (500 MHz, CDCl3) δH 7.40 – 7.30 (m, 3H, ArH), 7.25 – 7.21 (m, 2H, ArH), 5.93 (q, 1H, J = 1.5, 

C(O)CH), 4.02 (q, 2H, J = 7.1, OCH2), 2.20 (d, J = 1.5, PhCCH3), 1.10 (t, 3H, J = 7.1, OCH2CH3); 13C{1H} 

NMR (126 MHz, CDCl3) δC 166.0, 155.4, 140.8, 127.9, 127.7, 167.7, 117.7, 59.7, 72.0, 13.9. 

 

(Z)-N-Methoxy-N-methyl-3-phenylbut-2-enamide (Z)-324. 

 

General procedure 12 was followed using (Z)-323 (1.311 g, 6.89 mmol) to afford the title compound 

(Z)-324 as a clear oil in 91% crude yield (1.375 g, 6.27 mmol). Characterization data were consistent 

with previous literature reports.505  

1H NMR (400 MHz, CDCl3) δH 7.40-7.22 (m, 5H, ArH), 6.29 (bs, 1H, C(O)CH), 3.69 (bs, 3H, OCH3), 3.11 

(bs, 3H, NCH3), 2.23 (d,3H, J = 1.5, PhCCH3). 

 

(Z)-4-Phenylpent-3-en-2-one (Z)-313. 

 

General procedure 13 was employed using (Z)-324 (1.205 g, 5.87 mmol). Purification by flash 

column chromatography (SiO2, 5% EtOAc/PE) afforded the title compound (Z)-313 (672 mg, 

4.19 mmol) as a yellow oil in 72% yield, 65% yield over two steps. Characterization data were 

consistent with previous literature reports.506 

Rf = 0.19 (SiO2, 5% EtOAc/PE); 1H NMR (500 MHz, CDCl3) δH 7.41 – 7.31 (m, 3H, ArH), 7.23 – 7.18 (m, 

2H, ArH), 6.14 (q, 1H, J = 1.4, C(O)CH ), 2.20 (d, 3H, J = 1.4, PhCCH3), 1.81 (s, 3H, C(O)CH3); 13C{1H} 

NMR (126 MHz, CDCl3) δC 200.4, 153.0, 141.1, 128.7, 128.6, 128.4, 127.3, 30.3, 27.5. 
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Ethyl (E)-2-methyl-3-phenylbut-2-enoate (E)-325: 

 

Acetophenone 322 (2.336 mL, 20 mmol, 1.0 eq.) and triethyl-2-phosphonopropionate 316 

(4.716 mL, 22 mmol, 1.1 eq.) were added to a stirred solution of NaOEt in EtOH (1.4 M, 1.4 eq., 

prepared fresh from 644 mg sodium metal in 20 mL anhydrous EtOH) under N2. The reaction was 

heated to reflux for 24 h, before being cooled to room temperature and poured into ice water 

(50 mL). Et2O (50 mL) was added to the quenched reaction, the layers were separated, the aqueous 

phase was extracted thrice more with Et2O (3 × 50 mL), and the combined organics were washed 

with brine (100 mL), dried (MgSO4), filtered, and concentrated to dryness in vacuo. The crude 

product was purified by flash column chromatography (SiO2, 10% Et2O/PE) to afford the title 

compound (E)-325 (1.920 g, 9.40 mmol) as a pale yellow oil in 47% yield. Characterization data were 

consistent with previous literature reports.507 

1H NMR (500 MHz, CDCl3) δH 7.39 – 7.33 (m, 2H, ArH), 7.31 – 7.23 (m, 1H, ArH), 7.17 – 7.13 (m, 2H, 

ArH), 4.27 (q, 2H, J = 7.1, CH2), 2.25 (q, 3H, J = 1.5, -CH2CH3), 1.75 (q, 3H, J = 1.6, PhCCH3), 1.35 (t, J 

= 7.1, 3H, C(O)CCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 170.2, 145.5, 143.6, 128.5, 127.4, 127.1, 

125.1, 60.5, 23.3, 17.5, 14.5; HRMS (ESI-): Calculated for [M+CH3COOH-H]– C15H19O4
–: 263.1278; 

Found 263.1294. 

 

(E)-N-Methoxy-N,2-dimethyl-3-phenylbut-2-enamide (E)-326. 

 

General procedure 12 was followed using (E)-325 (1.020 g, 5.0 mmol) to afford the title compound 

(E)-326 as a clear oil in 93% crude yield (1.006 g, 4.60 mmol). 

1H NMR (500 MHz, CDCl3) δH 7.40 – 7.34 (m, 2H, ArH), 7.32 – 7.24 (m, 1H, ArH), 7.21 (m, app. bd, 

2H, ArH), 3.74 (bs, 3H, OCH3, rotamers), 3.32 (bs, 3H, NCH3), 2.03 (q, 3H, J = 1.5, PhCCH3), 1.79 (q, 

3H, J = 1.5, C(O)CCH3); HRMS (ESI+): Calculated for [M+H]+ C13H13NO2
+ 220.1332; Found 220.1331. 
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(E)-3-Methyl-4-phenylpent-3-en-2-one (E)-314. 

 

General procedure 13 was employed using (E)-326 (1.000 g, 4.56 mmol). Purification by flash 

column chromatography (SiO2, 0-10% EtOAc/PE) afforded the title compound (E)-314 (502 mg, 

2.92 mmol) as a white solid in 64% yield, 59% yield over two steps. Characterisation data were 

consistent with previous literature reports.508 

Rf = 0.30 (SiO2, 5%EtOAc/PE); m.p. 35-37 °C; 1H NMR (500 MHz, CDCl3) δH 7.40 – 7.33 (m, 2H, ArH), 

7.32 – 7.24 (m, 1H, ArH), 7.19-7.11 (m, 2H, ArH), 2.36 (s, 3H, CH3), 2.13 (s, 3H, CH3), 1.77 (s, 3H, CH3); 
13C{1H} NMR (126 MHz, CDCl3) δC 206.0, 143.0, 140.4, 133.3, 128.3, 127.4, 127.0, 29.8, 22.6, 17.1; 

HRMS (ESI+): calculated for [M+H]+ C12H15O+ 175.1117; Found 175.1118. 

 

Ethyl (Z)-2-methyl-3-phenylbut-2-enoate (Z)-325. 

 

From the reaction above, the title compound (Z)-325 (1.225 g, 6.00 mmol) was isolated as a major 

side-product as a colourless oil in 30% yield. Characterization data were consistent with previous 

literature reports.507 

1H NMR (500 MHz, CDCl3) δH 7.32 – 7.20 (m, 3H, ArH), 7.16 – 7.11 (m, 2H, ArH), 3.84 (q, J = 7.1, 2H, 

CH2), 2.09 (q, 3H, J = 1.1, C(O)CCH3), 2.03 (q, 3H, J = 1.1, 3H, PhCCH3), 0.82 (t, J = 7.2, 3H, -CH2CH3). 
13C{1H} (126 MHz, CDCl3) 170.8, 144.4, 143.0, 128.1, 127.1, 127.0, 126.3, 60.3, 21.8, 16.5, 13.7. 

HRMS (ESI+): calculated for [M+H]+ C13H17O2
+ 205.1223; Found 205.1226.  

 

(Z)-N-Methoxy-N,2-dimethyl-3-phenylbut-2-enamide (Z)-326. 

 

General procedure 12 was followed using (Z)-325 (1.400 g, 7.4 mmol) to afford the title compound 

(Z)-326 as a clear oil in 91% crude yield (1.375 g, 6.27 mmol). 

1H NMR (500 MHz, CDCl3) δH 7.37 – 7.18 (m, 5H, ArH), 3.38 (bs, 3H, OCH3), 2.90 (bs, 3H, NCH3), 2.08 

(s, 3H, CH3), 2.02 (s, 3H, CH3); HRMS (ESI+): Calculated for [M+Na]+ C13H17NO2Na+ 242.1151; Found 

242.1154. 
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(Z)-3-Methyl-4-phenylpent-3-en-2-one (Z)-314. 

 

General procedure 13 was employed using (Z)-326 (438 mg, 2.0 mmol). Purification by flash column 

chromatography (SiO2, 0-10% EtOAc/PE) afforded the title compound (Z)-314 (254 mg, 1.46 mmol) 

as a colourless oil in 73% yield, 66% over two steps. 

Rf = 0.32 (SiO2, 5% EtOAc/PE); IR (neat) 2912, 1672 (C=O), 1442, 1352, 1304, 1234, 766, 702 cm-1; 
1H NMR (500 MHz, CDCl3) δH 7.35 – 7.27 (m, 3H, ArH), 7.18 – 7.14 (m, 2H, ArH), 2.12 (q, 3H, J = 1.1, 

PhCCH3), 1.96 (q, 3H, J = 1.1, C(O)CCH3), 1.66 (s, 3H, C(O)CH3); 13C{1H} NMR (126 MHz, CDCl3) δC 

207.4, 143.6, 141.1, 136.1, 128.6, 128.0, 128.0, 127.9, 30.6, 21.9, 16.7; HRMS (ESI+): calculated for 

[M+H]+ C12H15O+ 175.1117; Found 175.1113. 

 

5.4.7 DMAPO-catalysed BV oxidation of ketones. 

(E)-Styryl acetate (E)-233. 

 

General procedure 14 was followed using (E)-322 (292 mg, 2.0 mmol) for 2.5 h. Purification by flash 

column chromatography (SiO2, 10% EtOAc/PE) afforded the title compound (E)-323 (235 mg, 

152 mmol) as a white solid in 76% yield. Characterisation data were consistent with previous 

literature reports.418 

Rf = 0.41 (SiO2, 15% Et2O/PE); m.p. 46-48 °C, (lit.509 46 °C); 1H NMR (400 MHz, CDCl3) δH 7.85 (d, 1H, 

J = 12.8, OCH), 7.40 – 7.17 (m, 5H, ArH), 6.40 (d, 1H, J = 12.8, PhCH), 2.20 (s, 3H, CH3).;13C{1H} NMR 

(126 MHz, CDCl3) δC 168.1, 136.4, 134.3, 128.9, 127.6, 126.4, 115.4, 20.9. 

 

(Z)-Styryl acetate (Z)-233. 

 

General procedure 14 was followed using (Z)-322 (145 mg, 1.0 mmol) for 45 min, with purification 

by flash chromatography (SiO2, 8% Et2O/n-hexane) affording the title compound (Z)-323 (104 mg, 

0.64 mmol) as a colourless oil in 64% yield. Characterisation data were consistent with previous 

literature reports.510 
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Rf = 0.37 (SiO2, 15% Et2O/PE); 1H NMR (500 MHz, CDCl3) δH 7.61 – 7.58 (m, 2H, ArH), 7.39 – 7.35 (m, 

2H, ArH), 7.31 (d, 1H, J = 7.3, PHCH), 7.29 – 7.24 (m, 1H, ArH), 5.72 (d, 1H, J = 7.2, OCH), 2.29 (s, 3H, 

CH3); 13C{1H} NMR (126 MHz, CDCl3) δC 167.6, 134.2, 134.0, 129.3, 128.6, 127.5, 112.0, 21.1. 

 

(E)-4-Chlorostyryl acetate (E)-217. 

 

General procedure 14 was followed using (E)-p-chlorobenzalacetone (360 mg, 2.0 mmol) for 2 h, 

with purification by flash chromatography (SiO2, 8% EtOAc/PE) affording the title compound (E)-271 

(284 mg, 1.46 mmol) as a yellow solid in 72% yield. Characterisation data were consistent with 

previous literature reports.418 

 Rf = 0.37 (SiO2, 15% Et2O/PE); m.p. 64-68 °C, (lit.418 66-68 °C); 1H NMR (400 MHz, CDCl3) δH 7.85 (d, 

1H, J = 12.8, OCH), 7.32 – 7.24 (m, 4H, ArH), 6.37 (d, J = 12.8, ArCH), 2.22 (s, 3H, CH3); 13C{1H} NMR 

(126 MHz, CDCl3) δC 168.0, 136.7, 133.2, 132.8, 129.0, 127.5, 114.3, 20.8. 

 

(E)-2-(Naphthalen-2-yl)vinyl acetate 272. 

 

General procedure 14 was followed using (E)-4-(naphthalen-2-yl)but-3-en-2-one (393 mg, 

2.0 mmol) for 3 h, with purification by flash chromatography (SiO2, 10% EtOAC/PE) affording the 

title compound (E)-272 (297 mg, 1.40 mmol) as a yellow solid in 70% yield. Characterisation data 

were consistent with previous literature reports.418 

Rf = 0.31 (SiO2, 15% Et2O/PE); m.p. 104-108 °C, (lit.418 106-108 °C); 1H NMR (400 MHz, CDCl3) δH 7.98 

(d, 1H, J = 12.8, OCH), 7.83 – 7.74 (m, 3H, ArH), 7.70 (s, 1H, ArH), 7.52 (dd, 1H, J = 8.5, 1.8, ArH), 

7.50 – 7.39 (m, 2H, ArH), 6.55 (d, 1H, J = 12.8, ArCH), 2.23 (s, 3H, CH3); 13C{1H} NMR (126 MHz, CDCl3) 

δC 168.2, 136.7, 133.8, 132.9, 131.8, 128.5, 127.9, 127.8, 126.5, 126.1, 126.0, 123.5, 115.6, 20.9. 

 

(E)-Styryl benzoate (E)-273. 

 

General procedure 14 was followed using (E)-chalcone (416 mg, 2.0 mmol) for 24 h, with 

purification by flash chromatography (SiO2, 8% Et2O/PE) affording the title compound (E)-273 
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(183 mg, 0.82 mmol) as a white solid in 41% yield. Characterisation data were consistent with 

previous literature reports.418 

Rf = 0.47 (SiO2, 15% Et2O/PE); m.p. 53-55 °C, (lit.416 52-54 °C); 1H NMR (400 MHz, CDCl3) δH 8.19 – 

8.15 (m, 2H, ArH), 8.11 (d, 1H, J = 12.8, OCH), 7.67 – 7.60 (m, 1H, ArH), 7.55-7.49 (m, 2H, ArH), 7.45 

– 7.40 (m, 2H, ArH), 7.38-7.33 (m, 2H, Ar), 7.31-7.25 (m, 1H, ArH), 6.61 (d, 1H, J = 12.8, PhCH); 13C{1H} 

NMR (126 MHz, CDCl3) δC 163.8, 136.7, 134.3, 133.8, 130.2, 129.1, 128.9, 128.7, 127.6, 126.5, 116.0. 

 

(E)-Styryl 2-bromoacetate (E)-279. 

 

General procedure 14 was followed using (E)-278 (1.00 g, 4.50 mmol) for 1.5 h, with purification by 

flash chromatography (SiO2, 8% EtOAc/PE) affording the title compound (E)-279 (570 mg, 

2.39 mmol) as an orange oil in 53% yield. 

Rf = 0.44 (SiO2, 10% EtOAc/PE); IR (neat): 3087, 2161, 1748 (C=O), 1656, 1260, 1206, 1116, 932, 751, 

693 (C-Br) cm-1; 1H NMR (500 MHz, CDCl3) δH 7.83 (d, 1H, J = 12.7, OCH), 7.37 – 7.24 (m, 5H, ArH), 

6.51 (d, J = 12.7, PhCH), 3.96 (s, 2H, CH2Br); 13C{1H} NMR (126 MHz, CDCl3) δC 164.4, 136.1, 128.8, 

127.8, 126.4, 116.9, 77.3, 77.0, 76.8, 25.0. HRMS (ESI+): Calculated for [M+H]+ C10H10O2Br+ 

240.9859; Found 240.9878. 

 

(E)-1-Phenylprop-1-en-2-yl acetate (E)-327. 

 

General procedure 14 was followed using (E)-312 (160 mg, 1.0 mmol) for 6 h. Purification by flash 

column chromatography (SiO2, 10% Et2O/PE) afforded the title compound (E)-327 (117 mg, 

0.66 mmol) as a colourless oil in 66% yield. 

Rf = 0.22 (SiO2, 10% Et2O/PE); IR (neat) 3057, 3028, 2994, 2914, 1744, 1678, 1436, 1372, 1212, 1126, 

1024, 932, 877, 750, 701 cm-1; 1H NMR (500 MHz, CDCl3) δH 7.36 – 7.31 (m, 2H, ArH), 7.28 – 7.21 

(m,3H, ArH), 6.26 (s, 1H, PhCH), 2.18 (s, 3H, C(O)CH3), 2.11 (d, 3H, J = 1.1, C(O)CCH3); 13C{1H} NMR 

(126 MHz, CDCl3) δC 169.6, 148.0, 135.0, 128.9, 128.5, 127.0, 118.9, 21.3, 17.3; HRMS (ESI+) 

Calculated for [M+Na]+ C11H12O2Na+ 199.0730: Found 199.0732. 
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(E)-2-Phenylprop-1-en-1-yl acetate (E)-328. 

 

General procedure 14 was followed using (E)-313 (500 mg, 3.10 mmol). Purification by flash column 

chromatography (SiO2, 8% EtOAc/PE) afforded the title compound (E)-328 (326 mg, 1.85 mmol) as 

a colourless oil in 60% yield. Characterisation data were consistent with previous literature 

reports.511 

Rf = 0.39 (SiO2, 15% Et2O/PE); 1H NMR (500 MHz, CDCl3) δH 7.51 (q, 1H, J = 1.5, OCH), 7.43-7.22 (m, 

5H, ArH), 2.22 (s, 3H, C(O)CH3), 2.10 (d, 3H, J = 1.5, PhCCH3); 13C{1H} NMR (126 MHz, CDCl3) δC 168.2, 

139.3, 132.8, 128.6, 127.5, 126.0, 121.8, 21.0, 13.8. 

 

(E)-3-Phenylbut-2-en-2-yl acetate (E)-329. 

 

General procedure 14 was followed using (E)-314 (174 mg, 1.0 mmol) at -10 °C for 3 h. Purification 

by flash column chromatography (SiO2, 20-100% DCM/n-hexane) afforded the title compound 

(E)-329 (46 mg, 0.24 mmol) as a colourless oil in 24% yield.  

Rf = 0.30 (SiO2, 15% Et2O/PE), 0.23 (SiO2, 33% DCM/PE); IR (neat) 2999, 2924, 1746, 1686, 1372, 

1222, 1164, 1106, 764, 701 cm-1; 1H NMR (500 MHz, CDCl3) δH 7.37 – 7.32 (m, 2H, ArH), 7.29 – 7.23 

(m, 3H, ArH), 2.21 (s, 3H, C(O)CH3), 1.89 (q, 3H, J = 1.5, OCCH3), 1.84 (q, 3H, J = 1.5, PhCCH3); 13C{1H} 

NMR (126 MHz, CDCl3) δC 169.1, 142.3, 141.1, 128.6, 128.3, 127.0, 124.8, 21.1, 18.0, 17.4, 17.4; 

HRMS (ESI-) Calculated for [M+CH3COO]– C14H17O4
– 249.1121; Found 249.1133. 

 

p-Acetoxy anisole 259. 

 

mCPBA (1.381 g, 6.0 mmol, 3.0 equiv.) was suspended in toluene (10 mL) and DMAP (49 mg, 

0.4 mmol, 0.2 equiv.) was added and the reaction was stirred at rt for 15 min. After this time 

p-methoxyacetophenone 263 (300 mg, 2.0 mmol) was added and the reaction was left to stir for 

1 h. At this point the reaction was quenched adding sodium metabisulfite (Na2S2O5, sat. aq., 10 mL) 

and stirring for 10 min (until potassium iodide starch test paper showed no colour). EtOAc (10 mL) 

was added and the layers were separated, and the aqueous layer was extracted once more with 

EtOAc (10 mL). The combined organics were washed three times with NaHCO3 (sat. aq., 20 mL), 

brine (20 mL, dried (MgSO4), filtered, and concentrated to dryness in vacuo. Purification by flash 
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column (SiO2, 8% EtOAc/PE) afforded the title compound 259 (298 mg,1.80 mmol) as a white solid 

in 90% yield. Crude product following workup was found to be > 95% pure and would be suitable 

for further synthetic use. Characterisation data were consistent with previous literature reports.418 

Rf = 0.24 (SiO2, 10% EtOAc/PE); m.p. 32-33 °C, (lit.418 33-35 °C); 1H NMR (400 MHz, CDCl3) δH 7.03 – 

6.97 (m, 2H, 2 × MeOCCH), 6.92 – 6.86 (m, 2H, 2 × AcOCCH), 3.80 (s, 3H, OCH3), 2.28 (s, 3H, O2CCH3); 
13C{1H} NMR (126 MHz, CDCl3) δC 170.0, 157.4, 144.3, 122.4, 114.6, 55.7, 21.2. 

 

5.4.8 Oxidation reactions of β-ionone 250 

(rac)-(E)-2-(2,2,6-Trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)vinyl acetate (rac)-280. 

 

mCPBA (1.380 g, 6.0 mmol, 3.0 equiv.) was added to a solution of DMAP (122 mg, 1.0 mmol, 

0.5 equiv.) in toluene (10.0 mL), and the suspension was stirred for 15 min, becoming a bright 

yellow solution. After this time, the reaction was cooled to -20 °C (NaCl/ice bath), β-ionone 250 

(407 µL, 2.0 mmol, 1.0 equiv.) was added, and the reaction was left to stir for 90 min. After the time 

the reaction mixture was quenched by diluting by half with EtOAc and Na2S2O5 (sat. aq.) and stirring 

for 10 min (until potassium iodide starch test paper showed no color). The layers were separated, 

and the aqueous layer was extracted once more with EtOAc (10 mL). The combined organics were 

washed three times with NaHCO3 (20 mL, sat. aq.), brine (30 mL), dried (Na2SO4) and concentrated 

to dryness in vacuo. Purification by flash column chromatography (SiO2, 5% Et2O in hexanes) 

afforded the desired product (rac)-280 (363 mg, 1.62 mmol) as a colourless oil in 81% yield. 

Characterisation data were consistent with previous literature reports.432 

This same procedure could also be employed using TMNO·2H2O (45 mg, 0.40 mmol, 0.2 equiv.) in 

the place of DMAP, affording the title compound (rac)-280 (380 mg, 1.70 mmol) in 85% yield.  

Rf = 0.30 (SiO2, 10% Et2O/n-hexane); 1H NMR (500 MHz, CDCl3) δH 7.17 (d, 1H, J = 12.3, OCH), 5.62 

(d, 1H, J = 12.3, OCHCH), 2.13 (s, 3H, O2CCH3), 1.94-1.84 (m, 1H, AlkH), 1.77 – 1.70 (m, 1H, AlkH), 

1.50 – 1.35 (m, 3H, AlkH), 1.21 (s, 3H, δ-CH3), 1.08 – 1.02 (m, 1H, AlkH), 1.04 (s, 3H, 1 × gem-CH3), 

0.96 (s, 3H, 1 × gem-CH3); 13C{1H} NMR (126 MHz, CDCl3) δC 167.9, 139.3, 110.9, 68.6, 65.3, 35.7, 

33.6, 30.1, 25.9, 25.8, 21.2, 20.9, 17.2.  
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(E)-4-(2,2,6-Trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)but-3-en-2-one (rac)-252. 

 

β-ionone 250 (407 µL, 2.0 mmol, 1.0 equiv.) was added to a vigorously stirred suspension of mCPBA 

(598 mg, 1.3 mmol, 1.30 equiv.) in toluene (10 mL) and stirred at rt for 1 h. After the time the 

reaction mixture was quenched by diluting by half with EtOAc and Na2S2O5 (sat. aq.) and stirring for 

10 min (until potassium iodide starch test paper showed no color). The layers were separated, and 

the aqueous layer was extracted once more with EtOAc (10 mL). The combined organics were 

washed three times with NaHCO3 (20 mL, sat. aq.), brine (30 mL), dried (Na2SO4) and concentrated 

to dryness in vacuo. Purification by flash column chromatography (SiO2, 15% Et2O in hexanes) 

afforded the desired product (rac)-252 (342 mg, 1.68 mmol) as a white solid 84% yield. 

Characterisation data were consistent with previous literature reports.430,512 

Rf: 0.13 (SiO2, 10% Et2O/n-hexane); m.p.: 45-47 °C (lit.512 46 °C); 1H NMR (500 MHz, CDCl3) δH 7.03 

(d, 1H, J = 15.6, C(O)CHCH), 6.30 (d, 1H, J = 15.6, C(O)CH), 2.28 (s, 3H, C(O)CH3), 1.96 – 1.87 (m, 1H, 

AlkH), 1.80-1.73 (m, 1H, AlkH), 1.52 – 1.38 (m, 3H, AlkH), 1.15 (s, 6H, 2 × gem-CH3), 1.11 – 1.05 (m, 

1H, AlkH), 0.94 (s, 3H, δ-CH3); 13C{1H} NMR (126 MHz, CDCl3) δC 197.7, 142.8, 132.6, 70.8, 66.0, 35.6, 

33.7, 29.9, 28.4, 26.1, 26.0, 21.0, 17.0. 

 

5.4.9 TMNO-catalysed BV oxidation of ketones 

p-Methoxyphenyl acetate 259. 

 

mCPBA (75 wt%, 598 mg, 2.60 mmol, 1.3 equiv.) was suspended in toluene (10 mL) and TMNO·2H2O 

(45 mg, 0.40 mmol, 0.2 equiv.) was added and the reaction was stirred at rt for 15 min. After this 

time p-methoxyacetophenone 263 (300 mg, 2.0 mmol) was added and the reaction was left to stir 

for 5 h. At this point the reaction was quenched adding sodium metabisulfite (Na2S2O5, sat. aq., 

10 mL) and stirring for 10 min (until potassium iodide starch test paper showed no colour). EtOAc 

(10 mL) was added and the layers were separated, and the aqueous layer was extracted once more 

with EtOAc (10 mL). The combined organics were washed three times with NaHCO3 (sat. aq., 20 mL), 

brine (20 mL, dried (MgSO4), filtered, and concentrated to dryness in vacuo. Purification by flash 

column (SiO2, 8% EtOAc/PE) afforded the title compound p-acetoxy anisole 259 

(301 mg,1.82 mmol) as a white solid in 91% yield. Crude product following workup was found to be 

> 95% pure and would be suitable for further synthetic use. Characterisation data were in consistent 

with the previous report in this thesis (vide supra). 
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(E)-Styryl acetate (E)-233. 

 

General procedure 15 was followed using (E)-232 (292 mg, 2.0 mmol) for 2.5 h. Purification by flash 

column chromatography (SiO2, 10% EtOAc/PE) afforded the title compound (E)-233 (249 mg, 

1.54 mmol) as a white solid in 77% yield. Characterisation data were in consistent with the previous 

report in this thesis (vide supra). 

