

University of Bath

PHD

Poly-algorithmic Techniques in Real Quantifier Elimination

Tonks, Zak

Award date:
2021

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Oct. 2021

https://researchportal.bath.ac.uk/en/studentthesis/polyalgorithmic-techniques-in-real-quantifier-elimination(0f8f83cd-2a3b-46c4-b4d7-be01e18f3dc9).html

Poly-algorithmic Techniques in

Real Quantifier Elimination
submitted by

Zak Tonks
for the degree of Doctor of Philosophy

of the

University of Bath
Department of Computer Science

January 2021

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy
of this thesis has been supplied on condition that anyone who consults it is understood
to recognise that its copyright rests with the author and that they must not copy it or
use material from it except as permitted by law or with the consent of the author.

Signature of Author .

Zak Tonks

Summary

Quantifier Elimination over the Reals (QE) is a topic in Computer Algebra concerning
elimination of quantifiers from boolean formulae of polynomial constraints. QE is
known to be worst case doubly exponential time complexity in the number of variables,
so optimisation in this area is always of interest. Otherwise, improvements with respect
to interface can make usage of QE more tractable. QE problems arise in a range of
contexts, notably motion planning (such as robotics), biology, mechanics, and finance.

Largely, this work discusses the implementation of a new package QuantifierE-

limination for the Computer Algebra software Maple. This package, developed in
collaboration with Maplesoft, is an amalgamation of contemporary research on two
main algorithms for QE, Virtual Term Substitution (VTS) and Cylindrical Algebraic
Decomposition (CAD), but a main focus is an investigation into the efficiency & efficacy
of a new “poly-algorithm” between these two algorithms.

The implementation of CAD includes the first known usage of the Lazard projection
for CAD in Maple, and the first known implementation & investigation of new research
for equational constraint optimisations with the Lazard projection in CAD. Such equa-
tional constraint optimisations may induce mathematical “curtain” occurrences which
are ordinarily cause for failure to construct a CAD with frequently desired properties.
In conjunction with the first implementation of relevant algorithms from other research,
methodology is delineated to ignore, or else attempt to recover from any general failure
to construct or evaluate parts of the CAD for QE, including curtains. QuantifierE-

limination also allows for generation of full CADs without the context of QE, where
users can inspect individual cells via various object methods, with the package being
largely object oriented where appropriate. Generation of CADs in unquantified con-
texts has uses in motion planning and real algebraic geometry. Quite often the thesis
focuses on finer implementation details & challenges, including with respect to the
recent research on equational constraints.

Other aims for the package are rich output and “incrementality”, to meet the usual
aims of implementations of algorithms for QE to be used within Satisfiability Modulo
Theory (SMT) solving for the theory of real arithmetic (QF NRA). Rich output includes
production of “witnesses” for fully homogeneously quantified problems, which prove
the equivalence of a subset of problems to their quantifier free equivalent. Extension of
existing methods enables production of witnesses where the framework of the new poly-
algorithm is concerned. The poly-algorithmic methods are extended to be incremental
for QE as well. There are a wealth of keyword options and customizable levels of
user information to print for users, as the package aims to reconcile with Maple’s
status as a mathematical toolbox to be easy to use with in depth information being
readily available for experienced geometers. Other functions are more pedagogical to
accommodate users new to problem formulations in QE and real algebraic geometry.

The software is compared via benchmarking against existing QE and CAD software,
especially existing packages in Maple, and investigates case studies on examples to
demonstrate new methodologies and research.

1

Acknowledgements

The largest thanks goes to my supervisor James Davenport. It goes without saying that I
couldn’t have done this without you. Despite being spread thin amongst so many exploits in
Computer Science, Computing, and Mathematics, your passion shines through in each. I’m
grateful for your support and belief in me throughout, and appreciate that you extended this
opportunity to me. As a whole, this project allowed me to visit a great many places — this
can’t be said for many occupations.

I thank Maplesoft for their immense support & hospitality throughout the project. I felt
incredibly welcome at the offices and surroundings in Waterloo, Ontario. Being a Mathematics
graduate, I was largely underinformed as to the scope of good software development practices,
and computing in general. My absolute special thanks to both Jürgen Gerhard & Stephen
Forrest, who’s Maple and programming expertise was invaluable. I greatly enjoyed being able
to see near enough all of Ontario’s sights thanks to Jürgen. Maplesoft make amazing software
to do mathematics with. It’s been a pleasure contributing to Maple, and I hope I can do so
again.

This research was funded by the EPSRC under grant reference EP/N509589/1 with ad-
ditional support from Maplesoft. Bath, and the University of Bath, have essentially been my
home for ≈ 8 years at the conclusion of this project, and in particular two academic degrees.
It’s been a pleasure to have been able to learn and teach in these historic surroundings for so
long. It’s incredible that the university manages to attract so many hard working individuals
with exceptional integrity and kindness, and I’m grateful for many at Bath who’ve made the
experience so enjoyable. Friends of many years all originating from the realm of Mechanical
Engineering at Bath, especially Simon & Lewis, all deserve my utmost gratitude. My friend
Jonny also deserves special thanks for his support.

Matthew England (University of Coventry) deserves thanks for his constantly useful dis-
cussion & interest in my work. His dedication to research in Computer Algebra is clear and I
hope it continues. Gregory Sankaran (University of Bath) provided much encouragement in the
(very!) early days of my research, and is a lot of the reason for my interest & early knowledge
of real algebra.

Ben Pring (previously University of Bath, now University of South Florida) has made for
a great source of support. I learned a great deal from his research experience and supporting
comments starting from the very early days when I was a research intern. He deserves nothing
but the very best in his career going forward.

Thanks to Casey Mulligan (previously University of Chicago) for contributing the economics
QE problems that make for part of the QE database for this project.

Fabrice Rouillier (INRIA) deserves thanks for being amenable to further development of
low level real root isolation & refinement procedures to later improve QuantifierElimination’s
CAD implementation. Hopefully he and his colleagues find his suggested features of
QuantifierElimination’s CAD useful or interesting for their work & research.

Various conferences & workshops in Computer Algebra have been enjoyable and provided
essential discourse for this work, and I appreciate various individuals who have made enumerable
trips abroad more enjoyable.

Many thanks to my examiners Gregory Sankaran and Thomas Sturm, with special thanks
to Thomas for his interest in the software and many very interesting comments. I especially
appreciate the effort in reading such lengthy work.

Special thanks to my parents Mark & Yvette. Their support has been interminable, and I

owe an indescribable amount to them for me to be where I am.

2

Contents

1 Introduction to Quantifier Elimination over the Reals 13
1.1 Applications of Quantifier Elimination 15

1.1.1 Satisfiability Modulo Theories . 16
1.2 Maple and QuantifierElimination . 16
1.3 Other QE Related Software . 17

2 Virtual Term Substitution 19
2.1 Background . 19
2.2 Universal Quantifiers . 23
2.3 Blocks of Quantifiers & the VTS Tree 24

2.3.1 IQER Selection Strategy . 30
2.3.2 VTS Variable Strategy . 32
2.3.3 Test Point Selection Strategy . 33

2.4 Tarski Formulae for VTS . 34
2.4.1 Delayed Evaluation of Virtual Substitution 35
2.4.2 Simplification of Tarski Formulae 37

2.5 Production of Witnesses for QE via VTS 40
2.6 Propagation of VTS . 46

3 Cylindrical Algebraic Decomposition 52
3.1 Background . 52
3.2 Tarski Formulae for CAD . 55
3.3 Projection . 57
3.4 Lifting . 68

3.4.1 Real Root Isolation . 90
3.4.2 Delayed Evaluation of Substitutions in CAD 97

3.5 Open CAD . 98
3.6 Lifting Constraints . 100
3.7 Equational Constraints in CAD . 105

3.7.1 Pivot Selection Strategy . 110
3.7.2 Curtains in a Lazard projection CAD 113
3.7.3 Gröbner Bases for Equational Constraints 143

3.8 CAD Variable Strategy . 147
3.9 Cell Selection Strategy . 154
3.10 Production of Witnesses for QE via CAD 155

3

3.11 Comparison with VTS . 156
3.12 Algorithms . 159

4 The Poly-algorithmic QE System 162
4.1 From VTS to CAD . 162
4.2 Strategy . 175
4.3 Standard Usage of QE by CAD . 177
4.4 Rich QE Output . 178

4.4.1 Production of Meaningful Witnesses for QE via VTS and CAD . 179

5 Evolutionary Techniques 182
5.1 Evolutionary VTS & Poly-algorithmic QE 184

5.1.1 Structural Tarski Formulae & Atomic Position for Evolutionary
QE . 185

5.1.2 Incremental VTS & Poly-algorithmic QE 188
5.1.3 Decremental VTS & Poly-algorithmic QE 193
5.1.4 VTS Tree Pruning . 198

5.2 Evolutionary CAD . 199
5.2.1 Incremental Projection . 199
5.2.2 Incremental Lifting . 207
5.2.3 Decremental CAD . 216

6 Other Features of the Software 230
6.1 The Subpackage QuantifierTools . 230
6.2 Other Features . 232

7 Benchmarking, Examples, and Comparisons to Other Software 235
7.1 Example Databases . 235
7.2 Case Studies on Lazard Curtains . 236
7.3 Case Studies on the Poly-algorithmic Methodology 244

7.3.1 Conclusions . 251
7.4 Benchmarking . 251

7.4.1 Methodology of Benchmarking 251
7.4.2 CAD Variable Strategies . 254
7.4.3 Cylindrical Algebraic Decomposition 257
7.4.4 Quantifier Elimination . 271

7.5 Comparisons of Input & Output . 281

8 Closing, Conclusions and Further Work 285
8.1 Summary of Contributions . 285
8.2 Conclusions . 286
8.3 Further Work . 287

Bibliography 291

4

List of Algorithms

1 Constructor for an IQER . 26
1 Constructor for an IQER, Part 2 . 27
2 Cauchy Root Bound . 41
3 Production of Witnesses from a VTS IQER 42
3 VTS Witness Production Algorithm, Part 2 43
4 Propagation of VTS . 46
5 Full projection to define all projection bases with restricted projection

operations . 61
5 Full projection in CAD, Part 2 . 62
6 Irreducible canonical polynomial basis creation with respect to a variable

in CAD . 63
7 Irreducible canonical basis creation in CAD with ECs 64
8 Lazard projection - implements the operator PL(A) 69
9 Restricted Lazard Projection with Equational Constraints — imple-

ments PLE(A) = PL(E) ∪ {resx(f, g) | f ∈ A, g ∈ E \ {f}} 70
10 Semi Restricted Lazard Projection — implements PL∗E(A) = PLE(A)∪

{discrimx(f) | f ∈ A} . 71
11 Lazard Evaluation . 72
12 Creation of an irreducible canonical basis of univariate lifting polynomi-

als from a set of multivariate projection polynomials 73
13 Constructor for a CADCell . 76
14 Creation of child cells for a CADCell . 79
14 Creation of child cells for a CADCell, Part 2 80
15 Propagation of truth values in QE by CAD (Partial CAD) to identify

and remove CAD subtrees not required for evaluation or stack construction 81
15 Propagation of truth values, Part 2 . 82
16 Construction of a cell description . 89
16 Construction of a cell description, Part 2 90
17 Conversion of a polynomial containing real algebraic numbers (RootOfs)

to a triangular system . 91
18 Root isolation of elements of a univariate polynomial basis via merging

of root descriptions . 95
18 Isolation of a univariate polynomial basis via merging of root descrip-

tions, Part 2 . 96

5

19 Algorithm to deduce if a formula has only strong relations (hence Open
CAD may be desirable) . 99

20 Parsing of Lifting Constraints in CAD 103
21 Collection of all polynomials in a Tarski formula into a set of polynomials

associated with inequalities, and a set of ECs 107
21 Collection of all polynomials into sets of polynomials from inequalities

and equational constraints, Part 2 . 108
22 Selection of a pivot set from a set of equational constraints 111
23 Check for a non zero Lazard valuation on a CADCell 116
24 Algorithm to get 1-cell neighbours of a CADCell 117
25 Algorithm to find a CADCell of a specific index from a cell of a specific

level . 118
26 Algorithm to detect a Lazard curtain on a CADCell 119
27 Checking for Lazard curtains before stack construction 120
28 Partial CAD (for QE) lifting loop in the context of “lifting failures” . . 122
29 Full CAD lifting loop in the context of “lifting failures” 125
30 Curtain cell decomposition for full CAD 127
31 Recursive curtain cell decomposition for full CAD 128
31 Recursive curtain cell decomposition for full CAD, Part 2 129
32 Curtain cell decomposition for Partial CAD in Quantifier Elimination . 134
33 Number of times a CADCell is a local extremity 135
34 Recursive curtain cell decomposition for Partial CAD in Quantifier Elim-

ination . 136
34 Recursive curtain cell decomposition for Partial CAD in Quantifier Elim-

ination, Part 2 . 137
35 Recovery from lifting errors by curtain decomposition if necessary, else

exit via exception for Partial CAD . 142
36 ECHeuristic . 150
36 ECHeuristic, Part 2 . 151
37 QE by Partial Cylindrical Algebraic Decomposition 159
38 Full Cylindrical Algebraic Decomposition 160
39 QE by Partial CAD on the QE problem defined by one IQER 160
40 QE by Partial CAD on the “whole” QE problem defined by termination

of VTS, (4.1), without poly-algorithmic QE 161
41 Evaluation of the “Poly-share” Criteria 167
42 Poly-algorithmic QE on ineligible IQERs 169
43 Poly-algorithmic Quantifier Elimination via VTS into CAD on a homo-

geneously quantified formula . 170
44 Modification of a CAD to accommodate another IQER 171
44 Modification of a CAD to accommodate another IQER, Part 2 172
45 Modifications to Algorithm 3 such that it can use witnesses from CAD

in back substitution . 179
46 Recursive tree traversal to insert a Tarski formula into the formula for

an IQER at a certain atomic position . 189
46 Recursive tree traversal for VTS insertion, Part 2 190

6

47 Incremental poly-algorithmic QE, via insertion of a new formula at a
certain atomic position . 192

48 Recursive tree traversal to delete a subformula from an IQER at a certain
atomic position . 194

48 Recursive tree traversal to delete a subformula from an IQER, Part 2 . . 195
48 Recursive tree traversal to delete a subformula from an IQER, Part 3 . . 196
49 Decremental poly-algorithmic QE, via deletion of a subformula at a cer-

tain atomic position . 197
50 Incremental Projection algorithm via Caching 202
50 Incremental Projection, Part 2 . 203
50 Incremental Projection, Part 3 . 204
51 Incremental CAD Merge Algorithm . 208
51 Incremental CAD Merge Part 2 . 219
51 Incremental CAD Merge Part 3 . 220
52 Repurposing of a CAD Tree for a different formula 221
52 Repurposing of a CAD Tree, Part 2 . 222
53 Traversal of a CAD tree inserting a formula at a certain atomic position

in the Tarski formula for every cell . 223
53 Traversal of a CAD tree to perform insertion of a new subformula, Part 2224
54 Incremental QE by pure Partial CAD, via insertion of a new formula at

a certain atomic position . 225
54 Incremental CAD by Pure Partial CAD, Part 2 226
55 Traversal of a CAD tree to perform deletion of a formula at a particular

atomic position from the Tarski formula held by each cell 227
55 Traversal of a CAD tree to perform deletion of a formula at a particular

atomic position, Part 2 . 228
56 Decremental QE by Partial CAD, by deletion of a formula at a certain

atomic position . 229

7

List of Figures

2-1 The generic layered VTS tree formed by QE with quantifier alternations
on (1.1). 47

2-2 The VTS tree formed via elimination of a block of existential quantifiers
∃xn−m+1 . . . ∃xn. 48

2-3 The VTS tree formed via elimination of a block of universal quantifiers
∀xn−m+1 . . . ∀xn. 49

2-4 Example showing that when unprocessed witnesses (i.e. prewitnesses)
are returned that do not contain infinitesimals, eval[‘recurse’] can still
be used to prove the equivalence. 50

2-5 More nuanced examples of processed VTS witnesses. 51

3-1 Diagram demonstrating initial steps in projection with equational con-
straints (in xn). 65

3-2 Diagram demonstrating initial steps in projection without equational
constraints (in xn). 66

3-3 Diagram demonstrating an intermediate step in projection with equa-
tional constraints. 66

3-4 Diagram demonstrating an intermediate step in projection, without equa-
tional constraints (in the relevant variable). 67

3-5 Diagram demonstrating a last step of projection with equational con-
straints (in x2). 67

3-6 Diagram demonstrating last step in projection, without equational con-
straints (in x2). 68

3-7 A diagram demonstrating the opposition in directions between projec-
tion and lifting in CAD. 74

3-8 Demonstration of cell parenting and its relation to the cylinder of a cell. 85
3-9 Looking at the leftmost part of the CAD from Figure 3-8, where the

space formed by a child cell is equal to its parent. 86
3-10 Usage of evala(Normal(. . .)) to let Maple deduce the value of

polynomials when witnesses with real algebraic numbers are substituted
for variables. 157

4-1 Figure demonstrating the trees involved in poly-algorithmic QE between
VTS and CAD. 176

8

4-2 Example of results of concatenation of CAD witnesses with those for an
IQER. 180

5-1 Demonstration of all valid atomic positions on the formula x > 0∧ (y >
0 ∨ x = 0 ∨ z = 1) ∧ z = 0. 185

5-2 A CAD tree visualising only the truth values of cells, as of first traversal
via Algorithm 52 to a level n cell. 214

6-1 Usage of SuggestCADOptions to deduce suggested keyword option ar-
guments associated with lifting optimisations to pass to PartialCylindri-
calAlgebraicDecompose for quantified formulae. 233

7-1 Survival plot for usage of each variable strategy for CAD implemented in
QuantifierElimination, and that defined by RegularChains:-SuggestVariableOrder
against time taken to generate the variable ordering & projection (in sec-
onds, with a logarithmic scale). 256

7-2 Survival plot for QuantifierElimination CAD per every strategy of-
fered in terms of time for computation in seconds plotted logarithmically. 262

7-3 Survival plot for QuantifierElimination CAD per every strategy of-
fered in terms of total number of leaf cells plotted logarithmically. . . . 263

7-4 Survival plot per each benchmarked CAD implementation in Maple in
terms of time for computation in seconds plotted logarithmically, where
each implementation’s “own” variable ordering was used. 264

7-5 Survival plot for RegularChains and QuantifierElimination CADs in
Maple in terms of number of leaf cells with a true truth value plotted
logarithmically, where each implementation’s “own” variable ordering
was used. 266

7-6 Survival plot for QuantifierElimination CAD with and without usage
of Gröbner bases in terms of total number of leaf cells plotted logarith-
mically. 267

7-7 Survival plot for QuantifierElimination CAD per varying usage of
equational constraints in terms of time for computation in seconds plot-
ted logarithmically. 269

7-8 Survival plot for various Quantifier Elimination implementations with
variation of certain delineated options, against time (s) logarithmically. . 274

9

Notation

Maple Packages

Many Maple packages are referred to throughout - they are usually typeset as e.g.
QuantifierElimination, where “QuantifierElimination” is the package in question.
Further, this extends to other software packages, such as typesetting the software
“QEPCAD B” as QEPCAD B.

Read QuantifierElimination:-QuantifierEliminate as “the function QuantifierElim-
inate within the Maple package QuantifierElimination”. The infix :- delimits this
notion.

The Real Numbers, Real Algebraic Numbers & Functions

Throughout, R is identified with the countable set of real algebraic numbers (Defini-
tion 30) to reconcile with the interest in real closed fields (Chapter 1). As such, an
“irrational number” here is always algebraic, rather than a truly transcendental real
number such as π. If p ∈ R[x], and a, b ∈ Q, a < b, then read RootOf(p, a..b) as
“the real root of the polynomial p lying in the open interval (a, b)” (where and when
such a real root exists). Such an expression is actually valid as a construct in Maple,
and the construction essentially completely coincides with the definition of a real al-
gebraic number (Definition 30), where the root is irrational. The term “RootOf” may
be used to mean “strictly irrational real algebraic number”, i.e. a number in R \ Q,
as a rational number needn’t be expressed by a RootOf, nor would Maple accept the
expression RootOf(x − a, a..a) (a ∈ Q) under evaluation. Note that “..” is the Maple
infix operator for an interval.

An expression RootOf(p, index = real[i]) where p ∈ R[Z, y1, . . . , yk], i, k ∈ N,
deg(p) > 0 is a “parametric RootOf”, or a “real algebraic function” (defined for-
mally as Definition 31). Again this is a valid construct in Maple, and the indexing
“index = real[i]” implies the knowledge that p has a real root under valid constraints
on y1, . . . , yk. Maple uses Z as the universal dummy variable to denote the variable
that the RootOf is with respect to. This is true of real algebraic numbers under eval-
uation in Maple, where RootOf(x2 − 2, 1..2) → RootOf(Z2 − 2, 1..2) under Maple
evaluation. i is certainly such that i ≤ deg Z(p), and the indexing is in terms of in-
creasing real values, i.e. RootOf(p, index = real[1]) < RootOf(p, index = real[2]) <
Again, the assertion is that such a real algebraic function only appears with assertions

10

on y1, . . . , yk such that the root exists for those values of y1, . . . , yk and is real. A real
algebraic function is not equivalent to a real algebraic number unless or until the expres-
sion is evaluated at real numbers for y1, . . . , yk. In Maple, RootOf initialisation is such
that RootOf(x2+y2−2, x, index = real[1])→ RootOf(Z2+y2−2, index = real[1]), i.e.
one specifies the variable with which to replace with the dummy variable Z. Because
p ∈ R[Z, y1, . . . , yk], the representation of the real number coefficients of p in Maple
may be real algebraic numbers represented by RootOfs indexed by intervals as shown
in the paragraph above.

Objects

Much of the Maple package to be described is programmed in an object oriented way,
hence the algorithms detailed within often refer to objects and their members. If
“QEClass” is a class of objects, then it will be typeset as QEClass. If “Obj” is an
instance of a class, and “prop” one of its “members” or “properties”, then read Obj 7→
prop as “the prop member of Obj”. Most often algorithms will use this typesetting.

Substitution

Take Ψ[x / t] to mean “the algebraic substitution of t as the variable x in Φ”, where
t is an algebraic number. This contrasts with Ψ[x // t], which is defined as the virtual
substitution of t for x in Φ (Definition 7), where t is a virtual substitution term.

Miscellaneous

We take N as “the natural numbers starting at 1”, hence 1, 2, 3, Meanwhile
N0 := N ∪ {0}.

If A is a container type data structure, take |A| to be the total number of elements
of that container. We may occasionally use negative indexing for container type data
structures, i.e. A[−i] is the ith element counting from the end of the container, for
suitable i ∈ N, i ≤ |A|. For example, A[−1] is the last element of the container A.

Other programming notation familiar from languages such as C may be used, such
as i++ to mean post-increment i, i.e. “use the value of i, then increment”. Similarly i--
is post-decrement, i.e. “use the value of i, then decrement”. Meanwhile ++i and --i
mean pre-increment and pre-decrement respectively — “increment/decrement, then
use the resulting value of i”.

Read i ← x to mean “Assign the value x to i”. This is usually used in the type-
setting of algorithms. Similarly i := x means assignment of the value x to i, but in a
Maple context. The semi colon “;” in an algorithmic or programmatical context is a
statement separator.

11

There is much discussion of objects that form a typical tree structure. These trees
are viewed to grow “root down”, with the root node at the top of the tree.

12

Chapter 1

Introduction to Quantifier Elimination
over the Reals

Throughout, we are concerned with algorithms for providing solutions for “Quantifier
Elimination” over real closed fields (henceforth shortened to “QE”). QE is a powerful
tool offering concise symbolic solutions for a wide range of problems across mathemat-
ics, but its use is impeded by the significant complexity of the associated algorithms.
Much research focuses on the optimisation of such algorithms, and otherwise providing
intuitive input and rich and meaningful output alongside QE. The research of this work
also focuses on these aims. We precisely define necessary terms needed for QE.

Definition 1 (Atom). An atom is a quantifier free polynomial constraint (an object
of the form f ρ 0 where f ∈ Z[x1, . . . , xn], n ∈ N, ρ ∈ {=,≤,≥, <,>, 6=}), true, or
false.

Definition 2 (Quantifier). A quantifier symbol is either ∀ or ∃. A quantifier is a
quantified symbol followed by a variable, e.g. ∃x. A quantified variable is any variable
that appears in a quantifier for a QE problem. A block of quantifiers ∃x1, . . . ,∃xn may
be formatted as ∃x.

Definition 3 (Tarski Formula). A Tarski Formula (TF) is a polynomial constraint,
i.e. f ρ 0 where f ∈ Z[x1, . . . , xn], n ∈ N, ρ ∈ {<,≤, 6=,=} or a boolean combination
of Tarski formulae, where allowable boolean operators may feature ∧,∨,⇒,Y.

A “Quantified Tarski Formula” is a Tarski formula where any subformula, or indeed
the whole formula may feature quantifiers within. A Quantifier Free Formula (QFF) is
a Tarski formula without quantifiers (additionally take QF to mean “quantifier free”).

The assertion that ρ ∈ {<,≤, 6=,=} is purely due to Maple’s convention to use
< and ≤ instead of > and ≥ (without loss of generality, this is all we need, as e.g.
f < g ≡ g > f). f ∈ Z[x1, . . . , xn] can be replaced by f ∈ Q[x1, . . . , xn] in the above
definitions, because there is a trivial conversion from relations on rational polynomials
to relations on integral constraints by multiplying through by denominators. Again,
without loss of generality, it suffices to consider the polynomials as integral in Tarski

13

formulae. The above can be expressed in a more canonical form amenable to discussion
and computation — any such formula can be converted into the form below, and as
such further from this section we will always assume top level input is “prenex” without
loss of generality.

Definition 4 (Prenex Quantified Tarski Formula). An expression

Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn) (1.1)

where Qi ∈ {∀,∃}, i = n−m+ 1, . . . , n, 1 ≤ m ≤ n, and Φ is a quantifier free Tarski
formula that only features the boolean operators ∧ or ∨, is a Prenex Quantified Tarski
Formula. Qn−m+1xn−m+1 . . . Qnxn is called the prefix. The variables x1, . . . , xn−m+1,
i.e. those appearing in Φ but not the prefix, may be referred to as “free” or unquantified
variables.

While the intention of “prenex form” is not only to force all quantifiers to mani-
fest at the beginning of an expression, it also ensures there are no conflicts between
variables such as the expression ∀x P (x) ∧ ∀x Q(x), which is actually equivalent to
∀x∀x1 P (x) ∧ Q(x1) via prenex conversion, but more particularly the “alpha conver-
sion” of one instance of x to a new renaming, say x1. Note that many QE problems
will not manifest in prenex form — that is, it is more likely that they manifest in such
a way that quantifiers exist within boolean operators, and further boolean operators
are present such as ⇒,Y,¬. However we note that there always exists a conversion of
such problems to prenex form, by using the variable renamings i.e. alpha conversion
where necessary, or using logical equivalences e.g. a ⇒ b ≡ ¬a ∨ b. Then, without
loss of generality we can always work with prenex formulae, and do so henceforth. In
particular the number of quantified and total variables m and n for a problem are
always the numbers of variables as of conversion to prenex form, and in particular
alpha conversion — because a prenex formula asserts that all quantifiers must precede
a quantifier free formula, variable conflicts can no longer arise.

ConvertToPrenexForm from the QuantifierTools subpackage of
QuantifierElimination (Chapter 6) provides prenex conversion for general formulae
that may be non prenex. AlphaConvert provides alpha conversion, renaming variables
in conflicts without the moving of quantifiers, such that ∀x P (x)∧∀x Q(x) 7→ ∀x P (x)∧
∀x1 Q(x1). Formulae passed to top level QE functions in QuantifierElimination are
converted to prenex form “under the hood” before QE computation. The notion of
“prenex” in terms of quantifiers preceding a quantifier free formula applies to further
extensions on Tarski formulae to be defined in due course.

Definition 5 (Quantifier Elimination). Quantifier Elimination (QE) is the prob-
lem of eliminating all quantifiers Qn−m+1xn−m+1 . . . Qnxn from (1.1) to receive an
unquantified boolean formula of relations in x1, . . . , xn−m, or true, or false. When
n = m, there are no free variables and the formula is “fully quantified”, so (1.1) is
certainly equivalent to true or false.

Furthermore, QuantifierElimination accepts even more general formulae than
non prenex Tarski formulae. QE by CAD can accept a modification of Tarski formulae

14

allowing for general real polynomials, as opposed to merely integral (Definition 32). The
discussion on such formulae remains in Chapter 3 as the representation of irrational
real algebraic numbers within those formulae is relevant. We importantly note that
R is identified with the set of real algebraic numbers as given by Definition 30. Even
further, we can accept rational functions within input for QE.

Definition 6 (Rational Tarski Formula). A Rational Tarski Formula is a con-
straint on a rational function, i.e. r ρ 0 where r is a rational function r = f

g where
f, g ∈ R[x1, . . . , xn], n ∈ N, ρ ∈ {<,≤, 6=,=} or a boolean formula of Rational Tarski
formulae, where allowable boolean operators may feature ∧,∨,⇒,Y.

ConvertRationalConstraintsToTarski from the QuantifierTools package provides
conversion from applicable rational Tarski formulae to real Tarski formulae (Definition
32 — constraints with real algebraic numbers are allowable in a rational Tarski formula).
Again, top level QE functions in QuantifierElimination can do this conversion “un-
der the hood”. The conversion uses facts such as ∃x∃y x

y = 0 ≡ ∃x∃y x = 0 ∧ y 6= 0,
∃x∃y x

y > 0 ≡ ∃x∃y xy > 0, and similar facts for other operators obtained similarly.
Note that existential quantification is generally necessary for such facts. Further, we
still assume that input formulae where VTS is concerned are prenex Tarski formulae,
and where CAD is concerned, prenex real Tarski formulae.

Tarski showed that computing QE over the reals is decidable in 1951 [62], however
his associated scheme was essentially infeasible to implement. In 1975, Collins [18]
showed that QE via Cylindrical Algebraic Decomposition is at most worst case doubly
exponential time complexity (in the number of variables), but in 1988 Davenport and
Heintz [22] constructed examples that prove that QE can inherently be at least worst
case doubly exponential as well. Nowadays, two of the most well known algorithms to
achieve QE are Virtual Term Substitution (VTS, Chapter 2) and Cylindrical Algebraic
Decomposition (CAD, Chapter 3). This project concerns and implements both, and a
poly-algorithm between the two. Largely, most current implementations of QE systems
use CAD, as it can cope with input formulae containing polynomials of any degree. In
contrast, VTS is largely only feasible for low degree problems. We acknowledge other
approaches to QE involving other algorithms such as Fourier-Motzkin elimination [52]
(much like VTS, this is only applicable for low degree problems), but only focus on
VTS and CAD in terms of explicit QE algorithms in this work.

1.1 Applications of Quantifier Elimination

Nonlinear optimisation problems and (conditions on) solvability of systems of multi-
variate polynomial equations and inequalities can canonically be presented as QE prob-
lems. QE problems are known to arise in economics [54], mechanics [39], mathematical
biology [15, 11], AI to pass exams [68], and motion planning [71].

15

1.1.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is a variant of the boolean satisfiability (SAT)
problem that allows for first order logic to appear within atoms. As usual, the aim
is to check whether a given formula is satisfiable (SAT) or unsatisfiable (UNSAT).
In particular, the “theories” defining the logic relevant to this work are QF NRA —
“quantifier free non linear real arithmetic” and QF LRA — “quantifier free linear real
arithmetic”. In particular there is a focus on QF NRA in the context of SMT for this
work. These are formulae that as unquantified formulae reconcile with those as defined
by Definition 3, however SMT formulae are certainly in conjunctive normal form (CNF),
and are written as unquantified, even though one should view a QF NRA SMT formula
as a fully existentially quantified Tarski formula

∃x1, . . . ,∃xn Φ(x1, . . . , xn)

where Φ is in conjunctive normal form (CNF). However, this representation does ob-
scure some of the differences in the methodology between SMT and QE, where SMT
largely acts incrementally on clauses, using other bespoke techniques such as back-
tracking inherited from SAT methodology. In particular for QF NRA, QE tools such
as VTS and CAD are often deployed beneath SMT solvers in an incremental fashion
amongst the clauses of the formula for SMT. Full incrementality is one of the major
features in QuantifierElimination for all the available QE methodologies, such that
it can be used by an SMT solver. Additionally, QuantifierElimination supports
production of witnesses (Sections 2.5, 3.10 and 4.4.1) in order to prove the satisfiabil-
ity of fully existential quantified formulae, or analogously the unsatisfiability of fully
universally quantified formulae. [1] discusses that neither of the QE algorithms (or
combinations thereof) focused on in this project provide good “proofs” of the reverse
cases, i.e. unsatisfiability of an existentially quantified formula or satisfiability of a
universally quantified formula. A previous example of VTS and/or CAD being used in
an incremental manner for SMT solving is SMT-RAT [19].

1.2 Maple and QuantifierElimination

Maple is Computer Algebra software produced by Maplesoft, the first version of which
was released in 1982. Its use as a Mathematical toolbox has seen it popular in educa-
tion and industry alike, with the most recent version as of the time of writing being
Maple 2020. QuantifierElimination is a package written in Maple in collaboration
with Maplesoft for this project, and is the culmination of this work in terms of usable
software. A software demo of QuantifierElimination can be found at [67]. Given
the collaboration, there is a focus on good coding practices with respect to Maple.
There is a focus on mutable data structures to avoid the cost of garbage collection
in building objects via a series of intermediate immutable data structures, such as
lists, which are the rudimentary data structure for storage in Maple. Many parts of
the implementation of QuantifierElimination are object oriented to enable “meth-
ods” for incrementality, but also such that data structures returned to users in an

16

outward facing sense are intelligible as objects, with features such as bespoke type-
setting. QuantifierElimination features the subpackage QuantifierTools (Chap-
ter 6) to enable further understanding of QE and related concepts such as “Tarski-
like” formulae. Via a focus on rich user output to reconcile with Maple’s status as a
mathematical toolbox, QuantifierElimination provides features extending on QE,
such as providing the capability of generating full CADs without the context of QE,
“witnesses” for homogeneous QE problems (Sections 2.5, 3.10 and 4.4.1), and general
“evolutionary” methods (Chapter 5) with a view to assisting with deeper understand-
ing of QE problems. “Evolutionary” is terminology that would usually broadly be
referred to as “incremental” in other QE literature. The most notable functions of
QuantifierElimination are QuantifierEliminate, using the poly-algorithm described
in Chapter 4, PartialCylindricalAlgebraicDecompose, performing QE purely by Partial
CAD (Section 3.4), and CylindricalAlgebraicDecompose, creating general full CADs on
formulae or sets of polynomials without evaluation of truth values. The CAD functions
of QuantifierElimination are not to be confused with those below RegularChains’
subpackage SemiAlgebraicSetTools — in particular the functions named Partial-
CylindricalAlgebraicDecompose actually have fairly distinct purposes. The implemen-
tation of CAD in QuantifierElimination is a projection and lifting CAD using the
Lazard projection.

Much of the thesis discusses the detail behind the implementational aspects of
QuantifierElimination, in particular delineating lower level algorithms behind vari-
ous features, and discussing challenges of implementation of various features. This is
especially with respect to equational constraint optimisations for the Lazard projection
in CAD, and very recent research moving these optimisations towards being complete
(Section 3.7.2).

1.3 Other QE Related Software

Acknowledgement of other implementations of QE, including in other Computer Alge-
bra systems is necessary, as the other implementations are often compared to through
the course of this work, especially in benchmarking QuantifierElimination against
a subset of them in Chapter 7.

• QEPCAD B [8] is an implementation of CAD for QE written in C, using the public
SACLIB Computer Algebra library. In particular, QEPCAD was written to demon-
strate the first usage of the “Partial CAD” methodology, an optimisation of CAD
for QE (Section 3.4), and QEPCAD B is a more recent branch.

• Redlog [24] for the Computer Algebra system REDUCE features implementations
of VTS and CAD to achieve QE. The function rlqe performs general QE by
VTS, switching to CAD upon intermediate formulae exceeding degree 2 in fur-
ther quantified variables (a degree violation), or rlcad performs QE solely by
Partial CAD. (Hence rlqe and rlcad are somewhat analogous to QuantifierElimi-
nate and PartialCylindricalAlgebraicDecompose from QuantifierElimination).
Redlog’s rlgcad is a function implementing a far more general version of what
would be OpenCAD (Section 3.5) in this work.

17

• SyNRAC [74] is a package publicly available for Maple that implements VTS and
CAD for QE. Similarly to Redlog, SyNRAC:-qe performs general QE by VTS,
switching to CAD upon degree violation, which again for SyNRAC is degree 2.

• RegularChains [3] (RC) is a package included with Maple by default, with the
latest versions of the package and source code also available at their site. It
includes an implementation of CAD, but unlike most implementations of CAD
it is not a projection & lifting CAD. It works via triangular decompositions
to create a CAD in complex space before conversion to a CAD in real space.
It is fully incremental [17]. As of Maple 2020.1, RegularChains provides QE
via its CAD with RegularChains:-SemiAlgebraicSetTools:-QuantifierElimination
[47], and CAD outside of the context of QE is provided by RegularChains:-
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose. Various auxiliary tools
for producing expressions necessary to use the top level functions are also part of
the RegularChains module, such as PolynomialRing.

• ProjectionCAD [27] is a package publicly available for Maple providing projec-
tion & lifting CADs using technologies provided by RegularChains. Unlike the
other listed packages, it does not inherently support QE, but investigates several
CAD optimisations of interest, such as equational constraints, and offers support
for variable strategy in terms of metrics on generated projection bases. The pro-
jection operator is McCallum’s, as was contemporary at the package’s time of
writing.

• SMT-RAT [19] is a toolbox implementing VTS and CAD with incrementality in
order to provide an SMT solver for the theory of real arithmetic. It is written in
C++.

• RealPolynomialSystems [61] in the Computer Algebra system Mathematica.
The function Reduce offers Quantifier Elimination over the Reals (and other
domains). For the real numbers, it offers VTS up to a degree violation of 2
(viewed as a preprocessing step), and as usual offers CAD beyond that, with
equational constraints and Gröbner bases offered as options for optimisation of
such.

18

Chapter 2

Virtual Term Substitution

Virtual Term Substitution (henceforth VTS) was first defined by Weispfenning in 1988
[69]. This provided elimination of variables appearing linearly, but later in 1997 he
extended this to the case for variables appearing quadratically [70]. The methodology
revolves around substitution of terms for quantified variables to attempt to find exam-
ples or counterexamples for existential or universal quantifiers respectively. As of the
point of writing, the univariate case was well studied, with several improvements owing
to Košta [43]. Indeed, the implementation of VTS in QuantifierElimination uses
many algorithms suggested by Košta. We detail the mechanisms behind VTS to better
understand the multivariate case, which is the backbone behind QuantifierEliminate.

2.1 Background

Virtual Term Substitution works to eliminate quantifiers where the corresponding vari-
ables appear as low degree in the polynomials from Qn−m+1xn−m+1 . . . Qnxn Φ. The
formula Φ must be integral, i.e. the polynomials in the constraints must be over Z
and so Qn−m+1xn−m+1 . . . Qnxn Φ must reconcile with Definition 3. In reality, Q will
do, as any formula over Q is equivalent to one over Z. When a formula passed to
QuantifierEliminate is not integral, the formula is instead passed directly through to
QE by Partial CAD (Chapter 3), because CAD can deal with general real polynomials,
but VTS cannot. The user is notified that this is the case when applicable. Note that
poly-algorithmic QE (Chapter 4) is inapplicable in a non trivial sense in this case too.

Most of the constituent parts of VTS in QuantifierElimination, especially those
with respect to VTS to eliminate one variable, are based off of Košta’s thesis [43].
QuantifierElimination implements functions with (essentially) identical names as
those formulated there to achieve essentially always the same purpose. These include
functions such as atposl, PC-to-TPs, at-cs, at-cs-fac, expand-eps-at, vs-inf-at, pseudo-
sgn-rem, vs-prd-at, vs-at, and guard. One notes that certain optimisations such as
prime constituents, conflation, and degree shift from [43] are not implemented. Clus-
tering of linear or quadratic test points is implemented, and usage of which is controlled
by the keyword option ‘UseClustering’ in top level QE functions. One can control

19

the choice of “bounds” for VTS to use by the keyword option ‘bounds’, which takes
a non empty set up to and including the symbols ‘lower’ and ‘upper’.

VTS is only applicable to eliminate variables such that they appear in polynomials
with degree such that appropriate methodology for substitution has been described
for that degree. Linear and quadratic elimination owe to the initial presentations by
Weispfenning [69, 70], and [43] delineated elimination of variables appearing cubically.
In particular, all constraints in the formula must be such that the associated polyno-
mials factor to polynomials of at most degree 3, i.e. the limitations on degree really
apply only to irreducibles. Due to the limitations on VTS in terms of degree, some
software and/or researchers view VTS as more of a pre-processing step before any
other complete algorithm for QE such as CAD (as is the case in documentation for
RealPolynomialSystems in Mathematica [61]). QuantifierElimination implements
the case up to and including quadratic VTS, with support for cubic elimination in
development, using much the same technology as that of any other degree case, with
most of the work for extension to another degree being enumeration of polynomial real
types and formulae schemes. One notes that degree 4 VTS was one of the suggestions
for further work of [43], and the current degree limitations on VTS are a reflection of
the current work expended in research to provide methodology up to degree 3 thus
far. As such, the sentiment of VTS only being applicable to low degree situations is a
practical rather than theoretical impediment, although the effort required to generate
the associated schemes for elimination increases commensurate with degree due to the
increasing numbers of polynomial real types. In QuantifierElimination, the keyword
option ‘MaxVSDegree’ takes any value up to 2 to control the maximum degree that
VTS will use for elimination.

We provide an overview as to the mechanism of VTS in terms of [43] and how various
functions there are used within QuantifierElimination. In particular, we discuss the
case for elimination of a single quantifier ∃x Φ(x,u) where u is a list of “parameters”,
i.e. free variables for the formula. As such, in terms of Computer Algebra, VTS truly
views polynomials within Φ as represented “recursively”, with the main variable being
x, but the ordering of variables in u being largely superfluous.

Virtual Term Substitution revolves around “test points” generated from a quanti-
fied formula which describe the real root of a (potentially multivariate) polynomial in a
particular variable. Generation of test points first requires usage of atposl to generate
“candidate solutions” from every relation of the quantified formula, in terms of the re-
lational operator and polynomial of the constraint. Because QuantifierElimination

does not implement prime constituents, atposl is the only generator of candidate solu-
tions, and is done entirely recursively to every atom of the formula to generate one set.
at-cs is the function providing candidate solutions for a single atom, and these candi-
date solutions in QuantifierElimination are Maple lists almost identical in structure
to those formatted in the original presentation. The set of candidate solutions is then
processed by PC-to-TPs to produce a set of structural test points associated to the
formula, which takes into account the value of the key word ‘bounds’. Such structural
test points may represent the exact substitution of the real root of some polynomial.

20

Alternatively, because of the presence of strong relations where ρ ∈ {<, 6=}, these struc-
tural test points may feature the infinitesimal∞ or ε. Where a test point features ±∞,
the test point entirely represents the virtual substitution of an “extremal” value — a
value exceeded by or exceeding the values of all real roots of all polynomials from the
expression. Test points featuring ∞ are not associated to any particular polynomial.
Where ε is concerned, the root description of a polynomial must be provided, and the
test point implicitly means “substitution of a value just less than (−ε)/more than (+ε)
this real root”. Usage of infinitesimals is centric to virtual substitution, and is some
of the meaning behind the word “virtual”. The remainder of the intention behind
the terminology “virtual” is because of substitution of real roots of polynomials with
respect to one variable into other polynomials that are potentially multivariate.

The intention of generation of structural test points is such that there is at least
one structural test point from every interval of the real line formed by real roots of
the polynomials of the processed formula, and the generated set of test points is finite.
Usage of the infinitesimals∞ and ε assist with this by allowing for description of points
from within “open” intervals. Because the polynomials are potentially multivariate, the
generation of test points is via all possible real types for the associated polynomials.
The “real type” of a polynomial informally describes its “shape” in terms of the number
of real roots it has, and more precisely the sequence of signs its values take when moving
across the real line. As an example, a “positive” quadratic donating just one real root
has real type 2, with sign sequence (1, 0, 1), and a negative parabola donating two real
roots has real type -1, with sign sequence (−1, 0, 1, 0,−1).

Structural test points in QuantifierElimination are represented by Maple lists
essentially encapsulating the information prescribed by (f, S) in Košta’s vs-at. This
typically includes a polynomial f , variable for substitution, an infinitesimal ±ε or 0,
assumed degree d of f , real type of f , and the index of the real root the test point
represents. d should be such that 0 < d ≤ degx(f) — a programmatic notification that
we are actually considering substitution from an appropriate reductum of f when the
relevant coefficients are able to vanish (which is a fact in itself dealt with by guards).
The special virtual substitution terms for ±∞ are [0, x,−∞] and [0, x,∞], i.e. they
truncate due to not representing roots of any real polynomial. Therefore the function
subsituteWholeExpression imitating Košta’s vs-at and implementing virtual substitu-
tion in terms of Definition 7 takes a relation and a structural test point represented as
such as list.

When substituting a root of f , where f is of degree d in x into g ρ 0, considering
at a root of f , f = 0, it suffices to substitute the root of f into h := pseudo −
sgn − rem(g, f, x). pseudo-sgn-rem is a function defined in [43], which is a variant of
pseudoremainder (further prem) preserving sign conditions on g after pseudoremainder
via any assignment of the parametric variables. Via properties of pseudoremainder, h is
of degree at most d−1, and it suffices to know how to substitute a root of a polynomial
of degree d into a polynomial of degree d − 1 or less. This knowledge is provided
by Košta’s “formula schemes”, which essentially provide a lookup table to provide
results of virtual substitution of structural test points of degree d into any nontrivial
degree relation less than d, h ρ 0. QuantifierElimination’s function formulaScheme
implements this lookup table returning the relevant Tarski formula in terms of the

21

input relation and data from a structural test point. If h is of degree at most 0, then
we can return h ρ 0 as the result of g ρ 0[x // T], where T is the structural test point
associating information about substitution of the real root of f .

Another element of virtual substitution is “guards”. Guards define a map from
structural VTS test points to Tarski formulae, where a guard represents the conditions
that must be valid such that substitution of a structural test point would be valid. This
offers credibility to usage of substitution points from multivariate polynomials that may
otherwise vary in the number of real roots presented with respect to any one variable
— if one is to assert various conditions, then one is able to use the substitution. As
an example, substitution from a linear polynomial in x requires that the coefficient of
x is non zero, such that the polynomial is genuinely a polynomial in x at all. Further,
substitution of the second distinct root in x of a quadratic requires assertions that the
discriminant in x is strictly positive. guard in QuantifierElimination generates such
guards from structural test points, and as usual the function is essentially a lookup
table formed from [43, Section 2.5.2]. Hence, virtual substitution of a test point into
any formula is in some sense “predicated” on the result of its guard, and the guard for
the test point must be conjuncted with the result of virtual substitution. Because a
structural test point may consider substitution from a reductum of a polynomial, the
function guard includes the conditions that the relevant leading coefficients must be 0
such that the polynomial would be that degree when generating the guard for such a
test point.

Definition 7 (Virtual Substitution). [43, Section 2.3] The virtual substitution of
a structural test point T for x into a quantifier free relation g(x,u) ρ 0 is F (u) :=
g[x // T], a quantifier free formula such that for any parameter values a ∈ Rn−1, if a
satisfies the guard of T , then a satisfies F if and only if R |= (g ρ 0)(a, T [u /a]).

If Ψ is non atomic, the call vs-at(Ψ, T, x) where the algorithm vs-at is defined in
[43] defines Ψ[x // T], and is recursive to the atoms of Ψ.

We discuss how to substitute test points involving infinitesimals. In the case of
infinity, vs-inf-at describes the formula resulting from substitution of “x = ±∞” into
an atom. vs-inf-at is recursive on the (monotonically decreasing) degree of the atom to
act upon, and returns a Tarski formula. Hence, in this case, every atom of the formula
to act upon with respect to virtual substitution is replaced by the results of vs-inf-at.
In the case of ε, our virtual term for substitution is x = t ± ε for t some real root
of a polynomial, i.e. a regular virtual substitution term. Again, virtual substitution
recurses to the leaves of the formula to act upon in this case, and vs-at has that we
use expand-eps-at on an atom, which produces a Tarski formula again via recursion on
the monotonically decreasing degree of the relation. Having “epsilon expanded” the
atom, we can now substitute the structural test point corresponding to “x = t”, i.e.
the test point sans any infinitesimals into the results of epsilon expansion. One can
view the epsilon expansion via expand-eps-at as preprocessing the relation such that
we can consider the case for a point “just to the left/right” of t.

In total, virtual substitution works to find valid “examples” to eliminate an exis-
tentially quantified x. For the structural test point elimination set generated from the

22

atoms of a formula ∃x Φ, t1, . . . , tk, k > 0, VTS eliminates ∃x via the formula

k∨
i=1

G(ti) ∧ Φ[x // ti], (2.1)

where G is the map inherited from generation of guards, and virtual substitution as
defined by Definition 7.

VTS acts entirely on one quantified variable at a time, in principle ignoring those
viewed as “parameters”. However, action of VTS may increase the degree of other
variables within atoms of the formulae. One need only inspect the suggested guards
or formula schemes for substitution of a quadratic root to see that one may square
various coefficients in x to obtain the total result of virtual substitution. For example,
substitution of the first real root of the quadratic polynomial f = ax2 +bx+c with real
type 1 into a relation g = 0 where g is the linear a∗x+ b∗ involves usage of the formula
scheme 2aa∗b∗ − a∗2b ≥ 0 ∧ ab∗2 + a∗

2
c− a∗bb∗ = 0. Of course a∗, b∗, a, b, c ∈ Z[u], i.e.

other polynomials in the parameters unrelated to x. Meanwhile the appropriate guard
for this substitution is a > 0 ∧ b2 − 4ac > 0, which similarly doubles the degree of b.
This results in potential degree bloat for the other variables, which may be quantified or
free. In the former case, this may frustrate the ability to use VTS further to eliminate
the further quantified variables. In the latter case, this may only cause an issue where
other algorithms are involved.

2.2 Universal Quantifiers

VTS is by presentation a tool to eliminate existential quantifiers, via aiming to find
valid “examples” to satisfy the input formula in order to reconcile with the existential
premise. Luckily, we have the equivalence

∀x Φ ≡ ¬∃x ¬Φ (2.2)

to view a universally quantified formula in terms of an existentially quantified formula.
Elimination of an existential quantifier produces a disjunction of the results of virtual
substitution amongst the generated test points in x from that formula, so using (2.1)
and (2.2) we obtain for a universally quantified formula:

∀x Φ ≡ ¬∃x ¬Φ = ¬

(
k∨
i=1

G(ti) ∧ (¬Φ)[x // ti]

)

=

k∧
i=1

¬ (G(ti) ∧ (¬Φ)[x // ti]) (2.3)

=
k∧
i=1

(¬G(ti) ∨ ¬((¬Φ)[x // ti]))

The second operand of the inner disjunction in that last expression can be read as
“negation of the virtual substitution of ti for x into the negation of the formula”. The

23

following lemma demonstrates that, at least programmatically, we cannot discard ¬Φ,
because ¬Φ may generate a different structural test point set than Φ.

Lemma 8. For an unquantified Tarski formula F over Z[x1, . . . , xn], the structural
test point set found by processing F by atposl and PC-to-TPs from [43] is not equal
that from ¬F .

Proof. Take F := (x1x2 = 0). Then over x2, F gives the structural test point set
{[x2 = −∞], [x2 = 0]} via usage of atposl and PC-to-TPs. However, ¬F = x1x2 6= 0
gives {[x2 = −∞]}, due to x2 = 0 being judged as an “inclusion point” by the former,
and an “exclusion point” by the latter.

While the implementation of VTS in QuantifierElimination uses the distributiv-
ity of negation from (2.3) liberally in elimination of universal quantifiers, one will later
observe this induces a lot of nested negation in the intermediate formulae to construct
when there are several successive universal quantifiers to eliminate (one can observe
this in Figure 2-3). There are some contexts in which viewing usage of VTS in this way
is more academically canonical, such as production of witnesses (Section 2.5), however
for the most part these continued negations are unnecessary overhead, and so refac-
toring of VTS in QuantifierElimination such that we merely process ¬∃x ¬Φ for
a block of universal quantifiers ∀x is noted amongst elements to refactor in code in
further work (Section 8.3). Nonetheless, the rest of this work discusses the coexisting
existential and universal cases.

2.3 Blocks of Quantifiers & the VTS Tree

Due to multivariate VTS revolving around successive substitutions of structural test
points, we easily inherit a canonical tree structure from substitutions of test points
within any one block of quantifiers. The branches of this tree are structural test points,
canonical tree levels correspond to one quantified variable each, and nodes are formulae
owing to successive results of virtual substitution. The VTS tree is introduced by Košta
in Section 6.2 of [43]. Definition 9 allows us to classify nodes of the VTS tree as objects
with properties, and in this work we give more motive for an object oriented approach
to the VTS tree.

Definition 9 (IQER). An IQER (Intermediate Quantifier Elimination Result) is a node
of the VTS tree. If it is the root node, it implicitly corresponds to the quantified problem
for the current block of quantifiers. Otherwise, a node is the result of the virtual substi-
tution of one structural VTS test point on another IQER. The Tarski formula associated
with such a node is the result of that virtual substitution on the formula from the node
above. In terms of an object-oriented implementation, we can associate the following
properties to an IQER:

• testpoint : the associated test point used in virtual substitution to receive it (es-
sentially the tree edge preceding the node), represented as a Maple list,

24

• formulaSimplified : its associated quantifier free (QF) Tarski formula, weakly sim-
plified, which for the root node is the unquantified part of the input formula for
QE (Φ) for this block of quantifiers, else the result of virtual substitution of its
structural test point testpoint on the formula of the parent IQER above,

• structuralSubstitution : the associated quantifier free Tarski formula stored in
structural form,

• guardFormula : a Tarski formula representing the guard for the substitution of
testpoint to receive this IQER — only stored where structural form is relevant for
future incrementality,

• parent : its parent IQER,

• children : an Array of its children IQERs, where populated,

• level : a non negative integer representing its level (viewed as a node of the VTS
tree),

• futureTestpoints : a (mutable) set of structural test points for future elimination
on this node in the next variable, which may be undefined until computed,

• cad formula : an Extended Tarski Formula that overrides this IQER’s formula
where CAD is used to deduce its equivalent (Chapter 4).

Algorithm 1 represents the constructor method for an IQER. It takes a variable
number of arguments in order to accommodate construction of the root IQER, which
holds fewer properties, hence requiring fewer (and differing) arguments. Construction
of an IQER of a positive level performs the virtual substitution of the best available
test point from the IQER above into the formula held by that IQER, via the method
getNextTestpoint implementing the strategy suggested by Section 2.3.3. This virtual
substitution takes into account the quantifier for the block of variables for VTS to elim-
inate such that it uses the negations implied by (2.3). Hence we realise the construction
of a node of the VTS tree in terms of the assignment of the majority of its properties
at the point of construction.

Via (2.1) and (2.3), we have that elimination of existential quantifiers is canonically
linked with forming a disjunction of the results of virtual substitution, while elimination
of universal quantifiers is canonically linked with forming a conjunction of the results
of (negation of) virtual substitution. The distributivity of quantifiers is such that

∃x A ∨B ⇒ (∃x A) ∨ (∃x B) (2.4)

and similarly
∀x A ∧B ⇒ (∀x A) ∧ (∀x B), (2.5)

but
∃x A ∧B : (∃x A) ∧ (∃x B). (2.6)

25

Algorithm 1 Constructor for an IQER

Input: Φ a Tarski formula, OR Q the quantifier symbol for the current block of
quantifiers, vars the Array of corresponding quantified variables, P the
parent IQER

Output: I, a new IQER, child of P
1: procedure IQER(Q, vars, P)
2: if 1 arguments was passed then . Defining the root IQER
3: I 7→ level← 0
4: I 7→ formulaSimplified← Φ
5: I 7→ guardFormula← NULL
6: else
7: I 7→ level← P 7→ level + 1
8: I 7→ parent← P
9: I 7→ testpoint← getNextTestpoint(P) . Section 2.3.3

10: Let T = I 7→ testpoint
11: x← vars[−I 7→ level− 1] . x = xn−I 7→level

12: if Structural form requested then
13: if p 7→ level = 0 then
14: Ψ← p 7→ formulaSimplified
15: else
16: Ψ← p 7→ structuralSubstitution
17: end if
18: if Q = ∃ then
19: I 7→ structuralSubstitution← Ψ[x // T], with simplification under

structural form
20: I 7→ guardFormula← guard(T)
21: I 7→ formulaSimplified← simplify(

I 7→ guardFormula ∧ I 7→ structuralSubstitution)
22: else
23: Ψ← ¬Ψ
24: I 7→ structuralSubstitution← ¬(Ψ[x // T]), with simplification

under structural form
25: I 7→ guardFormula← guard(T)
26: I 7→ formulaSimplified← simplify(

I 7→ guardFormula ∨ I 7→ structuralSubstitution)
27: end if
28: else
29: if Q = ∃ then
30: Ψ← p 7→ formulaSimplified
31: I 7→ formulaSimplified← simplify(guard(T)∧Ψ[x // T])
32: else . Q = ∀
33: Ψ← ¬(p 7→ formulaSimplified)
34: I 7→ formulaSimplified← ¬(simplify(guard(T)∧Ψ[x // T]))
35: end if

26

Algorithm 1 Constructor for an IQER, Part 2

36: end if
37: Add I as a child of P
38: return I
39: end if
40: end procedure

and similarly
∀x A ∨B : (∀x A) ∨ (∀x B) (2.7)

Via assuming the input formula Φ is in prenex form, these are the only facts we need
to use, i.e. we do not need similar facts about other boolean operators. These facts
about distributivity imply VTS forming a tree structure on IQERs only within any one
block of quantifiers. Via continued usage of (2.1) with (2.4) on Φ, we have

∃xn−m+1 . . . ∃xn Φ(x1, . . . , xn) ≡ ∃xn−m+1 . . . ∃xn−1
k∨
i=1

G(ti) ∧ Φ[xn // ti]

≡ ∃xn−m+1 . . . ∃xn−2
k∨
i=1

∃xn G(ti) ∧ Φ[xn // ti] (2.8)

and similarly (2.3) with (2.5) imply

∀xn−m+1 . . . ∀xn Φ(x1, . . . , xn) ≡ ∀xn−m+1 . . . ∀xn−1
k∧
i=1

¬G(ti) ∨ (¬Φ)[xn // ti]

≡ ∀xn−m+1 . . . ∀xn−2
k∧
i=1

∀xn ¬G(ti) ∨ (¬Φ)[xn // ti] (2.9)

but via the latter facts about distributivity that do not work ((2.6) and (2.7)), we have

∀xn−m+1 . . . ∀xn−1∃xn Φ(x1, . . . , xn) ≡ ∀xn−m+1 . . . ∀xn−1
k∧
i=1

G(ti) ∧ Φ[xn // ti]

6≡ ∀xn−m+1 . . . ∀xn−2
k∧
i=1

∀xn−1 G(ti) ∧ Φ[xn // ti],

hence why we can only form a tree structure within blocks, and the quantifier alterna-
tion as above impedes one ”global” tree structure. The above equivalences mean we
form a constantly expanding disjunction or conjunction of the results of virtual substi-
tution which correspond to the current leaves of the VTS tree for elimination of any
one block of quantifiers. The inner operand ∃xn G(ti) ∧ Φ[xn // ti] from (2.8) expands
to

s∨
j=1

G(τj) ∧ (G(ti) ∧ Φ[xn // ti])[xn−1 // τj]

27

for another elimination set {τ1, . . . , τs}, s > 0, in xn−1 for G(ti)∧Φ[xn // ti] using (2.1)
such that the VTS tree can be visualised as Figure 2-2 for the existential case. Figure
2-3 visualises the similar universal case. Despite expanding e.g. a disjunction within
a disjunction, QuantifierElimination is always cognizant to not create a needlessly
nested formula, i.e. any produced disjunction for output should be as flat as possible.
Note that while the variable ordering used to obtain IQERs of identical levels here must
be the same, this is for simplicity of implementation (with a view to the poly-algorithm
discussed later) rather than of theoretical significance — the fact that differing traver-
sals of the VTS tree here result in different constraints and benefits on variable ordering
is discussed later in Section 2.3.2.

Because the cases for each type of quantifier in VTS are fundamentally different, we
need only consider the case for one block of quantifiers without loss of generality when
discussing VTS. The recursive nature of VTS in that quantifier elimination directly
returns a Tarski formula means that the output Tarski formula from VTS on one block
of quantifiers replaces the innermost part of the formula up to and including that
block of quantifiers, and one continues with the next block. Further, whenever VTS
is concerned (in particular this chapter and Chapter 4), we always consider the case
for one type of quantifier symbol Q ∈ {∃, ∀}, i.e. assume the quantified input Tarski
formula is the prenex Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), with m > 1 similarly quantified
variables amongst n ≥ m total variables.

Definition 10 (Meaningful Truth Value). A meaningful truth value for a block of
quantifiers Qxn−m+1 . . . Qxn in VTS is true, if Q = ∃, or false if Q = ∀.

Definition 11 (Leaf IQERs). An IQER is a genuine leaf of the VTS tree for a block
of quantifiers Qxn−m+1 . . . Qxn if its associated quantifier free formula is true or false,
or if it has level j − i+ 1. It is a meaningful leaf if it is an IQER of positive level such
that:

• holding the quantifier free formula true when Q = ∃,

• or holding the quantifier free formula false when Q = ∀.

Or in other words it is a meaningful leaf if it holds a meaningful truth value for the
quantifier of the current block of variables.