 

(Z)-Styryl acetate (Z)-233. 

 

General procedure 15 was followed using (Z)-232 (73 mg, 0.50 mmol) for 40 min, with purification 

by flash chromatography (SiO2, 8% Et2O/n-hexane) affording the title compounds (Z)-233 (58 mg, 

0.36 mmol) as a colourless oil in 71 % yield. Characterisation data were in consistent with the 

previous report in this thesis (vide supra). 

 

(E)-1-Phenylprop-1-en-2-yl acetate (E)-327. 

 

General procedure 15 was followed using (E)-312 (160 mg, 1.0 mmol) for 1.5 h. Purification by flash 

column chromatography (SiO2, 10% Et2O/PE) afforded the title compound (E)-327 (139 mg, 

0.79 mmol) as a white solid in 79% yield. Characterisation data were in consistent with the previous 

report in this thesis (vide supra). 

 

(Z)-1-Phenylprop-1-en-2-yl acetate (Z)-327. 

 

General procedure 15 was followed using (Z)-312 (34 mg, 0.20 mmol) for 3 h. Purification by flash 

column chromatography (SiO2, 20-50% DCM/n-pentane) afforded the title compound (Z)-327 

(25 mg, 0.14 mmol) as a clear oil in 71% yield.  
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Rf = 0.29 (SiO2, 50% DCM/PE); IR (neat) 3026, 2921, 1752, 1680, 1370, 1202, 1147, 1006, 750, 695 

cm-1; 1H NMR (500 MHz, CDCl3) δH 7.37 – 7.33 (m, 2H, ArH), 7.29 (dd, 2H, J = 8.5, 6.9, ArH), 7.23 – 

7.18 (m, 1H, ArH), 5.96 (s, 1H, PhCH), 2.19 (s, 3H, C(O)CH3), 2.09 (d, 3H, J = 1.1, C(O)CCH3); 13C{1H} 

NMR (126 MHz, CDCl3) δC 168.7, 146.4, 134.6, 128.5, 128.3, 127.1, 116.7, 21.3, 20.8; HRMS (ESI+): 

Calculated for [M+NH4]+ C11H16O2N+ 194.1176; Found 194.1178. 

 

(E)-2-Phenylprop-1-en-1-yl acetate (E)-327. 

 

General procedure 15 was followed using (E)-313 (156mg, 1.0 mmol). Purification by flash column 

chromatography (SiO2, 8% EtOAc/PE) afforded the title compound (E)-328 (127 mg, 0.72 mmol) as 

a colourless oil in 72% yield. Characterisation data were in consistent with the previous report in 

this thesis (vide supra). 

 

(Z)-2-Phenylprop-1-en-1-yl acetate (Z)-328. 

 

General procedure 15 was followed using (Z)-313 (176 mg, 1.0 mmol) at 0 °C for 1 h. Purification by 

flash column chromatography (SiO2, 5% Et2O/n-hexane) afforded the title compound (Z)-328 

(65 mg, 0.38 mmol) as a colourless oil in 38% yield.  

Rf = 0.24 (SiO2, 5% Et2O/PE); IR (neat) 3083, 3058, 2972, 1752, 1664, 1371, 1206, 1102, 1074, 905, 

826, 754, 694 cm-1; 1H NMR (500 MHz, CDCl3) δH 7.48 – 7.45 (m, 2H, ArH), 7.39 – 7.34 (m, 2H, ArH), 

7.29 – 7.25 (m, 1H, ArH), 7.20 (q, 1H, J = 1.5, OCH), 2.12 (s, 3H, C(O)CH3), 2.03 (d, 3H, J = 1.6, PhCCH3); 
13C{1H} NMR (126 MHz, CDCl3) δC 168.2, 137.6, 130.8, 128.2, 128.1, 127.4, 119.8, 21.0, 19.2; HRMS 

(ESI-): Calculated for [M+CH3CO2]– C13H15O4
– 235.0965; Found 235.0974. 

 

(E)-3-Phenylbut-2-en-2-yl acetate (E)-329. 

 

General procedure 15 was followed using (E)-314 (95 mg, 0.5 mmol). Purification by flash column 

chromatography (SiO2, 20-100% DCM/n-pentane) afforded the title compound (E)-329 (45 mg, 
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0.22 mmol) as a colourless oil in 44% yield. Characterisation data were in consistent with the 

previous report in this thesis (vide supra). 

 

(Z)-3-Phenylbut-2-en-2-yl acetate (Z)-329. 

 

General procedure 15 was followed using (Z)-314 (87 mg, 0.5 mmol). Purification by flash column 

chromatography (SiO2, 20-50% DCM/n-hexane) afforded the title compound (Z)-329 (23 mg, 

0.12 mmol) as a colourless oil in 24% yield. 28% of the (Z)-314 starting material was recovered 

(24 mg, 0.14 mmol), and so the yield based on recovered starting material is 34%. 

Rf = 0.33 (SiO2, 50% DCM/PE); IR (neat) 2921, 1744, 1686, 1366, 1221, 1170, 1111, 903, 764, 700 

cm-1; 1H NMR (500 MHz, CDCl3) δH 7.32 – 7.27 (m, 2H, ArH), 7.23 – 7.15 (m, 3H, ArH), 2.03 (s, 3H, 

PhCCH3), 2.02 (s, 3H, OCCH3), 1.87 (s, 3H, C(O)CH3); 13C{1H} NMR (126 MHz, CDCl3) δC 169.8, 140.7, 

140.6, 128.2, 127.7, 126.8, 123.7, 20.9, 19.3, 17.0.; HRMS (ESI-): Calculated for [M+CH3CO2]– 

C14H17O4
– 249.1121; Found 249.1132. 
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278 E. Wojaczyńska and J. Wojaczyński, Chem. Rev., 2020, 120, 4578–4611. 

279 P. K. T. Lo, G. A. Oliver and M. C. Willis, J. Org. Chem., 2020, 85, 5753–5760. 

280 G. R. Revankar, N. B. Hanna, N. Imamura, A. F. Lewis, S. B. Larson, R. A. Finch, T. L. Avery and 
R. K. Robins, J. Med. Chem., 1990, 33, 121–128. 



239 
 

281 China, CN108440349, 2018. 

282 J. Liao, X. Sun, X. Cui, K. Yu, J. Zhu and J. Deng, Chem. - A Eur. J., 2003, 9, 2611–2615. 

283 C. K. Savile, V. P. Magloire and R. J. Kazlauskas, J. Am. Chem. Soc., 2005, 127, 2104–2113. 

284 P. F. Mugford, V. P. Magloire and R. J. Kazlauskas, J. Am. Chem. Soc., 2005, 127, 6536–6537. 

285 D. A. Cogan, G. Liu, K. Kim, B. J. Backes and J. A. Ellman, J. Am. Chem. Soc., 1998, 120, 8011–
8019. 

286 D. J. Weix and J. A. Ellman, Org. Lett., 2003, 5, 1317–1320. 

287 Y. Zhang, S. Chitale, N. Goyal, G. Li, Z. S. Han, S. Shen, S. Ma, N. Grinberg, H. Lee, B. Z. Lu and 
C. H. Senanayake, J. Org. Chem., 2012, 77, 690–695. 

288 K. K. Andersen, W. Gaffield, N. E. Papanikolaou, J. W. Foley and R. I. Perkins, J. Am. Chem. 
Soc., 1964, 86, 5637–5646. 

289 R. Annunziata, M. Cinquini and F. Cozzi, J. Chem. Soc. Perkin Trans. 1, 1982, 339–343. 

290 P. Decroos, Z. S. Han, K. Sidhu, J. Lorenz, L. Nummy, D. Byrne, B. Qu, Y. Xu, L. Wu, H. Lee, F. 
Roschangar, J. J. Song and C. H. Senanayake, Org. Process Res. Dev., 2019, 23, 263–268. 

291 Z. S. Han, M. A. Herbage, H. P. R. Mangunuru, Y. Xu, L. Zhang, J. T. Reeves, J. D. Sieber, Z. Li, 
P. DeCroos, Y. Zhang, G. Li, N. Li, S. Ma, N. Grinberg, X. Wang, N. Goyal, D. Krishnamurthy, B. 
Lu, J. J. Song, G. Wang and C. H. Senanayake, Angew. Chem. Int. Ed., 2013, 52, 6713–6717. 

292 Z. Han, D. Krishnamurthy, P. Grover, Q. K. Fang and C. H. Senanayake, J. Am. Chem. Soc., 
2002, 124, 7880–7881. 

293 D. J. Weix and J. A. Ellman, Org. Synth., 2005, 82, 157–165. 

294 R. R. Groleau, R. S. L. Chapman, H. Ley-Smith, L. Liu, T. D. James and S. D. Bull, J. Org. Chem., 
2020, 85, 1208–1215. 

295 I. Fernández, A. Alcudia, B. Gori, V. Valdivia, R. Recio, M. V. García and N. Khiar, Org. Biomol. 
Chem., 2010, 8, 4388–4393. 

296 S. Li, L. Zhang, J. Jiang, Y. Meng and M. Liu, Appl. Mater. Interfaces, 2017, 9, 37386–37394. 

297 V. A. Soloshonok and K. D. Klika, Helv. Chim. Acta, 2014, 97, 1583–1589. 

298 V. A. Soloshonok, Angew. Chem. Int. Ed., 2006, 45, 766–769. 

299 K. C. Cundy and P. A. Crooks, J. Chromatogr. A, 1983, 281, 17–33. 

300 C. P. Brock, W. B. Schweizer and J. D. Dunitz, J. Am. Chem. Soc., 1991, 113, 9811–9820. 

301 K.-H. Ernst, Chim. Int. J. Chem., 2018, 72, 399–403. 

302 O. Wallach, Justus Liebig’s Ann. der Chemie, 1895, 286, 119–143. 

303 E. Tokunaga, T. Yamamoto, E. Ito and N. Shibata, Sci. Rep., 2018, 8, 1–7. 

304 T. Katagiri, C. Yoda, K. Furuhashi, K. Ueki and T. Kubota, Chem. Lett., 1996, 115–116. 

305 M. Yasumoto, H. Ueki and V. A. Soloshonok, J. Fluor. Chem., 2010, 131, 540–544. 

306 J. Han, D. J. Nelson, A. E. Sorochinsky and V. A. Soloshonok, Curr. Org. Synth., 2011, 8, 310–
317. 



240 
 

307 H. Kwart and D. P. Hoster, J. Org. Chem., 1967, 32, 1867–1870. 

308 J. Han, O. Kitagawa, A. Wzorek, K. D. Klika and V. A. Soloshonok, Chem. Sci., 2018, 9, 1718–
1739. 

309 G. Storch, M. Haas and O. Trapp, Chem. Eur. J., 2017, 23, 5414–5418. 

310 V. Nieminen, D. Y. Murzin and K. D. Klika, Org. Biomol. Chem., 2009, 7, 537–542. 

311 V. A. Soloshonok, C. Roussel, O. Kitagawa and A. E. Sorochinskya, Chem. Soc. Rev., 2012, 41, 
4180–4188. 

312 Z. Szakács, Z. Sánta, A. Lomoschitz and C. Szántay, Trends Anal. Chem., 2018, 109, 180–197. 

313 A. Baumann, A. Wzorek, V. A. Soloshonok, K. D. Klika and A. K. Miller, Symmetry, 2020, 12, 
1106. 

314 P. Borowiecki, Tetrahedron Asymmetry, 2015, 26, 16–23. 

315 Z. Xu, Q. Wang and J. Zhu, J. Am. Chem. Soc., 2015, 137, 6712–6724. 

316 S. D. Bergman and M. Kol, Inorg. Chem., 2005, 44, 1647–1654. 

317 P. Dhanishta, P. Sai Siva Kumar, S. K. Mishra and N. Suryaprakash, RSC Adv., 2018, 8, 11230–
11240. 

318 C. Guzmán-Afonso, Y. lee Hong, H. Colaux, H. Iijima, A. Saitow, T. Fukumura, Y. Aoyama, S. 
Motoki, T. Oikawa, T. Yamazaki, K. Yonekura and Y. Nishiyama, Nat. Commun., 2019, 10, 1–
10. 

319 S. K. Mishra and N. Suryaprakash, Molecules, 2017, 22, 423. 

320 M. Majumder and N. Sathyamurthy, Theor. Chem. Acc., 2012, 131, 1–11. 

321 I. Katsuyama, A. A. Khalil, C. Dunbar and J. K. Zjawiony, Spectrosc. Lett., 2003, 36, 477–485. 

322 S. Latypov, M. A. Fakhfakh, J. C. Jullian, X. Franck, R. Hocquemiller and B. Figadère, Bull. 
Chem. Soc. Jpn., 2005, 78, 1296–1301. 

323 A. Mitra, P. J. Seaton, R. A. Assarpour and T. Williamson, Tetrahedron, 1998, 54, 15489–
15498. 

324 J. Song, H. Wang and M. Li, J. Mol. Struct., 2015, 1079, 250–257. 

325 A. S. Shetty, J. Zhang and J. S. Moore, J. Am. Chem. Soc., 1996, 118, 1019–1027. 

326 Z. Dega-Szafran and E. Dulewicz, Org. Magn. Reson., 1981, 16, 214–219. 

327 R. Evans, Z. Deng, A. K. Rogerson, A. S. McLachlan, J. J. Richards, M. Nilsson and G. A. Morris, 
Angew. Chem., 2013, 125, 3281–3284. 

328 R. Evans, G. Dal Poggetto, M. Nilsson and G. A. Morris, Anal. Chem., 2018, 90, 3987–3994. 

329 A. S. Virk, A. M. Torres, S. A. Willis and W. S. Price, J. Mol. Liq., 2016, 214, 157–161. 

330 A. M. Kelly, PhD Thesis, University of Bath, 2008. 

331 C. E. Lin, W. C. Chiou and W. C. Lin, J. Chromatogr. A, 1996, 723, 189–195. 

332 SCRF | Gaussian.com, https://gaussian.com/scrf/, (accessed 7 March 2021). 

333 K. S. Eccles, R. E. Morrison, C. A. Daly, G. E. O’Mahony, A. R. Maguire and S. E. Lawrence, 



241 
 

CrystEngComm, 2013, 15, 7571–7575. 

334 C. D. Roy and H. C. Brown, Monatshefte für Chemie, 2007, 138, 747–753. 

335 C. D. Roy and H. C. Brown, Monatshefte für Chemie, 2007, 138, 879–887. 

336 S. Higashibayashi, H. Tohmiya, T. Mori, K. Hashimoto and M. Nakata, Synlett, 2004, 457–460. 

337 H. Mei, J. Han, S. Fustero, R. Román, R. Ruzziconi and V. A. Soloshonok, J. Fluor. Chem., 2018, 
216, 57–70. 

338 J. F. Collados, E. Toledano, D. Guijarro and M. Yus, J. Org. Chem., 2012, 77, 5744–5750. 

339 W. Li, G. Kagan, R. Hopson and P. G. Williard, J. Chem. Educ, 2011, 88, 1331–1335. 

340 J. L. G. Ruano, J. Alemán, A. Parra, B. Cid, K. Oisaki and M. Shibasaki, Org. Synth., 2007, 84, 
129–138. 

341 M. Das and D. F. OShea, Org. Lett., 2016, 18, 336–339. 

342 H. Karoui and C. Ritchie, Dalt. Trans., 2016, 45, 18838–18841. 

343 S. Garg, D. K. Unruh and C. Krempner, Dalt. Trans., 2021, 50, 5044–5049. 

344 J. Di, H. He, F. Wang, F. Xue, X.-Y. Liu and Y. Qin, Chem. Commun., 2018, 54, 4692–4695. 

345 J. Wallbaum, L. K. B. Garve, P. G. Jones and D. B. Werz, Org. Lett., 2017, 19, 98–101. 

346 C. Ravi, D. Chandra Mohan and S. Adimurthy, Org. Lett., 2014, 16, 2978–2981. 

347 H. Ghafuri and M. M. Hashemi, J. Sulfur Chem., 2009, 30, 578–580. 

348 F. Xue, F. Wang, J. Liu, J. Di, Q. Liao, H. Lu, M. Zhu, L. He, H. He, D. Zhang, H. Song, X. Liu and 
Y. Qin, Angew. Chem. Int. Ed., 2018, 57, 6667–6671. 

349 C. Silva-Cuevas, C. Perez-Arrieta, L. A. Polindara-García and J. A. Lujan-Montelongo, 
Tetrahedron Lett., 2017, 58, 2244–2247. 

350 S. H. Norton, S. M. Bachrach and J. M. Hayes, J. Org. Chem., 2005, 70, 5896–5902. 

351 J. G. Tillett, Chem. Rev., 1976, 76, 747–772. 

352 K. Kawaoka, A. U. Khan, D. R. Kearns, N. J. Turro, M.-F. Chow and J. Rigaudy, J. Am. Chem. 
Soc., 1979, 101, 1302–1303. 

353 B. Bujnicki, J. Drabowicz and M. Mikołajczyk, Molecules, 2015, 20, 2949–2972. 

354 S. L. Yeste, PhD Thesis, University of Bath, 2007. 

355 R. E. Booms and D. J. Cram, J. Am. Chem. Soc., 1972, 94, 5438–5446. 

356 A. H. J. Engwerda, N. Koning, P. Tinnemans, H. Meekes, F. M. Bickelhaupt, F. P. J. T. Rutjes 
and E. Vlieg, Cryst. Growth Des., 2017, 17, 4454–4457. 

357 C. Aurisicchio, E. Baciocchi, M. F. Gerini and O. Lanzalunga, Org. Lett., 2007, 9, 1939–1942. 

358 H. Marom, P. U. Biedermann and I. Agranat, Chirality, 2007, 19, 559–569. 

359 D. R. Rayner, E. G. Miller, P. Bickart, A. J. Gordon and K. Mislow, J. Am. Chem. Soc., 1966, 88, 
3138–3139. 

360 M. Mikołajczyk and J. Drabowicz, Top. Stereochem., 2007, 13, 333–468. 



242 
 

361 V. Reddy Arava, L. Gorentla, P. K. Dubey and V. R. Arava, Beilstein J. Org. Chem, 2011, 7, 9–
12. 

362 P. M. Wovkulich and M. R. Uskoković, Tetrahedron, 1985, 41, 3455–3462. 

363 L. Byrne, J. Solà, T. Boddaert, T. Marcelli, R. W. Adams, G. A. Morris and J. Clayden, Angew. 
Chem. Int. Ed., 2014, 53, 151–155. 

364 M. Ilies, L. Di Costanzo, D. P. Dowling, K. J. Thorn and D. W. Christianson, J. Med. Chem., 
2011, 54, 5432–5443. 

365 H. Vogt and S. Bräse, Org. Biomol. Chem., 2007, 5, 406–430. 

366 C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. di Blasio, V. Pavone and C. Pedone, 
Biopolymers, 1983, 22, 205–215. 

367 G. Zhao, S. S. Samanta, J. Michieletto and S. P. Roche, Org. Lett., 2020, 22, 5822–5827. 

368 J. E. Hein and D. G. Blackmond, Acc. Chem. Res., 2012, 45, 2045–2054. 

369 H. Abas, J. Mas-Roselló, M. M. Amer, D. J. Durand, R. R. Groleau, N. Fey and J. Clayden, 
Angew. Chem. Int. Ed., 2019, 58, 2418–2422. 

370 A. von Baeyer and V. Villiger, Chem. Ber., 1899, 32, 3625–3633. 

371 G. R. Krow, in Organic Reactions, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1993, pp. 251–
798. 

372 X. Cui and J. Shi, Sci. China Mater., 2016, 59, 675–700. 

373 G.-J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Chem. Rev., 2004, 104, 4105–4123. 

374 C. Jiménez-Sanchidrián and J. R. Ruiz, Tetrahedron, 2008, 64, 2011–2026. 

375 F. E. Ziegler and H. Kim, Tetrahedron Lett., 1993, 34, 7669–7672. 

376 R. Llamas, C. Jiménez-Sanchidrián and J. R. Ruiz, React. Kinet. Catal. Lett., 2007, 90, 309–313. 

377 W. von. E. Doering and L. Speers, J. Am. Chem. Soc., 1950, 72, 5515–5518. 

378 W. Von, E. Doering and E. Dorfman, J. Am. Chem. Soc., 1953, 75, 5595–5598. 

379 S. L. Friess, J. Am. Chem. Soc., 1949, 71, 2571–2575. 

380 M. Snowden, A. Bermudez, D. R. Kelly and J. L. Radkiewicz-Poutsma, J. Org. Chem., 2004, 69, 
7148–7156. 

381 J. R. Alvarez-Idaboy, L. Reyes and N. Mora-Diez, Org. Biomol. Chem., 2007, 5, 3682–3689. 

382 L. Reyes, M. Castro, J. Cruz and M. Rubio, J. Phys. Chem. A, 2005, 109, 3383–3390. 

383 J. Clayden, N. Greeves and S. G. Warren, Organic chemistry, Oxford University Press, New 
YorK, 2nd edn., 2012. 

384 A. Cutignano, V. Notti, G. d’Ippolito, A. Domenech Coll, G. Cimino and A. Fontana, Org. 
Biomol. Chem., 2004, 2, 31671–3171. 

385 X. Wu, H. Gao, W. Sun, J. Yu, H. Hu, Q. Xu and X. Chen, Phyther. Res., 2017, 31, 1072–1077. 

386 Y. Fukuyama, H. Minami, M. Kagawa, M. Kodama and K. Kawazu, J. Nat. Prod., 1999, 62, 
337–339. 



243 
 

387 J. Xie and Y. Hsieh, J. Polym. Sci. Part A Polym. Chem., 2001, 39, 1931–1939. 

388 H. Yang, E. Henke and U. T. Bornscheuer, J. Org. Chem., 1998, 64, 1709–1712. 

389 G. Roscher, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & 
Co. KGaA, Weinheim, Germany, 2000. 

390 Z. Zha and P. Deshlahra, ACS Catal., 2021, 11, 1841–1857. 

391 M. Rotem and Y. Shvo, Organometallics, 1983, 2, 1689–1691. 

392 A. Lumbroso, N. R. Vautravers and B. Breit, Org. Lett., 2010, 12, 5498–5501. 

393 D. Yang, S. Ding, J. Huang and K. Zhao, Chem. Commun., 2013, 49, 1211. 

394 M. S. Chen and M. C. White, J. Am. Chem. Soc., 2004, 126, 1346–1347. 

395 Böeseken, J. - CHG, https://chg.kncv.nl/boeseken, (accessed 24 March 2021). 

396 A. F. Holleman, Recl. des Trav. Chim. des Pays-Bas, 1938, 57, 489–491. 

397 N. Prileschajew, Oxydation ungesättigter Verbindungen mittels Org. Superoxyde, 1909, 42, 
4811–4815. 

398 Z. Wang, in Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc., 
Hoboken, NJ, USA, 2010, pp. 3976–3979. 

399 J. Böeseken and A. Kremer, Recl. des Trav. Chim. des Pays-Bas, 1931, 50, 827–832. 

400 J. Böeseken and A. L. Soesman, Recl. des Trav. Chim. des Pays-Bas, 1933, 52, 874–880. 

401 Böeseken and J. Jacobs, Recl. des Trav. Chim. des Pays-Bas, 1936, 55, 786–790. 

402 J. Böeseken and J. S. P. Blumberger, Recl. des Trav. Chim. des Pays-Bas, 1925, 44, 90–95. 

403 J. Böeseken, Recl. des Trav. Chim. des Pays-Bas, 1926, 45, 838–844. 

404 Z. Wang, in Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc., 
Hoboken, NJ, USA, 2010. 

405 H. M. Walton, J. Org. Chem., 1957, 22, 1161–1165. 

406 E. Caspi, Y. W. Chang and R. I. Dorfman, J. Med. Chem., 1962, 5, 714–719. 

407 J. Böeseken, W. D. Cohen and C. J. Kip, Recl. des Trav. Chim. des Pays-Bas, 1936, 55, 815–
820. 

408 J. Böeseken and J. Greup, Recl. des Trav. Chim. des Pays-Bas, 1939, 58, 528–537. 

409 H. D. Dakin, Am. Chem. J., 1909, 42, 477–498. 

410 US. Pat., 3058995, 1962. 

411 US Pat., 3927122, 1975. 

412 L. Syper, Tetrahedron, 1987, 43, 2853–2871. 

413 J. A. Guzmán, V. Mendoza, E. García, C. F. Garibay, L. Z. Olivares and L. A. Maldonado, Synth. 
Commun., 1995, 25, 2121–2133. 

414 L. Yu, Y. Wu, H. Cao, X. Zhang, X. Shi, J. Luan, T. Chen, Y. Pan and Q. Xu, Green Chem., 2014, 
16, 287–293. 



244 
 

415 L. Yu, Z. Bai, X. Zhang, X. Zhang, Y. Ding and Q. Xu, Catal. Sci. Technol., 2016, 6, 1804–1809. 

416 X. Zhang, J. Ye, L. Yu, I. Shi, M. Zhang, Q. Xu and M. Lautens, Adv. Synth. Catal, 2015, 357, 
955–960. 

417 B. Poladura, A. Martinez-Castaneda, H. Rodriguez-Solla, R. Llavona, C. Concellón and V. del 
Amo, Org. Lett., 2013, 15, 2810–2813. 

418 R. Lawrence, PhD Thesis, University of Bath, 2016. 

419 E. Wenkert and M. Rubin, Nature, 1952, 170, 708–709. 

420 R. Tank, Synlett, 2007, 2007, 664–665. 

421 N. Jalalian and B. Olofsson, Org. Synth., 2013, 90, 1–9. 

422 A. Horn and U. Kazmaier, Eur. J. Org. Chem., 2018, 2018, 2531–2536. 

423 R. S. L. Chapman, R. Lawrence, J. M. J. Williams and S. D. Bull, Org. Lett., 2017, 19, 4908–
4911. 

424 R. S. L. Chapman, M. Francis, R. Lawrence, J. D. Tibbetts and S. D. Bull, Tetrahedron, 2018, 
74, 6442–6452. 

425 A. D. Adleb, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, A. D. Adler, F. 
R. Longo and W. Shergalis, A second paper on further studies is in preparation, 1964, vol. 32. 

426 A. DeBoer and R. E. Ellwanger, J. Org. Chem., 1974, 39, 77–83. 

427 P. W. Baures, D. S. Eggleston, J. R. Flisak, K. Gombatz, I. Lantos, W. Mendelson and J. J. 
Remich, Tetrahedron Lett., 1990, 31, 6501–6504. 