Due to the distributivity of quantifiers into boolean formulae, it will further be
completely be appropriate to view any one IQER as an implicitly quantified formula. In
particular, it is an individual QE problem in itself quantified by the current block of
quantifiers, the number of which is lessened by its level in the tree. As such, it is not
implicitly quantified with anything from the innermost block of quantifiers if it is a leaf
(Definition 11). In the context of a current innermost block of quantifiers Qixi . . . Qjxj ,
where n −m + 1 ≤ i ≤ j ≤ n, Qi = Qk = Qj , ∀k = i, . . . , j an IQER can be seen to
represent the QE problem

Qixi . . . Qj−I 7→levelxj−I 7→level I 7→ formulaSimplified (2.10)

via distributivity of that block of quantifiers into the disjunction or conjunction formed
by VTS. Obviously I 7→ level ≤ j−i+1, and a genuine leaf IQER is implicitly quantified

28

by nothing from the innermost block of quantifiers. Due to this characterisation, each
operand of the form G(ti) ∧ Φ[xn // ti], i = 1 . . . , k of (2.8) is an IQER, and ¬G(ti) ∨
(¬Φ)[xn // ti], i = 1 . . . , k of (2.9) is similarly an IQER.

Definition 12 (Ineligible IQER). An IQER is ineligible if it is a leaf of the VTS tree
such that, in the context of (2.10), the maximum degree of any factor of all atoms of
I 7→ formulaSimplified in xk exceeds 0 ≤ m ≤ 2, ∀k = i, . . . , j, where m is the value of
the keyword option ‘MaxVSDegree’ passed to a top level QE function in QuantifierE-

limination using VTS. (By default ‘MaxVSDegree’ = 2.)

Definition 12 is essentially the analogous notion of a “degree violation” in other work
on VTS. In particular it is a degree violation with respect to the QE problem defined
by a particular IQER in light of any imposed variable ordering. ‘MaxVSDegree’ controls
the maximum degree VTS will use to generate structural substitution sets for IQERs
from irreducible polynomials after factoring. That is, if ‘MaxVSDegree’ = 1, then VTS
will attempt to factor polynomials from within relations in IQERs to irreducible factors
of 1, and if it finds any irreducible factors of degree 2, then the IQER is identified as
ineligible. IQER selection strategy (Section 2.3.1) is actually the way in which IQERs are
judged as ineligible — the IQER selection strategy function will return -1 if it iterates
across all IQERs in the container iqers and finds them all to be ineligible in light of
the value of ‘MaxVSDegree’. ‘MaxVSDegree’ = 0 trivially sends QE to perform CAD
on all IQERs available, and if this is at the start of any QE, then QuantifierEliminate
becomes equivalent to usage of PartialCylindricalAlgebraicDecompose.

Definition 13 (Canonical Boolean Operator). The canonical boolean operator
for usage of VTS in elimination of a block of quantifiers Qxn−m+1 . . . , Qxn is “ or”
(
∨

) if Q = ∃, or “ and” (
∧

) if Q = ∀.
If we continue VTS to the point where we create at least one meaningful leaf, we

are certainly done, and the quantifier free equivalent of the whole quantified formula
Qn−m+1xn−m+1 . . . Qnxn Φ is the meaningful truth value of that leaf. Otherwise, the
equivalent of the innermost block of quantifiers on the input formula is the disjunc-
tion/conjunction of all genuine leaves of the tree, i.e. those of level j − i + 1, and
if there are any ineligible IQERs, then VTS cannot eliminate all quantifiers from this
block alone. Chapter 4 discusses the ways in which QuantifierElimination moves to
use CAD from VTS in the presence of ineligible IQERs, which is dependent on whether
VTS is in the last block of quantifiers or not.

If we are able to deduce the quantifier free equivalent of the innermost block of
quantifiers, this quantifier free equivalent replaces the input formula as the next input
for VTS with the next block of quantifiers. In this case, we form a layered “Christmas”
tree (Figure 2-1) out of usage of VTS on multiple blocks of quantifiers, however there
is no direct correspondence between nodes of distinct trees beyond the fact that one
tree follows from another. The root of one tree is not a particular node from the tree
above, but in some sense the collection of all leaves of the tree above. When there
is only one block of quantifiers to eliminate, VTS forms just one tree, and one of the
reasons behind identifying the tree structure behind VTS is to enable the methodology
of Section 2.5.

29

2.3.1 IQER Selection Strategy

The available IQER selection strategies in QuantifierElimination are controlled by
the keyword option ‘mode’, which takes exactly one of the symbols ‘depth’ or
‘breadth’. This corresponds to traversing the VTS tree depth-wise or breadth-wise
respectively, hence selecting the IQER of maximum or minimum depth respectively.
There are two further static tiebreakers appended to this metric:

• IQERs that already have generated test points are prioritised,

• IQERs such that their formula is of a lower maximum degree in the next quantified
variable to eliminate xn−I 7→level are prioritised.

The last tiebreaker is greedy in the sense it minimises the maximum possible as-
serted degree amongst the test points to generate, hence minimising the potential degree
bloat in the associated virtual substitutions. This reconciles with the aim to propagate
VTS as far as possible.

VTSIQERSelectionStrategy is the function that returns the index of the next sug-
gested IQER to propagate VTS on with respect to the metric suggested by the above.
It iterates over the whole “iqers” container, storing the index of the best IQER together
with the data about the best possible level & minimal degree found in order to en-
able comparison. The “iqers” container is essentially the equivalent of a container of
“work” nodes in [43]. The iqers container is programmatically a QEContainer, which
is a rudimentary object supporting typical storage object operations such as

• addition (push),

• arbitrary removal of elements at a position (pop),

• iteration,

• peeking (iqers[i]), etc.

As an object, under the hood it uses an Array for its storage, where an Array does not
naturally support removal, hence the modification. Note that IQERs with an empty set
of future test points futureTestpoints are ejected from this container before strategy is
called on it, i.e. if we use the last test point from an IQER in propagation of VTS, it is
removed from the container at this point. Hence IQERs attributing further test points
should remain within the container, enabling the second tiebreaker.

Usage of this container could in practice be replaced with a heap, where addition
of an IQER is O(log k) as opposed to O(1), but selection and/or extraction of the
“maximal” IQER is O(1) instead of O(k). If it were to be replaced by a heap, we must
be cognizant that an IQER is not immediately amenable to further propagation of VTS if
the formula it holds is of excessive degree. VTSIQERSelectionStrategy returns -1 if the
container “iqers” is non empty but contains only IQERs of excessive degree (ineligible
IQERs, in light of the value of ‘MaxVSDegree’), as to notify quantifier elimination to
switch to CAD in some capacity. Therefore if usage of a QEContainer was to switch
to a heap, it really needs to be two heaps, one holding IQERs amenable to further

30

VTS, and the other ineligible IQERs. The latter heap’s sorting function could be one
reconciling with VTS to CAD strategy when the poly-algorithm is concerned (Section
4.2).

A further mitigation is that once a maximal IQER is selected,
QuantifierElimination allows for propagation of VTS by one test point at a time
from the generated set of test points associated to that IQER. Therefore the IQER

shouldn’t be extracted immediately from the heap as long as it attributes test points.
When an IQER is selected, we generate the set of structural test points on that IQER

if it didn’t already exist, which in principle modifies data relating to the tiebreakers,
however this generation cannot ruin the “heap condition”. However, in the current
implementation of QuantifierElimination, variable strategy is dependent on IQER

strategy, which means that the last tiebreaker is not highly agreeable with a heap, which
may require sifting amongst subheaps when variables are reordered. This tiebreaker is
not highly compatible with a heap, which would require resorting of subheaps when
variables are reordered. However, removing this tiebreaker makes it difficult to realise
a truly greedy codependent variable & IQER strategy such that one ensures in best
possible terms that one can traverse a path to a (meaningful) leaf IQER as quickly
as possible without impediments in terms of degree. This codependency is discussed
further in Section 2.3.2 and formalised by Code Fragment 4.

Because selection strategy on a QEContainer involves iteration over the container,
strategy is immediately mutable, but considering evolutionary operations (Algorithms
47, 49) always regenerate the container of work IQERs, i.e. there is no reason to retain
an existing one, and so this fact is not particularly to the QEContainer’s credit.

Unlike the case for CAD cell selection strategy, which is discussed in Section 3.9,
there is no reason for a strict subset of IQERs to be removed from the VTS tree (and
hence discarded from the container “iqers”), because propagation of truth values in
the same sense is trivial. A VTS tree only corresponds to one block of quantifiers,
and hence there is only ever one meaningful truth value to ever propagate within one
block. If we receive a meaningful truth value, this truth value would propagate all
the way to the root, hence we could discard all IQERs from the tree, because we are
ready to terminate quantifier elimination, having found the quantifier free equivalent.
Therefore arbitrary removal of non maximal elements from whatever data structure is
used to store “work” IQERs is not a relevant operation, in the same way as it is for
CAD (Section 3.9).

In total, replacement of usage of a QEContainer with a heap could be a win due
to pairs of addition & selection operations reducing to O(log k) from O(k), with one
caveat being that with a heap, non trivial work is always expended to add elements
to the structure, which may have gone to waste if termination criteria is met (i.e. we
receive a meaningful truth value, and no further usage of “work” IQERs is required).
A further caveat is that strategy could no longer be dependent on anything highly
mutable, such as the current variable ordering.

31

2.3.2 VTS Variable Strategy

VTS in QuantifierElimination implements a greedy variable strategy based on the
next selected IQER for propagation of VTS, to reconcile with the usual aims of
QuantifierElimination to implement greedy strategies. Via usage of VTSIQERSelec-
tionStrategy from the above section, we know that VTSIQERSelectionStrategy selects
a non ineligible IQER I for elimination, such that the maximum degree of any factors
of any polynomial in I is at most the value of the keyword option ‘MaxVSDegree’.
Let 0 ≤ j ≤ m is the maximum level of any IQER when the function implementing
VTS variable strategy, VTSVariableStrategy is called. VTSVariableStrategy insertion
sorts the variables xn−m+1, . . . , xn−j in terms of the maximal degree of each variable
in I, modulo the fact that only quantifiers with the same quantifier symbol commute.
More specifically, VTSVariableStrategy attempts to minimise the maximal degree of
the variable to next use for test point generation (and hence elimination) on I, except
that it does not attempt to sort variables not contained within I towards the back of
the variable ordering, i.e. it does not aim to minimise the maximal degree to eliminate
next all the way to 0. This would result in generation of trivial test point sets that go
nowhere to actually performing non trivial quantifier elimination on I. The criteria on
j ensures that we do not sort variables that are “fixed”, which would ruin the integrity
of the VTS tree. The action of VTS implies that elimination of a variable xi may dou-
ble the degrees of the variables x1, . . . , xi−1 when quadratic elimination is concerned,
however this preserves their sorting via action of virtual substitution on all atoms of a
formula.

Insertion sort is appropriate because the number of variables is assumed to be few,
but further scope for variable strategy is restricted by commutativity only of quantifiers
with the same quantifier symbol (which is all there is to do in VTS due to acting within
any one block of quantifiers), which mitigates the headlineO(n2) complexity of insertion
sorting further, but the main grounds for usage of insertion sort is that it is convenient
when acting upon the Array of variables in-place, which is the usual semantics for
action of variable strategy on an Array of variables within QuantifierElimination,
also eschewing creation of intermediate data structures for garbage collection.

Usage of this greedy variable strategy is intrinsically designed to compliment and
reinforce usage of depth-wise traversal of the VTS tree in propagation of VTS, because
it aims to propagate VTS as far as possible without usage of CAD, because minimizing
the degree of the elimination sets minimizes the degree bloat on the formula of the
produced IQER. Usage of this variable strategy in conjunction with depth-wise traversal
means we certainly attempt to branch all the way to a leaf IQER as soon as possible
(hopefully a meaningful leaf). The path to this leaf entirely defines and fixes the
variable ordering for usage of VTS to create the rest of the tree, so one disadvantage
of usage of this strategy is that it may not accommodate IQERs created elsewhere in
the tree well past the first traversal towards a leaf, but usage of depth-wise traversal
in poly-algorithmic QE on the VTS tree for a last block of variables may benefit from
the set of ineligible IQERs being of disjoint level, due to the aim of having high level
IQERs to process by CAD first to minimize the number of variables in CAD at any
one time. The codependency of variable strategy and IQER selection strategy means

32

that one must call variable strategy via the root IQER before attempting propagation of
VTS (Code Fragment 4), which will sort variables in terms of the initial input degrees
of polynomials. From there, the action of VTS in terms of the chosen IQERs will
largely mean the variables stay sorted with respect to the path traversed by successive
IQERs in terms of depth-wise traversal of the VTS tree, due to the degree bloat of
virtual substitution acting the same on all further variables. VTSVariableStrategy
in QuantifierElimination examines degrees of polynomials from an IQER without
factorisation, to minimise the amount of factorisation done as a result of strategy, and
because being able to begin VTS from input that usually features no factorisation
largely ensures that VTS continues to identify eligible IQERs with the action of VTS’
degree bloat acting transitively.

2.3.3 Test Point Selection Strategy

QuantifierEliminate associates future test point sets to IQERs, via the futureTestpoints
property. Once the set of structural test points has been generated for an IQER, this
set remains, with individual test points being removed from the set once used to form
a child IQER. Because propagation of VTS in QuantifierElimination can be done via
individual test points in order to form one child IQER at a time, test point selection on
a selected IQER is tangible and relevant. The suggested & current metric for selection
of test points in VTS is via the following tiebreakers:

• If a test point is substitution of ±∞, i.e. the test point is [0, x,±∞] for some x,
choose this,

• else if the test point has no infinitesimal (i.e. ε) and the asserted degree for virtual
substitution is lowest seen thus far, choose this,

• else choose the test point with lowest possible asserted degree for the test point
(amongst those test points with ε).

Usage of this strategy achieves the goal of being a “greedy” test point selection
strategy, as we attempt to minimise the resulting degree of the formula resulting from
substitution, else the number of atoms in the formula to create as a result of substitu-
tion.

• Substitution of test points featuring ±∞ via subs-inf-rel requires no usage of
pseudoremainder, producing a formula purely predicated on signs of coefficients
and reducta of polynomials from the formula to substitute into. There is also no
associated degree bloat.

• The next preferable type of test point is one of low (asserted) degree without
the infinitesimal ε. Test points featuring ε require epsilon expansion on formulae,
increasing the number of atoms in the formula to eventually perform weak substi-
tution on. Formulae from epsilon expansion via expand-eps-at have a maximum
degree equal to that of the formula acted upon. Hence choosing a test point
without ε is merely to minimise the number of atoms to substitute into.

33

• Choosing a test point of minimal asserted degree minimises the degree bloat out
of the pseudoremainder and formula scheme combination to achieve the required
weak substitution. For example, substitution of a polynomial of asserted degree
1 reduces entirely to pseudoremainder inducing no degree bloat. The formulae
schemes for substitution of a quadratic test point into a linear polynomial induce
less degree bloat than those from cubics.

The future test point set for an IQER is the direct result of usage of PC-to-TPs
and atposl on the formula for that IQER. In Maple, it is a MutableSet to reconcile
with the continuing need for mutable data structures. getNextTestpoint is the method
implementing the described test point selection strategy on an IQER — it also generates
the set of test points for the IQER via PC-to-TPs and atposl on its simplified formula.
In particular this type of set supports deletion of expressions, i.e. one can remove a
test point once selected for substitution. There is no reason for removal of arbitrary
non maximal test points, so conversion of these sets to a heap of test points is entirely
plausible. As per the usual observation on usage of heaps, not all test points may
be used per IQER, so the work expended in addition of test points using the ordering
implied by the above (as usual, trivial to evaluate) tiebreakers may be lost on early
termination. But as per usual one may expect the lesser complexity of construction of
any one heap beats the continuing O(k) expense of selection amongst k test points for
an IQER on average.

2.4 Tarski Formulae for VTS

Tarski formulae are intrinsic and vital to the operation of VTS. In particular, we must
be able to build such formulae efficiently, because every IQER stores a formula that is
the result of virtual substitution of a test point into the formula from an IQER above.
Additionally, we may wish to simplify the implicit quantifier free formula representing
sufficiency of the VTS tree in order to deduce that we can terminate the algorithm (as
early as possible). A discussion of simplification can be found in the following Section
2.4.2.

Maple offers the Array as a mutable data structure for storage of expressions. We
use this structure for storage of Tarski formulae instead of formulae via the inert And

and Or symbols in Maple as the former’s mutability is essential to allow for efficient
building & modification of formulae, at the very least to accommodate this package’s
version of incrementality (Section 5.1.2), which may require insertion of formulae into
an existing formula (at any IQER). Such modification of a Tarski formula using inert
symbols actually requires rebuilding an entirely new expression, whereas usage of an
Array does not. On the other hand, simplifying formulae may require us building a
formula “incrementally”, because we do not know ahead of time how many operands the
formula will have, and here usage of Arrays is obvious. In total, usage of Arrays allows
us to avoid incrementally building formulae in a series of immutable data structures
which would incur a O(k2) cost (for k the total number of atoms in the expression
to build) due to garbage collection of discarded intermediate data structures. Instead

34

we can achieve O(k) with usage of the mutable Array in avoidance of such garbage
collections.

Hence, a TFArray is the Maple type that refers to a quantifier free prenex Tarski
formula stored in Array format. This is either an atom (Definition 1), or an Array with
And or Or as the first element, with at least two TFArrays as the successive elements. A
TFInert is the Maple type referring to any quantifier free Tarski formula using inert And
or Or, or other allowable inert Maple boolean operators including Xor, Implies, Not
(with appropriate numbers of arguments respectively). A TarskiFormula type is sim-
ilar to TFInert, but allows for quantifiers preceding subformulae via the inert exists

or forall. Lastly, a PrenexQuantifiedTF is the equivalent type to (1.1). These types
reconcile with formulae over the integers as per Definition 3.

The TFArray and TFInert types are the most relevant with respect to computation,
as the former is used throughout QE “under the hood” in VTS, and the latter is
used in output (which we only need to build once). Unnecessary nesting of formulae
would be the case where a conjunction appears as a genuine argument to another
conjunction, i.e. a TFArray with operator And appearing at the top level of another
TFArray representing a conjunction. While this is not disallowed within the type for a
TFArray, in the general case the builder function for TFArrays, buildTFArray, ensures
that no unnecessary nesting occurs for the sake of efficiency. Unnecessary nesting
introduced by the user via quantified input is also guaranteed to be done away with in
conversion of the formula Φ to a TFArray — note that the TFArray type only admits
prenex formulae, i.e. the only operators are And and Or, so “unnecessary” really refers
to a matter of efficiency.

2.4.1 Delayed Evaluation of Virtual Substitution

One of the further suggestions of the work [43] is delayed evaluation of virtual sub-
stitutions into a non atomic formula. The idea at least owes to short circuiting of
disjunctions and conjunctions. For example, if we have the disjunction∨

(Ψ1(x,u), . . . ,Ψk(x,u))[x // t] =
∨

(Ψ1(x,u)[x // t], . . . ,Ψk(x,u))[x // t]) (2.11)

then if an early Ψj(x,u)[x // t] ≡ true for 1 ≤ j < k, then evaluation of the virtual
substitutions Ψi(x,u))[x // t] for j < i ≤ k are superfluous, because we already know
that the disjunction is equivalent to true. Virtual substitution generally reduces to
taking pseudoremainders, giving impetus to avoidance of further evaluations.

Delayed Evaluation in Maple

As Computer Algebra software, Maple offers features such as unevaluation and inertisa-
tion. In general, Maple will perform full evaluation on all arguments to any procedure
recursively, and from left to right (in terms of positional arguments). Therefore it is
not sufficient to supply Ψ1(x,u)[x // t], . . . ,Ψk(x,u)[x // t]) from (2.11) to a variadic
function to build the disjunction of such, because even with the unevaluation feature of

35

Maple, such a procedure will evaluate all of these. One can however manually inertise
these substitutions. The expression

‘:-inertSubsWeak’(Ψj , T)

in Maple is an example of such a manual inertisation, where it represents Ψj(x,u)[x // t]
if T is the structural test point representing [x // t] and Ψj is atomic. If Ψj is not atomic
then the appropriate inertisation involves ‘:-inertSubsWhole’. The usage of ‘:-...’
is Maple syntax where:

• :- refers to the global instance of the symbol inertSubsWeak in that Maple
session, in case it would be assigned to in source code for QuantifierElimination
(or the source code for any module/package using it),

• the quotes ‘...’ unevaluate the symbol inertSubsWeak such that it is not in-
terpreted in terms of any assignment to inertSubsWeak by the user in a global
sense.

These inertisations can also be defined to be typed as a TFArray, as would be re-
quired for these constructs to be passed to appropriate intermediate VTS functions
using Tarski formulae. The expression ‘:-inertSubsWeak’(Ψj , T) can be viewed
as a wrapper for the actual call to evaluate, hence replacement of the “operator”
inertSubsWeak with substituteWeakRelation evaluates the actual virtual substitution.

buildTFArray is the procedure that builds arbitrary formulae in
QuantifierElimination, taking the name of an operator And or Or, and then be-
ing variadic, accepting a sequence of formulae. The main purposes of the function are
to prevent nesting of formulae, weakly simplify atoms, but also performs the evaluation
of inertised substitutions amongst the sequence of formulae, as it iterates across this
sequence. Expressions such as lines 31 and 34 of Algorithm 1 are performed via usage
of buildTFArray, such that Ψ[x // T] is inertised upon passing to buildTFArray, and the
virtual substitution of T into the (potentially non atomic) formula Ψ is only computed
when guard(T) is non false.

Košta’s “formulae schemes” [43] to describe substitution of a root in x from a
polynomial f into a polynomial g such that 1 < degx(g) < degx(f) ≤ 3 can be recursive
on virtual substitution. For example, the scheme

Dg ≥ 0 ∧ (f = 0)[x // β1] ∨ (f = 0)[x // β2]

describes the result of substitution of the only root of f into g = 0 where degx(f) = 3,
degx(g) = 2, and f is of real type 11. formulaScheme in QuantifierElimination is
essentially a lookup table providing the formula to build corresponding to the enumer-
ation of Košta’s formulae schemes, and directly includes the inertisations such that the

1Additionally, Dg = discrimx(g), and βi is the structural test point describing the ith root of g,
i = 1, 2 where g is asserted to have real type 1.

36

return value for this scheme is

buildTFArray(And, Dg ≥ 0, buildTFArray(Or, ‘:-inertSubsWeak’(f = 0, β1),

‘:-inertSubsWeak’(f = 0, β2))).

Formulae schemes are only recursive in this way with respect to cubic elimination,
which in total is a future addition to QuantifierElimination.

A similar implementation of delayed substitution for the formulae to be held by
CADCells in PartialCylindricalAlgebraicDecompose is discussed in Section 3.4.2. This
is briefly contrasted with the delayed substitution in VTS. Note that in practice this de-
layed evaluation of substitutions is not implemented when structural form is requested
in order to return a QEData object for further incrementality, merely because to realise
insertion and deletion with atomic position (Section 5.1.1), it is easiest if the formula
at any one atomic position is a genuine formula rather than “inert”. One may be able
to extend the implementation by evaluating inertised substitutions where appropriate
in structural formulae when relevant for atomic position.

2.4.2 Simplification of Tarski Formulae

Expressions are central to Computer Algebra, whether they be objects such as polyno-
mials, rational functions, or transcendental functions where in each case there is scope
for interpretation to the term “simplify”. One need only take an example such as
x100−1
x−1 to notice that (ignoring the discussion on what happens at x = 1!), evaluating

the actual division will result in x99 + · · · + 1, which is dense with 100 terms. The
two metrics “give me something without a fraction” and “give me something with less
distinct operands” are conflicting and incompatible, so one really does need to give a
concrete meaning to “simple” to be able to call an expression “candid”.

Definition 14 (Candid). A candid expression is one that is not equivalent to an
expression that visibly manifests a simpler expression class. [60]

We introduce the concept of a “simplifier”. One notes the built in Maple function
simplify, which acts upon algebraic expressions of a wide range of types.

Definition 15 (Simplifier). A simplifier, S, is a function that maps objects in some
set T to those in T , and for all t ∈ T meets the following specification: for all t in T ,

S(t) ∼ t,

and
S(t) ≤ t,

where “≤” owes to some metric of “simplicity”.

Via this definition, an expression t is “candid” if S(t) = t. Forward, S refers to a
simplifier on the set of Tarski formulae T with no further definition than as above.

With respect to Tarski formulae, some such metrics seem obvious, such as length
of a formula — the total number of atoms within. It is tempting to say that a shorter

37

formula is always better. This certainly can be trivially true, such as for formulae such
as x = 0 ∨ x < 0, which should almost certainly be simplified to x ≤ 0, considering
such a relational operator is allowable in our system. In particular x = 0 ∨ x < 0 is
unpreferable for test point generation in VTS compared to x ≤ 0, where the former
would contribute four candidate test points and the latter two candidate test points
via atposl, as a result of the distinction between an “isolated point, with strict lower
and upper bounds” and a “weak upper bound”. It is also somewhat obvious that the
user would prefer to see this single atom in output if it came to it.

On the other hand, consider a formula such as f = 0 ∨ g = 0. For the purposes
of example, assume f, g are irreducible, and of non trivial degree. This formula can
be simplified to fg = 0, which is of a lesser length, but of a higher degree (as in
the associated left hand side is of a higher degree). Because Maple allows a product of
polynomials to exist without expansion, storing the left hand side of the relation as such
a product means we do not have to worry about introducing unnecessary expense to
factorisation of the polynomial later (as both VTS and CAD alike generally require).
Whether a user would prefer to see fg = 0 (with or without expansion of fg) or
f = 0 ∨ g = 0 upon output is instead subjective.

These are all points that need to be taken into account if one is to define “simple”,
and hence obtain an effective simplifier for Tarski formulae. On the other hand, we
must consider the expense of simplification in terms of time. The atom x2 + 1 > 0 is
candidly equivalent to true. Ironically, to deduce as such, we can pose the QE problem
∀x x2 + 1 > 0. More generally, the atom f(x) > 0 is candidly equivalent to true as an
atom if ∀x f(x) > 0, or candidly equivalent to false if ¬∃x f(x) > 0. In non atomic
terms, we have e.g. xy = 0 ∨ x2 = 0 ≡ xy = 0. Deducing the equivalence can be
done by noting that gcd(xy, x2) = x, so the second operand is superfluous, but one
can see that in general some non trivial operation is required in order to make such a
deduction.

Definition 16 (Weak Simplifier). A weak simplifier for a Tarski formula is one
that maps atomic expressions free of variables to true or false, such as 0 < 0 7→ false,
and 1 = 1 7→ true, and otherwise applies “short circuiting” rules to simplification of
expressions below conjunctions and disjunctions, i.e. false is discarded as an operand
below a disjunction, or true as an operand to a disjunction evaluates the simplification
of the entire disjunction to true. Additionally, we prevent duplicate operands within
formulae.

Loosely, a “strong simplifier” should then be a simplifier that brings formulae closer
in line to “candid” than a weak simplifier. QuantifierElimination only implements
weak simplification for formulae, which especially has ramifications on VTS. Consid-
ering the presence of existing work in this area, the investigation of a stronger sim-
plifier for QuantifierElimination is noted as important canonical further work for
QuantifierElimination (Section 8.3), and poor simplification is noted as a partic-
ular reason why the performance of VTS in QuantifierElimination falls short of
implementations similarly implementing VTS such as SyNRAC (Section 7.4.4).

One notes the Maple inbuilt functions is and coulditbe which essentially pose

38

the fully universal and fully existentially quantified questions on a relation as above.
QuantifierElimination currently does not choose to use even these functions thus far,
which would provide stronger simplification on atoms, but not necessarily across entire
formulae. One notes that beyond a quantified problem, a question such as ¬∃x f(x) > 0
implicitly features an SMT problem on one atom, of course over the theory of real arith-
metic, so the problem is less general than that of QE, so in some sense we may not
require full “recursion” on QE. On the other hand, in VTS, similar “SMT-like” ques-
tions asked about possible signs of polynomials (at-cs, at-cs-fac), such as the content of
a polynomial, or a leading coefficient are posed, and QuantifierElimination chooses
to solve these “SMT-like” queries via recursion on QuantifierEliminate. While SMT
over the theory of real arithmetic is within the scope of QuantifierElimination, it
would be best to consolidate the approach here towards an SMT solver for the theory of
real arithmetic to solve such queries (again, specific algorithms for SMT over the theory
of real arithmetic are noted as further work in Section 8.3). Even better, Definition 18
most succinctly summarises the desire in terms of simplification.

Definition 17 (Monte Carlo Algorithm). A Monte Carlo algorithm is one that is
“always fast, probably correct”.

Open Problem 18. Can we replace “correct” in the above with “candid” to obtain a
strong simplifier that we can deploy that attempts to expend no more work in simplifi-
cation than the projected saving by performing such simplification?

Open Problem 18 highlights that the work expended in simplification should be
offset by the expected gains in actually simplifying such a formula. This is a sentiment
identified multiple times in this work. In particular, strong simplification on the formula
of one fully quantified ineligible IQER could be seen as somewhat needless if the strong
simplification were to include involved usage of CAD, because CAD may be used to
provide the candid quantifier free equivalent of that IQER later on anyway (e.g. via the
poly-algorithm).

We move on to discuss the typical notions of “canonical” and “normal” in Computer
Algebra.

Definition 19 (Canonical). A representation is said to be canonical if every object
has only one representation.

Definition 20 (Normal). A representation is said to be normal if the only represen-
tation of the object 0 is 0.

Normality becomes relevant when evaluating expressions featuring (real) algebraic
numbers (Section 3.4.2), but these do not appear in the Tarski formulae for VTS.
Definition 20 could be adapted and interpreted in the context of Tarski formulae by
requesting that the only representation of an atom equivalent to true or false are true
or false themselves. This is related to candid representations, but is less restrictive,
because it only refers to atomic formulae.

Definition 21 (Locally Canonical). A representation is said to be locally canonical
(with respect to a certain context) if every object whose introduction does not change
the context has only one representation.

39

QuantifierElimination globally asserts that all relations are in a canonical form,
such that they are always stored as f ρ 0 where f is monic (if ρ ∈ {=, 6=}, otherwise
f merely need have trivial integer content). VTS has no motive for storage of mere
polynomials outside of relations, but CAD does, so CAD attempts to store canonical
polynomials in bases alongside canonical relations in its notion of Tarski formulae.
However, some frustration for a canonical form for polynomials in CAD arises due to
the representation of real algebraic number coefficients.

Tarski Formulae in Structural Form

As operands of any non atomic Tarski formula commute, f1 ρ 0 n f2 ρ 0 and f2 ρ 0 n
f1 ρ 0, n ∈ {∧,∨} are functionally equivalent. Luckily, there is never any reason to
commute such operands of a formula even after applying the distributivity of virtual
substitution as per the right hand side of (2.11), hence the ordering of operands of
a formula is preserved under virtual substitution. The very general incrementality in
VTS (and CAD) of QuantifierElimination works via the concept of structural form
for Tarski formulae (Section 5.1.1). To acquire a formula in structural form, we deploy
the weak simplification of Definition 16, without the short circuiting criteria, such that
true and false can and always will manifest as genuine operands of a disjunction or
conjunction alike, after for example acquiring a formula from virtual substitution. This
is “simplification preserving structural form”. The purpose of structural form is entirely
to enable a one to one correspondence between a formula at a particular atomic position
of the unquantified part of input Φ to the (successive) results of virtual substitutions
at the formula for an IQER. Structural form for formulae rely entirely on being locally
canonical (Definition 21). “Local” here then means the structure of the input formula,
which is deemed to be prenex (only operators are And and Or), but not necessarily
something such as disjunctive or conjunctive normal form.

2.5 Production of Witnesses for QE via VTS

We discuss the production of witnesses for QE problems. Much of this is made rigorous,
or extended from [44] and [43].

Definition 22 (Witnesses). A set of witnesses for a homogeneously quantified QE
problem Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), Q ∈ {∃, ∀} is a set of assignments of all
quantified variables xn−m+1, . . . , xn to real numbers rn−m+1, . . . , rn that prove equiva-
lence of (1.1) to a meaningful leaf IQER.

Witnesses provide proof of existence of examples or counterexamples for fully ex-
istentially quantified or fully universally quantified formulae respectively. This is the
only context in which production of such assignments is particularly useful. In con-
trast, in terms of what is presented here, neither VTS nor CAD can provide proof that
an existentially quantified formula is equivalent to false, or a universally quantified
formula is equivalent to true. [1] highlights that proof of these equivalences falls to
reliance on completeness of the algorithm. In other words it requires a proof that the
substitutions performed were sufficient to deduce the quantifier free equivalent of the

40

formula. However, that work also highlights that other newer algorithms for SMT over
the theory of real arithmetic (which can be viewed as fully homogeneously existentially
quantified QE problems (Section 1.1.1)) are far more amenable to production of proofs
in these contexts.

First, we present a fairly simple algorithm that will be necessary in processing wit-
nesses featuring ±∞, where it suffices to replace these with a real number exceeding
a bound for the largest root of any such polynomial in the back substituted formula.
This works recursively on the structure of Tarski formulae, as many algorithms will
similarly. The ideas owe to [44, 43], and the root bounds themselves are via Cauchy’s
inequality.

Algorithm 2 Cauchy Root Bound

Input: Ψ, a Tarski formula
Output: c, a rational number representing the maximum Cauchy root bound for
all polynomials appearing in Ψ

1: procedure CauchyRootBound(Ψ)
2: if Ψ is a relation f ρ 0 then
3: Let a1 . . . an be the integer coefficients of f , with f viewed as a distributed

polynomial under any ordering of variables
4: c← 1 + maxni=1

|ai|
|an|

5: elseif Ψ = true or false then
6: c← 0
7: else
8: c← maxmk=1 CauchyRootBound(Ψk), where m is the number of operands

of Ψ in terms of its outer boolean operator n, and Ψk is the kth
operand of Ψ viewed this way

9: end if
10: return c
11: end procedure

In particular, the maxima of all bounds for roots of any polynomial occurring in
Ψ suffices as a bound for roots of all polynomials occurring in Ψ. Note that any dis-
tributed variable ordering would do - in reality we just need all integer coefficients of all
such monomials in f as long as f is expanded, so discussing which is meaningless. The
check for any atom being true or false should largely be superfluous, as this algorithm
should only be called on (weak) simplified input.

Next is a presentation of an algorithm that allows us to process prewitnesses ob-
tained from test points used in VTS to real numbers in the case where Φ is a fully
quantified formula. As such we obtain witnesses as per Definition 22. Again, the ideas
are from [44, 43], but this is the canonicalization as an algorithm with IQERs, and is
implemented in QuantifierElimination. The initial presentation of the algorithm
was via [64].

41

Algorithm 3 Production of Witnesses from a VTS IQER

Input: L, a meaningful leaf IQER for a homogeneously quantified problem
Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), Q ∈ {∃,∀}

Output: A list of processed witnesses [x1 = r1, . . . , xn = rn], where ri ∈ R,
i = 1, . . . , n, and Φ evaluated at [x1 = r1, . . . , xn = rn] is equivalent to the
meaningful truth value associated with L

1: procedure GetWitnessesIQER(L, Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn))
2: witnesses← an empty Array

3: for i from L 7→ level + 1 to n do
4: Append xn−i+1 = 0 to witnesses
5: end for
6: I ← L
7: while I has a parent IQER do
8: Let F be the quantifier free formula associated to I

(I 7→ formulaSimplified)
9: T ← I 7→ testpoint evaluated at all current witnesses . Making the

polynomial in T univariate
10: I ← I 7→ parent
11: Construct the “prewitness” or “root description” associated to T as

xn−I 7→level+1 = t, where t may feature ε or ∞
12: if t = ±∞ then
13: Let Fparent be the quantifier free formula associated to I, evaluated at

all current witnesses
14: Add x = sgn(t) CauchyRootBound(Fparent) to witnesses
15: elseif t = r ± ε then
16: Let Fparent be the quantifier free formula associated to I, evaluated at

all current witnesses and unsimplified
17: Let rootList be a complete ordered list of isolating intervals of all real

roots in xn−I 7→level+1 for all polynomials in Fparent such that
rootList = [[a1, b1], . . . , [ak, bd]], d > 0 . Using Algorithms 18 and 6,
after decomposition of Fparent as a flat set of polynomials

18: Let b0 = −∞ and ak+1 =∞
19: if d = 0 then
20: r ← 0 . Fparent equivalent to true (existential case) or false

(universal case)
21: elseif t = r − ε then
22: for j to d+ 1 do
23: s← the simplest rational strictly between bd−j and ad−j+1

24: if s < r then
25: r ← the simplest rational strictly between s and r
26: break
27: end if
28: end for

42

Algorithm 3 VTS Witness Production Algorithm, Part 2

29: else . t = r + ε
30: for j to d+ 1 do
31: s← the simplest rational strictly between aj−1 and bj
32: if s < r then
33: r ← the simplest rational strictly between r and s
34: break
35: end if
36: end for
37: end if
38: Add x = r to witnesses
39: else
40: Add x = t to witnesses
41: end if
42: end while
43: return witnesses as a list
44: end procedure

Algorithm 3 is essentially a recursive back substitution process — if we can gen-
erate a witness for xi, then we can use it in back substitution to generate a witness
for xi−1. It relies, not unlike the methodology of lifting in CAD, on having univariate
polynomials available at any one level such that prewitnesses involving non standard
symbols ∞ or ε to be converted to witnesses with real numbers. In contrast, any other
prewitnesses can always be processed to receive a real number assuming the availability
of preceding witnesses. Hence the situations in which witnesses can reliably be gen-
erated depend on whether the number of variables in an IQER’s formula correspond
directly with its level for every IQER on the path from that leaf to the root IQER, where
infinitesimals are contained in any of the test points on that path. On the other hand,
if no infinitesimals were used on that path, then processing the prewitnesses on that
path is largely a formality, because Maple’s eval[‘recurse’] would successfully use the
list of prewitnesses as what would be the corresponding witnesses for xn−m+1, . . . , xn
by doing the back substitution itself.

In contrast to the initial presentation in [64], Algorithm 3 suggests calling Cauchy-
RootBound to process prewitnesses involving ±∞ on the formula from the IQER above,
rather than on the top level quantifier free part of quantified input Φ. Hence back sub-
stitution is now relevant on all prewitnesses involving infinitesimals rather than just
ε. Additionally, the loop on line 3 suggests to evaluate at all quantified variables that
were not eliminated by virtual substitution to receive this leaf node. This implies that
a quantifier free equivalent could be deduced without their non trivial elimination, but
it is not necessarily the case that the formulae for all IQERs on the path to the root
node are free of them. Hence we can evaluate at a trivial value, such as xi = 0, to
ensure that we have univariate formulae at the appropriate times.

43

Φ(x1, . . . , xn) should certainly be homogeneously quantified (quantified with only
one type of quantifier) in order for usage of Algorithm 3 to be correct, such that the
elimination corresponds to exactly one tree to traverse (Figure 2-2 or 2-3, and not Figure
2-1). QF NRA is one context where the formula is (fully) homogeneously quantified
(and the QE is achieved by incrementality on clauses). The algorithm only produces
witnesses for meaningful truth values, i.e. true for existential questions and false for
universal questions, and [1] highlights that VTS (and CAD) have similar shortcomings
in producing proof of non meaningful truth values for each type of quantification,
because it requires proof that the (virtual) substitution points used are a comprehensive
covering of meaningful ones.

Theorem 23. Algorithm 3 is valid, i.e. given a meaningful leaf IQER L, it correctly
produces a list of witnesses [x1 = r1, . . . , xn = rn] such that Φ(x1, . . . , xn) evaluated at
[x1 = r1, . . . , xn = rn] is equivalent to the meaningful truth value associated to L via
its simplified Tarski formula.

Proof. L need only be a meaningful leaf, and not an IQER of level n. If it is a mean-
ingful leaf of level 0 < k < n, then this implies quantifier elimination was achieved on
elimination of Qxn−k+1, and both the the free variables x1, . . . , xn−m and the quan-
tified variables xn−m+1 . . . xn−k were superfluous. The loop on line 3 ensures that we
always evaluate x1, . . . , xn−k at the trivial value 0 in order to eliminate them and co-
erce the “triangular” condition used extensively below. In other words, in this case it
is sufficient to truncate the formula to Qxn−k+1 . . . Qxn Φ′(xn−k+1, . . . , xn) to consider
with L′, where Φ′ and L′ are Φ and L evaluated at [x1 = 0, . . . , xn−k = 0].

We can proceed by induction on the level of the IQER I handled by Algorithm 3 (as
of its value per loop iteration on line 8). One notes that I 7→ level strictly decreases
towards 1 per iteration, and the number of variables in the formula for I increases by
at most one per iteration. The base case is when I naturally has a univariate formula,
i.e. when I = L and any variables superfluous to obtaining true/false have been eval-
uated at zero via the loop on line 3. Otherwise we assume Algorithm 3 produces valid
witnesses for xn, . . . , xn−k+1, for some 1 ≤ k < n, and the back substitution from line
9 allows us to view the formula that VTS would have acted upon with hindsight of the
values of later quantified variables.

We know that the guard for each test point on the path from L to the root is not
equivalent to false after back substitution, else L would fail to be a meaningful leaf.
Hence T always represents a valid root description. It remains to prove the validity of
processing of test points including non standard symbols:

• Handling of prewitnesses involving ±ε (line 15):

– We choose the first value s such that s < r (for t = r − ε) or s > r (for
t = r + ε). This is such that the relation from T (after back substitution)
is equivalent to a meaningful truth value, but no other polynomials from
any other relations change sign due to crossing the boundary of an isolating

44

interval for xn−k+1, and hence their relations are guaranteed not to change
truth value. In the terminology of CAD (which has relevancy due to usage
of real root isolation), we essentially select the sample point from the cell
from a CAD in R of Fparent such that xn−k+1 = r±ε is the meaningful truth
value from L for some ε > 0, where the value of ε is implied by the relevant
loop from the algorithm but not explicitly deduced — ε is such that r is
the simplest rational, e.g. in terms of having the smallest possible diadic
denominator.

– If we reach line 20, then Fparent after back substitution should be genuinely
equivalent to the meaningful truth value for L. We do not simplify Fparent

under normal circumstances, but it may require a strong simplifier to deduce
that Fparent is equivalent to a meaningful truth value, considering e.g. an
expression such as x2n−k+1 + 1 > 0 which donates no real roots would poten-
tially yield true under strong but not weak simplification. If Fparent yields
no real roots, we know the signs of the polynomials within are always static,
and hence the truth values of the relations are static. Note Fparent may even
have no polynomials of non trivial degree after back substitution. Because
of the assumption that past back substitutions were correct, we know it is
true if the formula is quantified with existential quantifiers, or false in the
universal case.

• Handling of prewitnesses involving ±∞ (line 12): the maxima of the Cauchy
root bounds of all polynomials contained in Fparent is guaranteed to exceed the
modulus of all roots of all polynomials from Fparent. We multiply this by the sign
of ∞ to give the resulting witness the correct sign.

• Any other prewitnesses are real expressions in xn, . . . , xn−k+1, and the back sub-
stitution converts them directly to a single real number.

Algorithm 3 suggests a tree traversal from leaves to the root IQER, unlike various
other tree traversal algorithms in this thesis that traverse from the root towards the
leaves. Considering the algorithm suggests usage of root isolation per any node in-
volving prewitnesses with infinitesimals, one may worry about the complexity of the
process. But we only ever need only process one leaf node via Algorithm 3 — receiving
one meaningful leaf IQER is sufficient to deduce termination of QE. Therefore we need
only traverse the path from one meaningful leaf to the root to provide witnesses under
normal termination criteria.

Open Problem 24 (Improving Root Isolation to Process ε). Can the efficiency
of processing of prewitnesses involving ε be improved, either by:

• Isolating on fewer polynomials than ALL occurring in the formula — strictly, we
need only know about the two closest roots to r (line 21) to find a suitable rational
number to replace r ± ε by. Currently all polynomials from the unsimplified
formula Fparent are included into the set to isolate, because choice of a value just

45

smaller than r(−ε) or just larger than r(+ε) and no other roots guarantees that
Fparent is satisfiable, because we can guarantee the sign of no other polynomials
from Fparent change.

• Could usage of root bounds or bounds for root separations help?

Section 4.4.1 describes how VTS witnesses can be concatenated with those arising
from CAD when this project’s “poly-algorithm” is used to coerce the “triangularity”
condition for an ineligible IQER actually equivalent to a meaningful truth value, deduced
via CAD.

One notes that as opposed to production of witnesses for a fully quantified formula,
Algorithm 3 can produce witnesses for meaningful leaves produced for homogeneously
quantified formulae, which need not be fully quantified. In this context, the witnesses
yielded from usage of the loop on line 3 are merely produced to make usage of is and
eval in usage of witnesses canonical for the user, although strictly only the rest of
the witnesses are those needed to prove the equivalence of the formula for QE to a
meaningful truth value.

2.6 Propagation of VTS

Code Fragment 4 describes “propagation” of VTS via selection of an IQER, variable
strategy in terms of what was selected, and then construction of a child IQER below it
using a selected test point.

Fragment 4 Propagation of VTS

1: while (i← VTSIQERSelectionStrategy(iqers)) > 0 do . Section 2.3.1
2: VTSVariableStrategy(iqers[i], vars) to sort variables in vars beyond the

maximum level of any IQER in the tree . Section 2.3.2
3: Construct one child IQER I below iqers[i] using Algorithm 1, and test point

defined by strategy in getNextTestpoint . Section 2.3.3
4: Add I to iqers
5: if If the set of future test points for iqers[i] is empty then
6: Remove iqers[i] from iqers
7: end if
8: if I holds a meaningful truth value via its simplified formula then
9: Remove all IQERs from iqers

10: Add I to leaves
11: elseif I 7→ level = m then
12: Add I to leaves
13: end if
14: end while . If i = 0, QE has been deduced; if i = −1, there exist remaining

ineligible IQERs, and we proceed with CAD in some sense to complete
QE (Chapter 4)

46

Q
n
−
m
+
1
x
n
−
m
+
1
..
.Q

n
−
2
x
n
−
2
∀x

n
−
1
∃x

n
Φ

(x
1
,.
..
,x

n
)

Q
n
−
m
+
1
x
n
−
m
+
1
..
.Q

n
−
2
x
n
−
2
∀x

n
−
1

(Ψ
: =

(G
(t
n
,1

)
∧

Φ
[x
n
//
t n
,1

]
∨
..
.

[x
n

=
t n
,1

]

..
.

Q
n
−
m
+
1
x
n
−
m
+
1
..
.Q

n
−
2
x
n
−
2

(¬
(G

(t
n
−
1
,1

)
∧
¬Ψ

[x
n
−
1
//
t n
−
1
,1

])
∧
..
.

[x
n
−
1

=
t n
−
1
,1

]

..
.

··
·∧
¬(
G

(t
n
−
1
,k
n
−
1
)
∧
¬Ψ

[x
n
−
1
//
t n
−
1
,k
n
−
1
])

)

[x
n
−
1

=
t n
−
1
,k
n
−
1
]

··
·∨

G
(t
n
,k
n
)
∧

Φ
[x
n
//
t n
,k
n
])

)

[x
n

=
t n
,k
n
]

F
ig

u
re

2-
1:

T
h

e
ge

n
er

ic
la

ye
re

d
V

T
S

tr
ee

fo
rm

ed
b
y

Q
E

w
it

h
q
u

an
ti

fi
er

al
te

rn
at

io
n

s
on

(1
.1

),
w

h
er

e
th

e
la

st
tw

o
q
u

an
ti

fi
er

s
ar

e
fo

rc
ed

as
∀

a
n

d
∃

to
d

em
on

st
ra

te
th

e
co

n
so

li
d

at
io

n
of

th
e

d
is

ju
n

ct
io

n
fo

rm
ed

b
y

el
im

in
at

io
n

of
∃x

n
in

to
on

e
im

p
li

ci
tl

y
u

n
iv

er
sa

ll
y

q
u

an
ti

fi
ed

fo
rm

u
la

,
Ψ

fo
r

V
T

S
to

tr
av

er
se

n
ex

t.

47

∃x
n
−
m
+
1
..
.∃
x
n
−
2
∃x

n
−
1
∃x

n
Φ

(x
1
,.
..
,x

n
)

∃x
n
−
m
+
1
..
.∃
x
n
−
2
∃x

n
−
1

(G
(t
n
,1

)
∧

Φ
[x
n
//
t n
,1

]
∨
..
.

∃x
n
−
m
+
1
..
.∃
x
n
−
2

((
v 1
∨
..
.

. . .

[x
n
−
1

=
t n
−
1
,1

]

∨
··
·∨
··
·∨

v i
)
∨
..
.

. . .

[x
n
−
1

=
t n
−
1
,i
]

[x
n

=
t n
,1

]

. . .

..
.

··
·∨

G
(t
n
,k
n
)
∧

Φ
[x
n
//
t n
,k
n
])

··
·∨

(v
i+
j
∨
..
.

. . .

[x
n
−
1

=
t n
−
1
,i
+
j
]

∨
··
·∨

··
·∨

v k
n
−
1
))

. . .

[x
n
−
1

=
t n
−
1
,k
n
−
1
]

[x
n

=
t n
,k
n
]

W
h

er
e
v r

=

{ G
(t
n
−
1
,r

)
∧

(G
(t
n
,1

)
∧

Φ
[x
n
//
t n
,1

])
[x
n
−
1
//
t n
−
1
,r

]
r
∈
{1
,.
..
,i
}

G
(t
n
−
1
,r

)
∧

(G
(t
n
,k
n
)
∧

Φ
[x
n
//
t n
,k
n
])

[x
n
−
1
//
t n
−
1
,r

]
r
∈
{i

+
j,
..
.,
k
n
−
1
}

F
ig

u
re

2
-2

:
T

h
e

V
T

S
tr

ee
fo

rm
ed

v
ia

el
im

in
at

io
n

of
a

b
lo

ck
of

ex
is

te
n
ti

al
q
u

an
ti

fi
er

s
∃x

n
−
m
+
1
..
.∃
x
n
.

48

∀x
n
−
m
+
1
..
.∀
x
n
−
2
∀x

n
−
1
∀x

n
Φ

(x
1
,.
..
,x

n
)

∀x
n
−
m
+
1
..
.∀
x
n
−
2
∀x

n
−
1

(¬
(G

(t
n
,1

)
∧
¬Φ

[x
n
//
t n
,1

])
∧
..
.

∀x
n
−
m
+
1
..
.∀
x
n
−
2

((
v 1
∧
..
.

. . .

[x
n
−
1

=
t n
−
1
,1

]

∧
··
·∧
··
·∧

v i
)
∧
..
.

. . .

[x
n
−
1

=
t n
−
1
,i
]

[x
n

=
t n
,1

]

. . .

..
.

··
·∧
¬(
G

(t
n
,k
n
)
∧
¬Φ

[x
n
//
t n
,k
n
])

)

··
·∧

(v
i+
j
∧
..
.

. . .

[x
n
−
1

=
t n
−
1
,i
+
j
]

∧
··
·∧

··
·∧

v k
n
−
1
))

. . .

[x
n
−
1

=
t n
−
1
,k
n
−
1
]

[x
n

=
t n
,k
n
]

W
h

er
e
v r

=

{ ¬(G
(t
n
−
1
,r

)
∧
¬(
G

(t
n
,1

)
∧
¬Φ

[x
n
//
t n
,1

])
[x
n
−
1
//
t n
−
1
,r

])
r
∈
{1
,.
..
,i
}

¬(
G

(t
n
−
1
,r

)
∧
¬(
G

(t
n
,k
n
)
∧
¬Φ

[x
n
//
t n
,k
n
])

[x
n
−
1
//
t n
−
1
,r

])
r
∈
{i

+
j,
..
.,
k
n
−
1
}

F
ig

u
re

2-
3:

T
h

e
V

T
S

tr
ee

fo
rm

ed
v
ia

el
im

in
at

io
n

of
a

b
lo

ck
of

u
n

iv
er

sa
l

q
u

an
ti

fi
er

s
∀x

n
−
m
+
1
..
.∀
x
n
.

49

> expr := e x i s t s ([x , y , z] , And(x − y = z , y = 5)) ;

expr := (∃x) (∃y) (∃z) x− y = z ∧ y = 5

> (e , q) := Quant i f i e rE l im ina t e (expr , ProcessWitnesses = f a l s e) ;

e, q := [[true, z = x− y, y = 5, x = 0]], true

> uqf := op (2 , expr) ;

uqf := x− y = z ∧ y = 5

> eva l [‘ r ecur se ’] (uqf , e [1] [2 . . −1]) ;

−5 = −5 ∧ 5 = 5

> (e , q) := QE(expr , ProcessWitnesses = true) ;

e, q := [[true, z = −5, y = 5, x = 0]], true

Figure 2-4: Example showing that when unprocessed witnesses (i.e. prewitnesses) are
returned that do not contain infinitesimals, eval[‘recurse’] can still be used to prove the
equivalence.

50

>
e
x

p
r

:=
Q

E
E

x
a
m

p
le

s
[

‘
S

h
a

r
ir

3−
C

u
b

e
’

]
;

ex
p
r

:=
(∃
x
1
)
(∃
x
2
)
(∃
x
3
)
−

2
5
≤
−

2
x
1
−

2
5
x
2

+
1
0
x
3
∧

2
≤

2
5
x
1

+
2
x
2

+
1
0
x
3
∧
−

2
5
≤
−

2
x
1

+
2
5
x
2

+
1
0
x
3
∧

2
≤

2
5
x
1
−

2
x
2

+
1
0
x
3
∧

0
≤
−
x
2
−
x
3
∧
−

2
≤
−
x
2

+
x
3

>
(

e
,

q
)

:=
Q

u
a

n
t
if

ie
r
E

li
m

in
a

t
e

(
e
x

p
r

,
‘
P

r
o

c
e

s
s
W

it
n

e
s
s
e

s
=

fa
ls

e
’

)
;

e,
q

:=
[[
tr
u
e
,x

3
=
−

5 2
+

x
1 5

+
5
x
2

2
+
ε,
x
2

=
1 3
−

2
x
1

1
5

+
ε,
x
1

=
2
9
0

3
5
9
]]
,
tr
u
e

>
(

e
,

q
)

:=
Q

u
a

n
t
if

ie
r
E

li
m

in
a

t
e

(
e
x

p
r

,
‘
P

r
o

c
e

s
s
W

it
n

e
s
s
e

s
=

t
r
u

e
’

)
;

e,
q

:=
[[
tr
u
e
,x

3
=
−

4 3
,x

2
=

1 3
,x

1
=

2
9
0

3
5
9
]]
,
tr
u
e

>
u

q
f

:=
o
p

(
2

,
e
x

p
r

)
;

u
qf

:=
−

2
5
≤
−

2
x
1
−

2
5
x
2

+
1
0
x
3
∧

2
≤

2
5
x
1

+
2
x
2

+
1
0
x
3
∧
−

2
5
≤
−

2
x
1

+
2
5
x
2

+
1
0
x
3
∧

2
≤

2
5
x
1
−

2
x
2

+
1
0
x
3
∧

0
≤
−
x
2
−
x
3
∧
−

2
≤
−
x
2

+
x
3

>
m

ap
(

is
,

e
v

a
l
(

u
q

f
,

e
[

1
]
[

2
.
.

−
1

]
)

)
;

tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e

>
e
x

p
r

:=
B

u
il

d
E

c
o

n
o

m
ic

sQ
E

E
x

a
m

p
le

(
1

,
‘e

x
a

m
p

le
’

)
;

ex
p
r

:=
(∃
v 1

)
(∃
v 2

)
(∃
v 3

)
(∃
v 4

)
(∃
v 5

)
(∃
v 6

)
(∃
v 7

)
(∃
v 8

)
v 7
<

0
∧

0
<
v 8
∧

0
<
v 4
∧
v 2
v 6

+
v 3
v 8

=
v 4
∧
v 1
v 5

+
v 3
v 7

=
v 4
∧
v 6

=
1
∧
v 5

=
1
∧

0
<
v 1

>
(

e
,

q
)

:=
Q

u
a

n
t
if

ie
r
E

li
m

in
a

t
e

(
e
x

p
r

,
‘
P

r
o

c
e

s
s
W

it
n

e
s
s
e

s
=

fa
ls

e
’

)
;

e,
q

:=
[[
tr
u
e
,v

8
=
−
v
2
v
6
−
v
4

v
3

,v
7

=
−
v
1
v
5
−
v
4

v
3

,v
6

=
1
,v

5
=

1
,v

4
=
v 1

+
ε,
v 3

=
−
∞
,v

2
=
v 1

+
ε,
v 1

=
ε]

],
tr
u
e

>
(

e
,

q
)

:=
Q

u
a

n
t
if

ie
r
E

li
m

in
a

t
e

(
e
x

p
r

,
‘
P

r
o

c
e

s
s
W

it
n

e
s
s
e

s
=

t
r
u

e
’

)
;

e,
q

:=
[[
tr
u
e
,v

8
=

1 2
1
,v

7
=
−

1 2
8
,v

6
=

1
,v

5
=

1
,v

4
=

4 7
,v

3
=
−

2
,v

2
=

2 3
,v

1
=

1 2
]]
,
tr
u
e

>
u

q
f

:=
o
p

(
2

,
e
x

p
r

)
;

u
qf

:=
v 7
<

0
∧

0
<
v 8
∧

0
<
v 4
∧
v 2
v 6

+
v 3
v 8

=
v 4
∧
v 1
v 5

+
v 3
v 7

=
v 4
∧
v 6

=
1
∧
v 5

=
1
∧

0
<
v 1

>
m

ap
(

is
,

e
v

a
l
(

u
q

f
,

e
[

1
]
[

2
.
.

−
1

]
)

)
;

tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e
∧
tr
u
e

F
ig

u
re

2
-5

:
M

or
e

n
u

a
n

ce
d

ex
am

p
le

s
o
f

p
ro

ce
ss

ed
V

T
S

w
it

n
es

se
s,

an
d

h
ow

th
e

ou
tp

u
t

fr
om

Q
u

an
ti

fi
er

E
li

m
in

at
io

n
ca

n
b

e
u

se
d

to
v
er

if
y

th
e

eq
u

iv
al

en
ce

of
ex

is
te

n
ti

a
ll

y
q
u

an
ti

fi
ed

fo
rm

u
la

e
to

tr
u

e
v
ia

ev
al

u
at

io
n

of
th

e
u

n
q
u

an
ti

fi
ed

p
ar

t
of

a
fo

rm
u

la
at

th
e

ac
tu

al
li

st
of

w
it

n
es

se
s.

51

Chapter 3

Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition (CAD) is perhaps the most well known and most
commonly implemented method to solve QE over the reals. CAD’s genesis dates back
to 1975 via Collins [18], who first detailed building a CAD via projection and lifting
stages.

3.1 Background

A Cylindrical Algebraic Decomposition is a decomposition of Rn into a finite set of
connected disjoint regions called cells. Cells are semi-algebraic sets, in the sense that
they can be described by conjunctions of relations of the form f ρ 0 where ρ ∈ {<,=}
and f ∈ R[x1, . . . , xn]. CADs are algebraic because every cell can be described by a
semi-algebraic set. The cylindricity property requires that for any two cells c1 and
c2, their projections onto real space corresponding to x1, . . . , xk where k < n − M
(where 1 ≤ M ≤ n is the maximum level of either of these cells) are either identical
or disjoint. The cylindricity property is what enables Quantifier Elimination by CAD,
in conjunction with the fact that we require that every cell is (at a minimum) sign
invariant on all polynomials from an input formula for QE, because sign invariance of
all polynomials from input allows us to achieve truth invariance on all relations from
input for every cell.

“Projection and lifting” is a common methodology for constructing a CAD, and
was the methodology of the original CAD via Collins. That being said, it is not the
only methodology, such as the methodology of RegularChains which uses triangular
decompositions to construct a CAD in complex space, before conversion to one in real
space. We discuss background and define further terms for a projection and lifting
CAD.

Projection and lifting algorithms to generate CADs are usually seen as proceeding
in exactly the two steps projection and lifting. Projection is the process of generating
(at least square-free, but here fully factored) bases in successively fewer variables to
obtain “projection bases1 of all orders”, or “...of all levels”. The following definitions

1Sometimes called “projection factors” in other literature, to reflect that the bases are at least
factored to be square-free.

52

are only intelligible in terms of a fixed variable ordering x1, . . . , xn — one notes that a
variable ordering for CAD is fixed at latest by the selection of a set of projection bases
of all orders before lifting (Section 3.8).

Definition 25 (Projection Operator). A projection operator is a function P :
R[x1, . . . , xi]→ R[x1, . . . , xi−1] for some i ∈ {2 . . . n}, such that if A 7→ B under P , B
having some property Z implies the same property Z for A.

Definition 26 (Polynomial Level). The level of a polynomial f in CAD is defined
as the greatest 1 ≤ i ≤ n such that f ∈ R[x1, . . . , xi], under a fixed variable ordering
x1, . . . , xn. Similarly, the level of a set of polynomials B is the greatest i such that
B ⊂ R[x1, . . . , xi], again under a fixed variable ordering x1, . . . , xn.

The purpose of projection is to deduce polynomials of all levels necessary to con-
struct a CAD with respect to some invariance property (at the very least usually sign
invariance). Typical operations included in a projection operator P are pairwise re-
sultants to deduce “crossings” between polynomials, discriminants on individual poly-
nomials to deduce when the number of roots change, and particular coefficients of
individual polynomials again to deduce similar facts. A large majority of research in
CAD has focused on projection operators, and various projection operators are listed
in Section 3.3. Relatedly, much research has focused on equational constraints in pro-
jection (Section 3.7), which further lessens the number of polynomials in projection
due to the observation that examination of non zero sign of polynomials from such
constraints is meaningless.

On the completion of projection associating a fixed variable ordering x1, . . . , xn,
one now commences with lifting. Very loosely, lifting is a “back substitution” process
according to the real roots of projection polynomials, and points from within open
intervals defined by such roots. As such a back substitution process, other litera-
ture occasionally identifies the lifting process as being further subdivided into a “base
phase” for the first step in creating a decomposition of R from the level 1 projection
polynomials, and then a subsequent “lifting phase” for all other levels.

The base phase examines the projection polynomials of level 1, which are univari-
ate, and constructs a decomposition of R1 according to their real roots. Due to the
invariance of each resulting cell via the invariance property associated with projection,
one need only associate a single unique real algebraic number as “sample point” in x1
to each cell. As the real roots of the univariate polynomials may be irrational, such
sample points may be real algebraic numbers (Definition 30). Additionally, one asso-
ciates a positive integer as “index” to each cell. This index identifies the position of
each cell with respect to the increasing real line. As such, these cells line up in terms of
increasing cell indices. Those cells representing the “open intervals” between real roots
are referred to as “sectors”, and have odd indices, while the cells owing to exact real
roots are referred to as “sections”, with even indices. These sectors have the freedom
to associate a rational number as their sample point in x1, because they represent open
intervals.

The lifting phase extends upon the base phase via the readily available cells of level
1 obtained via the base phase, when n > 1. This is where the sentiment of “back

53

substitution” comes into play. Examining the projection bases of level 2, substitution
of the sample point of a level 1 cell c into such a basis will yield a univariate set
of polynomials in x2. By isolating real roots on the (fully factored) basis of such
polynomials, we can decompose c with respect to x2 to receive level 2 cells, which
have c as their parent cell. As such they are in the cylinder over c. These cells also
associate local indices and sample points with respect to x2. The decomposition of c
to further cells of a level higher is referred to as “stack construction”. All such cells
store “local” information with respect to their level — such as a sample point and
index. Cells also store an essentially cosmetic local “cell description” corresponding to
their region of real space, with a full cell description acquired similarly to the case for
sample points (Cell Descriptions for CADCells, Section 3.4). One can define a level 1
cell’s local sample point as its full sample point, and the full sample point of any cell
as the concatenation of its local sample point with the full sample point of its parent
cell. The full index of a cell is defined similarly. With such definitions, one obtains
methodology to construct the stack of any cell of level less than n, which defines the
lifting process. One need only substitute all the elements of a the full sample point of
a level k cell into the projection bases of level k + 1 to acquire a univariate basis for
stack construction. Stack construction is defined by Algorithm 14 (CCHILD). Via cell
parenting, we acquire a tree structure on cells.

One can essentially view the base phase as stack construction on the “root cell”,
which is a cell of level 0, completing the canonicalization of a tree structure for cells.
The root cell associates no non trivial sample point or cell index — both of which can
be viewed as “empty” to reconcile with the recursive definitions of full sample points
and indices. The root cell implicitly represents Rn. In this way, the base phase of CAD
can instead be viewed as the first instance of the lifting phase on the root cell.

Definition 27. The level of a cell c is k > 0, where k is the level of the projection
basis used in its construction, or 0 if c is the root cell. Equivalently, the level of a cell
is its level in the CAD tree formed by cell parenting.

Definition 28. The local sample point of a level k > 0 cell c is an equation xk = r
where r ∈ R is a real algebraic number (Definition 30). The full sample point of a cell
is its local sample point if the cell is level 1, else it is the concatenation of its’ parent’s
full sample point with its local sample point.

Definition 29. The local index of a level k > 0 cell c is a positive integer representing
its position in the stack over its parent cell with respect to the increasing real line with
respect to xk. A cell’s full index is its local index if the cell is level 1, else it is the
concatenation of its’ parent’s full index with its local index with.

With a view to CAD for QE, one notes that the sign invariance of cells on the
polynomials from input (in this case the unquantified part of input (1.1) Φ) allows us
to achieve truth invariance for each cell with respect to Φ. By having each cell evaluate
Φ at its full sample point (a process called evaluation of CAD cells, Section 3.4), we can
begin to collect the cells that have determinate truth values with respect to Φ, which
allows us to deduce the quantifier free equivalent of (1.1). In fact, stack construction
on cells with determinate truth values can already be seen to be superfluous in this

54

case, and furthermore cells with determinate truth values may allow us to disregard
stack construction on other cells in the tree (via propagation of truth values in Al-
gorithm 15, PRPTV). This sentiment is the often mentioned breakthrough “Partial
CAD” methodology for QE by CAD, and is discussed in 3.4. Construction of quanti-
fier free equivalents for QE by CAD is provided via full cell descriptions in Section 3.4.
QuantifierElimination’s CAD implementation is highly object oriented, especially
with respect to CAD cells and the “local” data that they associate. Many algorithms,
especially those incremental ones in Section 5.2 fall to tree traversal in order to only
modify local data of cells, implicitly modifying data for whole subtrees of cells at once.

The original worst case time complexity of Collins’ CAD was O(d2
2n+8

m2n+6
)l3k,

where n is the number of variables, d the maximum degree of any polynomial in any
variable in input, m the number of polynomials occurring in input, k the number of
occurrences of polynomials and l the maximum coefficient length. In particular, atten-
tion is paid to the fact that CAD is “doubly exponential in the number of variables”.
One reason for this complexity is attributed to the computation of iteratively nested
resultants in the process of full projection. So far no projection operator is to avoid
computing such polynomials, but optimisation of the projection operator to make the
projection polynomials fewer has constantly been of interest, both via new projection
operators, and usage of “equational constraints” to restrict such operators.

While CAD has interest as a “complete” algorithm for QE (being able to traverse a
problem of any degree, unlike VTS), it has further uses in unquantified contexts for real
algebraic geometry, such as motion planning. This refers to a “full” CAD where every
level n leaf cell is present. We may refer to this as “full” or “stock” CAD (Algorithm
38), and contrasts with CADs produced with the intent of QE (Algorithm 37), which
are referred to as “Partial CAD”, which is the name of the methodology from [36]
to provide early termination of lifting in CAD for QE, implemented here. In Partial
CAD, one may not construct every level n cell due to determinate truth values on
cells of a lower level, making stack construction on such cells superfluous. A subset of
the methods used in Partial CAD are used to achieve full CAD, and elements of the
methodology differ to the extent both are covered in this section.

One notes that the generality of processing quantifiers as “blocks”, i.e. assuming ho-
mogeneous blocks of quantifiers as we did in VTS vanishes with CAD — CAD used for
QE eliminates all quantifiers including alternations in the same CAD call. In this sense
there is no concept of recursion for QE in CAD in the same sense as VTS. Hence we once
again consider a generically quantified prenex Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn)
(1.1).

3.2 Tarski Formulae for CAD

CAD, unlike VTS, can accommodate formulae or sets of polynomials over R, rather
than merely Q, due to its action on real space. This extends the scope of input to
truly realise the terms “real algebraic geometry” and “Quantifier Elimination over the
Reals”, allowing for formulae such as ∃q − 1 ≤ q ∧ q ≤ 1 ⇒ (525000 (2 +

√
2)u1 −

525000
√

2u2−525000
√

2v2 = 0)∧(−525000
√

2u1+52500
√

2(q+20)u2−52500
√

2v2 =

55

0) ∧ −525000
√

2u1 − 52500
√

2u2 + 52500
√

2(q + 20)v2 = −10 [39] which includes the
irrational

√
2.

Definition 30 (Real Algebraic Number). A Real Algebraic Number is a rational
number, or the real root α of some polynomial p with real algebraic number coefficients.
An irrational real algebraic number associates an isolating interval (a, b) where a, b ∈
Q, b > a such that a ≤ α ≤ b. In Maple, such a real algebraic number α can be
represented by the expression RootOf(p, a..b), and furthermore we may use this notation
to represent truly irrational real algebraic numbers, i.e. those in R\Q, once again noting
that R is here identified as the countable set of these real algebraic numbers.

The Maple implementation of CAD in QuantifierElimination uses RootOfs in-
dexed by intervals to represent irrational real algebraic numbers. This means Maple
expressions that are equivalent to real algebraic numbers are parsed to this RootOf for-
mat under the hood in QuantifierElimination when they appear as input to CAD,
given CAD can process input over R[x1, . . . , xn]. For example, the radical

√
2 is parsed

to RootOf(x2−2, a..b) for suitable a, b ∈ Q such that 0 < a <
√

2 < b. Parsing of input
to be over real algebraic numbers in this format is important for the implementation
of CAD, such that projection polynomials are over this expected format, implying that
lifting polynomials are also over this format.

Definition 31 (Real Algebraic Function). A Real Algebraic Function is an ex-
pression RootOf(p, index = real[i]), p ∈ R[Z, x1, . . . , xn], 0 < i ≤ deg Z(p), or an
expression equivalent to it (e.g. after evaluation of the RootOf in Maple).

By “an expression equivalent to it” in Definition 31, consider that RootOf(x Z −
y, index = real[1]) ≡ y

x (generally any p linear in Z leads to this equivalence & hence
evaluation). The attention to Z due to Maple’s designation that Z is the active vari-
able in a RootOf. Real algebraic numbers are a subtype of real algebraic functions. The
expression RootOf(Z2 − 2, 1..2) = RootOf(Z2 − 2, index = real[2]) — real algebraic
numbers always have an intelligible real index.

A Real Tarski Formula (Definition 32) is merely an extension of a Tarski Formula
(Definition 3) to allow for real number coefficients in the polynomials instead of merely
integers (or rationals).

Definition 32 (Real Tarski Formula). A Real Tarski Formula (RTF) is a poly-
nomial constraint, i.e. f ρ 0 where f ∈ R[x1, . . . , xn], n ∈ N, ρ ∈ {<,≤, 6=,=} or a
boolean formula of Real Tarski formulae, where allowable boolean operators may feature
∧,∨,⇒,Y.

Definition 33 (Extended Tarski Formula). An Extended Tarski Formula (ETF) is
a polynomial constraint f ρ 0 where f is a polynomial with coefficients as real algebraic
functions, and ρ ∈ {<,≤, 6=,=}.

As real algebraic functions are a supertype of real algebraic numbers, extended
Tarski formulae form a supertype of real Tarski formulae, which are themselves clearly
a supertype of Tarski formulae. These extensions on Tarski formulae are not dissimi-
lar to those from [12], except for the bespoke requirements and representations of the

56

real expressions within. The above definitions are each realised by Maple types de-
fined by QuantifierElimination — realalgnum, and realalgfun for real algebraic
numbers and functions respectively. Meanwhile, each of the Tarski formulae have a
relevant “inert” type e.g. RTFInert, but also a parallel type to allow for storage of
such a formula in an Array to allow for the mutability required to build and modify
such formulae. This is very similar to the methodology for storing Tarski formulae
for VTS in Section 2.4, and also enables mutability to allow for insertion of formulae
as is required to realise that aspect of CAD incrementality (Section 5.2). In particu-
lar QuantifierElimination desires for all polynomials and relations to be canonical
in formulae for CAD, and that polynomials are canonical in any fully factored basis
of polynomials, because it is important that we do not duplicate polynomials before
attempting expensive operations such as root isolation or similar on them.

Simplification of formulae is less relevant for CAD than VTS, because quantifier
free output for QE by CAD is an extended Tarski formula given by (3.1) deduced from
the cell descriptions of leaf cells. Despite the fact these formulae can never have inner
clauses equivalent to false, and so they are normal (and closer to candid) in the sense
that CAD can never return something non false or non true when the input formula
is equivalent to false or true respectively (unlike VTS), these formulae can still be
very long and unsimplified. Work in this area such as [16] investigates simplification
of output CAD formulae. Meanwhile, the evaluation of the unquantified part of input
formula for QE Φ is intrinsically part of the process of Partial CAD, i.e. deduction of
when Φ is identically true or false is somewhat exactly the purpose of evaluation of
cells in Partial CAD (Section 3.4). Attempting strong simplification on the real Tarski
formula held by a cell may deduce that a cell is a leaf early, except that further lifting
on this cell to decompose it has essentially the same purpose — to find determinate
truth values amongst those cells to deduce the truth value of the original cell. Hence
strong simplification on the formulae held by cells would bizarrely negate the purpose
of using CAD for QE in the first place. Altogether, CAD in QuantifierElimination

only ever uses weak simplification on formulae, including weak structural simplification
when simplifying formulae in structural form to achieve incrementality (Section 5.2).
Similarly to VTS, it allows for delayed evaluation of substitution on formulae (Section
3.4.2).

3.3 Projection

Projection is the process whereby bases of polynomials are generated in successively
fewer variables, where such polynomials are deemed to be sufficient to build a sign
invariant CAD, usually implied by other invariance properties from the projection
operators used.

Iterating use of a projection operator forms “projection of all orders” or “full projec-
tion”, such that we eventually receive irreducible bases of polynomials in R[x1, . . . , xi]
for all 1 ≤ i ≤ n, or in other words bases of levels 1 to n. From here, a process akin to
“back substitution” can commence owing to the real roots (Section 3.4), starting from
the univariate polynomials, to produce finer and finer geometry from the roots of the
successive projection sets.

57

Typical operations used in projection are resultants, discriminants, and coefficients.
CAD is known to have worst case time complexity doubly exponential in the number of
variables, and this can be attributed to the projection process. If the polynomials from
the input formula are degree O(d), then the initial resultants are degree O(d2), and
iterating this process n − 1 times makes the process doubly exponential. As a result,
much research has focused on improvements to the projection operator used in CAD.
In general, such improvements prove that fewer polynomials (via fewer operations) are
required to sufficiently produce a sign invariant CAD, which is all that is required
for truth invariance of the CAD to solve QE. Even then, resultants are still required,
however attention is paid such that they are fewest possible. We enumerate various
past and present projection operators defined from previous research.

Collins Projection, PC [18]

PC(A) = PROJ1(A) ∪ PROJ2(A)

PROJ1(A) =
⋃
F∈A
F<G

(
{lcoeffx(f) | f ∈ F ∗} ∪ PSC(F ∗, F ∗

′
)
)

PROJ2(A) =
⋃

F,G∈A
F<G

⋃
F ∗∈RED(F)
G∗∈RED(G)

PSC(F ∗, G∗)

where PSC(F,G) is the set of all principal subresultant coefficients that are non zero
between elements of F and G, or more specifically

PSC(F,G) = {psck(F,G) | 0 ≤ k < min(deg(F), deg(G)), psck(F,G) 6= 0},

and RED(f) is the set of all reducta of f that are non zero, or more specifically

{redi(f) | 0 ≤ i ≤ degx(f), redi(f) 6= 0},

and this extends to action on a set such that

RED(F) = {RED(f) | f ∈ F}.

Hong Projection, PROJH [35]

PROJH(A) = PROJ1(A) ∪ PROJ∗2 (A)

PROJ∗2 (A) =
⋃

F,G∈A
F<G

⋃
F ∗∈RED(F)

PSC(F ∗, G)

Brown Projection, PB

PB(A) = {discrimx(f) | f ∈ A} ∪ {resx(f, g) | f ∈ A, g ∈ A \ {f}}
∪ {lcx(f) | f ∈ A}

58

McCallum Projection, PM [50]

PM (A) = {coeffx(f, i) | 0 ≤ i ≤ degx(f), f ∈ A} ∪ {discrimx(f) | f ∈ A}
∪ {resx(f, g) | f ∈ A, g ∈ A \ {f}}

Lazard Projection, PL [46, 51]

PL(A) = {discrimx(f) | f ∈ A} ∪ {resx(f, g) | f ∈ A, g ∈ A \ {f}}
∪ {lcx(f) | f ∈ A} ∪ {tcx(f) | f ∈ A}

Projection bases in QuantifierElimination are stored within projection ob-
jects. Sets of polynomials are MutableSets, due to the continued interest in usage
of mutable data structures in Maple to minimise costs caused by fragmented memory
allocation, such as garbage collection. projection objects are useful due to the dis-
tinction between three main bases of polynomials at any one level — the pivot set, set
of inequalities, and basis of unused equational constraints. (Objects via) modules in
Maple allow for bespoke ModuleIterator methods to allow one to easily iterate across
one level of a projection object as if it were a flat set, despite the polynomials being
spread across (up to) three sets. An implementation by object also packages the data
nicely, and allows canonical methods for printing and incrementality (Algorithm 50). A
projection object stores the sets BA1 , . . . , BAn , BE1 , . . . , BEn−1 and C1, . . . , Cn−1 in
Arrays inequalities, equations and pivotSets, appearing as properties for a projection

object. They have n, n − 1, and n − 1 elements respectively, due to the fact there is
no reason to identify information relating to equational constraints at level 1 (what
would displace BE1 and C1). They are Arrays to allow for their potential extension in
incrementality. If P is a projection object, P 7→ inequalities contains n MutableSets.
Each P 7→ inequalities[i] is BAi , 1 ≤ i ≤ n, a basis of polynomials at each canonical
CAD level unrelated to equational constraints. For P 7→ equations and P 7→ pivotSets,
0 appears at any index where equational constraints were not used (as the default ele-
ment initialising Arrays). As such, checking if P 7→ equations[i] (or P 7→ pivotSets[i]),
1 ≤ i < n is of type MutableSet is equivalent to checking if equational constraints were
used in projection at level i+ 1. Algorithms 5 and 50 demonstrate how how these sets
come to fruition, while Figures 3-1 through 3-6 give a visual representation to individ-
ual projection steps & how various sets contribute to the bases stored in projection.
Algorithms 30 and 32 also make use of the structure of the passed projection object.
Algorithms typeset here largely refer to the projection bases in terms of their member-
ship of a projection object, but in mathematical discussion we will refer to the bases as
their more canonical (and shorter) names such as BAi rather than P 7→ equations[i] etc.
One notes that Algorithm 5 acts upon an existing projection object. A projection

object is initialised with properties as Arrays of zeroes during calling CADChooseVar-
sProjection, where the Arrays equations and pivotSets are of length n− 1 as opposed
to length n (Figure 3-7). The elements of these Arrays are 0 whenever equational
constraints were not used at that canonical CAD level.

‘UseEquations’ is a keyword option for all top level functions involving CAD in
QuantifierElimination controlling usage of equational constraints in projection in

59

terms of allowance of restricted projection operations. It features as an argument to
Algorithms 5 and 50. The allowable values are ‘UseEquations’ = ‘none’, ‘single’,
or ‘multiple’. One notes that a ‘single’ equational constraint does not mean “a
single equational constraint, used anywhere in projection”, but strictly an equational
constraint used at most for the first projection step, and not otherwise. The sym-
bol ‘single’ could feasibly be replaced by ‘first’ to have more clear meaning, but
‘single’ and ‘multiple’ reconcile with the typical terminology used in existing lit-
erature on equational constraints, such as [48, 49]. ‘multiple’ equational constraints
means “equational constraints in (semi-)restricted projection wherever feasible”. The
meaning of ‘none’ is clear.

We discuss some remarks on the implementation of the projection phase, particu-
larly in reference to Algorithm 5.

1. Each check “There exists p in PE is such that degx(p) > 0” is false when PE = ∅.

2. One notes that bases are stored in such a way that their index in storage is
commensurate with their level (Definition 26). Polynomials from CAD input also
find themselves in bases appropriate to their level, rather than being stored at
level n.

3. The first and last projection steps appear as special cases in order to use restricted
rather than semi-restricted projection when n > 1 for the first projection step
and additionally when n > 2 for the last projection step. The loop from 2 to
n− 2 covers any intermediate steps to attempt to use semi restricted projection
when n > 3. These steps are all otherwise very similar.

4. Usage of single equational constraints merely has us merging any remaining ECs
into the set of inequalities as soon as the first projection step is over (line 32).
When we specify to use no equational constraints (‘UseEquations’ = ‘none’)
then this happens before the preprocessing of PE by Gröbner bases.

5. Line 10 identifies the case where the Gröbner basis deduces that the equational
constraints are in themselves inconsistent — via discussion in Section 3.7.3.

6. Figures 3-1 and 3-2 are relevant to the first step of projection — what is encap-
sulated by line 21. Figures 3-3 and 3-4 demonstrate the intermediate steps of the
loop on line 36. Lastly, figures 3-5 and 3-6 cover the last projection step encapsu-
lated by line 47. In each figure, the intention of the arrows is to demonstrate the
contribution of various sets to one another. One must create and store bases for
any one level, before projecting with respect to the sets formed, not least because
projection is more efficient on bases to minimise degrees.

Irreducible Basis Generation in CAD

Irreducible basis generation in CAD is handled by the functions CADMakeBasis and
CADMakeBasisWithEqns. QuantifierElimination creates fully factored bases via
Maple’s Factor rather than merely square-free bases via Sqrfree for various reasons

60

Algorithm 5 Full projection to define all projection bases with restricted projection
operations

Input: A a set of polynomials associated with inequalities from input, E a set of
polynomials that are equational constraints from input, vars an Array of the
variables x1, . . . , xn according to the variable ordering chosen, n the total
number of variables, UseGroebner a boolean flag as keyword option dictating
whether we preprocess E with Gröbner bases (default true), PropagateECs a
boolean flag as keyword option dictating whether we propagate equational
constraints through projection (default true), UseEquations a symbol as
keyword option dictating how many uses of equational constraints we allow
(‘none’, ‘single’, ‘multiple’, default ‘multiple’)

Output: P , a projection object representing projection bases of all levels for
the CAD

1: procedure projectAllOrders(A, E, vars, n, UseGroebner, PropagateECs,
UseEquations)

2: (PA, PE) ← A,E
3: Let P 7→ inequalities be an empty Array with n elements, and P 7→ equations,

P 7→ pivotSets empty Arrays with n− 1 elements
4: if UseEquations = ‘none’ then
5: PA ← PA ∪ PE
6: PE ← ∅
7: end if
8: if UseGroebner and |PE | > 0 then
9: PE ← equationalConstraintsToGroebner(PE , vars, n)

10: if PE = {p} for some polynomial p, and deg(p) = 0 then . Most likely
PE = {1}

11: for i to n do
12: P 7→ inequalities[i]← ∅
13: end for
14: if n > 1 then . To notify that equations were actually used
15: P 7→ equations[−1]← ∅
16: P 7→ pivotSet[−1]← ∅
17: end if
18: return P . Hence returning a projection data structure with empty

bases
19: end if
20: end if
21: if n > 1 then
22: x← vars[−1] . x = xn
23: if There exists p in PE such that degx(p) > 0 then
24: (P 7→ pivotSets[−1], PE , contE , pivc) ← choosePivotSet(PE , x)
25: (P 7→ inequalities[−1], contA, self 7→ equations[−1]) ←

CADMakeBasisWithEqns(PA, PE , self 7→ pivotSets[−1], x)
26: (PA, PE) ← lazardProjectionRestricted(P 7→ pivotSets[−1], PE ,

P 7→ pivotSets[−1], pivc, contA, contE , x, PropagateECs)

61

Algorithm 5 Full projection in CAD, Part 2

27: else
28: (P 7→ inequalities[−1], contA) ← CADMakeBasis(PA, xn)
29: PA ← lazardProjection(P 7→ inequalities[−1], contA, xn)
30: end if
31: end if
32: if UseEquations = ‘single’ then . Abandon further usage of ECs
33: PA ← PA ∪ PE
34: PE ← ∅
35: end if
36: for i from 2 to n− 2 do
37: x← vars[−i] . x = xn−i+1

38: if There exists p in PE such that degx(p) > 0 then
39: (P 7→ pivotSets[−i], PE , contE , pivc) ← choosePivotSet(PE , x)
40: (P 7→ inequalities[−i], contA, self 7→ equations[−i]) ←

CADMakeBasisWithEqns(PA, PE , self 7→ pivotSets[−i], x)
41: (PA, PE) ← lazardProjectionSemiRestricted(P 7→ pivotSets[−i], PE ,

P 7→ pivotSets[−i], pivc, contA, contE , x, PropagateECs)
42: else
43: (P 7→ inequalities[−i], contA) ← CADMakeBasis(PA, x)
44: PA ← lazardProjection(P 7→ inequalities[−i], contA, x)
45: end if
46: end for
47: if n > 2 then
48: x← vars[2] . x = x2
49: if There exists p in PE such that degx(p) > 0 then
50: (P 7→ pivotSets[1], PE , contE , pivc) ← choosePivotSet(PE ,x)
51: (P 7→ inequalities[2], contA, self 7→ equations[1]) ←

CADMakeBasisWithEqns(PA, PE , self 7→ pivotSets[1], x)
52: (PA, PE) ← lazardProjectionRestricted(P 7→ pivotSets[1], PE ,

P 7→ pivotSets[−1], pivc, contA, contE , x, PropagateECs)
53: else
54: (P 7→ inequalities[2], contA) ← CADMakeBasis(PA, x)
55: PA ← lazardProjection(P 7→ inequalities[2], contA ∪ PE , x)
56: end if
57: else
58: PA ← PA ∪ PE
59: end if
60: (P 7→ inequalities[1],) ← CADMakeBasis(PA, vars[1]) . vars[1] = x1
61: return P
62: end procedure

62

discussed in Remark 34. The distinction of CADMakeBasisWithEqns from CADMake-
Basis is that it generates bases for a set of inequality polynomials and ECs taking into
account a chosen pivot set — these bases may as well both be made disjoint from the
pivot set, and furthermore the basis of inequality polynomials may as well be made
disjoint from BE as well. Because of selection of the pivot set by Algorithm 22 to
generate C, all polynomials in E are known to have non trivial degree in x.

Remark 34 (Reasoning for Fully Factored Bases). The motivation for full fac-
torisation of polynomial bases in QuantifierElimination is mainly to assist root iso-
lation, where the support for factorisation of polynomials over real algebraic numbers
is presently stronger than root isolation for the same. Further, it better lends us to-
wards a canonical form for polynomial bases such that set differences of univariate bases
A \ B should allow us to discard all real roots from B when inspecting A \ B. Lastly,
generation of fully factored bases allows us to fully make use of a caching approach
on the underlying operations of projection (resultants, discriminants) in incremental
projection within CAD incrementality (Section 5.2.1).

One notes that the presence of real algebraic numbers as coefficients for polynomials
in CAD somewhat frustrates the ability to have a fully canonical form for polynomials in
bases. A real algebraic number in our representation cannot have a canonical form due
to differing valid isolating intervals, so any references to canonical form for polynomials
are in reality attempts to make the polynomial canonical, at the very least by making
it monic. In particular Maple does not deduce by default that the coefficients between
polynomials are equivalent by checking for intersection of isolating intervals where
irrational numbers appear.

Algorithm 6 Irreducible canonical polynomial basis creation with respect to a variable
in CAD

Input: A, a set of polynomials associated with inequalities, x a variable
Output: BA, the fully factored canonical basis of all polynomials in A of non
trivial degree in x, and contA, factors of all polynomials in A of degree 0 in x

1: procedure CADMakeBasis(A, x)
2: BA ← ∅
3: contA ← ∅
4: for b in A do
5: for f in Factors(b) do
6: if degx(f) > 0 then
7: BA ← ∪{f ′}, where f ′ is f in canonical form
8: else
9: contA ← ∪{f}

10: end if
11: end for
12: end for
13: return BA, contA
14: end procedure

63

Algorithm 7 Irreducible canonical basis creation in CAD with ECs

Input: A a set of polynomials associated with inequalities, E a set of equational
constraints of non trivial degree in x that may owe partial factorisation, x a
variable, C a basis of factors of the chosen pivot for (semi-)restricted
projection in x

Output: BA, the fully factored canonical basis of all polynomials in A of non
trivial degree in x, and contA, factors of all polynomials in A of degree 0 in x,
and BE a fully factored canonical basis of all polynomials in E

1: procedure CADMakeBasisWithEqns(A, E, x, C)
2: BA ← ∅
3: BE ← ∅
4: contA ← ∅
5: for b in E do
6: for f in Factors(b) do
7: f ′ ← f in canonical form
8: if not f ′ ∈ C then
9: BE ← ∪{f ′}

10: end if
11: end for
12: end for
13: for b in A do
14: for f in Factors(b) do
15: if degx(f) > 0 then
16: f ′ ← f in canonical form
17: if not f ′ ∈ C and not f ′ ∈ BE then
18: BA ← ∪{f ′}
19: end if
20: else
21: contA ← ∪{f ′}
22: end if
23: end for
24: end for
25: return BA, contA, BE
26: end procedure

64

Φ
(x

1
,.
..
,x

n
)

··
·

P
A

B
A
n

A

co
n
t A

··
·

P
E

B
E
n
−
1

E
G

E

co
n
t E

C
n
−
1

B
as

is
cr

ea
ti

on
..

.
G

rö
b

n
er

B
as

is

el
se
E
G
←
E

B
as

is
cr

ea
ti

on
w

it
h

E
C

s
P
L
C
n
−
1
(B

A
n
∪
B
E
n
−
1
)

P
iv

ot
se

le
ct

io
n

,
E
G
←
E
G
\
{∏ f

∈
C
n
−
1
f
}

F
ig

u
re

3
-1

:
D

ia
gr

am
d

em
o
n

st
ra

ti
n

g
in

it
ia

l
st

ep
s

in
p

ro
je

ct
io

n
w

it
h

eq
u

at
io

n
al

co
n

st
ra

in
ts

.
Φ

is
d

ec
om

p
os

ed
in

to
A

an
d
E

b
y

A
lg

or
it

h
m

2
1
,

su
ch

th
at

w
e

ar
e

ab
le

to
id

en
ti

fy
th

e
se

t
of

eq
u

at
io

n
al

co
n

st
ra

in
ts
E

.
F

u
rt

h
er

,
u

sa
ge

of
G

rö
b

n
er

b
as

es
to

p
re

p
ro

ce
ss

E
is

in
g
re

y
as

it
is

o
p

ti
on

al
d

ep
en

d
in

g
on

th
e

va
lu

e
of

U
se

G
ro

eb
n

er
.

T
h

en
E

or
E
G

(a
n

d
h

en
ce
B
E
n
−
1
)

is
as

su
m

ed
to

co
n
ta

in
at

le
as

t
on

e
p

ol
y
n

o
m

ia
l

of
n

on
tr

iv
ia

l
d

eg
re

e
in
x
n

su
ch

th
at

se
le

ct
io

n
of

a
p

iv
ot

se
t

m
ak

es
se

n
se

.
T

h
e

se
t
C
n
−
1

is
th

e
se

t
of

fa
ct

or
s

o
f

th
e

se
le

ct
ed

“p
iv

o
t”

fr
om

E
G

,
v
ia

A
lg

or
it

h
m

22
.

T
h

is
p

iv
ot

is
re

m
ov

ed
fr

om
E
G

.
O

n
e

th
en

ob
se

rv
es

u
sa

ge
of

re
st

ri
ct

ed
L

az
ar

d
p

ro
je

ct
io

n
v
ia

th
e

p
iv

ot
se

t
C
n
−
1

to
re

ce
iv

e
th

e
se

ts
P
A

an
d
P
E

,
w

h
er

e
P
E

is
a

se
t

of
p

ot
en

ti
al

eq
u

at
io

n
al

co
n

st
ra

in
ts

fo
r

th
e

n
ex

t
le

v
el

a
n

d
p

ro
je

ct
io

n
st

ep
.
P
A

an
d
P
E

ar
e

n
ot

n
ec

es
sa

ri
ly

b
as

es
,

w
h

er
e
P
A

is
a

se
t

of
p

ol
y
n

om
ia

ls
ju

d
ge

d
to

b
e

th
os

e
fr

om
“
in

eq
u

al
it

ie
s”

,
o
r

in
ot

h
er

w
or

d
s

n
o
t

eq
u

at
io

n
al

co
n

st
ra

in
ts

.
T

h
e

ge
n

er
at

ed
P
A

an
d
P
E

to
se

n
d

to
le

ve
l
n
−

1
ar

e
⊂
R

[x
1
,.
..
,x

n
−
1
].

65

Φ(x1, . . . , xn)

· · · PA BAn A

contA

· · · E
¬
∨
f∈E degxn(f) > 0

Basis creation

Figure 3-2: Diagram demonstrating initial steps in projection where the set of equa-
tional constraints E from input Φ is found to have no polynomials of non trivial degree
in xn (which also includes the possibility that E = ∅). We use standard Lazard pro-
jection on the generated basis set for A, BAn to receive the set PA to bring forward
to the next projection set. PE gets carried forward directly through to the next step.
The generated PA and PE to send to level n− 1 are ⊂ R[x1, . . . , xn−1].

· · · PA BAn−i+1 PA

contA

· · · PE BEn−i PE

contE

Cn−i

Basis creation with ECs

PE ← PE \ {
∏
f∈Cn−i f}

PL∗Cn−i(BAn−i+1 ∪BEn−i)

Figure 3-3: Diagram demonstrating an intermediate step in projection with equational
constraints. By an intermediate projection step, we mean step i, projection on xn−i+1,
for 1 < i < n−1. PE (hence also BEn−i) is assumed to contain at least one polynomial
of non trivial degree in xn−i+1 such that selection of a pivot set makes sense. PE ←
PE \{

∏
f∈Cn−i f} is the selection of this pivot (Algorithm 22), and hence removal from

PE before generation of the basis BEn−i for PE . The generated replacement PA and
PE to send to the next level are ⊂ R[x1, . . . , xn−i].

66

· · · PA BAn−i+1 PA

contA

· · · PE

Basis creationPL(BAn−i+1)Basis creation

¬
∨
f∈PE degxn−i+1

(f) > 0

Figure 3-4: Diagram demonstrating an intermediate step in projection, meaning step i
to project with respect to xn−i+1 where 1 < i < n−1. This reflects such a step where no
available equational constraints exist of non trivial degree in xn−i+1, which also includes
the possibility that PE = ∅. Hence PE is brought forward to the next projection step
in the next variable. Meanwhile, we perform regular Lazard projection on the basis set
generated for PA, BAn−i+1 , generating the replacement PA ⊂ R[x1, . . . , xn−i] to bring
forward to the next level.

BA1 PA BA2 PA

contA

PE BE1 PE

contE

C1

Basis creation with ECs

Basis creation

PA ← PA ∪ PE

PE ← PE \ {
∏
f∈C1

f}

PLC1(BA2 ∪BE1)

Figure 3-5: Diagram demonstrating the last step of projection with equational con-
straints. As such PE is assumed to have polynomials with non trivial degree in x2,
and we use restricted projection on the chosen pivot set C1 with respect to x2. The
selected pivot (Algorithm 22) must be removed from PE (PE ← PE \{

∏
f∈C1

f}). This
restricted projection produces a PA and PE both ⊂ R[x1], on which no projection is
meaningful, hence the equational constraints amongst them aren’t meaningful, so we
merge PE into PA. Lastly, we generate the basis on PA as BA1 , storing these as the
univariate polynomials to lift around first.

67

BA1 PA BA2 PA

contA

PE

Basis creation

PL(BA2)Basis creation

PA ← PA ∪ PE

Figure 3-6: Diagram demonstrating last step in projection, where we must have PE ⊂
R[x1] such that we cannot use equational constraints in the last projection step on
x2. Hence we merely perform standard Lazard projection on BA2 and then as no
projection remains to be done, merge in the remaining equational constraints forming
a set in R[x1]. We produce the last basis of inequalities to store, BA1 — storing a basis
of equational constraints would be superfluous due to the lack of extra projection to
do.

The most contemporary projection operator is the Lazard operator [46, 51]. As a
result, this is the operator used in QuantifierElimination. The Lazard operator is
an improvement on McCallum’s by omission of “intermediate” or “middle” coefficients
in x, i.e. all but the leading and trailing coefficients.

Other improvements to the projection operator with respect to the context of QE
are optimisations in the presence of equational constraints.

3.4 Lifting

Definition 35 (Lazard Delineable). [51, Definition 2.10] Let S ⊆ Rn−1 and f ∈
R[x1, . . . , xn]. We say that f is Lazard delineable on S if:

(i) The Lazard valuation of f above β is the same for each point β ∈ S.

(ii) There exist finitely many continuous functions θi : S → R, such that θ1 < · · · < θk
if k > 0 and such that for all β ∈ S, the set of real roots of fβ is {θ1(β), . . . , θk(β)}.

(iii) If k = 0, then the graph of f does not pass over S. If k ≥ 1, then there exist
positive integers m1, . . . ,mk such that, for all β ∈ S and for all 1 ≤ i ≤ k, mi is
the multiplicity of θi(β) as a root of fβ.

Definition 36 (Lazard Evaluation/Valuation [51]). The Lazard evaluation of a
level 1 ≤ k ≤ n square-free polynomial f(x1, . . . , xk) from projection at the sample point
α of a level k−1 CAD cell fα(xk) is the polynomial returned by the result of Algorithm
11.

The associated Lazard valuation is να(f) = [v1, . . . , vk−1] ∈ Nk−1
0 , where v1, . . . , vk−1

are defined by the comment on line 8 of Algorithm 11.

68

Algorithm 8 Lazard projection - implements the operator PL(A)

Input: BA a basis of polynomials all of non trivial degree in x, contA set of
polynomials free of x, “content” of basis polynomials in BA, x the variable to
do Lazard projection with respect to

Output: PA, a set of polynomials free of x, not necessarily a square-free basis
1: procedure lazardProjection(BA, contA, x)
2: PA ← ∅
3: for i to |BA| do
4: f ← BA[i]
5: PA ← PA ∪ {lcx(f), tcx(f),discrimx(f)}
6: for j to i− 1 do
7: PA ← PA ∪ {resx(f,BA[j])}
8: end for
9: for j from i+ 1 to |BA| do

10: PA ← PA ∪ {resx(f,BA[j])}
11: end for
12: end for
13: return PA ∪ contA
14: end procedure

With Definition 35, we can now understand the property Z as “Lazard delineability”
for the Lazard projection operator PL as P in Definition 25. Lazard evaluation is what
enables us to evaluate projection polynomials at sample points to receive univariate
lifting polynomials to enable the lifting process. Lazard evaluation differs from standard
evaluation in that it avoids the nullification that the McCallum projection operator
suffers from (Section 3.7.2). Lazard evaluation/valuation/delineability is also known
as lex-least evaluation/valuation/delineability in [57, 56], or in other words “Lazard”
is sometimes exchanged for “lex-least” in associated literature, due to properties of
Lazard valuations.

Remark 37. Considering a one to one correspondence between CADCells and their full
sample points, it will be convenient to speak of the Lazard evaluation of a polynomial
on a CADCell or on its sample point as one and the same.

Definition 38 (Lifting Polynomial). A lifting polynomial is the result of Lazard
evaluation of a level 1 ≤ k ≤ n irreducible polynomial at a level k − 1 CAD cell.
The lifting polynomial in this context is hence in R[xk], in particular univariate in xk.
The root descriptions of a lifting polynomial appear as bounds for sectors, and as local
sample points for local sections created in stack construction (see CCHILD, Algorithm
14).

Algorithm 12 produces lifting polynomials from projection polynomials via Lazard
evaluation, in functions such as CCHILD. The algorithm chooses to fully factor the
results of Lazard evaluation, as opposed to merely generating a square-free factorisation
— the Maple function Factors is chosen over Sqrfree. This is an implementation choice

69

Algorithm 9 Restricted Lazard Projection with Equational Constraints — implements
PLE(A) = PL(E) ∪ {resx(f, g) | f ∈ A, g ∈ E \ {f}}

Input: BA, a basis of polynomials associated with inequalities, E, set of
equational constraints of non trivial degree in x that may attribute some
partial factorisation each, BP , basis of factors of the equational constraint
chosen as pivot for restricted projection, pivc the content in x of the chosen
pivot for restricted projection, contA, set of polynomials free of x, “content”
of BA, contE , set of ECs free of x, x the variable to take restricted Lazard
projection with respect to, PropagateECs a boolean flag from keyword option
dictating whether to propagate equational constraints via the resultant rule

Output: Two sets of polynomials PA and PE free of x, not necessarily square-free
bases. PE is a set of polynomials identifiable as ECs in the next variable, and
PA is a set of all other polynomials (implicitly associated with inequalities).

1: procedure lazardProjectionRestricted(BA, E, BP , pivc, contA, contE , x,
PropagateECs)

2: (PA, PE) ← ∅, ∅
3: if PropagateECs then . If this option is turned on, we should oblige it by

adding resultants from the resultant rule (3.3) to the set of potential
pivots for the next projection step

4: resdest ← PE
5: else
6: resdest ← PA
7: end if
8: for g in E do
9: resdest ← resdest ∪ {pivc

∏
f∈BP resx(f, g)}. Usage of the resultant rule (3.3)

10: end for
11: if deg(pivc) > 0 and (resdest = {0} or resdest = ∅) then
12: PA ← PA ∪ {pivc} . No non trivial resultants were computed via usage of

the resultant rule in the loop on line 8 so we need to let pivc manifest
as a regular “inequality polynomial” at the top level

13: end if
14: for i to |BP | do
15: f ← BP [i]
16: PA ← PA ∪ {resx(f, g) | g ∈ BA}
17: for j from 1 to i− 1 do
18: PA ← PA ∪ {resx(f,BP [j])}
19: end for
20: for j from i+ 1 to |BP | do
21: PA ← PA ∪ {resx(f,BP [j])}
22: end for
23: PA ← PA ∪ {lcx(f), tcx(f),discrimx(f)}
24: end for
25: return PA ∪ contA, PE ∪ contE
26: end procedure

70

Algorithm 10 Semi Restricted Lazard Projection — implements PL∗E(A) = PLE(A)∪
{discrimx(f) | f ∈ A}

Input: BA, a basis of polynomials associated to inequalities of non trivial degree
in x, E, a set of polynomials of non trivial degree in x associated to ECs that
may attribute some partial factorisation each, BP , the basis of factors of the
equational constraint chosen as pivot for semi-restricted projection, pivc, the
content of the chosen pivot in x, contA, a set of polynomials associated with
inequalities free of x, contE a set of ECs free of x, x the variable to perform
semi-restricted projection with respect to, PropagateECs a boolean flag from
keyword option dictating whether we propagate equational constraints
through projection

Output: Two sets of polynomials PA and PE free of x, not necessarily square-free
bases. PE is a set of polynomials identifiable as ECs in the next variable, and
PA is a set of all other polynomials (implicitly associated with inequalities).

1: procedure lazardProjectionSemiRestricted(BA, E, BP , pivc, contA,
contE , x, PropagateECs)

2: (PA, PE) ← lazardProjectionRestricted(BA, E, BP , pivc, contA, contE , x,
PropagateECs) . PLE(BA)

3: for f in BA do
4: PA ← PA ∪ {discrimx(f)}
5: end for
6: for f in E do . E is all unused equational constraints, we treat them as

inequalities but they are separated for technical reasons
7: PA ← PA ∪ {discrimx(f)}
8: end for
9: return PA, PE

10: end procedure

71

Algorithm 11 Lazard Evaluation

Input: c a level k − 1 CADCell, f ∈ R[x1, . . . , xk], where 1 ≤ k ≤ n, with full
sample point α

Output: fα(xk), the Lazard evaluation of f at α (Definition 36)
1: procedure lazardEval(c, f)
2: Let α be the full sample point of c, [x1 = a1, . . . , xk−1 = ak−1] where

a1, . . . , ak−1 are real algebraic numbers
3: fα ← f
4: for i to k − 1 do
5: s← lhs(αi)− rhs(αi) . s becomes the ith element of the full sample point

as a linear polynomial
6: while s | fα do
7: fα ← fα

s
8: end while . Let vi be the number of times s | fα is true
9: fα ← fα|αi

10: end for . It is allowable that k − 1 can be 0, i.e. c is the root cell, and hence
there is nothing to do to fα = f

11: return fα
12: end procedure

that may differ from other implementations that may merely make square-free bases in
general (Remark rmk:fully-factored-reasoning). The purpose of returning the table T
is such that lifting polynomials can be linked back to their projection polynomials in
order to form real algebraic functions describing the local general cell bounds for new
cells (see CCHILD, Algorithm 14).

Definition 39 (CADCell). A CADCell object is a member of the CAD tree. As an
object, it only stores local information via its properties, which include:

• level : Its level, i such that 0 ≤ i ≤ n both describing its level in the CAD tree
and canonically which variable the CAD cell is associated with locally — xn−i+1

if i > 0 else the cell is the root cell,

• sample point : Its local sample point — a single equation of the form xn−i+1 = α
for α some real algebraic number,

• cell description : Its local cell description — a relation xn−i+1 ρ f where f is a real
algebraic function on xn−i+2, . . . , xn and ρ ∈ {=, <,>}, or a conjunction of two
strict inequalities xn−i+1 ρ f where f is a real algebraic function on xn, . . . , xn−i
and ρ ∈ {<,>}, or true (meaning −∞ < xn−i+1 <∞, i.e. xn−i+1 can take any
value on the real line for this cell) such that this description corresponds to the
CAD cell locally in light of the descriptions of its parent(s) in xn−i+2, . . . , xn,

• local index : Its local index, a positive integer j, even if the cell is a local section,
odd if it is a local sector,

72

Algorithm 12 Creation of an irreducible canonical basis of univariate lifting polyno-
mials from a set of multivariate projection polynomials

Input: P , a projection object, or any other data structure (such as a set)
containing polynomials ⊂ R[x1, . . . , xk+1] that can be iterated over, c a level
k ≥ 0 CADCell

Output: B, a fully factored canonical basis of univariate lifting polynomials
⊂ R[xk+1], and T , a table mapping polynomials in B to their originating
projection polynomial from P

1: procedure univariateBasisAtLazard(P , c)
2: if P is a projection object then
3: Set the level for iteration of P as k, such that P iterates over BAk , BEk−1

,
and Ck−1, or BAk if the latter two sets do not exist

4: end if . Else P a set
5: B ← ∅
6: for b in P do
7: bα ← lazardEval(c, b) . Algorithm 11
8: for f in Factors(bα) do . Factors(bα) a list of irreducible factors of bα

without multiplicity
9: f ′ ← f in canonical form

10: B ← B ∪ {f ′}
11: T [f ′]← b
12: end for
13: end for
14: return B, T
15: end procedure

73

B
A

1
B
A

2
··
·

B
A
n

B
E

1
··
·

B
E
n
−
1

C
1

..
.

C
n
−
1

⊂
R

[x
1
]

⊂
R

[x
1
,x

2
]

..
.

⊂
R

[x
1
,.
..
,x

n
]

R
o
ot

C
el

l

c 1

c [
1
,3
]

c [
1
,2
]

c [
1
,1
]

c 2

c [
2
,3
]

c [
2
,2
]

··
·

c [
2
,2
,.
..
,k
]

c [
2
,2
,.
..
,k
,3
]

c [
2
,2
,.
..
,k
,2
]

c [
2
,2
,.
..
,k
,1
]

c [
2
,1
]

c 3

c [
3
,3
]

c [
3
,2
]

c [
3
,1
]

F
ig

u
re

3-
7:

A
d

ia
gr

am
d

em
on

st
ra

ti
n

g
th

e
op

p
os

it
io

n
in

d
ir

ec
ti

on
s

b
et

w
ee

n
p

ro
je

ct
io

n
an

d
li

ft
in

g,
in

cl
u

d
in

g
th

e
va

ri
ou

s
p
ro

je
ct

io
n

b
a
se

s
st

or
ed

b
y
Q
u
a
n
t
i
f
i
e
r
E
l
i
m
i
n
a
t
i
o
n

(B
A
i
,

1
≤
i
≤
n

,
an

d
B
E
i

an
d
C
i,

1
≤
i
≤
n
−

1)
.

E
ac

h
C

A
D

ce
ll

is
ve

rt
ic

al
ly

al
ig

n
ed

w
it

h
th

e
p

ro
je

ct
io

n
b

a
se

s
it

is
u

se
d

w
it

h
in

L
az

ar
d

va
lu

at
io

n
to

cr
ea

te
it

s
ch

il
d

ce
ll

s.
F

or
ex

am
p

le
,
c 1

h
as

a
sa

m
p

le
p

oi
n
t
x
1

=
α

,
α
∈
R

to
el

im
in

a
te
x
1

in
B
A

2
,
B
E

1
an

d
C
1

to
re

ce
iv

e
u

n
iv

ar
ia

te
p

ol
y
n

om
ia

ls
in
x
2

to
fo

rm
th

e
lo

ca
l

in
fo

rm
at

io
n

to
cr

ea
te

c [
1
,1
],
c [
1
,2
],
c [
1
,3
].

T
h
e

d
ir

ec
ti

o
n

of
p

ro
je

ct
io

n
is

“l
ef

t”
,

w
h

er
ea

s
th

e
d

ir
ec

ti
on

of
li

ft
in

g
is

“r
ig

h
t”

,
w

it
h

re
sp

ec
t

to
th

is
d

ia
gr

am
(v

ia
th

e
d

ir
ec

ti
on

of
th

e
a
rr

ow
s)

.
H

en
ce

th
ey

ar
e

in
op

p
os

it
io

n
.

74

• parent : Its parent CADCell, if the cell is of positive level, hence forming the
structure of the CAD tree,

• children : An Array of its child cells if the cell is of level < n and they have been
constructed by CCHILD, always sorted with respect to the local indices of those
child cells (and hence their alignment from left to right on the real axis),

• truth value : Its truth value (relevant for QE by Partial CAD) — where assigned,
true, false, or the Maple value FAIL, all of which type as a boolean value. FAIL
should be interpreted as “truth value indeterminate”,

• tarski formula : Its (real) Tarski formula — where QE is concerned, the equivalent
of the unquantified part of prenex QE input Φ on the sample point of this cell.
The formula is truth invariant over the cell,

• tarski formula structural : Its (real) Tarski formula in structural form, to enable
incrementality by atomic position,

• lower bound, upper bound : Its lower and upper bounds, mostly relevant where
the cell is a local sector — real algebraic numbers obtained as bounds for the cell
via its full sample point.

Algorithm 13 defines the constructor for creation of CADCells. Importantly, cre-
ation of the root cell requires slightly different (in particular, fewer) arguments due to
the fewer properties to be assigned (much like the constructor for IQERs, Algorithm 1).
One should pass the unquantified part of quantified prenex input for QE (Φ) to create
the root cell such that its Tarski formula is identically Φ when doing Partial CAD,
or in full CAD the root cell should receive true as the most canonical Tarski formula
such that the same number of arguments can be passed — and the tarski formula is
irrelevant (unassigned) for CADCells in full CAD. true is also the equivalent Tarski for-
mula to “anywhere in Rn”. The root cell never gets assigned further properties except
for potentially its truth value in the context of QE, where propagation of truth values
from cells in the tree may allow the root cell to receive a true or false truth value.

Definition 40 (Local Sector/Section). A local sector is a CADCell such that the
last element of its full cell index (i.e. its local index) is odd. A local section is a
CADCell such that the last element of its full cell index (i.e. its local index) is even. In
other words, c 7→ local index mod 2 = 1 or 0 for a CADCell c of positive level to be a
local sector or section respectively.

When defining a local section, the cell does not technically have both a lower and
upper bound, due to the cell owing locally to exactly one real algebraic function. Hence
6 arguments are passed for a local section, and the cell only receives a real algebraic
number as lowerbound and no upperbound. This lowerbound also easily allows us to
deduce the local sample point for a local section, xn−i+1 = lowerbound. 7 arguments
are required to define a local sector, as the cell requires real algebraic numbers (or −∞,
∞ respectively) for its lower and upper bound.

75

Algorithm 13 Constructor for a CADCell

Input: Φ(x1, . . . , xn) an unquantified Real Tarski Formula corresponding to top
level input, OR cd an extended Tarski formula (Definition 33), p the parent
CADCell for c, lvl the level of the created cell, ind the local index for the
created cell, addAsChild a boolean value dictating whether we add this cell
as the next possible child for p, lb the lower bound for the created cell (if
creating a local sector) or the exact bound for the created cell (if creating a
local section), ub the upper bound for the created cell (if creating a local
sector)

Output: c, a new CADCell

1: procedure CADCell(cd, p, lvl, ind, addAsChild, lb, ub)
2: if 1 argument was passed then . Creating the root CADCell
3: c 7→ level← 0
4: c 7→ tarski formula← cd . cd = Φ, if doing QE, else cd = true
5: else . Creating any non trivial CADCell
6: c 7→ parent← p
7: c 7→ cell description← cd
8: c 7→ level← lvl
9: c 7→ local index← ind

10: c 7→ lowerbound← lb
11: if addAsChild then
12: Add c as the next element of p 7→ children
13: end if
14: if 7 arguments were passed then . Defining a local sector
15: c 7→ upperbound← ub
16: end if
17: end if
18: end procedure

76

Local Data for a CADCell

One notes that CADCells only store local information, as a matter of storage complexity.
Obtaining full information for a CADCell is almost always a matter of traversal towards
the root cell. For example, a level 1 CADCell’s full sample point is the same as its local
sample point. For a level i > 1 CADCell, its full sample point can be found recursively
via the concatenation of its parent’s full sample point with its local sample point. Usage
of a function such as Lazard evaluation (Algorithm 11) requires the full sample point of
a cell (represented as a list), hence the method getSamplePoint for a CADCell produces
this concatenation as a list. For the level 0 root cell, various data is unassigned, such its
sample point or index, hence relevant methods attempting to return such data for the
root cell return something trivial, such as the empty list for its sample point. Various
recursive functions on CADCells make use of the fact that modification of its local
data implicitly modifies all cells in the subtree rooted at that cell. Examples of this
are Algorithms 52 or 51. Note that one can traverse both up and down the tree, via
the parent and children properties respectively. Being able to do both, sometimes in
the same algorithm, is a necessity. The subtree rooted at any one cell is in fact the
cylinder of that cell, with the leaves of that subtree the finest possible decomposition
of that cylinder. In total, while a CADCell only stores local information with respect
to the variable it was built around, it represents a subset of Rn in light of the data
from its ancestral cells. The child cells of any cell represent a decomposition of that
cell with respect to one axis, and this decomposition of Rn is finer unless there is only
one child cell (in which case there were no roots to decompose with respect to, and the
decomposition is exactly as fine).

Partial CAD

Partial CAD is a pivotal optimisation for the CAD algorithm provided by Collins &
Hong [36] tailored completely to QE. In particular, as opposed to building every sin-
gle cell, one can terminate building the CAD when a satisfactory cell (or set of cells)
has been built that solves the QE problem. As an example, for a fully existentially
quantified problem, Partial CAD enables the best case that one need only build one
maximum level cell, for which the sample points associated to this cell are witnesses
for which substitution into Φ makes Φ equivalent to true. Given that PartialCylindri-
calAlgebraicDecompose within QuantifierElimination has the main purpose of QE,
it is obvious that the implementation should closely follow the work of Partial CAD.

Algorithms 14 and 15 are based on the “Partial CAD” work from [36]. They
describe the creation of child cells (hence CCHILD) and propagation of truth values
(hence PRPTV) from those child cells towards the root where possible. In terms of
the discussion above, CCHILD creates unevaluated cells, while PRPTV evaluates them.
Their formulation here is contextual for QuantifierElimination, but each are heavily
based on the original formulations from [36]. The early termination of Partial CAD
arises from usage of PRPTV, which propagates truth values to the extent that we may
be able to identify unevaluated cells as meaningless to evaluate and evaluated cells as
meaningless to pass through further stack construction.

77

Algorithm 14 constructs the stack beneath an evaluated CADCell c with a determi-
nate or superfluous truth value in order to gain child cells in terms of the CAD tree.
The cells are constructed via the CADCell constructor Algorithm 13, with cell bounds
deduced via real root isolation of lifting polynomials obtained via Lazard evaluation of
projection polynomials of a level appropriate to the cell c.

Some comments on Algorithm 14, CCHILD:

• CCHILD represents stack construction with respect to the next canonical variable
for a cell. The children of the cell c are subsets of c in space, in the cylinder of c,
and in some sense “replace” c in terms of the canonical container of unevaluated
cells in CAD, cad, due to the decomposition.

• Real algebraic numbers & functions appear, in particular created as RootOfs as
the representation of each requires in the loop on line 32. The real algebraic num-
bers form the static local cell bounds found from the univariate lifting polynomials
for c. The real algebraic functions are used to form the local cell descriptions for
cells. The real algebraic functions are formed from the relevant projection poly-
nomials that the lifting polynomials come from (via the table T , defining that
map).

• We must be careful to take into account any bounds donated from any lifting
constraints (Section 3.6).

Algorithm 15 represents propagation of truth values to attempt to deduce QE, re-
moving subtrees from the CAD tree that can be seen as superfluous due to propagation
of truth values. It must be called on an evaluated CADCell “cell” with child cells, and
so always follows usage of Algorithm 14 on “cell”. The canonicalization of the algo-
rithm uses the object properties of a CADCell. The idea is to iterate across the child
cells, evaluating them to attempt to deduce their truth value, or inspecting their truth
value if it was already evaluated. Depending on the quantifier (or lack thereof) com-
mensurate with the canonical level of “cell”, the determinate truth value of a child cell
may be meaningful to the extent the parent can immediately share that truth value.
In other cases the same particular truth value amongst all child cells allows the parent
to take the same truth value. Whenever a cell receives a determinate truth value, it is
added to “leaves” and removed from “cad”, because further stack construction is un-
necessary. Furthermore, the whole subtree beneath such a cell can be “removed from
the subtree” in terms of removal from “cad”, if one existed already. The addition of
a cell to “leaves” is performed by evalAndSetTruthValue, the function also performing
evaluation (Section 3.4).

Some remarks on nuances of this formulation of PRPTV, Algorithm 15:

1. While there is scope for strategy amongst the child cells to evaluate first, the
current formulation and implementation includes none, merely iterating across
them in order. Some obvious scope for strategy is to evaluate the local sectors
first, because evaluation (of a formula to assign a cell’s tarski formula) in terms of
a local sample point featuring a rational number is less costly than the evaluation

78

Algorithm 14 Creation of child cells for a CADCell

Input: c, a level 0 ≤ k < n CADCell, cad a container for new unevaluated cells,
bases a projection object, vars an Array of all variables (corresponding to
the variable ordering x1, . . . , xn), n number of variables for CAD, OpenCAD
a boolean flag dictating whether we construct an open CAD i.e. ignore
building of sections, constraints and bounds Arrays created from parsing of
lifting constraints, curtainCheck a boolean flag by keyword option, by default
true

Output: No meaningful return, but c 7→ children populated with the new child
cells of c, all added to cad

1: procedure CCHILD(c, cad, bases, vars, OpenCAD, constraints, bounds,
curtainCheck)

2: Let α be the full sample point for c
3: Let lvl be k + 1
4: if curtainCheck and n > 1 and lvl > 1 and detectLazardCurtain(c, bases)

then . Code Fragment 27
5: ERROR — Lazard curtain detected — the level k + 1 equational

constraint chosen as pivot
∏
f∈Clvl

f has non zero valuation on c
6: end if
7: (B, T) ← univariateBasisAtLazard(bases, c)
8: Let x be vars[lvl] i.e. xlvl
9: if constraints and bounds were passed then

10: (lb, ub) ← bounds[lvl][1],bounds[lvl][2] . The lower and upper bounds as
real numbers formed by lifting constraints at this level — Section 3.6

11: (intervals, polys) ← isolateRootsBasis(B, x, constraints, bounds)
12: else
13: (lb, ub) ← −∞,∞
14: (intervals, polys) ← isolateRootsBasis(B, x)
15: end if
16: nroots ← |intervals|
17: if nroots = 0 then . No roots, so only one sector to construct
18: if lb = −∞ then
19: if ub =∞ then
20: cell← CADCell(true, c, lvl, 1, true, −∞, ∞)
21: else
22: cell← CADCell(ub < x, c, lvl, 1, true, −∞, ub)
23: end if
24: elseif ub =∞ then
25: cell← CADCell(lb < x, c, lvl, 1, true, lb, ∞)
26: else
27: cell← CADCell(lb < x ∧ x < ub, c, lvl, 1, true, lb, ub)
28: end if
29: push(cad, cell)

79

Algorithm 14 Creation of child cells for a CADCell, Part 2

30: else
31: (raf, ran) ← two empty Arrays with nroots elements
32: for i to nroots do
33: j ← 1 +

∑i−1
j=1 1T [polys[i]]=T [polys[j]]

34: raf[i]← RootOf(T [polys[i]], x, index = real[j])
35: ran[i]← RootOf(polys[i], x, intervals[i][1]..intervals[i][2])
36: end for
37: if lb = −∞ then . “Left-most” sector
38: push(cad, CADCell(x < raf[1], c, lvl, 1, true, −∞, ran[1]))
39: offset← 0
40: elseif lb < intervals[1][1] then
41: push(cad, CADCell(lb < x ∧ x < raf[1], c, lvl, 1, true, lb, ran[1]))
42: offset← 0
43: else
44: offset← 1
45: end if
46: if OpenCAD then
47: for i to nroots − 1 do
48: push(cad, CADCell(raf[i] < x ∧ x < raf[i+ 1], c, lvl,

2(i− offset) + 1, true, ran[i], ran[i+ 1]))
49: end for
50: else
51: for i to nroots − 1 do
52: push(cad, CADCell(x = raf[i], c, lvl, 2i, true, ran[i]))
53: push(cad, CADCell(x < raf[i] ∧ x < raf[i+ 1], c, lvl, 2i+ 1, true,

ran[i], ran[i+ 1]))
54: end for
55: end if
56: if ub =∞ then . “Right-most” sector
57: push(cad, CADCell(raf[−1] < x, c, lvl, 2nroots + 1, true, ran[−1], ∞))
58: elseif ub > intervals[−1][2] then
59: push(cad, CADCell(raf[−1] < x ∧ x < ub, c, lvl, 2nroots + 1, true,

ran[−1], ub))
60: end if
61: end if
62: return
63: end procedure

80

Algorithm 15 Propagation of truth values in QE by CAD (Partial CAD) to identify
and remove CAD subtrees not required for evaluation or stack construction

Input: cell a level 0 ≤ k < n CADCell with child cells, quants, the Array of
quantifiers for the CAD, m the number of quantifiers, n the total number of
variables, cad a container for unevaluated CADCells, leaves a container for
meaningful leaf CADCells, problemCells a container for lifting failures

Output: false if a meaningful truth value could be deduced, and a CAD subtree
could reasonably be removed at this CADCell or higher, else true

1: procedure PRPTV(cell, quants, m, n, cad, leaves, problemCells)
2: Let k = cell 7→ level
3: if k + 1 < n−m+ 1 then . In unquantified space
4: (ortest, andtest) ← false, true
5: for c in cell 7→ children do
6: t← evalAndSetTruthValue(c, leaves)
7: ortest← ortest or t
8: andtest← andtest and t
9: if t = true or t = false then

10: Remove c from cad
11: end if
12: end for
13: if not ortest then
14: cell 7→ truth value← false
15: Remove all cells from the CAD subtree rooted at cell from cad and

problemCells
16: return cell 7→ level = 0 or PRPTV(cell 7→ parent, quants, m, n, cad,

leaves, problemCells)
17: elseif andtest then
18: cell 7→ truth value← true
19: end if
20: elseif Qk−n+m+1 = ∃ i.e. quants[k − n+m+ 1] = ∃ then
21: andtest← false
22: for c in cell 7→ children do
23: try
24: if (ortest← ortest or evalAndSetTruthValue(c, leaves)) then
25: cell 7→ truth value← true . Meaningful truth value
26: if cell 7→ level = 0 or PRPTV(cell 7→ parent, quants, m, n, cad,

leaves, problemCells) then
27: Remove all cells from the CAD subtree rooted at cell from

cad and problemCells
28: end if
29: end if
30: catch “Could not evaluate truth value”:
31: lastFailure← [c,“Could not evaluate truth value”]
32: end try
33: end for

81

Algorithm 15 Propagation of truth values, Part 2

34: if lastFailure is a list then
35: Add lastFailure to problemCells
36: elseif not ortest then
37: cell 7→ truth value← false
38: if cell 7→ level = 0 or PRPTV(cell 7→ parent, quants, m, n, cad, leaves,

problemCells) then
39: Remove all cells from the CAD subtree rooted at cell from cad and

problemCells
40: end if
41: end if
42: else . Qk−n+m+1 = ∀ i.e. quants[k − n+m+ 1] = ∀
43: ortest← false
44: for c in cell 7→ children do
45: try
46: if not (andtest← andtest and evalAndSetTruthValue(c, leaves))

then
47: cell 7→ truth value← false . Meaningful truth value
48: if cell 7→ level = 0 or PRPTV(cell 7→ parent, quants, m, n, cad,

leaves, problemCells) then
49: Remove the CAD subtree rooted at cell from cad and

problemCells
50: end if
51: end if
52: catch “Could not evaluate truth value”:
53: lastFailure← [c,“Could not evaluate truth value”]
54: end try
55: end for
56: if lastFailure is a list then
57: Add lastFailure to problemCells
58: elseif andtest then
59: cell 7→ truth value← true
60: if cell 7→ level = 0 or PRPTV(cell 7→ parent, quants, m, n, cad, leaves,

problemCells) then
61: Remove all cells from the CAD subtree rooted at cell from cad and

problemCells
62: end if
63: end if
64: end if
65: return true
66: end procedure

82

of a sample point featuring a non trivial real algebraic number (i.e. RootOf),
that can only arise in the evaluation of local sections. Local sectors can always
attribute a rational number as its local sample point. Of course this strategy is
motivated in terms of the early termination criteria enabled by propagation of
meaningful truth values, so avoiding more costly evaluation would be good news.