428 G. P. Boldrini, M. Bortolotti, F. Mancini, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. 
Org. Chem., 1991, 56, 5820–5826. 

429 M. Kuse and M. Isobe, Tetrahedron, 2000, 56, 2629–2639. 

430 S. Bull, W. B. Cunningham, J. D. Tibbetts, M. Hutchby, K. A. Smug, M. G. Davidson, U. 
Hintermair and P. Plucinski, Green Chem., 2020, 22, 513–524. 

431 Y. Fujise, K. Fujiwara and Y. Ito, Chem. Lett., 1988, 9, 1475–1476. 

432 G. W. Burton, J. Daroszewski, J. G. Nickerson, J. B. Johnston, T. J. Mogg and G. B. Nikiforov, 
Can. J. Chem., 2014, 92, 305–316. 

433 R. A. Michelin, P. Sgarbossa, A. Scarso and G. Strukul, Coord. Chem. Rev., 2010, 254, 646–
660. 

434 M. Del Todesco Frisone, F. Pinna and G. Strukul, Organometallics, 1993, 12, 148–156. 

435 J. K. Whitesell, R. Matthews and A. M. Helbling, J. Org. Chem., 1978, 43, 784–786. 

436 Y. Okuno, Chem. - A Eur. J., 1997, 3, 212–218. 

437 R. D. Bach, J. Org. Chem., 2012, 77, 6801–6815. 

438 S. Yamabe and S. Yamazaki, J. Org. Chem., 2007, 72, 3031–3041. 

439 Y. Ogata and Y. Sawaki, J. Org. Chem., 1972, 37, 2953–2957. 

440 S. Bhunia, A. Rana, S. Ghosh, A. Ivancich and A. Dey, Chem. Sci., 2020, 11, 2681–2695. 



245 
 

441 R. C. Weast, Ed., Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, Florida, 
60th editi., 1979, vol. 17. 

442 J. R. Alvarez-Idaboy, L. Reyes and J. Cruz, Org. Lett., 2006, 8, 1763–1765. 

443 L. Reyes, J. R. Alvarez-Idaboy and N. Mora-Diez, J. Phys. Org. Chem., 2009, 22, 643–649. 

444 A. Petrosyan, R. Hauptmann and J. Pospech, Eur. J. Org. Chem., 2018, 2018, 5237–5252. 

445 J. Berdys, M. Makowski, M. Makowska, A. Puszko and L. Chmurzyński, J. Phys. Chem. A, 2003, 
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7. APPENDIX A – X-RAY CRYSTALLOGRAPHIC DATA 

(E)-((2-Boronobenzylidene)amino)(tert-butyl)-λ3-(S)-sulfanolate (S)-181. 

 

 Table 20: Crystal data and structure refinement for (S)-181. 

Identification code  s21sdb1 
Empirical formula  C11 H16 B N O3 S 
Formula weight  253.12 
Temperature  150.00(10) K 
Wavelength  1.54184 Å 
Crystal system  Orthorhombic 
Space group  P212121 
Unit cell dimensions a = 9.60006(9) Å 
 b = 11.60553(15) Å 

 c = 11.64615(12) Å 
Volume 1297.54(2) Å3 
Z 4 
Density (calculated) 1.296 Mg/m3 
Absorption coefficient 2.187 mm-1 
F(000) 536 
Crystal size 0.389 × 0.236 × 0.119 mm3 
Theta range for data collection 5.381 to 73.698°. 
Index ranges -11<=h<=11, -14<=k<=11, -14<=l<=14 
Reflections collected 24769 
Independent reflections 2623 [R(int) = 0.0286] 
Completeness to theta = 67.684° 100.0 %  
Absorption correction Gaussian 
Max. and min. transmission 1.000 and 0.284 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2623 / 0 / 165 
Goodness-of-fit on F2 1.066 
Final R indices [I>2sigma(I)] R1 = 0.0230, wR2 = 0.0615 
R indices (all data) R1 = 0.0232, wR2 = 0.0617 
Absolute structure parameter -0.002(5) 
Extinction coefficient n/a 
Largest diff. peak and hole 0.226 and -0.230 e.Å-3 
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Table 21: Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for (S)-181. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 

Atom x y z U(eq) 

C(1) 4491(2) 2551(2) 3772(2) 28(1) 
C(2) 5651(2) 1662(2) 3703(2) 43(1) 
C(3) 4459(2) 3181(2) 4918(2) 42(1) 
C(4) 3074(2) 2021(2) 3501(2) 40(1) 

S 4746(1) 3640(1) 2643(1) 27(1) 
O(1) 4864(2) 2991(1) 1542(1) 41(1) 

N 6323(2) 4113(1) 3065(1) 27(1) 
C(5) 7313(2) 4047(1) 2344(2) 26(1) 
C(6) 8712(2) 4489(1) 2616(2) 24(1) 
C(7) 9849(2) 4303(1) 1868(2) 26(1) 

B 9805(2) 3613(2) 693(2) 30(1) 
O(2) 8588(2) 3250(1) 242(1) 38(1) 
O(3) 11054(2) 3421(2) 183(2) 53(1) 
C(8) 11141(2) 4750(2) 2202(2) 32(1) 
C(9) 11311(2) 5358(2) 3211(2) 37(1) 

C(10) 10187(2) 5538(2) 3934(2) 34(1) 
C(11) 8894(2) 5109(2) 3638(2) 29(1) 

 

Table 22: Bond lengths [Å] for (S)-181. 

C(1)-C(2)  1.520(3) C(5)-H(5)  0.9500 
C(1)-C(3)  1.522(3) C(6)-C(11)  1.402(3) 
C(1)-C(4)  1.526(3) C(6)-C(7)  1.413(2) 
C(1)-S  1.8398(18) C(7)-C(8)  1.399(3) 
C(2)-H(2A)  0.9800 C(7)-B  1.586(3) 
C(2)-H(2B)  0.9800 B-O(2)  1.349(3) 
C(2)-H(2C)  0.9800 B-O(3)  1.357(2) 
C(3)-H(3A)  0.9800 O(2)-H(2)  0.82(3) 
C(3)-H(3B)  0.9800 O(3)-H(3)  0.79(4) 
C(3)-H(3C)  0.9800 C(8)-C(9)  1.380(3) 
C(4)-H(4A)  0.9800 C(8)-H(8)  0.9500 
C(4)-H(4B)  0.9800 C(9)-C(10)  1.385(3) 
C(4)-H(4C)  0.9800 C(9)-H(9)  0.9500 
S-O(1)  1.4912(14) C(10)-C(11)  1.380(3) 
S-N  1.6837(15) C(10)-H(10)  0.9500 
N-C(5)  1.271(2) C(11)-H(11)  0.9500 
C(5)-C(6)  1.472(2) C(5)-H(5)  0.9500 
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Table 23: Bond angles [°] for (S)-181. 

C(2)-C(1)-C(3) 112.77(17) C(5)-N-S 117.38(13) 
C(2)-C(1)-C(4) 111.63(17) N-C(5)-C(6) 121.27(16) 
C(3)-C(1)-C(4) 110.92(16) N-C(5)-H(5) 119.4 
C(2)-C(1)-S 109.31(13) C(6)-C(5)-H(5) 119.4 
C(3)-C(1)-S 107.45(14) C(11)-C(6)-C(7) 120.39(16) 
C(4)-C(1)-S 104.32(13) C(11)-C(6)-C(5) 118.39(15) 
C(1)-C(2)-H(2A) 109.5 C(7)-C(6)-C(5) 121.23(16) 
C(1)-C(2)-H(2B) 109.5 C(8)-C(7)-C(6) 117.15(17) 
H(2A)-C(2)-H(2B) 109.5 C(8)-C(7)-B 116.78(16) 
C(1)-C(2)-H(2C) 109.5 C(6)-C(7)-B 126.06(16) 
H(2A)-C(2)-H(2C) 109.5 O(2)-B-O(3) 122.92(18) 
H(2B)-C(2)-H(2C) 109.5 O(2)-B-C(7) 121.16(16) 
C(1)-C(3)-H(3A) 109.5 O(3)-B-C(7) 115.92(17) 
C(1)-C(3)-H(3B) 109.5 B-O(2)-H(2) 112(2) 
H(3A)-C(3)-H(3B) 109.5 B-O(3)-H(3) 109(3) 
C(1)-C(3)-H(3C) 109.5 C(9)-C(8)-C(7) 122.08(18) 
H(3A)-C(3)-H(3C) 109.5 C(9)-C(8)-H(8) 119.0 
H(3B)-C(3)-H(3C) 109.5 C(7)-C(8)-H(8) 119.0 
C(1)-C(4)-H(4A) 109.5 C(8)-C(9)-C(10) 120.16(18) 
C(1)-C(4)-H(4B) 109.5 C(8)-C(9)-H(9) 119.9 
H(4A)-C(4)-H(4B) 109.5 C(10)-C(9)-H(9) 119.9 
C(1)-C(4)-H(4C) 109.5 C(11)-C(10)-C(9) 119.65(17) 
H(4A)-C(4)-H(4C) 109.5 C(11)-C(10)-H(10) 120.2 
H(4B)-C(4)-H(4C) 109.5 C(9)-C(10)-H(10) 120.2 
O(1)-S-N 110.36(8) C(10)-C(11)-C(6) 120.58(17) 
O(1)-S-C(1) 106.15(9) C(10)-C(11)-H(11) 119.7 
N-S-C(1) 97.76(8) C(6)-C(11)-H(11) 119.7 

 

Table 24: Anisotropic displacement parameters (Å2x 103) for (S)-181. The anisotropic displacement factor exponent takes 

the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ]. 

 U11 U22 U33 U23
 U13 U12 

C(1) 27(1) 29(1) 28(1) 0(1) 3(1) -2(1) 
C(2) 38(1) 35(1) 55(1) 13(1) 7(1) 7(1) 
C(3) 39(1) 62(1) 27(1) -6(1) 7(1) -9(1) 
C(4) 32(1) 39(1) 49(1) 1(1) 3(1) -12(1) 

S 21(1) 31(1) 29(1) 2(1) 0(1) -1(1) 
O(1) 33(1) 64(1) 25(1) -5(1) -2(1) -13(1) 

N 23(1) 27(1) 32(1) -2(1) 2(1) -3(1) 
C(5) 25(1) 28(1) 25(1) 1(1) 0(1) 0(1) 
C(6) 25(1) 22(1) 27(1) 3(1) 0(1) 0(1) 
C(7) 25(1) 24(1) 29(1) 4(1) 2(1) 2(1) 

B 31(1) 28(1) 30(1) 2(1) 6(1) 2(1) 
O(2) 33(1) 51(1) 30(1) -12(1) -2(1) 9(1) 
O(3) 37(1) 65(1) 56(1) -25(1) 21(1) -11(1) 
C(8) 23(1) 36(1) 38(1) 5(1) 2(1) -1(1) 
C(9) 29(1) 38(1) 45(1) 4(1) -9(1) -9(1) 

C(10) 41(1) 30(1) 32(1) -1(1) -5(1) -6(1) 
C(11) 31(1) 27(1) 29(1) 0(1) 2(1) -1(1) 
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Table 25: Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2x 10 3) for (S)-181. 

 x y z U(eq) 

H(2A) 5666 1321 2934 64 
H(2B) 5488 1057 4275 64 
H(2C) 6547 2036 3857 64 
H(3A) 5373 3525 5068 64 
H(3B) 4231 2635 5532 64 
H(3C) 3751 3789 4893 64 
H(4A) 2362 2626 3500 60 
H(4B) 2843 1444 4084 60 
H(4C) 3106 1654 2744 60 
H(5) 7148 3705 1616 31 
H(2) 8700(30) 2900(30) -360(30) 69(10) 
H(3) 10940(40) 3050(30) -380(30) 83(12) 
H(8) 11925 4632 1719 39 
H(9) 12201 5654 3410 45 

H(10) 10304 5953 4630 41 
H(11) 8121 5236 4131 35 

 

Table 26: Torsion angles [°] for (S)-181. 

C(2)-C(1)-S-O(1) 53.80(16) C(11)-C(6)-C(7)-B 179.52(16) 

C(3)-C(1)-S-O(1) 176.49(13) C(5)-C(6)-C(7)-B -0.8(3) 

C(4)-C(1)-S-O(1) -65.70(14) C(8)-C(7)-B-O(2) -173.26(18) 

C(2)-C(1)-S-N -60.09(15) C(6)-C(7)-B-O(2) 7.9(3) 

C(3)-C(1)-S-N 62.60(14) C(8)-C(7)-B-O(3) 6.6(3) 

C(4)-C(1)-S-N -179.60(13) C(6)-C(7)-B-O(3) -172.26(18) 

O(1)-S-N-C(5) 11.65(17) C(6)-C(7)-C(8)-C(9) -0.6(3) 

C(1)-S-N-C(5) 122.14(15) B-C(7)-C(8)-C(9) -179.52(17) 

S-N-C(5)-C(6) 177.10(12) C(7)-C(8)-C(9)-C(10) 0.4(3) 

N-C(5)-C(6)-C(11) -7.4(2) C(8)-C(9)-C(10)-C(11) -0.3(3) 

N-C(5)-C(6)-C(7) 172.95(16) C(9)-C(10)-C(11)-C(6) 0.4(3) 

C(11)-C(6)-C(7)-C(8) 0.7(3) C(7)-C(6)-C(11)-C(10) -0.6(3) 

C(5)-C(6)-C(7)-C(8) -179.66(15) C(5)-C(6)-C(11)-C(10) 179.72(17) 

 

Table 27: Hydrogen bonds for (S)-181 [Å and °]. 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

O(2)-H(2)...O(1)#1 0.82(3) 2.05(3) 2.808(2) 154(3) 
O(3)-H(3)...O(1)#1 0.79(4) 2.09(4) 2.834(2) 157(4) 

 

Symmetry transformations used to generate equivalent atoms:  

#1 x+1/2,-y+1/2,-z  
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(E)-((2-Boronobenzylidene)amino)(tert-butyl)-λ3-(R)-sulfanolate (R)-181. 

 

 Table 28: Crystal data and structure refinement for (R)-181. 

Identification code  e21sdb1 
Empirical formula  C11 H16 B N O3 S 
Formula weight  253.12 
Temperature  150.01(10) K 
Wavelength  0.71073 Å 
Crystal system  Orthorhombic 
Space group  P212121 
Unit cell dimensions a = 9.6026(2) Å 
 b = 11.6066(3) Å 
 c = 11.6791(4) Å 
Volume 1301.68(6) Å3 
Z 4 
Density (calculated) 1.292 Mg/m3 
Absorption coefficient 0.243 mm-1 
F(000) 536 
Crystal size 0.453 × 0.375 × 0.342 mm3 
Theta range for data collection 3.259 to 30.204°. 
Index ranges -13<=h<=13, -16<=k<=16, -16<=l<=16 
Reflections collected 22081 
Independent reflections 3612 [R(int) = 0.0321] 
Completeness to theta = 25.242° 99.8 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.00000 and 0.93594 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3612 / 0 / 165 

Goodness-of-fit on F2 1.079 

Final R indices [I>2sigma(I)] R1 = 0.0361, wR2 = 0.0796 
R indices (all data) R1 = 0.0405, wR2 = 0.0812 
Absolute structure parameter -0.01(2) 
Extinction coefficient n/a 
Largest diff. peak and hole 0.327 and -0.228 e.Å-3 
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Table 29: Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for (R)-181. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 

Atom x y z U(eq) 

S -256(1) 6360(1) 7639(1) 21(1) 
O(1) -136(2) 7014(2) 6540(1) 35(1) 

N 1321(2) 5885(1) 8063(2) 22(1) 
C(1) -514(2) 7447(2) 8768(2) 22(1) 
C(2) -1933(2) 7976(2) 8499(2) 34(1) 
C(3) -548(2) 6813(2) 9911(2) 37(1) 
C(4) 645(3) 8335(2) 8703(2) 37(1) 
C(5) 2313(2) 5955(2) 7345(2) 21(1) 
C(6) 3713(2) 5513(2) 7616(2) 19(1) 
C(7) 4851(2) 5697(2) 6868(2) 21(1) 
C(8) 6141(2) 5247(2) 7203(2) 26(1) 
C(9) 6313(2) 4641(2) 8212(2) 31(1) 
C(10) 5189(2) 4463(2) 8932(2) 28(1) 
C(11) 3897(2) 4894(2) 8639(2) 23(1) 

B 4807(3) 6383(2) 5695(2) 25(1) 
O(2) 3587(2) 6745(2) 5242(1) 32(1) 
O(3) 6058(2) 6578(2) 5189(2) 47(1) 

 

Table 30: Bond lengths [Å] for (R)-181. 

S-O(1)  1.4956(15) C(5)-H(5)  0.9500 
S-N  1.6869(17) C(6)-C(11)  1.406(3) 
S-C(1)  1.841(2) C(6)-C(7)  1.415(3) 
N-C(5)  1.272(2) C(7)-C(8)  1.400(3) 
C(1)-C(4)  1.520(3) C(7)-B  1.585(3) 
C(1)-C(3)  1.524(3) C(8)-C(9)  1.382(3) 
C(1)-C(2)  1.527(3) C(8)-H(8)  0.9500 
C(2)-H(2A)  0.9800 C(9)-C(10)  1.385(3) 
C(2)-H(2B)  0.9800 C(9)-H(9)  0.9500 
C(2)-H(2C)  0.9800 C(10)-C(11)  1.381(3) 
C(3)-H(3A)  0.9800 C(10)-H(10)  0.9500 
C(3)-H(3B)  0.9800 C(11)-H(11)  0.9500 
C(3)-H(3C)  0.9800 B-O(2)  1.352(3) 
C(4)-H(4A)  0.9800 B-O(3)  1.357(3) 
C(4)-H(4B)  0.9800 O(2)-H(2)  0.75(3) 
C(4)-H(4C)  0.9800 O(3)-H(3)  0.71(3) 
C(5)-C(6)  1.474(2)   
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Table 31: Bond angles [°] for (R)-181. 

O(1)-S-N 110.42(9) H(4B)-C(4)-H(4C) 109.5 
O(1)-S-C(1) 106.10(9) N-C(5)-C(6) 121.27(19) 
N-S-C(1) 97.76(9) N-C(5)-H(5) 119.4 
C(5)-N-S 117.23(15) C(6)-C(5)-H(5) 119.4 
C(4)-C(1)-C(3) 112.75(19) C(11)-C(6)-C(7) 120.33(17) 
C(4)-C(1)-C(2) 111.74(19) C(11)-C(6)-C(5) 118.35(17) 
C(3)-C(1)-C(2) 110.82(18) C(7)-C(6)-C(5) 121.32(18) 
C(4)-C(1)-S 109.29(14) C(8)-C(7)-C(6) 117.04(19) 
C(3)-C(1)-S 107.42(15) C(8)-C(7)-B 116.90(18) 
C(2)-C(1)-S 104.38(15) C(6)-C(7)-B 126.05(17) 
C(1)-C(2)-H(2A) 109.5 C(9)-C(8)-C(7) 122.3(2) 
C(1)-C(2)-H(2B) 109.5 C(9)-C(8)-H(8) 118.9 
H(2A)-C(2)-H(2B) 109.5 C(7)-C(8)-H(8) 118.9 
C(1)-C(2)-H(2C) 109.5 C(8)-C(9)-C(10) 120.1(2) 
H(2A)-C(2)-H(2C) 109.5 C(8)-C(9)-H(9) 120.0 
H(2B)-C(2)-H(2C) 109.5 C(10)-C(9)-H(9) 120.0 
C(1)-C(3)-H(3A) 109.5 C(11)-C(10)-C(9) 119.73(19) 
C(1)-C(3)-H(3B) 109.5 C(11)-C(10)-H(10) 120.1 
H(3A)-C(3)-H(3B) 109.5 C(9)-C(10)-H(10) 120.1 
C(1)-C(3)-H(3C) 109.5 C(10)-C(11)-C(6) 120.57(19) 
H(3A)-C(3)-H(3C) 109.5 C(10)-C(11)-H(11) 119.7 
H(3B)-C(3)-H(3C) 109.5 C(6)-C(11)-H(11) 119.7 
C(1)-C(4)-H(4A) 109.5 O(2)-B-O(3) 123.0(2) 
C(1)-C(4)-H(4B) 109.5 O(2)-B-C(7) 121.14(18) 
H(4A)-C(4)-H(4B) 109.5 O(3)-B-C(7) 115.86(19) 
C(1)-C(4)-H(4C) 109.5 B-O(2)-H(2) 112(3) 
H(4A)-C(4)-H(4C) 109.5 B-O(3)-H(3) 110(3) 

 

Table 32: Anisotropic displacement parameters (Å2x 103) for (R)-181. The anisotropic displacement factor exponent takes 

the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ]. 

 U11 U22 U33 U23
 U13 U12 

S 17(1)  25(1) 22(1)  -2(1) 0(1)  1(1) 
O(1) 29(1)  56(1) 19(1)  6(1) -2(1)  12(1) 

N 18(1)  22(1) 26(1)  3(1) 1(1)  3(1) 
C(1) 22(1)  24(1) 21(1)  -2(1) 4(1)  3(1) 
C(2) 28(1)  33(1) 42(1)  -1(1) 3(1)  11(1) 
C(3) 34(1)  54(2) 22(1)  6(1) 6(1)  7(1) 
C(4) 34(1)  30(1) 47(1)  -12(1) 6(1)  -7(1) 
C(5) 20(1)  22(1) 20(1)  0(1) 0(1)  0(1) 
C(6) 20(1)  17(1) 21(1)  -2(1) 1(1)  0(1) 
C(7) 19(1)  18(1) 24(1)  -4(1) 2(1)  -2(1) 
C(8) 18(1)  30(1) 31(1)  -3(1) 2(1)  1(1) 
C(9) 24(1)  32(1) 37(1)  -3(1) -8(1)  7(1) 

C(10) 35(1)  24(1) 27(1)  2(1) -4(1)  6(1) 
C(11) 26(1)  22(1) 22(1)  0(1) 2(1)  0(1) 

B 27(1)  23(1) 23(1)  -2(1) 6(1)  -2(1) 
O(2) 28(1)  46(1) 23(1)  13(1) -2(1)  -9(1) 
O(3) 34(1)  57(1) 50(1)  25(1) 21(1)  12(1) 
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Table 33: Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2x 10 3) for (R)-181. 

 x y z U(eq) 

H(2A) -2165 8551 9083 52 
H(2B) -2643 7370 8495 52 
H(2C) -1901 8347 7746 52 
H(3A) -770 7359 10525 55 
H(3B) 365 6465 10058 55 
H(3C) -1259 6209 9885 55 
H(4A) 480 8940 9272 56 
H(4B) 663 8677 7936 56 
H(4C) 1541 7962 8858 56 
H(5) 2147 6300 6620 25 
H(8) 6925 5363 6720 32 
H(9) 7204 4346 8410 37 

H(10) 5306 4047 9626 34 
H(11) 3125 4770 9133 28 
H(2) 3690(30) 7080(30) 4700(30) 51(10) 
H(3) 5960(40) 6880(30) 4660(30) 57(11) 

 

Table 34: Torsion angles [°] for (S)-181. 

O(1)-S-N-C(5) -11.58(19) C(11)-C(6)-C(7)-B -179.51(18) 
C(1)-S-N-C(5) -122.03(16) C(5)-C(6)-C(7)-B 0.8(3) 
O(1)-S-C(1)-C(4) -53.81(18) C(6)-C(7)-C(8)-C(9) 0.4(3) 
N-S-C(1)-C(4) 60.13(17) B-C(7)-C(8)-C(9) 179.50(19) 
O(1)-S-C(1)-C(3) -176.44(14) C(7)-C(8)-C(9)-C(10) -0.2(3) 
N-S-C(1)-C(3) -62.50(15) C(8)-C(9)-C(10)-C(11) 0.0(3) 
O(1)-S-C(1)-C(2) 65.85(16) C(9)-C(10)-C(11)-C(6) -0.1(3) 
N-S-C(1)-C(2) 179.79(14) C(7)-C(6)-C(11)-C(10) 0.4(3) 
S-N-C(5)-C(6) -177.15(13) C(5)-C(6)-C(11)-C(10) -179.90(19) 
N-C(5)-C(6)-C(11) 7.0(3) C(8)-C(7)-B-O(2) 173.0(2) 
N-C(5)-C(6)-C(7) -173.33(18) C(6)-C(7)-B-O(2) -8.0(3) 
C(11)-C(6)-C(7)-C(8) -0.5(3) C(8)-C(7)-B-O(3) -7.0(3) 
C(5)-C(6)-C(7)-C(8) 179.77(17) C(6)-C(7)-B-O(3) 171.9(2) 

 

Table 35: Hydrogen bonds for (S)-181 [Å and °]. 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

O(2)-H(2)...O(1)#1 0.75(3) 2.11(3) 2.813(2) 155(3) 
 O(3)-H(3)...O(1)#1 0.71(3) 2.18(3) 2.840(3) 155(4) 

 

Symmetry transformations used to generate equivalent atoms:  

#1 x+1/2,-y+3/2,-z  
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8. APPENDIX B – HPLC ANALYSIS OF COMMERCIAL SAMPLES OF (R)-129B 

HPLC analysis of a samples of Davis’ sulfinamide 129b purchased from Sigma-Aldrich, using a Daicel 

Chiracel OD column, flow rate 1 mL/min, Hexane/i-PrOH 95:5, (R)-129b tR = 28.7 min, (S)-129b tR = 

40.5 min, HPLC conditions taken from the literature.295 

(rac)-129b: 
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“Enantiopure” (R)-129b, confirming a true enantiopurity of 90% ee. 