2. Lifting failure avoidance (Section 3.7.2) attempts to ignore failures to evaluate
child cells, because if we can propagate a truth value from below, such a failure
is irrelevant, because we remove the failed cell from the CAD tree in any case.

3. The return value of PRPTV allows us to deduce the largest possible CAD subtree
to remove, instead of removing pointlessly attempting to remove every subtree of
that subtree on the way up.

Definition 41 (Meaningful Leaf CADCell). A meaningful leaf CADCell c is a cell
holding a meaningful truth value for the quantifier commensurate with its level, i.e.
Qc 7→level, such that the truth value coincides with its held tarski formula, and the truth
value propagates upwards towards the root at least once in Algorithm 15.

Evaluation of CADCells

Upon creation of a CADCell (for example in CCHILD (Algorithm 14)), the data it
holds at that time is relatively rudimentary — essentially the data the constructor is
passed. For a cell of positive level, upon creation it holds:

• its level,

• its lower and upper bounds (if it is a local sector), or the real algebraic number
it corresponds to (if it is a local section),

• its parent CADCell,

• and its local index.

A cell that holds only this data is unevaluated. The act of evaluation of a CADCell

c is to, in order:

1. Assign its sample point via the method getSamplePoint(c). Deducing this sam-
ple point is trivial when the cell is a local section (the real algebraic number as
local bound for the cell is the only candidate for the local sample point). When
the cell is a local sector, we can choose the simplest rational number between the
real algebraic numbers as local lower and upper bounds for the cell as sample
point,

and then, only when doing QE by Partial CAD:

2. Assign its tarski formula by substitution of its newly found sample point into
the tarski formula for c 7→ parent, and additionally its tarski formula structural
(Tarski formula in structural form) if requested

83

3. Assign its truth value. If c 7→ tarski formula is equivalent to true or false, c 7→
truth value← c 7→ tarski formula, else we set c 7→ truth value to the Maple value
FAIL, which types as a boolean value, but means “indeterminate”. In the case of
a determinate truth value, c is a leaf cell (not necessarily a meaningful one) and
is added to the container leaves, else c is amenable to further stack construction,
hence added to the container cad.

In the case of Partial CAD, PRPTV instigates this evaluation on all child cells of
the last cell to enter CCHILD in turn. In particular evalAndSetTruthValue is the func-
tion that instigates all steps 1 through 3 in turn. It returns c 7→ truth value for a cell
c such that PRPTV can deduce when c is a meaningful leaf. evalAndSetTruthValue
is Maple technical due to the substitutions of real algebraic numbers into relations. It
takes an argument of leaves such that it adds cells with meaningful truth values to
that container. It has the ability to store formulae in structural form for cells. The
delay in evaluation of such cells (i.e. the reason why we do not immediately assign
these properties as a result of using the constructor) is to avoid the pointless expense
of, for example, the algebraic substitution of the new local sample point when we may
evaluate a meaningful leaf cell amongst the newly created child cells that allows us to
avoid evaluating further child cells. If a cell’s truth value has already been set, either
by evaluation or by override by propagation of truth values in PRPTV, evalAndSet-
TruthValue returns that truth value instead (c 7→ truth value).

Because the root cell gets assigned Φ as its tarski formula in QE by Partial CAD
(Algorithm 13), any cell of non trivial level stores Φ evaluated at its full sample point
as its tarski formula. However, because it shares all but its last element of its full
sample point with the cell above, we need only evaluate the formula of its parent at its
local sample point. Hence we reuse as much information from the parent as possible,
substituting for one variable per CADCell instead of substituting O(n) values into Φ
on every cell evaluation. Hence Φ “filters” down through the CAD tree in order to
attempt to deduce meaningful truth values amongst the leaves (or earlier if possible).
The tarski formula property for a CADCell represents the equivalent of the unquanti-
fied part of input Φ evaluated at the full sample point of that cell, and is guaranteed
truth invariant over the whole cell due to sign invariance of the cell on all polynomials
from Φ. Hence where tarski formula is equivalent to true or false, this allows us to be
confident in deducing the truth value. Once a cell has evaluated and if its truth value
is indeterminate, the last property to be assigned at this stage is the children Array,
initialised and populated by CCHILD.

For full CAD, i.e. CylindricalAlgebraicDecompose, truth values and hence Tarski
formulae are superfluous, as the intention is to construct every possible level n cell.
Hence steps 2 and 3 are needless. Without purpose to call PRPTV, any unevaluated
cell of level < n can enter stack construction via CCHILD, where the generation of
its local sample point is required for the full sample point of that cell in order to use
lazardEval.

84

x

y c 5 c 4 c 3 c 2 c 1

R
o
o
tO

f(
Z

2
−

2
,
1
..
2
)

R
o
o
tO

f(
Z

2
−

2
,
−
2
..
−

1
)

C
el
l

V
is
u
a
li
sa
ti
o
n

D
es
cr
ip
ti
o
n
(c
el
l
d
es
cr
ip
ti
o
n
)

L
o
ca

l
S
a
m
p
le

P
o
in
t
(s
a
m
p
le

p
o
in
t)

c
H
o
ri
zo

n
ta
l
sp

a
ce

b
et
w
ee
n
re
d
li
n
es

R
o
o
tO

f(
x
2
−

2
,−

2
..
−

1
)
<
x
∧
x
<

R
o
o
tO

f(
x
2
−

2
,1
..
2
)

x
=

0
c 1

B
el
o
w

m
a
g
en

ta
a
rc

y
<

R
o
o
tO

f(
Z

2
+
y
2
−

2
,i
n
d
ex

=
re
a
l[
1
])

y
=
−
3

c 2
M
a
g
en

ta
a
rc

y
=

R
o
o
tO

f(
Z

2
+
y
2
−

2
,i
n
d
ex

=
re
a
l[
1
])

y
=

R
o
o
tO

f(
Z

2
−

2
,−

2
..
−

1
)

c 3
B
et
w
ee
n
m
a
g
en

ta
&

b
lu
e
a
rc
s

R
o
o
tO

f(
Z

2
+
y
2
−

2
,i
n
d
ex

=
re
a
l[
1
])
<
y
<

R
o
o
tO

f(
Z

2
+
y
2
−

2
,i
n
d
ex

=
re
a
l[
2
])

y
=

0
c 4

B
lu
e
a
rc
s

y
=

R
o
o
tO

f(
Z

2
+
y
2
−

2
,i
n
d
ex

=
re
a
l[
2
])

y
=

R
o
o
tO

f(
Z

2
−

2
,1
..
2
)

c 4
A
b
o
v
e
b
lu
e
a
rc

R
o
o
tO

f(
Z

2
+
y
2
−

2
,i
n
d
ex

=
re
a
l[
2
])
<
y

y
=

3

F
ig

u
re

3-
8:

D
em

on
st

ra
ti

on
of

ce
ll

p
ar

en
ti

n
g

an
d

it
s

re
la

ti
on

to
th

e
cy

li
n

d
er

of
a

ce
ll

.
W

e
ex

am
in

e
a

p
or

ti
on

of
th

e
C

A
D

of
x
2

+
y
2
−

2
.
c 1
,.
..
,c

5
a
re

le
v
el

2
ch

il
d

re
n

of
th

e
le

ve
l

1
ce

ll
c.

H
en

ce
th

ey
al

l
sh

ar
e

th
e

co
m

m
on

el
em

en
t

of
th

ei
r

fu
ll

sa
m

p
le

p
oi

n
t

x
=

0,
w

it
h

0
th

e
si

m
p

le
st

ra
ti

on
a
l

in
(R

o
ot

O
f(
x
2
−

2
,−

2
..
−

1)
,R

o
ot

O
f(
x
2
−

2,
1.
.2

))
.

E
ac

h
c i
⊆
c,

an
d

im
p

li
ci

tl
y

sh
ar

es
th

e
lo

ca
l

(a
n

d
fu

ll
)

ce
ll

d
es

cr
ip

ti
on

o
f
c,

w
h
ic

h
is

ov
er

re
al

al
ge

b
ra

ic
n
u

m
b

er
s

as
c

is
a

le
v
el

1
ce

ll
.

A
ll

ce
ll

s
sh

ar
e

th
e

co
m

m
on

an
ce

st
or

of
th

e
ro

o
t

ce
ll

,
w

h
ic

h
re

p
re

se
n
ts
R

2
.

85

x

y

RootOf(Z2 − 2,−2..− 1)

c = c1

Figure 3-9: Looking at the leftmost part of the CAD from Figure 3-8. There are no
roots of x2 + y2 − 2 in R2 in the space defined by x < RootOf(Z2 − 2,−2.. − 1), so
when the level 1 cell c (red hatched space, and further north, south, and west) with
description x < RootOf(Z2 − 2,−2.. − 1) enters CCHILD for stack construction, no
roots are generated in y, so it generates one child cell c1 with local description true,
meaning that c1 locally corresponds to all values of y ∈ R. As such the decomposition of
c1 is no finer than c, and their representation of real space is equal. While geometrically
they represent the same space, c1 is a distinct object to c. Their full cell descriptions
are both x < RootOf(Z2 − 2,−2..− 1).

86

Cell Descriptions for CADCells and QE Output by CAD

Much like a full index or full sample point for a CADCell, a full cell description for a
cell can be generated by conjunction of its local description with the local descriptions
from its ancestral cells. The full description for a cell is a relation (of the form f ρ 0
where f is a real algebraic function and ρ ∈ {<,=}), a conjunction of such relations,
or true. Cell descriptions are important not only cosmetically when inspected by a
user (see Section 6.2), but more so as they are pivotal in forming quantifier free output
when performing Partial CAD. For QE input Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn),
the quantifier free equivalent is the truth value of the root cell, unless this truth value
is indeterminate (FAIL), in which case the quantifier free equivalent is∨

c∈ leaves | c 7→ truth value= true,
p 7→ truth value 6= false, p on the path from c to the root cell

GetUnquantifiedDescription(c) (3.1)

where “GetUnquantifiedDescription” refers to the restriction of a full cell description
just to the conjunction of those operands of the description not featuring quantified
variables. As such (3.1) ends up being in disjunctive normal form. The production of
the unquantified part of a cell description is easily realised by modification of Algorithm
16, only gathering local descriptions from the ancestors of a cell in unquantified space.
Importantly we discard operands owing to cells in the cylinder of a cell that have a
false truth value received via propagation of truth values when building (3.1). PRPTV
could remove subtrees of cells with a false truth value from the container leaves such
that we can ignore the conditions past c 7→ truth value = true, but upon iterating over
leaves to build the full cell description of each leaf cell we need to traverse towards the
root cell anyway in order to construct the full cell description, so we can check truth
values of each ancestral cell at the same time and discard those in the cylinder of a cell
with a false truth value from the disjunction. If (3.1) is an empty disjunction, it is of
course equivalent to false.

As per Definition 39, the local cell description for a level i > 0 CADCell is a rela-
tion xn−i+1 ρ f where f is a real algebraic function (Definition 31) over xn−i+2, . . . , xn,
or a conjunction of two such relations (both strict inequalities). Then, for a level 1
cell, the cell description is in reality over real algebraic numbers due to the lack of
dependency on other variables, and CCHILD uses interval indexes in any RootOfs in
the cell descriptions created. For a cell of any other positive level, the description may
depend on the further variables, so CCHILD stores genuine real algebraic functions
where RootOfs are indexed by real indices. The bounds for xn−i+1 on this cell depend
on xn−i+2, . . . , xn, and so generally we only know the fixed real indices of multivariate
polynomials that vary in terms of the values of xn−i+2, . . . , xn.

Cell descriptions are formed by traversal from the cell towards the root cell, so the
local descriptions are in successively fewer variables. Forming the conjunction of those
local descriptions gathered together is sufficient, but does not necessarily reflect the
simplest description given any equalities that can be forward substituted into further
elements of the conjunction. For example, the cell description y = 0∧x < y for a CAD

87

over [x, y] in R2 can more succinctly be represented by y = 0 ∧ x < 0 by substituting
the value for y into the real algebraic function as upper bound for x. The level 1 cell
on the path to the root cell is that with a univariate cell description, so we need to
traverse all the way to the root to gather all elements of the conjunction before per-
forming such substitutions. Code Fragment 16 demonstrates the general methodology
for constructing a cell description.

Line 13 is the line corresponding to the check “p 7→ truth value 6= false, p on the
path from c to the root cell” from (3.1). If constructing a cell description in isolation,
this check is irrelevant. Else, when constructing the overall disjunction for quantifier
free output, we know to discard contribution from this cell to the disjunction to build,
as this cell has an ancestor with a false truth value.

We substitute as many real algebraic numbers for variables forward through the cell
description as many times as the cell c is contiguously a local section (line 28). In fact,
as far as we can do this, the cell description owes entirely to exact values, so we replace
those elements of the cell description with equations featuring real algebraic numbers,
and forward substitute them through the rest of the cell description. Note that there
are as many contiguous equations in out as the number of times c is contiguously a
local section beginning from x1. Only local sections contribute a local equation to a
cell description (a cell being a local section is equivalent to its cell description being
an equation). Once this loop is finished, we should not replace the descriptions owing
to local sections with the respective local sample points, because the description may
genuinely depend on subsequent variables, but we can still substitute equations forward
to simplify the description and eliminate variables (line 35).

Usage of the loop on line 28 means that a cell description such as x = 1 ∧ y =
RootOf(Z2 − x, index = real[1]) ∧ z < y + x evaluates as x = 1 ∧ y = RootOf(Z2 −
1,−2..−1)∧z < RootOf(Z2−1,−2..−1)+1. The replacement of equations with local
sample points in that loop means that the description in y is y = RootOf(Z2−1,−2..−
1) rather than y = RootOf(Z2−1, index = real[1]), where the former is preferable due
to providing more information about the sign and magnitude of the value of y. These
values are substituted into the real algebraic function describing values for z.

A cell description such as x = 1∧ y < 1∧ z = RootOf(Z2−y, index = real[2])∧w <
z evaluates to x = 1 ∧ y < 1 ∧ z = RootOf(Z2 − y, index = real[2]) ∧ w <
RootOf(Z2 − y, index = real[2]), where one notes the description for z remains as
a real algebraic function, because of the break in contiguity in equations at the descrip-
tion for y.

Where a local cell description is true, this is equivalent to the cell description being
“the whole real line” with respect to that local axis. We can discard such a local de-
scription, considering the intention to build a conjunction of the descriptions. If every
local description is true on the path to the root, then c actually represented Rc7→level,
and the extended Tarski formula to represent this is true, and this case is identifiable

88

Algorithm 16 Construction of a cell description

Input: c a CADCell

Output: An extended Tarski formula (strictly one of true, a relation f ρ 0 where
f is a real algebraic function and ρ ∈ {<,=}, or a conjunction of such)
describing the space in Rn represented by c

1: procedure GetFullDescription(c)
2: if c 7→ level = 0 then
3: return true
4: elseif c 7→ level = 1 then
5: return c 7→ cell description
6: end if
7: cell← c
8: out← an empty Array

9: cells← an empty Array with c 7→ level elements
10: i← 1
11: repeat
12: cells[−i++]← cell
13: if cell 7→ truth value = false then
14: c is not a meaningful cell for output when building quantifier free

output for QE
15: elseif cell 7→ cell description is a conjunction then
16: Add the operands of cell 7→ cell description to out . To prevent nesting

conjunctions later
17: elseif cell 7→ cell description is a relation then
18: Add cell 7→ cell description to out
19: end if. And omit adding true if that’s the local description — superfluous

as deemed to be element of a conjunction later
20: cell← cell 7→ parent
21: until cell 7→ level = 0
22: if |out| = 0 then
23: return true
24: elseif |out| = 1 then
25: return out[1]
26: else
27: i← 1
28: while i ≤ |out| and out[−i] is an equation do
29: out[−i]← cells[i] 7→ sample point. Replace with an equality featuring a

real algebraic number
30: for j from i+ 1 to |out| do
31: out[−j]← out[−j] substituting out[−i] into out[−j]
32: end for
33: i++
34: end while

89

Fragment 16 Construction of a cell description, Part 2

35: for j from i to |out| do
36: if out[−j] is an equation then
37: for k from j + 1 to |out| do
38: out[−k]← out[−j] substituting out[−i] into out[−k]
39: end for
40: end if
41: end for
42: return

∧
i=1,...,|out| out[−i]. The Array was built backwards in terms of the

order of the variables for the CAD — this way the conjunction reads
as triangular in increasing supersets of variables

43: end if
44: end procedure

by line 22. Via the continuing interest in mutable data structures as to avoid garbage
collection and not forming pointlessly nested formulae, we append elements of conjunc-
tions from local descriptions to an Array and then create the conjunction of all of them.

(3.1) forms an ETF via the real algebraic functions used to describe CADCells.
QuantifierElimination currently only offers support for real algebraic functions to
describe CADCells, hence QE output by CAD is generally an ETF. QEPCAD B [8] offers
support for QE output via both Extended Tarski Formulae and Tarski Formulae (and
other types of formulae), via developments from the PhD thesis of Brown [12]. In
QEPCAD B, a Tarski formula is always able to be produced in the case when the CAD
is “projection definable”. Otherwise, QEPCAD B may require addition of projection
polynomials to achieve this state and be able to produce a Tarski formula to describe
output. The equivalent notions such that QuantifierElimination is always able to
output a Tarski formula are noted as further work. Other CAD implementations pro-
duce a TF as output by default (Section 7.5). ETFs can often be quite concise and
meaningful, but other times confusing via the density of information contained in the
representation.

3.4.1 Real Root Isolation

In order to lift in CAD, we need to perform real root isolation on a lifting polynomial in-
herited from a level 0 ≤ j < n CADCell to produce the stack over a cell. Generally, such
a lifting polynomial may be over algebraic numbers, i.e. Maple RootOfs. In particular,
the RootOfs may be nested. Maple’s general purpose isolator RootFinding:-Isolate
may not accept polynomials where the RootOfs are too nested (in general it requires
the input polynomial to be integral). In this case, the polynomial p(x) ∈ R[xj+1] is
converted to a k-dimensional triangular system to isolate on with respect to, where
k > 1 is the number of independent algebraic numbers (i.e. RootOfs) contained within
p.

90

The root isolation algorithms used by QuantifierElimination are non incremental
— other CAD implementations such as [59] may be able to make use of an incremen-
tal root isolator where one exists. Incremental root isolation enables an even more
incremental approach to CAD than can be achieved here. In particular, while all cells
constructed immediately in stack construction by CCHILD here are unevaluated, an
incremental approach to root isolation would allow one to avoid constructing all such
child cells immediately, with CAD becoming oriented around construction by individ-
ual branches in a similar manner to this work’s formulation of VTS.

One notes that the RootOfs in a lifting polynomial to isolate are likely as a result
of substitution of sample points owing to local sections from CADCells in Lazard evalu-
ation of a projection polynomial, however projection polynomials can contain RootOfs
naturally from real algebraic numbers converted from radical numbers from polynomi-
als in input such as Φ. Hence the methodology for real root isolation below is only
relevant when not producing an Open CAD, or anything equivalent to a real alge-
braic number is contained in input for CAD. The representation of irrational roots
in QuantifierElimination being real algebraic numbers via RootOfs in this format
is somewhat developmental & experimental, in order to explore where further sup-
port is needed for low level polynomial operations in Maple for polynomials with such
coefficients, hence most of the discussion of this subsection.

Algorithm 17 Conversion of a polynomial containing real algebraic numbers
(RootOfs) to a triangular system

Input: p ∈ R[x]
Output: J , a list of polynomials in k + 1 variables representing p as a triangular
system (J ⊂ Q[x, v1, . . . , vk]), and S, a list of substitutions from RootOfs to
new dummy variables

1: procedure convertTriangular(p)
2: R← a list of all independent RootOfs in p, sorted in decreasing order of length
3: k ← |R|
4: S ← a list of substitutions from brand new sequential symbols v1, . . . , vk to

the RootOfs, i.e. S = [v1 = R[1], . . . , vk = R[k]]
5: J ← [b] where b is p evaluated at all the substitutions from S
6: for i to k do
7: Append pi to J where pi is the polynomial from R[i] evaluated at

[S[i+ 1], . . . , S[k]]
8: end for
9: return J , S

10: end procedure

• Line 4 is achieved in Maple by creating new “local” variables (they can have any
names, but the convenient thing is to index them with 1 through k). These never
manifest in CAD output — their purpose is merely to be able to represent the
polynomials for the algebraic numbers contained within p. These variables are

91

guaranteed to be distinct from any instances of variables (that may look to have
the same name) on the user’s side, including the genuine ones in CAD x1, . . . , xn.

• R being sorted in decreasing order of length allows us to achieve line 7. “Length”
in this context means usage of Maple’s “length” command, which actually mea-
sures the number of “words” used to represent any expression. This is sufficient
to know that for a RootOf R[i] some 0 < i ≤ k, the polynomial for R[i] may con-
tain (via nesting) at most RootOfs from {R[i + 1], . . . , R[k]}, allowing us to use
fewer of the substitutions from S rather than brazenly attempting to substitute
all of them at each iteration.

• The generated triangular system for p is guaranteed to have solutions of zero
dimension. b (line 5) is (certainly) in k + 1 variables, and each polynomial from
line 7 is in one variable fewer successively, and as such the last added is univariate.

Real algebraic numbers for CAD in QuantifierElimination are of the form
RootOf(p, a..b), and as such directly encapsulate the interval for which the real root
lies. Standard usage of Maple’s root isolator RootFinding:-Isolate on just the triangu-
lar system “tri” will find ALL sets of real roots, including those for the polynomials
[J2, . . . , Jk] generated for the triangular system from the polynomials in the nested
algebraic numbers. But in reality many of these root descriptions would be irrelevant
and undesirable, because we already know isolating intervals for roots of the poly-
nomials [J2, . . . , Jk] (which in reality came from RootOfs). Those isolating intervals
can easily be deduced from S in Maple, because each element of S is of the form
RootOf(Ji, ai..bi) = vi, so we need look at the second operand of the first operand
of each equation of S to deduce the isolating intervals corresponding to each polyno-
mials. These intervals (a2 .. b2), . . . , (ak .. bk) form a hyperrectangle via their product
(a2, b2)×· · ·×(ak, bk) with respect to the variables J2, . . . , Jk. Hence, instead of comput-
ing all root descriptions for the triangular system and discarding those not consistent
with the intervals deduced from S, it is instead desirable to provide those intervals in
order to only produce root descriptions within the hyperrectangle formed by them in
Rk−1. In this case, we have k − 1 existing intervals for [J2, . . . , Jk] amongst a total of
k polynomials. In providing these intervals (a2 .. b2), . . . , (ak .. bk), we can remove some
inefficiency from the root isolation process, and remove the need to manually discard
root descriptions out of root isolation outside the box formed by (a2 .. b2), . . . , (ak .. bk).
Usage of the isolation routine in this way could also refine (a2 .. b2), . . . , (ak .. bk) to
finer intervals, which we should retain if possible. The passing of such intervals as an
argument to restrict the output of real root isolation is a feature in development for
the low level root isolation routines used by QuantifierElimination in Maple, in part
informed and requested as a result of usage of real algebraic numbers in this specific
representation.

Root Refinement

Where the isolating intervals for two real roots (from two different lifting polynomials)
are not disjoint, they must be made disjoint such that construction of cells (especially

92

sectors) is well defined. As an extreme example, for the polynomials x2− 2 and x2− 3,
(1 .. 2) is an isolating interval for the second (i.e. positive) real root of both. Such iso-
lating intervals could only be obtained at infeasibly low precision in practice. The pre-
cision of RootFinding:-Isolate in Maple is controlled by the keyword option ‘digits’,
which defaults to the global variable Digits if not provided. In any case, where we
find an isolating interval that has intersection with an existing interval amongst those
from the current polynomial basis to isolate roots for, we must either deduce that the
root is the same, or make the isolating intervals disjoint. In the case of this example,
the roots happen to be distinct, and it would be sufficient to refine the intervals to
(115858192 ,

2897
2048) and (11351165536 ,

56757
32768) respectively (which again, would be values obtained at

bizarrely low precision). refineIsolatingIntervals is the procedure handling this process,
which is called by isolateRootsBasis (within CCHILD) and incrementalCADMerge.

The situation of root refinement only arises because we perform root isolation it-
eratively on factors of lifting polynomials in stack construction. We produce a fully
factored irreducible basis for the lifting polynomial obtained by Lazard evaluation, with
the decision to produce something fully factored being to assist root isolation in the first
place (Remark 34). Usage of RootFinding:-Isolate or an equivalent low level isolator
has that the root descriptions returned for one particular polynomial are guaranteed
to be disjoint, but we do this iteratively amongst several factors of the lifting poly-
nomial. This is to avoid the needless complexity of isolating roots for the product of
all of them, which would provide us with certainly disjoint intervals, at excessive cost,
hence the methodology of isolateRootsBasis or incrementalCADMerge to iteratively
merge in root descriptions making them disjoint only where appropriate. We go to
some length to ensure that the basis creation stores the factors of lifting polynomials
canonically (Algorithm 12), but cannot entirely guarantee it due to the usage of real
algebraic numbers, which fail to be canonical due to representations using differing
valid isolating intervals. Luckily, Maple can deduce if two root descriptions owing to
differently represented polynomials are equal by forming the RootOfs about each and
using Maple’s general purpose is — (is(RootOf(p1, a1..b1) = RootOf(p2, a2..b2))).
This is the first step of the function refineIsolatingIntervals, where the intention is to
produce an error that the roots are the same if this check for equality returns true.
Catching this error notifies isolateRootsBasis or incrementalCADMerge to discard the
incoming root description to merge in. Otherwise, the root descriptions should gen-
uinely be different, and we enter root refinement on both descriptions to attempt to
make them disjoint up to a certain precision. If this fails, perhaps due to exceeding a
precision threshold, the associated stack construction fails via an error (that could be
caught via general avoidance of lifting failures in Partial CAD — Code Fragment 28
and also broadly Section 3.7.2), else we should return the refined RootOf expressions
in order to appropriately store and potentially make use of this information later (for
example, doing so may avoid the necessity to enter root refinement again).

Conversion of a polynomial with coefficients as real algebraic numbers to a trian-
gular system enables real root isolation of such a polynomial under this representa-
tion. The same is true of of refineIsolatingIntervals — where either of the polyno-

93

mials donating isolating intervals feature irrationals represented by RootOfs, we can
convert to a triangular system (for either or both respectively) to provide amenable
input for the root refinement methods. Let the two intersecting isolating intervals
be (af , bf) and (ag, bg) for the polynomials f and g respectively. Let f and g form
the triangular systems [f, f1, . . . , fk] and [g, g1, . . . , gm] respectively, k,m ≥ 0 with
[(af , bf), (af1 , bf1), . . . , (afk , bfk)] and [(ag, bg), (ag1 , bg1), . . . , (agk , bgk)] the respective in-
tervals representing isolating intervals for roots of the respective polynomials from the
system. Hence there are k and m irrational numbers represented by interval indexed
RootOfs in f and g respectively. Here, in contrast to the case for pure root isola-
tion, the number of intervals corresponds exactly with the number of polynomials for
the system (k + 1 and m + 1 respectively). In the case for root isolation, we would
have k or m intervals for k + 1 or m + 1 polynomials. Our main intention is to re-
fine (af , bf) and (ag, bg), but the routine for root refinement may actually also refine
[(af1 , bf1), . . . , (afk , bfk)] and [(ag1 , bg1), . . . , (agk , bgk)]. We should retain this informa-
tion about the refinement of these intervals if possible. The associated root descriptions
for f and g may be stored as cell bounds for local sectors, or the exact cell bound for
a local section, and we consider that such bounds may be examined in CAD incre-
mentality (incrementalCADMerge, Algorithm 51) under further refinement. Hence,
f and g can (and should) use the finest possible intervals gleaned from refinement on
[(af , bf), (af1 , bf1), . . . , (afk , bfk)] and [(ag, bg), (ag1 , bg1), . . . , (agk , bgk)], at the very least
to cater towards further operations in the context of incrementality.

As usual, further Maple development will optimise the refinement process on poly-
nomials in this representation and maximise the chance of success to mitigate this as a
lifting failure (Section 3.7.2). In its current state, the function refineIsolatingIntervals
only refines the intervals (af , bf) and (ag, bg), using Maple technical low level opera-
tions, but development will make the retention of the refinement of the other isolating
intervals for the real algebraic numbers coefficients of f and g relevant.

Having discussed the technicalities behind real root isolation on polynomials over
real algebraic numbers in QuantifierElimination’s CAD, we can present the algo-
rithm to generate and merge in the root descriptions gained iteratively from a univariate
polynomial basis such that we can produce an ordered structure of intervals, together
with a structure of the univariate polynomials they arose from. We assume isolate-
RootsOf returns an ordered list of isolating intervals for b in x obliging the lifting
constraints via constraints and bounds. The rest of the function mostly reduces to us-
age of merging in root descriptions, checking for intersection with the closest interval.
Where there is an intersection, there is an attempt to refine the (in practice, inertised)
RootOfs via refineIsolatingIntervals. As per the previous discussion we should retain all
information obtained from refinement. If refineIsolatingIntervals finds the roots to not
be disjoint at a maximum precision, we discard the incoming isolating interval [lb,ub],
and if it fails for any other reason this is caught by general lifting failure avoidance
(Section 3.7.2). Algorithm 18 represents generation of root descriptions to accommo-
date non incremental CAD, i.e. stack construction proceeds immediately from such
root descriptions where no stack existed previously below a cell.

94

Algorithm 18 Root isolation of elements of a univariate polynomial basis via merging
of root descriptions

Input: B a basis of polynomials in x only, x a variable, constraints and bounds
Arrays created from parsing of lifting constraints

Output: intervals an ordered Array of isolating intervals for roots of polynomials
in B, polys an Array of the corresponding polynomials each isolating interval
in intervals came from

1: procedure isolateRootsBasis(B, x, constraints, bounds)
2: intervals← an empty Array

3: polys← an empty Array

4: rootCount← 0
5: for b in B do
6: (i, b′) ← 1, b
7: iso← isolateRootsOf(b, x, constraints, bounds)
8: for [lb,ub] in iso do
9: dontAdd← false

10: repeat
11: while i ≤ rootCount and lb > intervals[i][2] do
12: i++
13: end while
14: if i ≤ rootCount then
15: (pastLB, pastUB) ← intervals[i][1], intervals[i][2]
16: if pastLB ≤ lb then . Some sort of intersection between

isolating intervals
17: pastRtf ← RootOf(polys[i], pastLB..pastUB)
18: newRtf ← RootOf(b, pastLB..pastUB)
19: if pastUB < ub then
20: try
21: (pastRtf, newRtf) ← refineIsolatingIntervals(

pastRtf, newRtf)
22: b′ ← the polynomial from newRtf
23: (lb, ub) ← the interval from newRtf
24: polys[i]← the polynomial from pastRtf
25: intervals[i]← the interval from pastRtf, as a list
26: i++ . If the above succeeded, lb > intervals[i][2]
27: catch “Roots the same”:
28: dontAdd← true
29: end try

95

Algorithm 18 Isolation of a univariate polynomial basis via merging of root descrip-
tions, Part 2

30: else
31: try
32: (pastRtf, newRtf) ← refineIsolatingIntervals(

pastRtf, newRtf)
33: b′ ← the polynomial from newRtf
34: (lb, ub) ← the interval from newRtf
35: polys[i]← the polynomial from pastRtf
36: intervals[i]← the interval from pastRtf, as a list
37: catch “Roots the same”:
38: dontAdd← true
39: end try
40: end if
41: elseif pastLB ≤ ub then . Opposite type of intersection
42: try
43: (newRtf, pastRtf) ← refineIsolatingIntervals(newRtf,

pastRtf)
44: b′ ← the polynomial from newRtf
45: (lb, ub) ← the interval from newRtf
46: polys[i]← the polynomial from pastRtf
47: intervals[i]← the interval from pastRtf, as a list
48: catch “Roots the same”:
49: dontAdd←true
50: end try
51: end if
52: end if
53: until dontAdd or (i = 1 or lb > intervals[i− 1][2]) and (

i > rootCount or ub < intervals[i][1])
54: if not dontAdd then
55: Insert [lb,ub] at position i in intervals . Merge in information for

root description
56: Insert b′ at position i in polys
57: rootCount++
58: end if
59: end for
60: end for
61: return intervals, polys
62: end procedure

96

3.4.2 Delayed Evaluation of Substitutions in CAD

Similar for the case for VTS described in Section 2.4.1, CAD supports delayed substitu-
tion of sample points into non atomic Tarski formulae. To notify that this is a delayed
CAD substitution, the implementation of Partial CAD uses the Maple construct

‘:-inertCADSub’(Ψ, x = α)

which appropriately types as an RTFArray. In other words this types as a real Tarski
formula expression acceptable to be held by a CADCell in CAD. In the same way as
VTS, the usage of ‘’ and :- is to ensure inertCADSub remains unevaluated and is not
interpreted in terms of any potential assignments to the global instance of inertCADSub
by the user or other code.

To make clear when this is relevant, substitutions are always of one algebraic num-
ber for one variable into the real Tarski formula as RTFArray held by one CADCell. If
c is a level i ≥ 0 CADCell, then to “evaluate” the truth value of a child cell c1, we
must substitute the local sample point of c1 into c 7→ tarski formula (that is the real
Tarski formula as RTFArray held by c) for xi+1. This local sample point is an algebraic
number. This evaluation occurs in usage of PRPTV, and hence is only relevant in QE
by PartialCylindricalAlgebraicDecompose. Hence we receive the tarski formula for c1,
and may be able to deduce the truth value of c1 on the unquantified part of the input
formula Φ for QE (as is one of the aims of PRPTV).

The delayed evaluation of substitutions in CAD may avoid substitution of algebraic
numbers for one variable. Where the algebraic numbers are genuine irrational ones (i.e.
the associated univariate polynomial is not linear — a Maple RootOf), to attempt to
deduce if a relation f ρ 0 has a determinate truth value, QuantifierElimination

(using evaluateTFArrayAtSP) must:

• Use evala(Normal(. . .)) to produce the normal form for
(f ρ 0)[x / RootOf(p, a..b)]. Note that the documentation of evala(Normal(. . .))
states that “the result [of evala(Normal(. . .))] is zero only if the input is math-
ematically equal to zero” (hence the normal form in the context of Definition 20).
evala(Normal(. . .)) must compute over algebraic field extensions of all the
RootOfs contained in (f ρ 0)[x / RootOf(p, a..b)] (there may be further ones in
f ρ 0 via any previous substitutions).

• If (f ρ 0)[x / RootOf(p, a..b)] is free of variables (from x1, . . . , xn),
(f ρ 0)[x / RootOf(p, a..b)] 6≡ 0, ρ ∈ {<,≤}, and f [x / RootOf(p, a..b)] is not a
monomial of RootOfs, then use Maple’s shake to deduce the sign of f [x / RootOf(p, a..b)]
and hence the truth of (f ρ 0)[x / RootOf(p, a..b)]. If ρ ∈ {=, 6=} and
(f ρ 0)[x / RootOf(p, a..b)] is free of RootOfs and any variables then the truth
value follows trivially, because of the normalisation by evala(Normal(. . .)

).

Both of the elements above attribute a non trivial cost, but less obvious is that usage
of shake on highly nested RootOfs may fail (by production of an error from shake).

97

Altogether this enables delayed evaluation of substitutions in CAD.

In contrast to VTS, substitution in CAD requires Maple to normalise expressions
featuring algebraic numbers, and by the mechanism of CAD these RootOfs may be
nested. Meanwhile in VTS, we may avoid virtual substitutions from multivariate poly-
nomials into other multivariate polynomials, which generally reduces to pseudoremain-
ders, but via formulae schemes, may also be a recursive process on virtual substitutions
of polynomials of descending degree.

3.5 Open CAD

Definition 42 (Open CAD). An Open CAD (OpenCAD) is one that only lifts sec-
tors, i.e. cells of full dimension with fully odd full cell indices.

Open CAD is a feature for CAD relevant to lifting that ignores creation of sections,
i.e. cells with an even local index with a local sample point owing exactly to the real
root of some lifting polynomial. It is so named because each resulting CAD cell formed
owes entirely to “open” space similar to a product of open intervals, and as such each
constructed CAD cell is always of full dimension. Open CAD has been realised before
in the work of Sub-CADs [29], which allow for relinquishment of certain types of cell
(in this case, sections). There, the discrimination is specifically on cell dimension,
which for Open CAD corresponds to full dimension, i.e. dimension n. Sub-CADs are
therefore more general than Open CADs.

This is useful when substitution of exact real roots from lifting polynomials can
be deduced to be superfluous or undesirable, such as in applications related to motion
planning [29]. The former case of superfluity of sections corresponds to the case of
an input formula with only strong relations (Algorithm 19). QuantifierElimination
features OpenCAD functionality for the top level functions CylindricalAlgebraicDecom-
pose and PartialCylindricalAlgebraicDecompose. OpenCAD can also be used in the
evolutionary routines InsertFormula and DeleteFormula when acting upon a CADData

object (Algorithms 54 and 56). The differing methodology of Open CAD in terms of
ignoring construction of sections can most easily be recognized as part of Algorithm 14
(CCHILD).

Construction of Open CADs in QuantifierElimination is controlled by the key-
word option ‘OpenCAD’. Passing of the option ‘OpenCAD’ = true forces construction
of an Open CAD under any circumstances when passed to CylindricalAlgebraicDe-
compose, considering the intention is to build a full CAD with all leaf cells regardless
of truth values. The CAD routines in the context of QE (e.g. PartialCylindricalAl-
gebraicDecompose) will oblige this flag only when Algorithm 19 returns true on the
current input formula to perform CAD on, to ensure that the CAD built is actually
sufficient to deduce QE (else the output quantifier free answer may be incorrect). In
total, Open CAD is a lifting optimisation, however given its “destructive” properties,
it is not used without direct specification by the user by keyword option, in case the
user wished to inspect every usual leaf cell from output.

98

Algorithm 19 Algorithm to deduce if a formula has only strong relations (hence Open
CAD may be desirable)

Input: Φ, an unquantified prenex (real) Tarski formula
Output: true, if Φ contains only strong relations, else false

1: procedure hasAllStrongRelations(Φ)
2: if Φ = (f ρ 0) then . f ∈ R[x1, . . . , xn], ρ ∈ {≤,=, <, 6=}
3: if ρ ∈ {≤,=} then
4: return true
5: else
6: return false
7: end if
8: else
9: for i to the number of operands of Φ do

10: if not hasAllStrongRelations(Ψ) where Ψ is the ith operand of Φ
then

11: return false
12: end if
13: end for
14: return true
15: end if
16: end procedure

Apart from the production of fewer cells in the case of Open CAD, the avoidance
of usage of exact real roots of lifting polynomials means that we only ever (Lazard)
evaluate polynomials or substitute values into formulae via linear equations featuring
rational numbers, and never irrationals. In QuantifierElimination, irrational num-
bers are represented by RootOfs, but the aforementioned operations are always clearly
less costly on rational numbers.

Tables 3.1 and 3.2 represent data about the number of cells traversed and lifted
with full CAD via CylindricalAlgebraicDecompose for the two examples from the
QEExamples table for this project that are sensible with usage of Open CAD, i.e. the
only two formulae featuring only strong relations for which Algorithm 19 would return
true. All other keyword options used are those as default in QuantifierElimination.
Because of the presence of CPU time, one notes the examples were performed on a com-
puter running Maple 2020.1 with 16.0 GB of RAM, and a 3.70 GHz Intel i5-9600k pro-
cessor. The projection sets are always the same as without usage of Open CAD, given
that Open CAD acts only within the context of lifting. The same data about number of
cells can be inspected by specifying infolevel[PartialCylindricalAlgebraicDecompose

] := 10 before running the same experiments.
Figure 6-1 shows an example of a call to PartialCylindricalAlgebraicDecompose in

Maple with passing of ‘OpenCAD’ = true, where the suggestion to use Open CAD
comes from the QuantifierTools function SuggestCADOptions (Chapter 6).

99

OpenCAD # cells traversed # leaf cells CPU Time (s)

true 6 4 0.047
false 10 7 0.062

Table 3.1: Comparison of cells in lifting by CylindricalAlgebraicDecompose (full CAD)
& CPU time used with OpenCAD on and off for ‘Piano Movers Problem (Yang, Zheng)’
from the QEExamples table.

OpenCAD # cells traversed # leaf cells CPU Time (s)

true 86 52 0.250
false 317 223 0.422

Table 3.2: Comparison of cells in lifting by CylindricalAlgebraicDecompose (full CAD)
& CPU time used with OpenCAD on and off for ‘Ball and Circular Cylinder’ from the
QEExamples table.

3.6 Lifting Constraints

QuantifierElimination also allows for the passing of “lifting constraints” to the
CAD routines CylindricalAlgebraicDecompose and PartialCylindricalAlgebraicDecom-
pose via the keyword option ‘LiftingConstraints’ for both functions.

Definition 43 (Lifting Constraint). A Lifting Constraint (LC) is a relation f ρ 0
such that ρ ∈ {<,≤}, f ∈ R[xi] for some i ∈ {1, . . . , n}, and deg(f) = 1. As such, any
set of lifting constraints forms a hyperrectangle or “box”, i.e. a product of intervals
[l1, u1]× · · · × [ln, un] in Rn, where li ∈ R ∪ {−∞} and ui ∈ R ∪ {∞} ∀i = 1, . . . , n.

Less formally, lifting constraints are linear relations in one variable each which
define a hyperrectangle in real space for CAD to lift in. Categories of QE examples
where lifting constraints are relevant are those from mathematical biology or motion
planning, where frequently “negative” real space is often superfluous. In a similar
manner to equational constraints (Section 3.7), lifting constraints must appear at the
top level of an (at most) existentially quantified conjunction to successfully constrain
the formula such that lifting in a hyperrectangle is well intentioned. We highlight the
differences between including p(xi) ρ 0 as a lifting constraint and including p(xi) ρ 0 in
the top level conjunction for a formula, for some 1 ≤ i ≤ n.

• p(xi) ρ 0 is included as a lifting constraint:

– Roots of lifting polynomials in x that do not satisfy p(xi) ρ 0 are discarded,
or ideally not computed at all, if the root isolator supports such restrictions.
Hence lifted cells are guaranteed to satisfy p(xi) ρ 0 with respect to their
sample point in x.

– p(xi) is linear in xi, so projection operations on it are trivial. If it were to
appear somewhere in projection, it would be in the projection bases for xi,
but it is not included on account of p(xi) ρ 0 (but may appear if projection

100

by coincidence via other polynomials from input that were not designated
as lifting constraints)

• p(xi) ρ 0 is included in the top level of the (existentially quantified) conjunction
Φ to process:

– p(xi) certainly appears in the projection bases for xi (as an inequality). p(xi)
appears as a lifting polynomial as many times as there are unevaluated cells
in xi−1, or just once if i = 1. p(xi) is linear, hence only has one root (hence-
forth RootOf(p(xi), a..b), some a ≤ b — p can have irrational coefficients),
and that root may appear as bounds for cells in xi. Hence we build geometry
such that xi < RootOf(p(xi), a..b), xi = RootOf(p(xi), a..b) (if we are not
building an Open CAD), and xi > RootOf(p(xi), a..b). Because p is linear
and ρ ∈ {<,≤}, p(xi) ρ 0 will be false on at least one of these cells, hence
at least one of these cells holds the truth value false.

Usage of lifting constraints should hence be viewed as an optimisation when one
knows the simple facts about the geometry of the system, or where one wants the so-
lutions to lie. However, usage will omit production of cells that may be desirable for
examination, if one need know about all the geometry and sign conditions on such.
As a similarly “destructive” lifting optimisation as Open CAD, it is generally not used
without direct specification by the user.

Lifting constraints are rarely implicit within a formula, at least in a non trivial sense
in the manner of implicit equational constraints (Section 3.7). For example, the clause
x > 1 ∨ x > 2 is equivalent to x > 1, and so within a conjunction really represents
one lifting constraint. The need for such constraints to be linear in one variable limits
their ability to appear implicitly. One notes that a pair of lifting constraints that are
immediately unsatisfiable, such as x > 1∧x < 0 imply degenerate geometry if parsed as
lifting constraints, and QuantifierElimination CAD functions will produce an error
in this case upon parsing the lifting constraints (line 24 of Algorithm 20). In reality
an inconsistent set of constraints such as x > 1 ∧ x < 0 ≡ false, and so the related
formula is certainly false because x > 1 ∧ x < 0 must exist as operands of a top level
conjunction, but QuantifierElimination cannot proceed with lifting with the bounds
implied by these lifting constraints because the cell bounds will be unintelligible (e.g.
viewing Algorithm 14). An error produced in this case makes it clear to the user that
these constraints are indeed unsatisfiable, so the formula is equivalent to false. A dis-
junction such as x > 1 ∨ x < −1 does not fit in the framework of lifting constraints,
because it is inconsistent with Definition 43, which requires such constraints to form
the interior of a single box, and not the union of such boxes.

A set of lifting constraints {x1 ρ1,1 α1,1, x1 ρ1,2 α1,2, . . . , xn ρn,1 αn,1, xn ρn,2 αn,2} is
equivalent to the conjunction

n∧
i=1

(xi ρi,1 αi,1) ∧ (xi ρi,2 αi,2)

101

Lifting Constraints Passed # cells traversed # leaf cells CPU Time (s)

Via formula 11949 7129 33.05
Via option 6732 3662 35.88

Table 3.3: Comparison of cells in lifting by CylindricalAlgebraicDecompose with lift-
ing constraints passed by option and as part of the formula for ‘Ellipse A’ from the
QEExamples database.

Lifting Constraints Passed # cells traversed # leaf cells CPU Time (s)

Via formula ? ? ?
Via option 627 442 2.39

Table 3.4: Comparison of cells in lifting by CylindricalAlgebraicDecompose with lift-
ing constraints passed by option and as part of the formula for ‘Collision’ from the
QEExamples database. ‘?’ notifies that QE by CAD (PartialCylindricalAlgebraicDe-
compose) could not be completed within a standard timeout of 750 seconds.

where αi,j ∈ R ∪ {−∞,∞} and ρi,j ∈ {<,≤}, ∀i ∈ {1, . . . , n}, ∀j = 1, 2. Any lifting
constraints with∞ or −∞ can essentially be ignored, always being trivially satisfiable.

Tables 3.3 and 3.4 are tables of data comparing usage of lifting constraints via
keyword option with their standard use being passed in the formula, when produc-
ing a full CAD via CylindricalAlgebraicDecompose. All other keyword options used
are those as default in QuantifierElimination. Because of the presence of CPU
time, one notes the examples were performed on a computer running Maple 2020.1
with 16.0 GB of RAM, and a 3.70 GHz Intel i5-9600k processor. The projection sets
are always the same, given that lifting constraints act only within the context of lift-
ing. The same data about number of cells can be inspected by specifying infolevel[

PartialCylindricalAlgebraicDecompose] := 10 before running the same experi-
ments.

The symbol ‘positive’ can also be passed for the ‘LiftingConstraints’ option
such that we only build the CAD in positive real space, i.e. Rn+ or (0,∞)×· · ·×(0,∞),
being a shortcut for passing of the set {x1 > 0, . . . , xn > 0} as lifting constraints.

Usage of Algorithm 20 parses the given lifting constraints to check their consis-
tency, and find the smallest possible intervals to describe the maximal bounds for cells
to build per each variable (i.e. the lower and upper bound for left-most and right-most
sectors respectively). It returns two Arrays, bounds and constraints, which can be used
by the two main lifting routines CCHILD (Algorithm 14) and incrementalCADMerge
(Algorithm 51). The former does standard lifting while the latter does incremental lift-
ing amongst existing cells. More than two lifting constraints per variable is definitely
superfluous, possibly even inconsistent (line 24), but it’s up to the user to formulate
them well (or formulate the example well), and we always end up iterating over an
arbitrary number of them as a result (usually up to two). If the lifting constraints
form degenerate geometry, i.e. are inconsistent, Algorithm 20 generates an error not

102

Algorithm 20 Parsing of Lifting Constraints in CAD

Input: vars, an Array of all variables for the CAD (corresponding to the ordering
x1, . . . , xn), n, the positive integer representing the number of variables for
the CAD, lc, a set of all lifting constraints (Definition 43) given from top
level CAD input, or the symbol ‘positive’

Output: bounds, an Array of lists of two real numbers (or ±∞) representing
lower and upper bounds per canonical CAD level, and constraints, an Array

of sets of lifting constraints relevant to each canonical CAD level
1: procedure manageLiftingConstraints(vars, lc)
2: bounds← an empty Array with n elements
3: constraints← an empty Array with n elements
4: if lc is the symbol ‘positive’ then
5: for i to n do
6: bounds[i]← [0,∞]
7: constraints[i]← {0 < xi}
8: end for
9: else

10: for i to n do
11: constraints[i]← {f ρ 0 | f ρ 0 ∈ lc, f ∈ R[vars[i]]} . vars[i] = xi
12: (lb, ub) ←∞,−∞
13: for f ρ 0 in constraints[i] do
14: Let f = axi + b . f certainly linear in xi as a lifting constraint
15: if a < 0 then
16: if b

|a| < lb then

17: lb← b
|a|

18: end if
19: elseif − b

|a| > ub then

20: ub← − b
|a|

21: end if
22: end for
23: if ub ≤ lb then
24: ERROR — lifting constraints are inconsistent and give degenerate

geometry to build in, hence formula equivalent to false
25: end if
26: bounds[i]← [lb,ub]
27: end for
28: end if
29: return bounds, constraints
30: end procedure

103

to be caught, notifying the user that the formula Φ is trivially equivalent to false. If
this occurs in the context of QE, this implicitly provides QE output, albeit not in the
conventional sense of a parsable formula.

The total semantics in terms of arguments for the root isolation wrapper isolate-
RootsOf used by CAD in QuantifierElimination are that it takes a univariate poly-
nomial b ∈ R[x], the variable x, a set of lifting constraints c in x from the Array

constraints, and a lower and upper bound as a list [lb,ub], again corresponding to the
variable x, and from the Array bounds. isolateRootsOf directly obliges the lifting con-
straints by returning an ordered list of isolating intervals for roots of b that all satisfy
the lifting constraints c .

One notes that, for example, the functionality of RootFinding:-Isolate in Maple
provided by the keyword option ‘constraints’ evaluates a list of polynomials at each
of the root descriptions found in isolation. Given the precision involved in doing so,
this actually provides intervals about the evaluation those polynomials at each root.
Therefore for a set of lifting constraints constraints = {f1 ρ 0, . . . , fk ρ 0}, isolateRoot-
sOf passes the list [f1, . . . , fk] as ‘constraints’ to a low level isolation procedure, and
then evaluates the associated relations, discarding each root unless the evaluation of all
these relations are true. Passing of constraints to the isolation procedures used is gen-
erally only feasible where the lifting constraints are integral — those that contain real
algebraic numbers must be evaluated at each root manually, which is not as reliable. If
the evaluation of an irrational lifting constraint fails, this failure can be ignored if eval-
uation of another lifting constraint is false, in which case the failure to evaluate another
constraint at the same root description is immaterial. Hence isolateRootsOf passes the
integral polynomials from amongst [f1, . . . , fk] as ‘constraints’ providing reliable
evaluation of the associated constraints, and any irrational polynomials are evaluated
manually by usage of Maple’s shake about the root description to try to deduce the
sign of the constraint. When the lifting polynomial to isolate is completely integral,
the low level isolation routine to use can accept a real interval arising from the pair
of bounds in x produced from parseLiftingContraints, automatically excluding produc-
tion of root descriptions outside this interval, however that routine actually assumes it
forms a closed interval. Therefore we need to check the satisfiability of all the strict
inequalities amongst our lifting constraints per returned isolating interval (these are the
only constraints that could make that interval open at either end instead). However,
when the lifting polynomial is integral, the univariate isolation procedure can actually
evaluate even irrational lifting constraints. This is why not only an Array of bounds is
returned by parsing of lifting constraints, but an Array of the sets of lifting constraints
per variable, as it is rarely sufficient to just pass an interval to restrict root isolation.
In total, the only potentially unreliable case for evaluation of lifting constraints is that
of a lifting polynomial with irrational coefficients and irrational lifting constraints, and
the only (rare) cause for failure, but this only has us erroring out of CAD completely
if the lifting recovery methods discussed via and after Section 3.7.2 are either inappli-
cable (full CAD) or fail to let us deduce a quantifier free equivalent despite this failure
to evaluate constraints and hence produce isolating intervals about roots in order to

104

construct the stack on a cell (Partial CAD). The discussion of developments to low
level real root isolation routines to better accommodate the case for polynomials over
real algebraic numbers (Section 3.4.1) applies similarly here, such that evaluation of
‘constraints’ continues to be supported to at least the same extent as the discussion
here.

The functionality of lifting constraints to restrict root isolation finds itself useful in
a further context via Algorithms 31 and 34 from Section 3.7.2. Here, we narrow down
bounds for root isolation from any lifting constraints passed via the local sample points
of neighbouring cells of cells with curtains. As the bounds and associated constraints
come from local sample points, either or both could be irrational. Discussion of the
feature’s usage can be found following Algorithm 31.

Figure 6-1 shows an example of a call to PartialCylindricalAlgebraicDecompose in
Maple with passing of lifting constraints (deduced from an existentially quantified con-
junction by SuggestCADOptions — Chapter 6). Only CylindricalAlgebraicDecompose
(full CAD) and PartialCylindricalAlgebraicDecompose (CAD by QE with no VTS assis-
tance) support passing of lifting constraints via the keyword option
‘LiftingConstraints’.

3.7 Equational Constraints in CAD

An optimisation for projection first suggested for the McCallum projection operator
[48] allows usage of a restricted projection operator, meaning that fewer projection
polynomials are produced in the bases for each variable, still allowing sufficient deduc-
tion of a quantifier free answer for QE but cutting down on the work for the step to
which the majority of CAD’s complexity can be attributed. The concept owes to the
idea that for a formula of the form

∧
(f = 0, . . .), examination of positive or negative

sign of f is meaningless, and so sign invariance of f is only required in the sections of
f .

Definition 44 (Equational Constraint). An equational constraint (EC) of a Tarski
formula Φ is a polynomial f from an equation f = 0 logically implied by Φ, explicitly
or otherwise, for example f = 0∨g = 0 is equivalent to fg = 0, hence fg is an implicit
equational constraint of f = 0∨ g = 0. In a formula

∧
(f1 = 0, . . . , fk = 0, . . .), k > 1,

only one of the fi, 1 ≤ i ≤ k may be designated as the equational constraint of the
formula (at any one projection level).

Some typical examples of implicit/explicit equational constraints are below, origi-
nally from [28] and typically used to describe a sample of implicit vs. explicit cases for
ECs.

1. The formula f = 0 ∧ g > 0 has an explicit EC, f = 0.

2. The formula f = 0 ∨ g = 0 has no explicit EC, but the equation fg = 0 is an
implicit EC.

105

3. The formula f2 + g2 ≤ 0 has no explicit EC, but it has at least two implicit ECs
that are immediate: f = 0 and g = 0.

4. The formula f = 0 ∨ f2 + g2 ≤ 0 logically implies f = 0, and the equation is an
atom of the formula which makes it an explicit EC according to the definition.
However, since this deduction is semantic rather than syntactic, it is more like
an implicit EC rather than an explicit EC.

QuantifierElimination would be able to deduce ECs in cases 1 and 2 only. In
particular, Algorithm 21 can recursively collect an implicit equational constraint from
a disjunction, but the other implicit examples are beyond the scope of the algorithm.

McCallum’s first work on ECs [48] justified usage of a restricted operator for the
first projection step, i.e. projection with respect to xn. However [49] justified:

• usage of multiple equational constraints, justifying usage of a restricted operator
for the first and last projection phases xn and x1, and semi-restricted operators
otherwise, as opposed to a single equational constraint that would allow restricted
projection only in xn where appropriate, and

• propagation of equational constraints, giving further scope for selection of equa-
tional constraints amongst those that can now be identified as a result of the
resultant rule (3.3) between equational constraints in previous variable(s).

Importantly, we may only select at most one equational constraint to “restrict” a pro-
jection operator with per level, i.e. iteration of projection. This is despite the potential
existence of several of non trivial degree in that variable. Further, a selected equational
constraint per level will henceforth be referred to as a “pivot”, terminology again ow-
ing to McCallum and discussed further later. Naturally, propagation of equational
constraints requires usage of multiple equational constraints to be relevant. Usage of
multiple equational constraints means that equational constraints directly owing to the
input formula in x2, . . . , xn−1 could be selected for use in a (semi-)restricted projection
operation, while propagation means that in addition those polynomials owing to the
resultant rule (3.3) could be chosen as pivot in their stead.

For the first projection, we project from the polynomials appearing directly from
the decomposition of the formula Φ. Bar equational constraints, we ignore boolean
structure (at least in terms of ∧,∨) and require a flat representation of the polyno-
mials, such as sets. Hence we require a recursive method to collect the polynomials
from the relations of Φ. Because of equational constraints, we should pay attention to
the polynomials of equations at the top level of Φ if Φ is a conjunction, but further
because of the suggestion of implicit equational constraints arising from disjunctions of
equations just below the top level conjunction as in Definition 44, this implies a more
bespoke recursive collection of polynomials into a set of inequalities A and equations
E, which is given as Algorithm 21.

The formulation of Algorithm 21 means that the deduced equational constraints
are f1, . . . , fk, k ≥ 0 such that the input formula for CAD Qn−m+1xn−m+1 . . . Qnxn

106

Algorithm 21 Collection of all polynomials in a Tarski formula into a set of polyno-
mials associated with inequalities, and a set of ECs

Input: Φ, a prenex unquantified real Tarski formula
Output: A, a set of polynomials associated to inequalities from Φ, and E a set of
equational constraints from Φ

1: procedure getPolySets(Φ)
2: if Φ = true or Φ = false then
3: return ∅, ∅
4: elseif Φ = (f = 0) then
5: return ∅, {f}
6: elseif Φ = (f ρ 0) then . ρ ∈ {<,≤, 6=}
7: return {f}, ∅
8: elseif Φ =

∨
(Ψ1, . . . ,Ψk), k > 1 then

9: (A, E, p) ← ∅, ∅, 1
10: for i to k do
11: if Ψi = (f = 0) then
12: if deg(f) > 0 then
13: p← pf . Attempt to gather the implicit EC within a disjunction

— item (2)
14: end if
15: elseif Ψi = (f ρ 0) then
16: A← A ∪ {f}
17: else
18: (Aout, Eout) ← getPolySets(Ψi)
19: A← A ∪Aout

20: A← A ∪ Eout . Ψi must be a conjunction, and can’t bring ECs up
from a conjunction to a disjunction

21: end if
22: end for
23: if |E| = 0 then
24: if p 6= 1 then
25: if |A| = 0 then
26: return ∅, E ∪ {p}
27: else
28: return A ∪ {p}, E
29: end if
30: else
31: return A,E
32: end if
33: elseif p = 1 then
34: return A ∪ E, ∅
35: else
36: return A, {pf | f ∈ E}
37: end if

107

Algorithm 21 Collection of all polynomials into sets of polynomials from inequalities
and equational constraints, Part 2

38: else . Φ =
∧

(Ψ1, . . . ,Ψk), k > 1
39: (A, E) ← ∅, ∅
40: for i to k do
41: if Ψi = (f = 0) then
42: E ← E ∪ {f} . An explicit EC — item (1)
43: elseif Ψi = (f ρ 0) then
44: A← A ∪ {f}
45: else
46: (Aout, Eout) ← getPolySets(Ψi)
47: A← A ∪Aout

48: E ← E ∪ Eout

49: end if
50: end for
51: return A, E
52: end if
53: end procedure

Φ(x1, . . . , xn) is equivalent to

Qn−m+1xn−m+1 . . . Qnxn

k∧
i=1

fi(x1, . . . , xn) = 0 ∧ ΦI(x1, . . . , xn) (3.2)

wherem could here be 0 if passing an unquantified formula for production of a full CAD,
and some of the fi may have arisen from disjunctions directly below the top level con-
junction, and so in essence such an fi = fi1(x1, . . . , xn) = 0 ∨ . . . ∨ fid(x1, . . . , xn) = 0,
id > 1 due to item (2) in examples of equational constraints at the beginning of this
section. Again, other implicit equational constraints are out of the scope of what Al-
gorithm 21 is able to deduce. If ΦI is a conjunction, it should be free of equations
amongst the top level operands such that f1, . . . , fk is the maximal such set of equa-
tional constraints (Algorithm 21 will never omit equational constraints from the top
level of a conjunction).

Line 13 of Algorithm 21 suggests that we multiply any polynomials from equations
when processing a disjunction because of the relevant “implicit equational constraint”
condition (item 2 from the beginning of this Section 3.7). One may worry about the
fact that we may have to attempt to factor these later in order to form square-free
bases before projection, assuming they undergo no further processing. In terms of
Maple, one may multiply these polynomials without expansion, and as such a call to
factorisation will retain the factors. There is however, an interesting question of what
happens if we are to preprocess these equational constraints with respect to a Gröbner
basis beforehand (Section 3.7.3) — will we lose all information about the factorisation
if we make such a basis?