 

 
 
“Enantiopure” (S)-129b, confirming a true enantiopurity of 94% ee. 
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9. APPENDIX C – 1H NMR SPECTRA OF DMAPO + MCBA 

 

DMAPO 

 

mCBA 

DMAPO 
+ 

mCBA 

 

 

Procedure for the production of the spectra in Appendix C: 

DMAPO (6.2 mg, 0.04 mmol) or DMAPO (6.2 mg, 0.04 mmol), or both, were added to toluene 

(1.0 mL) and stirred for 5 min. After this time, an aliquot (~20 μL) was removed and diluted up to 

600 μL in CDCl3, and a 1H NMR (500 MHz) spectrum was acquired. 
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10. APPENDIX D – REPRESENTATIVE NMR SPECTRA FOR 

DETERMINING C-B 13C NMR CHEMICAL SHIFTS 

2-((3aS,4S,6S,7aR)-3a,5,5-Trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-2-

yl)benzaldehyde 182 - 13C{1H} NMR (126 MHz, CDCl3) 
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13C{1H} NMR (126 MHz, CDCl3, -15 oC) – BC peak visible (131.8 ppm) 

 

HMBC (500 MHz, CDCl3) - ArH-C(B) correlations shown 
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11. APPENDIX E –PHD PUBLICATIONS 

 

The two publications listed below are composed in most part of content presented in this PhD 

Thesis, and so have been appended to this work in the current appendix. Both articles are 

reproduced here in full and unaltered from their published form.  
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Chiral molecules are widely used in many fields of research and so practically simple, accurate methods
to measure their enantiopurities are required. This review’s initial focus is on one such method, the Bull-
James assembly, which employs a three-component protocol combining 2-formylphenyl boronic acid, an
amine, and a diol to self-assemble diastereomeric iminoboronate ester (IBE) complexes whose ratio can
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trochemistry that are potentially applicable to high-throughput ee analysis are also discussed. Selected
examples where this orthogonal self-assembly process has been used as a platform technology to con-
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labelled peptides/proteins/biomolecules are also discussed.
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Scheme 1. (a) Rapid complexation of a boronic acid with a vicinal diol reversibly
affords a cyclic boronate ester. (b) Complexation of a diol to a non-fluorescent o-
aminomethylphenylboronic acid sensor in water or an alcohol solvent results in
formation of a solvent-inserted fluorescent boronic ester complex. Diol binding
results in fluorescence ‘‘turn-on” due to elimination of a ‘‘loose-bolt” effect that
causes internal conversion quenching of the fluorescence of the uncomplexed
boronic acid probe. (c) Representative o-aminomethylphenylboronic acid glu-
cose/diol sensors developed by the James group.
1. Introduction

This review describes the many applications of a three-
component self-assembly reaction that occurs when an amine, a
diol, and a 2-formyl-phenyl boronic acid (2-FPBA) template are
mixed together to afford stable iminoboronate ester (IBE) com-
plexes. Development of this versatile supramolecular methodology
has been pioneered in the Bull and James groups at the University
of Bath (UK) over the last two decades, with its widespread use by
numerous research groups for different supramolecular applica-
tions resulting in this type of reaction now being termed the
‘‘Bull-James assembly”. To date, this self-assembly methodology
has found a wide range of applications, including: use as chiral
derivatization agents (CDAs) for determining the enantiomeric
excess (ee) of a range of chiral analytes using NMR, optical and
electrochemical techniques; as a supramolecular self-assembly
reaction to produce boracycles, chiral auxiliaries and ligands for
stereoselective synthesis, and new types of polymers and
stimuli-responsive materials; and as the basis of ‘‘click” chemistry
methodology for modifying/functionalising peptides and proteins.

The Bull group have had an interest in the development of
asymmetric methodologies for the synthesis of chiral amines for
many years, and have often needed to determine the ee of new
types of chiral amines containing single stereocenters [1–6]. One
approach that they have commonly employed involves reaction
of a scalemic amine with a CDA such as Mosher’s acid chloride (ex-
pensive, moisture sensitive, multiple steps) to afford diastere-
omeric amide derivatives whose diastereomeric ratio (dr) can
then be determined by NMR spectroscopic analysis [7,8]. Alterna-
tively, the ee’s of these chiral amines (or their derivatives) have
been determined using chiral HPLC analysis. The range of struc-
tures and functional groups present in the chiral amines meant
that different CDAs or multiple expensive chiral HPLC columns
often needed to be screened before a suitable system was identi-
fied for each different class of amine [9,10]. Therefore, the Bull
group were interested in identifying a practically simple, cheap,
and rapid CDA approach that could be used to rapidly analyse
the ee values of a wide range of chiral amines using NMR spectro-
scopic analysis.

The James group have been interested in chemical sensing and
supramolecular chemistry for many years, having developed a
wide range of self-assembled fluorescent sensors that employ
reversible binding of boronic acids (planar sp2 boron) to diol frag-
ments to produce boronate ester complexes (tetrahedral sp3 boron)
to induce a change in fluorescence response (Scheme 1a) [11–16].
They have described that ortho-aminomethylphenylboronic acid
sensors are particularly effective for the fluorescence, optical, and
electrochemical sensing of sugars, with this class of sensors finding
recent commercial application for continuous monitoring of glu-
cose levels in critical care patients [17,18]. Diol complexation in
2

this class of sensors is favoured by the presence of the proximal
Lewis-basic tertiary amino group [19], which binds to the boron
centre to produce stable intramolecular amino-boronate ester
complexes. Orthogonal binding of both the diol analyte and the
amine to the boron centre occurs in a cooperative manner, with
complexation of the diol producing a boronate ester with a more
Lewis acidic sp2 boron centre, and the intramolecular N?B interac-
tion increasing the overall stability of the complex. Complexation
of these types of aminoboronic acid sensors to diols in aqueous/al-
coholic media has been shown to produce solvent-inserted amino-
boronate complexes, whose formation results in fluorescence
‘‘turn-on” through elimination of ‘‘loose-bolt” internal conversion
quenching of the fluorescence of the parent boronic acid probe
(Scheme 1b) [20,21]. The versatility and strength of this type of
aminoboronic acid complexation process has been exploited to
produce many sensors for the fluorescence detection of a wide
range of diols and sugars, as well as sensors for pH, anion, and reac-
tive oxygen species sensing (Scheme 1c) [11]. The added stability
of this type of aminoboronate ester complexes has also been used
as the basis of supramolecular assemblies for the generation of a



Scheme 2. Design principles for a three-component derivatisation protocol to
produce an IBE-based CDA for determining the ee of a scalemic amine.
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wide range of hydrogels, boronic acid appended porphyrins,
amphiphiles, polymers and covalent organic frameworks
[14,22,23].

Nomikai-inspired [24] conversations during a research trip to
Japan in 2002 [25] led James and Bull (and Arimori – PDRA in
the groups) to realise that this type of boronate ester complexation
chemistry could be exploited to develop a simple three-component
protocol for determining the enantiopurity of chiral amines (and
diols). Our simple idea was to react an achiral bifunctional tem-
plate that contained a boronic acid and a proximal aldehyde group
(purple) with a chiral 1,2-diol (blue) and a scalemic amine (red) to
selectively afford a pair of diastereomeric IBE complexes, whose dr
could then be determined through integration of pairs of diastere-
omeric signals in their 1H NMR spectrum. So long as no kinetic res-
olution occurred during the derivatisation process, this dr value
would be an accurate reflection of the ee of the parent scalemic
amine. Moreover, the orthogonal three-component nature of the
protocol meant that it would be easy to adapt this derivatisation
approach to determine the ee of chiral diols (and other chiral ana-
lytes) (Scheme 2).
2. Discovery and structural features of the Bull-James assembly

2.1. Discovery of the Bull-James assembly CDA for determining the ee
of amines

A review of the literature revealed a promising report by Dunn
et al. [26], who had described the stepwise synthesis of stable IBEs
based on imine condensation of 2-FPBA 1 [27] with aniline 2 to
afford an iminoboronic acid 3 intermediate that was then reacted
with catechol to afford iminoboronate ester 4 (Scheme 3). This
precedent indicated that reaction of 2-FPBA 1 with a chiral diol
and a scalemic amine could be used as the basis of a three-
component derivatisation protocol for determining the ee of chiral
amines, as outlined in Scheme 2.

This three-component assembly concept was initially investi-
gated by mixing 2-FPBA 1, (S)-BINOL 5 and (rac)-4-methoxy-a-
methylbenzylamine 6a in CDCl3 with 4 Å molecular sieves to drive
the condensation reactions to completion. To our delight, this reac-
Scheme 3. Stepwise three-component self-assemb

3

tion led to quantitative formation of a 50:50 mixture of the
diastereomeric IBE complexes (a-S,S)-7aa and (a-R,S)-7ba within
5 min (Fig. 1a) [28], with complexation reactions of scalemic
4-methoxy-a-methylbenzylamine 6a of known ee indicating that
no kinetic resolution was occurring. Examination of the 1H NMR
spectra revealed that the ee’s of scalemic amines could be easily
determined by integration of corresponding pairs of 1H NMR reso-
nances originating from each of the IBE diastereomers that were
formed. Resonances for the imine (black), a-methine (red), p-
methoxy (green), and a-methyl (blue) proton resonances of each
diastereomer were fully baseline-resolved, exhibiting relatively
large chemical shift differences DdH values of 0.11–0.21 ppm
(Fig. 1b). The presence of multiple well-resolved diastereomeric
peaks in these 1H NMR spectra enabled the integral ratios of mul-
tiple pairs of diastereomeric resonances to be used to accurately
measure high ee values (>95% ee), thus minimising any risk of inac-
curacy caused by baseline noise or the presence of impurities
(Fig. 1b).

This three-component derivatisation reaction was attractive
from a practical standpoint, as it was moisture tolerant, employed
cheap, commercially available, bench-stable reagents, and pro-
ceeded rapidly at room temperature (5 min) in an NMR solvent
with no need for reaction workup or purification. Moreover, it pro-
duced diastereomeric IBEs whose 1H NMR spectra exhibited multi-
ple pairs of baseline-resolved diastereomeric proton resonances
with a large DdH, which meant that their dr could be analysed
using lowfield NMR spectrometers (e.g. 250 MHz). Furthermore,
the imine signals appeared in a region of the 1H NMR spectrum
that was well removed from any other resonances, thus limiting
the risk of overlapping peaks resulting in inaccurate integration
values. These initial results indicated that this self-assembling
CDA stood a strong chance of being applicable for determining
the ee of a wide range of chiral amines, with its combinatorial
three-component nature affording the opportunity to change the
chiral diol component used for derivatisation to maximise the sig-
nal resolution of pairs of diastereomeric peaks as required (vide
infra). The modular nature of this CDA also afforded the opportu-
nity to use an enantiopure amine as a chiral reporter to analyse
the ee of chiral diols or any other chiral analyte that might show
orthogonal reactivity for either the boronic acid or formyl groups
of the 2-FPBA template [22].

2.2. Structural and mechanistic features of IBE complex formation

Since our initial report describing the use of this three-
component method to determine the ee’s of amines, significant
structural and mechanistic work has been carried out to under-
stand the efficiency of the self-assembling pathways leading to for-
mation of these stable IBE complexes. X-ray crystallographic
analysis of the diastereomeric IBEs (a-S,S)-7ab and (a-R,S)-7bb
[29] produced in the three-component assembly reaction of (S)-
BINOL 5, 2-FPBA 1 and enantiopure a-methylbenzylamine 6b
(Fig. 2) revealed N-B distances of 1.656 Å and 1.642 Å respectively,
clearly indicating the presence of strong N?B coordination bonds
ly of an achiral IBE complex 4 by Dunn et al.



Fig. 1. (a) Three-component assembly of 2-FPBA 1, (S)-BINOL 5 and (rac)-4-methoxy-a-methylbenzylamine 6a and observed DdH’s. (b) Expanded 1H NMR (500 MHz, CDCl3)
spectra of diastereomeric complexes produced from reaction of 2-FPBA 1 with (S)-BINOL 5 and (S)-6a of 0, 80, 90, 95 and 98% ee.

Fig. 2. X-ray crystal structures of IBEs (a-S,S)-7ab and (a-R,S)-7bb.
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Scheme 4. Stepwise mechanism of the three-component assembly of 2-FPBA 1, benzylamine 8 and catechol in CD3CN.

Scheme 5. Observed binding constants for intermediates generated in the three-
component assembly reaction of 2-FPBA 1, benzylamine 8 and catechol in CD3OD.
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that confer structural rigidity. This was further confirmed by 11B
NMR spectroscopy which revealed upfield ‘tetrahedral boron’ sig-
nals for both complexes. This rigidity leads to the benzylic C–H
bonds being positioned directly above the boronate centres to min-
imise steric interaction with the BINOL ligand. Differences in the
1H NMR chemical shifts of the a-methyl protons of the diastere-
omers can be explained by the homochiral complex (a-S,S)-7ab
experiencing anisotropic shielding effects from the BINOL naphthyl
moiety that are not present in the heterochiral (a-S,R)-7bb com-
plex. Similar variations in local anisotropic shielding effects
between diastereomeric complexes are responsible for the differ-
ent chemical shifts of multiple pairs of diastereomeric proton res-
onances observed in the 1H NMR spectra. The ease of
crystallisation of Bull-James-assembled IBEs also provides the
opportunity to determine the absolute configuration of a chiral
amine (or diol) analyte through X-ray crystal analysis of a diastere-
omerically pure IBE complex prepared from a chiral diol (or amine)
of known absolute configuration.

A simplified achiral three-component system using 2-FPBA 1,
catechol, and benzylamine 8 was used to explore the mechanism
and kinetics of the stepwise formation of these self-assembled
IBE complexes [30]. 1H and 11B NMR spectroscopic analysis of
two- and three-component reactions in acetonitrile-d3 (improved
solubility of reagents/products) revealed the presence of a multi-
step reaction pathway leading to complex formation (Scheme 4).
These studies revealed that the 2-FPBA 1 template exists in equilib-
rium with its corresponding borate 10 and benzoxaborole 100 spe-
cies, with strong intramolecular binding of a lone-pair of its
aldehyde group to the boron centre, activating the aldehyde
towards nucleophilic attack [31,32]. Reaction of the aldehyde with
an amine produces hemi-aminals 90 and 900 that then eliminate
water to produce iminoboronic acid 10. Subsequent addition of
catechol then leads to formation of the desired achiral imi-
noboronate complex 11. Interestingly, a small amount of the (Z)-
imine (Z)-10 (no intramolecular N?B coordination) was observed
in the two-component complexation reaction, which is consumed
through equilibration to (E)-IBE 10 upon addition of catechol. Sim-
ilar reaction pathways and intermediates have been suggested and
5

observed by others, including important works by Sporzyński and
Yatsimirisky [33–35].

In order to further evaluate the nature of the self-assembly pro-
cesses operating in these complexation reactions, the observed
binding constants for each individual two- and three-component
assembly step in methanol were calculated (Scheme 5). These data
clearly revealed that guest binding of the diol and amine to the 2-
FPBA host is a cooperative process, as demonstrated by the dra-
matic increase in binding affinities when moving from two- to
three-component assemblies. This difference in reactivity was
observed when catechol binds to the boron centre, as equimolar
mixtures of the diol and 2-FPBA 1 did not lead to quantitative for-
mation of formyl boronate ester 12 (K2 = 112 M�1), whereas addi-
tion of catechol to iminoboronic acid 10 strongly favoured
formation of iminoboronate ester 11 (K3 = 2.45 � 103 M�1). Simi-
larly, addition of benzylamine to boronate ester 12 to give imi-
noboronate ester 11 (K4 = 2.40 � 104 M�1) was more favoured
than addition of benzylamine to 2-FPBA 1 to afford imine 10



Scheme 6. Three-component assembly reaction of 2-FPBA 1, (S)-BINOL 5 and (rac)-amines 6 to afford diastereomeric IBEs with 1H NMR (300 MHz, CDCl3) DdH values quoted
for selected pairs of diastereomeric resonances.

Scheme 7. Three-component CDA method (using enantiopure (R)-BINOL) used to determine the ee’s of a-deuterated-a-amino esters 13 produced in asymmetric enolate
alkylation reactions.
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(K1 = 1100 M�1) by an order of magnitude. This further confirms
that the strength of binding of the diol to the boron centre to pro-
duce a boronate ester complex is increased by the presence of a
proximal imine functionality (and vice versa). These complexation
results are consistent with results reported by Gillingham et al.
to explain the efficiency of bioorthogonal iminoboronate complex-
ation reactions (vide infra), as well as explanations provided to
explain the reaction pathways present in analogues of o-
aminomethylphenylboronic acid complexes [36–38].

3. Three-component assembly for determining ee by NMR
spectroscopic analysis

3.1. Primary amines

The optimal conditions (enantiopure BINOL, CDCl3, 4 Å molecu-
lar sieves, 5 min) that were established to determine the ee of 4-
6

methoxy-a-methylbenzene 6a have been applied to determine
the enantiopurities of a wide array of primary chiral amine ana-
lytes (Scheme 6) [28]. This derivatisation approach shows good
scope, affording a series of diastereomeric IBEs 7 whose 1H NMR
spectra all exhibited at least one pair of well-resolved diastere-
omeric signals that could be integrated to determine their dr’s.
Complexation using scalemic samples confirmed that none of these
chiral amines underwent any kinetic resolution (or epimerisation)
during the derivatisation process, thus allowing this new CDA to be
used to accurately measure the ee’s of a wide range of chiral amine
analytes. Interestingly, this derivatisation method was found to be
effective for analysing the ee of primary amines containing remote
stereocenters up to 5 carbon atoms removed from the complexed
amino group, whilst direct analysis of chiral ammonium salts could
be achieved through incorporation of Cs2CO3 (1.1 equiv.) as a base
for neutralisation. A subsequent report by Urriolabeitia and co-
workers described that derivatisation of enantiopure phenyl-



Scheme 8. Three-component CDA (using enantiopure (S)-BINOL) used to determine the ee’s of a-arylglycines 14 produced in asymmetric Strecker reactions.

Scheme 9. Three-component CDA (using enantiopure (R)-BINOL) used to determine the ee’s of tert-butyl b-amino esters 15 produced in enantioselective aza-conjugate
addition reactions.
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glycine methyl ester salts (more labile a-stereocenter) resulted in
formation of mixtures of diastereoisomeric IBEs when derivatisa-
tion reactions were left for extended periods of time (> 1 h) [39].
We subsequently solved this racemisation issue by switching the
base used for amine salt neutralisation from Cs2CO3 to less-
soluble K2CO3, which allowed racemisation-free derivatisation of
chiral amine salts containing potentially labile stereocenters to
be carried out [40].

Since our initial report, this CDA method has been published
as a general procedure in Nature Protocols [41], and been used
by the Bull group to validate the enantioselectivities of a number
of new asymmetric methods for the production of chiral amines.
7

Their first application was to confirm the enantiopurities of (R)-
[a-2H]-phenylalanine methyl esters generated by alkylation of
the aza-enolate of deuterated Schöllkopf’s bis-lactim ether 13
(Scheme 7) [42]. This CDA method has also been used to confirm
the enantiopurities of a- and b-amino esters 14 and 15 prepared
using asymmetric Strecker (Scheme 8) and enantioselective
aza-conjugate addition reactions, respectively (Scheme 9)
[40,43]. It has also been used to confirm the enantiopurity of a
chiral a-methylbenzyl-amine intermediate (R)-16 that was used
for the synthesis of a chiral ligand for the preparation of a
pseudo-C3-symmetric titanium alkoxide propeller-like complex
(Scheme 10) [44].



Scheme 10. Three-component CDA (using enantiopure BINOL) used to determine
the ee of a tetradentate amine ligand (R)-16 used to prepare an enantiopure
‘propeller-like’ pseudo-C3-symmetric titanium alkoxide.

Scheme 11. Three-component CDA method (using enantiopure (S)-BINOL) used to
determine the ee of an a,a-difluoro-b3-amino esters 17 prepared using a sonocat-
alyzed Reformatsky reactions.

Scheme 12. Three-component CDA method (using enantiopure BINOL) used to
determine the ee of a chiral allylamine 18 produced in an enantioselective Overman
rearrangement reaction.

Scheme 13. Three-component analysis used to benchmark the ee’s of chiral amines
used to develop a MLCT CD assay for high-throughput determination of the ee’s of
primary amines (using (S)-BINOL).
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Other research groups have also used the Bull-James assembly
to determine the ee of amines produced in various stereoselective
protocols. Duggan et al., for instance, reported a novel synthesis of
aliphatic a,a-difluoro-b3-amino esters 17 through addition of zinc
enolates to chiral phenylglycine-derived imines (Scheme 11) [45],
with the three-component CDA approach then used to demon-
strate that the N-Boc-deprotected amine products had ee’s of 80–
92%. The ee of a chiral allyl amine intermediate 18, produced in
an enantioselective Overman-rearrangement that was used to syn-
thesise a transaminase BioA inhibitor (potential antitubercular
agent), was also measured in this manner (Scheme 12) [46].

The Anslyn group have also employed NMR spectroscopic anal-
ysis of three-component IBE assemblies to benchmark the ee’s of
amine analytes. These amines were subsequently used to develop
a new CD method for high-throughput ee determination based
on formation of diastereomeric chiral copper complexes that pro-
duce different metal-to-ligand charge transfer (MLCT) bands in
the visible region of the CD spectrum (Scheme 13) [47].

Suryaprakash et al. have reported the use of the chiral diol frag-
ments of RNA nucleosides as chiral selectors for determining the ee
of a small range of amines [48], as shown for the complexation
reaction of guanosine, 2-FPBA 1 and a-methyl-benzylamine 6b to
produce the diastereomeric complexes 19a and 19b shown in
Scheme 14. These complexation reactions required more forcing
reaction conditions (DMSO, 110 �C) to proceed to completion,
and whilst the structural complexity of these diastereomeric IBEs
affordedmultiple resolved resonance pairs, 800 MHz 1H NMR spec-
tra were required to fully resolve them all.

Fossey and co-workers have exemplified the experimental sim-
plicity and reproducibility of this NMR derivatisation protocol by
successfully using it as the basis of a research-informed undergrad-
uate teaching class that was used to train a cohort of >100 2nd year
undergraduate students at the University of Birmingham (UK) [49].
An optimised iminoboronate protocol using 2-FPBA 1, (R)-BINOL 5,
and a-methylbenzylamine 6b was used as an educational tool to
introduce the students to the principles of dynamic covalent
supramolecular chemistry and methods of determining the enan-
tiopurities of chiral molecules, whilst reinforcing their knowledge
of carbonyl condensation chemistry and fundamental Lewis acid/
base coordination processes.

3.2. Diamines

The Bull-James CDA protocol was then applied to determine the
ee’s of two widely used trans-diamines: 1,2-diphenylethane-1,2-
diamine 20 and trans-cyclohexane-1,2-diamine 21 [50]. Reaction
of diamine (rac)-20 with (R)-BINOL 5 and 2-FPBA 1 resulted in
the formation of a pair of diastereomeric imidazolidines (R,R,R)-



Scheme 14. Three-component assembly of 2-FPBA 1, guanosine, and (rac)-a-
methylbenzylamine 6b. Pairs of diasteromeric protons that exhibited resolved
resonances in a 800 MHz 1H NMR spectrum are shown in red.
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22a and (R,S,S)-22b [51–53], which exhibited well-resolved pairs of
diastereomeric signals for the amino (red) and benzylic (blue) pro-
tons proximal to their BINOL fragments being observed in their 1H
Scheme 15. Three-component assembly of 2-FPBA 1, (R)-BINOL 5 and (rac)-trans-diphe
esters 22 with 1H NMR (500 MHz, CDCl3) DdH of selected resonances.

Scheme 16. Three-component derivatisation of 2-FPBA 1, (S)-BINOL 5 with (rac)-trans-cy
1H NMR (400 MHz, CDCl3) DdH of selected resonances.
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NMR spectra (Scheme 15) [50]. Furthermore, these diastereomeric
IBE complexes were found to be stable enough for N–H deuteration
by addition of D2O, which resulted in simplified 1H NMR spectra
that enabled more accurate determination of dr’s.

Unfortunately, applying this CDA approach to trans-
cyclohexane-1,2-diamine 21 proved unsuccessful, with its
derivatisation with (S)-BINOL 5 and 2-FPBA 1 producing a mixture
of products (Scheme 16). Although the heterochiral imidazolidine
complex (S,R,R)-23b proved stable, increased steric demands
within the homochiral complex resulted in formation of a dynam-
ically equilibrating mixture of imidazolidine (S,S,S)-23a and its cor-
responding imine (S,S,S)-23a’. A simple solution to this problem
was achieved, through N-Boc-protection of the parent diamine 21
to afford mono-N-Boc-diamine 24, which then underwent IBE
derivatisation to afford the desired mixture of IBE diastereomers
in the usual manner.

3.3. Amino alcohols

Attempts to apply the CDA methodology to 1,2-amino-alcohols
proved similarly problematic, with assembly of (S)-phenylglycinol
25, 2-FPBA 1 and (S)-BINOL 5 producing complex equilibrating
mixtures of products (Scheme 17), including the desired IBE 26,
oxazolidine boronate ester 27 and a larger polyboracycle 28 [54].
Once again, the problems caused by these competing complexa-
tions could be solved using a protection strategy, with O-
silylation of the problematic alcohol functionality prior to assem-
bly resulting in the three-component complexation proceeding
smoothly to give the desired diastereomeric IBEs. A simple diol
nylethylenediamine 20 to produce a pair of diastereomeric imidazolidine boronate

clohexane-1,2-diamine 21 and (rac)-N-Boc-trans-cyclohexane-1,2-diamine 24 with



Scheme 17. (a) Problematic three-component assembly of (S)-phenylglycinol 25, 2-FPBA 1 and (S)-BINOL 5. (b) Three-component derivatisation of 2-FPBA 1, (rac)-29 and O-
silylated 1,2-amino alcohols 30 with 1H NMR (400 MHz, CDCl3) DdH of selected resonances.
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screen revealed that the best results were obtained when BINOL
was substituted by (rac)-(syn)-methyl 2,3-dihydroxy-3-
phenylpropionate 29, which was subsequently employed for the
successful three-component derivatization of ten enantiopure O-
silyl amino alcohol analytes 30.

3.4. Hydroxylamines

Bull-James assembly of hydroxylamines 31 with 2-FPBA 1 and
(rac)-BINOL 5 in the presence of Cs2CO3 as base gave mixtures of
diastereomeric nitrono-boronate esters 32 (Scheme 18) [55].
Unlike amines, which form five-membered IBEs containing a rela-
tively labile intramolecular N?B bond, hydroxylamines gave more
stable diastereomeric six-membered nitrono-boronate ester com-
plexes whose formation was favoured by both strong N-O and O-
B bonds [26,56]. These structures were confirmed by X-ray crystal-
lography of (a-S, R)-32bf, which revealed a bicyclic assembly con-
taining a coplanar zwitterionic -C=N+-O-B— arrangement (Fig. 3).
This produces a rigid ring system that produces relatively large
chemical shift differences for selected pairs of diastereomer reso-
nances (up to 0.242 ppm) in their 1H NMR spectra.

3.5. Sulfinamides

Chiral sulfinamides (primarily Ellman’s and Davis’) are widely
used as chiral auxiliaries and ligands to control stereoselectivities
in a wide range of asymmetric reactions. These sulfinamides are
normally prepared in enantiopure form via either classical resolu-
10
tion of their corresponding racemates or stereoselective synthesis,
which means that robust methods are required to accurately deter-
mine their enantiopurities. Application of standard Bull-James
complexation conditions to these sulfinamides proved unsuccess-
ful, with their less nucleophilic nitrogen atoms only affording small
amounts of the desired sulfiniminoboronates, regardless of reac-
tion conditions or additives employed. Consequently, a stepwise
‘one-pot’ two-component protocol was developed based on initial
reaction of 2-FPBA 1 with a sulfinamide 34 to afford a sulfinimi-
noboronic acid intermediate 35, whose boronic acid fragment
was then reacted with pinanediol 36 to afford the desired sulfin-
iminoboronate ester complexes 37 (Scheme 19) [57]. This stepwise
protocol was successfully applied to 8 racemic sulfinamides, which
resulted in baseline-resolved imine signals for their diastereomeric
IBEs in their 1H NMR spectra in all instances, with no evidence of
kinetic resolution.
3.6. Diols

The role of analyte and chiral reporter in the three-component
CDA are broadly interchangeable, and so the Bull-James assembly
has also been adapted to determine the ee’s of chiral 1,2- and
1,3-diol analytes through use of an enantiopure amine chiral
reporter (Scheme 20) [58]. a-Methylbenzylamine (S)-6b was cho-
sen as a cheap readily available chiral amine reporter for reaction
with 2-FPBA 1 and a range of racemic chiral diols 38, which pro-
duced diastereomeric complexes (a-S,S,S)-39a and (a-S,R,R)-39b,



Scheme 18. Three-component assembly of 2-FPBA 1, (rac)-BINOL 5, and chiral hydroxylamine 31 to form diastereomeric nitrono-boronate ester complexes 32a and 32bwith
1H NMR (500 MHz, CDCl3) DdH of selected resonances.

Fig. 3. X-ray crystal structure of (a-S, R)-32bf, from (S)-4-chloro-a-methylbenzy-
lamine 31f.

Scheme 19. Stepwise three-component assembly of 2-FPBA 1, (1R,2R,3S,5R)-pinanedi
resonances.
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which exhibited one or more baseline-resolved pairs of signals for
their IBE diastereomers in their 1H NMR spectra.

This method has also been published as a detailed general pro-
cedure in Nature Protocols [59], and has subsequently been applied
to determine the ee of a range of chiral 1,2-diols by a number of
research groups. One elegant example is the work by Watkins
et al., who employed the CDA (using (S)-a-methylbenzylamine
6b) to determine the ee’s of a range of chiral furan and thiophene
diols (40 and 41, respectively) prepared using Sharpless enantios-
elective ADmix dihydroxylation methodology, that were used for
the first stereoselective synthesis of (+)-armillariol C 40a
(Scheme 21) [60]. Inoue et al. used enantioselective dihydroxyla-
tion reactions of a,b-unsaturated esters to prepare both
enantiomers of syn-diol 42 (shown for ADmix-a), whose
b-stereocenters were then inverted in two steps via cyclic
organosulfate intermediates to afford their corresponding
ol 36 and (rac)-sulfinamides 34 with 1H NMR (500 MHz, CDCl3) DdH of selected



Scheme 20. Three-component assembly using 2-FPBA 1, (S)-a-methyl benzylamine 6b and (rac)-diols 38 with 1H NMR (300 MHz, CDCl3) DdH of selected resonances.

Scheme 21. Three-component CDA method (using enantiopure (S)-a-methylben-
zylamine) used to determine the ee of both enantiomers of armillariol C and
analogues 41 that were produced using a Sharpless asymmetric dihydroxylation
reaction.
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anti-diols. The enantiopurities of all four diol stereoisomers were
determined as 96–99% ee using three-component chiral derivatiza-
tion (using a-methylbenzylamine 6b), with these stereoisomers
then transformed into the four corresponding stereoisomers of
12
resolvin E3 (Scheme 22) [61]. Similarly, this CDA approach has
been used to determine the enantiopurity of diol 43 (90% ee, single
stereocenter, using both (R)-and (S)-6b) that was also produced in
an enantioselective dihydroxylation reaction and subsequently
used to prepare 3-oxo and 3b-hydroxytauranin (Scheme 23) [62].

Chopard et al. have used the three-component CDA to deter-
mine the enantiopurities of cis-diols 44 and 45, produced from
the microbial cis-dihydroxylation of naphthalenes and pyridi-
nones. In this instance, the chiral amine reporter used for derivati-
sation was optimised, which identified phenylglycine tert-butyl
ester 46 as the chiral reporter that gave diastereomeric IBEs with
the best DdH values (Scheme 24) [63].

The three-component CDA was also used to measure the ee’s of
cis-diols 47 and 48 produced in Sharpless dihydroxylation
reactions by Anslyn et al. (Scheme 25). The ee’s of these diols were
then used to benchmark indicator displacement UV–Vis assays for
the high-throughput determination of yields and enantioselectivi-
ties of Sharpless dihydroxylation reactions. This approach
employed reversible host/guest assemblies of an o-
aminomethylphenylboronic acid sensor, in which the UV–VIS sig-
nal intensity is directly determined by the ee and concentration
of the analyte [64,65].

The Bull group have applied the CDA method to determine the
ee of a range of chiral 1,3-diols 49 synthesised in moderate to good
ee by tandem hydroboration/reduction of b,c-unsaturated esters
(Scheme 26) [66]. The three-component assembly CDA has also
been used by Herzon et al. to determine the ee of 1,3-diol 50
(92%) that was synthesised by catalytic reductive hydration of a
chiral alkynylsilane by sequential hydration/hydrogenation using
a novel half-sandwich ruthenium complex and formic acid
(Scheme 27) [67].

The three-component CDA has also been used to assess the
enantiopurity of polymers containing diol fragments, with Kressler
et al. reporting its application to determine the enantiopurities of
poly(glycerol methacrylate)s (PGMAs, 51) that were prepared from
enantiopure solketal methacrylate monomers using atom transfer



Scheme 22. Three-component CDA method (using enantiopure a-methylbenzylamine) used to determine the ee’s of syn- and anti- diols 42a & 42b that were subsequently
used to synthesis all four possible stereoisomers of resolvin E3 (shown for ADmix-a).

Scheme 23. Three-component CDA method (using enantiopure (R)- and (S)-a-methylbenzylamine) used to determine the ee of diol 43 that was subsequently used for total
syntheses of 3-oxo- and 3b-hydroxytauranin.

Scheme 24. Three-component assembly for determining the enantiopurity of a cis-diol arene phenylglycine tert-butyl ester 46 and 2-FPBA 1 with 1H NMR (250 MHz, CDCl3)
DdH of selected resonances.
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Scheme 25. Indicator displacement assay used for UV–Vis and colorimetric
determination of enantioselectivity and yield of cis-diols 47 and 48 produced in
Sharpless dihydroxylation reactions.

Scheme 26. Three-component CDA method (using enantiopure (S)-a-methylben-
zylamine) used to measure the ee’s of chiral 1,3-diols 49 formed in tandem chiral
borane-mediated asymmetric hydroboration/reduction reactions of b,c-unsatu-
rated esters.

Scheme 27. Three-component CDA (using enantiopure a-methylbenzylamine) to
measure the ee of a 1,3-diol 50 formed in a stereoselective reductive hydration
reaction of an alkynyl alcohol catalysed by a half-sandwich ruthenium complex.
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radical polymerization (ATRP) reactions [68]. Enantiopure and
racemic polymer chains were derivatised with a-
methylbenzylamine 6b and 2-FPBA 1 in DMSO-d6, to afford
14
mixtures of iminoboronates (a-S,S)-52a and (a-S,R)-52b that
exhibited several pairs of distinct diastereomeric resonances in
their 1H NMR spectra (Fig. 4). Peak broadening caused by the poly-
meric backbone meant that baseline resolution was not observed,
however the DdH’s of the polymer’s methine, exo methylene and
endo methylene proton signals (aH, bH, cH, respectively) were suf-
ficiently different to enable qualitative assessment of the enantiop-
urity and absolute configurations of the PGMA side-chains of these
polymers.
3.7. Hydroxyacids and diacids

The groups of Chaudhari and Suryaprakash have also expanded
the scope of the Bull-James assembly CDA by demonstrating that it
could be used to determine the enantiopurities of hydroxyacids
53/54 and 1,4-diacids 55 [69–71]. Treatment of (rac)-a-
hydroxyacids (Scheme 28a) and (rac)-b-hydroxyacids
(Scheme 28b) with 2-FPBA 1 and a-methylbenzylamine 6b in
MeOD-d4 resulted in mixtures of diastereomeric iminoboronate
esters which showedmodest to excellentDdH (0.04–0.65 ppm) val-
ues in their 1H NMR spectra. As in previous reports, the role of ana-
lyte and reporter in these IBE complexes was found to be
interchangeable, and so corresponding use of an enantiopure
hydroxyacid could be used to determine the ee of scalemic amines.

This methodology was optimised further to improve resolution
and sensitivity, with the chiral amine reporter used for IBE com-
plex formation changed from a-methylbenzylamine 6b to axially
chiral diamine BINAM 56 [71]. Three-component assembly of
a-hydroxyacids 53, 2-FPBA 1 and BINAM 56 produced diastere-
omeric IBEs which exhibited excellent chemical shift differences
for pairs of diastereomeric resonances in their 1H,13C{1H} and
11B NMR spectra (Scheme 29). Interestingly, the excellent chiral
discrimination produced in this self-assembled system resulted
in chemical shift differences being observed in an IBE complex
derived from achiral substrate glyconic acid, which exhibited a
DdH = 0.04 ppm value for the prochiral a-protons of its IBE
complex.

Simple conformational models of the IBE complexes formed in
these systems were developed, allowing the absolute configuration
of hydroxyacids to be predicted using either BINAM 56 or a-
methylbenzylamine 53 as a chiral reporter [72,73]. Following
benchmarking, analysis of the relative signs of the DdH values,
broadness of signals and 2D nOe interactions enabled the absolute
configuration of a range of hydroxyacids and primary amines to be
assigned using BINAM 56 as a chiral reporter. In those cases where
assignment was hampered by significant signal overlap in the 1H
NMR spectra, these resonances could be successfully deconvoluted
using simple 2D RES-TOCSY 1H NMR experiments [74].

These three-component assembly protocols were also used to
determine the ee’s of chiral 1,4-diacids 55 (Scheme 30), resulting



Fig. 4. (a) Bull-James assembly used for derivatisation of the diol side-chain of poly(glycerol methacrylate)s 51. (b) Inset of 1H NMR (400 MHz, DMSO – d6) spectra showing
chemical shift variation of aH, bH and cH resonances of complexes of (S)-PGMA (red), (R)-PGMA (blue) and (rac)-PGMA (black). Reproduced from ref. [68] with permission
from Elsevier.

Scheme 28. Three-component CDA for determining the enantiopurities of (a) a-hydroxyacids 53; and (b) b-hydroxyacids 54 with 1H NMR (400 MHZ, MeOD-d4) DdH of
selected resonances.
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in moderate to excellent chemical shift differences (DdH = 0.08–
0.62 ppm) in the 1H NMR spectra of the diastereomeric IBEs of five
diacid analytes [70]. Once again, the components of this assembly
could be switched, enabling chiral diacids to be used to produce
diastereomeric IBE complexes to determine the ee’s of chiral pri-
mary amines. In some instances, the large chemical shift differ-
ences observed in these diacid/amine-derived IBE complexes
even led to full resolution of certain 13C{1H} NMR signals.
15
3.8. 19F NMR spectroscopic analysis

Fluorine was the first NMR-active heteronucleus to be studied
for compatibility with the Bull-James assembly, due to the strength
of its signal, its broad range of chemical shifts and the simplicity of
19F NMR spectra, making it an excellent and widely-used NMR-
active reporter. Bull and James first demonstrated incorporation
of fluorine into their three-component assembly in 2009 [75,76],



Scheme 29. Three-component CDA for determining the enantiopurities of hydroxyacids 53 using 2-FPBA 1 and BINAM 56 with selected 1H NMR (400 MHz, CDCl3) DdH of
selected resonances.

Scheme 30. Three-component CDA for determining the enantiopurity of 1,4-
diacids 55 with 1H NMR (400 MHz, MeOD-d4) DdH of selected resonances.
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with initial work focusing on using a fluorinated chiral amine
reporter in the three-component protocol (Scheme 31). A range
of diols 57, 4-fluoro-a-methylbenzylamine 4-F-6b and 2-FPBA 1
were derivatized to form 19F NMR-active diastereomeric com-
plexes (a-S,S,S)-58a and (a-R,S,S)-58b, which exhibited a DdF range
of 0.05–0.75 ppm. A similar approach was subsequently employed
by Suryaprakash et al. for analysis of hydroxyacid and diacid proto-
cols, with CF3-appended chiral reporters and analytes affording
diastereomeric complexes with non-equivalent 19F NMR signals
that could be integrated to determine their dr [69,70].

A significant improvement to this fluorous approach was
achieved by incorporating the fluorine reporter atom into the achi-
ral 2-FPBA template to produce a generally applicable method for
determining the ee of different classes of chiral analytes. 4-
fluoro-2-formylphenylboronic acid (4-F-2-FPBA, 4-F-1) was syn-
thesised and used in the three-component assembly protocol, pro-
ducing fluorinated diastereomeric complexes 60 which afforded
baseline-resolved signals in their 19F NMR spectra, allowing for
16
ee determination of diols by both 19F and 1H NMR spectroscopic
analysis (Fig. 5). Similar results were reported by Suryaprakash
et al. during their later work on applying this CDA to determine
the enantiopurity of diacids [70].

Recently, Oe et al. have also reported the three-component
assemblies of fluorinated 2-FPBA derivatives 3-F-1, 4-F-1 and 5-
F-1 with (S)-BINOL 5 and a-methylbenzylamine 6b with the aim
of identifying diastereomeric IBEs with the greatest DdF values
(Scheme 32) [77]. After establishing that 5-F-1 was the best fluori-
nated template (93% conversion, DdF = 0.10 ppm for their model
system), this system was optimised using excess BINOL and tri-
ethylamine (1.5 equiv. each) to minimize kinetic resolution and/
or epimerisation of a-amino ester salts 61.

Finally, a recent study on all four regioisomers of fluoro-2-FPBA
as bifunctional templates for analysis of the ee’s of sulfinamides
revealed that 3-fluoro-2-FPBA 3-F-1 was the optimal template
(Fig. 6) [57], producing an impressive chemical shift difference of
DdF = -2.328 ppm between the IBE diastereomers produced from
Ellman’s sulfinamide (Fig. 6b). A stepwise approach was used to
derivatise a small range of sulfinamides 34, 3-F-1 and
(1R,2R,3S,5R)-pinanediol 36 which gave large chemical shift differ-
ences and full baseline resolution of the imine and fluorine peaks
of their diastereomeric IBE complexes.

3.9. Chalcogen NMR spectroscopic analysis

Silva et al. have shown that incorporation of NMR-active chalco-
gens 77Se and 125Te into the analyte or chiral reporting unit can
also be used to determine ee using three-component assembly pro-
tocols [78,79]. Their initial report focused on derivatising racemic
chalcogen-containing amines 62 (Scheme 33) with 2-FPBA 1 and
(S)-BINOL 5 to afford pairs of iminoboronate complexes. 77Se{1H}
and 125Te{1H} NMR spectroscopy of these complexes showed
excellent chemical shift anisochrony for the diastereomeric IBE
complexes formed, with DdSe values ranging from 26.2 to
34.4 ppm and DdTe values ranging from 75.6 to 85.7 ppm. Although
only racemic samples were employed in this work, the magnitude



Scheme 31. Three-component protocol using 2-FPBA 1, 4-fluoro-a-methylbenzylamine 4-F-6b and chiral diols 57 to produce fluorinated diastereomeric complexes with
good 19F NMR (400 MHz, CDCl3) DdF values.

Fig. 5. (a) Three-component protocol using 4-F-2-FPBA 4-F-1, (rac)-a-methylbenzylamine 6b and chiral diols 59. (b) Expansion of 1H (500 MHz, CDCl3) and 19F (470 MHz,
CDCl3) NMR spectra of three-component assembly of 4-F-1, (R)-6b and a scalemic diol (red) at 80%, 90% and 98% ee. Adapted from ref. [75] with permission from the American
Chemical Society.
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of chemical shift differences observed indicates that these systems
would be useful for determining the ee of diol analytes.

Subsequently, Silva et al. synthesised selenium-containing
3-phenylchalcogen-1,2-propanediol 63 for use as a chiral reporter
with 2-FPBA 1 and chiral amines 64 which gave pairs of diastere-
omeric IBEs, the majority of which exhibited baseline-resolved
diastereomeric signals in their NMR spectra with chemical shift
differences for DdSe and DdTe of 0–1.144 ppm and 0.43 ppm,
respectively (Scheme 34) [78]. Interestingly, the chemical shift dif-
ferences observed in this instance were 100-fold smaller than for
their previous examples, implying that the chalcogen atoms
occupy positions in space that are relatively remote from the
amine stereocenters and so only experience small anisotropic
shielding effects. Nevertheless, integration of diastereomeric 77Se
NMR signals could be used to produce accurate measurements of
the ee’s of scalemic samples of known enantiopurites (±4%).
17
4. Three-component assembly for determining ee by optical
methods

The Bull-James assembly has also been applied to the optical
sensing of ee using methods that rely on CD, UV–Vis, or fluores-
cence spectroscopic analysis, with the aim of developing methods
potentially applicable for high-throughput analysis [80,81]. All of
these approaches rely on exploiting differences in the spectro-
scopic response of diastereomeric IBE complexes, whose dr’s corre-
spond to the ee of the parent chiral analyte used for the IBE
complexation.

4.1. Determining the ee of amines and diols using circular dichroism

A collaboration between the Anslyn, Bull and James groups in
2012 reported the use of circular dichroism spectroscopy to anal-



Scheme 32. Modified Bull-James assembly of amino ester salts 61 with 5-F-1 and (S)-BINOL 5 with 19F NMR (376 MHz, CDCl3) DdF of selected resonances. * CD2Cl2 used as
solvent.

Fig. 6. (a) Stepwise three-component assembly of fluorinated 2-FPBA templates, (1R,2R,3S,5R)-pinanediol 36 and sulfinamides 34. (b) Chemical shift differences in the 19F
NMR (470 MHz, CDCl3) spectra of IBEs of the three-component assembly of Ellman’s sulfinamide (R)-34a (33%), (1R,2R,3S,5R)-pinanediol 36 and four fluorinated 2-FPBA
isomers (same scale).
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yse diastereomeric IBE complexes formed from the three-
component self-assembly of chiral amines 66, chiral BINOL deriva-
tives 67/68, and 2-FPBA 1 (Fig. 7a) [82]. As with many multicompo-
nent host–guest assemblies, a strong CD signal was observed
between 250 and 270 nm (Fig. 7b), with a maximum difference
in signal response between diastereomeric complexes produced
from the enantiomers of a-methylbenzylamine 6b observed at
18
253 nm (98,941 deg.cm2/dmol). This enabled BINOL and two
brominated derivatives to be employed as chiral reporters in an
array of sensing ensembles, whose CD signals were processed
using Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) to produce chemometric statistical models that
were capable of differentiating between different a-chiral amine
analytes and determining their ee’s with an average error of



Scheme 33. Three-component assembly of 2-FPBA 1, (S)-BINOL 5 and chalcogen containing amines 62, and the DdSe (99 MHz, CDCl3) and DdTe (132 MHZ, CDCl3) values of
their diastereomeric IBE complexes.

Scheme 34. Three-component assembly of 2-FPBA 1, chalcogen containing diols (R)-63Se/Te and racemic amines 64 with DdSe (99 MHz, CDCl3) and DdTe (132 MHz, CDCl3).
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±5.8% (Fig. 7c, d). The use of PCA and LDA is widespread in the field
of differential sensing as multivariate statistical tools which recog-
nise and amplify patterns from large datasets [83].

Subsequent to this report, Wolf et al. described a self-
assembling system based on host complexes derived from 4-
methoxy-2-FPBA (4-OMe-1) and non-chiral 2,20-binaphthol 69
(Fig. 8a) [84]. Two-component assembly of chiral amines (1-
cyclohexylethylamine 70 and 1-aminoindane 71) with 4-OMe-1
gave iminoboronic acid complexes with only weak CD signals
(dashed lines). However, addition of achiral BINOL-derivative 69
resulted in a large increase in the Cotton signals of the resultant
IBEs, consistent with the self-assembly process controlling the
helicity of its BINOL fragment (solid lines, Fig. 8b). Although this
system was not used for ee determination, the amplitude of signal
change indicates this type of assembly is likely to be suitable for
this purpose.

4.2. Determining the ee of amines, amino-alcohols and diols using
fluorescence

Collaborations with Anzenbacher have led to the development
of multiple Bull-James assembly-derived fluorescence assays [85–
88], with the practicality and versatility of this methodology lead-
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ing to a Nature Protocols, validating its use as an effective method
for the high-throughput analysis of the ee of chiral diols, amino
alcohols and amines produced in stereoselective reactions [89]. Ini-
tial reports focused on the development of ‘‘turn-off” fluorescence
based assemblies using fluorescent host systems comprised of
2-FPBA 1 and 3,3’-diphenyl-2,2’-bi-1-naphthol (VANOL) or
2,2’-diphenyl-(4-biphenanthrol) (VAPOL) as chiral reporter diols
for determining the ee’s of scalemic amines (Fig. 9a) [85–87].
Interestingly, these extended aryl systems exhibited the same NMR
chiral shift behaviour as seen in previous BINOL-based systems,
with several sets of baseline-resolved signals observed for each
pair of diastereomeric complexes in their 1H NMR spectra. This
host system (2-FPBA + chiral fluorescent diol) was found to be suit-
able for ee determination of both amines and amino alcohols. In the
case of amines (and amino acids/esters), IBE formation resulted in
PeT quenching, leading to a ‘‘turn-off” fluorescence response
(Fig. 9b). As shown in Fig. 9c, fluorescence intensity (FI) was depen-
dent on the chirality of the amine analyte, which enabled ee values
of amine samples to be correlated to changes in fluorescence inten-
sity with good levels of accuracy (±1–2%) (Fig. 9d).

This type of fluorescence based three-component self-assembly
platform was also applied to the analysis of the ee’s of amino alco-
hols, with formation of oxazolidine intermediates resulting in a



Fig. 7. (a) Three-component assembly of 2-FPBA 1, BINOL-derivatives and a chiral amine. (b) CD spectra of diastereomeric IBE complexes obtained from 2-FPBA 1, 6,6-
dibromoBINOL 68 and a-methylbenzylamine 6b. (c) Calibration curve for CD outputs of complexes produced frommixing (R)-BINOL 5, 2-FPBA 1 and scalemic 6b of known ee.
(d) LDA plot of chiral amine analytes. b, c, d Adapted from ref. [82] with permission from the Royal Society of Chemistry.

Fig. 8. (a) Three-component assembly of 2,20-binaphthol 69, 4-OMe-1 and a chiral amine to afford complexes for CD spectroscopic analysis. (b) CDA spectra produced from
complexes derived from amines 70 (left) or 71 (right). Blue and red lines correspond to complexes produced from the (R)- or (S)- enantiomers of the amines, respectively.
Dashed lines correspond to two-component complexes formed from 4-MeO-1 and the enantiomers of the amines 70 and 71. C = 37.5 lM. Adapted from ref. [81] with
permission from the American Chemical Society.
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red-shift of the fluorescence signal rather than PeT quenching
(Fig. 10a). Differential changes in fluorescence intensities were
once again observed between the diastereomeric oxazolidine prod-
ucts produced (vide supra), thus allowing for the measurement of
the enantiopurity of the parent amino-alcohol analyte. This
enabled ratiometric changes in fluorescence to be used to deter-
mine the ee’s of amino alcohols, as well as providing the ability
to distinguish between amino-alcohol and amine analytes. This is
seen clearly in Fig. 10b, with LDA revealing large distances
between clusters of enantiomers and functional groups of the par-
ent analytes. Interestingly, these studies found that addition of
polar/protic additives (water, citric acid, ethylene glycol, sucrose,
glycerol) had a more pronounced effect on the equilibrium con-
stants for formation of the heterochiral complexes over the
homochiral complexes, thus indicating that the heterochiral com-
plexes were less stable. This led to the discovery that these types
of additives could be used to further discriminate between analyte
enantiomers in these complexation reactions.
20
Use of enantiopure L-tryptophan derivatives as fluorescent
reporters for three-component complexation meant that these
types of fluorescence assays could be adapted to determine the
ee’s of scalemic diols (Fig. 11) [87] to within a 2% error limit. As
for amines and amino-alcohols, the fluorescence profiles of the
diastereomeric homochiral and heterochiral complexes produced
from various classes of diols were sufficiently different to enable
LDA to be used to accurately determine both their structures and
ee values (Fig. 11).

The practicality of this fluorescence methodology for high-
throughput screening was demonstrated by measuring the enan-
tiopurities of 14 samples of Atorvastatin (a hypercholesterolemia
drug) of unknown ee’s using a high-throughput assay (Fig. 12a),
with quantitative linear regression analysis revealing accurate
enantiopurity determination in all cases (R2 = 0.999). This type of
fluorescence assay was also employed to analyse the ee of diols
produced in Noyori asymmetric transfer hydrogenation reactions
of benzil to hydrobenzoin (diol). In this case, an artificial neural



Fig. 9. (a) Three-component assembly of 2-FPBA 1, a chiral primary amine and a
fluorescent diol. (b) Fluorescence (kex = 335 nm) of a mixture of (S)-VANOL (40 lM)
and 2-FPBA 1 (40 lM) in dry EtCN decreases on addition of (R)-a-methylbenzy-
lamine 6b (0–80 lM). (c) Binding isotherms of (S)- and (R)-a-methylbenzylamine
6b to (S)-VANOL-2-FPBA host. (d) Qualitative LDA of amine, amino alcohol and
amino acid enantiomers in EtCN. b, c, d reproduced from ref. [85] with permission
from John Wiley and Sons.

Fig. 10. (a) Fluorescence spectra of the three-component assembly of 2-FPBA 1, (S)-
VANOL and [(1S,2R)-(-)-cis-1-amino-2-indanol (0–100 lM). (b) Qualitative LDA of
chiral amine, amino-alcohol and amino acid analytes. Reproduced from refs. [85,86]
with permission from John Wiley and Sons.
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network was developed that was used to correctly determine the
absolute configuration, ee and concentration of hydrobenzoin
products (both crude and recrystallized) with high levels of accu-
racy (Fig. 12b, c).