108

Open Problem 45. For a set of polynomials f1, . . . , fk for each of which we know of
a partial factorisation fi1 , . . . , fij , ij ≥ 1, 1 ≤ i ≤ k, can the information about the
partial factorisations be used at all by a Gröbner basis on fi1 , . . . , fij? Is it dependent
on monomial ordering?

Definition 46 (Restricted Projection). The restricted projection of a set of poly-
nomials A with respect to a set of factors of one equational constraint E (a pivot set),
for P the McCallum projection operator (PM from Section 3.3) is defined by McCallum
in [48] as:

PE(A) = P (E) ∪ {resx(f, g) | f ∈ A, g ∈ E}.

The semi-restricted projection of a a set of polynomials A with respect to a pivot
set E is defined by McCallum in [48] as:

P ∗E(A) = PE(A) ∪ {discrimx(f) | f ∈ E}

[57, Definition 11] formalises the restricted projection operator using the Lazard
projection i.e. P = PL, and in principle the semi-restricted projection operator is
adapted to use PL similarly.

QuantifierElimination implements the Lazard projection, and hence restricted
projection via equational constraints with the Lazard projection is what is relevant fur-
ther. Much of this is based on or concurrent with the research of [57, 56, 55]. Usage of
equational constraints in CAD in QuantifierElimination is controlled by the keyword
option ‘UseEquations’. Allowable values for this option are ‘none’, ‘single’, and
‘multiple’. Propagation of equational constraints in CAD in QuantifierElimination

is controlled by the keyword option ‘PropagateECs’, which takes a true or false value.
These options appear as arguments to essentially all top level routines using CAD at
all in QuantifierElimination, including QuantifierEliminate, PartialCylindricalAl-
gebraicDecompose, CylindricalAlgebraicDecompose InsertFormula, etc. As a keyword
option, all top level functions have to oblige a default value, which can be set to
‘single’ for the release of QuantifierElimination to reflect the fact that only usage
of a single equational constraint in xn for Lazard CAD is guaranteed “complete” (see
Section 3.7.2).

To explain propagation of equational constraints, via McCallum [49], we find the
so-called “resultant rule”:

f = 0 ∧ g = 0⇒ resx(f, g) = 0 (3.3)

and as such the resultant of two polynomials owing to equational constraints is an
equational constraint for the next level. This is where we gain an important distinc-
tion — while the pivot set that we perform a restricted projection with respect to
is a subset of all equational constraints at that level, we should track the remain-
ing equational constraints that were not used as pivots, such that we can propagate
this resultant rule and attempt use (semi-)restricted projection operators at successive

109

levels. Whenever we run out of potential equational constraints at a certain level, we
stop usage of restricted projection operators entirely, and revert to standard projection.

Relevance of the resultant rule means the set {resx(f, g) | f ∈ A, g ∈ E} in the
union to receive PE(A) of Definition 46 is only meaningful when examining any one
projection set in isolation, and really we need to track up to three sets of polynomials
at any one level — the (basis) set of pivots, Ci, 1 ≤ i ≤ n−1, a basis of other equational
constraints not used as pivots, BEi , 1 ≤ i ≤ n− 1, and a basis of all other polynomials
or “inequalities”, BAi , 1 ≤ i ≤ n. In other words, programmatically, that set really
needs to be calculated as the union

{resx(f, g) | f ∈ BEi , g ∈ Ci} ∪ {resx(f, g) | f ∈ BAi , g ∈ Ci},

where the former operand is a set of potential equational constraints at level i − 1 if
propagation of ECs & hence the resultant rule is being used. This is because equational
constraints not chosen as pivots are treated as non ECs, except we need to be cognizant
they are still equational constraints for usage of the resultant rule. Algorithms 5 and 9
reflect this identification. This gives impetus to the characterisation of a projection

object as discussed in Section 3.3, with visualisations of the relevant projection steps
on these bases in Figures 3-1, 3-3 and 3-5.

3.7.1 Pivot Selection Strategy

Algorithm 22 represents the implemented strategy in QuantifierElimination for se-
lection of a pivot at any one level. We must provide motivation as to why so much
attention is given to the content of whatever polynomial is chosen as pivot, to the extent

it is a return value of Algorithm 22. Let cd11 · · · c
dζ
ζ · p

dζ+1

dζ+1
· · · pdξξ be the factored repre-

sentation of the equational constraint polynomial chosen as pivot, as it is formatted on
line 5, such that

ζ∨
k=1

cdkk = 0 ∨
ξ∨

i=ζ+1

pdii = 0 ≡
ζ∨

k=1

ck = 0 ∨
ξ∨

i=ζ+1

pi = 0

noting the multiplicities d1, . . . , dξ of all the factors are meaningless for these equations.
Now, let f be any other equational constraint polynomial from E (that will find itself
in factored form in EF as a result of Algorithm 22. Then, in restricted projection with
respect to the Lazard operator PL, as part of the set of resultants of polynomials from
the pivot set with all other polynomials in xj (including those from EF), we have

resxj

 ξ∏
i=ζ+1

pi, f

 = 0 ∨
ζ∨

k=1

ck = 0,

or equivalently via properties of resultants

ξ∏
i=ζ+1

resxj (pi, f) = 0 ∨
ζ∨

k=1

ck = 0,

110

Algorithm 22 Selection of a pivot set from a set of equational constraints

Input: E, a set of polynomials that are equational constraints at some level in
projection, and xj , the variable to project with respect to next. E is assumed
to contain at least one polynomial of non trivial degree in xj .

Output: EP , the output pivot set to use, EF the set of equational constraints not
chosen as pivot in factored form, EC , all equational constraints of degree 0 in
xj , and cout, the content of the chosen pivot (degree 0 in xj) in factored form

1: procedure choosePivotSet(E, xj)
2: (dbest, nbest, dc

best, nc
best) ←∞,∞,∞,∞

3: for p in E do
4: if degxj (p) > 0 then

5: Fully factor p as cd11 · · · c
dζ
ζ · p

dζ+1

ζ+1 · · · p
dξ
ξ where degxj (ci) = 0, 1 ≤ i ≤ ζ,

degxj (pi) > 0, ζ + 1 ≤ i ≤ ξ, di > 0, 1 ≤ i ≤ ξ
6: EF ← EF ∪ {pζ+1 · · · pξ}. Add factors of p of non trivial degree in xj to

EF in factored form
7: if p is the best equational constraint polynomial observed from E in

terms of the tiebreakers 1 through 4 discussed in this subsection, in
light of the values of dbest, nbest, dc

best, nc
best to compare then

8: Update dbest as the maximum degree of any factor of p in xj
9: Update nbest as the number of factors of p of non trivial degree in xj

10: Update dc
best as the maximum degree of any factor of content of p in

xj
11: Update nc

best as the number of factors of p of degree 0 in xj
12: cout ← c1 · · · cζ . The content of p in xj , in factored form
13: EP ← {pζ+1, . . . , pξ}. Best potential pivot set — factors of p of non

trivial degree in xj
14: end if
15: else
16: EC ← EC ∪ {p} . With no factorisation
17: end if
18: end for
19: EF ← EF \ {

∏
EP }

20: return EP , EF , EC , cout
21: end procedure

111

which via the logic of equivalence of a disjunction of equations to one equation (such
as (2) in examples of ECs)

ζ∏
k=1

ck

ξ∏
i=ζ+1

resxj (pi, f) = 0

and so we return
∏ζ
k=1 ck from Algorithm 22 such that it can be passed to restricted

Lazard projection, instead of multiplying every f ∈ EF through by the content of the
pivot, which will be explained to be undesirable, albeit feasible.

If we are using propagation of equational constraints, this applies for every f ∈ EF ,
such that in restricted projection with respect to the Lazard operator our next set of
candidate equational constraints with respect to xj−1 (if j > 2) is

⋃
f∈EF

 ζ∏
k=1

ck

ξ∏
i=ζ+1

resxj (pi, f)

 ∪ EC . (3.4)

Note that via properties of resultants,

ξ∏
i=ζ+1

resxj (pi, f

ζ∏
k=1

ck) = 0⇒
ζ∏

k=1

ck

ξ∏
i=ζ+1

resxj (pi, f) = 0,

but actually

ξ∏
i=ζ+1

resxj (pi, f

ζ∏
k=1

ck) =

ξ∏
i=ζ+1

(
ζ∏

k=1

ck

)max(degxj (f),degxj (pi))

resxj (pi, f) =

(
ζ∏

k=1

ck

)∑ξ
i=ζ+1 max(degxj (f),degxj (pi)) ξ∏

i=ζ+1

resxj (pi, f)

where we know that max(degxj (f),degxj (pi)) > 0 ∀i ∈ {ζ + 1, . . . , ξ} via the con-
struction of the pivot set and EF (so we would not lose the contents), but introducing
some undesirable degree via the exponent (even if we receive something still in factored
form), so we do not brazenly multiply every element of EF in Algorithm 22 through
by cout in order to receive the new set of equational constraints later, even if it would
be convenient.

Having investigated what will be done with the content of the chosen pivot upon
its selection, we can begin to explain the tiebreaker conditions within Algorithm 22.
Written in plain English, they aim to select an equational constraint of non trivial
degree in xj that has:

112

1. The lowest maximum degree factor amongst those of non zero degree in xj (the
pζ+1, . . . , pξ),

2. The least numerous factors amongst those of non zero degree in xj (again, the
pζ+1, . . . , pξ),

3. The lowest maximum degree factor amongst those of degree zero in xj (the
c1, . . . , cζ),

4. The least numerous factors amongst those of degree zero in xj (again, the c1, . . . , cζ).

Lemma 47. Usage of Algorithm 22 achieves the goal of being a “greedy” pivot selec-
tion strategy, with respect to the polynomial operations to occur in restricted Lazard
projection with respect to xj after its selection.

Proof. (3.4) represents the set of potential equational constraints in xj−1, assuming
j > 2. The union across EF corresponds precisely to the contribution from propagation
of equational constraints, while EC is the set of any equational constraints which were
immediately of degree 0 in xj . It is henceforth operations owing to this set, either
directly or indirectly, that we attempt to minimise.
Putting tiebreaker 1 before 2 addresses the notion that the total complexity of the
ensuing resultants in PL are more dependent on input degree than how numerous they
are.
Tiebreakers 3 and 4 are technically irrelevant to the situation in xj , but attempt to
do some work to minimise the degree of potential equational constraints in any further
restricted projection steps, again assuming propagation of equational constraints. If we
are not propagating equational constraints, or a pivot from EC is to be selected instead,
the penalty of examination of these criteria is minimal and tiebreakers 1 and 2 were
still superior. Again referring to (3.4), we attempt to minimise maxζk=1 deg(ck), or in

failing to distinguish between those maxima, ζ. This is pertinent as
∏ζ
k=1 ck multiplies

every polynomial in that union, potentially making the certain resultants to occur as
a result of selection of any of those polynomials as pivot more costly.

[5] discusses selection of a pivot (designation of an equational constraint) in usage of
a single EC with the McCallum projection using the sotd or ndrr metrics on generated
projection bases, which is tied to variable strategy (Section 3.8). Variable strategy and
pivot selection largely interact differently in QuantifierElimination, and in particular
those metrics are not used to select pivots, with Algorithm 22 always applied instead.

3.7.2 Curtains in a Lazard projection CAD

[57] introduces the concept of “curtains”. These mathematical obstacles may occur
when using equational constraints with the Lazard projection in CAD, and may impede
our ability to construct (enough of) a Lazard invariant, and hence sign invariant CAD,
for whatever purpose the CAD is to perform.

Definition 48 (Variety). [21, Definition 50] The set of solutions over K (a field) of
an ideal I is called the variety of I.

113

The context for I further is that formed by (at most all) equational constraints from
input for some CAD for Lazard projection (with restricted projection operations arising
from said equational constraints).

Definition 49. [57, Definition 8] A variety C ⊆ Rn is called a curtain if, whenever
(x, xn) ∈ C, then (x, y) ∈ C for all y ∈ R.

Definition 50. [57, Definition 9] Suppose f ∈ R[x1, . . . , xn] and W ⊆ Rn−1. We say
that f has a curtain at W if for all x ∈W and y ∈ R we have f(x, y) = 0.

Definition 51 (Well Oriented). [50, Remark 2, Algorithm CADR3] A set A of r-
variate polynomials over R is said to be well-oriented if no element of prim(A) vanishes
identically on any submanifold of Rr−1 of positive dimension and, moreover, this prop-
erty holds recursively for the set cont(A)∪P (B), where B is the finest square-free basis
for prim(A).

Remark 52. In Definition 51 above, P is assumed to be the McCallum projection
operator PM , and r is what would normally contextually be n ∈ N in this work. prim(A)
is the set of primitive parts of all polynomials in A, and cont(A) the set of contents
of all polynomials in A, both with respect to one variable under a fixed ordering. A is
most relevant when taken to be the flat top level set of all polynomials from input.

Proposition 53. [57, Proposition 4] Let f ∈ R[x1, . . . , xn] be of positive degree in xn
and let S be a connected subset of Rn−1. Suppose that f is Lazard delineable on S.
Then f is Lazard (i.e. lex-least) invariant in each Lazard section and sector of f over
S.

Lack of well orientedness (Definition 51) may lead to nullification occurrences in
use of the McCallum projection operator PM . In other words, the input polynomials
can retrospectively be seen to not be “well-oriented” when some projection polynomial
is nullified after evaluation at the sample point of some cell of level less than n in stack
construction. This evaluation is the equivalent of Lazard evaluation (Algorithm 11),
except usage of Lazard evaluation in conjunction with the Lazard projection avoids
this issue on non pivot polynomials by removing nullifying factors. With standard
evaluation via sample points, nullification obfuscates the potentially changing sign(s) of
polynomial(s) on that cell, as the evaluation is 0 instead of any non trivial polynomial
potentially donating roots to build around. However, Lazard evaluation rids us of
this issue by dividing through by nullifying factors. Hence QuantifierElimination

does not suffer from nullification, but suffers from a related issue due to equational
constraints.

Definition 54 (Lazard Curtain). A Lazard curtain is a subset of the space formed
by a CAD cell c of level 0 < k ≤ n − 1 such that there exists an f in the pivot set of
level k + 1, Ck where the full sample point α ∈ Rk of c nullifies f , where the set Ck
exists. If Ck doesn’t exist, i.e. there were no equational constraints used at level k, then
there are certainly no CAD cells with curtains of level k.

In terms of Definition 50, f is the multiplication of all polynomials in that pivot set
(or implicitly any of them due to multiplication of the factors), and W ⊆ c. α nullifying

114

some element f of the pivot set Ck is equivalent to f having a non zero Lazard valuation
on α (and hence implicitly c) (Algorithm 23).

In QuantifierElimination, nullification occurrences are only relevant on polyno-
mials from pivot sets, and are characterised as “Lazard curtains” — the further interest
of this section. Where a cell c has a curtain on a pivot polynomial at level 2 ≤ i ≤ n,
Lazard evaluation is insufficient because the lack of cross resultants between polyno-
mials in the relevant sets of polynomials treated as those from inequalities BAi and
BEi−1 due to usage of a (semi-)restricted projection operator may mean we will fail
to identify all the geometry in subsequent lifting stages that allow us to decompose c
to sign invariance over that pivot polynomial. More precisely, if f, g ∈ BAi ∪ BEi−1 ,
and h ∈ Ci−1, then on a curtain, r1 := resxi(f, h) = 0, and r2 := resxi(g, h) = 0, hence
resxi−1(r1, r2) = 02, and hence the polynomial intended to deduce the finer geometry to
achieve sign invariance cannot do so. In contrast to usage of the McCallum projection,
we must pay attention to whether polynomials from pivot sets nullify, as opposed to
all projection polynomials.

These Lazard curtains impede our ability to construct a Lazard & hence sign invari-
ant CAD, and so (at the least) identifying, and otherwise avoiding or dealing with them
is of interest, e.g. because sign invariance implies truth invariance on the top level for-
mula for QE by Partial CAD. Nullification occurrences in the context of the McCallum
projection in situations lacking well-orientedness are also curtains, and in retrospect
could be called “McCallum curtains” in the context of the nomenclature introduced
here. Similarly, those curtains impede the ability to construct a sign invariant CAD,
and so QEPCAD B or ProjectionCAD identify nullification occurrences in various ways
which will be discussed later in comparison with what is implemented and available in
QuantifierElimination for handling of curtains with the Lazard projection. Again,
McCallum nullification occurrences are not specific to usage of equational constraints,
in contrast to Lazard curtains.

CAD in QuantifierElimination will check for a curtain on any cell c that under-
goes stack construction, that is via CCHILD. At this point, we check for a non zero
Lazard valuation of any f in the pivot set commensurate with the level of c, if such a
pivot set exists. Hence this depends on the extent to which equational constraints were
used, i.e. single or multiple equational constraints (controlled by the CAD keyword op-
tion ‘UseEquations’). For a cell c of level 0 < k ≤ n−1, we examine the pivot set Ck,
which is actually the set of factors of an equational constraint for xk+1. If this pivot set
is not a singleton, this means whatever equational constraint was chosen as a pivot fac-
tored, and so nullification of any of its factors nullifies the original polynomial chosen.
Due to the likelihood that usage of at least a single equational constraint is enabled,
Cn−1 is likely to exist if any equational constraints were identified in xn. Checking
the valuations of the pivot set on c before continuing with the rest of stack construc-
tion via CCHILD is important, because the function univariateBasisAtLazard used in

2If f, g ∈ BEi−1 , then at most one of r1 and r2 could be identified as a pivot at level i − 1, so
resxi−1(r1, r2) exists via the ensuing cross resultants in (semi-)restricted projection.

115

CCHILD merely iterates over all polynomials at a canonical projection level perform-
ing Lazard evaluations on each, making no distinction as to a projection polynomial’s
origin. Lazard valuations (not to be confused with evaluation) are not usually purpose-
fully identified during Lazard evaluation (Algorithm 11) in QuantifierElimination,
although in practice they are a corollary of computation of evaluation. Here, even the
actual values in requested valuations are meaningless beyond “non zero”, so the algo-
rithm for detection of a non zero valuation and hence curtain on one cell is bespoke,
to avoid the verbosity of calling Algorithm 11 (or a modification thereof).

Algorithm 23 Check for a non zero Lazard valuation on a CADCell

Input: c a CADCell of level 0 < k < n, f ∈ R[x1, . . . , xk+1] an element of some
pivot set Ck used in projection — hence of non trivial degree in xk+1

Output: true, if the Lazard valuation of f on α, the sample point of c, is non
zero, else false

1: procedure checkLazardValuationNonZero(c, f)
2: α← GetSamplePoints(c) . Full sample point of c
3: f ′ ← f
4: for i to k do
5: s← lhs(αi)− rhs(αi) . s becomes the ith element of the full sample point

as a linear polynomial
6: if s | f ′ then
7: return true
8: else
9: f ′ ← f ′|αi . still Lazard valuation, but no division beforehand as if

there were any we’ve already returned true
10: end if
11: end for
12: return false
13: end procedure

Note that αi is the ith element of the full sample point of c, i.e. an equation defined
by a real linear polynomial in xi. lhs(αi)− rhs(αi) is that linear polynomial. Usage of
Algorithm 23 is evidently less verbose than doing the full valuation and checking that
it is non zero, i.e. along the lines of Algorithm 11.

The work of [56] goes further as to prove that “point curtains” are of no cause for
concern.

Definition 55 (Point Curtain). [56, Definition 13] We say that f ∈ R[x1, . . . , xn]
has a point curtain at α ∈ Rn−1 if the Lazard valuation (Definition 36) of f on α
να(f) 6= (0, . . . , 0) and there exists a neighbourhood U of α such that να′(f) = (0, . . . , 0)
for all α′ ∈ U \ {α}

Theorem 56. [56, Theorem 3] Let f ∈ R[x1, . . . , xn] and let α ∈ Rn−1. If f is an
equational constraint and has a point curtain at α, then PLE is sufficient to obtain a

116

sign-invariant CAD.

Remark 57. Theorem 56 means that if we construct a Lazard CAD such that the only
level n − 1 curtains are point curtains, then we can actually achieve sign invariance.
This does not imply Lazard invariance, but in general Lazard invariance is merely to
imply sign invariance, e.g. giving truth invariance to achieve QE.

Definition 58 (1-Cell Neighbours). If c is a level k > 0 cell with full index [i1, . . . , ik],
its 1-cell neighbours are the cells with full index [i1, . . . , ij − 1, . . . , ik] and [i1, . . . , ij +
1, . . . , ik], for each 1 ≤ j ≤ k, where those cells exist.

In the context of that work, a CAD cell and its (full) sample point α are used in-
terchangeably, which is entirely canonical considering the bijection between full sample
points and cells. [56] refers to “1-cell neighbours” (Definition 58) to mean the neigh-
bourhood U from Definition 55. Algorithm 24 can be used to get an Array of all the
1-cell neighbours found for a cell, such that one can begin to deduce if a certain cell
is a point curtain or not. Algorithm 26 is a canonicalization that a non zero Lazard
valuation of any factor of the top level pivot set implies a non zero valuation on the
pivot (because the valuation of a product is the sum of the valuations of its factors),
and provides an interpretation of this condition in terms of the projection object of
QuantifierElimination.

Algorithm 24 Algorithm to get 1-cell neighbours of a CADCell

Input: c a level k > 0 CADCell to find 1-cell neighbours of
Output: N , a (possibly empty) Array of the 1-cell neighbours of c (Definition 58)

1: procedure getOneCellNeighbours(c)
2: [i1, . . . , ik]← getFullIndex(c) . Full cell index for c
3: cell← c
4: N ← an empty Array

5: for j from k down to 1 do
6: cell← cell 7→ parent
7: N ← N ‖ findChildAt(cell, [i1, . . . , ij − 1, . . . , ik], j)
8: N ← N ‖ findChildAt(cell, [i1, . . . , ij + 1, . . . , ik], j)
9: end for

10: return N
11: end procedure

Algorithm 24 and its helper Algorithm 25 attempt to create a container of all one
cell neighbours of a CADCell by tree traversal.

1. This can be used to find neighbours of a cell of any level, even if the likely intention
is that we return neighbours of level n− 1 cells given the later discussion of this
section enabled by Theorem 56.

2. Algorithm 24 traverses up the tree, while Algorithm 25 traverses down. We use
the fact that the level k > 0 cell c and its neighbours with indices [i1, . . . , ij −

117

Algorithm 25 Algorithm to find a CADCell of a specific index from a cell of a specific
level

Input: c a CADCell of level 0 ≤ d ≤ n, ind a list with ≤ n (likely n− 1, or at least
≤ n− 1) elements representing the index of the cell in the subtree below c to
find and ideally return, j a positive integer such that 1 ≤ j ≤ n

Output: If a cell with full index ind could be found in the subtree below c, then
that cell, else nothing

1: procedure findChildAt(c, ind, j)
2: i← j
3: temp← c
4: repeat
5: if temp has children cells (temp 7→ children) then
6: childs← [e1, . . . , et], where each em is the local indices of the mth child

cell of temp, where there are t > 0 such child cells.
7: k ← Search(childs, ind[i])
8: if k = 0 then
9: return . Return e.g. NULL — no cell found

10: else
11: temp← c 7→ children[k]
12: i--
13: end if
14: else
15: return
16: end if
17: until i = 0
18: return temp
19: end procedure

118

1, . . . , ik] and [i1, . . . , ij + 1, . . . , ik] are contained in the CAD subtree rooted at
the cell k−j+1 levels up from c, hence we iteratively look upwards in the tree and
search within the smallest necessary subtree with height commensurate with the
element of the index that we are searching for, rather than needlessly searching
beneath the root cell every time.

3. Line 7 is characterised as fairly generic — the intention is that Search has the
semantics that it returns 0 if the second argument could not be found in the
first argument (a list), else it returns the index where the value was found.
QuantifierElimination requires that child cells in the children Array for a
CADCell are stored in increasing order of local index, but it is not certain that
[e1, . . . , et] = [1, . . . , t], if any cells are missing due to (possibly evolutionary) us-
age of OpenCAD. Hence one can (generally) only justify usage of O(log t) binary
search amongst that list to find the index, else usage of Search(. . .) on line 7
can merely be replaced by k ← ind[i], i.e. when search is superfluous because
the local indices form the continuous list [1, . . . , t]. One notes that binary search
is not the main constituent of the headline complexity of the gathering of the
neighbour cells, let alone the parent routines.

Algorithm 26 Algorithm to detect a Lazard curtain on a CADCell

Input: c a CADCell of level 0 < k < n− 1, P a projection object
Output: true, if the Lazard valuation of any element of the pivot set Ck of level
k + 1 from P is non zero, else false

1: procedure detectLazardCurtain(c, P)
2: if P 7→ pivotSet[k] is a set of polynomials, i.e. a pivot set exists at level k + 1

then
3: for f in P 7→ pivotSet[k] do
4: if checkLazardValuationNonZero(c, f) then
5: return true
6: end if
7: end for
8: end if
9: return false

10: end procedure

Altogether, the checking for curtains with preceding conditions in Algorithm 14
(CCHILD) is in Fragment 27.

The first conditions in the “If” ensure, in order, that checking for curtains is de-
sirable by the boolean curtainCheck, any projection occurred at all via checking that
n > 1, and c is not the root cell and hence has a sample point. Further, if c has a
non zero Lazard valuation on the relevant pivot set, then we produce an error about a
Lazard curtain with the relevant data about the cell and equational constraint. Pro-
duction of an error from CCHILD can and will be caught, as will be delineated later
as part of a greater scheme to ignore “problematic” cells (especially in the context of
QE) via the standard CAD lifting loops used throughout the various CAD routines in

119

Fragment 27 Checking for Lazard curtains before stack construction

1: if curtainCheck and n > 1 and c 7→ level > 0 and detectLazardCurtain(c, P)
then

2: Produce an ERROR about a Lazard curtain on c via the nullified pivot
polynomial from P , to be caught by the function calling stack
construction (e.g. line 6 of Code Fragment 28)

3: end if

QuantifierElimination.

Theorem 56 says that if c, the cell to construct a stack over, is merely a point
curtain, i.e. its neighbours all have zero Lazard valuations, then stack construction can
continue. However, we may not have constructed the neighbours of c, and so are unable
to be certain that we identify a point curtain during regulation lifting. This is especially
true when cell selection strategy has us traversing the tree depth-wise in Partial CAD,
but is true regardless considering any one cell of a particular level has to be parsed by
CCHILD first. Therefore we produce the error and it is handled by the top level in a
context specific to the purpose of the CAD construction, which is especially pertinent
considering we later discuss a method of recovery for a subset of such curtains. We
can of course provide an upper bound for how many neighbour cells a level k ≥ 0 cell
can have — 2k via the characterisation of neighbour cells in Definition 58. This bound
can be made sharper for any one cell in terms of how many members of the cell’s
full index [i1, . . . , ik] are extremities (i.e. 1 or the maximum such ij amongst child
cells of the cell with full index [i1, . . . , ij−1]). If there are 0 ≤ t ≤ k such extremities,
then there are k ≤ 2k − t ≤ 2k neighbour cells. The number of extremities t for a
CADCell is realised by Algorithm 33. This bound can be used to clarify that the set of
neighbour cells found by Algorithm 24 is complete to be able to use the criteria about
point curtains characterised by one-cell neighbours with confidence. Point curtains can
be lifted normally via Theorem 56, so the classification is worthwhile. However, this
classification is still delayed until as late as possible, for at least the following reasons:

• In Partial CAD, we may be able to lift to meaningful cell(s) deducing a quantifier
free equivalent without engaging with the unnecessary expense of using the point
curtain criteria on cells eventually deduced as not meaningful for output.

• If we let regulation lifting for CAD in any context finish, then we can be far more
confidence about meeting the implied bound above for the numbers of neighbour
cells for cells with curtains, instead of pointlessly traversing the tree to generate
all neighbour cells to attempt to meet the bound.

• In the context of QE, we can then classify and/or “fix” only those cells which are
absolutely necessary for output.

Lemma 59 consolidates the discussion on bounds for number of neighbour cells above.

Lemma 59 (Bound to achieve confidence in point curtain criteria). If we
generate all neighbour cells for a level 0 < k < n CADCell c with a curtain (e.g. via

120

Algorithm 24), and we meet the bound 2k− t where 0 ≤ t ≤ k is the number of extremal
values in the full index [i1, . . . , ik] for c, then we can use the criteria on neighbour cells
to identify c as a point curtain with confidence. If N is the set of all neighbour cells
found for c, then

|N | = 2k − t ∧ ¬

 ∨
cN∈N

detectLazardCurtain(cN , P)

is the condition allowing us to confidently classify c as a point curtain, where P is the
projection object associated with the CAD containing c.

Definition 60 (Low Level Curtain). A low level curtain is one on a cell of level
0 < k < n − 1. The level of a curtain is of course contextual for the value of n with
respect to the relevant CAD.

Working further through [56], we find methodology to directly deal with non point
curtains of level n − 1 via further decomposition. Algorithm 3 from [56] provides this
decomposition. One notes that the presentation there is strictly to provide a CAD of
the curtains, however here it is of interest to modify an existing CAD such that it is
sufficiently sign invariant and, where appropriate, deduce the quantifier free equivalent
of a QE problem. The decomposition algorithm requires, at least for reasons of effi-
ciency, all curtain cells to be accessible in a container beforehand before processing.
Hence we can finally arrive at Code Fragment 28 describing lifting in Partial CAD (for
QE, PartialCylindricalAlgebraicDecompose).

Level n − 1 non point curtains may not be all that remains in terms of curtains
during lifting, due to non point curtains of level 1 ≤ k < n − 1, which would require
different methodology to deal with. The methodology provided here may be able to
work around such curtains in QE via Partial CAD, but not via full or “stock” CAD, at
which point errors must be produced to terminate production of the CAD. However,
curtains of level 1 ≤ k < n− 1 are only relevant when multiple equational constraints
are used via passing of the keyword option ‘UseEquations’ = ‘multiple’, and so a
full CAD can certainly be produced either under the same variable ordering by passing
‘UseEquations’ = ‘single’ instead, and here the only possible pivot set is one for
xn, at which point curtain decomposition can guarantee successful termination.
Code Fragment 28 uses the following:

1. CAD EXCEPTION STRINGS should be a sequence of strings for errors to catch that
can occur in the context of CCHILD including, but not limited to, Lazard cur-
tains. Other examples of errors that we may wish to be caught include those
that can occur in the context of stack construction or cell evaluation, such as
root isolation for the former — e.g. being unable to isolate roots of a convoluted
polynomial given reasonable resources (see below).

2. We catch errors about any Lazard curtain, including curtains of level k < n− 1,
and more generally any error where QuantifierElimination could not otherwise

121

Fragment 28 Partial CAD (for QE) lifting loop in the context of “lifting failures”

1: Initialise problemCells as an empty container
2: while (i← QECADStrategy(cad)) > 0 do
3: cell← pop(cad, i)
4: try
5: CCHILD(cell, cad, bases, vars, n, localopen, constraints, bounds,

curtainCheck = true)
6: catch CAD EXCEPTION STRINGS:
7: Append the list [cell, E] to problemCells, where E is the exception caught
8: next
9: end try

10: PRPTV(cell, quants, m, n, cad, leaves, problemCells)
11: end while

recover, because the intent is any such problematic cells may be removed from
the CAD tree via propagation of truth values.

3. problemCells is a container (presumably a QEContainer) containing cells stored
together with a corresponding lifting error. Via the above it contains at least, and
possibly at most, cells with Lazard curtains. Hence we can deduce a container of
all curtains to decompose via the technology from [56].

4. problemCells is passed as an argument to PRPTV (Algorithm 15). The spirit of
Partial CAD, and in particular PRPTV is that one should only lift cells where
necessary to deduce a quantifier free equivalent of a QE problem. Cells that are
due to receive stack construction exist in cad. Cells with lifting errors exist in
problemCells, but we know that we originally aimed to build a stack over them.
If truth value propagation leads us to remove a CAD subtree that includes a cell
in problemCells, then we should reflect its removal from the subtree by removal
from problemCells. Later, at least when it comes to decomposition of cells with
curtains, we only decompose curtain cells where we know it is meaningful to do
so to achieve QE.

Avoidance of General Lifting Failures

Importantly, Code Fragment 28 is able to attempt to ignore any general failures to
construct or evaluate the child cells of a cell entering CCHILD or PRPTV. PRPTV
includes its own try/catch mechanisms to trap errors arising from item 5, extending
the avoidance of errors under the umbrella of Fragment 28. The full list of such failures
that can be caught within this framework is as follows:

1. Lazard curtains, as is the main purpose of this section,

2. Being unable to isolate the roots of a convoluted polynomial given reasonable re-
sources, which may manifest as “being unable to compute a root bound” (Section
3.4.1),

122

3. Being unable to make disjoint two root descriptions from separate lifting polyno-
mials due to requirement of usage of a precision exceeding a set threshold (Section
3.4.1),

4. Being unable to evaluate any lifting constraint with irrational coefficients at a
root of a lifting polynomial also with irrational coefficients in order to deduce
whether the isolating interval about this root description is discarded before stack
construction (Section 3.6),

5. Failure to deduce the sign of a relation on a constant expression of real algebraic
numbers (specifically interval indexed RootOfs) during evaluation of a CADCell

by evaluateTFArrayAtSP (Section 3.4),

6. Production of reducible RootOfs, i.e. RootOfs that imply ambiguity in any al-
gebraic expression featuring polynomials (such as in a formula to evaluate, or
polynomial to isolate roots of), which can occur in the current methodology of
evaluating truth of relations of nested real algebraic numbers in evaluateTFAr-
rayAtSP.

Hence CAD EXCEPTION STRINGS could be a sequence of strings containing at most all the
items above. As the support within various routines used by QuantifierElimination’s
CAD became more extensive during the development of QuantifierElimination, er-
rors of the nature of 2, 3, or 4 became much less relevant, or at least far more rare,
but the rationale for a framework to attempt to avoid and recover from such errors
remains at least due to Lazard curtains, which is a mathematical complication rather
than one of software. In particular, the author is grateful for continued support by
Maplesoft & collaborators to improve root isolation & refinement for polynomials over
QuantifierElimination’s representation of real algebraic numbers to mitigate the
classes of error regarding root isolation (2, 3, and 4). The intention of usage of this
code fragment is that we may be able to avoid lifting errors where propagation of truth
values from other meaningful leaf cells deduces the nonnecessity of cells with lifting
errors for output, hence their (implicit) removal from the CAD tree. The capture of
general errors is hence only relevant in Partial CAD. Their storage is such that we have
a mechanism for identifying their removal from the CAD tree, possibly reraising an
exception if we cannot deduce QE, and recovery from a subset of curtain occurrences
(explained shortly in this section).

As an example of lifting failure avoidance, we can discuss an example where prop-
agation of a truth value allows us to ignore a Lazard curtain. Consider the fully
existentially quantified example

∃x1∃x2∃x3∃x4∃x5∃x6∃x7∃x8∃x9∃x10∃x11∃x12
v2 = 0 ∧ v4 = v3 ∧ v9 = 1 ∧ v10 = 1 ∧ v1 v9 + v11 v5 = v7 ∧ v11 v6 + v2 v9 = v8∧
v10 v3 + v12 v5 = v7 ∧ v10 v4 + v12 v6 = v8 ∧ 0 < v12 ∧ v5 < 0 ∧ v7 < 0 ∧ v11 < 0∧
v7 < 2 v8 ∧ v8 < 0

123

which is the existentially quantified example associated to “Supply-Demand: Krugman
scenario error 0013” from the Economics QE database (Section 7.1). In traversal of QE
purely by Partial CAD with default options for PartialCylindricalAlgebraicDecompose
and multiple ECs via ‘UseEquations’ = ‘multiple’, we find a Lazard curtain at a
level 8 cell with full sample point

[v9 = 1, v10 = 1, v6 = 0, v4 = 0, v3 = 0, v2 = 0, v5 = −1, v12 = 1]

on the EC v11v6 − v12v6 − v3. While the problem is essentially linear in each variable,
usage of restricted projection (in various ECs with multiple equational constraints)
allows us to omit various coefficients from polynomials owing to inequalities in pro-
jection (in the associated benchmarks, one notes the example only completes before
timeout for QE with multiple ECs enabled). One notes that the curtain is at level
8 < 11 = 12 − 1 = n − 1, which is important considering the attention paid to level
n − 1 curtains soon in this section, because these are the only curtains that can be
recovered from, as opposed to merely ignored/avoided. Because the problem is com-
pletely existentially quantified, we need only find a meaningful truth value at any cell
to terminate QE. It happens that we find one from the cell with full sample point

[v9 = 1, v10 = 1, v6 = 1, v4 = −1, v3 = −1, v2 = 0,

v5 = −1, v12 =
1

2
, v11 = −1

2
, v8 = −1

2
, v7 = −3

2
, v1 = −2],

which of course propagates the truth value true all the way to the root, and the curtain
found previously is superfluous.

Meanwhile, in the context of regular full CAD construction (CylindricalAlgebraicDe-
compose) without evaluation of truth values, we can obtain the similar Code Fragment
29. In full CAD, we need to construct every single level n cell. Lifting failures other
than level n− 1 curtains cannot be recovered from due to lack of propagation of truth
values, so the associated exceptions shouldn’t be caught, unlike the case for Code Frag-
ment 28. A subset of curtains can be recovered from (level n− 1 non point curtains),
so we catch “Lazard curtain” errors, and deduce whether the cell producing the cur-
tain is of the appropriate level. A classification as to whether it is a point curtain is
made later, due to Lemma 59. Low level curtains are not caught, despite their possible
classification as a point curtain, due to discussion later.

Code fragments 28 and 29 may further be referred to as “regulation lifting” for
the context of Partial CAD and full CAD respectively. In both contexts for CAD
(that is QE or full CAD), we gather all curtains in a container. Hence we move for-
ward to delineate the decomposition technology with modifications to accommodate
QuantifierElimination. The statement of correctness of the underlying methodolo-
gies lies with [56].

Algorithm 30 begins by gathering the set of all top level projection polynomials not
used as pivot from P . We perform standard Lazard projection on this set to generate a
set of level n−1 polynomials. We now gather all non point curtains from the level n−1
curtains found in regulation lifting, where the classification is not frustrated by missing

124

Fragment 29 Full CAD lifting loop in the context of “lifting failures”

1: curtains← an empty Array

2: repeat
3: cell← pop(cad, 1) . Any index of cad will do
4: if cell 7→ level = n then
5: push(leaves, cell)
6: else
7: try
8: CCHILD(cell, cad, bases, vars, n, open, constraints, bounds,

curtainCheck = true)
9: catch “Lazard curtain”:

10: Let E be the exception caught (about the curtain on cell)
11: if cell 7→ level = n− 1 then
12: Append the list [cell, E] to curtains
13: next
14: else
15: ERROR — reraise the exception E
16: end if
17: end try
18: end if
19: until |cad| = 0

cells due to Partial CAD, because this is in the context of full CAD post regulation
lifting. These non point curtains must undergo further decomposition by the technology
from [56], and Algorithm 31 is the recursive part of this. Calling the recursive function
returns a container cadout of new level n− 1 cells from the decomposition of curtains,
and an Array of “modified” level 1 cells. Usage of the recursive function merges in new
geometry via the decomposition of the non point curtains. This may modify existing
level 1 cells, which destroys the integrity of the cylinders below those cells. Hence we
remove all existing level n cells in the cylinder of such “modified” level 1 cells, before
completely relifting the level 1 cells to level n. Finally, we must lift the original level
n− 1 curtain cells (including the point curtains), and the new level n− 1 cells yielded
from the recursive decomposition. All new lifting via CCHILD done in this context is
without checking for curtains, because the decomposition is the part that “fixes” the
curtains.

Algorithm 31 forms the recursive part of Algorithm 3 from [56], and interprets the
pseudocode further in terms of QuantifierElimination specific functions and data
structures. In particular, because a CAD already exists, but Algorithm 3 of [56] merely
creates a CAD with respect to the curtains, decomposeCurtainCellsInner must merge
in new cells only from new projection polynomials arising from the process of [56]. This
is done via incremental technology delineated in Section 5.2, in particular Algorithm 51.
Algorithm 31 recurses from level n−1 down towards level 1, and returns two containers
of cells — a container of new level n− 1 cells yielded from curtain decomposition, and
an Array of level 1 cells that are “modified” as a result of merging in geometry at level 1.

125

These algorithms are specific to “stock” CAD, and so are relevant to CylindricalAl-
gebraicDecompose. Algorithm 30 is the routine that should be called from Cylindri-
calAlgebraicDecompose when only level n − 1 curtains were found and gathered in a
container curtains (Code Fragment 29). Various remarks on the algorithms, including
nuances contrasting to those from the original presentation of the algorithm follow:

1. cadin and cadout are analogous to (I ′′, S′′) and (I ′, S′) respectively from [56].
Meanwhile, “curtains” is analogous to C.

2. One notes that we do not attempt to classify low level curtains as unobstructive
point curtains within Algorithm 30, because they are not stored as part of the
methodology of Code Fragment 29. This is a conscious decision, because we want
to classify all level n− 1 point curtains with confidence immediately as of Algo-
rithm 30. Otherwise we would fall into a cycle of lifting low level point curtains to
attempt to achieve confidence to classify higher level curtains as point curtains,
which can now be lifted, etc. This forms an extremely cyclic and convoluted
process, especially without propagation of truth values, however the equivalent
algorithm for QE somewhat attempts one iteration of this process.

3. Because we did not differentiate between point curtains and non point curtains
at the point of stack construction in regular lifting (Code Fragment 27), we do
so here amongst the level n− 1 curtain cells, which are all that can be recovered
from, and actually all that remains in the Array “curtains” as a result of usage
of Code Fragment 29. We use the criteria suggested by Theorem 56 on line 4 to
identify the point curtains, using the characterisation of 1-cell neighbours as a
“neighbourhood”. In particular, in this context, it is unnecessary to use the full
criteria implied by Lemma 59, because we will not be impeded by lack of nearby
neighbour cells:

• Low level curtains would have had us erroring out before this point, if they
occurred,

• Truth value propagation removing subtrees of the CAD tree is irrelevant in
this context,

• Regulation lifting has been completed to be in Algorithm 30.

In total we certainly have every level n − 1 cell available such that usage of
Algorithm 24 returns a complete set. Line 4 selects the cells that get passed to
Algorithm 31. Those that are not selected in this way are some of those processed
in regular stack construction later in the loop at line 18, and hence point curtains
are lifted via regular stack construction.

4. The curtain decomposition works to potentially provide extra level n− 1 cells to
decompose the curtain sets from the gathered non point curtain cells. This is via
recursion on lvl, where cadout provides cells of level lvl, hence the top level call
with lvl = n − 1 provides level n − 1 cells. n in the presentation in [56] should

126

Algorithm 30 Curtain cell decomposition for full CAD

Input: P a projection object for the CAD, rootCell the root CADCell for the
CAD, vars an Array of variables for the CAD, n number of variables for the
CAD, leaves a container for all leaf (level n) cells for the CAD, curtains an
Array of all level n− 1 curtain cells for the CAD, open a boolean flag
dictating whether we are building an Open CAD, constraints an Array of
sets of constraints per level deduced from top level lifting constraints, bounds
an Array of lists of lower and upper bounds per level deduced from top level
lifting constraints

Output: No meaningful return, but adds all leaf (level n) cells formed by
decomposition of curtains, and those formed by regular lifting on the cells
with curtains to leaves

1: procedure decomposeCurtainCellsCAD(P , rootCell, vars, n, leaves,
curtains, open, constraints, bounds)

2: BA ← P 7→ inequalities[−1] ∪ P 7→ equations[−1] . BA all projection
polynomials not used as pivot at level n

3: PA ← lazardProjection(BA, ∅, x)
4: NonPCs← an Array of all non point curtains from curtains, using the criteria

on neighbours and Algorithm 26
5: (cadout, cadm) ← decomposeCurtainCellsInnerCAD(P , PA, rootCell, vars,

n, NonPCs, n, open, constraints, bounds) . Algorithm 31
6: Remove all level n cells from the subtrees of each cell in cadm from the

container leaves
7: while |cadm| > 0 do. Regulation lifting on the level 1 modified cells to level n
8: cell← pop(cadm, 1) . Any index of cadm will do
9: if cell 7→ level = n then

10: push(leaves, cell)
11: else
12: CCHILD(cell, cadm, bases, vars, n, open, constraints, bounds,

curtainCheck = false)
13: end if
14: end while
15: for c in cadout do . Lift all level n− 1 cells yielded from the inner

decomposition
16: CCHILD(c, leaves, bases, vars, n, open, constraints, bounds, curtainCheck

= false)
17: end for
18: for c in curtains do . Lift all original level n− 1 curtains
19: CCHILD(c, leaves, bases, vars, n, open, constraints, bounds, curtainCheck

= false)
20: end for
21: end procedure

127

Algorithm 31 Recursive curtain cell decomposition for full CAD

Input: P a projection object for the CAD, A a set of polynomials in
R[x1, . . . , xlvl] not necessarily a square-free basis, rootCell the root CADCell
for the CAD, vars an Array of variables for the CAD, n number of variables
for the CAD, curtains an Array of all level n− 1 curtains for the CAD, lvl
the current CAD level to act upon, open a boolean flag dictating whether we
are building an Open CAD, bounds an Array of bounds per level deduced
from lifting constraints

Output: A container cadout containing all cells created at level lvl via curtain
decomposition, and cadm a container of all level 1 cells modified as a result of
merging of new geometry at level 1

1: procedure decomposeCurtainCellsInnerCAD(P , A, rootCell, vars, n,
curtains, lvl, open, bounds)

2: x← vars[lvl] . x = xlvl ∈ {x1, . . . , xn−1}
3: cadout ← an empty container
4: if lvl = 1 then
5: (BA, T) ← univariateBasisAtLazard(A, rootCell)
6: cons← constraints[1]
7: BA ← BA \ P 7→ inequalities[1] . Take set difference with all projection

polynomials used at level 1 previously in the CAD
8: if |BA| > 0 then
9: for c in curtains do

10: R← getOneCellNeighbours(c)
11: (lb, ub) ← bounds[1][1],bounds[1][2] . Lower and upper bounds

from lifting constraints at level 1
12: cα ← the 1st coordinate of the full sample point of c
13: for r in R do . “isolate real roots between the neighbours of c”
14: p← the 1st coordinate of the full sample point of r
15: if p < cα then . See Note 14
16: lb← max(p, lb)
17: elseif p > cα then
18: ub← min(p, ub)
19: end if
20: end for
21: incrementalCADMerge(rootCell, BA, T , x, 1, open,

cons ∪ {lb ≤ x, x ≤ ub}, [lb, ub], cadout) . Merge in new cells
beneath the root cell corresponding to new roots from new
polynomials, adding those new cells to cadout

22: end for
23: end if
24: cadm ← a container of all level 1 cells (children of the root cell) with

bounds modified as a result of calling incrementalCADMerge

128

Algorithm 31 Recursive curtain cell decomposition for full CAD, Part 2

25: else
26: (BA, contA) ← CADMakeBasis(A, x)
27: cons← constraints[lvl]
28: PA ← lazardProjection(BA, contA, x)
29: (cadin, modified) ← decomposeCurtainCellsInner(P , PA, rootCell, vars,

n, curtains, lvl− 1, open)
30: for a in cadin do
31: Let α be the full sample point of a
32: (f∗, T) ← univariateBasisAtLazard(BA, a)
33: Create a CADCell below a with bounds corresponding to bounds[lvl],

and add it to cadout . Certainly a (local) sector
34: if |f∗| > 0 then
35: for c in curtains do
36: R← getOneCellNeighbours(c)
37: (lb, ub) ← bounds[lvl][1],bounds[lvl][2] . Lower and upper

bounds from lifting constraints at this level
38: cα ← the lvlth coordinate of the full sample point of c
39: for r in R do . “isolate real roots between the neighbours of c”
40: p← the lvlth coordinate of the full sample point of r
41: if p < cα then . See Note 14
42: lb← max(p, lb)
43: elseif p > cα then
44: ub← min(p, ub)
45: end if
46: end for
47: incrementalCADMerge(a, f∗, T , x, lvl, open,

cons ∪ {lb ≤ x, x ≤ ub}, [lb, ub], cadout). Merge in new cells
beneath a corresponding to new roots from new
polynomials, adding those new cells to cadout

48: end for
49: end if
50: end for
51: end if
52: return cadout, modified
53: end procedure

129

be seen as equivalent to lvl in Algorithm 31, instead of n as in the fixed quantity
meaning “number of variables for the CAD”.

5. The value of lvl to pass at the top level of Algorithm 31 is n− 1, and not CAD’s
true “n”, not least because examination of the nth coordinate of a level n − 1
curtain cell would be ill defined in the loop over the curtain cells. Therefore the
cells received in cadout from the top level of Algorithm 31 are all level n− 1, and
it remains to lift them to level n (line 15, Algorithm 30). This lifting happens in
the standard way, in particular including roots from the level n pivot set (which
certainly exists). Hence we can use CCHILD passing the projection object P ,
instead of using the set BA associated with Algorithm 30, because this excludes
that pivot set. Because the child cells created as a result of this lifting are
automatically level n, they can be directly added to leaves via CCHILD.

6. It also still remains to lift the (potentially modified) cells that were originally
found to have non point curtains. Their child cells are automatically level n cells,
and as such can be added directly to leaves (line 18, Algorithm 30).

7. A set difference is taken at level 1 (line 7, Algorithm 31) such that we do not
knowingly attempt to construct geometry around roots of projection polynomials
that have already been lifted around in standard lifting at the root cell. These set
differences are all on fully factored (likely) canonical bases, and as such we cer-
tainly remove the possibility of attempting to merge in CAD cells around existing
real algebraic numbers at level 1 (Remark 34). This is a specific optimisation in
the context of modifying an existing CAD via incrementalCADMerge, in contrast
to the original presentation which provides a CAD on the set BA from Algorithm
30. This only occurs at level 1, because at other levels we act upon new cells
which have no original child cells beneath, and the sets of lifting polynomials
with which to construct geometry with should certainly be those from the pro-
jection on BA. Line 7 is an optimisation and not to do with correctness — if
passed polynomials that were already used in lifting, incrementalCADMerge may
invest time in deducing that certain root descriptions had already been used to
construct cells.

8. If the aforementioned set difference yields the empty set, then there are certainly
no roots to build around at level 1, and the rest of the recursive process does
nothing, due to production of no new cells at any time. The case studies of
Section 7.2 suggest that the set difference producing the empty set is a common
case when curtain decomposition is relevant. In this case, we end up lifting the
curtain cells normally despite their non zero Lazard valuations on the top level
pivot set. This set difference is specific to the presentation here, due to intention
to merge geometry into an existing CAD. The set difference is only relevant at
level 1, because at other levels we act upon new cells (a in cadin), so the comment
about existing geometry is irrelevant.

9. Lines 8 and 34 of Algorithm 31 guard against the pointless expense of tree traver-
sal in order to find all neighbour cells of each curtain cell c when there is no chance

130

of extra geometry being built anyway, due to a certain lack of new real roots to
build around. In practice, programmatically, this is replaced with a similarly
cheap check for whether there exists a polynomial in f∗ that has any real roots.
Else, we needn’t take the expense of traversal.

10. Usage of incrementalCADMerge (Algorithm 51) is appropriate considering the
intention to modify an existing CAD formed from regular projection & lifting.
This is in contrast with the intention of Algorithm 3 of [56] to purely build a
CAD of the curtains. Here, the cells that would be created in a vacuum there are
merged into the existing CAD, at least at level 1 beneath the root cell, where at
least one cell will certainly exist. At other levels, we act upon a new unevaluated
cell a created in the last recursion on Algorithm 31, and hence a has no child cells
as of yet. But usage of CCHILD on a requires a whole projection object, and we
merely have one bespoke set to use, and hence usage of incrementalCADMerge is
entirely out of convenience, as it takes a set. Hence one creates one cell below a in
preparation on line 33 of Algorithm 31, and the new CADCells to create are made
as a result of merging, as opposed to the instantaneous production of all of them as
would happen in CCHILD. This is the first example of where purely incremental
CAD technology gets used not strictly in an overall incremental context. With
respect to each new cell a to act upon at line 30, the creation of entirely new
geometry below a actually occurs completely incrementally.

11. The recursive curtain decomposition process (Algorithm 31) begins by merging
new roots around existing cells at level 1. This may replace previous upper
bounds for cells and hence unevaluate them by resetting their sample point and
in principle removing the whole CAD subtree beneath. The unevaluation of such
cells in terms of removal of their child cells is handled by incrementalCADMerge,
but Algorithm 31 needs to handle the removal of the leaves in the cylinder of the
modified cells at line 6. This is due to the fact we can no longer be confident of
the integrity of the geometry constructed below these cells as an element of their
full sample point has changed for each cell. None of these algorithms feature a
full tree traversal in order to rededuce the container of all leaf cells, leaves, so we
must remove each of the level n cells in the cylinder of any of the modified cells at
level 1 manually (line 6, Algorithm 30). Each modified cell undergoes regulation
lifting on line 7 such that we can eventually replenish every required leaf cell.

12. There is no opportunity for avoidance of lifting failures at any time in the two
algorithms, because the only type we can possibly recover from in full CAD are
curtains, which are the entire focus of the process anyway.

13. No polynomials from the results of the projection process attributed to the recur-
sion are added to the original projection object P . The decomposition process
here is a bespoke correction of the CAD tree specifically on level n − 1 cur-
tains, and does not reflect the standard lifting process to use under equational
constraints. Addition of these projection polynomials would nullify the use of
equational constraints and their use in (semi-)restricted projection operators for

131

any future instances of lifting (for example in incrementality, or even the last
loops of Algorithm 30).

14. The arguments “constraints” and “bounds” reflect the need to oblige any po-
tential bounds for each xlvl deduced from lifting constraints passed from Cylin-
dricalAlgebraicDecompose (Section 3.6). On line 33 of Algorithm 31, we ensure
that the first cell we create below the unevaluated cell a has bounds representing
as much of the real line as makes sense taking into account the bounds given.
These bounds will be −∞ and ∞ if no lifting constraints were originally passed
for xlvl. On line 11, we begin with bounds deduced from lifting constraints before
narrowing down these bounds via the sample points from the neighbour cells of
the curtain cell. In fact, the sample points from the neighbour cells should be
within the bounds deduced by the lifting constraints anyway, due to their initial
construction in standard lifting that also took into account these bounds. This
forms the deduced bounds [lb,ub]. Further, we take the union of the deduced
constraints {lb ≤ x, x ≤ ub} with the appropriate set of lifting constraints “cons”
from the variable “constraints” from the top level. We pass this set through to
incrementalCADMerge with the deduced bounds such that we completely ensure
that we satisfy any relevant lifting constraints with the produced root descriptions
from isolation of polynomials in f∗, because the deduced bounds are implicitly
judged to form a closed interval, but any of the original lifting constraints may be
strict. In any case, this makes use of the “lifting constraints” feature discussed
in Section 3.6. The deduced constraints narrowed down from the greatest bounds
via the sample points of neighbours are not strictly lifting constraints in the sense
of Definition 43, but the semantics of their usage entirely coincides with usage of
lifting constraints, so they can and should be combined with any original lifting
constraints in the relevant variable.

15. Despite the obvious presence of equational constraints to even be processing cur-
tains (that are entirely a result of ECs), the boolean flag open = true can be
passed to incrementalCADMerge to force merging of an open CAD, as is the
freedom of input arguments to CylindricalAlgebraicDecompose. One notes that
full CADs for applications in robotics often feature equations, but in reality may
only be interested in construction of open space [29].

16. Collections of cells to lift by “regulation lifting” (minus checking for non zero
Lazard valuations) within Algorithm 30 are, in order of each subsequent instance
of lifting in Algorithm 30:

• Level 1 cells with their upper bounds replaced by incrementalCADMerge,
and then hence their child cells (line 7).

• New level n− 1 cells produced by the recursive curtain decomposition (line
15).

• The original level n− 1 cells identified as non point curtains (line 18).

Omission of checking for curtains of any level in lifting the new cylinders of the
level 1 modified cells is allowable, because their new cylinders can only be finer

132

than their previous cylinders were, and the recursive procedure has “corrected”
any curtains.

Algorithms 32 and 34 are respective adaptations of algorithms 30 and 31 that
cater to the case for QE by Partial CAD. As such Algorithm 32 is the routine to call
from any CAD routine performing QE (such as QEPCADL or PartialCylindricalAlge-
braicDecompose) when we want to recover from at least one level n− 1 curtain which
cannot be ignored by propagation of truth values. The suffix “Partial” in the names
of Algorithms 32 and 34 refer to “Partial CAD” i.e. CAD for QE, in contrast to the
suffix “CAD” for Algorithms 30 and 31, which are for “full” or “stock” CAD.

Algorithm 32 begins by classifying whatever level n − 1 point curtains amongst
the cells in problemCells it can, using the confidence criteria implied by Lemma 59.
Point curtains are unobstructive, and can be lifted normally, so we remove them from
problemCells and lift them first in hope of finding meaningful truth values via regu-
lation lifting. This forms one iteration of lifting point curtains, and it is sufficient to
omit checking for curtains (that would trivially reidentify the curtains and add them to
problemCells again) because only level n−1 cells are lifted here. One could iterate the
process of classifying point curtains (in particular, including low level ones) with confi-
dence and regulating lifting them, although this presentation of the algorithm does not
do so (Open Problem 62). Regardless, as a result of this process the number of curtains
in the container problemCells can only decrease or stay the same. If problemCells is
empty as a result of the aforementioned regulating lifting due to propagation of truth
values we are done (QE has been deduced as a result). Otherwise, if we have no level
n − 1 non point curtains left, we cannot attempt any recovery from curtains at all.
Otherwise, we can enter recursive curtain decomposition in the same manner as that
for full CAD, with largely the only modification being that this recursion attempts to
propagate truth values from appropriate cells to minimise the amount of decomposition
to occur. Much as the case for full CAD, we receive a container of level 1 cells that
have been modified, a container of new level n − 1 cells from the decomposition, and
we must also lift all the original curtains. The level 1 cells must be reevaluated due
to their modification, and then we regulation lift amongst all these cells (and we can
oblige cell selection strategy (Section 3.9) in lifting amongst this collection of cells, as
per any instance of regulation lifting).

Unlike the case for full CAD, the level n− 1 curtain cells may coexist with curtains
of any other level in the container problemCells, and the intention is that further usage
of Partial CAD may remove any other curtains that cannot be dealt with from the
CAD tree to resolve QE. Further remarks on nuances specific to the case for QE follow:

1. Once again we select curtains of level n− 1 for the decomposition, however this
time the container to examine, problemCells is not uniformly of level n−1 curtain
cells, or even curtain cells at all, so in practice one must examine the reason for
stack construction failure (E) and the level of the cell (c 7→ level) whenever
iterating over problemCells.

2. Ideally we would immediately identify the point curtains amongst all level n− 1

133

Algorithm 32 Curtain cell decomposition for Partial CAD in Quantifier Elimination

Input: P a projection object for the CAD, rootCell the root cell for the CAD,
quants an Array of the quantifiers Qn−m+1, . . . , Qn, vars an Array of the
variables for the CAD, m the number of quantifiers, n number of variables
for the CAD, leaves a container for leaf CADCells, problemCells a container
for all CADCells where stack construction has failed, constraints an Array

storing sets of constraints per level deduced from lifting constraints at the
top level, bounds an Array containing bounds per level deduced from lifting
constraints at the top level

Output: No meaningful return, but adds cells formed by lifting or curtain
decomposition to the canonical container amongst cad, leaves, or
problemCells, and possibly removes various cells from those containers based
on propagation of truth values from lifting with Partial CAD. Potentially
implicitly deduces QE.

1: procedure decomposeCurtainCellsPartial(P , rootCell, quants, vars, m, n,
leaves, problemCells, constraints, bounds)

2: Eject all certain level n− 1 point curtains from problemCells, using Lemma 59
and Algorithm 33

3: cad← a container of all level n− 1 point curtains from problemCells
4: Code Fragment 28, applied to cad and the existing container leaves, without

checking for curtains in CCHILD
5: if All [c, E] in problemCells are such that E is not a “Lazard curtain” error or

c 7→ level < n− 1 then . All curtains lifted or otherwise removed by
propagation, can’t do more

6: return . If problemCells empty, QE has been deduced, if not then we
cannot recover and the calling function errors out accordingly

7: end if
8: curtains← an Array of all remaining level n− 1 (non point) curtains from

problemCells
9: BA ← P 7→ inequalities[−1] ∪ P 7→ equations[−1] . BA all projection

polynomials not used as pivot at level n
10: PA ← lazardProjection(BA, ∅, x)
11: (cad, modified) ← decomposeCurtainCellsPartialInner(P , PA, rootCell,

quants, vars, m, n, curtains, leaves, problemCells, n, constraints, bounds)
12: Remove all curtains from problemCells and add such curtain cells to cad
13: for cell in modified do . For all level 1 cells that had modified bounds as a

result of decomposeCurtainCellsPartialInner
14: Remove all cells in the CAD subtree beneath cell from any of the

containers cad, leaves, and problemCells
15: Reevaluate the truth value of cell, adding it to cad if it has an

indeterminate truth value, otherwise leaves. If the evaluation fails, add
it to problemCells as a list with its exception.

16: end for
17: Code Fragment 28 on cad and leaves to regulation lift the cells from cad,

without checking for curtains in CCHILD
18: return
19: end procedure 134

Algorithm 33 Number of times a CADCell is a local extremity

Input: c, a level 0 ≤ k ≤ n CADCell (but most likely level n− 1)
Output: A non negative integer between 0 and k representing the number of
times c is a local extremity at any level between 1 and k (e.g. the number of
times c is in the cylinder for a cell representing a left-most or right-most
sector), allowing us to use the bound for neighbour cells from Lemma 59

1: procedure numTimesExtremalCell(c)
2: if c 7→ level = 0 then . Really only here as the base case for recursion
3: return 0
4: else
5: p← c 7→ parent
6: Let i = c 7→ local index
7: if i = 1 or p 7→ children[−1] 7→ local index = i then
8: return 1+ numTimesExtremalCell(p)
9: else

10: return 0
11: end if
12: end if
13: end procedure

curtains in problemCells such that we treat them differently to the non point
curtains, in the same manner as that of the full CAD case (line 4 of Algorithm
30). This identification can be done using the criteria implied by Theorem 56 to
look for non zero valuations on neighbouring cells obtained by usage of Algorithm
24 as the characterisation of a “neighbourhood” of a cell c. However, as per the
discussion preceding Lemma 59, the methodology of Partial CAD may frustrate
our ability to use this criteria with confidence:

• We do not always uniformly lift to level n cells everywhere in Partial CAD
— receiving any determinate truth value on a cell of any level is enough to
imply we do not attempt stack construction on that cell.