Most recently, Anzenbacher et al. have reported a dual chro-
mophore indicator displacement assay which proved to be more
sensitive for determining ee than their previously developed
‘‘turn-off” systems [88]. This approach employed a combination
of two fluorescent dyes capable of orthogonal binding to the alde-
hyde and boronic acid fragments of the 2-FPBA template
(Scheme 35). Initial assembly of L-tryptophanol and 6,7-
dihydroxycoumarin produced a bichromophoric oxazolidine-
boronate complex, with intramolecular fluorescence resonance
energy transfer (FRET) processes leading to weak fluorescence of
its tryptophanol moiety and enhanced fluorescence of its coumarin
fragment. Addition of a scalemic diol (or hydroxyacid) analyte
results in displacement of the coumarin dye and separation of
the FRET pair, which leads to fluorescence ‘‘turn on” of the trypto-
phanol fluorophore, and ‘‘turn off” of the dihydroxycoumarin
(Scheme 35a). Since assembly of each enantiomer of the parent
analyte proceeds diastereoselectively, each enantiomer leads to a
different fluorescence response which can be used to determine
the ee’s of a scalemic analyte.

Alternatively, use of (S)-VAPOL as a chiral reporter produced an
IBE system suitable for determining the enantiopurity of amines
and amino alcohols (Scheme 35b). In this case, the fluorescence
of both fragments of the enantiopure oxazolidine sensor is likely
to be quenched through PeT donation of the nitrogen lone-pair of
the oxazolidine fragment to the VAPOL fragment, although the
exact mechanism of fluorescence and quenching was not deter-



Fig. 11. (a) Three-component assembly of 2-FPBA 1, a chiral diol and a fluorescent
tryptophanol derivative. (b) Qualitative LDA of 16 chiral diols showing 100% correct
structural classification. Reproduced from ref. [87] with permission from John
Wiley and Sons.
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mined. Addition of a scalemic amine analyte results in displace-
ment of the L-tryptophanol unit producing an IBE complex that
results in a fluorescence ‘‘turn-on” response, with the fluorescence
of the VAPOL remaining ‘‘turned off”. Use of an amino-alcohol
analyte to afford an imidazoline-boronate ester complex also
results in displacement and ‘‘turn-on” of tryptophanol, however
the ensuing PeT process leads to amplification of the (S)-VAPOL flu-
orescence signal which is also ‘‘turned-on”. Since addition of the
enantiomers of amine, amino ester, diol and hydroxyacid analytes
to these chiral indicator displacement sensors result in different
fluorescence responses, this bichromophoric Bull-James sensing
system could be used to successfully classify the structures of 26
different analytes and accurately determine their absolute config-
urations and enantiopurities (Fig. 13).
Fig. 12. (a) Standard graph of FI vs. ee of L-tryptophanol and 2-FPBA 1 assemblies (1:1, 4
Fluorescence titration profile of L-tryptophanol–2-FPBA (1:1, 40 mm) complexes with hy
standard curves for FI readings from mixtures of hydrobenzoin of known ee in comparison
ref. [87] with permission from John Wiley and Sons.
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5. Three-component assembly for electrochemical
determination of the ee of BINOL

Finally, a collaboration with the Tucker group demonstrated
that the ee of BINOL could be measured electrochemically through
derivatisation with a redox-active two-component iminoboronic
acid complex derived from a ferrocene amine and 2-FPBA 1
(Fig. 14a) [90]. It was found that the resultant diastereomeric com-
plexes (a-R,R)-72a and (a-R,S)-72b exhibited significantly different
electropotentials of 614 mV and 665 mV, respectively (Fig. 14b).
This difference allowed the ee of BINOL 5 to be determined with
an error of ±3%, thus enabling minor enantiomers (<5%) to be
detected, even at low concentrations. Crystallographic and 1H
and 11B NMR spectroscopic analysis showed that whilst the
homochiral diastereomeric complex (a-R,R)-72a formed an
intramolecular iminoboronate N?B bond, the more sterically hin-
dered heterochiral complex (a-R,S)-72b did not, once again indi-
cating that heterochiral IBE complexes are generally less stable
(vide supra) [86]. This structural difference is responsible for the
differences in their electrochemical behaviour, with the N?B bond
of the homochiral complex resulting in (R)-BINOL 5 being more
tightly bound, with a ratio of binding strengths K(a-R,R)/K(a-R,S) of
�19. Electrochemical oxidation of these IBEs results in the binding
strength ratio K(a-R,R)

+/K(a-S,S)
+ dropping to only 2.5, thus indicating a

much larger decrease in stability of the homochiral complex (a-R,
R)-72a. This difference is proposed to be due to weakening of the
N?B coordination bond of complex (a-R,R)-72a caused by the
proximal positive charge of its oxidised ferrocene fragment. Evi-
dence for weakening of the N?B coordination bond of the
homochiral (a-R,R)-72a complex was also provided by the larger
positive shift in redox potential upon addition of (R)- or (S)-
BINOL 5 to iminoboronic acid (R)-73 (+95 mV for (a-R,R)-72a
vs. + 44 mV for (a-R,S)-72b)). This indicates that the ferrocene unit
of complex (a-R,R)-72a is harder to oxidise than (a-R,S)-72b, in line
with its imine-boron coordination bond withdrawing electron den-
sity from the ferrocene redox system.
6. IBE assemblies as synthetic tools

The use of the Bull-James three-component assembly for deter-
mining enantiopurity is often credited as one of the first examples
where orthogonal dynamic covalent bond formation was used to
construct functional supramolecular assemblies [14,91–93]. The
power of these chiral iminoboronate systems for self-assembly
has led to supramolecular constructs of this type being used to pre-
pare new types of boron-containing materials and as a mechanism
to control reactivity and stereoselectivity [94–97].
0 mm) of atorvastatin of known (black) and unknown (blue and red) ee values. (b)
drobenzoin standards (inset: Standard curve of FI vs. ee). (c) HT fluorescence assay
with six hydrobenzoin samples of unknown ee (red, blue circles). Reproduced from



Scheme 35. Displacement assays using bichromophoric three-component assemblies for determining the enantiopurities of a range of scalemic analytes: (a) Use of 2-FPBA, L-
tryptophanol and 6,7-dihydroxycoumarin for the detection and ee analysis of diols and hydroxyacids. (b) Use of 2-FPBA, L-tryptophanol and (S)-VAPOL for the detection and ee
analysis of amines and amino alcohols.
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6.1. Self-assembled synthesis of polyheteroatomic boracycles

The three-component assembly reaction of 2-FPBA 1 with (S)-
BINOL 5 and (S)-leucinol 74 resulted in a mixture of imine and oxa-
zolidine boronate products (vide supra) [54], however oxazolidine
boronate ester (S, 2R, 4S)-75 fractionally crystallized out of solution
after the crude reaction mixture was allowed to stand overnight
(Fig. 15a) [98]. Carrying out a two-component assembly using
(R)-valinol 74b and 2-FPBA 1 produced bridged iminoboronate
(R,R)-76b, comprised of two fused boracycle rings containing two
tetrahedral boron centres and a bridging oxygen atom linker
(Fig. 15b), in the same manner as related systems reported by
Westcott et al. [99,100]. Five additional chiral amino alcohols
74a-f were used as substrates in this two-component
self-assembly reaction in combination with either 2-FPBA 1 or 2-
formyl furanylboronic acid 77, which gave their respective boracy-
cles in excellent 84–96% isolated yields. Achiral aromatic amino
alcohols 74g and 74h were also shown to form boracycles in quan-
titative yields, although their decreased reactivity required heating
under Dean-Stark conditions for complexation reactions to proceed
to completion.

Both types of fused bridged bicycles were characterised using
X-Ray crystallography (Fig. 15c), which revealed interesting struc-
tural variation between the two-component products produced
from chiral or achiral amino alcohols. In the case of (R,R)-76b,
the B-O-B linkage is positioned on the opposite face to the two
non-bridging oxo-substituents, which creates a binding pocket
walled by the non-bridging oxygens and side-chains, that is capped
by a bridging B-O-B bond. Alternatively, all of the atoms of the O-B-
O-B-O motif are present in the same plane for complex 76h, with
all three oxygen atoms sitting on the same side of the complex.
These structural differences result in the pocket of the chiral com-
plexes containing two potentially coordinating oxygen atoms,
whilst the pocket of the achiral complexes are purely hydrophobic
in nature.

6.2. Chiral IBE ligands for asymmetric catalysis

Three-component assemblies have also been used by the Taylor
group, who employed IBE bond forming reactions for combinato-
rial synthesis of a library of chiral phosphine ligands for enantios-
elective palladium-catalysed allylic acetate substitution reactions
[101]. They permed three achiral formyl boronic acid templates
78a-c, eleven diol ligands 79a-k (both chiral and achiral), and four
chiral aminophosphines 80a-d to create a library of 100 phosphi-
noiminoboronate ligands 81 (Scheme 36) that were individually
screened as chiral ligands in palladium-catalysed allylic substitu-
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tion reactions of (rac)-82 with diethyl malonate 83 (Scheme 37).
A wide range of enantioselectivities were observed, with the best
results obtained for ligands 81aaa and 81abc which respectively
produced (R)-84 in 90% ee and (S)-84 in 93% ee, which was a signif-
icant improvement on the 67% and 69% ee values obtained using
non-iminoboronate aminophosphine ligands 85. The sheer volume
of data acquired using this combinatorial approach enabled Taylor
and co-workers to rapidly assign trends that would not have been
evident from a conventional stepwise ligand optimisation strategy.
For instance, they were able to show that aliphatic diol ligands
gave better stereocontrol as they decreased the Lewis acidity of
the boron centre, which weakened the intramolecular N?B bond,
thus facilitating stronger bidentate P,N-coordination of the ligand
to the metal.

6.3. IBE-derived chiral auxiliaries in CuAAc click reactions

Fossey and co-workers have reported use of the Bull-James
assembly for asymmetric synthesis, employing it to construct a
chiral auxiliary for the kinetic resolution of alkyne amines using
a copper(I)-catalysed azide-alkyne cycloaddition (CuAAc) reaction
(Scheme 38) [102]. In this system, a racemic alkyne-containing
primary amine 86 was self-assembled with 2-FPBA 1 and (R)-
BINOL 5 to form a mixture of diastereomeric iminoboronate com-
plexes 87 that were subjected to CuAAc conditions using 0.5
equivalents of benzyl azide. This resulted in the alkyne fragment
of the (a-R,R)-87 diastereomer preferentially undergoing a stere-
oselective click reaction with a selectivity value of S = 4.1. Subse-
quent acid-catalysed hydrolysis of the IBE ester complexes then
afforded amino-azide (R)-88 in 39% ee and recovered amine
(S)-86 in 29% ee. Although only moderate stereocontrol was
achieved in this unoptimized ‘one-pot’ kinetic resolution reaction,
the simplicity of installing and removing the chiral auxiliary (e.g.
BINOL) in this type of system is noteworthy, particularly if more
stereoselective transformations of these types of IBE complexes
can be identified.

6.4. Reversible radical coupling of iminoboronates

McConnell et al. found that treatment of a pre-assembled N-aryl
iminoboronate catechol ester 89 with the single electron reductant
Cp2Co resulted in radical homocoupling of its imino benzylic
groups to afford amido-boronates (rac5)-90, (meso5)-90 and
(rac6)-90 (Scheme 39) [103]. Kinetic analyses and structural stud-
ies revealed that 5-membered (rac5)-90 and (meso5)-90 were
formed as kinetic products which then rearranged to 6-
membered (rac6)-90 under thermodynamic control, leading to



Fig. 13. (a) Semi-quantitative LDA of fluorescence response data from displacement
assays enable simultaneous determination of the ee values of four different types of
amine, amino alcohol, a-hydroxy acid and diol analytes. (b) Qualitative LDA of the
fluorescence response of 26 chiral amines, amino alcohols, diols and hydroxyacids
(+ controls) in the displacement assay enabled their structures to be predicted with
a 100% success rate. Reproduced from ref. [88] with permission from the Royal
Society of Chemistry.

Fig. 14. (a) Three-component assembly of 2-FPBA 1, redox-active ferrocene amine
(R)-73 (pre-assembled) and BINOL 5. (b) Square wave voltamograms of three-
component ferrocene IBEs acquired in CH2Cl2 (0.1 M TBA � PF6); ((a-R,S)-72b shown
in blue) and (a-R,R)-72a shown in purple). (c) Plot of Eobs against % ee for IBE
complexes produced from (S)-BINOL 5 showing a linear dependence between 60%
and 98% ee. b, c Reproduced from ref. [90] with permission from the American
Chemical Society.
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mixed time-, temperature- and substrate-dependent ratios of pro-
duct 90. These dimeric homo-coupled products were found to be
significantly less stable than their IBE precursors, with their treat-
ment with trityl cation (Ph3C)+ as an electron acceptor resulting in
regeneration of the original IBE monomers.
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7. Iminoboronate complexes for the formation of polymers and
hydrogels

7.1. Iminoboronate polymers and hydrogels

Following their demonstration that the Bull-James assembly
could be used to assess the chirality of polymers (vide supra),
Kressler and co-workers have reported that derivatisation of



Fig. 15. (a) X-ray crystal structure of three-component assembly of (S,2R,2S)-75 formed from reaction of (S)-leucinol 74a, BINOL 5 and 2-FPBA 1. (b) Two-component
assembly of formyl aryl boronic acids and 1,2-amino alcohols 74. (c) X-ray crystal structures of (R,R)-76b and 76h viewed along and perpendicular to the boron-boron axis
(left and right respectively).

Scheme 36. Combinatorial IBE reactions used for the combinatorial synthesis of
100 chiral phosphine ligands.

Scheme 37. Chiral phosphine-iminoboronate ligands afford enhanced enantiose-
lectivities in palladium-catalysed allylic alkylation reactions.
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GMA monomers with 2-FPBA 1 and (S)-a-methylbenzylamine 6b
gave iminoboronate GMA-IPB monomers that underwent radical
or UV-initiated low-temperature ATRP polymerisation to afford
iminoboronate ester polymers in one pot (Scheme 40) [104]. These
polymers could then be decomplexed via treatment with a large
excess of catechol to afford simple p(GMA)s containing free diol
units caused by elimination of catechol-iminoboronate (S)-91. A
similar process could also be used to polymerise iminoboronate
ester monomers containing two equivalents of 2-hydroxyethyl-
methacrylate (HEMA), affording highly syndiotactic polymers
(rr = 70.7–75.5% for pGMAs and 74.9–79.7% for pHEMAs).
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7.2. Dynamic, self-healing and stimuli-responsive polymers and
hydrogels

Iminoboronates have also been incorporated into polymeric
systems as a structural element to facilitate cross-linking of poly-
mer and hydrogel materials [105]. For example, Raquez et al. have
developed self-assembled imine-coordinated boroxine polymeric
systems that are produced from reaction of a diamine, a



Scheme 38. Formation of diastereomeric IBE complexes from alkyne (rac)-86 enables a CuAAc-catalysed click reaction to be used for their kinetic resolution.

Scheme 39. Reversible radical coupling of iminoboronates 89 to afford amidoboronates 90 (radical-coupled bond in red) under thermodynamic control.

Scheme 40. One-pot complexation and polymerisation of 2-FPBA 1, (S)-6b, and GMA to afford iminoboronate ester functionalised polymers that could be decomplexed by
treatment with catechol to afford pGMAs.
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polyether-containing terminal bis-cyclic carbonate unit and a 2-
FPBA boroxine trimer 92 (Fig. 16a). Ring opening of the terminal
cyclic anhydride groups by one of the diamine amines results in
a urethane bond, with the other amino group then reacting to form
a highly cross-linked iminoboroxine complex [106–108]. This self-
assembly approach produces polymers with a high degree of stiff-
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ness (Young’s modulus = 551 MPa) and tensile strength (11 MPa)
despite the labile nature of iminoboronates. These dynamic imi-
noboronate covalent bonds were found to confer self-healing prop-
erties to these materials, with heating/cooling and wetting/drying
enabling broken imine or boroxine bonds to be reformed (Fig. 16b).
Similarly, changes in temperature and humidity can be used as



Fig. 16. Three-component self-assembly of iminoboroxine-containing self-healing polymers and hydrogels. (a) Synthesis of an iminoboroxine polyurethane network
polymer. (b) Self-healing and modular behaviour of iminoboroxine-polyurethane polymers. Reproduced from ref. [106] with permission from the American Chemical Society.

Fig. 17. An aminoglycoside iminoboronate hydrogel assembled from guanosine, K+, an aminoglycoside and 2-FPBA. These materials are responsive to multiple external
stimuli such as acids, glucose, H2O2, heat and crown ethers, all of which act on different structural elements of the hydrogel network. Reproduced from ref. [112] with
permission from John Wiley and Sons.
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stimuli to make or break the bonds used to construct the
iminoboronate-boroxine hubs, thus creating stimuli-responsive
materials which are remoldable under mild treatment conditions.
This provides a simple alternative to common isocyanate-derived
polyurethane self-healing and stimuli-responsive polymers, which
have been shown to have potential applications as solid polymer
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electrolytes [109]. Following these initial reports, functional
variants of this core motif have been developed, based on substitu-
tion of the iminoboronate moieties with similar amino- and
acrylamido-boronate motifs [110,111].

This concept has been expanded further for the design of self-
assembled IBE-containing polymers that are prepared from



Fig. 19. Self assembled prodrug N3-(OEG-IBCAPE)4 polymersomes and the stimuli-
responsive CO2-triggered release of CAPE in cancer cells. Reproduced from ref. [123]
with permission from the Royal Society of Chemistry.
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supramolecular assembly of 2-FPBA, guanosine (G), aminoglyco-
sides and potassium chloride (Fig. 17). These stimuli-responsive
hydrogels contain a large network of hydrogen-bonded K+-
centred guanosine tetramers, whose diol units are crosslinked
through formation of iminoboronate ester groups with the amino
groups of aminoglycoside units [112–116]. These hydrogels were
found to be responsive to multiple stimuli, with an increase in
temperature or addition of potassium-chelating crown ethers
resulting in disruption of the G-quadruplex arrays and release of
the aminoglycoside di-iminoboronate guanosine units. The imi-
noboronate bonds of these complexes are also responsive to dis-
ruption by other stimuli, with addition of aqueous acid leading
to their hydrolysis to afford 2-FPBA, amine and diol components.
Alternatively, the addition of glucose results in transesterification
of the boronate ester, releasing a guanosine fragment and the pro-
duction of new glucose-iminoboronate-aminoglycoside species.
Finally, the reactivity of boronates towards reactive oxygen and
nitrogen species (ROS/RNS) [117–119] may be exploited, with
addition of hydrogen peroxide triggering oxidative deborylation
to produce boric acid and release of the guanosine fragment. This
multi-responsive behaviour has been exploited for drug delivery
for selective release of antibacterial aminoglycosides and the anti-
cancer drug Doxorubicin [112,116]. CO2-responsive iminoboronate
poly(oligo(ethylene glycol)) polymers have also been reported by
Jiang and co-workers, with bubbling of CO2 reversibly producing
carbonic acid that triggers IBE bond hydrolysis to trigger depoly-
merisation processes that can be reversed by purging with N2 gas
[120]. This CO2-dependent behaviour has been demonstrated in
multiple systems (vide infra) using both 1H NMR and fluorescence
assays to measure the fragmentation/re-complexation of IBE sys-
tems upon sequential CO2/N2 bubbling.
7.3. Stimuli-responsive aggregates and micelles

The Bull-James multicomponent approach has also been used to
produce stimuli-responsive iminoboronate-containing nano-
aggregates, micellar assemblies and polymersomes that are stable
in aqueous systems. Jiang and co-workers, for example, have
reported the three-component assembly of poly(ethylene glycol)
amine with 2-FPBA 1 and a nitrophenyl ethanediol (PEG-INEC) to
produce amphipathic IBE complexes that self-assemble into
nano-aggregates in aqueous systems (Fig. 18) [121]. These nano-
aggregates were found to be responsive to three common stimuli:
light - which results in release of a nitrosoaryl a-hydroxy-ketone
and an iminoboronic acid fragment; acid - which hydrolyses both
the boronate ester and imine bonds to regenerate the original three
components; and hydrogen peroxide which oxidatively cleaves the
boronate ester to give boric acid, o-hydroxy-benzaldehyde and
nitrophenyl ethanediol. Therefore, different external stimuli can
Fig. 18. Self-assembled PEG-iminoboronate polymeric nano-aggregates and their stimu
permission from John Wiley and Sons.
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be used to trigger controlled decomposition of these aggregates,
which is potentially useful for the selective release of encapsulated
hydrophobic guest molecules.

The same group have also reported the development of differ-
ent iminoboronate aggregate systems, whose disassembly is trig-
gered by the action of nucleophilic ROS or CO2-induced solvent
acidification [122,123]. For example, CO2 responsive N3-(OEG-
IBCAPE)4 polymersomes are stable at physiological pH 7.4, how-
ever protonation of their tris-amine cores results in nano-
aggregate disassembly at mildly acidic pH levels. This enabled imi-
noboronate ester linkers to be used to generate polymersomes
attached to the diol unit of caffeic acid phenethyl ester (CAPE,
anti-cancer drug, red) as a CO2-responsive drug delivery system
(Fig. 19). These polymersomes exhibited improved transport prop-
erties that enabled their delivery to CO2-rich HL-60 leukaemia cells
that exhibit a mildly acidic environment. This acidity results in
intracellular hydrolysis of the iminoboronate bonds of the poly-
mersome aggregates, which leads to their disassembly and release
of CAPE as a cytotoxic agent within the target cancer cells. The
same transport principles have also been employed by Shi and
co-workers for pH/GSH-responsive delivery of encapsulated cape-
citabine to HepG2 liver cancer cells [124].
8. Iminoboronate derivatives for biological targeting and
tagging

IB-type assemblies have also been employed for the functional-
isation and tagging of the amino groups of peptides and proteins,
li-responsive degradation by light, acid and H2O2. Reproduced from ref. [121] with



Scheme 41. Diverse bioorthogonal IB conjugation chemistries of 2-FPBA- and 2-APBA-derived linkers.
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with several recent specialised reviews having covered this topic in
detail [125–127], with only a general overview of this area pro-
vided herein. The majority of bioorthogonal labelling reactions that
have been reported to date are two-component in nature, involving
reaction of 2-FPBA (or 2-acetylphenylformyl boronic acid, 2-APBA)
with amine or aminothiol residues of peptides or proteins to form
imine/thioxazolidine bonds that are stabilised by the presence of a
proximal boron centre (Scheme 41). These condensation reactions
have been found to proceed with rate constants of over
102–103 M�1 s�1 [128], which is orders of magnitude faster than
traditional alkyne-azide ‘click’ coupling reactions. Gois, Gillingham
and Anslyn have carried out binding studies that clearly demon-
strate that the proximal boron centre accelerates imine condensa-
tion reactions and stabilises imine complex formation, with
additives or external stimuli (e.g. changes in pH, ROS, nucle-
ophiles. . .) normally required to achieve hydrolysis, degradation, or
decomplexation [36,37,129,130]. For example, computational stud-
ies on the condensation of n-butylamine and 2-APBA 93 have shown
that the adjacent boronic acid reduces the activation enthalpy for
imine condensation drastically by 35–36 kcal/mol [129].
29
The most commonly employed amine tagging systems involve
generation of the two component iminoboronic acid assemblies
A and B (pH interconvertible), both of which have been widely
used to label the free e-amine groups of lysine residues in peptides
and proteins. This approach was first pioneered in 2012 by Gois
et al. who reported formation of an iminoboronic acid complex
between the hormonal neuropeptide Somatostatin and 2-APBA
93 in ammonium acetate buffer (20 mM, pH 5.0–7.0) (Scheme 42)
[129]. Following this success, they demonstrated that 2-APBA
could be used to successfully tag lysine groups present in lyso-
zyme, cytochrome C, ribonuclease A and myoglobin with a range
of 2-formylaryl boronic acids. Improvements to this tagging
approach have subsequently been reported based on the use of
peptides/proteins containing a-nucleophiles such as hydrazides,
acylhydrazides and alkoxyamines which react more rapidly to
afford hydrazone and oxime linkers (C, D, E, Scheme 41) that are
more hydrolytically stable [128,131–134]. Similarly, multidentate
coordination of bifunctional nucleophiles such as a-amino hydra-
zides or 1,2-aminothiols to 2-FPBA/2-APBA templates have proved
popular for producing stable bioconjugates containing tricyclic



Scheme 42. Reaction of lysine groups in Somatostatin with 2-APBA 93.

R.R. Groleau, T.D. James and S.D. Bull Coordination Chemistry Reviews 428 (2021) 213599
azadiborolidine boracycles (F, Scheme 41) and stabilised thioxazo-
lidine linkers (G, Scheme 41) [131,133,135–137].

Proof of concept studies have shown that stimulus-triggered
decomplexation of this type of protein-boracycle conjugates can
be achieved through treatment with fructose, dopamine, glu-
tathione, aqueous acid, ROS/RNS, etc., with this reversibility
exploited to induce partial or complete hydrolysis of intramolecu-
Scheme 43. A stimuli-responsive intramolecular iminoboronic acid bond can be
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lar imine bonds to control ring-opening of cyclic peptides
(Scheme 43). Since their inception, these types of stimuli-
responsive two-component IB assemblies have been used to
derivatise peptides, proteins, aminoglycosides, biological polyami-
nes and amine-rich membrane lipids for fluorescent tagging, tar-
geted fluorophore, biomolecule and therapeutic delivery, covalent
protein inhibition, and reversible biomolecule functionalization
[138–144].

The use of three-component strategies for tagging the amino
groups of biomolecules has been less well explored (e.g. H,
Scheme 42), although three recent reports demonstrate the poten-
tial of this approach for producing stable bioconjugates. In 2017,
Hall and co-workers reported the bioorthogonal tagging of live
cells using a fluorescein fluorophore attached to a ‘‘click” boro-
nate/thiosemicarbazone warhead, where the thiosemicarbazide
unit underwent rapid imine condensation to afford a complex that
was stabilised by the presence of a pendant pinanediol that formed
an intramolecular boronate ester bond. This system was employed
for live cell imaging using fluorescence microscopy using a SNAP-
tag approach, in which HEK293T cancer cells were transiently
transfected with the pSNAPf-ADRb2 plasmid, allowing 2-APBA-
derivative 95 to be secured on the cell membrane, enabling ‘click’
fluorescent tagging of these cells with 96 for visualisation using
fluorescence microscopy at concentrations as low as 10 lM
(Scheme 44) [145].

Most recently, Gois et al. have reported a ‘‘boron hot spot” (BHS)
approach to selectively target the amino groups of N-terminal cys-
teine residues, which was developed to address some of the
promiscuity and reversibility issues that are often observed when
two-component iminoboronic acid complexation reactions are
used to functionalise biomolecules (Scheme 45) [146]. They found
that attachment of 3-hydroxyquinolin-2(1H)-one (3HQ)/succin-
imide groups to the thiol units of N-terminal cysteine residues
resulted in selective imine condensation of the N-terminal amino
used to control the cyclisation of an AF488 fluorophore-appended peptide.



Scheme 44. 2-APBA modification of HEK293T cancer cells and subsequent three-component ‘‘click” boronate/thiosemicarbazone fluorescent labelling.

Scheme 45. Site-selective iminoboronate complexation of an N-terminal boron hot
spot-modified c-ovalbumin.
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group with 2-FPBA 1. This was proposed to be due to the IB com-
plex being stabilised by formation of an intramolecular B-O bond
between the boronic acid and the a-hydroxy-amide fragment of
Scheme 46. Dual one-pot labelling of L-Dopa-containing peptid
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the S-appended 3HQ fragment, with further hydrogen bonding sta-
bilisation from the succinimide (blue, Scheme 45). This boron hot
spot approach was used to selectively tag 2-FPBA-modified c-
ovalbumin with an impressive Ka value of 58,128 ± 2 M�1, thus
allowing for site-selective labelling of its free N-terminal amino
groups in the presence of other lysine residues despite a large
excess of 2-FPBA 1. This tagging approach was used to prepare
glutathione-labile boron hot spot fluorescently-labelled protein
conjugates that were capable of delivering their fluorescent pay-
loads to HT29 cancer cells.

Finally, a collaboration with Anslyn has reported the use of
2-FPBA 1 and hydroxylamine to irreversibly functionalise the
catechol fragment of an L-Dopa-containing peptide derivative.
Fluorescent tagging of the peptide containing a Cu(I)
Sharpless-Huisgen ‘click’ appended benzaldehyde group was
achieved through imine bond formation with the
O-functionalized hydroxylamine residue of the CF488A dye.
Subsequent addition of 2-FPBA 1 then templated irreversible
three-component formation of a highly stable nitrono-boronate
linker (vide supra) that was formed from incorporation of the
catechol unit of the L-Dopa residue and the N-functionalised
hydroxylamine group of the solubilising PEG side-chain
(Scheme 46) [147].

9. Conclusions and outlook

The body of work presented in this review clearly highlights the
versatility and practicality of iminoboronate assemblies, with
potential applications across many fields of chemistry and chemi-
cal biology. From its initial discovery as a CDA for determining the
ee’s of chiral amines and diols, the Bull-James three-component
e with a fluorescent dye and a solubilising PEG side-chain.
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assembly has now been developed into a wide-ranging method for
the chiral analysis of other analytes using NMR, CD, fluorescence,
and electrochemical methods. Beyond analytical applications, imi-
noboronate assemblies have also proven popular as an orthogonal
self-assembly tool for preparing boracycles, polymers, hydrogels
and aggregates that exhibit stimuli-responsive properties. Simi-
larly, bioconjugation applications have also been demonstrated,
with ongoing development of two- and three-component dynamic
labelling methodologies showing great promise as a versatile tool
for ‘‘click” modification of the free amino groups (or diols) of bio-
molecules. Although the original application of these IBE assem-
blies as analytical tools for determining enantiopurities continues
to grow both in scope and popularity, the potential applications
of these IB systems are far wider ranging than was originally antic-
ipated. Although we expect additional analytical IBE methods to be
developed, it is clear that the future of these three-component imi-
noboronate ester assemblies lies in their innate ability to act as
reversible yet highly rigidified linkers. The prospect of expanding
the use of these IBEs as chiral auxiliaries for asymmetric synthesis
is also an exciting one, and should lead to highly versatile and prac-
tically simple methodologies. We also anticipate that the ‘‘click”
and stimuli-responsive capabilities of these boron-coordination
complexes will lead to further development of wide-ranging
bioorthogonal and materials-based systems, with increasingly
wide-ranging sensing, tagging, theranostic, and logic-based
applications.
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ABSTRACT: A practically simple three-component chiral
derivatization protocol has been developed to determine the
enantiopurity of eight S-chiral sulfinamides by 1H and 19F
NMR spectroscopic analysis, based on their treatment with a
2-formylphenylboronic acid template and enantiopure pina-
nediol to afford a mixture of diastereomeric sulfiniminobor-
onate esters whose diastereomeric ratio is an accurate
reflection of the enantiopurity of the parent sulfinamide.

Enantiopure N-sulfinyl imines (sulfinimines) are widely
used for asymmetric synthesis,1 with Ellman’s and Davis’

sulfinamides (1a and 1b) widely used to prepare these chiral
sulfinimine intermediates for the stereoselective functionaliza-
tion of ketones and aldehydes.2 These chiral auxiliaries have
been employed for the asymmetric synthesis of chiral amines,
alcohols, diamines, amino-alcohols, α-organometallic amines,
and α- and β-amino acid derivatives in high enantiomeric
excess (ee).3 They have also found applications as chiral
organocatalysts, as additives/ligands in enantioselective cata-
lytic systems,4 and as peptidic/transition state isosteres for
medicinal chemistry applications.5 Sulfinamides are also
produced naturally by the action of nitroxyl (HNO) on
peptidic cysteine residues in cells.6

Several approaches have been developed to synthesize
enantiopure sulfinamides (Scheme 1). Treatment of symmetric
disulfides with chiral catalysts and stoichiometric oxidants (e.g.,
H2O2) is used to afford chiral thiosulfinate intermediates,
which are then reacted with nucleophilic ammonia sources
(with clean SN2 inversion), affording chiral sulfinamides in
high ee (Scheme 1a).7 Chiral auxiliaries are also used to

prepare sulfinate esters with high levels of diastereocontrol,
which can then be reacted with amines to afford enantiopure
sulfinamides (Scheme 1b).2a Classical resolution processes
have also been used to separate the enantiomers of (rac)-
thiosulfinate precursors,8 and subtilisin has been used for
enzymatic kinetic resolution of (rac)-N-acyl-arylsulfinamides,9

while direct separation of their enantiomers can be achieved by
preparative chiral HPLC.10 To date, two chiral solvation
methods for determining the ee’s of sulfinamides have been
reported in the literature, using either Pirkle’s alcohol11a or
bifunctional macrocycles.11b Unfortunately, these methods lack
simplicity and substrate scope, and so the ee’s of S-chiral
sulfinamides are normally determined through chiral HPLC
analysis.7b This approach, however, requires access to
expensive HPLC equipment/chiral columns and often requires
significant development time to identify a suitable system to
resolve the enantiomers of a target sulfinamide.
Therefore, a practically simple, rapid, and inexpensive chiral

derivatization protocol that would enable the rapid determi-
nation of the ee’s of a wide range of chiral sulfinamides by
NMR spectroscopic analysis would be of use to the wider
synthetic community. We have previously reported the
development of three-component chiral derivatization proto-
cols for determining the ee’s of chiral primary amines,
diamines, amino alcohols, hydroxylamines, and diols by 1H
NMR spectroscopic analysis. These protocols involve treat-
ment of a scalemic chiral analyte with 2-formylbenzeneboronic
acid 2 (2-FPBA) and an enantiopure chiral selector (amine or
diol) to afford pairs of diastereomeric iminoboronate esters.
The diastereomeric ratio (dr) of these iminoboronate esters
can then be measured by comparing the relative intensities of
the integrals of their well-resolved imine proton singlets in
their 1H NMR spectra (see Scheme 2 for how this method is
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Scheme 1. Stereoselective Syntheses of Ellman’s
Sulfinamide 1a and Davis’ Sulfinamide 1b
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used to determine the ee of α-methylbenzylamine).12 Given its
proven utility, we decided to investigate whether this type of
three-component 1H NMR chiral derivatization protocol, often
referred to as the Bull−James assembly,13 could be applied to
determine the ee of scalemic samples of S-chiral sulfinamides.
Treatment of a mixture of scalemic Ellman’s sulfinamide

(S)-1a (50% ee) with 2-FPBA 2 and (R)-BINOL 3a in CDCl3
for 1 h led to incomplete formation of a mixture of
diastereomeric sulfiniminoboronate ester complexes 4a and
5a (85% conversion from 2-FPBA 2), whose imine proton
resonances were only partially resolved in their 1H NMR
spectrum (Table 1, entry 1). The poor yield of this reaction is
presumably due to the decreased nucleophilicity of the
sulfinamide nitrogen lone pair. This is consistent with previous
reports that drying agents, Lewis acid catalysts, and forcing
conditions are often required for this type of imine
condensation reaction to proceed to completion.14 Never-
theless, the approximate 3:1 ratio of the partially resolved
imine proton signals of the diastereomeric sulfiniminoboronate
ester complexes 4a/5a in the 1H NMR spectrum was
consistent with the 50% ee of the parent sulfinamide 1a,
indicating that no kinetic resolution had occurred.
This prompted us to react Ellman’s sulfinamide 1a (50% ee)

with 2-FPBA 2 and a range of commercially available chiral
diols 3b−h to identify pairs of diastereomeric sulfiniminobor-
onate esters 4/5 whose imine protons would be baseline-
resolved in their 1H NMR spectra. This screening study
revealed that (S)-2-phenylethanediol 3f, (R)-1-phenylpropane-
1,3-diol 3g, and (1R,2R,3S,5R)-pinanediol 3h gave pairs of
diastereomeric sulfiniminoboronate esters whose imine proton
resonances were fully resolved (Table 1, entries 6−8).
Derivatization with chiral pinanediol 3h gave diastereomeric
sulfiniminoboronate esters 4h/5h that exhibited sharp imine
peaks with the greatest chemical shift difference (ΔδH =
−0.085 ppm), and it was therefore chosen as the chiral diol for
all subsequent sulfinamide derivatization reactions.
A series of experiments were then carried out to try and

identify conditions that would result in the three-component
reaction of scalemic Ellman’s sulfinamide 1a (33% ee), 2-FPBA
2, and pinanediol 3h being driven to completion. Reaction of
these three components in CDCl3 for 1 h gave a 70:30 mixture
of the two-component formyl boronate ester 6 and the three-
component sulfiniminoboronate esters 4h/5h (Table 2, entry
1). Addition of MgSO4 as a drying agent only marginally
increased the amount of 4h/5h formed to 40% (Table 2, entry
2). Two-component reaction of 2-FPBA 2 with pinanediol 3h
was found to give boronate ester 6 in 100% conversion after 10
min (Table 2, entry 3). However, no reaction was observed
when sulfinamide 1a was added to a solution of preformed
boronate ester 6 in CDCl3, indicating that boronate ester 6 is
unreactive toward imine bond formation under these
conditions (Table 2, entry 4). Two-component reaction of
Ellman’s sulfinamide 1a and 2-FPBA 2 proceeded more slowly,

affording sulfiniminoboronic acid 7 in 89% yield after 1 h,
increasing to 94% in the presence of MgSO4 (Table 2, entries 5
and 6). Finally, premixing sulfinamide 1a, 2-FPBA 2, and
MgSO4 in CDCl3 for 1 h, followed by addition of pinanediol
3h, gave a 93% conversion to afford the desired three-
component sulfiniminoboronate esters 4h/5h and the two-
component boronate ester 6 in 7% yield (Table 2, entry 7).
Therefore, these results suggest that irreversible formation of
boronate ester 6 is faster than reversible formation of imine 7,
with only imine 7 competent to react further to afford the
desired sulfiniminoboronate esters 4h/5h in the three-
component derivatization reaction.15

These results prompted us to develop a new “stepwise”
three-component derivatization procedure, involving reaction
of (rac)-Ellman’s sulfinamide 1a, 1.2 equiv of 2-FPBA 2, and
MgSO4 in CDCl3 at rt for 1 h to maximize the amount of
reactive imine 7 formed. This was followed by addition of 1.3
equiv of (1R,2R,3S,5R)-pinanediol 3h which gave a 50:50
mixture of diastereomeric sulfiniminoboronate esters 4h/5h in
99% conversion (Table 3, entry 1). This one-pot stepwise
protocol was then applied to the derivatization of seven
additional racemic aryl, heteroaryl, cyclic and acyclic

Scheme 2. Three-Component Chiral Derivatization
Protocol for Determining the Enantiopurity of α-
Methylbenzylamine12a

Table 1. Chemical Shift Differences (ΔδH) in the 500 MHz
1H NMR Spectra of Diastereomeric Iminoboronate
Complexes of Ellman’s Sulfinamide 1a (50% ee), 2-FPBA 2,
and a Range of Enantiopure Diols 3a−h

aΔδH is the chemical shift difference between the imine protons of
diastereomeric iminoboronate ester complexes 4/5. bA negative value
indicates that the homochiral complex was most deshielded. cFull
baseline resolution observed for the imine resonances of 4/5.
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sulfinamides 1b−h,16 affording mixtures of their corresponding
diastereomeric sulfiniminoboronate esters 8b−h/9b−h in 55−
99% conversions (Table 3, entries 2−8). Analysis of the 1H
NMR spectra of these mixtures revealed that the imine signals
of all pairs of diastereomeric sulfiniminoboronate esters were
all baseline-resolved, with their 49:51 to 51:49 dr values
indicating that no kinetic resolution had occurred in each
derivatization reaction.
We,17 and others,18 have previously reported the use of

fluoro-2-FPBA as an alternative template for the Bull−James
three-component protocol, which enables the dr’s of their
derived iminoboronate esters to be accurately determined
using both 1H and 19F NMR spectroscopic analysis.
Consequently, we decided to repeat our stepwise three-
component reaction using Ellman’s sulfinamide 1a and
pinanediol 3h with 3-fluoro-2-FPBA 10a, 4-fluoro-2-FPBA
10b, 3-fluoro-2-FPBA 10c, and 3-fluoro-2-FPBA 10d (Table
4).19 These derivatization reactions gave mixtures of
diastereomeric sulfiniminoboronate esters whose imine proton
resonances were all well-resolved in their 1H NMR spectra, as
were the fluorine resonances in their 19F NMR spectra. 3-
Fluoro-2-FPBA 10a gave the best difference for the fluorine
resonances (ΔδF = −2.328 ppm), and so it was chosen as the
template to derivatize three further (rac)-sulfinamides 1b−d,
all of which gave a pair of diastereomeric sulfiniminoboronate
esters whose 1H NMR (imine protons) and 19F NMR
resonances were well resolved.
The detection limits of this new derivatization method using

3-fluoro-2-FPBA 10a and pinanediol 3h were then determined
using scalemic samples of Ellman’s sulfinamide 1a of 75%,
90%, and 96% ee respectively, prepared from enantiopure
samples of the sulfinamide (Figures 1a and 1b). Analysis of the
resultant mixtures of sulfiniminoboronate esters revealed
diastereomeric excesses (de) of 75%, 91%, and 95% (1H
NMR) and 73%, 89%, and 95% (19F NMR), respectively, all of

which were within the accepted 5% error limit when using
chiral derivatizing agents to determine ee values by NMR
spectroscopy. Having established its applicability, our new
stepwise three-component chiral derivatization protocol was
then used to assess the enantiomeric excess of commercial
samples of enantiopure (R)- and (S)-Davis’ sulfinamide 1b
(purchased from Sigma-Aldrich, Figure 1c for (R)-1b). Both
1H and 19F NMR analysis revealed that these “enantiopure”
reagents were scalemic, with both NMR analyses returning ee
values of 90% and 94% for (R)- and (S)-1b, respectively, as
confirmed subsequently by chiral HPLC analysis (see
Supporting Information).
In conclusion, this report describes the first chiral

derivatization protocol for determining the enantiopurity of a
range of S-chiral sulfinamides using both 1H and 19F NMR
spectroscopic analysis, including Ellman’s and Davis’ chiral
sulfinamides that are widely used as chiral auxiliaries for
asymmetric synthesis.

■ EXPERIMENTAL SECTION
Unless preparative details are given, reagents and solvents were
obtained from commercial suppliers. All reactions were performed
without air exclusion, at room temperature and with magnetic stirring
unless otherwise stated. Anhydrous MgSO4 was used as a drying agent
for organic solutions. Thin layer chromatography (TLC) was carried
out on Macherey-Nagel aluminum-backed plates that were precoated

Table 2. Optimization Study of the Three-Component
Assembly Reaction of Ellman’s Sulfinamide 1a with 2-FPBA
2 and Pinanediol 3h

Product Ratiosa

Entry Reagents MgSO4 6 7 4h/5h

1 1a + 2 + 3h − 70% 0% 30%
2 1a + 2 + 3h + 60% 0% 40%
3 2 + 3h − 100% − −
4b Premix 2 + 3h then add 1a − 100% 0% 0%
5c 1a + 2 − − 89% −
6c 1a + 2 + − 94% −
7d Premix 1a + 2 then add 3h + 7% 0% 93%

aDetermined by 1H NMR spectroscopic analysis. b2 and 3h premixed
for 10 min. cRemaining mass balance comprised of unreacted 2-PFBA
2. d1a and 2 premixed for 1 h.

Table 3. Chemical Shift Differences (ΔδH) of the Imine
Proton Resonances of Pairs of Diastereomeric
Sulfiniminoboronate Esters in the 1H NMR Spectra from
Reaction of Sulfinamides 1a−h with 2-FPBA 2 and diol 3h

aConversion and dr determined by 1H NMR spectroscopic analysis.
bΔδH is the chemical shift difference between the imine protons of
diastereomeric iminoboronate ester complexes 4h/5h and 8/9.
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with silica. Compounds were visualized by either quenching of UV
fluorescence at 254 nm or by staining with potassium permanganate
dip followed by gentle heating. Purification by flash column
chromatography was performed using high-purity grade silica gel
(60 Å pore size, 40−75 μm particle size). Capillary melting points are
reported uncorrected to the nearest °C, and were determined using a
Stuart digital SMP10 melting point apparatus. Optical rotations were
measured using an Optical Activity Ltd. AA-10 Series Automatic
Polarimeter, with a path length of 1 dm, and with concentration (c)
quoted in g/100 mL. Nuclear Magnetic Resonance (NMR)
spectroscopy experiments were performed in deuterated solvent at
298 K (unless stated otherwise) on a Brüker Avance, 300, 400, or 500
MHz spectrometer or an Agilent ProPulse 500 MHz spectrometer,
with proton decoupling used for all 13C NMR spectra. 1H, 13C, 11B,

and 19F NMR chemical shifts (δ) are quoted in parts per million
(ppm) and are referenced to either the residual solvent peak or
tetramethylsilane (TMS) when possible. Coupling constants (J) are
quoted in Hz. Where 13C signals could not be observed by 1D NMR
due to low solubility, adjacent quadrupolar nuclei, or lack of adjacent
1H nuclei, their chemical shift was deduced from 2D HMBC
experiments, where possible. This approach was validated by variable
temperature (VT) 1D NMR of boronate ester 6. Infrared (IR) spectra
were recorded using a PerkinElmer Spectrum 100 FTIR spectrometer
fitted with a Universal ATR FTIR accessory, with samples run neat
and the most relevant, characteristic absorbances quoted as ν in cm−1.
High resolution mass spectrometry (HRMS) results were acquired on
an externally calibrated Bruker Daltonics maXis HD UHR-TOF mass
spectrometer coupled to an electrospray source (ESI-TOF).
Molecular ions were detected either in positive mode, as their
protonated, sodiated, or ammonium adduct forms, or in negative
mode as deprotonated species. Aryl boronic acids were detected as
their deprotonated methyl hydrogen boronate ions [M + 13]−, as
reported by Wang et al.20 Bruker Daltonics software DataAnalysis 4.3
was used to process NMR data.

General Procedure 1 for the Synthesis of (rac)-Sulfinamides
1c−h from Thiols by the Method of Di et al.16 N-Bromo
succinimide (2.0 equiv) was added to a stirred solution of the thiol
(1.0 equiv) in CH2Cl2/MeOH (1:1, 0.1 M) at 0 °C. The reaction was
allowed to warm to room temperature, and reaction progress was
monitored by TLC. Upon completion (15 min−1 h) the reaction
mixture was quenched and diluted by half through the addition of
saturated Na2CO3. The layers were separated, and the aqueous phase
was extracted twice with CH2Cl2. The combined organics were then
washed with brine, dried (MgSO4), and concentrated to dryness in
vacuo to afford a methylsulfinate product as a clear oil.

The methylsulfinate (1.0 equiv) was dissolved in anhydrous THF
(0.33 M) and cooled to −78 °C. LiHMDS (1.5 equiv, 1 M in THF)
was then added dropwise over 5 min, and the reaction was stirred at
−78 °C for 1.5 h. After this time the reaction was quenched with
saturated NH4Cl, allowed to warm to room temperature, and stirred.
After 30 min, the reaction was diluted with EtOAc, the aqueous phase
was extracted twice with EtOAc, and the combined organics were
washed with brine, dried (MgSO4), and concentrated in vacuo. The
crude product was purified by either recrystallization or column
chromatography to afford the desired sulfinamide 1c−h.

(rac)-Cyclopentanesulfinamide 1c. General procedure 1 was
followed using cyclopentanethiol (334 μL, 3.12 mmol). Recrystalliza-
tion from 1:10 EtOAc/n-hexane afforded the title compound 1c (299
mg, 2.24 mmol) as a white solid in 72% yield. All characterization data

Table 4. Chemical Shift Differences (ΔδH/F) in the 1H/19F
NMR Spectra of Diastereomeric Sulfiniminoboronate Esters
Formed from Reaction of Sulfinamides 1a−d with
Fluorinated FPBA Derivatives 10a−d and Pinanediol 3h

aReactions proceeded with 37−99% conversions to afford mixtures of
sulfiniminoboronate esters whose dr’s ranged from 65:35 to 69:31
(entries 1−4) and from 49:51 to 51:49 (entries 5−7), indicating that
no kinetic resolution had occurred. bΔδH is the chemical shift
difference between the imine protons of the diastereomeric
sulfiniminoboronate esters in their 1H NMR spectra. cΔδF is the
chemical shift difference between the fluorine resonances of the
diastereomeric sulfiniminoboronate esters. dQuantitative 19F{1H}
NMR experiments carried out using a T1 relaxation time of 30 s.
eA negative value indicates that the homochiral complex was most
deshielded.

Figure 1. (a) Expanded 1H NMR spectra of complexes formed from
reaction of 10a, (1R,2R,3S,5R)-3h, and (R)-1a (75%, 90%, and 96%
ee). (b) Expanded 19F NMR spectra of diastereomeric complexes
formed from reaction of 10a, (1R,2R,3S,5R)-3h, and (R)- 1a (75%,
90% and 96% ee). (c) Expanded 1H and 19F{1H} NMR spectra of
diastereomeric complexes formed from reaction of 10a ,
(1R,2R,3S,5R)-3h, and a commercial “enantiopure” sample of (R)-
Davis’ sulfinamide 1b, revealing its “true” enantiopurity as 90% ee.
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were consistent with previous literature reports.16 Mp: 86−88 °C
(lit.16 82−83 °C); IR (neat): 3189, 3089, 2957, 2868, 1450, 1166,
1001, 908, 697 cm−1; 1H NMR (500 MHz, CDCl3) δH 3.91 (bs, 2H,
−NH2), 3.05 (p, 1H, J = 7.5, SCH), 2.04 (dt, 2H, J = 13.9, 6.9, CH2),
1.98−1.88 (m, 2H, CH2), 1.83−1.59 (m, 4H, CH2);

13C{1H} NMR
(126 MHz, CDCl3) δC 65.2, 27.7, 26.1, 25.9, 25.6.
(rac)-Naphthalene-2-sulfinamide 1d. General procedure 1 was

followed using naphthalene-2-thiol (500 mg, 3.12 mmol). Recrystal-
lization from 2:1 EtOAc/n-hexane afforded the title compound 1d
(408 mg, 2.13 mmol) as a white solid in 63% yield. Mp: 134−138 °C
(decomposed); IR (neat): 3292, 3155, 3063, 1589, 1560, 1500, 1344,
1014, 822, 739 cm−1; 1H NMR (500 MHz, CDCl3) δH 8.34 (s, 1H,
ArH), 7.99−7.89 (m, 3H, ArH), 7.71 (dd, 1H, ArH), 7.65−7.55 (m,
2H, ArH), 4.34 (bs, 2H, −NH2);

13C{1H} NMR (126 MHz, CDCl3)
δC 143.6, 134.6, 132.8, 129.2, 129.0, 128.1, 128.1, 127.3, 125.8, 121.9;
HRMS (ESI+): calculated for [M + Na]+ C10H9NOSNa, 214.0297;
found, 214.0288.
(rac)-4-Fluorobenzenesulfinamide 1e. General procedure 1

was followed using 4-fluorothiophenol (332 μL, 3.12 mmol).
Recrystallization from 1:1 EtOAc/n-hexane afforded the title
compound 1e (268 mg, 1.68 mmol) as a white solid in 54% yield.
All characterization data were consistent with previous literature
reports.21,22 Mp: 134−139 °C (lit. 128,21 144.8−146.822 °C); IR
(neat): 3269, 3154, 3065, 1587, 1481, 1229, 1211, 1156, 1087, 1005,
887, 834, 667 cm−1; 1H NMR (500 MHz, CDCl3) δH 7.79−7.71 (m,
2H, ArH), 7.24−7.15 (m, 2H, ArH), 4.32 (bs, 2H,NH2);

13C{1H}
NMR (126 MHz, CDCl3) δC 164.6 (d, 1JF−C = 251.7), 142.2, 128.0
(d, 3JF−C = 9.0), 116.2 (d, 2JF−C = 22.4); 19F NMR (471 MHz,
CDCl3) δF −109.0 (tt, J = 8.4, 5.1).
(rac)-4-Methoxybenzenesulfinamide 1f. General procedure 1

was followed using 4-fluorothiophenol (383 μL, 3.12 mmol).
Recrystallization from 1:2 EtOAc/n-hexane afforded the title
compound 1f (262 mg, 1.53 mmol) as a white solid in 49% yield.
All characterization data were consistent with previous literature
reports.9 Mp: 127−131 °C (lit.9 129−131 °C); IR (neat): 3261,
3067, 2840, 1591, 1490, 1450, 1245, 1025, 1001, 823, 794 cm−1; 1H
NMR (500 MHz, CDCl3) δH 7.68 (d, 2H, J = 8.8, ArH), 7.02 (d, 2H,
J = 8.8, ArH), 4.24 (bs, 2H, NH2), 3.87 (s, 3H, OCH3);

13C{1H}
NMR (126 MHz, CDCl3) δC 162.1, 138.0, 127.2, 114.4, 55.7.
(rac)-Hexane-1-sulfinamide 1g. General procedure 1 was

followed using 1-hexanethiol (1.421 mL, 10.0 mmol). Recrystalliza-
tion from n-hexane afforded the title compound 1g (356 mg, 2.38
mmol) as an off-white solid in 24% yield. Mp: 41−42 °C; IR (neat):
3282, 3200, 2954, 2924, 2849, 1553, 1464, 1417, 1066, 1035, 1001,
890 cm−1; 1H NMR (500 MHz, CDCl3) δH 3.99 (bs, 2H, NH2), 2.73
(2 × ddd, 2H, J = 13.0, 8.5, 6.7, SCH2), 1.79−1.63 (m, 2H,
SCH2CH2), 1.50−1.37 (m, 2H, SCH2CH2CH2), 1.36−1.29 (m, 4H,
MeCH2CH2), 0.91−0.87 (m, 3H, CH3);

13C{1H} NMR (126 MHz,
CDCl3) δC 57.9, 31.5, 28.4, 22.9. 22. 5, 14.1; HRMS (ESI+):
calculated for [M + NH4]

+ C6H19N2OS, 167.1213; found, 167.1215.
(rac)-Pyridine-2-sulfinamide 1h. General procedure 1 was

followed using 2-mercapto pyridine (1.998 g, 18.0 mmol).
Recrystallization from CH2Cl2 afforded the title compound 1h (128
mg, 0.972 mmol) as a white solid in 5% yield. All characterization data
were consistent with previous literature reports.23 Mp: 102−104 °C
(lit.23 98−100 °C); 1H NMR (500 MHz, CDCl3) δH 8.71 (ddd, 1H, J
= 4.7, 4.7, 1.5, ArH), 7.99−7.89 (m, 2H, ArH), 7.44 (ddd, 1H, J = 7.4,
4.7, 1.4, ArH), 4.66 (bs, 2H, NH2);

13C{1H} NMR (126 MHz,
CDCl3) δC 164.5, 150.0, 138.1, 125.6, 120.6.
General Procedure 2 for the Synthesis of 1-Bromo-2-

(dimethoxymethyl)-fluorobenzenes 11a−d by the Method
of Kowalska et al.19 H2SO4 (0.093 equiv, 0.47 mmol, 25 μL) and
trimethyl orthoformate (1.3 equiv, 6.50 mmol, 711 μL) were added to
a stirred solution of a 2-bromo-fluorobenzaldehyde (1.0 equiv, 5.00
mmol, 1.02 g) in MeOH (2.0 mL). The reaction was heated at reflux
for 1.5 h, before cooling to room temperature and quenching with
triethylamine (1.00 mL, 7.17 mmol). The volatiles were removed in
vacuo, and the resulting mixture was dissolved in water (30 mL) and
extracted with Et2O (30 mL). The organics were washed with water

(3 × 30 mL) and brine (30 mL), dried (MgSO4), and concentrated in
vacuo to afford the desired dimethyl acetals 11a−d as clear oils.