• We may not even attempt stack construction on a cell c with an indetermi-
nate truth value if truth value propagation from another cell with a mean-
ingful truth value has resulted in removal of the CAD subtree including
c.

• Amongst cells with indeterminate truth values that we intend to lift, we
could fail to lift, e.g. due to curtains, in particular those of level less than
n− 1.

The above points mean that neighbour cells of a level n − 1 curtain cell to ex-
amine may not all exist in the CAD in terms of the canonicalization implied by
Algorithm 24, even having terminated regulation lifting at the top level, which
is certainly the case if one is using Algorithm 32. In contrast, for the full CAD
case we would not lack any level n − 1 cells when in the equivalent procedure.

135

Algorithm 34 Recursive curtain cell decomposition for Partial CAD in Quantifier
Elimination

Input: P a projection object for the CAD, A a set of polynomials in
R[x1, . . . , xlvl], rootCell the root cell for the CAD, vars an Array containing
the variables x1, . . . , xn, n the number of variables for the CAD, curtains an
Array containing all level n− 1 curtain cells, lvl the CAD level for
computation, bounds an Array containing bounds per level deduced from
lifting constraints at the top level

Output: A container cadout containing all cells created at level lvl via curtain
decomposition, and a container modified containing all cells modified at level
1 as a result of merging of new geometry

1: procedure decomposeCurtainCellsInnerPartial(P , A, rootCell, vars, n,
curtains, lvl, bounds)

2: x← vars[lvl] . x = xlvl ∈ {x1, . . . , xn−1}
3: cadout ← an empty container
4: if lvl = 1 then
5: (BA, T) ← univariateBasisAtLazard(A, rootCell)
6: cons← constraints[1]
7: BA ← BA \ P 7→ inequalities[1] . Take set difference with all projection

polynomials used at level 1 previously in the CAD
8: if |BA| > 0 then
9: for c in curtains do

10: N ← getOneCellNeighbours(c)
11: (lb, ub) ← bounds[1][1], bounds[1][2]
12: cα ← the 1st coordinate of the full sample point of c
13: for cN in N do . “isolate real roots between the neighbours of c”
14: p← the lvlth coordinate of the full sample point of cN
15: if p < cα then
16: lb← max(p, lb)
17: elseif p > cα then
18: ub← min(p, ub)
19: end if
20: end for
21: incrementalCADMerge(rootCell, BA, T , x, lvl, false,

cons ∪ {lb ≤ x, x ≤ ub}, [lb, ub], cadout) . Merge in new cells
beneath the root cell corresponding to new roots from new
polynomials

22: end for
23: modified← an Array of all level 1 cells (children of the root cell) with

bounds modified as a result of calling incrementalCADMerge
24: end if
25: PRPTV(rootCell, quants, m, n, cadout, leaves, problemCells)

136

Algorithm 34 Recursive curtain cell decomposition for Partial CAD in Quantifier
Elimination, Part 2

26: else
27: (BA, contA) ← CADMakeBasis(A, x)
28: cons← constraints[lvl]
29: PA ← lazardProjection(BA, contA, x)
30: (cadin, modified) ← decomposeCurtainCellsInner(P , PA, rootCell, vars,

n, curtains, lvl− 1, open)
31: for a in cadin do
32: Let α be the full sample point of a
33: (f∗, T) ← univariateBasisAtLazard(BA, a)
34: Create a CADCell below a with bounds corresponding to bounds[lvl]

and add it to cadout . Certainly a (local) sector
35: if |f∗| > 0 then
36: for c in curtains do
37: N ← getOneCellNeighbours(c)
38: (lb, ub) ← bounds[lvl][1],bounds[lvl][2]
39: cα ← the lvlth coordinate of the full sample point of c
40: for cN in N do. “isolate real roots between the neighbours of c”
41: p← the lvlth coordinate of the full sample point of cN
42: if p < cα then
43: lb← max(p, lb)
44: elseif p > cα then
45: ub← min(p, ub)
46: end if
47: end for
48: incrementalCADMerge(a, f∗, T , x, lvl, false,

cons ∪ {lb ≤ x, x ≤ ub}, [lb, ub], cadout). Merge in new cells
beneath a corresponding to new roots from new polynomials

49: end for
50: end if
51: PRPTV(a, quants, m, n, cadout, leaves, problemCells)
52: end for
53: end if
54: return cadout, modified
55: end procedure

137

The intention to iterate over neighbour cells to check for non zero Lazard val-
uations amongst them is ill defined if any are missing, considering we need all
of them to hold a zero valuation to make the identification for a cell to be a
point curtain. This is of course related to the similar problem (in stock CAD
or Partial CAD alike) lamented in the discussion following Algorithm 26, where
one may not be able to make the classification of a point curtain at the time of
stack construction. This is at least because we may not have those neighbour
cells available purely in the sense that every cell of a certain level has to be the
first to be processed by CCHILD! Having done as much mathematically correct
regulation lifting as possible to be in Algorithm 32, we use the bound provided
by Lemma 59 for the number of neighbour cells of a level n − 1 cell (2(n − 1)),
making the bound sharper by also subtracting a neighbour cell for every time an
element of the full index of the cell is extremal, via using Algorithm 33. If we
find all the neighbour cells and the number of them meets this bound, we know
the set of neighbour cells to examine is complete, and hence attempt to identify
the point curtains. Having done this on line 3 of Algorithm 32, we lift the point
curtains as standard (the regulation lifting at line 4). If performing this lifting
leads to the situation where problemCells is now free of level n− 1 curtains due
to propagation of truth values of the newly lifted cells, then no further curtain
recovery via the methodology of [56] can even be attempted. If problemCells is
empty then QE has been sufficiently deduced, else we are forced to produce an
error having returned to the top level. The top level may choose an exception to
reraise from problemCells.

3. The only real difference between the case of recursive curtain decomposition be-
tween the case for QE and full CAD is the usage of PRPTV on lines 25 and
51 to ensure the output container cadout for building at the next level is of cells
with an indeterminate truth value. Usage of PRPTV has us following the spirit
of Partial CAD for the CAD being produced on the set BA, albeit this CAD is
being merged into an existing CAD.

4. problemCells, on termination of Algorithm 32 via any return statement, is a
container of cells where stack construction failed (due to level < n − 1 curtains
or otherwise) which could not be recovered from in the context of Partial CAD,
and it being non empty implies Quantifier Elimination could not be deduced.

5. The formulation as a recursive routine where the temporary bases are retained
per level means that there is some restriction on cell selection strategy amongst
the new cells to act upon from cadin (line 31, Algorithm 34). That is, any metric
relating to “level” in cell selection strategy would be superfluous when selecting
amongst cells all of the same level in the container cadin. In total, one could
adapt this process to an even more bespoke process acting upon arbitrary cells
created by this process more in the manner of Code Fragment 28, such that one
can, for example, traverse the tree depth-wise as would be the case with usage
of cell selection strategy “HL LI”. In this bespoke process, one can retain all
the projection bases at once, perhaps in a projection object, and an important

138

adaptation to the process from code fragment 28 is that we must be cognizant of
potentially merging in cells at level 1, rather than their regular creation. Another
adaptation would be that we would no longer need or want to check for curtains.
Currently, the container of cells to choose amongst for “building”, cadin, is always
uniformly of cells of fixed level lvl at any one recursion, which corresponds to the
level lvl.

6. Once again creation of new cells obliges any bounds deduced from lifting con-
straints at the top level, if they were passed. Lifting constraints can be passed to
PartialCylindricalAlgebraicDecompose, and hence may be obliged as a result of
this. The logic on their use is essentially the same as the previous case for stock
CAD.

7. We instruct incrementalCADMerge to include sections at every level, because
presence of curtains is implied by the presence of equational constraints, which
excludes the possibility of an open CAD in QE by Partial CAD, because this
requires the input formula from the top level to only contain strict inequalities
and hence not equations to oblige a request for only open geometry to be built.

8. The recursive function first begins by (potentially) merging in geometry around
the root cell, i.e. the child cells of the root cell. In reality, these level 1 cells define
a cylinder each, and potentially have child cells. Note that n is strictly more
than 1 for these algorithms to even be relevant. When incrementalCADMerge
replaces the upper bounds of level 1 cells, such cells are unevaluated by discarding
of their sample point, truth value, and child cells. For such cells, we can no
longer be confident of the integrity of any of the geometry in the cylinder below
them. Hence they are candidates for further stack construction in Partial CAD.
These modified cells are identified by addition to the the Array “modified”. The
intention of line 14 of Algorithm 32 is to remove the cells from the subtree of
each c in “modified” from the existing canonical containers of CADCells, cad,
leaves, and problemCells, due to the loss of integrity in such cells. We perform
no full tree traversal in curtain decomposition such as the usual case for CAD
incrementality to regenerate these containers, so it is necessary to “fix” them.
Having added every reevaluated level 1 cell c to an appropriate container, they
can be lifted by regulation Partial CAD. In practice it is more likely the level
n− 1 cells created by the curtain decomposition will be lifted first to more likely
yield meaningful truth values, considering level is almost always a metric used in
cell selection strategy, and this lifting obliges the chosen cell selection strategy
via the keyword option ‘CellSelectionStrategy’ for CAD in Maple.

9. Item 8 in discussion of the similar algorithms for the full CAD case holds similarly
— we take a set difference of polynomials at level 1, which may yield the empty
set, meaning the recursive process yields no new cells. The discussion holds
essentially the same, considering this nuance is projection and not lifting specific.

10. Despite the presence of various elements of incremental CAD technology, the top
level formula for CAD remains static. Hence concepts from CAD incrementality

139

such as “protection of truth values” are irrelevant (see e.g. discussion point 5
below Algorithm 52). Cells that become unevaluated by usage of incremental-
CADMerge lose their truth values, but these are certainly level 1 cells, and we
know that the root cell does not hold a true or false truth value, else Partial CAD
would not have us attempting to recover QE via curtain decomposition.

11. There is some opportunity for lifting failure avoidance, via PRPTV taking the
argument problemCells on lines 25 and 51 of Algorithm 34. In this way lifting
failures arising from evaluation of new cells can be stored, and potentially ignored
via the lifting from the recursive decomposition and further regulation lifting in
Algorithm 32. However, failures involving root isolation (arising from incremen-
talCADMerge) are not currently avoided by this methodology, where the “lifting”
is too uniform to accommodate as such.

12. Code Fragment 29 appears twice in Algorithm 32. Its first appearance is to at-
tempt to lift point curtains that can be confidently deduced as such via Lemma
59. Ideally, this is sufficient to deduce QE in order to not enter into the recur-
sive projection & lifting process of Algorithm 34. If this was not sufficient, and
other level n−1 curtains assumed to be non point curtains exist, then the second
appearance of Code Fragment 29 as of line 17 is necessary. In both cases, the
minor contrast to the presentation of Code Fragment 29 is that we omit checking
for any curtain on the cell passed to CCHILD, by passing the keyword option
“curtainCheck = false”. Considering a quantifier free equivalent can’t have al-
ready been deduced to be in the realms of these algorithms, we know at least one
of (sequentially):

• the lifting of cells deduced to be level n− 1 point curtains,

• the recursive curtain decomposition of Algorithm 34,

• and the lifting of cells found in the container cad as of the second appearance
of regulation lifting

is necessary, but not necessarily sufficient, to deduce QE via propagation of truth
values (cells with lifting failures such as low level curtains could remain as of the
termination of Algorithm 32). The scope of eligible cells to be lifted from “cad”
in the second appearance of the lifting code fragment are:

• Level 1 cells with their upper bounds replaced by incrementalCADMerge.

• New level n− 1 cells produced by the recursive curtain decomposition.

• The original level n− 1 cells that could not certainly be identified as point
curtains.

For the same reasons as remark 16 for the case of curtain recovery for full CAD,
it is allowable to omit checking for curtains of any level when lifting the new
cylinders of level 1 modified cells.

Open Problem 61. What, if any, distinction & hence potential modifications should
occur in the loops on lines 13 and 39 (respectively lines 13 and 40 for the Partial CAD

140

case) when the lvlth element of the full sample point of the curtain neighbour cell r
coincides with the lvlth element of the cell c? In other words, do we need an “elseif
p = cα then”, and what does this mean for the deduced bounds lb & ub, if anything?

Open Problem 62. The methodology for dealing with curtain cells in both contexts
(full CAD and Partial CAD) currently does not attempt to identify and then lift all
attainable point curtains (at least regularly, or of any level — Algorithm 32 performs
one iteration of lifting of level n − 1 point curtains, helped by propagation of truth
values). This process is always frustrated by lack of certainty about point curtains
provided by Lemma 59, which means that for example, full CAD always errors out on
any low level curtain, such that distinctions are certain on level n−1 curtain cells later
(see note 2 following Algorithm 30).

One could in theory lift low level point curtains to attempt to achieve confidence in
higher level point curtains, and iterate this process. One notes that there is a O(n2)
complexity attributed to the tree traversal even to gather neighbours to use the confidence
criteria of Lemma 59 on any cell, and we must only omit checking for curtains on
identified point curtains, and not further cells in their cylinders, which convolutes the
process.

Can one incorporate a process which guarantees all possible identifiable point cur-
tains (of any level) are lifted before entering any kind of curtain decomposition? Could
this still follow the philosophy that the distinction on point curtains should be made as
late as possible?

One notes that low level curtains are only relevant in the context of usage of multiple
equational constraints in projection. Hence currently only usage of single equational
constraints makes CAD with Lazard projection and equational constraints complete,
due to Algorithms 30 through 34. Solution of Open Problem 62 somewhat mitigates
curtains further in the context of usage of any ECs for Partial CAD, but only further
research with further algorithms for multiple equational constraints in the manner
of [56] can make CAD in any context fully mathematically complete with multiple
equational constraints.

Code Fragment 35 below is the formal methodology for recovering from lifting er-
rors in the context of Partial CAD by performing curtain decomposition. Considering
this context, i.e. the context of QE, this code fragment is what would be included late
in each instantiation of Partial CAD in QuantifierElimination, i.e. PartialCylin-
dricalAlgebraicDecompose, QEPCADL, VTSToCADWhole, CADIncremental, CAD-
Decremental, and modifyCADResult. Of course, the actual variable names may differ
slightly, or refer to object properties of CADData in evolutionary instances, but the
meanings of each variable are entirely equivalent.

In total, the incremental technology offered as part of a greater scheme to enable
incrementality for formulae in CAD makes itself useful within the context of modifica-
tion of a CAD to correct instances of curtains. Section 7.2 includes investigation into
examples of curtains and usage of the algorithms in this section for full CAD in order
to mitigate their effects in building of a sign invariant CAD. Section 7.4.4 benchmarks
QE by Partial CAD with single and multiple equational constraints, to compare both

141

Fragment 35 Recovery from lifting errors by curtain decomposition if necessary, else
exit via exception for Partial CAD

1: if |problemCells| > 0 then . Recovery from stack construction failure by curtain
decomposition

2: if There exists [c, E] in problemCells such that c 7→ level = n− 1 and E is an
exception about a Lazard curtain then

3: decomposeCurtainCellsPartial(bases, rootCell, quants, vars, m, n, leaves,
problemCells) . Algorithm 32

4: end if
5: if |problemCells| > 0 then . Couldn’t fully recover from lifting failures, or

potentially even begin to — low level curtains may remain in terms of
mathematical errors, otherwise any implementation errors, but not level
n− 1 curtains

6: ERROR by reraising any exception from problemCells, especially one
about a low level curtain, if one exists

7: end if
8: end if . And reaching this point implies recovery was successful or unnecessary

the efficacy in terms of completeness and efficiency between approaches for QE.

Comparison to Implementations using McCallum Projection

For the following implementations, we discuss the handling of nullification occurrences
obtained by usage of the McCallum projection with lack of well-orientedness for the
polynomials gleaned from input, irregardless of equational constraints. Again, one notes
the contrast between a general nullification occurrence and a Lazard curtain explained
in Section 3.7.2.

• ProjectionCAD offers the ability to produce a warning or an error on production
of a curtain. In the case of a warning the computed CAD can be produced
irregardless of well-orientedness. ProjectionCAD allows a user to continue merely
with warnings because a nullification occurrence may only be an apparent problem
until investigation via delineating polynomials. Being a package not inclusive of a
natural implementation of QE, a comparison in terms of “avoidance” or recovery
of curtains is irrelevant.

• QEPCAD B produces an error about lacking a delineating polynomial upon finding
an obstructing nullification occurrence, at which point it is up to the user to
restart the computation using the Hong projection PROJH, which is guaranteed
to be complete, without nullification occurrences.

Via ProjectionCAD’s ability to produce a Maple error on a nullification instance,
the benchmarking of Section 7.4.3 forces such errors to allow for comparison of the fre-
quency of nullification occurrences in usage of the McCallum projection against Lazard
curtains in QuantifierElimination for full CADs. The QE benchmarking of Section

142

7.4.4 is cognizant that QEPCAD B may error out on obstructing nullification occurrences
with the McCallum projection, and does not attempt to restart with PROJH.

3.7.3 Gröbner Bases for Equational Constraints

Gröbner Bases (GBs) are a well known tool in computer algebra. From a set of polyno-
mials in R[x1, . . . , xn] describing a system of equations, the goal is to produce a basis
of polynomials with various properties, delineated in [21, Theorem 16]. Other good
overviews of GBs for polynomial ideals are found in [4, 20]. The Gröbner basis for a
set of polynomials E generates the same ideal as that for E. We discuss generation of
a (reduced) Gröbner basis for the set of ECs E to replace E as this preprocessing.

In terms of the “Tarski” framework, requesting solution to a system of multivariate
equations is equivalent to

∧k
i=1 fi = 0 (as is the relevant top level subformula of (3.2)).

Therefore we immediately inherit interest in Gröbner bases via examining the value in
preprocessing the equational constraints f1, . . . , fk for a Real Tarski formula. Gröbner
bases work over any field, hence it is consistent that we can use the field R to be able
to process ECs from Real Tarski formulae. The native package in Maple implementing
procedures to generate Gröbner bases is Groebner, with the main procedure of interest
Groebner:-Basis. Groebner:-Basis accepts a list or set of polynomials with coefficients
as real algebraic numbers represented by RootOfs indexed by interval indices (hence
real algebraic numbers in the sense of Definition 30).

Here, we assume k ≥ 0 equational constraints. If each fi is represented canonically
(as they should be in QuantifierElimination), then we can tell that they are distinct,
but we cannot immediately tell that the system is over constrained if k > n, because
there may be non trivial GCDs between the polynomials. For example, {x, x2} is
two equational constraints over one variable, but forms a non trivial basis {x} via
any monomial ordering. This lends an example where our practical number of ECs
reduces even over the field of complex numbers. The case for the reals could in theory
increase our number of ECs, via x2 +y2 = 0, which is in practice equivalent to two ECs
x = 0∧ y = 0 over the reals. This is similar to item 3 of the typical examples of ECs in
Section 3.7, but one notes QuantifierElimination cannot deduce such equivalences.
It is only in the reals that we could ever “increase” k, i.e. gain further ECs in this
manner — however, the observation x2 + y2 = 0 ≡ x = 0 ∧ y = 0 is not obtained via
GBs.

Forming a flat square-free basis of ECs would be improper, considering the factori-
sation of any fi into g1 · · · gki would imply that each of g1, . . . , gki belong in the top

level conjunction (3.2), but fi = 0⇔
∨ki
j=1 gj = 0, so any factorisation is tied to a dis-

junction. In particular, Section 3.3 covered that the implementation of equational con-
straints deals with the backwards implication by multiplying together g1 . . . gki without
expansion of the resulting polynomial. The motivation behind redescribing this be-
haviour of the implementation here is that these polynomials that may attribute some
factorisation (that we already know of) enter the Gröbner basis in this form. Hence,
we receive an open question:

143

Open Problem 63. Can a Gröbner basis use information about (partial) factorisa-
tions for the polynomials it receives?

Usage of Gröbner bases to preprocess ECs in CAD has been of interest in previous
works such as [73, 37]. Here, the suggestion of monomial ordering to pass to the
Gröbner basis differs significantly, in that it is not the fixed ordering plex(x1, . . . , xn)
for x1, . . . , xn the variable ordering to be used in CAD. We note that tdeg orderings
usually provide a fast Gröbner basis, however usage of a purely plex ordering provides a
basis with the following property. If k ≥ n, and the monomial ordering plex(xn, . . . , x1)
is used (i.e. a purely lexicographic ordering with x1 < x2 < · · · < xn), and the system of
equations has solutions that are zero dimensional, one obtains a“triangular system” of
polynomials from the Gröbner basis due to the theory of Gianni & Kalkbrener [32, 42]:

p1(x1),

p2,1(x2, x1), . . . , p2,k2(x2, x1),

...

pn,1(xn, . . . , x1), . . . , pn,kn(xn, . . . , x1)

(3.5)

where ki ≥ 1, i = 2, . . . , n. If k < n, or the ECs do not form solutions of zero dimension,
then the assumption of obtaining exactly the triangular shape (3.5) is ill founded even
when using a fully plex ordering, however we will obtain a truncated triangle, or
the concatenation of truncated triangles. We discuss the behaviour that we intend to
induce from (3.5) in contrast to usage of the monomial ordering plex(x1, . . . , xn), for
the moment assuming k = n and the solutions are zero dimensional.

If the output set of equational constraints becomes more “triangular” in the manner
of (3.5), then we restrict the scope for early propagation of equational constraints, when
multiple equational constraints are used. We attempt to “funnel” the ECs such that
they are less numerous amongst the later variables in x1, . . . , xn, which are the earlier
variables in projection, while also distributing the ECs amongst all levels to ensure as
much opportunity for use of ECs in restricted projection as possible. One notes that in
(3.5), there are kn ≥ 1 level n polynomials, that are certainly of non trivial degree in xn.
Hence there are always kn−1 ≥ 0 propagated ECs at level n−1. In contrast, if one is to
use the monomial ordering plex(x1, . . . , xn), then the shape of (3.5) is inverted, and all
ECs are of level n. This does not mean that all the polynomials in (3.5) are necessarily
of non trivial degree in xn (except the analogous univariate polynomial pn(xn)), but the
worst case is that they are, and so a worst case of 1+

∑
ki ECs in xn, with

∑
ki ≥ n−1

propagated ECs. Additionally, in this worst case for plex(x1, . . . , xn), the only scope
for usage of ECs beyond projection in xn are propagated ECs, because all the ECs
produced from the GB are pigeonholed at level n. Via properties of resultants, the
degree of these ECs is doubling per iteration of projection. Meanwhile, in the case for
the new monomial ordering, we obtain a choice between propagated ECs or ECs from
the Gröbner basis, but the pivot selection strategy implemented by Algorithm 22 will
attempt to minimise degree of the selected pivot, so the scope for choice is useful. At
a minimum, because (3.5) donates ECs of monotonically decreasing levels, we ensure
we can use as many restricted projection operations as possible. Otherwise, we use the

144

conjecture that we restrict the scope for propagation of ECs in worst cases, because
kn < 1 +

∑
ki, and the number of ECs of non trivial degree in xn is bounded above by

each of these values per the monomial orderings plex(xn, . . . , x1) and plex(x1, . . . , xn)
respectively. This sentiment then iterates at lower levels for projection.

We explain the sentiment of attempting to restrict propagation. Nested resultants
have the undesirable property that they can lead to spurious roots, which we intend to
avoid to optimise the lifting process. At lower levels, propagated ECs are potentially
nested resultants of ECs from higher levels. Propagation of equational constraints is
always desirable in the sense of providing as many ECs as possible to enable as much
restricted projection as possible and hence minimising the projection bases. However,
if we can reduce the number of nested resultants owing to ECs then we can attempt
to minimise the number of spurious roots. This appears to be relevant only when both
propagation of ECs and multiple ECs are enabled (‘UseEquations’ = ‘multiple’,
‘PropagateECs’ = true), but it is even relevant when using just a single EC, because
we still intend to restrict the scope for propagation in xn. Technically, the usage of
GBs to receive (3.5) can completely replace propagation of ECs, because the resultants
of ECs in xi can be constructed via linear combinations of already existing ECs in
xi−1, hence forming the same ideal, but the implementation does not currently use
this fact. To restrict the possibility of nested resultants further, we could generate
Gröbner bases at lower levels (with an appropriate truncated monomial ordering) on
the appearance of new ECs generated via the resultant rule, but one considers that
the degree of ECs created via propagation are doubling per iteration of projection via
properties of resultants, and of course the complexity of Gröbner bases is dependent
on degree. Once again we note QuantifierElimination’s implemented pivot selection
strategy attempts to select a pivot of minimal degree at any level, even with a view to
minimising the degree for the next level.

Example to Compare Monomial Orderings

As an example of where the new monomial ordering is more effective than that used
in previous literature, consider the example

∃a∃b a+ b+ c = 0 ∧ ab+ bc+ ac = 0 ∧ abc = 0

which is “Cyclic-3” from the QE examples database (Section 7.1). This example is
entirely ECs (hence k = n = 3), but not fully existentially quantified, which would
lend itself entirely to solution via GBs and back substitution via Gianni–Kalkbrener
from (3.5). Instead, c is unquantified to explore the conditions on c such that the
system of equations has solutions. The equations are entirely symmetric with respect
to variables, so orderings are superfluous beyond them being valid. Take the variable
ordering [c, b, a]. Under the monomial ordering plex(c, b, a), the Gröbner basis for the
set of ECs {a + b + c, ab + bc + ac, abc} is {a3 − 1, a2 + ab + b2, a + b + c}, and one
notes that all polynomials are level 3, i.e. all of non trivial degree in a. This is exactly
the worst case from this monomial ordering that we intended to avoid, and there is a
maximum amount of propagation at every level, with PartialCylindricalAlgebraicDe-
compose yielding 11 projection polynomials and 119 leaf cells in total from the QE. In

145

usage of the monomial ordering plex(a, b, c), we receive {c3− 1, b2 + bc+ c2, a+ b+ c},
with one polynomial of each level (ki = 1, i = 2, 3, in terms of (3.5)), and so there is
no scope for propagation of ECs at any time. As a result there are fewer projection
polynomials with a total of 6, and as a corollary, many fewer leaf cells with a total of
25. Section 7.4.3 investigates usage of GBs to reduce the number of leaf cells further
(in the case of full CAD), additionally examining this example further.

We discuss some logic on examination of the output GB from processing of ECs.
If the Gröbner basis output is {1} (or any {p} such that deg(p) = 0) then the system
of equational constraints

∧k
i=1 fi has solutions of dimension −∞, and so is equivalent

to false (as 1 = 0 ≡ false). Considering this is a subformula of a top level conjunction,
the whole formula is then equivalent to false, so the rest of the formula is superfluous
to solve the system. In particular the empty projection (no polynomials at every level)
is sufficient to imply lifting the single cell Rn as the CAD. Substitution of any sample
point α ∈ Rn into Φ will give false, and as such the production of the empty projection
was sufficient to canonically give the quantifier free equivalent to Φ via CAD. This
situation may arise as a result of k > n and the system actually having been over
constrained. If the Gröbner basis output is ∅ (the empty list [] in Maple), then the
conjunction of equational constraints has solutions of dimension∞, and so is equivalent
to true. As this is equivalent to the set of clauses of a top level conjunction (3.2), they
can be discarded (or, semantically, ∅ is used as the set of equational constraints in their
stead).

When k < n, the aim to create a fully triangular system is generally ill founded.
Therefore we needn’t use a completely purely lexicographical ordering, which may be
needlessly inefficient. We can use “tdeg in the first n − k variables” to attempt to
introduce some extra efficiency to the Gröbner basis where the generated basis can
clearly not yield an exactly triangular system in the sense of (3.5), and we may as
well order the first n− k variables within this ordering with respect to some heuristic,
because they are irrelevant to the triangular system we wish to coerce amongst the
last k variables. Coercing a triangular system towards the later variables is important
as they are the first variables to use in projection, and optimising early projection
steps has effects on the later ones. Hence we need to keep “plex in the reverse of
the last k variables”. Maple offers two constructs to describe non standard monomial
orderings. Matrix orderings allow for the largest scope, but here we just require a
“product ordering”:

prod(plex(xn, . . . , xn−min(n,k)+1),

tdeg(H(x1, . . . , xn−min(n,k))))
(3.6)

which is the appropriate monomial ordering to pass as a second argument to Groebner:-
Basis, where H(x1, . . . , xn−min(n,k)) represents usage of any heuristic to sort
x1, . . . , xn−min(n,k). For H, QuantifierElimination uses the built in function Suggest-
VariableOrder from the Groebner package in Maple, i.e. Groebner:-SuggestVariableOrder.
In passing the set E and the list [x1, . . . , xn−min(n,k)], we obtain a sequence correspond-
ing to the suggested ordering by Maple on x1, . . . , xn−min(n,k) in terms of E. Note that
if k ≥ n then the above is entirely equivalent to plex(xn, . . . , x1). plex appears in the

146

product first to ensure coercion of the triangular behaviour, such that ties with respect
to plex(xn, . . . , xn−min(n,k)+1) are broken by tdeg(H(x1, . . . , xn−min(n,k))).

equationalConstraintsToGroebner is the function taking a set of equational con-
straints E and a fixed variable ordering via Array [x1, . . . , xn], generating the Gröbner
basis for E with monomial order given by (3.6), or plex(xn, . . . , x1) if k ≥ n. The
previously discussed prescribed logic on usage of the Gröbner basis, i.e. the set of
equational constraints after processing is handled by the function handling projection
— this can be seen in Algorithms 5 or 50.

Usage of Gröbner bases to preprocess equational constraints is controlled by the key-
word option ‘UseGroebner’ for the top level functions of QuantifierElimination.
This option takes a boolean flag to enable or disable their use, and by default it is true.
This flag appears as arguments to Algorithms 5 or 50. In usage of no equational con-
straints via the keyword option ‘UseEquations’ = ‘none’, the value of the keyword
option ‘UseGroebner’ is irrelevant, due to the structure of Algorithm 5.

Currently, the ordering of the variables within the monomial ordering is dependent
on their ordering for projection, i.e. the CAD variable ordering. For most variable
strategies, variable ordering is fixed before (any individual) full projection, apart from
the “greedy” variable strategy described in the following subsection, which makes deci-
sions on variables based on intermediate results of projection. It is unclear how to use
the described Gröbner basis preprocessing when this variable strategy is used, because
this is the only strategy where we do not fix the ordering of all n variables ahead of pro-
jection. Hence when this strategy is selected, the value of ‘UseGroebner’ is implicitly
set to false and Gröbner bases are not used (but the user is warned accordingly). Some
analysis on the efficacy of Gröbner bases via these monomial orderings with respect to
the example sets used in benchmarking appears in Section 7.4.3.

3.8 CAD Variable Strategy

Definition 64 (Variable Strategy/Ordering). A variable strategy is the name of
a strategy to use to obtain a variable ordering for one input.

Remark 65. This means that the variable ordering inherited from usage of two distinct
strategies on the same input may coincide.

QuantifierElimination offers customizable variable strategy whenever CAD is
concerned via the keyword option ‘VariableStrategy’, which accepts a symbol cor-
responding to each of the strategies described in this section, or a list of variables from
the example to parse, which is checked for correctness and compatibility in terms of
commutativity of any present quantifiers. when QE is relevant. In this way the user
can enforce a variable ordering to use in lieu of selection of a particular strategy.

The nature of the projection and lifting steps of CAD has that CAD is very sensi-
tive to variable ordering, which in itself may be guided by the intermediate results of
projection. We once again note that variable strategy is limited by the fact that only
quantifiers with the same symbol commute, so in reality variable strategies are only

147

sorting variables within blocks. This includes commutativity of free variables, and so
for “stock CAD”, there is complete freedom for commutativity.

Success of metrics for what makes a “good CAD” can often be predicted by met-
rics on what makes a good projection, considering the CAD lifting process essentially
completely follows from projection. Such metrics on the projection bases however vary
in their expense. For example, some of these metrics require calculating the whole set
of projection bases for all the O(n!) possible variable orderings, and then picking the
best such ordering via applying the metric to each set of bases. Note that this O(n!)
is really a worst case, given that only similarly quantified (or unquantified) variables
commute, and hence not every permutation of the n variables is permissible. The most
simple metric however actually requires no projection, and will provide an ordering
immediately from information that can be garnered from the input polynomial set(s).
We first define the metrics on projection bases with respect to a fixed (potentially tem-
porary) ordering. For the purposes of these definitions, let B1, . . . , Bn be flat sets of
polynomials per canonical CAD level in projection, i.e. Bi is the union of all polyno-
mials in bases at level 1 ≤ i ≤ n in projection with respect to Figure 3-3 or 3-4, i.e.
irregardless of any equational constraints appearing at that level.

Definition 66 (sotd). Let B = B1, . . . , Bn be the projection bases under some variable
ordering x = x1, . . . , xn. Dolzmann et al provide the sum of the degrees (sotd) metric
in [25].

sotd(B,x) =

n∑
i=1

∑
f∈Bi

σ(f)

where if e = (e1, . . . , en), and f =
∑

e∈E aex
e1
1 . . . xenn (i.e. a sum of monomials where

each e in E defines the exponents), then

σ(f) =
∑
e∈E

n∑
i=1

ei

hence in other words sotd is the sum of “total degrees” of each monomial in each
polynomial in each projection basis in B.

Definition 67 (ndrr). Let B = B1, . . . , Bn be the projection bases under some variable
ordering x = x1, . . . , xn. Bradford et al provide the number of distinct real roots (ndrr)
metric in [5].

ndrr(B,x) =
∑
f∈Bn

number of real roots of f in xn via real root isolation

ndrr is the only heuristic to consider the real geometry, directly giving information
about the number of cells one will inherit at the first stage of lifting to build a CAD
of R1, but requires real root isolation, which is one of the more costly parts of lifting.
Meanwhile, the inherent operations to calculate sotd are essentially trivial. However,
in order to be used as metrics, one needs to compute multiple full projections in the
manner of Algorithm 5 in order to decide on a variable ordering. Usage of sotd &
ndrr via computation of all admissible full projection bases are strategies offered by

148

QuantifierElimination via usage of the keyword option ‘VariableStrategy’, e.g.
‘VariableStrategy’ = ‘ndrr’. [5] additionally discusses ndrr and sotd as metrics to
examine the resulting projection sets in order to designate a single equational constraint
(i.e. selection of a pivot when a single EC is admissible, there in the context of the
McCallum projection).

[25] suggests a slightly less verbose manner of usage of sotd, namely the “greedy”
strategy. Here, at level 1 ≤ i < n, one computes all projection bases from amongst the
remaining (permissible per quantifiers) n− i+ 1 variables, and upon usage of the sotd
metric to decide on the best resulting bases, fixes the variable xn−i+1. Hence there
are fewer permutations of variables to inspect, and only one maximum level projection
basis is ever produced. The same modification cannot be used with ndrr, because the
metric is inapplicable to an incomplete set of projection bases. This strategy is offered
in QuantifierElimination via ‘VariableStrategy’ = ‘Greedy’. Any projection

object associated to the best ordering under any of these metrics is trivially retained for
lifting the CAD, and in particular the “greedy” strategy induces a method acting upon
such an object. The implementation of the greedy strategy in QuantifierElimination

follows the methodology of [25] while paying attention to equational constraints in any
one variable much in the same way as Algorithm 5.

Remark 68. The “projection based” metrics (ndrr, sotd, greedy) are in practice in-
formed by usage of equational constraints in projection, with respect to the Lazard pro-
jection CAD with ECs in QuantifierElimination. Further, they are affected by the
value of the keyword options ‘UseEquations’ — usage of anything up to multiple
equational constraints, the value of ‘PropagateECs’, — propagation of equational con-
straints, and the value of ‘UseGroebner’ — usage of Gröbner bases to preprocess the
ECs.

The package ProjectionCAD in Maple implementing projection & lifting CADs via
the McCallum projection offers a variable strategy (by default) that allows for weighted
use of the sotd and ndrr metrics for selection of a set of full projection bases to use.
QuantifierElimination currently does not offer such an option — this is perhaps
further work for development. Both metrics are readily available to use on a set of full
projection bases, so the adaptation is not difficult, and the complexity of usage of a
weighted strategy remains at generation of O(n!) full projection bases. The question
of the weighting is a matter of investigation and benchmarking, and one notes Sections
7.4.2 and 7.4.3.

The final metric from other research is the understated “Brown heuristic” from [13].
This has negligible complexity implications in comparison to the above. Considering
usage of the heuristic essentially comes “for free”, it is good news that it seems to quite
often pick a very good ordering, as seen in [5].

Definition 69 (Brown Heuristic). Let A be the set of input polynomials for CAD
(as a flat set, i.e. A← A ∪ E, when E is the top level set of equational constraints).

The “Brown heuristic” from [13] implies that we should eliminate variables (i.e.
take the projection of) in order according to the following tiebreakers:

149

1. it has a lower overall degree in A: maxf∈A degx(f),

2. it has a lower maximum total degree of those terms in the input in which it occurs:
maxf∈A | degx(f)>0 deg(f)

3. there are fewer terms in the input which contain the variable:
∑

f∈A | degx(f)>0 1

The Brown heuristic makes no special use or reference to equational constraints
in contrast to polynomials from regular constraints. This is not necessarily out of
ignorance, but could be by design to cater for usage of projection operators without
equational constraints. QuantifierElimination offers usage of the Brown heuristic
as a strategy for sorting blocks of quantifiers via ‘UseEquations’ = ‘Brown’. The
following Algorithm 36 is a simple modification to the Brown heuristic to take into
account a set of equational constraints E alongside the usual set of polynomials from
inequalities A.

Algorithm 36 ECHeuristic

Input: x, y, the names of variables of polynomials in A and E, A a set of
polynomials associated purely with inequalities from input for CAD, E a set
of equational constraints for CAD

Output: true if x < y with respect to this heuristic, else false
1: procedure ECHeuristic(x, y, A, E)
2: mx ← max({degx(p) | p ∈ E})
3: my ← max({degy(p) | p ∈ E})
4: if mx ≤ 0 then
5: mx ←∞
6: end if
7: if my ≤ 0 then
8: my ←∞
9: end if

10: if mx < my then . Tiebreaker 1 from Definition 69 applied to E
11: return false
12: elseif my < mx then
13: return true

One notes that one applies each successive tiebreaker from the Brown heuristic
in Definition 69 to E before applying the same tiebreaker to A. In particular, the
order of examination is E, A, E, A, E, A, and not E, E, E, A, A, A. Another
small modification are lines 5 and 8. The intention of these lines is to coerce as many
equational constraints, and hence their usage in restricted projection (hence yielding
fewer polynomials) as early as possible in projection (recall that projection acts back-
wards across x1, . . . , xn). Therefore, to have trivial degree in a variable x is as bad
as to have excessively high degree. This also discourages a variable being designated
as x1 when there exists a valid equational constraint that could restrict a preced-
ing projection step (no projection operations are ever performed on x1). Usage of the
Brown heuristic as a variable strategy reduces to usage of a very similar function within

150

Algorithm 36 ECHeuristic, Part 2

14: else
15: if mx =∞ then
16: mx ← −∞
17: end if
18: if my =∞ then
19: my ← −∞
20: end if
21: mx ← max({degx(p) | p ∈ A})
22: my ← max({degy(p) | p ∈ A})
23: if mx < my then . Tiebreaker 1 from Definition 69 applied to A
24: return false
25: elseif my < mx then
26: return true
27: else
28: for S in E, A do. Tiebreaker 2 from Definition 69 applied to E, then A
29: mx ← min({deg(p) | p ∈ S, degx(p) > 0})
30: my ← min({deg(p) | p ∈ S, degy(p) > 0})
31: if mx < my then
32: return false
33: elseif my < mx then
34: return true
35: end if
36: end for
37: for S in E, A do. Tiebreaker 3 from Definition 69 applied to E, then A
38: mx ←

∑
p∈S 1degx(p)>0

39: my ←
∑

p∈S 1degy(p)>0

40: if mx < my then
41: return false
42: elseif my < mx then
43: return true
44: end if
45: end for
46: return false . return true only if x < y, but really they are equal
47: end if
48: end if
49: end procedure

151

QuantifierElimination, with fewer tiebreakers, treating A and E as the same (es-
sentially acting on their union). QuantifierElimination offers usage of ECHeuristic
to sort permissible variables via passing the option ‘VariableStrategy’ = ‘Tonks’.

One notes that polynomials in E may have some partial factorisation to them, due
to the discussion on gathering ECs via multiplication without expansion in Maple using
Algorithm 21 in Section 3.7. Because we want to retain these factorisations to choose
pivots in usage of ECs, the intention to compare the degrees of such polynomials from
E is well informed in usage of either the Brown heuristic or ECHeuristic as long as
we genuinely intend to use those ECs, i.e. ‘UseEquations’ is not ‘none’, else each
heuristic is being led astray by a non natural multiplication amongst polynomials that
will be fully factored in the usual way in the projection process. Clearly, this is because
the degree of a product of polynomials is the sum of the degrees of the factors. Then
again, this behaviour can also equally be inherited from polynomials in A that are not
irreducible, because there is no requirement on the set A or E to be fully factored
or even square-free bases. As such, both aforementioned heuristics are best informed
when the formulation of input by the user donating the sets A and E is as concise as
possible.

[30, 31] investigate usage of Machine Learning (ML) to generate heuristics for vari-
able strategy in CAD. Considering QuantifierElimination’s role as a package in
Maple, the results of a call to any outward facing procedure should not change from
call to call as a result of usage of ML data. In particular this mandation comes as a
result of acknowledgement that ML may “learn” from past calls. On the other hand,
it is reasonable (and perhaps desirable) for the results of a call to change from release
version to release version (in particular improve in some way). No ML heuristics are
currently implemented in QuantifierElimination, but this is interesting further work.

Considering there exist variable strategies for CAD that are entirely tied to the
projection, QuantifierElimination mandates the semantics that a variable strategy
should return the set of projection bases implied by the variable strategy to lift from
(the purpose of CADChooseVarsProjection).

The most popular metric to measure efficacy of CAD output (such as in [25]) is on
the number of leaf cells. This was however usually used in work that calculated a full
CAD (these works had no direct context of QE). In using partial CAD, usage of “total
leaf cells” as a metric may not be useful considering the CAD tree at output may not
be complete, as a result of deducing termination early. In particular the presence of cell
selection strategy (Section 3.9) for stack construction complicates matters, and individ-
ual partial CADs may differ despite arising from the same projection bases. Remark
68 raises the question as to whether QuantifierElimination may find more efficacy
from the projection based heuristics if we find that usage of equational constraints
makes QuantifierElimination’s CAD even more sensitive to variable ordering than
past implementations benchmarked e.g. in [25]. Comprehensive benchmarking on full
CAD, per variable strategy, implementation, usage of equational constraints, Gröbner
bases, and propagation of equational constraints in Section 7.4.3. The output of such

152

benchmarks takes into account low level curtains and other lifting errors, but other-
wise measures the number of leaf cells produced, and the time and memory expended
in computation.

Considering the projection based orderings may attribute significant expense as
well, Section 7.4.2 investigates the time to complete projection and calculate the vari-
able ordering for the same examples in isolation (because for the projection based
orderings, these are intrinsically tied). Hence one can begin to examine the cost of
projection and lifting separately per strategy.

In total, variable strategy within CAD in QuantifierElimination is customizable
via the keyword option ‘VariableStrategy’, taking the name of one of the aforemen-
tioned strategies to use. It is also overridable by a list of variables which will force
an ordering defined by the user, which is checked for validity not least in terms of the
commutativity of any quantifiers.

Gröbner Bases with “Heuristic” Variable Orderings

Usage of Gröbner bases on a set of equational constraints E can actually remove poly-
nomials from E. For example, if E = {x2y, y}, and x appears nowhere in the set of
polynomials from inequalities A, then the Gröbner basis for E under any monomial
ordering on x and y is {y}, because only y need be 0 such that x2y = 0 ∧ y = 0. The
“heuristic” variable orderings Brown and ECHeuristic inspect the incoming top level
sets A and E before E’s preprocessing via Gröbner basis. Both heuristics (in particular
ECHeuristic, which pays more attention to those polynomials from E than those from
A) can hence be led astray by variables that have the capacity to be “removed” from
the polynomial sets after Gröbner bases. Here, either heuristic can be led astray to
view x as higher degree than any variable appearing linearly in A, despite the fact that
after processing by Gröbner, x is of degree 0 in every polynomial, and hence should be
viewed as lower degree than any variable appearing linearly in A.

One could delay usage of variable strategy until after preprocessing of E via Gröbner
bases, but the monomial ordering is dependent on the results of variable strategy to
generate an ordering, forming a cyclic dependency. QuantifierElimination takes the
view that ECs are rarely ill defined to cause this behaviour, and so is a problem of
good formulation of the problem to pass to QE.

The overall intention of ECHeuristic in conjunction with Gröbner basis preprocess-
ing is that the former attempts to coerce as many equational constraints (ideally in a
row) as early as possible in projection to maximise opportunity for propagation of ECs,
and the Gröbner basis preprocessing then attempts to restrict the early opportunities
for propagation. This may seem like a contradiction, but one notes that the latter step
only attempts to make the propagation as efficient as possible — we would prefer to
use propagation of ECs where possible, but if we are to use propagation, we would then
prefer to produce as few nested resultants as possible.

153

3.9 Cell Selection Strategy

Cell selection strategy is strictly of interest when the early termination criteria such
as from Partial CAD applies. As such it is only implemented and used in the QE
relevant functions from QuantifierElimination. It is not used in CylindricalAlge-
braicDecompose, because the aim is to compute and provide every leaf cell without
termination criteria, and as such would be unnecessary overhead. For the relevant
functions, QuantifierElimination implements four cell selection strategies directly
from the “Partial CAD” work [36]. They are:

• ‘HL LI’

• ‘TC LD HL LI’

• ‘TC LD HL GI’

• ‘SR HL LI’

The glossary of abbreviations here is:

HL “highest level”
LI “least index”
GI “greatest index”
TC “trivial conversion”
LD “least degree (of the minimal polynomial defining the cell)”
SR “sectors first”

The names of the strategies can be read as successive tiebreaker conditions, with
the underscore as a delimiter between those tiebreakers. Note that ties can always be
broken, given that the last tiebreaker condition is always something involving the (full)
index of a cell, and these are unique between cells. “Highest level” always appears as a
metric in every strategy. This is unsurprising, given it is the metric most likely to lead
to early termination for “SMT-like” problems, i.e. those which are quantified similarly
or close to similarly.

Cell selection strategy is handled by the function QECADStrategy, which uses the
strategy defined by the CAD keyword option ‘CellSelectionStrategy’ to return the
index of the cell suggested by that strategy. The value of ‘CellSelectionStrategy’ is
any of the symbols from ‘HL LI’, ‘TC LD HL LI’, ‘TC LD HL GI’, or ‘SR HL LI’. The
default value is ‘HL LI’ (the same suggested as default in [36]). The container of evalu-
ated CADCells with indeterminate truth values amenable to further stack construction
to choose between in regulation lifting in any context is called “cad”. This container
must support addition and removal of objects in similar style to one containing non
genuine leaf IQERs. In QuantifierElimination, this is the QEContainer object which
is a fairly rudimentary object supporting iteration, addition and removal methods, as
is also used in VTS (Section 2.3.1). In particular, it is rudimentary in the sense it does
not directly reconcile with the chosen strategy — QECADStrategy iterates over the

154

whole container, retaining the index of the best cell with respect to the strategy and
the associated information with respect to the metrics in order to enable comparison.
Hence the usage of strategy to extract the “maximal element” is O(k) where k is the
current number of evaluated non meaningful leaf cells, which can of course be exponen-
tial at least in the number of variables. The usage of the above metrics can of course
be deemed to expend essentially constant work on fairly trivial facts about integers, or
at worst looking at degrees of polynomials.

Much as the case for the corresponding container of “work” IQERs in Section 2.3.1,
usage of a QEContainer could be replaced by a more sophisticated data structure which
maintains an ordering amongst cells for future stack construction corresponding the se-
lected strategy with respect to one CAD call. Unsurprisingly, experimentation via code
profiling shows that usage of CAD strategy is not a bottleneck to the implementation,
but optimisation of strategy may be of interest in the future. The suggestion of a heap
differs slightly from the case for VTS, because of the methodology of Partial CAD,
with propagation of truth values via Algorithm 15 implying the desire to be able to
remove arbitrary CAD subtrees of cells from “cad”. Heaps are actually essentially
equal to the QEContainer in this respect, because in both cases removal of an arbi-
trary non maximal cell is O(k), with the main expense attributed to “finding” the cell
to remove within the structure in both cases. In the case of a heap, we additionally
require “heapifying” a subtree of the structure after removal, attributing an additional
O(log k). Arbitrary removal of elements is irrelevant in the case of fully homogeneous
problems (such as QF NRA), where usage of a heap now becomes even more lucrative,
but QuantifierElimination aims to support general quantifier elimination. However,
switching to a heap still appears to be a win for general QE due to the reduction in
expense of pairs of addition/“extraction of maximal element” operations to O(log k)
from O(k), with a minor complication being the expense of addition of cells that only
ever see arbitrary removal rather than their extraction as a maximal element for stack
construction, much as the similar case for VTS. Other potential options are AVL or
red-black trees, which attribute O(log k) expense to all the aforementioned operations
including addition, arbitrary removal, and extraction of maximal elements.

The object “cad” never needs to be retained between incremental CAD calls (via
the top level algorithms in Section 5.2), so the fact usage of strategy for a QEContainer

is highly mutable within the context of one CAD construction is not largely to its credit.
Of course, the QEContainer may as well remain for the implementation of full CAD

(CylindricalAlgebraicDecompose), where cell selection strategy is entirely superfluous,
and picking e.g. the last cell from the container for stack construction is entirely
sufficient, because we need do this for every non leaf cell.

3.10 Production of Witnesses for QE via CAD

We discuss witnesses in the sense of Definition 22, but now in the context of CAD,
i.e. with respect to meaningful leaf CADCells. Witnesses are only relevant for homo-
geneously quantified problems, hence a meaningful leaf CADCell in this context always
propagates its truth value all the way to the root.

155

Witnesses for CAD are easier to produce than for VTS, because every substitution
that occurs in lifting is of exactly one real algebraic number. In some sense, the lifting
process is akin to back substitution, and hence no back substitution to do to deduce
the actual substitutions in lieu of “virtual” substitutions. The full sample point for a
CADCell (i.e. the concatenation of the local sample point for a CADCell with those from
its parent, recursively) is precisely the list of witnesses for a meaningful leaf CADCell for
a fully homogeneously quantified formula. Due to cylindricity, one could even use the
cell description for such a cell as a witness, due to that CADCell’s truth invariance on
Φ — this gives a more comprehensive “proof” considering it gives the whole subset(s)
of Rn, but is much less convenient in terms of substitution to obtain the “proof”.
Each CADCell only stores data local in terms of that level, so the witnesses need to be
gathered by traversal towards the root cell (collecting the local sample points of each
cell hit along the way).

The elements of a sample point for a CADCell are all real algebraic numbers. For
a sector, we can always find a (simplest) rational number as a local sample point. For
sections, the local sample point is the real root of some lifting polynomial p represented
as RootOf(p, a..b) (if p is not linear) in Maple for some [a, b] the root isolation about
that real root. Hence evaluation of any formula at such a sample point in Maple
may require usage of evala(Normal(. . .)) in order to simplify the substitution of
algebraic numbers, as can be seen in Figure 3-10.

3.11 Comparison with VTS

The substitution points from one propagation of VTS owe completely to the roots
of the polynomials from the IQER to propagate on, ignoring boolean operators. As
such, the success of substitution of a VTS test point from any one polynomial is pred-
icated entirely on the boolean structure of the formula to substitute into, and more
importantly the test point’s guard. However, such substitution points may contain
infinitesimals, and even other variables, and as such the substitutions themselves are
more complicated compared to those that CAD makes, reducing to pseudoremainders
and production of other formulae. Indeed, any one substitution in CAD will use a
rational number, or at worst a real algebraic number. However the nature of such
substitutions arising from polynomials from projection bases means that such points
being used may not be meaningful in terms of the boolean structure of Φ, but worse,
possibly even real space.

In the worst case, CAD will project using all n variables in ∃x1 x1 < 0 ∧ x1 >
0∧f1(x1, . . . , xn)∧· · ·∧fk(x1, . . . , xn), despite the trivial falsity of the first two operands
of the conjunction (assuming no use of lifting constraints). Meanwhile VTS will deduce
the falsity of the formula due to any and all substitutions for x1 immediately producing
false for at least one of the first two operands, assuming no ineligibility arising from
f1, . . . , fk and noting the linearity of x1. While the best case for VTS clearly looks good
here — substitutions of just 3 test points for x1 to deduce false, the worst case for this
example is in fact as many test points as are found for x1. A related point is that VTS
largely ignores free variables — although their degree in polynomials may increase by

156

>
(

e
,

q
)

:=
P

a
r
t
ia

lC
y

li
n

d
r
ic

a
lA

lg
e

b
r
a

ic
D

e
c

o
m

p
o

s
e

(
e
x

p
r

)
;

e,
q

:=
[[

tr
u

e
,y

=
−

3
,x

=
R

oo
tO

f
(53

Z
3
−

56
7

Z
2

+
70

Z
−

20
07
,
8
0
3
9
7
2
9
8
6
7
7
9
7
0
6
8
3
2
8
7
9

7
3
7
8
6
9
7
6
2
9
4
8
3
8
2
0
6
4
6
4
..
.
6
4
3
1
7
8
3
8
9
4
2
3
7
6
5
4
6
6
3
0
5
9

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2

)]]
,

tr
u

e

>
a

li
a

s
(

R
=

o
p

(
[

1
,

3
,

2
]

,
e

)
)

:
#

L
e
t

R
b

e
th

e
lo

n
g

R
o

o
tO

f

>
e

v
a

l
(

G
e
tU

n
q

u
a

n
ti

fi
e
d

F
o

rm
u

la
(

e
x

p
r

)
,

e
[
]
[

2
..

−
1

]
)

;

53
∗
R

3
−

56
7
∗
R

2
+

70
∗
R
−

20
07

=
0

>
e

v
a

la
(

N
o
rm

a
l(

%
)

)
;

0
=

0

F
ig

u
re

3
-1

0:
U

sa
g
e

of
e
v
a
l
a
(
N
o
r
m
a
l
(
..
.
)
)

to
le

t
M

ap
le

d
ed

u
ce

th
e

va
lu

e
of

p
ol

y
n

om
ia

ls
w

h
en

w
it

n
es

se
s

w
it

h
re

al
al

ge
b
ra

ic
n
u

m
b

er
s

a
re

su
b

st
it

u
te

d
fo

r
va

ri
a
b

le
s.

e
v
a
l
a
(
N
o
r
m
a
l
(
..
.
)
)

co
m

p
u

te
s

th
e

n
or

m
al

fo
rm

fo
r

53
∗R

3
−

56
7
∗R

2
+

70
∗R
−

20
07

u
si

n
g

th
e

al
ge

b
ra

ic
fi

el
d

ex
te

n
si

on
fo

r
R

.

157

the action of virtual substitution. In CAD, one must project and lift with respect to
free variables, and in the example above this is true of the n− 1 free variables.

A slight modification of the above case study highlights a different contrast. For
the formula ∃x1 g(x1, . . . , xn)x1 > 0 ∧ g(x1, . . . , xn)x1 < 0 ∧ f1(x1, . . . , xn) ∧ · · · ∧
fk(x1, . . . , xn), VTS will not deduce false without a strong Tarski formula simplifier,
while engaging with the unquantified variables x2 . . . xn will allow CAD to do so. This
is a blessing and a curse for VTS, which essentially ignores free variables.

VTS benefits from strong simplification to produce simple quantifier free output,
but CAD is in some sense its own simplifier, where the quantifier free output from
CAD is a disjunction of conjunctions owing to descriptions of CAD cells. In particular,
CAD will never fail to deduce when an input formula is equivalent to true or false,
due to cylindricity and propagation of truth values, but VTS may produce formulae
equivalent to true or false, but unfortunately unsimplified, such as x > 0 ∧ x = 0,
which is actually equivalent to false. Other more nuanced potential output formulae
include polynomials without real roots, such as c2 + c+ 1 = 0, which VTS cannot de-
duce as false. This is especially egregious for QuantifierElimination, which features
no strong simplification for VTS. This brings QuantifierElimination’s QE output
by CAD closer to “candid”. On the other hand, quantifier free output produced from
solely VTS is always a Tarski formula, due to VTS acting entirely on Tarski formulae,
whereas CAD will produce an Extended Tarski formula including real algebraic func-
tions, which are arguably sometimes more, and sometimes less intelligible than mere
Tarski formulae.

VTS can be viewed as “recursive” in the sense that it can be used to eliminate
one quantifier at a time, and the canonicalization of results of virtual substitution as
IQERs in Chapter 2 reflects this — every node is implicitly an individual QE problem
quantified with a number of quantifiers inversely commensurate with its level in the tree.
CAD cells, which associate a tree structure, have no such equivalence to a QE problem.
In QE, Tarski formula held by a CAD cell (tarski formula) is merely the equivalent of
the unquantified part of the top level input formula Φ at the full sample point of a
cell, in order to attempt to deduce the truth of the formula at that cell. Once CAD
commences on a QE problem, CAD must commence with projection strictly followed
by lifting, due to the opposition in direction between the two (Figure 3-7), which makes
CAD more “clunky” than VTS in some sense. This includes the evolutionary methods,
each of which for CAD must proceed with some type of projection, before “correcting”
the CAD tree, then lifting (Section 5.2), while for VTS one need only correct the tree
before proceeding with more VTS.

On the other hand, the “tree corrections” of this work fall to a comparable tree
traversal for both VTS and CAD alike. For example, there are many similarities be-
tween Algorithms 46 and 53. Both algorithms act upon the formula held by a CADCell

or IQER, and as objects both are similar in the sense they are nodes of trees in differ-
ing contexts. This highlights that the objects can be seen as somewhat similar. Both
inherit parenting to enable a tree structure and associate some property equivalent to
the edge above it. In both cases the edge represents a point to substitute, although

158

for an IQER it is principally “virtual” (its testpoint), while for a CADCell it is a real
algebraic number that represents that cell’s local sample point (sample point).

3.12 Algorithms

The top level algorithms for CAD, two of which are specifically for the framework of
QE including VTS, are listed here. QEPCADL is named as such purely to differentiate
from PartialCylindricalAlgebraicDecompose, and acts upon the QE problem defined by
one IQER. Meanwhile, VTSToCADWhole acts upon the QE problem defined by several
genuine leaf & ineligible IQERs at the termination of VTS with ineligible IQERs. These
will be found useful in the following section, discussing the poly-algorithm.

Algorithm 37 QE by Partial Cylindrical Algebraic Decomposition

Input: Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn), a prenex quantified Real Tarski
formula, and a myriad of options for CAD, including lcs, a set of lifting
constraints, and open, a boolean flag dictating if Open CAD is admissible by
the user

Output: QE output dependent on number of output arguments requested, up to
and including the quantifier free equivalent of
Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn), witnesses for the problem, and the
CADData for the CAD

1: procedure PartialCylindricalAlgebraicDecompose(
Qn−m+1xn−m+1 . . . Qnxn Φ)

2: (A, E) ← getPolySets(Φ)
3: localopen← OpenCAD and hasAllStrongRelations(Φ) . Algorithm 19
4: quants← [Qn−m+1, . . . , Qn]
5: bases← a projection data structure generated from A and E, with variable

strategy potentially intrinsically tied to projection, hence generates a
variable order vars← [x1, . . . , xn]

6: cad← an empty container
7: leaves← an empty container
8: rootCell← CADCell(Φ)
9: (constraints, bounds) ← parseLiftingConstraints(lcs)

10: Code Fragment 28, regulation CAD lifting by Partial CAD
11: Code Fragment 35, recovery from lifting failures
12: return QE output dependent on number of output arguments requested
13: end procedure

159

Algorithm 38 Full Cylindrical Algebraic Decomposition

Input: A formula Φ, OR sets of polynomials A and E, and a myriad of options
for CAD, including lcs, a set of lifting constraints, and open, a boolean flag
for requesting an Open CAD

Output: CADData for the CAD
1: procedure CylindricalAlgebraicDecompose(Φ)
2: (A, E) ← sets of polynomials from inequalities and equational constraints

from input respectively (using Algorithm 21 if appropriate)
3: (constraints, bounds) ← parseLiftingConstraints(lcs)
4: bases← a projection data structure generated from A and E, with variable

sorting potentially intrinsically tied to projection, hence generates a
variable ordering vars← [x1, . . . , xn] (using CADChooseVarsProjection)

5: rootCell← CADCell(true) . Tarski formulae and truth values of cells
irrelevant

6: cad← an empty container
7: leaves← an empty container
8: Code Fragment 29 . Regulation full CAD lifting
9: if |curtains| > 0 then . Need to attempt curtain recovery

10: decomposeCurtainCellsCAD(bases, rootCell, vars, n, leaves, curtains,
open, constraints, bounds) . Algorithm 30

11: end if
12: return CADData associated to all the CAD data structures, including the

projection, and leaves of the CAD tree
13: end procedure

Algorithm 39 QE by Partial CAD on the QE problem defined by one IQER

Input: An IQER I, and a myriad of options for CAD
Output: CADData for the CAD

1: procedure QEPCADL(I)
2: (Ψ, C) ← PartialCylindricalAlgebraicDecompose(

Qxn−m+1 . . . Qxn−I 7→level Φ′(x1, . . . , xn−I 7→level) where Φ′ is the
unquantified formula associated to I (I 7→ formulaSimplified), Ψ is the
quantifier free equivalent of I, and C is associated CADData

3: I 7→ cad formula← Ψ
4: return C
5: end procedure

160

Algorithm 40 QE by Partial CAD on the “whole” QE problem defined by termination
of VTS, (4.1), without poly-algorithmic QE

Input: Qxn−m+1 . . . Qxn−t B
(
Bk
j=1I

′
j B

s
j=1Ij

)
, the state of termination of VTS

with ineligible IQERs via (4.1), and a myriad of options for CAD
Output: Ψ, quantifier free equivalent of (4.1)

1: procedure VTSToCADWhole(Qxn−m+1 . . . Qxn−t B
(
Bk
j=1I

′
j B

s
j=1Ij

)
)

2: Ψ←
PartialCylindricalAlgebraicDecompose

(
Qxn−m+1 . . . Qxt B

(
Bk
j=1I

′
j B

s
j=1Ij

))
where Ψ is the quantifier free equivalent of (4.1). . t is the minimum level
amongst all the IQERs

3: return Ψ
4: end procedure

161

Chapter 4

The Poly-algorithmic QE System

This section discusses the main bespoke feature researched for this thesis. The initial
exploration of the ideas and methodology was in [64]. The reader may wish to watch
an overview of the poly-algorithmic method featured in the publicly available video
[66] first recorded for ICMS 2020.