2-Bromo-1-(dimethoxymethyl)-6-fluorobenzene 11a. Gen-
eral procedure 2 was followed using 2-bromo-6-fluorobenzaldehyde
(5.00 mmol, 1.02 g), affording the title compound 11a (1.09 g, 4.41
mmol) as a colorless oil in 88% yield. IR (neat): 2930, 2830, 1602,
1572, 1455, 1376, 1249, 1201, 1102, 1062, 168, 893, 781, 730 cm−1;
1H NMR (500 MHz, CDCl3) δH 7.73 (dt, 1H, J = 8.0, 1.1, ArH), 7.17
(td, 1H, J = 8.2, 5.6, ArH), 7.05 (dd, 1H, J = 10.4, 8.3, 1.2, ArH), 5.71
(d, 1H, J = 1.2, MeOCH), 3.49 (s, 6H, 2 × OCH3);

13C{1H} NMR
(126 MHz, CDCl3) δC 161.5 (d,

1JF−C = 256.3), 131.0 (d, JF−C = 9.9),
129.2 (d, JF−C = 3.4), 125.4 (d, JF−C = 14.4), 123.5 (d, JF−C = 5.3),
116.2 (d, JF−C = 23.0), 104.9, 55.7; 19F NMR (470 MHz, CDCl3) δF
−111.1 (dd, J = 10.6, 5.6); HRMS (ESI+): calculated for [M + Na]+

C9H10O2BrFNa, 270.9740; found, 270.9749.
2-Bromo-1-(dimethoxymethyl)-5-fluorobenzene 11b. Gen-

eral procedure 2 was followed using 2-bromo-5-fluorobenzaldehyde
(5.00 mmol, 1.02 g), affording the title compound 11b (1.16 g, 4.65
mmol) as a colorless oil in 95% yield. IR (neat): 2935, 2832, 1581,
1464, 1365, 1264, 1154, 1095, 1055, 972, 880 cm−1; 1H NMR (300
MHz, CDCl3) δH 7.51 (dd, 1H, J = 8.8, 5.1, ArH), 7.35 (dd, 1H, J =
9.4, 3.1, ArH), 6.93, ddd, J = 8.8, 7.7, 3.1, ArH), 5.50 (d, 1H, J = 1.2,
MeCOCH), 3.38 (s, 6H, 2 × OCH3);

13C{1H} NMR (126 MHz,
CDCl3) δC 162.1 (d, 1JF−C = 247.2), 139.3 (d, JF−C = 7.0), 134.2(d,
JF−C = 7.7), 117.4 (d, JF−C = 22.7), 116.9 (d, JF−C = 3.2), 115.9 (d,
JF−C = 24.3), 102.4, 54.0; 19F NMR (470 MHz, CDCl3) δF −114.3;
HRMS (ESI+): calculated for [M + Na]+ C9H10O2BrFNa, 270.9740;
found, 270.9748.

2-Bromo-1-(dimethoxymethyl)-4-fluorobenzene 11c. Gen-
eral procedure 2 was followed using 2-bromo-4-fluorobenzaldehyde
(5.00 mmol, 1.02 g), affording the title compound 11c (1.16 g, 4.65
mmol) as a colorless oil in 93% yield. IR (neat): 2937, 2826, 1599,
1485, 1361, 1226, 1193, 1103, 1054, 982, 857, 812 cm−1; 1H NMR
(500 MHz, CDCl3) δH 7.60 (dd, 1H, J = 8.7, 6.2, ArH), 7.31 (dd, 1H,
J = 8.2, 2.6, ArH), 7.05 (td, 8.3, 2.6, ArH), 5.52 (s, 1H, MeOCH),
3.37 (s, 6H, 2 × OCH3);

13C{1H} NMR (126 MHz, CDCl3) δC 162.5
(d, JF−C = 251.8), 133.2 (d, JF−C = 3.6), 129.7 (d, JF−C = 8.5), 123.2
(d, JF−C = 9.4), 120.2 (d, JF−C = 24.8), 114.5 (d, JF−C = 20.9), 102.6,
54.0; 19F NMR (470 MHz, CDCl3) δF −111.4; HRMS (ESI+):
calculated for [M + Na]+ C9H10O2BrFNa, 270.9740; found, 270.9747.

2-Bromo-1-(dimethoxymethyl)-3-fluorobenzene 11d. Gen-
eral procedure 2 was followed using 2-bromo-3-fluorobenzaldehyde
(5.00 mmol, 1.02 g), affording the title compound 11d (1.18 g, 4.75
mmol) as a colorless oil in 95% yield. IR (neat): 2959, 2835, 1577,
1464, 1436, 1357, 1261, 1115, 1035, 1004, 825, 776 cm−1; 1H NMR
(500 MHz, CDCl3) δH 7.43−7.39 (m, 1H, ArH), 7.34−7.28 (m, 1H,
ArH), 7.14−7.09 (m, 1H, ArH), 5.57 (s, 1H, MeOCH), 3.39 (s, 6H, 2
× OCH3);

13C{1H} NMR (126 MHz, CDCl3) δC 159.2 (d, 1JF−C =
246.5), 139.4, 128.3 (d, JF−C = 7.9), 123.7 (d, JF−C = 3.3), 116.5 (d,
JF−C = 22.6), 110.2 (d, JF−C = 21.3), 102.6 (d, JF−C=3.6), 54.1;

19F
NMR (470 MHz, CDCl3) δF −105.5 (dd, J = 8.3, 5.1); HRMS (ESI
+): calculated for [M + Na]+ C9H10O2BrFNa, 270.9740; found,
270.9741.

General Procedure 3 for the Synthesis of Fluoro-2-
formylphenyl Boronic Acids 10a−d by the Method of
Kowalska et al.19 n-Butyllithium (2.5 M in THF, 1.15 equiv) was
added dropwise (15 min) to a stirred solution of a fluoro-1-bromo-2-
(dimethoxymethyl)-fluorobenzene 11a−d (1.0 equiv) in anhydrous
Et2O/THF (5:1 mixture, 0.33 M) under an inert N2 atmosphere. The
resultant solution was then cooled to −78 °C and stirred for 1 h,
before addition of trimethyl borate (1.15 equiv). The reaction was
warmed to room temperature and allowed to stir for 15 min, before
acidifying to pH 3 using HCl (3 M, aq.). The reaction was diluted
with Et2O, and the aqueous phase was extracted 3 times. The
combined organics were washed with brine, dried over MgSO4, and
concentrated to dryness, with the resultant crude product recrystal-
lized from EtOAc/hexane to afford the desired formyl boronic acid
10a−d (observed by NMR in tautomeric equilibrium with the related
benzoxaborole minor product; see Supporting Information).
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(3-Fluoro-2-formylphenyl)boronic Acid 10a. General proce-
dure 3 was followed using 1-bromo-2-(dimethoxymethyl)-3-fluoro-
benzene 11a (1.09 g, 4.41 mmol), affording the title compound 10a
(444 mg, 2.64 mmol) as a white solid in 60% yield. All
characterization data were consistent with previous literature
reports.24 Mp: 125−128 °C (lit.24 127−129 °C); IR (neat): 3309,
3071, 2943, 1675, 1561, 1427, 1294, 1235, 1184, 1083, 908, 825, 793,
732 cm−1; 1H NMR (500 MHz, acetone-d6) δH 10.38 (s, 1H, OCH,
major), 8.42 (bs, 1H, BOH, minor), 7.77−7.61 (m, 1H, ArH, major),
7.54−7.41 (m, 2H major + 1H minor, ArH), 7.32 (bs, 2H, BOH,
major), 7.26 (ddd, 1H, J = 11.2, 8.3, 1.1, ArH, major), 7.21 (ddd, 1H,
J = 9.8, 7.9, 1.1, ArH, minor), 6.45 (s, 1H, HCO, minor), 6.13 (bs,
1H, COH, minor); 11B NMR (375.5 MHz, acetone-d6) δB 31.2
(minor), 29.5 (major); 19F NMR (470 MHz, acetone-d6) δF −120.8
(dd, J = 9.9, 4.2, minor), −122.4 (dd, J = 121.1, 5.3, major). HRMS
(ESI−): calculated for [M − H2O + OMe]− C8H 7FBO3, 181.0478;
found, 181.0475. The 13C NMR spectrum is not reported, as the
signal intensity was too weak due to the combined effect of
tautomerization, 19F splitting, and the adjacent 11B.
(4-Fluoro-2-formylphenyl)boronic Acid 10b. General proce-

dure 3 was followed using 1-bromo-2-(dimethoxymethyl)-4-fluoro-
benzene 11b (1.18 g, 4.75 mmol), affording the title compound 10b
(410 mg, 2.44 mmol) as a white solid in 55% yield. All
characterization data were consistent with previous literature
reports.17 Mp: 123−126 °C (lit.17 123−125 °C); IR (neat): 3217,
1670, 1601, 1578, 1428, 1366, 1339, 1273, 1221, 1156, 1088, 1039,
886, 829, 768, 727 cm−1; 1H NMR (500 MHz, acetone-d6) δH 10.33
(s, 1H, OCH, major), 8.28 (bs, 1H, BOH, minor), 7.93 (dd, 1H, J =
8.3, 5.9, ArH, major), 7.74 (bs, 2H, BOH, major), 7.74 (dd, 1H, J =
8.0, 5.7, ArH, minor), 7.66 (dd, 1H, J = 9.6, 7.2, ArH, major), 7.44
(td, J = 8.4, 2.7, ArH, major), 7.21−7.13 (m, 2H, ArH, minor); 11B
NMR (375.5 MHz, acetone- d6) δB 31.3 (minor), 28.9 (major); 19F
NMR (470 MHz, acetone-d6) δF −111.2 (minor), −111.7 (major);
HRMS (ESI−): calculated for [M − H2O + OMe] − C8H7FBO3,
181.0478; found, 181.0471. The 13C NMR spectrum is not reported,
as the signal intensity was too weak due to the combined effect of
tautomerization, 19F splitting, and the adjacent 11B.
(5-Fluoro-2-formylphenyl)boronic Acid 10c. General proce-

dure 3 was followed using 1-bromo-2-(dimethoxymethyl)-5-fluoro-
benzene 11c (1.16 g, 4.65 mmol), affording the title compound 10c
(388 mg, 2.31 mmol) as a white solid in 50% yield. Mp: 126−131 °C;
IR (neat): 3309, 3069, 1669, 1596, 1571, 1419, 1344, 1226, 1167,
1103, 1044, 905, 797, 737, 692 cm−1; 1H NMR (500 MHz, acetone-
d6) δH 10.17 (s, 1H, OCH, major), 8.06 (m, 1H major + 1H minor,
ArH), 7.84 (s, 2H, BOH, major), 7.56 (dd, 1H, J = 9.5, 2.7, ArH,
major), 7.50 (dd, 1H, J = 8.3, 4.7, ArH, minor), 7.37 (td, 1H, J = 8.4,
2.7, ArH, major), 7.31−7.22 (m, 1H, ArH, minor), 6.27 (bs, 1H,
OCH, minor) (some signals not observed due to low concentration of
minor tautomer);19 11B NMR (375.5 MHz, acetone-d6) δB 28.9
(major), 20.2 (minor); 19F NMR (470 MHz, acetone-d6) δF −106.7
(dd, J = 8.1, 8.1, major), −116.1 (minor); HRMS (ESI−): calculated
for [M − H2O + OMe] − C8H7FBO3, 181.0478; found, 181.0473.
The 13C NMR spectrum is not reported, as the signal intensity was
too weak due to the combined effect of tautomerization, 19F splitting,
and the adjacent 11B.
(6-Fluoro-2-formylphenyl)boronic Acid 10d. General proce-

dure 3 was followed using 1-bromo-2-(dimethoxymethyl)-6-fluoro-
benzene 11d (1.18 g, 4.75 mmol), affording the title compound 10d
(223 mg, 1.33 mmol) as a white solid in 28% yield. Mp: 153−156 °C;
IR (neat): 3255, 2848, 1674, 1601, 1567, 1451, 1324, 1301, 1231,
1213, 1160, 1040, 786, 730, 681 cm−1; 1H NMR (500 MHz, acetone-
d6) δH 10.04 (d, 1H, J = 2.3, OCH, major), 7.75 (d, 1H, J = 7.4, ArH,
major), 7.64−7.54 (m, 1H major + 1H minor, ArH), 7.38−7.24 (m,
1H major + 1H minor, ArH), 7.06 (t, 1H, J = 8.1, ArH, major), 6.26
(bs, 1H, OCH, minor) (some signals not observed due to low
concentration of minor tautomer19); 11B NMR (375.5 MHz, acetone-
d6) δB 29.3 (major), 20.2 (minor); 19F NMR (470 MHz, acetone-d6)
δF −105.6 (minor), −106.1 (t, J = 6.7, major); HRMS (ESI−):
calculated for [M − H2O + OMe]− C8H7FBO3, 181.0478; found,
181.0473. The 13C NMR spectrum is not reported, as the signal

intensity was too weak due to the combined effect of tautomerization,
19F splitting, and the adjacent 11B.

General Procedure 4 for the Synthesis of 2-Formyl
Boronate Esters 6 and 3-F-6. (1S,2S,3R,5S)-Pinanediol 3h (1.0
equiv) was added to a stirred suspension of a 2-formylbenzene
boronic acid 2 (1.1 equiv) in CHCl3 (0.10 M). After 15 min, the
reaction was diluted with an equivalent amount of CH2Cl2 and passed
through a silica plug. The plug was washed with CH2Cl2 until no
more product eluted, and the solvent was removed in vacuo to afford
the desired boronate ester as a clear oil.

2-((3aS ,4S ,6S ,7aR)-3a,5,5-Trimethylhexahydro-4,6-
methanobenzo[d][1,3,2]dioxaborol-2-yl)benzaldehyde 6.
General procedure 4 was followed using 2-FPBA 2 (83 mg, 0.55
mmol) and (1S,2S,3R,5S)-pinanediol 3h (85 mg, 0.50 mmol),
affording the title compound (3aS,4S,6S,7aR)-6 (110 mg, 0.39
mmol) as a clear oil in 70% yield. [α]D

23 = +18 (c 1.0, CHCl3); IR
(neat): 2921, 2870, 1693, 1593, 1488, 1370, 1337, 1236, 1076, 754,
666 cm−1; 1H NMR (500 MHz, CDCl3) δ 10.55 (s, 1H, OCH),
7.98−7.95 (m, 1H, ArH), 7.90−7.86 (m, 1H, ArH), 7.62−7.53 (m,
2H, ArH), 4.52 (dd, 1H, J = 8.8, 1.9 H-7a), 2.48−2.39 (m, 1H, H-7),
2.32−2.23 (m, 1H, H-8), 2.16 (dd, 1H, J = 6.0, 4.9, H-4), 2.04−1.94
(m, 2H, H-6 + H-7), 1.53 (s, 3H, H-9), 1.33 (d, 1H, J = 10.8, H-8),
1.32 (s, 3H, H-10/11), 0.90 (s, 3H, H-10/11); 13C{1H} NMR (126
MHz, CDCl3) δC 194.7, 141.4, 135.7, 133.1, 131.9 (deduced from
HMBC, confirmed by −15 °C VT NMR), 130.8, 128.0, 86.9, 78.6,
51.5, 39.7, 38.4, 35.5, 28.7, 27.2, 26.6, 24.2; 11B NMR (375.5 MHz,
CDCl3) δB 30.7; HRMS (ESI+): calculated for [M + Na]+

C17H21BO3Na, 307.1479; found, 307.1493.
2-Fluoro-6-((3aS,4S,6S,7aR)-3a,5,5-Trimethylhexahydro-4,6-

methanobenzo[d][1,3,2]dioxaborol-2-yl)benzaldehyde 3-F-6.
General procedure 4 was followed using 3-fluoro-2-FPBA 10a (47
mg, 0.28 mmol) and (1S,2S,3R,5S)-pinanediol 3h (96 mg, 0.25
mmol), affording the title compound (3aS,4S,6S,7aR)-3-F-6 (73 mg,
0.39 mmol) as a clear oil in 96% yield. [α]D

23 = +20 (c 1.0, CHCl3);
IR (neat): 2918, 2869, 1695, 1568, 1480, 1439, 1339, 1238, 1029,
794, 666 cm−1;1H NMR (500 MHz, CDCl3) δ 10.43 (d, 1H, J = 1.0,
OCHC), 7.58 (ddd, 1H, J = 8.3, 7.2, 5.2, ArH), 7.40 (d, 1H, J = 7.2,
ArH), 7.17 (ddd, 1H, J = 10.6, 8.3, 1.0, ArH), 4.55 (dd, 1H, J = 8.8,
2.0, H-7a), 2.48−2.38 (m, 1H, H-7), 2.37−2.27 (m, 1H, H-8), 2.17−
2.11 (m, 1H, H-4), 2.06−1.96 (m, 2H, H-6 and H-7), 1.58 (s, 3H, H-
9), 1.55 (d, 1H, J = 10.8, H-8), 1.34 (s, 3H, H-10/11), 0.91 (s, 3H, H-
10/11); 13C{1H} NMR (126 MHz, CDCl3) δC 189.0 (d, JF−C = 6.2),
164.3 (d, JF−C = 259.8), 135.7 (d, JF−C = 8.7), 129.1 (d, JF−C = 3.8),
127.8 (d, JF−C = 6.9), 121.6 (deduced from HMBC), 117.5 (d, JF−C =
20.9), 86.6, 78.8, 51.7, 39.7, 38.5, 35.5, 28.4, 27.3, 26.5, 24.2; 11B
NMR (375.5 MHz, CDCl3) δB 30.9;

19F NMR (470 MHz, CDCl3) δF
−121.0 (dd, J = 10.5, 5.3); HRMS (ESI+): calculated for [M + Na]+

C17H20BO3FNa, 325.1385; found, 325.1381.
General Procedure 5 for the Synthesis of tert-Butyl

Sulfiniminoboronates 4h and 5h. tert-Butyl sulfinamide 1a (61
mg, 0.50 mmol, 1.0 equiv) was added to a stirred suspension of 2-
formylbenzene boronic acid 2 (90 mg, 0.60 mmol, 1.2 equiv) and
MgSO4 (1.00 g) in CHCl3, and the reaction was stirred for 2 h, before
(1R,2R,3S,5R)-pinanediol 3h (111 mg, 0.65 mmol, 1.3 equiv) was
added. After 10 min, the reaction was filtered and concentrated to
dryness in vacuo, and the residue was purified by chromatography
(0.5% MeOH in 1:1 DCM/n-hexane), affording the desired
sulfiniminoboronate ester as a clear oil. The low stability of these
complexes to the purification conditions employed meant that small
amounts of 2-formyl boronate ester 6 remained.

(R)-2-Methyl-N-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethyl-
hexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-2-yl)-
benzylidene)propane-2-sulfinamide 4h. General procedure 5
was followed using (R)-Ellman’s sulfinamide 1a, affording the title
compound (RS,3aR,4R,6R,7aS)-4h (24 mg, 0.062 mmol) as a clear oil
in 12% yield, as a 89:11 mixture with the related formyl boronate ester
(3aR,4R,6R,7aS)-6. 1H NMR (500 MHz, CDCl3) δH 9.36 (s, 1H,
NCH), 8.13−8.06 (m, 1H, ArH), 7.94−7.88 (m, 1H, ArH), 7.54−
7.46 (m, 2H, ArH), 4.51 (dd, 1H, J = 8.8, 2.0, H-7a), 2.48−2.37 (m,
1H, H-7), 2.29−2.21 (m, 1H, H-8), 2.18 (dd, 1H, J = 6.1, 5.1, H-4),
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2.02 (ddd, 1H, J = 14.7, 3.4, 2.0, H-7), 1.97−1.97 (m, 1H, H-6), 1.51
(s, 3H,H-9), 1.30 (s, 3H, H-10/11), 1.26 (s, 9H, tert-butyl), 1.23 (d,
1H, J = 10.9, H-8), 0.88 (s, 3H, H-10/11); 11B NMR (375.5 MHz,
CDCl3) δB 30.5; HRMS (ESI+): calculated for [M + H]+

C21H31BNO3S, 388.2116, Found 388.2118; calculated for [M +
Na]+ C21H30BNO3SNa, 410.1936; found, 410.1940. IR and specific
rotation data were not acquired due to the presence of significant
residual (3aR,4R,6R,7aS)-6. 13C NMR spectra are not reported, as this
impurity and the adjacent 11B nucleus led to unassignable spectra.
(S)-2-Methyl-N-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexa-

hydro-4,6-methanobenzo[d ] [1,3,2]dioxaborol-2-yl)-
benzylidene)propane-2-sulfinamide 5h. General procedure 5
was followed using (S)-Ellman’s sulfinamide 1a, affording the title
compound (SS,3aR,4R,6R,7aS)-5h (37 mg, 0.096 mg) as a clear oil in
19% yield, as a 96:4 mixture with the related formyl boronate ester
(3aR,4R,6R,7aS)-6. 1H NMR (500 MHz, CDCl3) δ 9.27 (s, 1H,
NCH), 8.08−8.03 (m, 1H, ArH), 7.90−7.83 (m, 1H, ArH), 7.54−
7.47 (m, 2H, ArH), 4.51 (dd, 1H, J = 8.7, 1.9, H-7a), 2.49−2.38 (m,
1H, H-7), 2.32−2.21 (m, 1H, H-8), 2.17 (dd, 1H, J = 6.0, 5.0, H-4),
2.09−1.91 (m, H-7 + H-6), 1.51 (s, 3H, H-9), 1.31 (s, 3H, H-10/11),
1.28−1.22 (m, 12H, tert-butyl + H-8), 0.88 (s, 3H, H10/11); 11B
NMR (375.5 MHz, CDCl3) δB 31.2; HRMS (ESI+): calculated for
[M + H]+ C21H31BNO3S: 388.2116, Found 388.2112; calculated for
[M + Na]+ C21H30BNO3S, 410.1936; found, 410.1937; IR and
specific rotation data were not acquired due to the presence of
significant residual (3aR,4R,6R,7aS)-6. 13C NMR spectra are not
reported, as this impurity and the adjacent 11B nucleus led to
unassignable spectra.
General Procedure 6 for the Three-Component Chiral

Derivatization of Sulfinamides. A 2-Formylbenzene boronic acid
(0.12 mmol, 1.2 equiv) and anhydrous MgSO4 (200 mg) were added
to a stirred solution of sulfinamide 1a−h (0.10 mmol, 1.0 equiv) in
CDCl3 (1.0 mL, TMS internal standard). The reaction was stirred at
room temperature for 1 h, before addition of (1R, 2R, 3S, 5R)-
pinanediol 3h (1.0 M in CDCl3, 130 μL, 1.3 equiv). The reaction was
then stirred for a further 10 min, before the reaction was filtered and
the 500 MHz 1H NMR spectrum and/or 470 MHz 19F spectrum of
the resultant iminoboronate esters were acquired. The acquired 1H
and 19F{1H} NMR spectra can be found in the associated Supporting
Information.
Scalemic and racemic samples of Ellman’s sulfinamide 1a were

prepared from commercially available enantiopure samples of (R)-
and (S)-tert-butyl sulfinamide 1a. 0.1 M solutions of enantiopure 1a in
CDCl3 were prepared and then combined to produce scalemic
samples of 1a, the ee of which was determined by the ratio of
enantiopure stock solutions.
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2009, 50, 876−879. (e) Peŕez-Fuertes, Y.; Kelly, A. M.; Fossey, J. S.;
Powell, M. E.; Bull, S. D.; James, T. D. Simple protocols for NMR
analysis of the enantiomeric purity of chiral primary amines. Nat.
Protoc. 2008, 3, 210−214. (f) Kelly, A. M.; Peŕez-Fuertes, Y.; Fossey,
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