4.1 From VTS to CAD

Section 2.3 discusses facts about distributivity of quantifiers into the implicit disjunc-
tion/conjunction formed by VTS in elimination of existential and universal quantifiers
respectively. In particular, this forms a tree structure and a choice of IQERs within any
one block of quantifiers. The intention of the poly-algorithm is to use VTS as far as
possible (up to a specified degree ≤ 2), and we discuss the situation where VTS cannot
complete quantifier elimination alone, due to receiving at least one ineligible IQER.

Because we can only distribute one type of quantifier through the disjunction or
conjunction formed within one block, the poly-algorithm is only used within the last
block of quantifiers. For many examples, the problem is homogeneously quantified
anyway, so we are always in the last block, and in the context of QE for QF NRA, certainly
homogeneously quantified. One could distribute the (remainder) of the innermost block
through the canonical boolean operator for VTS onto the ineligible IQERs, but usage
of CAD on these would create cylindrical formulae to quantify with the remainder
of the blocks of quantifiers, which is largely nonsensical, not least because CAD will
view the variables from those remaining blocks as free, constructing geometry around
them — the complexity of CAD is highly dependent on the number of free variables in a
formula. Usage of the poly-algorithm in this context would hence “double up” on usage
of variables from later blocks of quantifiers. To make matters worse, the quantifier free
output of CAD in QuantifierElimination is generally an Extended Tarski Formula,
which is not appropriate as input to any QE function in QuantifierElimination, so
we cannot even consider “re-quantification” of such with the later blocks of quantifiers
with the current implementation.

Hence the state of VTS on termination of VTS must be

Qxn−m+1 . . . Qxn−t B
(
Bk
j=1I

′
j B

s
j=1Ij

)
(4.1)

162

for t the minimum level of any I1, . . . , Is, the s > 0 ineligible IQERs, and I
′
1, . . . , I

′
k,

k ≥ 0 leaf IQERs1, B is the canonical boolean operator corresponding to the quantifier
symbol Q ∈ {∃,∀}.

1. Select an IQER I from amongst those ineligible (I1, . . . , Is), according to some
metric. This work investigates a metric based on depth of the selected IQER. If the
root IQER was not ineligible, then we obtain a choice of IQERs to solve with fewer
quantified variables each, albeit potentially at higher degree in such variables.
The depth of each IQER is inversely proportional to its number of quantified
variables. Perform the QE Qxn−m+1 . . . Qxn−I 7→level I via Partial CAD. We retain
data for this CAD, C.

2. If this yields a meaningful truth value we are done. Else, select the next IQER I
to solve via the chosen metric.

• We expect that the IQERs of this tree have similar boolean structure and
polynomials (Section 4.1).

• By examining the polynomials from I as a flat set, we can measure the pro-
portion of polynomials in this IQER with the polynomials from the formula
of the last IQER used in the CAD. The formula from the last IQER exists at
the root cell for the CAD via repurposing. We need not be as precise as to
make distinctions about equational constraints here, due to the assumptions
about similar boolean structure between IQERs (Section 4.1).

• If the proportion meets some threshold, we reuse the CAD C incrementally
to solve I (Section 4.1). If not, we can discard C and create a new CAD to
solve I. Additionally, I must contain no free variables new to C for C to
accommodate I, else we must create a new CAD. However, new quantified
variables are allowable (Section 4.1).

3. And hence we iterate this process further, and each ineligible IQER uses the
cad formula property to store the equivalent ETF equivalent to itself for the
purposes of full QE output later. Again, if we receive a meaningful truth value,
we are done.

4. Upon termination of the poly-algorithm, QE output for this block of quantifiers

can be described by B
(
Bk
j=1I

′
j B

s
j=1Ij

)
where each Ij uses its cad formula as

its quantifier free equivalent, and each I
′
j uses its formulaSimplified. This also

describes QE output when s = 0.

Incremental CAD is comprehensively covered in Section 5.2 — incremental and not
decremental technology is of relevance. CAD is always of two parts, projection and
lifting, and incremental CAD reflects this similarly. The full incrementality of accom-
modating a new IQER from an existing CAD is Algorithm 44. This uses Algorithm

1I
′
1, . . . , I

′
k are only meaningful leaves if the user defines unusual termination criteria, i.e. setting

the keyword option ‘eagerness’ within QuantifierElimination to a low value in order to force full
QE in general without early termination.

163

50 to handle incremental projection, followed by incremental lifting instigated by the
bespoke Algorithm 52 followed by regulation Partial CAD lifting of Code Fragment
28. Importantly, the discussion for Algorithm 52 clarifies that it attempts to repurpose
the CAD tree for the formula from the incoming IQER. This means re-evaluating the
tarski formulae of the cells from the tree to possibly rededuce their truth values, but
importantly much of the geometry can be reused due to the resulting projection sets
being similar due to the “poly-share” threshold (Section 4.1).

Because usage of VTS assumes that the quantified input formula is a Tarski for-
mula, i.e. of integral polynomial constraints, the poly-algorithm is only applicable (in
a non-trivial sense) on Tarski formulae. One could canonicalize the root IQER as in-
eligible in the case of irrational numbers, but usage of the poly-algorithm is trivial
whenever the root IQER is ineligible — the QE reduces to essentially exactly the same
methodology as to if PartialCylindricalAlgebraicDecompose were called.

The best case for usage of the poly-algorithm is usage of CAD on exactly one
ineligible IQER to receive a meaningful truth value. In the case of fully (homogeneously)
quantified formulae, true and false are the only candidates for quantifier free equivalents
of IQERs. In this way, there is a view for the poly-algorithm to cater well to the case
for fully quantified formulae. When QE is used beneath SMT solvers for QF NRA, the
formulae are informally viewed to be fully existentially quantified, and hence there is
a hypothesis that the poly-algorithm accommodates QF NRA well via finding true (i.e.
satisfiability) without using all IQERs.

Incremental CAD Variables with Traversal of the VTS tree

Depth-wise traversal of the VTS tree in the context of the poly-algorithm means that
the depths of the selected IQERs to repurpose the held CAD are decreasing (perhaps
not monotonically). An IQER of strictly lesser depth than the last holds strictly more
variables that are quantified. Referring to Figure 3-7, we understand that:

• we project with respect to the last variable in the ordering for a CAD first,

• and the direction of lifting is opposite to that of projection, hence the children of
the root cell are with respect to the first variable in the ordering for the CAD.

In fact, it is convenient that VTS acts in the opposite direction to CAD’s projection,
meaning that the direction of construction of the trees of each algorithm actually co-
incide.

Say that the first IQER to be used in CAD is of level 0 < j < m in a fully homoge-
neously quantified problem Qxn−m+1 . . . Qxn Φ(x1, . . . , xn). The CAD hence is of the
variables x1, . . . , xn−j . To accommodate an IQER of level j < k < m, we must now
extend the CAD to include the variables xn−j+1, . . . , xk. But:

• projection on polynomials including these variables is canonical, being much as
it would be in the standard case, and the produced polynomials in x1, . . . , xj can
be fed through the rest of projection incrementally (by caching — Section 5.2.1),

164

• the new variables being such that they can appear at the end of the ordering
means that the lifted CAD tree need only be extended, and not “relifted”. The
existing geometry is all valid, with the admission that the cells need be repurposed
in terms of the incoming Tarski formula of the IQER to evaluate.

The added variables xn−j+1, . . . , xk in the above context are new to that CAD. It
already has an ordering for x1, . . . , xn−j induced by the name of the variable strategy
supplied to QuantifierEliminate. Usage of the “projection” based orderings such as the
“greedy” ordering, ndrr, or sotd are largely nonsensical to sort xn−j+1, . . . , xk, requiring
full projection of all orders in some context (Section 3.8), and both the projection and
ordering created by this are unlikely to be intelligible in terms of the existing projection,
which we desire to extend incrementally. However, any heuristic inducing a comparison
function on variables is amenable to be used to sort the incoming xn−j+1, . . . , xk in
terms of the polynomials ⊂ Z[x1, . . . , xk]. Therefore the poly-algorithm obliges the
supplied variable strategy if it is the Brown heuristic or ECHeuristic, else sorts these
variables via the ECHeuristic on the polynomials for the new IQER.

Therefore, extension of a CAD to one in further quantified variables is entirely
canonical. Inclusion of new unquantified variables would work at the opposite ends
of projection and lifting respectively, and so importantly, would require a “re-lift”
of the CAD, because prepending variables means that the children of the root cell
are no longer intelligible in terms of this ordering. Deduction and collection of new
unquantified variables in an IQER is done at the same time as evaluation of the “poly-
share criteria” for convenience in deciding whether to create a new CAD or not, as
additional free variables precludes the existing CAD to be used. Extension of a CAD
is an exclusive concept to depth-wise traversal, because usage of breadth-wise traversal
includes all possible variables to the CAD as early as possible (and similarly further
free variables are not amenable to inclusion to the CAD via incrementality).

Usage of both depth-wise and breadth-wise traversal of the VTS tree amongst
ineligible IQERs imposes some restriction on variable ordering. Breadth-wise traversal
fixes the ordering of all possible variables to be included in the CAD as soon as possible,
at the cost of a CAD as “large” as possible. Depth-wise traversal aims to create as small
a CAD as possible with the aims of potentially finding a meaningful truth value for
the overarching quantifier Q, with some scope but not complete freedom for ordering
future variables.

In contrast to the discussion on variable orderings for the poly-algorithmic ap-
proaches here, collapsing of the whole VTS tree to one quantified formula for CAD
to solve imposes very little restriction on variable ordering. In particular, if I1 is the
deepest IQER of level i, and I2 is the lowest IQER of level 0 < j < i, then in using this
methodology CAD has no restriction on the ordering of xn−i, . . . , xn−j — it need not
correspond to the ordering of them as used within VTS, as CAD is purely a means
to an ends as of this point, and none of the CAD data is directly used in terms of
correspondence with VTS in terms of e.g. meaningful witnesses.

165

The “Poly-share” Criteria

The “poly-share criteria” refers to the criteria used to decide whether to reuse a CAD
to solve an incoming IQER.

Technically, the most reliable way to examine whether the geometry for the CAD
accommodates the incoming IQER well is to examine the projection bases, however this
has an intrinsically exponential number of polynomials spread throughout all levels of
the structure. Due to the assumption that the polynomials are similar between IQERs,
we instead suggest to take GCDs between the polynomials of the incoming IQER and
those from the last IQER used. As this is the point where we first examine the polyno-
mials of the IQER, we also ensure that no free variables are contained within the IQER

to preclude us from reusing the existing CAD via the discussion in the last paragraph.
The formula from the last IQER is stored at the root cell of the CAD via the repurposing
of Algorithm 52. In decomposing the formula of the last and incoming IQERs to sets,
we can take GCDs and deduce the proportion of polynomials from the incoming IQER

that have a nontrivial GCD with the current formula for the CAD. The decompositions
of both are to one flat set, even if one could decompose each to two including a set
of equational constraints (such as output from Algorithm 21), but such distinctions
are unlikely to be very meaningful. The function decomposeTFAsSet decomposes a
(real) Tarski formula to one flat set of all the polynomials contained within, unlike
getPolySets which identifies and returns a set of ECs. checkPolyIntersection makes
no distinction as to equational constraints from the CAD or the IQER, because of the
assumption that boolean structure between IQERs is likely to be similar. Inspection of
the Tarski formula held by the root cell as opposed to the projection sets also avoids
the difficulty induced by examining ECs in projection that have been modified from
the formula due to usage of Gröbner bases.

The return value of checkPolyIntersection is checked against a threshold value
such that I is believed to be well accommodated by C. This threshold value is de-
fined by POLY SHARE THRESHOLD. This value between 0 and 1 is a macro defined by
QuantifierElimination, and as such is a variable set at “compile time” for the pack-
age. Extremal values of POLY SHARE THRESHOLD, i.e. those very close to 0 are 1 are
ostensibly obviously poor for efficiency, with the former having us repurpose CADs
sharing extremely little geometry with that required to solve the incoming IQER, and
the latter having us completely recompute the held CAD for an IQER that is very
likely to be well accommodated by the CAD. The value of POLY SHARE THRESHOLD in
QuantifierElimination is 1

2 . The case studies on the poly-algorithm in Section 7.3
seem to suggest that when a CAD is reused within the poly-algorithm, it is always
reused, with very few new polynomials needing to be introduced in any projection
bases, let alone at the top level bases. An investigation as to the optimal value POLY -

SHARE THRESHOLD is interesting further work. The aforementioned case studies imply
that values of POLY SHARE THRESHOLD below 0.5 are likely to lead to exactly the same
behaviour, suggesting investigation of higher values. One notes that recreating the
CAD from scratch removing redundancy of geometry is more likely to avoid lifting
failures due to convoluted (i.e. involving highly nested RootOfs) redundant geometry,
at the cost of rebuilding new geometry that may have already existed in the held CAD

166

from scratch. The case studies of Section 7.3 always have that the CAD generated in
poly-algorithmic QE is constantly reused, which implies that a POLY SHARE THRESHOLD

of < 1
2 would change nothing with respect to the examples currently found where the

poly-algorithm is relevant, but a larger value may result in more finer control of re-usage
of the CAD, either to performance’s benefit or detriment.

Open Problem 70. Is there a more optimal value than 1
2 for POLY SHARE THRESHOLD,

or even a better replacement for the “poly-share criteria”?

Algorithm 41 Evaluation of the “Poly-share” Criteria

Input: C previously used CADData, I an ineligible IQER, and VTSVars an Array

of all quantified variables from a last block of quantifiers
Output: A value between 0 and 1, the ratio of similarity of the polynomials from
the IQER to those from C

1: procedure checkPolyIntersection(C, I, VTSVars)
2: F ← decomposeTFAsSet(I 7→ formulaSimplified)
3: G← decomposeTFAsSet(C 7→ RootCell 7→ tarski formula) where

C 7→ RootCell is the root cell for the CAD C
4: if F contains variables not contained in G or VTSVars then
5: return 0 . F contains new unquantified variables — all variables from

VTSVars are guaranteed to be quantified
6: end if
7: c← 0
8: for f in F do
9: for g in G do

10: if deg(gcd(f, g)) > 0 then
11: c++
12: break
13: end if
14: end for
15: end for
16: return c

|F |
17: end procedure

Comparison to Incrementality via Clauses

Despite the particular approach, the work acknowledges that the formula (4.1) is
amenable to usage of “standard” incrementality acting upon the inner clauses due to
the induced distributivity, and VTSToCADWhole (Section 4.3) does not attempt this
approach — it is not incremental in any sense beyond delayed substitution of sample
points into formulae, which is relevant considering the structure of (4.1), but the more
relevant notion of incrementality for CAD is on projection polynomials (Chapter 5).
Most generally, (4.1) should be a disjunction of conjunctions for an existentially quan-
tified problem, or a conjunction of disjunctions for a universally quantified problem.

167

This approach intends to differ to any other less bespoke incremental CAD approach
on clauses in a few ways:

• this framework associates the existing CAD to exactly one IQER at a time, en-
abling a one to one correspondence between a meaningful leaf CADCell and the
root IQER for the last block of quantifiers and hence the production of meaningful
witnesses from usage of both VTS and CAD to achieve QE (Section 4.4.1),

• the levels of IQERs define strategy for selection of “clauses”, where we know
that extension of a CAD to accommodate an IQER of lesser depth is entirely
canonical due to previous paragraphs, and we only need check for the existence
of new unquantified variables, as they do not largely permit CAD incrementality
in terms of the CAD tree, which would need relifting in this case (and as such we
may as well regenerate a fresh CAD). We aim to solve the deepest IQERs first in
order to find a meaningful truth value as early as possible.

• by assuming that nearby IQERs are similar in terms of their polynomials and
boolean structure, we acquire scope to compare “similarity” between IQERs (the
“poly-share criteria”), which becomes part of the strategy for discarding or re-
taining the held CAD to solve the next IQER. The specific methodology for CAD
incrementality to “repurpose” for the IQER is also unique and delineated in detail
in Chapter 5.

While QuantifierElimination uses the developed Lazard projection & lifting
CAD as the incremental CAD to use beneath the poly-algorithm, there is the pos-
sibility of usage of any incremental CAD being available as an option. We note
RegularChains’ CAD has incremental technology. However, the incrementality is at
the least currently not exported to the extent it is controllable by a user in the sense
of evolutionary methods (Definition 71). In fact, the poly-algorithm currently assumes
“repurposing” of CADs, parallel to incrementality. Retention and control of a CAD
data structure is the minimum required to imitate the poly-algorithmic methodology
with respect to CAD. Beyond that, it is unknown to the author to what extent the
bespoke RegularChains methodology could accommodate new quantified or unquan-
tified variables appearing from successive IQERs to solve (Section 4.1). The discussion
of Section 4.1 does however remain true for any projection & lifting CAD.

Code Fragment 42 actually features similar “lifting failure avoidance” as that of
CAD (Section 3.7.2). This lifting failure avoidance can be viewed as more of a “global”
lifting failure avoidance, where the CAD lifting failure avoidance is “local”. The avoid-
ance means that we can ignore failure to evaluate one IQER via CAD if we receive a
meaningful truth value from another, similar to the way CAD attempts to ignore lifting
failures by propagation of truth values from other cells with meaningful truth values.
Propagation of truth values in VTS is only ever trivial, considering we are always ho-
mogeneously within one block, so “propagation of a meaningful truth value” would
only ever propagate that meaningful truth value directly to the root IQER immediately.
In any case, failure to evaluate a CAD on an IQER still comes at the (time) expense of
trying to do so, however we can still try to maximise success of QE as is the usual aim.

168

Fragment 42 Poly-algorithmic QE on ineligible IQERs

1: if i = −1 then . iqers is only of ineligible IQERs
2: if ‘HybridMode’ = ‘whole’ then
3: return VTSToCADWhole(Ψ) where Ψ is the QE problem defined by the

ineligible IQERs remaining in iqers, the leaf IQERs in leaves, and the
canonical boolean operator for Q, B — i.e. (4.1)

4: end if
5: i← VTSToCADStrategy(iqers, ‘HybridMode’)
6: problemCADs← an empty container
7: repeat
8: iqer← pop(iqers, i)
9: try

10: if C is empty CADData or checkPolyIntersection(C, iqer, vars) <
POLY SHARE THRESHOLD then

11: Clear the caches of all polynomial operations (i.e. discriminants and
resultants) . As per discussion on incremental projection,
Section 5.2.1

12: C ← QEPCADL(iqer)
13: else
14: modifyCADResult(C, iqer, Q, vars)
15: end if . In either case where the CAD succeeds, iqer receives a

cad formula
16: catch CAD EXCEPTION STRINGS:
17: Add [iqer, E] to problemCADs, where E is the exception caught
18: end try
19: if iqer 7→ cad formula is a meaningful truth value for Q then
20: Remove all IQERs from iqers and all lists from problemCADs
21: end if
22: until (i← VTSToCADStrategy(iqers, ‘HybridMode’)) = 0
23: if |problemCADs| > 0 then
24: Produce an ERROR from any exception stored in problemCADs,

preferably any one about curtains
25: end if
26: end if
27: return QE output dependent with number of outputs requested

169

Programmatically, problemCADs is the “global” equivalent of the problemCells
container used in “local” Partial CAD. IQERs that fail evaluation by CAD are stored
with their corresponding exception string, and we can reraise this error later if we fail
to find a meaningful truth value elsewhere. Nothing bespoke is required to deduce
which IQERs to remove from the tree in the same sense as Algorithm 15, because of the
homogeneity of quantifiers & their corresponding meaningful truth values as above.

Algorithm 43 Poly-algorithmic Quantifier Elimination via VTS into CAD on a ho-
mogeneously quantified formula

Input: Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), a prenex quantified Tarski formula
Output: QE output depending on output arguments requested — up to and
including the quantifier free equivalent Ψ to
Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), the witnesses for equivalence of Ψ to
Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn), and a data structure QEData for the
quantifier elimination allowing for further evolutionary operations including
the CAD via CADData, if a CAD was produced (and hence retained) during
Code Fragment 42

1: procedure QuantifierEliminate(Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn))
2: rootIQER← IQER(Φ)
3: iqers← a container containing rootIQER
4: leaves← an empty container
5: VTSVariableStrategy(rootIQER, vars) . First pass of variable strategy in

terms of the root IQER to maximise chance IQER is viewed as non
ineligible (Section 2.3.2)

6: Code Fragment 4 to propagate VTS on non ineligible IQERs
7: Code Fragment 42 on the ineligible IQERs iqers, if any exist
8: return QE output corresponding to the number of output arguments

requested
9: end procedure

Proof of usage of modifyCADResult to successfully repurpose the CAD C to solve
I is deferred to Proposition 81 in Section 5.2, such that the intermediate algorithms
necessary for CAD incrementality are explained first.

Boolean Structure of IQERs, and Equational Constraints

The original rationale for investigation of a poly-algorithm in this way is the preser-
vation of boolean structure of the formula for QE under virtual substitutions on a
formula. In the context of this work, the hypothesis is that the IQERs of a VTS tree
“look” similar, especially those closer to each other in the tree. This is both with
respect to the polynomials within their relations, and their boolean structure in terms
of the relational operators and overall boolean skeleton structure (in terms of And and
Or). One notes that:

• Usage of pure linear VTS without infinitesimals always preserves relational oper-
ators. Substitution of a test point T with polynomial p, degx(p) into a relation

170

Algorithm 44 Modification of a CAD to accommodate another IQER

Input: C CADData for a CAD to repurpose, I an IQER to solve using modification
of C, Q the quantifier for the overarching block of quantifiers, vars an Array

of all quantified variables [xn−m+1, . . . , xn] for the system, a myriad of CAD
keyword options such as “UseGroebner”, “UseEquations”, “PropagateECs”
related to projection, and OpenCAD, a boolean flag via keyword option
representing if the user requests only sectors to be lifted

Output: No meaningful return, but I gets a quantifier free equivalent via
assignment of its cad formula, and C modified inplace

1: procedure modifyCADResult(C, iqer, Q, vars, UseGroebner, UseEquations,
PropagateECs, OpenCAD)

2: Let Ψ = iqer 7→ formulaSimplified
3: (A, E) ← getPolySets(Ψ)
4: Let C 7→ Vars be the variables associated to C, with C 7→ numVars and

C 7→ numQuants the total number of variables and quantified variables
respectively for C

5: d← max(n− I 7→ level− C 7→ numQuants, 0) . Difference in number of
quantifiers

6: C 7→ numVars += d
7: C 7→ numQuants += d
8: Sort vars[−I 7→ level− d . . . − I 7→ level− 1] ([xn−I 7→level−d+1, . . . , xn−I 7→level])

by an appropriate heuristic such as the Brown heuristic or ECHeuristic
using A and E, and extend C 7→ Vars with the result

9: Let C 7→ RootCell be the root CADCell associated to the CADData, and
C 7→ Bases be the projection object for the CAD

10: (incBases, newPivots) ← projectionIncremental(C 7→ Bases, A, E,
C 7→ Vars, C 7→ numVars, d, 0, UseGroebner, PropagateECs,
UseEquations)

11: cad← an empty container
12: leaves← an empty container
13: problemCells← as an empty container
14: localopen← OpenCAD and hasAllStrongRelations(Ψ)
15: if not localopen and Open CAD used before for data then
16: ERROR — the lifting may fail to deduce QE due to lack of sections

(proof of Proposition 83)
17: end if
18: traverseCADTreeModify(C 7→ RootCell, cad, leaves, problemCells, [Q, . . . , Q],

C 7→ Vars, C 7→ numQuants, C 7→ numVars, incBases, Ψ, localopen,
newPivots, C 7→ Bases)

19: Code Fragment 28 (regulation Partial CAD lifting), applied in an evolutionary
context to relevant properties of data

20: Code Fragment 35 (lifting failure recovery by curtain decomposition), applied
in an evolutionary context to relevant properties of data

171

Algorithm 44 Modification of a CAD to accommodate another IQER, Part 2

21: for leaf in data 7→ Leaves do
22: leaf 7→ iqer pointer← I . For potential witness production later (via Code

Fragment 45)
23: end for
24: I 7→ cad formula← the quantifier free equivalent of I, deduced from the leaves

of the CAD tree (leaves)
25: return
26: end procedure

f ρ 0 reduces to returning premx(p, f) ρ 0, hence the relational operator is re-
tained [43, Algorithms vs-at, vs-prd-at, pseudo-sgn-rem]. The same is not true
when infinitesimals are present in the test point, which produce different formu-
lae with particular structure [43, Algorithms expand-eps-at, vs-inf-at]. Via the
recursion of virtual substitution in Algorithm vs-at to act merely upon atoms, we
also preserve boolean structure of the formula before substitution (sans collapsing
of formulae due to simplification).

• Usage of structural test points of non-linear degree without infinitesimals can
also preserve relational operators. If T is a test point with polynomial p of
degree at least 2 in the variable x, then to substitute T into f ρ 0, we compute
h := premx(p, f), which is of degree at most 1 (vs-prd-at). If degx(h) = 0, we
return h ρ 0, but otherwise we must use the relevant formula scheme from [43,
Appendix A] to describe substitution of T into h ρ 0. One notes that amongst
all the formula schemes for describing substitution of a quadratic root into a
linear polynomial (Appendix A.2), the yielded formula features a relation with
an operator corresponding to the operator of f ρ 0, i.e. ρ. Importantly, this is
always true when the relation was f = 0.

• For the hypothesis that the polynomials between IQERs can be similar, consider
substitution of structural test points owing to the same polynomial, but with
respect to different real types and/or real root numbers. Again looking at Ap-
pendix A.2. of [43], substitution of similar test points lead to very similar look-
ing formulae via the schemes given. Often the formulae from the schemes are
the same sans different relational operators leading to different sign conditions
on the polynomials, such as 2aa∗b∗ − a∗2b ≥ 0 ∧ ab∗2 + a∗2c − a∗bb∗ = 0 vs.
2aa∗b∗ − a∗2b ≤ 0 ∧ ab∗2 + a∗2c− a∗bb∗ = 0 that are formula schemes for virtual
substitution of the two different real roots of a quadratic of relevant real type into
a linear polynomial (a, b, a∗, b∗ are various coefficients, assumed to be in other pa-
rameters), which differ only in terms of the relational operator ≥ in the former
replaced by ≤ in the latter. In these cases, with respect to just these formulae,
CAD only needs to repurpose the lifted tree to reevaluate formulae, because the
required polynomials to deduce the sign invariance already exist in projection.
This means IQERs close together in the tree owing to structural test points with
the same polynomial should have similar boolean structure and/or polynomials.

172

Importantly, the first two points donate interest in equational constraints on IQERs,
which can be used in CAD on any one IQER in some context in the poly-algorithm. In
particular, if the homogeneously existentially quantified formula for QE has equational
constraints via being an existentially quantified conjunction, we may receive equational
constraints in the ineligible IQERs to process via CAD in the poly-algorithm, and our
interest in equational constraints in restricted projection in CAD comes to fruition.
There is one further context where we may receive equational constraints at an IQER.

One notes the usage of “guards” in VTS. These formulae produced as a function of
a structural test point are conjuncted with the result of virtual substitution of such a
test point into a formula in the existential case. These guards are often sign conditions
on coefficients of the polynomial from a test point, or the polynomial’s discriminant,
to assert the real type of such a polynomial. However, one notes that guards can yield
equational constraints, i.e. equations manifesting at the top level of a conjunction, if
one is to consider the a reductum of a polynomial. For example, to consider linear
test points arising from a polynomial ax2 + bx + c, one must assert that a = 0, hence
this atom appears in the conjunction arising from the virtual substitution of such a
linear test point. This gives more rationale to usage of CAD on such IQERs, due to the
interest in equational constraints to restrict projection operations.

Reuse of Equational Constraints

Generally, an existentially quantified formula has the outer operator
∧

, and a uni-
versally quantified formula has the outer operator

∨
. However, propagation of VTS

creates formulae with a canonical boolean operator linked with the eliminated quan-
tifier. In the purely existential case, VTS has formed a disjunction of conjunctions
(or relations) where VTS preserves boolean structure of the input formula Φ. Guards
must be conjuncted with the results of virtual substitution, so we know that the IQERs
are still conjunctions (or relations after simplification). By allowing CAD to act upon
individual IQERs, CAD is once again able to identify equational constraints of the form
1 from the examples of ECs in Section 3.7 in each IQER (often the same equational con-
straint(s) each time), as opposed to receiving a disjunction which is unlikely to yield
equational constraints.

When discussing ECs, curtains are always a point of contention. One notes that in
building and repurposing a CAD in the sense of the poly-algorithm, any one curtain
need only be identified once by Code Fragment 27. Further, any curtain can only be
associated with one pivot set, and we go to some length to ensure pivot sets are static
and reused (Algorithm 50). New pivots can of course be introduced in solving new
IQERs. If a curtain undergoes further decomposition after being identified as a point
curtain or via Algorithm 34, its finer decomposition remains, and Algorithm 52 makes
sure to only identify existing cells in the tree as curtains when a new pivot set of the
appropriate level is introduced. Hence, cells can only ever be identified as a curtain at
most once. In particular, any level n− 1 curtain only need enter Algorithm 34 at most
once per CAD, although regrettably it is conceivable that we traverse Algorithm 34 per
each repurposing for newly produced level n − 1 curtain cells each time. This would
involve full projection of all orders each time, but such a case is likely very rare. Section

173

7.4.4 includes examples of curtain decomposition in the context of QE by Algorithm 32,
in particular with respect to the poly-algorithm. Each time the decomposition occurs
only in the first usage of CAD via QEPCADL.

The case studies on usage of the poly-algorithm (Section 7.3) seem to corroborate
that the large benefit of repurposing of a CAD tree for various IQERs is reusage of
equational constraints in the existential case. Of course, the presence of these ECs is
likely as a result of the previous paragraph.

Satisfiability of Formulae & Poly-algorithmic Witnesses for QE

The intention behind selecting the most deep ineligible IQERs for CAD first is to receive
a meaningful truth value on a CAD using the least variables possible, due to CAD’s
dependence on the number of variables. The number of variables in that CAD is
dependent on the depth of the IQER, which reflects how many quantified variables
remain in that IQER, although its depth says nothing about the number of free variables
contained in it. In any case, minimizing the number of variables in the CAD before
receiving a meaningful truth value to terminate QE is a win over any other approach
which does not take the number of variables into account.

For fully existentially or universally quantified problems, the poly-algorithm as-
sociating a CAD to exactly one IQER at a time means that there is a one to one
correspondence between a meaningful leaf cell and an ineligible IQER. This enables the
production of meaningful witnesses after usage of the poly-algorithm, because CAD
can provide the back substitutions to enable the “triangularity” of Theorem 23 for the
ineligible IQER that CAD found a meaningful leaf cell below. Because we only ever
retain one CAD at once in the poly-algorithm, and this CAD corresponds to at most
one IQER at any one time, we know that upon termination of QE implied by production
of a meaningful truth value in CAD means that this CAD corresponds to the correct
IQER to process for witnesses. This is discussed and justified in Section 4.4.1.

“Global” Avoidance of Lifting Failures in CAD

As discussed following Code Fragment 42, the poly-algorithm attempts to avoid lifting
failures from the CAD used for solution of successive ineligible IQERs. This means the
CAD features its own local avoidance and recovery (where the recovery is in terms of
curtains), but the poly-algorithm features its own global avoidance. This is because
if we find a meaningful truth value from any IQER, we are sure to meet termination
criteria, and are able to “ignore” failures from other IQERs. While most lifting failures
are judged to be “temporary” (Section 3.7.2) in terms of the early development of
QuantifierElimination, where further development of low level operations will make
them less relevant, or even irrelevant, low level curtains in usage of multiple equational
constraints are a more permanent type of lifting failure until further research provides
“recovery” in this aspect within CAD, along the lines of [56]. Therefore, as per the
“local” avoidance and recovery for CAD accommodates avoidance of at the very least
low level curtains (and hopefully in the future, at most), the global avoidance follows
the same philosophy. Various case studies of Section 7, and more broadly the QE

174

benchmarks in general seem to suggest that despite usage of multiple equational con-
straints beneath CAD within the poly-algorithm, low level curtains never cause non
trivial usage of poly-algorithmic QE to fail by error, at least to an observable extent.
We note the discussion of Section 4.1 with respect to curtain decomposition, and the
associated case studies. Therefore ‘UseEquations’ = ‘multiple’ has remained the
default option used beneath poly-algorithmic QE, particularly in the benchmarking of
this work. One notes that the incrementality of CAD used within the poly-algorithm
pays close attention to whether cells are curtains after incremental operations (partic-
ularly evident in the proofs of Algorithm 52 with Algorithm 51).

If we fail to find a meaningful truth value with failed IQERs, we prefer to reraise
an exception about a Lazard curtain, because it is a “mathematical” error. In such a
case, one can restart the computation with ‘UseEquations’ = ‘single’, but again
the case studies suggest this is likely rare, or at least such a case is not known.

The flexibility of the poly-algorithm could allow for restarting or correcting individ-
ual CADs on particular IQERs where low level curtains prevented the CAD from deduc-
ing a quantifier free equivalent, where the CAD would be restarted with ‘UseEquations’

= ‘single’, but such a feature is not implemented thus far. More likely, this feature
would be deferred in favour of further research providing methodology to complete
usage of multiple ECs for the Lazard projection in the manner of [56].

Section 7.3 delineates some case studies of usage of the poly-algorithm on various
examples from the example sets of this project, in contrast to usage of “standard” CAD
on the formulae formed by intermediate usage of VTS.

4.2 Strategy

VTSToCADStrategy controls strategy for selection of the next IQER to use CAD on.
It uses the keyword option within top level QE, ‘HybridMode’, as a metric for this
selection. In the same way as ‘mode’ controls standard VTS IQER selection strategy
on non ineligible IQERs, ‘HybridMode’ takes the symbol ‘breadth’ or ‘depth’ to
control breadth or depth-wise traversal of the VTS tree within the poly-algorithmic
code fragment, but the value of ‘HybridMode’ need not equal ‘mode’. This actually
enables a greedy IQER selection strategy in terms of the poly-algorithmic code fragment,
where one can select IQERs of the greatest depth in order to receive meaningful truth
values as fast as possible for fully quantified formulae. In particular, it is greedy in the
sense that it does not attempt to use checkPolyIntersection (Algorithm 41). One notes
that that algorithm takes several (potentially multivariate) GCDs amongst polynomials
already inherited from (potential) use of virtual substitution (both in the CAD and from
the incoming IQER), and so calling it on every IQER in the container of (a potentially
exponential number of) ineligible IQERs would be very costly as a strategy. Therefore
QuantifierElimination offers greedy strategies either to look for meaningful truth
values as fast as possible via ‘depth’-wise traversal, or to accommodate as much of
the geometry in as many variables as possible while still reusing equational constraints
via ‘breadth’-wise traversal. The benchmarking of Section 7.4.4 investigates usage of
breadth-wise vs. depth-wise traversal of the VTS tree in the sense of the poly-algorithm.

The only scope for variable strategy is usage of heuristics between the Brown and

175

F
ig

u
re

4-
1:

F
ig

u
re

d
em

o
n

st
ra

ti
n

g
th

e
tr

ee
s

in
vo

lv
ed

in
p

ol
y
-a

lg
or

it
h

m
ic

Q
E

b
et

w
ee

n
V

T
S

an
d

C
A

D
.
A

n
y
th

in
g

in
re

d
re

p
re

se
n
ts

th
e

ex
te

n
si

o
n

of
th

e
C

A
D

v
ia

th
e

re
p

u
rp

os
in

g
fr

om
th

e
I
Q
E
R
I 1

to
th

e
I
Q
E
R
I 2

,
w

h
ic

h
ar

e
b

ot
h

as
se

rt
ed

to
b

e
in

el
ig

ib
le

.
In

p
ar

ti
cu

la
r,

th
e

d
ir

ec
ti

o
n

s
o
f

V
T

S
tr

ee
gr

ow
th

co
in

ci
d

es
w

it
h

th
e

d
ir

ec
ti

on
of

p
ro

je
ct

io
n

,
w

h
ic

h
op

p
os

es
th

e
d

ir
ec

ti
on

of
C

A
D

li
ft

in
g.

O
n

e
p

re
p

en
d

s
to

th
e

p
ro

je
ct

io
n

le
ve

ls
in

C
A

D
ex

te
n

si
on

,
an

d
in

p
ri

n
ci

p
le

ap
p

en
d

s
to

th
e

C
A

D
li

ft
in

g
tr

ee
af

te
r

re
p

u
rp

os
in

g
it

v
ia

A
lg

or
it

h
m

5
2.

E
ve

ry
th

in
g

in
re

d
is

in
st

ig
at

ed
b
y

A
lg

or
it

h
m

44
.

T
h

e
I
Q
E
R

co
rr

es
p

on
d

in
g

to
Φ

[x
n
//
t n
,1

][
x
n
−
1
//
t n
−
1
,1

]
b

ei
n

g
of

th
e

sa
m

e
le

ve
l

a
s
I 1

w
o
u

ld
re

q
u

ir
e

n
o

su
ch

“e
x
te

n
si

on
”.

176

ECHeuristic when prepending new variables for the CAD when traversing the tree
depth-wise (Section 3.8).

4.3 Standard Usage of QE by CAD

In contrast to usage of the poly-algorithm, the alternative is to pass the state of VTS
on termination (4.1) as a formula to CAD in a “standard” way. This option is available
by passing the symbol ‘whole’ to the keyword option ‘HybridMode’ for top level QE
functions in QuantifierElimination. Therefore, doing so discards usage of the poly-
algorithm. Programmatically Algorithm 40 is used in this case on the “whole” problem
defined by the VTS tree. Usage of this methodology is benchmarked against the poly-
algorithm in Section 7.4.4. One notes that one advantage of this non incremental
approach is that CAD has all information available at the first point of asking — there
are no restrictions in terms of variable ordering in initial CAD calls that may not cater
well to later incremental calls. Furthermore, variable strategy has no requirement to
have any relation to that from VTS at all, because usage of CAD in this case is purely
a “means to an end” to provide a quantifier free equivalent. While there is no notion
of typical incrementality in terms of projection polynomials, delayed substitution of
sample points via inertisation (Section 3.4.2) helps the approach to lessen the cost of
substitution of sample points into formulae in evaluation of cells, noting the structure
of (4.1).

Usage of Other Leaves of the VTS Tree

From (4.1), we have that I ′1, . . . , I
′
s are leaves of the VTS tree. Assuming that they are

not meaningful leaves (due to abandonment of early termination criteria by specification
of another keyword option), then I ′1, . . . , I

′
s are IQERs equivalent to quantifier free for-

mulae in free variables x1, . . . , xn−m. As a result, the distribution of Qxn−m+1, . . . , Qxt
through B is only non-trivial when acting on Bs

j=1Ij , which are implicitly quantified
due to not being leaf IQERs. Due to the weak simplification deployed on formulae in
VTS, while I ′1, . . . , I

′
s are leaves, they could hold formulae that are in practice equiv-

alent to true or false after strong simplification, but we would not know. In fact,
they could then be meaningful leaves despite early termination criteria. The inclusion
of Bs

j=1I
′
j within the formula to pass to CAD in a “standard” sense is then a mat-

ter of whether these operands are to be simplified or not, as CAD is in some sense
its own simplifier when producing Extended Tarski formulae to describe QE output.
QuantifierElimination chooses to include Bs

j=1I
′
j in the formula to pass to CAD

when ‘HybridMode’ = ‘whole’, as opposed to amalgamating their formulae with the
output extended Tarski formula from CAD, to create a canonical intelligible formula
as would typically be produced from pure CAD.

The I ′j are not used in the genuine incremental poly-algorithm, because while lack
of simplification may obfuscate the fact that they could in reality be meaningful leaves,
this case is assumed to be unlikely, and the presence of quantifiers on other ineligible
IQERs that certainly require attention means that creating a CAD only in free variables

177

to inspect Bs
j=1I

′
j , only to later certainly extend it to one including quantified variables

would be a strange choice.

Simplification of the Equivalent of the VTS Tree

One notes that strong simplification of (4.1) (and, more generally the intermediate
equivalents of the VTS tree via (2.1) or (2.3)) may allow us to deduce a meaningful truth
value for the current block of quantifiers, or otherwise a more candid representation of
the quantifier free equivalent of QE. QuantifierElimination of course offers no such
strong simplification. If it were to, one must consider that such strong simplification on
the equivalent of the VTS tree, as opposed to individual formulae for IQERs somewhat
interferes with various processes relying entirely on the tree based notions of VTS. In
particular processing of VTS witnesses relies on the leaf IQER to act upon to be a
meaningful leaf (Algorithm 3). Hence, while the state of VTS may imply a quantifier
free equivalent of x < 0 ∨ x ≥ 0 ≡ true, where each atom owes to a different IQER,
we will struggle to process any IQER to produce witnesses in this case, because the
meaningful truth value for QE does not owe to a specific IQER. Strong simplification to
a meaningful truth value may have us avoiding usage of CAD, which is good news, but
if it simplifies to any other non trivial formula then we struggle to see how to use this
information during or after usage of CAD in the poly-algorithm, because again we act
upon individual IQERs at any one time. There are no such issues if strong simplification
acts only on the formulae held by individual IQERs. For fully quantified input formulae
for QE, strong simplification on individual branch IQERs is a matter of efficiency of
solution of such IQERs via any methodology, rather than a matter of simplification of
the end quantifier free equivalent for output, which can only be true or false. For input
formulae with free variables, simplification of IQERs still moves the output closer to
candid.

In contexts where usage of the VTS tree would certainly not be required further,
strong simplification could easily be justified to deduce more candid quantifier free
output from VTS. If it were deployed after every iteration of propagation of VTS (the
loop of Code Fragment 4) to try to deduce early termination via meaningful truth
values, one must be cognizant that the expense of simplification in this way must be
balanced against the benefits (Section 2.4.2). In this case the benefits are that we may
be able to terminate VTS early, but we cannot certainly expect as such.

4.4 Rich QE Output

Rich QE output generally falls to providing incrementality for QE, and witnesses for
homogeneously quantified formulae. The former can be provided for poly-algorithmic
QE via Section 5.1, and more broadly Chapter 5. Additionally, the latter can be
provided via the canonical methodology of the poly-algorithm.

178

4.4.1 Production of Meaningful Witnesses for QE via VTS and CAD

Usage of the poly-algorithm for QE means that one can view a one to one correspon-
dence between a CAD tree and exactly one IQER. Processing of VTS prewitnesses into
witnesses involving purely real numbers requires full back substitution (Algorithm 3),
and hence beginning with a meaningful leaf. Here, any ineligible IQER L that attributed
usage of CAD is not a meaningful leaf, but the witnesses produced from CAD can pro-
vide the missing initial back substitutions when a meaningful leaf CADCell is found
for the QE problem defined by L to emulate L being a meaningful leaf (similarly to
evaluating superfluous variables at 0 before back substitution in Algorithm 3).

Fragment 45 Modifications to Algorithm 3 such that it can use witnesses from CAD
in back substitution

3: if An Array of CAD witnesses, W , for QE on L was supplied then
4: witnesses←W
5: for i from |W |+ 1 to n do
6: Append xn−i+1 = 0 to witnesses
7: end for
8: else
9: Set witnesses to be an empty Array

10: for i from L 7→ level + 1 to n do
11: Append xn−i+1 = 0 to witnesses
12: end for
13: end if

Code Fragment 45 provides modification of Algorithm 3 by replacing lines 2 through
5, when Algorithm 3 also accepts an argument of W , where W are witnesses from CAD
for an ineligible IQER L. L would no longer naturally be a meaningful leaf of the VTS
tree, but manages to emulate one via this concatenation. We know that L is a meaning-
ful leaf for Qxn−m+1, . . . , Qxn−L7→level Φ′(x1, . . . , xn−L7→level), where Φ′ = Φ evaluated
at W , via validity of CAD witnesses for the problem Qxn−m+1, . . . , Qxn−L7→level L
in the CAD solving I. Then, Algorithm 3 proceeds with producing witnesses for
Qxn−m+1, . . . , Qxn−L7→level L, and via the concatenation, we receive witnesses for the
QE problem Qxn−m+1, . . . , Qxn Φ.

The loop on line 5 of Code Fragment 45 exists for a similar reason to that of the
loop on line 3 of Algorithm 3 — it ensures Algorithm 3 has the required “triangularity”
property by ridding all expressions of free variables that were found to actually be
irrelevant in light of a meaningful truth value from the CAD solving L.

As usual, it only requires one meaningful leaf CADCell to imply termination of QE
in the conditions required for the poly-algorithm (homogeneity of quantifiers), so only
one traversal from the ineligible IQER to the root IQER in Algorithm 3 concatenating
with witnesses from the leaf CADCell is ever required to produce a set of witnesses for
poly-algorithmic QE. Section 3.10 clarifies that CAD witnesses are trivial to produce,
being the full sample point for a meaningful leaf CADCell (generated in O(n)), so the
complexity of the witness generation process for the algorithm is dominated by that of
Algorithm 3.

179

>
e
x

p
r

:=
e

x
is

t
s

(
a

,
Q

E
E

x
a
m

p
le

s
[

‘
C

o
ll

is
io

n
‘

]
)

;

ex
p
r

:=
(∃
a
)

(∃
y
)

(∃
x

)
(∃
t)
((x−

t)
2

4
+

(y
−

1
0
)2
−

1
=

0) ∧(
−
a
t+

x
)2

4
+

(−
a
t

+
y
)2
−

1
=

0
∧

0
<
t
∧

0
<
a

>
(

e
,

q
)

:=
Q

u
a

n
t
if

ie
r
E

li
m

in
a

t
e

(
e
x

p
r

,
’P

r
o

c
e

s
s
W

it
n

e
s
s
e

s
’

=
fa

ls
e

)
:

>
a

li
a

s
(

R
=

R
o

o
tO

f(
5
∗

Z
ˆ

2
−

1
2
∗

Z
+

6
,

7
9

9
5

0
3

8
3

3
5

6
8

8
3

7
/

1
1

2
5

8
9

9
9

0
6

8
4

2
6

2
4

..
3

1
9

8
0

1
5

3
3

4
2

7
5

3
7

5
/

4
5

0
3

5
9

9
6

2
7

3
7

0
4

9
6

)
)

:

>
e

;

[[
tr

u
e
,a

=
R
,x

=
7
2 5
−

4
R
,y

=
4
9 5
,t

=
2
x
a
+
8
a
y
−
4
√
−
a
2
(x

2
−
2
x
y
+
y
2
−
5
)

1
0
a
2

]]

>
(

e
,

q
)

:=
Q

u
a

n
t
if

ie
r
E

li
m

in
a

t
e

(
e
x

p
r

,
’P

r
o

c
e

s
s
W

it
n

e
s
s
e

s
’

=
t
r
u

e
)

:

>
e

;

[[
tr

u
e
,a

=
R
,x

=
7
2 5
−

4
R
,y

=
4
9 5
,t

=
1

1
0
R

2

(2
R
(72 5
−

4
R
) +

3
9
2
R

5
−

8
√
−
1
0
0
R

4
+
2
3
0
R

3
−
1
0
1
R

2

5

)]]

>
e

v
a

la
(

N
o
rm

a
l(

e
v

a
l
(

G
e
tU

n
q

u
a

n
ti

fi
e
d

F
o

rm
u

la
(

e
x

p
r

)
,

e
[
]
[

2
..

−
1

]
)

)
)

;

0
=

0
∧

0
=

0
∧

0
<

9
6 5
−

8
R

oo
tO

f
(5

Z
2
−

1
2

Z
+

6
,i

n
d
ex

=
1) ∧

0
<
R

>
m

ap
(

is
,

%
)

;

tr
u

e
∧

tr
u

e
∧

tr
u

e
∧

tr
u

e

F
ig

u
re

4
-2

:
E

x
a
m

p
le

o
f

re
su

lt
s

of
co

n
ca

te
n

at
io

n
of

C
A

D
w

it
n

es
se

s
w

it
h

th
os

e
fo

r
an

I
Q
E
R
,

w
h

er
e

th
e

C
A

D
w

as
u

se
d

to
sh

ow
th

at
I
Q
E
R

w
a
s

eq
u

iv
a
le

n
t

to
tr

u
e.

T
h

e
ex

am
p

le
‘C

ol
li

si
on

‘
is

ad
d

it
io

n
al

ly
ex

is
te

n
ti

al
ly

q
u

an
ti

fi
ed

b
y
a

in
or

d
er

to
fo

rm
a

fu
ll

y
q
u

a
n
ti

fi
ed

fo
rm

u
la

.
P

re
se

n
ce

of
√
·i

n
th

e
w

it
n

es
s

fo
r
t

im
p

li
es

th
at

it
ca

m
e

p
u

re
ly

fr
om

V
T

S
,

w
h

il
e

p
re

se
n

ce
of

R
o
ot

O
fs

in
th

os
e

fo
r
a

a
n

d
x

im
p

ly
th

ey
ca

m
e

fr
o
m

u
sa

ge
of

C
A

D
.

L
es

s
ob

v
io

u
sl

y,
th

e
w

it
n

es
s

fo
r
a

is
al

so
fr

om
C

A
D

.
W

h
il

e
n

o
in

fi
n

it
es

im
al

s
n

ee
d

to
b

e
p

ro
ce

ss
ed

on
th

e
p

ar
t

o
f

V
T

S
,

th
e

b
ac

k
su

b
st

it
u

ti
on

of
w

it
n

es
se

s
st

il
l

p
ro

v
id

es
a

va
li

d
li

st
of

su
ch

.
A

s
is

u
su

al
ly

th
e

ca
se

w
h

en
R

o
ot

O
fs

a
re

p
re

se
n
t,

u
sa

ge
of

e
v
a
l
a
(
N
o
r
m
a
l
(
..
.
)
)

is
n

ec
es

sa
ry

in
co

n
ju

n
ct

io
n

w
it

h
i
s

to
fu

ll
y

ev
al

u
at

e
th

e
ex

p
re

ss
io

n
a
t

th
e

w
it

n
es

se
s.

T
h

e
ke

y
w

o
rd

op
ti

on
‘
P
r
o
c
e
s
s
W
i
t
n
e
s
s
e
s
’

ta
k
in

g
a

b
o
ol

ea
n

va
lu

e
co

n
tr

ol
s

p
ro

ce
ss

in
g

of
p

re
w

it
n

es
se

s
in

to
w

it
n

es
se

s
b
y

A
lg

or
it

h
m

3
a
t

a
ll

.

180

QuantifierElimination only ever retains the correspondence between the CAD
retained in the poly-algorithm with the last IQER used in the poly-algorithm, and know-
ing that termination criteria of QE means that the meaningful leaf cell corresponds to
the relevant IQER, because the CAD corresponds to the last used IQER, the concate-
nation implied by Code Fragment 45 correctly produces witnesses for the entire QE
problem Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn).

In contrast, in not using the poly-algorithm (i.e. usage of the “whole” methodology
for CAD by passing ‘HybridMode’ = ‘whole’), we cannot guarantee a one to one
correspondence between the produced CADCells and any one IQER, and so one cannot
find the correct witnesses to provide to the methodology of Algorithm 3 to begin with
to guarantee correct back substitution.

181

Chapter 5

Evolutionary Techniques

Definition 71 (Evolutionary, Incremental, Decremental). An Evolutionary Al-
gorithm refers to an incremental or decremental algorithm, as is defined below.

An Incremental QE algorithm is one that takes data generated alongside a solved QE
problem, and produces the quantifier free output (and perhaps the modified data struc-
tures) for the previous input but with additional subformulae added within the original
input formula. Such recomputation should modify existing data structures from the past
computation as much as possible, hence enabling extra performance from the computa-
tion in comparison with computation of the answer from scratch.

A Decremental QE algorithm is as above, but with deletion of subformulae from the
past QE input problem.

Note that “evolutionary”, as is defined above, is what would encompass “incre-
mental” in most, if not all QE literature. Here, we make these three terms distinct
considering “increment” has connotations of addition, and “decrement” has connota-
tions of subtraction, and both are supported with bespoke methods here. As a spe-
cific example of comparison of terminology, “forward incremental” from [45] is roughly
equivalent to “incremental” here, while “backtracking” is similarly roughly equivalent
to “decremental”. That work relates entirely to SMT, giving direct impetus to the
term “backtracking”.

Most importantly for the purposes of this work, incremental CAD completely en-
ables the main idea behind the QE poly-algorithm discussed in Section 4. The notion of
evolutionary methods are especially popular for algorithms that incur significant cost,
especially when modifications to an input can appear relatively minor. Incrementality
is especially useful in the context of algorithms with early termination criteria, such
as deducing QE on an early clause (as is informally the intention of the methodology
of SMT). Evolutionary methods accommodate replacement of a subformula from an
input by another via deletion of the original subformula, followed immediately by an
insertion. The sentiment of evolutionary methods has us attempting to avoid the more
costly operations in both VTS and CAD alike, such as:

• factorisation of polynomials within relations to deduce if an IQER is ineligible, or

182

for structural test point generation (at-cs-fac),

• virtual substitution of structural test points into formulae in general, which in
general reduces to pseudoremainders (vs-prd-at),

• the polynomial operations associated with projection (projectAllOrders), and the
associated generation of bases which involves factoring,

• substitution of real algebraic numbers into constraints in CAD (evaluateTFAr-
rayAtSP),

• and real root isolation in order to lift new cells (CCHILD).

The main aspect of incrementality in CAD is addition of new projection polyno-
mials owing to new constraints, and the associated new lifting due to new roots of
associated new lifting polynomials at any one cell. The main aspect of incrementality
in VTS is generation and usage of new structural test points owing to new constraints.
Incrementality in CAD should largely revolve around addition of projection polynomi-
als and any associated lifting as a result. Incrementality in VTS should revolve around
addition of constraints, and any associated structural test points.

This section hopes to provide new methods and explanation behind evolutionary
QE, including for the poly-algorithmic system. Evolutionary QE may be desirable in
the context of SMT, where SMT iteratively adds new constraints for the theory solver
(in this case, a QE implementation) to solve. This corresponds to incrementality,
but furthermore decrementality enables “backtracking” as is commonly used in SMT.
One notes that full incrementality to achieve QE on any formula has the disadvantage
against the non incremental case that not all information is available at the first time
of asking to make decisions on various aspects of strategy such as variable strategy —
such a choice may be good early, but not later on in light of new constraints. The cost
of incrementality in this sense in is intended to be offset by early termination without
usage of all constraints, as is the case in SMT or for QuantifierElimination’s poly-
algorithm.

In many other cases for incrementality, all that is required is forming a new dis-
junction or conjunction of a new formula with the entire formula used in the past
computation. Here, a more general framework is presented that allows for new formu-
lae to be created at an arbitrary position with arbitrary operator within an existing
formula. The hope is that such general evolutionary techniques enable even inexperi-
enced users to explore QE problems in more depth. The formulation of “theorems” in
QE [54] is especially relevant here, and Section 5.1.1 explores case studies demonstrat-
ing when evolutionary methods acting at arbitrary “atomic positions” can be useful to
explore problems in detail, sans the expense of constantly calling QE from scratch.

One notes existing approaches to incrementality for VTS or CAD in QE and/or
SMT, such as [45, 17, 19]. The notion of atomic position (Section 5.1.1) here is new,
allowing for more generic evolutionary methods, and more attention is paid to the
distinction between incrementality and decrementality. Otherwise, the methods are
more bespoke given the context of the operation of QuantifierElimination, such as
giving rise to poly-algorithmic evolutionary methods, and the need to pay attention to

183

the facets of using a Lazard projection CAD with ECs, such as curtains. In fact, some
of the evolutionary methods used here enable the realisation of methods to recover
from certain Lazard curtains.

Due to QuantifierElimination being largely object oriented via IQERs, CADCells,
and projection objects, one notes that most of the incremental functions to achieve
incrementality, especially those concerned with tree traversal, are object methods in
practice.

The functions InsertFormula and DeleteFormula in QuantifierElimination imple-
ment incrementality and decrementality with the semantics described by Algorithms 47
and Algorithms 54 for incrementality and Algorithms 49 and Algorithms 56 and decre-
mentality. InsertFormula and DeleteFormula use an appropriate algorithm for poly-
algorithmic QE or pure Partial CAD depending on whether they are passed QEData

or CADData. In particular, InsertFormula and DeleteFormula work in terms of “atomic
position” (Definition 72), and for InsertFormula one must also hence supply the name
of a boolean operator.

5.1 Evolutionary VTS & Poly-algorithmic QE

Considering the canonical tree structure formed by VTS on a block of quantifiers, with
IQERs storing as much information as we require to enable further computation, most
evolutionary VTS requires traversal of the VTS tree to “fix up” existing information in
the tree such that it reflects the new problem after insertion or deletion of a formula.
The formulae of the nodes of the VTS tree will then be semantically correct in light of
the new implied input for QE, but the resulting tree may not necessarily be sufficient
to describe a quantifier free answer for the new problem. This traversal must insert
or delete (for incrementality or decrementality respectively) a given subformula as
prescribed by the user from each node, which associates a quantifier free formula via
the result of a sequence of virtual substitutions. In the case of insertion, one need only
insert the new formula modulo the test points used to acquire this node. Via the object
based implementation, each node stores the test point used to obtain it from the IQER

above (essentially the preceding edge).
Because the evolutionary aspects of VTS act on a single VTS tree, evolutionary

VTS is only supported for homogeneously quantified QE problems. Requesting QEData

for a problem not homogeneously quantified for non homogeneously quantified QE
problems results in an error in QuantifierElimination, however evolutionary CAD
does support this case.

Most of the concepts for Section 5.1.2 and 5.1.3 were first presented in [63]. In
particular Algorithms 46 and 48 come from that work, but here are canonicalized in
terms of IQERs rather than generic “VTS nodes”, and there is some extra functionality
to enable poly-algorithmic incrementality on ineligible IQERs via functions inherited
from the poly-algorithmic method (Section 4).

So far we have talked of insertion or deletion of formulae, but have no meaningful
concepts to make this well defined.

184

x > 0 ∧ (y > 0 ∨ x = 0 ∨ z = 1) ∧ z = 0︸ ︷︷ ︸
0 = []

x > 0︸ ︷︷ ︸
1

y > 0 ∨ x = 0 ∨ z = 1︸ ︷︷ ︸
2

y > 0︸ ︷︷ ︸
[2,1]

x = 0︸ ︷︷ ︸
[2,2]

z = 1︸ ︷︷ ︸
[2,3]

z = 0︸ ︷︷ ︸
3

Figure 5-1: Demonstration of all valid atomic positions on the formula x > 0 ∧ (y >
0 ∨ x = 0 ∨ z = 1) ∧ z = 0. The expression under a brace shows the atomic position of
the given subformula.

5.1.1 Structural Tarski Formulae & Atomic Position for Evolutionary QE

The notion of atomic position was presented in [63].

Definition 72 (Atomic Position). The Atomic Position α of some subformula of a
formula Φ is its index when viewed as an operand of Φ when Φ has outer operator ∧
or ∨, or the concatenation of the index of the operand it is contained in, say i, with its
atomic position within operand i, when operand i is a conjunction or disjunction. If we
wish to speak of the atomic position of Φ itself, we refer to this as atomic position 0.
When referring to an atomic position for insertion of a new formula Ψ within Φ, one
must specify an operator (And/Or) such that the subformula at atomic position α either
forms a conjunction or disjunction respectively with the new formula Ψ to insert.

Figure 5-1 exemplifies atomic position on a formula featuring nesting. The concate-
nation of atomic positions to describe the position of a nested formula is semantically
achieved by a flat Maple list, delimited by square brackets. The atomic position 0 is
equivalent to the empty list, []. Atomic positions corresponding to a single integer
are also equivalent to a list delimiting the same integer. The overall notion is very
similar to that of “position” in [43, Section 3], where the intention there is to achieve a
feature in test point generation called “prime constituents”. Here, the view is entirely
towards achieving general incrementality, including with respect to CAD. Hence the
definition here also alludes to boolean operators such that one can extend or modify
a particular subformula. Another menial difference is that the atomic position of the
“root” formula can be referred to as 0 here.

Both VTS and CAD use structural (real) Tarski formulae in order to enable general
evolutionary methods that can act at general atomic positions within a formula. The
idea of structural Tarski formulae is that they are weak simplified without the typical
short circuiting of ∧ and ∨ by false and true respectively. That is, the formula x <
0 ∧ 0 < 0 simplifies to x < 0 ∧ false rather than false under weak simplification
preserving structural form. In this way, we can retain a one to one correspondence

185

between the results of (virtual) substitution on a specific atom within the formula for
an IQER or CADCell and the same atom in the top level unquantified formula for QE, Φ.
As discussed in Section 2.4.2, this correspondence lends the context for “local” in the
locally canonical representations of the structural formulae within such objects. More
generally, we can retain a correspondence between a specific subformula from input
and the results of a sequence of virtual or algebraic substitutions from VTS or CAD
respectively on that exact subformula. Both IQERs and CADCells still retain a weak
simplified non structural formula via properties formulaSimplified and tarski formula
respectively. The properties storing the structural formulae are structuralSubstitution
and tarski formula structural. Structural substitution uses the facts:

• IQERs and CADCells both inherit parenting as nodes within respective trees for
VTS and CAD. When they are tree nodes of a positive level, one (perhaps vir-
tually) substitutes a term into the formula held by its parent node to receive its
own formula. For IQERs this depends on the test point having a non trivial guard,
and for CADCells this happens in evaluation of the cell.

• There is no reason to reorder operands within any formula under (virtual) substi-
tution. For example, the algebraic substitution of a rational number a for x into
f(x) > 0 ∧ g(x) = 0, (f(x) > 0 ∧ g(x) = 0)[x / a] ≡ (f(x) > 0)[x / a] ∧ (g(x) =
0)[x / a] after distribution of the substitution, and there is no reason to reorder the
operands such that the formula is now represented as (g(x) > 0)[x / a] ∧ (f(x) >
0)[x / a], ruining the correspondence between atoms under substitution that we
need to preserve in order to realise atomic position.

• For CAD, standard substitution of real algebraic numbers trivially maps atoms to
atoms. For VTS, virtual substitution can map atoms to any quantifier free Tarski
formula, i.e. the atom may “expand” under virtual substitution, but structural
substitution allows for nesting within formulae such that a conjunction can be a
genuine operand below a conjunction, such that the correspondence enabled by
atomic position is preserved.

• The structural formulae within IQERs are stored away from the associated guard
for the IQER, because the guard is an “appendage” to the structure of the original
formula Φ after successive virtual substitutions, e.g. by conjunction with the
results of virtual substitution in the existential case, and so storing the guard
in structural form is not only superfluous (considering the intention is never to
act on the guard for any IQER), but destroys the notion of atomic position on
IQERs. However, the simplified formula held by an IQER still reflects the formula
including the guard.

As a case study as to why one may be interested in general evolutionary methods
via atomic positions, consider QE to prove a “theorem” ∀x A(x)⇒ H(x) where A(x)
is a formula of “assumptions” in conjunctive normal form (CNF), and H(x) a formula
of “hypotheses” to prove, also in CNF. This “theorem” formulation for QE is discussed
in [54]. After conversion to prenex form this formula is ∀x ¬A(x) ∨ H(x), so ¬A(x)
is now in disjunctive normal form. Atomic position enables modification of operands

186

within any of the disjunctions below the conjunction that is H(x), by deletion of a
subformula at a particular atomic position, and then placement of another.

As a small and easy to understand example, consider the example ∀x (x < 0∨ x =
0)⇒ x2 > 0, which after conversion to prenex form becomes

∀x (x ≥ 0 ∧ x 6= 0) ∨ x2 > 0.

One must examine atomic positions of the prenex formula, because
QuantifierElimination only works in terms of prenex formulae. The formula is of
course equivalent to false via QE using any methodology, with x = 0 actually being
the falsifying witness. In order to investigate changing the constraint x 6= 0 to x > 1,
corresponding to exchanging the “assumption” x < 0 ∨ x = 0 in the non prenex theo-
rem with x < 0 ∨ x ≤ 1, one can delete the operand at atomic position [1, 2] (second
operand of the first operand of the unquantified formula), such that the represented
formula is now

∀x x ≥ 0 ∨ x2 > 0

(∀x x < 0⇒ x2 > 0 imitating the non prenex structure), which evolutionary QE finds
to be true. The atom x ≥ 0 is now at atomic position 1, because structural form allows
for true or false operands, but not usage of And or Or as unary operators, so the Or has
collapsed. One can then insert the constraint x > 1 at atomic position 1 with operation
And such that the QE data now represents

∀x (x ≥ 0 ∧ x < 1) ∨ x2 > 0

(equivalent to the non prenex ∀x (x < 0 ∨ x ≥ 1) ⇒ x2 > 0 imitating the original
structure) with QE deducing this formula is true. The Or has once again been reinstated
via this insertion with operator.

More generally, the hope is that one can experiment with the formulation of “the-
orems” via evolutionary methods via atomic positions in order to better understand
problems in QE, while making the process as efficient as possible by retention of data
structures as is the usual aim of incrementality. This also allows for the sentiment
of [54] for examining economics theorems of first performing the cheaper check of the
compatibility of the “assumptions” before extending the result to checking for existence
of an example by addition of the hypotheses.

Atomic position still realises the usual notion of incrementality in QE for uses such
as SMT. For a formula

∧k
i=1 Ψi in CNF such that each Ψi is a disjunction of constraints,

addition of a constraint or new disjunction Ψk+1 can be achieved by specifying any
integer 0 ≤ i ≤ k + 1 and operator And, such that the QE problem reflects

∧k+1
i=1 Ψi

after incrementality. Of course, this insertion avoids nesting such that the formula is a
flat conjunction of disjunctions, rather than a nested conjunction within a conjunction,
and the structural formulae held by IQERs and CADCells are stored as Arrays such that
they are mutable in order to support insertion.

Note that the evolutionary methods offered by QuantifierElimination do not
enable deletion or addition of quantifiers.

187

5.1.2 Incremental VTS & Poly-algorithmic QE

We describe two algorithms in turn to describe the case for incremental poly-algorithmic
QE (which for the most part consists of incremental VTS). Note that if the formula
to insert ψ features irrational numbers (i.e. real algebraic numbers that are RootOfs),
VTS is inapplicable, and therefore evolutionary QE on QEData in
QuantifierElimination via InsertFormula produces an error if a Real Tarski formula
is passed. While addition of radicals for VTS could be accommodated by replacement
of d
√
k by x and addition of the clause ∃x xd = k (only when d ≤ 2 could this constraint

be processed by VTS) to an outer conjunction encapsulating the original formula, this
corresponds to addition of quantifiers, which we have already excluded. Such replace-
ments are not generally discussed in this work otherwise. Hence ψ in Algorithms 46
and 47 is required to be a genuine Tarski formula (Definition 3).

Algorithm 46 is a recursive tree traversal algorithm to “fix” the VTS tree in terms
of a new formula ψ to insert at atomic position α. The tree traversal occurs root down.
We insert ψ at the appropriate atomic position into the structural formula for the IQER
to act upon. This is done modulo the virtual substitutions defined by the path to this
IQER, via recursion. We must also take into account the quantifier for the overarching
block of variables for this VTS tree. Upon simplifying the structural formula after
insertion, the IQER’s simplified formula may be equivalent to true or false, and we can
act accordingly to truncate the VTS tree, or notify that the IQER is now a “work IQER”
amenable for further QE (it is not identified as ineligible here). Otherwise we perform
set arithmetic to deduce the contribution of any new test points from ψ.

Proposition 73. Usage of Algorithm 46 modifies the VTS subtree rooted at I such
that it reflects a correct VTS tree for the QE problem represented by I after insertion
of ψ at atomic position α with operation oper into the formula of I (via its structural
formula).

Proof. 1. The new formula to insert, ψ, is inserted at each IQER modulo the appro-
priate sequence of virtual substitutions defined by the path from self to the root
IQER. This is because we recurse with S, which is the result of virtual substitution
on ψ. This is modulo the overarching quantifier, i.e. if Q = ∀, then we need to
“negate the virtual substitution of negation” of ψ. Structural formulae do not
contain the guards for each IQER, so after insertion of the substituted term S into
the structural formula for I, we simplify it to an unstructural formula, and build
the appropriate full simplified formula for I including via its guard I 7→ guard.

2. Insertion trivially corresponds to addition of information. Therefore, tree pruning
as can be applicable for deletion (Section 5.1.4) is inapplicable.

3. I is essentially treated in terms of its new simplified formula (which could easily
coincide with its previous simplified formula). If I is a meaningful leaf after inser-
tion, any subtree it previously held is now defunct, and hence discarded. If I was
previously a meaningful leaf, but its formula after non structural simplification is
not true or false, then it is added to the container iqers such that it now receives
further QE depending on if it is ineligible or not (at the top level).

188

Algorithm 46 Recursive tree traversal to insert a Tarski formula into the formula for
an IQER at a certain atomic position

Input: I an IQER, iqers a container of non genuine leaf IQERs, leaves a container
for genuine leaf IQERs, Q the quantifier symbol for the current block of
quantifiers, vars the Array of quantified variables from the current block
[xn−m+1, . . . , xn], α an atomic position, oper a boolean operator, ψ the
Tarski formula to insert

Output: No meaningful return — modifies the VTS subtree rooted at I inplace
1: procedure traverseVTSTreeInsert(I, iqers, leaves, Q, vars, α, oper, ψ)
2: if I 7→ level = 0 then
3: Insert ψ at atomic position α into I 7→ formulaSimplified
4: I 7→ formulaSimplified← simplify(I 7→ formulaSimplified)
5: if I 7→ formulaSimplified = true or I 7→ formulaSimplified = false then
6: Add I to leaves
7: elseif I 7→ cad formula is an (extended) Tarski formula then . CAD was

used on this IQER before
8: Unassign I 7→ cad formula
9: Add I to iqers

10: elseif I has children IQERs (I 7→ children) then
11: if Q = ∃ then
12: ψ′ ← ψ
13: else . Q = ∀
14: ψ′ ← ¬ψ
15: end if
16: E ← PC-to-TPs(atposl(ψ′, xn), xn

)\{c 7→ testpoint | c ∈ I 7→ children}
17: I 7→ futureTestpoints← I 7→ futureTestpoints ∪ E
18: if |I 7→ futureTestpoints| > 0 then
19: Add I to iqers
20: end if
21: for c in I 7→ children do
22: traverseVTSTreeInsert(c, iqers, leaves, Q, vars, α, oper, ψ)
23: end for
24: else
25: Add I to iqers
26: end if
27: else
28: if Q = ∃ then
29: S ← ψ[xn−I 7→level // I 7→ testpoint], simplifying weakly but preserving

structural form
30: Insert S at atomic position α with operation oper in

I 7→ structuralSubstitution
31: I 7→ formulaSimplified← I 7→ guardFormula∧simplify(

I 7→ structuralSubstitution)

189

Algorithm 46 Recursive tree traversal for VTS insertion, Part 2

32: else . Q = ∀
33: S ← ¬((¬ψ)[xn−I 7→level // I 7→ testpoint]), simplifying weakly but

preserving structural form
34: Insert S at atomic position α with operation oper in

I 7→ structuralSubstitution
35: I 7→ formulaSimplified← I 7→ guardFormula∨ simplify(

I 7→ structuralSubstitution)
36: end if
37: if I 7→ formulaSimplified = true or I 7→ formulaSimplified = false then
38: if I 7→ formulaSimplified is a meaningful truth value for Q then
39: Add I to leaves
40: end if
41: Unassign I’s cad formula, futureTestpoints, children, hence discarding

the VTS subtree rooted at I
42: elseif I 7→ level = m then
43: Add I to leaves
44: elseif I 7→ cad formula is an (extended) Tarski formula then . CAD was

used on this IQER before
45: Unassign I 7→ cad formula
46: Add I to iqers
47: elseif I has children IQERs (I 7→ children) then
48: if Q = ∃ then
49: S′ ← S
50: else . Q = ∀
51: S′ ← ¬S
52: end if
53: E ← PC-to-TPs(atposl(S′, xn−I 7→level−1), xn−I 7→level−1)

\{c 7→ testpoint | c ∈ I 7→ children}
54: I 7→ futureTestpoints← I 7→ futureTestpoints ∪ E
55: if |I 7→ futureTestpoints| > 0 then
56: Add I to iqers
57: end if
58: for c in I 7→ children do
59: traverseVTSTreeInsert(c, iqers, leaves, Q, vars, α, oper, S)
60: end for
61: elseif I 7→ futureTestpoints is not a set (i.e. not computed) or

|I 7→ futureTestpoints| > 0 then
62: Add I to iqers
63: end if
64: end if
65: return
66: end procedure

190

4. An IQER was certainly previously ineligible with respect to the last pass of QE
if it attributes a cad formula (lines 7 and 44). It may no longer be ineligible
after insertion, say if S is true, and its insertion into a disjunction contained
within the formula for I now short circuits that disjunction which previously
contained the one (or more) constraint of excessive degree making I ineligible.
The QEData from the last pass of QE always retains CADData. That being said, it
is undesirable to immediately attempt to repurpose the CAD for an IQER in this
scenario for two reasons. First, we would like to retain correspondence between
the held CAD and any IQER below which we found a meaningful leaf cell, such that
we can necessarily yield poly-algorithmic witnesses (Section 4.4.1). Repurposing
all ineligible IQERs in the tree doesn’t allow us to do this, as traversal of the
algorithm traverses root down irregardless of finding meaningful truth values
or otherwise, as it has no knowledge of what is happening “in other parts of
the tree”. Secondly, immediately deploying some usage of CAD on such IQERs
doesn’t fit with our usual mantra of “do as much VTS as possible, then proceed
with poly-algorithmic QE if necessary”. We may even find a meaningful leaf IQER
in this tree traversal via insertion that we do not have prior knowledge of yet due
to the recursive methodology, and in this case usage of CAD would largely be
“for the sake of it”. As a result, hitting any IQER that was previously ineligible
has us adding the IQER back to the container of “work” IQERs, iqers, and the
top level calling function has the responsibility of solving it with appropriate
methodology depending on if it is still ineligible. Either way, doing this allows
us to be consistent with poly-algorithmic methodology. In any case, the existing
cad formula is potentially erroneous in light of the inserted sub-formula, so must
unfortunately be discarded until the IQER can otherwise attribute a quantifier
free equivalent.

5. Lines 16 and 17, or 53 and 54 reflect the set arithmetic to generate any new
unique test points owing only to the inserting formula. The test points already
generated and/or used on I exist in the set I 7→ futureTestpoints, or via the
branches below I. We merge in the new test points to the I 7→ futureTestpoints
property, and if this yields a non empty set, I is amenable to further propagation
of VTS. The generation of test points takes into consideration the overarching
quantifier Q, i.e. we may need to generate test points from the negation.

6. All temporary leaves and genuine leaves of the VTS subtree rooted at I are added
to iqers and leaves respectively.

7. Lack of prime constituents from [43, Section 3.1] makes lines 16 and 53 simpler
than they may or would be in the presence of such an implementation with prime
constituents — the test point sets to use here are always “flat” in that they use
all atoms of the formula equally.

Proposition 74. Usage of Algorithm 47 QEIncremental achieves the goal of incremen-
tal poly-algorithmic QE, enabling insertion of a new formula ψ into Φ at atomic position

191

Algorithm 47 Incremental poly-algorithmic QE, via insertion of a new formula at a
certain atomic position

Input: data, QEData for a previous homogeneously quantified problem
Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), α an atomic position, ψ an unquantified
Tarski formula to insert at atomic position α with operation “oper” in Φ,
“oper” a boolean operator to insert with

Output: QE output dependent on number of output arguments requested, up to
and including the quantifier free equivalent, witnesses, and the QEData

1: procedure QEIncremental(data, α, ψ, oper)
2: iqers← an empty container
3: leaves← an empty container
4: Let data 7→ RootIQER be the root IQER for the past QE computation,

data 7→ Vars the Array of variables for the past computation, and
C = data 7→ cad data any retained CADData from the past computation
for poly-algorithmic QE

5: traverseVTSTreeInsert(data 7→ RootIQER, iqers, leaves, Q, data 7→ Vars, α,
oper, ψ)

6: if There exists an IQER in leaves with a meaningful truth value for Q then
7: iqers← an empty container
8: end if
9: Code Fragment 4 . Propagation of VTS on non ineligible IQERs on the

container iqers
10: Code Fragment 42 . Poly-algorithmic QE on ineligible IQERs
11: return QE output dependent on number of output arguments requested
12: end procedure

192

α with operation oper for a past homogeneously quantified QE problem
Qxn−m+1, . . . , Qxn Φ donating QEData data from that elimination, such that we can
produce QE output for the problem after insertion.

Proof. Via Proposition 73, calling Algorithm 46 at the root IQER modifies the existing
VTS tree to reflect the problem after insertion. In particular, with iqers and leaves
defined as empty containers beforehand, they are now a container of all non genuine
leaf IQERs and genuine leaf IQERs. While the tree is now correct, it may not be sufficient
to describe a quantifier free formula for the new QE problem in incrementality, hence
if no meaningful truth values were yielded from the tree traversal (but non genuine
leaf IQERs were), then regular QE by propagation of VTS on non ineligible IQERs into
poly-algorithmic QE on any ineligible IQERs continues, and use of such is much the
same as the non evolutionary case. Retention of the CAD, if one was produced at all,
from the last usage of poly-algorithmic QE for the overarching problem, enables full
incrementality for poly-algorithmic QE where it would be unclear in a less bespoke
VTS into CAD approach.

5.1.3 Decremental VTS & Poly-algorithmic QE

Next we describe the case for decremental poly-algorithmic QE (which mostly consists
of delineation of decremental VTS).

Algorithm 48 is a recursive tree traversal algorithm to “fix” the VTS tree in terms
of deletion of a subformula at a particular atomic position from an originally traversed
QE problem. By recursive traversal of the tree root down, we can delete the subformula
of each IQER from its structural formula which corresponds precisely to a sequence of
virtual substitutions on the same subformula from the root IQER. Much of the logic of
the algorithm inspects the new state of the IQER in terms of the resulting simplified
formula. We have a choice to prune VTS subtrees of test points no longer attributable
to any existing atom, via some set arithmetic on generation of test points.

Proposition 75. Usage of Algorithm 48 modifies the VTS subtree rooted at I such that
it reflects a correct VTS tree for the QE problem represented by I after deletion of the
formula at atomic position α from the unquantified formula for I, and then recursion
of the subtree beneath I.

Proof. 1. The structure of Algorithm 48 is much the same as Algorithm 46, except
that we perform deletion instead of insertion on the structural formulae associated
with IQERs through traversal on the VTS tree. Much of the logic on the treatment
of the IQER is therefore the same, and we move to discuss the unique points.

2. An IQER I associating a cad formula can more easily be seen to no longer be
ineligible than the case for insertion if we delete any subformula from I’s structural
substitution that contains all the constraints of excessive degree. Much like in
Algorithm 46, we do not even attempt to deduce if it is ineligible or not —
we must discard the cad formula, which is now potentially erroneous in light of
deletion, and adding I to the container of “work IQERs” iqers has that the top
level handling deletion can proceed with QE on I in whatever way is appropriate,
whether it is ineligible now or not.

193

Algorithm 48 Recursive tree traversal to delete a subformula from an IQER at a
certain atomic position

Input: I an IQER, iqers a container of non leaf IQERs, leaves a container for leaf
IQERs, Q the overarching quantifier symbol for the block of quantifiers for
VTS, vars the Array of quantified variables fro the current block
[xn−m+1, . . . , xn], α an atomic position, and PruneTree, a boolean flag
dictating whether the user wishes to “prune” the VTS tree

Output: No meaningful return — modifies the VTS subtree rooted at I inplace
1: procedure traverseVTSTreeDelete(I, iqers, leaves, Q, vars, α, PruneTree)
2: if I 7→ level = 0 then
3: Delete the subformula at atomic position α from I 7→ formulaSimplified.

Let ψ be the formula that was removed.
4: I 7→ formulaSimplified← simplify(I 7→ formulaSimplified)
5: if I 7→ formulaSimplified = true or I 7→ formulaSimplified = false then
6: if I 7→ formulaSimplified is a meaningful truth value for Q then
7: Add I to leaves
8: end if
9: Unassign I’s cad formula, futureTestpoints, children, hence discarding

the VTS subtree rooted at I
10: elseif I 7→ cad formula is an (extended) Tarski formula then . CAD was

used on this IQER before
11: Unassign I 7→ cad formula
12: Add I to iqers
13: elseif I has children IQERs (I 7→ children) then
14: if PruneTree then
15: if Q = ∃ then
16: E ← PC-to-TPs(atposl(ψ, xn), xn) \ PC-to-TPs(atposl(

I 7→ formulaSimplified, xn), xn)
17: else . Q = ∀
18: E ← PC-to-TPs(atposl(¬ψ, xn), xn) \ PC-to-TPs(atposl(¬(

I 7→ formulaSimplified), xn), xn)
19: end if
20: I 7→ futureTestpoints← I 7→ futureTestpoints \ E
21: for c in I 7→ children do
22: if c 7→ testpoint ∈ E then
23: Remove c from I 7→ children
24: else
25: traverseVTSTreeDelete(c, iqers, leaves, Q, vars, α,

PruneTree)
26: end if
27: end for
28: else
29: for c in I 7→ children do
30: traverseVTSTreeDelete(c, iqers, leaves, Q, vars, α, PruneTree)
31: end for
32: end if

194

Algorithm 48 Recursive tree traversal to delete a subformula from an IQER, Part 2

33: elseif I 7→ futureTestpoints is not a set (i.e. not computed) or
|I 7→ futureTestpoints| > 0 then

34: Add I to iqers
35: end if
36: else
37: Delete the subformula at atomic position α from

I 7→ structuralSubstitution. Let ψ be the formula that was removed.
38: if Q = ∃ then
39: I 7→ formulaSimplified← I 7→ guardFormula∧ simplify(

I 7→ structuralSubstitution)
40: else
41: I 7→ formulaSimplified← I 7→ guardFormula∨ simplify(

I 7→ structuralSubstitution)
42: end if
43: if I 7→ formulaSimplified = true or I 7→ formulaSimplified = false then
44: Remove the whole VTS tree from iqers (by removing everything from

iqers)
45: Add I to leaves
46: elseif I 7→ level = m then
47: Add I to leaves
48: elseif I 7→ cad formula is an (extended) Tarski formula then . CAD was

used on this IQER before
49: Unassign I 7→ cad formula
50: Add I to iqers
51: elseif I has children IQERs (I 7→ children) then
52: if PruneTree then
53: if Q = ∃ then
54: E ← PC-to-TPs(atposl(ψ, xn−I 7→level), xn−I 7→level) \

PC-to-TPs(atposl(I 7→ formulaSimplified, xn−I 7→level),
xn−I 7→level)

55: else . Q = ∀
56: E ← PC-to-TPs(atposl(¬ψ ,xn−I 7→level), xn−I 7→level) \

PC-to-TPs(atposl(¬(I 7→ formulaSimplified), xn−I 7→level),
xn−I 7→level)

57: end if
58: I 7→ futureTestpoints← I 7→ futureTestpoints \ E
59: for c in I 7→ children do
60: if c 7→ testpoint ∈ E then
61: Remove c from I 7→ children
62: else
63: traverseVTSTreeDelete(c, iqers, leaves, Q, vars, α,

PruneTree)
64: end if
65: end for
66: else

195

Algorithm 48 Recursive tree traversal to delete a subformula from an IQER, Part 3

67: for c in I 7→ children do
68: traverseVTSTreeDelete(c, iqers, leaves, Q, vars, α, PruneTree)
69: end for
70: end if
71: elseif I 7→ futureTestpoints is not a set (i.e. not computed) or

|I 7→ futureTestpoints| > 0 then
72: Add I to iqers
73: end if
74: end if
75: return
76: end procedure

3. Because deletion of subformulae corresponds to removal of information, one can
consider “pruning” the VTS tree of subtrees that owe from now redundant sub-
stitutions. One deduces the redundant information by generating the set of struc-
tural test points for the subformula that was deleted, and taking the set difference
of that with the new simplified formula for I resulting from deletion. The set of
test points E deduced to be redundant means that we can not only delete sub-
trees immediately owing to test points in E for those children which have a test
point T ∈ E, but take the set difference of the set of future test points for elimi-
nation on I, I 7→ futureTestpoints with E to ensure they are not used. A short
cost benefit analysis of doing such a thing is discussed in Section 5.1.4. Prun-
ing the tree is controlled by the keyword option boolean flag ‘PruneTree’ in
QuantifierElimination that appears as an argument to Algorithm 48.

4. Much as the case for insertion, lack of prime constituents from [43, Section 3.1]
makes the test point generation in pruning “easy” in the sense that we know test
point generation is “flat”, with contribution from all atoms of a formula equally.
If the implementation were to take this into account, this pruning would likely
become more convoluted.

Proposition 76. Usage of Algorithm 49 QEDecremental achieves the goal of decre-
mental poly-algorithmic QE, enabling deletion of a subformula at atomic position α
from Φ for a past homogeneously quantified QE problem Qxn−m+1, . . . , Qxn Φ donat-
ing QEData data from that elimination, such that we can produce QE output for the
problem after this deletion.

Proof. The case is much the same as for QEIncremental. In traversal of the whole
VTS tree by Algorithm 48, the VTS tree now represents a correct tree for VTS on Φ
after deletion. However, again, the tree may not be sufficient to describe quantifier free
output, for example if all IQERs that were previously meaningful leaves are now non
genuine leaves due to the deletions. In the canonical containers for IQERs, iqers and
leaves being set as empty containers before passing to the tree traversal, they are now

196

Algorithm 49 Decremental poly-algorithmic QE, via deletion of a subformula at a
certain atomic position

Input: data QEData for a previous homogeneously quantified problem
Qxn−m+1, . . . , Qxn Φ(x1, . . . , xn), α the atomic position of the subformula
the user wishes to delete from computation, and a boolean flag “PruneTree”
representing if the user wishes to prune the VTS tree of defunct IQERs

Output: QE output dependent on number of output arguments requested, up to
and including the quantifier free equivalent, witnesses, and the QEData

1: procedure QEDecremental(data, α, PruneTree)
2: iqers← an empty container
3: leaves← an empty container
4: Let data 7→ RootIQER be the root IQER for the past QE computation,

data 7→ Vars the Array of variables for the past computation, and
C = data 7→ cad data any retained CADData from the past computation
for poly-algorithmic QE

5: traverseVTSTreeDelete(data 7→ RootIQER, iqers, leaves, Q, data 7→ Vars, α,
PruneTree)

6: if There exists an IQER in leaves with a meaningful truth value for Q then
7: iqers← an empty container
8: end if
9: Code Fragment 4 . Propagation of VTS on non ineligible IQERs on the

container iqers
10: Code Fragment 42 . Poly-algorithmic QE on ineligible IQERs
11: return QE output dependent on number of output arguments requested
12: end procedure

197

populated with non genuine leaf IQERs and genuine leaf IQERs respectively. Therefore,
if we have not received a meaningful truth value from any IQER as a result of tree
traversal, we proceed with standard propagation of VTS, followed by poly-algorithmic
QE on ineligible IQERs if necessary to generate quantifier free output. Retention of
the CAD, if one was produced at all, from the last usage of poly-algorithmic QE for
the overarching problem enables full decrementality for poly-algorithmic QE where it
would be more difficult in a less bespoke VTS into CAD approach.

5.1.4 VTS Tree Pruning

Usage of too many test points in VTS is never incorrect — the only requirement for
VTS to provide the correct answer is that sufficiently many of test points are used
to cover the real line corresponding to a quantified variable, and as such it suffices to
substitute one point from every interval implied by real roots of polynomials in that
quantified variable. Using the fewest is a matter of efficiency to avoid the act of virtual
substitution, which incurs cost in itself. Having performed VTS on an input formula
(1.1), and then using the above framework to delete a subformula of Φ, means that
existing test points used in the VTS tree may no longer be able to be attributed to any
relation from the IQER above it after deletion. Hence, we may obtain a surplus of test
points beneath certain IQERs. Given the usage of test points in this case is sufficient but
not necessary in terms of the quantifier free equivalent to eventually receive, one may
wish to remove these test points, which in fact will correspond to deletion of subtrees
of the VTS tree.

Considering the evolutionary techniques of insertion and deletion can be iterated
to achieve fully incremental QE , it may be desirable to prune the tree when “back-
tracking” by deletion to make subsequent tree traversals less costly. Lines 23 and 61
of Algorithm 48 represent this pruning. Instead of traversing the subtree of an IQER

from a now defunct test point, we remove the corresponding branch of the tree by
removing that IQER as a child, and no IQERs from that subtree find themselves in rele-
vant containers due to the lack of traversal. On the other hand, deduction that a test
point is redundant, i.e. it can no longer be attributed to any constraint contained in
Φ, is not free. If one is to prune the tree, lines 54 and 56 of Algorithm 48 have that
we calculate the set of test points for two (simplified) Tarski formulae at any non leaf
IQER traversed. The first owes to the deleted subformula, and the second owes to the
whole formula after deletion. Calculation of these sets is merely to enable deduction
of the test points to prune, and serves no strict purpose with respect to propagation
of VTS and QE. Worse, it incurs a non trivial cost that has in theory already been
expended in a previous QE operation — all these test points have already been gener-
ated, but we cannot separate out the test points to deduce which owe to the deleted
formula because there is no retained correspondence between test points and atoms.
The notable cost in test point generation is factorisation of potentially multivariate
polynomials, via Košta’s at-cs-fac on atomic formulae beneath atposl. This forms a
subset of the total assumed expensive polynomial operations in VTS (leaving aside
the pseudoremainders of the actual act of virtual substitution). In total, this is not

198

entirely in the spirit of evolutionary methods. However, the value in recalculation of
these structural test point sets for the purposes of pruning must be linked to the in-
tent of further evolutionary operations. Any defunct and unpruned test points in the
tree to remain may incur undesirable cost in the future via new formulae to insert,
where Algorithm 46 will substitute these defunct test points into formulae owing to
inserting formulae to likely needless effect, in light of meaningful test points generated
with respect to atoms that are actually present. One notes the methodology of SMT
to potentially perform backtracking (decrementality), before resuming with addition of
new constraints to evaluate (incrementality). Pruning of test points is in some sense a
“destructive” operation with respect to the VTS tree — there exists no analogous de-
structive operation for decremental CAD in QuantifierElimination that does occurs
outside of the reevaluation of cells’ truth values and discarding of subtrees as a result.
In other words, this is the only truly “proactive” destructive operation.

5.2 Evolutionary CAD

Strictly, incremental CAD is the only evolutionary concept needed to realise the poly-
algorithmic QE system. The “Master CAD” idea of the poly-algorithm merely requires
that the CAD can accommodate solution of similar IQERs, and addition of polynomials
from subsequent IQERs is sufficient to achieve this, due to the following Lemma 77.

Lemma 77. A sign invariant CAD for a set of polynomials owing to inequalities A,
and a set of polynomials that are ECs E is also sign invariant for any subset A′ ⊆ A
and E′ ⊆ E judged as polynomials from inequalities and polynomials judged as ECs
respectively.

Proof. The set arithmetic in any constituent step of projection (Algorithm 8, 9, or 10)
is only ever constructive, rather than destructive (i.e. set unions, not set differences or
intersections). Each canonical projection basis produced in projection (via Algorithm
5) on A and E is certainly a superset of the projection basis of the corresponding level
that would be produced for A′ and E′. To be precise, the canonical CAD projection
sets BAi , ∀i = 1, . . . , n and BEi , Ci ∀i = 1, . . . , n− 1 (Figure 3-7) when produced from
A and E are each supersets of the corresponding canonical sets that would be produced
from A′ and E′.

Lemma 77 enables decremental CAD immediately, considering the existing projec-
tion data structure is immediately going to suffice, and one need only worry about the
CAD tree. It enables incremental CAD if one starts with A′ and E′ as in that lemma,
and manages to extend the projection to represent A and E, and once again one need
worry about the lifting. We first move to explain incremental projection & lifting to
accommodate the functions used in the poly-algorithm, and evolutionary algorithms to
achieve general evolutionary CAD also follow.

5.2.1 Incremental Projection

Incremental projection is the process of taking an existing projection data structure
and modifying it to be appropriate to describe (at least, but probably not at most)

199

projection bases for new sets of polynomials A and E, where A and E are the usual duo
of sets of polynomials for inequalities and equational constraints for a new problem.

Incremental projection in CAD is achieved via a caching approach in
QuantifierElimination, as opposed to an approach on set arithmetic. Caching is
more elegant than an approach via set arithmetic on incoming polynomials, consider-
ing the projection data structure stores up to three bases per canonical CAD level,
BAi , BEi−1 , and Ci−1 (Figure 3-7) because of the presence of equational constraints.
Figure 3-3 exemplifies the contribution of various sets to one another in an intermedi-
ate projection step with ECs, and one can imagine the combinatorics in terms of set
arithmetic to begin to ensure one avoids redundant polynomial operations.

In fact, an approach using set arithmetic cannot necessarily avoid introducing re-
dundant polynomials to the projection sets. Let BAn , BEn−1 , and Cn−1 be the canonical
projection bases at the top level (level n). Let A and E be new incoming sets of poly-
nomials at this level via incrementality, where A is a basis. Let there exist f ∈ E such
that

∏
Cn−1 | f , with g1 · · · gk, k ≥ 1 the factors of the quotient. Then the pivot set

Cn−1 should be extended to include g1, . . . , gk, i.e. Cn−1 ← Cn−1∪{g1, . . . , gk}. For one
to be certain that all the projection bases genuinely follow from one another (to ensure
the validity of future set arithmetic in incremental projection), one needs to now take
(at least, and not at most) resxn({g1, . . . , gk}, BAn \A) to contribute to BAn−1 , despite
such resultants not being relevant to the past problem or the incoming problem as of
incrementality, but would merely be present to accommodate the projection sets being
canonical. Meanwhile, feeding A′ and E′ through all projection steps with caching
introduces no redundancy in terms of polynomials, while genuinely being incremental
in terms of avoiding the time complexity of computing already existing resultants and
discriminants. We ensure that we receive all the polynomials necessary to construct a
sign invariant CAD for A and E without redundancy in terms of operations to per-
form, and should pay attention to those that are genuinely new to projection bases for
modification of the CAD tree in terms of lifting.

One notes that full Lazard projection without any equational constraints can use an
approach with set arithmetic — if BA is the past basis before a projection step, and B′A
is a new basis from incrementality, then the polynomials PL(B′A \BA)∪{res(f, g) | f ∈
B′A \BA, g ∈ BA)} are the new projection polynomials for the next level. Incremental
projection in QuantifierElimination always takes a caching approach, because we
assume we may need to cater for a future case with equational constraints. The fact
that the results of polynomial operations are cached also helps other CAD computations
used outside the context of the current QE, i.e. if the user makes two distinct similar
calls to CAD without the context of incrementality in Maple, the cached operations are
retained between the calls. This is often the case for other native functions in Maple,
where Maple often caches results of low level operations.

To achieve caching, the non trivial polynomial operations in Lazard projection,
resultants and discriminants are cached. QuantifierElimination defines wrapper
functions for both that associate a cache for results. The caching is destined to make
incremental projection via Algorithm 54 work, because steps of projection are called on
bases of polynomials that are represented normally, as is always done in basis generation
in QuantifierElimination. The caching function for the resultant takes care to cache

200

symmetric calls, because res(f, g) = − res(g, f), but the negative sign on the right hand
side does not matter because we only care to make canonical bases in the end, where
the leading coefficient is destined to be positive.

More formally, full incremental projection is described by Algorithm 50. In reality,
this is very similar to full projection of all orders via Algorithm 5, where the canonical
sets of polynomials A and E are fed through projection as usual, but we hope to make
significant use of caching for the operations beneath individual projection steps. Oth-
erwise, there is some additional logic to inspect presence of past and present equational
constraints at individual levels, and particular attention is paid to whether usage of
the same pivot can be coerced out of the present equational constraints PE .

Proposition 78. Algorithm 50 achieves the goal of modifying a projection object such
that it contains the polynomials from all projection bases generated by the passed A and
E, for A, E ⊂ R[x1, . . . , xn], where A is a set of polynomials owing to inequalities, and
E a set of polynomials owing to equational constraints.

Proof. 1. The structure of the main bulk of the algorithm is essentially repeated
thrice to accommodate the cases for level n, the intermediate levels where only
semi restricted projection is allowable on ECs, and the last step where restricted
projection is once again allowable. The only other difference is which projection
level to act upon at any one time.

2. Because of the caching approach taken by incremental projection, much of the
structure of Algorithm 50 is the same as that of standard projection (Algorithm
5). The idea is to perform projection on the top level sets in whatever context
those sets arise in incrementality, and any of the expensive operations such as
resultants and discriminants are cached such that the projection genuinely is
incremental. One performs a “set difference” on the bases acquired in this process
returned in the Array incBases are entirely of new polynomials to the CAD.
These set differences are slightly frustrated by the fact that the sets stored in
the projection object at any one level are slightly inhomogeneous (the sets of
equational constraints may not exist when ECs were not used at that level). Hence
practically it is more convenient to iterate over the level of the projection object
to remove any polynomials already existing to make the sets disjoint. Practically,
any line reading “incBases[i] ← . . . \D where D is the set of all polynomials in
P at level n− i+ 1” is achieved in this way. Because the polynomials all receive
full factorisation to create bases, we rely on the canonicality of the representation
of polynomials to ensure polynomials to be stored in incBases are coprime to
those from projection. One notes the caches of polynomial operations are cleared
whenever it can be deduced that the polynomials to come through projection
in any circumstance do not largely coincide with the cached polynomials. The
only circumstance where this actually comes to fruition is in the poly-algorithm
whenever a new CAD is generated (Code Fragment 42).

3. The algorithm does not attempt to extend the projection bases to represent strict
supersets of what was input at the top level in terms of A and E from the past

201

Algorithm 50 Incremental Projection algorithm via Caching

Input: P , a projection object for an existing CAD, A a set of all polynomials
associated with inequalities from input as of incrementality, E a set of all ECs
from input as of incrementality, vars, n the total number of CAD variables as
of incrementality, newm the number of new quantified variables, newn the
number of new free variables, UseGroebner a keyword option as boolean flag
dictating if Gröbner bases should be used, PropagateECs a keyword option
as boolean flag dictating if ECs should be propagated, and UseEquations a
keyword option as symbol ‘none’, ‘single’ or ‘multiple’ defining the
capacity for equational constraints usage in restricted projection operations

Output: incBases, an Array of canonical irreducible polynomial bases of each
level of new polynomials from incrementality coprime to those from the
existing projection data structure P , and newPivots, an Array of boolean
values representing if a new pivot was used at the canonical CAD levels 2
through n− 1

1: procedure projectionIncremental(P , A, E, vars, n, newm, newn,
UseGroebner, PropagateECs, UseEquations)

2: Initialise incBases as an empty Array with n elements
3: Initialise newPivots as an Array of n− 1 elements, all false
4: (PA, PE) ← A, E
5: if UseEquations = ‘none’ then
6: PA ← PA ∪ PE
7: PE ← ∅
8: end if
9: for i to newn do

10: Append ∅ to P 7→ inequalities
11: Append 0 to P 7→ equations
12: Append 0 to P 7→ pivotSets
13: end for
14: for i to newm do
15: Prepend ∅ to P 7→ inequalities . As opposed to appending above
16: Prepend 0 to P 7→ equations
17: Prepend 0 to P 7→ pivotSets
18: end for
19: if UseGroebner and |PE | > 0 then
20: PE ← equationalConstraintsToGroebner(PE , vars)
21: if PE = {p} for some polynomial p, and deg(p) = 0 then . Likely

PE = {1}, but equally {c}, any c ∈ R \ {0}
22: incBases← an Array of n empty sets
23: return incBases, newPivots. To exit similarly to line 10 of Algorithm 5
24: end if
25: end if

202

Algorithm 50 Incremental Projection, Part 2

26: if n > 1 then
27: x← vars[−1] . x = xn
28: if There exists p in PE such that degx(p) > 0 then
29: if P 7→ equations[−1] is a set, i.e. a pivot set was previously used at

level n then
30: (PE , contE) ← {f | f ∈ PE , degx(f) > 0},

{f | f ∈ PE , degx(f) = 0}
31: if There exists p in PE such that p |

∏
f∈Cn−1

f then .
Cn−1 = P 7→ pivotSets[−1]

32: Factor p as pivc · q1 · · · qk where degx(pivc) = 0, degx(qj) > 0,
j = 1, . . . , k, the qj pairwise coprime

33: PE ← PE \ {p}
34: (BA, contA, BE) ← CADMakeBasisWithEqns(PA, PE ,

{q1, . . . , qk}, x)
35: (PA, PE) ← lazardProjectionRestricted(BA, PE , {q1, . . . , qk},

pivc, contA, contE , x, PropagateECs)
36: incBases[−1]← (BA ∪BE) \D where D is the set of all

polynomials in P at level n
37: P 7→ inequalities[−1]← P 7→ inequalities[−1] ∪ incBases[−1]
38: else . Can’t use ECs in restricted projection — would fail to track

at least one of the pivot sets at this level
39: (BA, contA, BE) ← CADMakeBasisWithEqns(PA, PE , ∅, x)
40: (PA, PE) ← sets obtained by Lazard projection on BA and BE ,

with PE all propagated equational constraints via resultant
rule from resx(BE , BE) if PropagateECs = true, else
resx(BE , BE) ⊂ PA

41: (PA, PE) ← PA ∪ contA, PE ∪ contE
42: incBases[−1]← BA ∪BE \D where D is the set of all

polynomials in P at level n
43: P 7→ inequalities[−1]← P 7→ inequalities[−1] ∪ incBases[−1]
44: end if
45: else . First time observing equational constraints at level n
46: (BP , PE , contE , pivc) ← choosePivotSet(PE , x)
47: (BA, contA, BE) ← CADMakeBasisWithEqns(PA, PE , BP , x)
48: (PA, PE) ← lazardProjectionRestricted(BA, PE , BP , pivc, contA,

contE , x, PropagateECs)
49: incBases[−1]← (BP ∪BE ∪BA) \D where D is the set of all

polynomials in P at level n
50: (P 7→ pivotSets[−1], P 7→ equations[−1]) ← BP , BE
51: P 7→ inequalities[−1]← P 7→ inequalities[−1] ∪BA
52: newPivots[−1]← true
53: end if

203

Algorithm 50 Incremental Projection, Part 3

54: else . No equational constraints to use at all in xn
55: (BA, contA) ← CADMakeBasis(PA, x)
56: PA ← lazardProjection(BA, contA, x)
57: incBases[−1]← BA \D where D is the set of all polynomials in P at

level n
58: P 7→ inequalities[−1]← P 7→ inequalities[−1] ∪BA
59: end if
60: end if
61: if UseEquations = ‘single’ then
62: PA ← PA ∪ PE
63: PE ← ∅
64: end if
65: for i from 2 to n− 2 do
66: Use PA and PE to extend projection at level n− i+ 1 in much the same

way as the case for xn above, attempting to coerce usage of existing
pivot sets where they exist. However, use semi restricted projection in
place of restricted projection, and xn−i+1 = vars[−i] in place of xn

67: incBases[−i] is the fully factored basis of all new level n− i+ 1 polynomials
coprime to those that were already in projection at level n− i+ 1

68: newPivots[−i] is the boolean value corresponding to if a new pivot set was
introduced at level n− i+ 1

69: end for
70: if n > 2 then
71: Use PA and PE in projection in much the same way as the case for xn,

attempting to coerce usage of an existing pivot set if one exists. Usage
of restricted projection with ECs is once again allowable, but we use
x2 = vars[2] in place of xn

72: incBases[2] is the fully factored basis of all new level 2 polynomials coprime
to those that were already in projection to level 2

73: newPivots[2] is the boolean value corresponding to if a new pivot set was
introduced at level 2

74: else
75: PA ← PA ∪ PE
76: end if
77: (BA,) ← CADMakeBasis(PA, vars[1]) . vars[1] = x1
78: incBases[1]← BA \ P 7→ inequalities[1] . P 7→ inequalities[1] the only set that

exists at level 1 in a projection object
79: P 7→ inequalities[1]← P 7→ inequalities[1] ∪ incBases[1]
80: return incBases, newPivots
81: end procedure

204

computation to the new computation. Instead, one can view projectionIncremen-
tal as adding all those projection polynomials owing to the new A and E, and
deducing all the new ones per level such that one knows what polynomials to
extend the lifting with to accommodate the new A and E.

4. Control of equational constraints is similar to the case for Algorithm 5, via
UseEquations, PropagateECs and UseGroebner, corresponding to the values of
the identically named keyword options. These options need not be the same as
what was used throughout the last run of projection.

5. When equational constraints were previously used at a particular level, we pay
attention to the current set of equational constraints PE to check if any element
p of PE divides the previously used pivot (and is hence contained within the ex-
isting pivot set at that level after factorisation). This can be seen on line 31, with
similar checks occurring at levels 2 through n− 1. If an element does divide the
existing pivot set, we coerce usage of that element as pivot in (semi-)restricted
projection to try to reuse as many of the cached resultants as possible. The set of
factors of p, and the content of p, pivc take the role as pivot in (semi-)restricted
projection. This of course covers the case where p is equal to the existing pivot.
The existing pivot set stored in the projection object is sufficient to remain
intact because of the division, and the state of play with respect to existing cells
and curtains remains the same. This is in contrast to usage of choosePivotSet
(Algorithm 22), which may choose a different pivot (ostensibly better by some
metric) but producing new distinct polynomials which we needn’t produce, and
more importantly inducing difficulties with canonicality of the projection object
in terms of stored pivot sets (note 9 in this proof). Note that as PE isn’t a basis,
it is more correct to check if any of its polynomials divide the pivot rather than
checking if |PE ∩Cn−i| > 0. However, PE can and should contain as much infor-
mation about factorisations as possible (polynomials produced by the resultant
rule via propagation of equational constraints should be stored in factored form),
and one can clearly produce

∏
f∈Cn−i f in factored form without expansion to

retain as much factorisation information in these checks for division as possible.
One regret is that pivots are stored in factored form without their content in
P 7→ pivotSets[i], so if a pivot had a content of non trivial degree when first
factored we may fail to realise that a new EC divides such an existing pivot, if
the new EC also attributes a non trivial content. Ideally this would be improved
such that we can be sure the effects of ECs remain in CAD when we truly do use
the same equational constraints.

6. New polynomials generated at any one level are added to the appropriate sets
stored in the projection object once the appropriate set difference has been
deduced, such that the projection object reflects the bases after incrementality.

7. Incremental projection can accommodate polynomials in further variables than
were used in projection before. The variable ordering in terms of all variables
used previously must remain fixed such that the existing projection bases be-
fore incrementality remain canonical. That is, we cannot insert a new variable

205

in between existing levels. One can however prepend new quantified variables,
and append free variables, although appending of free variables implies that the
CAD tree must be relifted. The polynomials then feed through accordingly for
the variable ordering passed which must include the new variables prepended &
appended to the past variable ordering in the way described. In practice, only
poly-algorithmic QE induces the case where new quantifiers are defined, by repur-
posing a CAD from one IQER for another IQER of a lower level (which attributes
more quantified variables).

8. Gröbner bases are taken on the incoming set of equational constraints E if re-
quested via ‘UseGroebner’. The methodology and reaction to output is much the
same as for Algorithm 5. In the case of pure CAD incrementality by clauses, PE
is still the set of all equational constraints, so addition of an equational constraint
to a formula that is inconsistent with previous ECs will reset the projection to
something trivial at this point, and the output incBases is an Array of n empty
bases. This ensures as little new non trivial geometry as possible is built as a
result — in the case of a relift, the CAD will lift to one cell representing Rn, cer-
tainly holding the truth value false. Otherwise, incremental lifting reduces to tree
traversal on the existing CAD tree, where cells with determinate truth values can
only hold false. Unevaluated cells or those with indeterminate truth values added
to cad for further stack construction only lift R per level due to the lack of poly-
nomials in any projection basis until a child cell deduces the determinate truth
value false. Usage of Gröbner bases for preprocessing in incremental CAD should
ideally remain consistent with what was used as the option for preprocessing in
the last pass of CAD (i.e. the keyword option ‘UseGroebner’ should remain
consistent) to reconcile with the caching approach of incremental projection.

9. We cannot use a pivot set in (semi-)restricted projection at some level where a
pivot set already exists, and the pivot set to use would not be a subset of the
existing pivot set (line 38). It is unclear how one would store the new pivot set
in light of the existing pivot set in the projection object, which is vital in terms
of identification of curtains — via the object methods provided in this work,
identification of curtains always falls to examination of the set P 7→ pivotSets[i]
for i the canonical CAD level. In the case where ECs exist, but we cannot use
them in restricted projection due to an existing pivot set, we perform standard
Lazard projection, but propagate ECs via the resultant rule on the resultants
between pairs of elements in PE , such that we may attempt to use propagated
ECs in restricted projection later when appropriate.

10. However, if a pivot set did not exist at some level, and new ECs exist at such a
level, then we can define a new pivot set (line 45, and similarly at other levels).
newPivots is an Array tracking which canonical CAD levels had a new pivot
set introduced where one did not exist previously. This allows us to restrict
checking for curtains in tree traversal for cells at as few levels as possible later
(e.g. Algorithm 52), because we know existing cells have already undergone
checking for curtains on existing pivot sets, so needn’t be checked on such pivots

206

again. In total, the pivots stored in P 7→ pivotSets can represent pivots from
distinct overlapping runs of projection.

5.2.2 Incremental Lifting

Next are suitable methods to describe “incremental lifting” - that is, adapting a previ-
ously computed CAD tree to reflect the additional projection basis elements contributed
via the new formula from incrementality, which are deduced and returned from Algo-
rithm 50. As such, this should follow incremental projection as a step in incremental
CAD. It is important that incremental projection produces an object corresponding
to projection polynomials completely new to projection per level. These two algo-
rithms are sufficient to have all the constituent parts to realise the CAD repurposing in
poly-algorithmic QE via Algorithm 44, belatedly concluded here. Additionally this al-
gorithm is used in the context of curtain decomposition (e.g. Algorithm 31). Algorithm
51 is a key driver in incremental lifting in any context.

Algorithm 51 is in some sense an amalgamation of Algorithms 18 and 14. Those
algorithms act in the non incremental sense, whereas this acts in the incremental sense
that it acts on a cell c that must have child cells. From Bnew, a basis of univariate lift-
ing polynomials obtained from c and a basis of projection polynomials of appropriate
level new to this iteration of CAD incrementality, we isolate the roots of such lifting
polynomials via usual technology. These roots should be distinct from roots used pre-
viously to construct the cells below c, and certainly will be if all the lifting polynomials
used were canonical. However, they may not have disjoint isolating intervals to those
used in the stack below this cell, which can be deduced from the bounds of the child
cells. Hence we may need to perform root refinement to make such intervals disjoint.
From genuinely new root descriptions, we can modify bounds of existing child cells,
and create new unevaluated cells to “merge” in the appropriate geometry such that
the stack below c genuinely reflects the current projection sets as of incrementality. In
other words, incrementalCADMerge merges new cells owing to the new lifting polyno-
mials from Bnew below the cell c. Further details are given in proof of proposition of
the algorithm.

Proposition 79. Let c be a cell with child cells c 7→ children. BNew is a univariate
polynomial basis received via Lazard evaluation of a multivariate set B of polynomials
of level n − c 7→ level owing from the Array incBases returned from Algorithm 50. T
maps polynomials in BNew to that set B.

Algorithm 51 successfully merges in new cells amongst the existing child cells of c
according to real roots from BNew, which may modify existing child cells. New cells are
merged into c 7→ children, which remains ordered with respect to the local indices of
such cells.

Proof. 1. incrementalCADMerge is an amalgamation of the purposes of both isolate-
RootsBasis (Algorithm 18) and CCHILD (Algorithm 14), but in an evolutionary
context. c is assumed to have child cells, which implies it evaluated with an in-
determinate truth value (if truth values are relevant, i.e. QE by Partial CAD,

207

Algorithm 51 Incremental CAD Merge Algorithm

Input: c, a CADCell for which child cells should be modified & added to via new
roots from BNew, BNew, a single basis of univariate polynomials in x received
from Lazard evaluation of new projection polynomials, T a table mapping
polynomials in BNew to the multivariate polynomials they came from before
Lazard evaluation, x the canonical local variable xn−c7→level, “lvl” is the level
of all child cells of c. “open” a boolean flag where its truth indicates we do
not build new sections, “constraints” and “bounds” Arrays created from
parsing of lifting constraints (when passed), cad a container to store new
unevaluated cells (when passed),

Output: No meaningful return value, but implicitly modifies the CAD tree via
possible modification of child cells of c and addition of new ones.

1: procedure incrementalCADMerge(c, BNew, T , x, lvl, open, constraints,
bounds, cad)

2: if open then
3: newInc← 1
4: else
5: newInc← 2
6: end if
7: for b in BNew do
8: isolated← isolateRootsOf(b, x, constraints, bounds)
9: (i, b′) ← 1, b

10: for [lb,ub] in isolated do
11: rtf ← RootOf(b′, lb..ub)
12: nc← |c 7→ children|
13: repeat
14: while i ≤ nc− 1 and c 7→ children[i] 7→ local index mod 2 = 0 or

c 7→ children[i] 7→ local index mod 2 = 1 and
lb > c 7→ children[i+ 1] 7→ lowerbound or
lb > c 7→ children[i+ 2] 7→ lowerbound do

15: i++
16: end while
17: if i ≤ nc− 1 then
18: cellleft ← c 7→ children[i]
19: if c 7→ children[i+ 1] 7→ local index mod 2 = 1 then . Is the

next cell along a local sector?
20: cellright ← c 7→ children[i+ 1]
21: else
22: cellright ← c 7→ children[i+ 2]
23: cellcentral ← c 7→ children[i+ 1] . The local section in between

the local sectors
24: end if
25: pastLB← the upper bound of the interval from

cellleft 7→ upperbound
26: pastUB← the lower bound of the interval from

cellright 7→ lowerbound

208

although incrementalCADMerge can be called in the context of full CAD in cur-
tain recovery — Algorithm 31). Existing root descriptions need to be gleaned
from existing child cells below c, as they exist as the lower and upper bounds
of sectors below self. Those lower and upper bounds are rational numbers or
RootOfs representing irrational numbers with an isolating interval, i.e. real alge-
braic numbers. This is why the iteration of line 14 pays attention to whether the
cell in question is a sector or not, as only sectors store lower and upper bounds.
CCHILD outsources creation of a container of sorted disjoint isolating intervals
to isolateRootsBasis before easily creating the cells from those root descriptions.
Here, root descriptions already exist via existing cells, so we use the lower and
upper bounds of those cells as the equivalent of the containers forming root de-
scriptions gleaned from isolateRootsBasis. We know that they are sorted, i.e. the
child cells line up from left to right along the real line with respect to x, and
hence the root descriptions to examine are also sorted in the same way as they
would be as of output of isolateRootsBasis and hence in CCHILD.

2. BNew is a set of lifting polynomials inherited from Lazard evaluation on a subset
of projection polynomials — in particular new ones gleaned from Algorithm 50.
The projection polynomials from B are distinct from those used in the past when
lifting around c (they result from set differences of new and existing polynomials
from projection in Algorithm 50, and we note Remark 34), but the results of
Lazard evaluation may not be distinct to those used before, but new generated
root descriptions that coincide with an existing used root description are dealt
with by refineIsolatingIntervals, which attempts to deduce if the root descriptions
are the same. Hence we only merge in new geometry.

3. Replacement of the upper bound of a cell (Line 88) to accommodate a new root
from a new polynomial is one of the key parts of this algorithm. replaceUpper-
Bound is a CADCell method that:

• replaces the static upper bound “upperbound” of a cell with the real alge-
braic number rtf,

• replaces the upper bound from the local cell description of the cell with the
real algebraic function mRtf,

• unevaluates the cell by resetting its local sample point (which may not be
valid any more due to the smaller local interval formed by the new bounds
in light of the full sample point of its parent cell),

• protects its truth value by setting it to FAIL (if it wasn’t protected already),

• and discards the existing CAD subtree below the cell.

Algorithm 51 incrementalCADMerge is usually called from the context of some
sort of tree traversal, such as Algorithm 52. Hence it is the job of the calling
function of incrementalCADMerge to identify these newly unevaluated cells and
treat them accordingly, by reevaluating their local sample point, Tarski formula,

209

and truth value. If the truth value is still indeterminate (FAIL) after this eval-
uation then the cell should be readded to the container of unevaluated cells for
later stack construction, else it is added to a container of leaf cells.

4. In this way, cells undergoing bound replacement can be identified as Lazard cur-
tains later at the regular time of stack construction by CCHILD in the regulation
lifting that occurs in evolutionary CAD, much like the non evolutionary case.
The same is true of new cells formed by incrementalCADMerge — despite the
flat presentation of polynomials to incrementalCADMerge in incBases that con-
tains no information about whether any of these polynomials are pivots, the cells
are checked for curtains on whatever pivot sets are used at the point of stack
construction later (which is certainly useful in the context of Partial CAD). De-
laying the attempt to identify a newly unevaluated cell as a Lazard curtain to
the calling of CCHILD (Algorithm 14) is appropriate to keep the overall CAD
lifting process homogeneous, and fits in with the strategies for avoidance of &
recovery from Lazard curtains (Section 3.7.2), which in the evolutionary case still
assumes regulation lifting as far as possible before attempting classification and
then recovery from curtains. The only difference with the evolutionary case is
that regulation lifting may be preceded by some sort of tree traversal such as
Algorithm 52.

5. Replacement of lower/upper bounds is not to be confused or conflated with re-
finement of lower/upper bounds (e.g. Line 30), where we examine the isolating
interval for a new root isolation and attempt to make it disjoint from that for
an existing root isolation used as a (static) upper and lower bound for cellleft
and cellright respectively. The existing interval about the root can only become
smaller as a result of usage of refineIsolatingIntervals (see Section 3.4.1), hence
the sample points for cellleft, cellright, and cellcentral remain valid and we needn’t
unevaluate these cells. As per discussion in Section 3.4.1, we retain any informa-
tion about refinement of isolating intervals about real algebraic numbers, mostly
here by overwriting existing properties of various cells.

6. incrementalCADMerge acts “right-on” — that is, new cells are always inserted
“to the right of” an existing cell, and one notes that we replace (at most) upper
bounds of existing cells, as we implicitly move across the real line from left to
right, attempting to merge in root descriptions and new cells as we go. If we create
the new right-most cell on Line 79, we need to take into account the right-most
bound owing to local lifting constraints, where they were passed.

7. When iterating amongst the child cells, we intend to find two neighbouring local
sectors, which share cell bounds. Sectors have odd local cell indices. This is the
loop on line 14, but we do not assume the order of child cells of c is “sector, sector,
sector...” or “sector, section, sector...”. incrementalCADMerge offers support for
merging of non open geometry into an open CAD, to accommodate for example
the freedom usually offered by full CAD (CylindricalAlgebraicDecompose). How-
ever, merging of non open geometry into an open CAD is not correct in the case
for QE, because we may miss (local) sections owing to projection polynomials

210

from a past computation (i.e. those not in incBases), and incrementalCADMerge
does not identify that they should now be created — doing so would require some
bespoke examination of the “missing” local sections in terms of surrounding local
sectors, and deduction of the information to use in order to create such sections.

Algorithm 52 is another recursive tree traversal algorithm, traversing from the root
cell down. Its main purpose is to repurpose the CAD tree to evaluate truth values
of a different real Tarski formula, Ψ. Because Ψ may have contributed new distinct
projection polynomials, we also merge in new geometry at appropriate cells arising
from real roots of lifting polynomials attributed to said new projection polynomials in
incBases. Its methodology is not dissimilar from the VTS tree traversal algorithms in
that we may truncate the CAD tree at a cell that now has a determinate truth value,
or identify a CADCell as no longer being a leaf cell (and so amenable to further stack
construction) if its truth value is not determinate via the new formula to evaluate.
Additionally, the formula’s evaluation happens largely via recursion, such that each
CADCell only evaluates a formula in terms of its canonical variable. We must pay
attention to where new pivots have been introduced in projection, in case we traverse
to a cell that should now be identified as a curtain.

Proposition 80. Algorithm 52 traverseCADTreeModify repurposes the CAD subtree
rooted at self such that its CADCells evaluate truth values for Ψ, and merges in new
geometry owing to new projection polynomials owing to Ψ by incBases generated by
Algorithm 50 at every traversed cell via Algorithm 51 incrementalCADmerge, such that
calling traverseCADTreeModify at the root cell lets the CAD subtree describe a sign
invariant CAD for Ψ after full tree traversal.

Proof. 1. traverseCADTreeModify is a “repurposing” of the CAD tree. In particular
the tarski formulae and truth values of each cell in the tree should now be correct
in light of the top level formula to repurpose with after full traversal of the tree
via this algorithm. As a result of full tree traversal, the tree may be sufficient to
describe the quantifier free equivalent of the quantified formula at the top level,
and if not regulation lifting must be continued outside of this function. In order
to do regulation lifting, the top level requires a new collection of unevaluated
cells. The two canonical mutable containers for CADCells, “cad” and “leaves”
appear as arguments to traversal. These are redefined as empty at the top level,
and usage of this algorithm to traverse the CAD tree repopulates these containers
with appropriate unevaluated and leaf cells respectively. Because this algorithm
represents a “repurposing”, no information about the existing formula held by
any cell can or should be reused, i.e. their formulae are overwritten.

2. Not unlike Algorithm 46, Ψ is evaluated at the full sample point for self via
traversal through the tree. This happens via recursion, i.e. for a cell of general
level, the received Ψ is actually the evaluation of Ψ at the full sample point of
the cell above, and one only needs to evaluate Ψ at the local sample point of
self rather than its full sample point (which would be more costly). This covers
the reevaluation of cells’ formulae, and usage of incrementalCADMerge covers

211

merging in of new geometry owing to new projection polynomials inherited from
the top level Ψ via Lazard evaluation of the appropriate set from incBases.

3. Line 12 refers to the case where we traverse to an unevaluated cell. Such an
unevaluated cell may:

• have remained unevaluated from previous CAD computation (i.e. it was left
unevaluated by Partial CAD in a previous iteration of QE)

• have been unevaluated by usage of incrementalCADMerge, where the upper
bound of a cell is replaced by a new real root (Line 88, Algorithm 51)

• have been created by usage of incrementalCADMerge (again, due to presence
of new incoming real roots)

In this case we evaluate the cell (i.e. deduce and set its sample point, (real)
Tarski formula, and truth value, in that order) via usage of evalAndSetTruthValue
after ensuring the truth value really is unset, to force evalAndSetTruthValue to
reevaluate these properties. Having evaluated the cell, it either holds a genuine
boolean truth value, i.e. it is a leaf cell and evalAndSetTruthValue has added
it to the container leaves, else it is amenable to further stack construction, and
hence is added to the container cad.

4. It is important to call incrementalCADMerge before traversal through the subtree
below (i.e. recursion on traverseCADTreeModify amongst self’s child cells. Usage
of incrementalCADMerge may modify a child cell c below such that its upper
bound changes, and hence c’s sample point may need to be reset as a result. If
we were to recurse first, then the sample points of such a child cell c may be
ostensibly wrong in light of future usage of incrementalCADMerge that could
change its bounds, and hence invalidate its entire CAD subtree, which we are
erroneously repurposing as if the geometry is certainly valid.

5. The loops on lines 5 and 50 are what is referred to as protection of truth values.
This algorithm calls Algorithm 15 PRPTV having traversed any cell which came
to have an indeterminate truth value and child cells. This is to ensure the con-
tainer of unevaluated cells cad has only the necessary cells for any further stack
construction as of termination of tree traversal. However, said child cells may
hold a meaningful truth value from a previous computation (potentially propa-
gated from cells in the subtree of any of those cells). In order to ensure that past
information does not result in propagation of erroneous truth values in light of
the new formula to repurpose the CAD tree with, we temporarily overwrite the
truth values of child cells with FAIL, which holds the meaning “truth value de-
duced to be indeterminate”. This is opposed to unsetting the truth values, which
would encourage PRPTV to set them potentially in terms of erroneous data. We
only protect the truth values of all but the first child cell, because we traverse
through the first child cell first, i.e. move to deduce its new truth value. Later,
when we traverse a cell which had a protected truth value, we properly deduce its
truth value as of the new incoming formula to repurpose the cell with. Figure 5-2

212

demonstrates how a CAD tree may look in terms of truth values as of traversal
to the first level n cell. Because we call PRPTV at every cell that still has child
cells after traversal, and the recursion in terms of tree traversal happens root
down, despite protection of truth values, the truth values of any meaningful leaf
cell after traversal does propagate towards the root. The purpose of protection
of truth values is to prevent incorrect truth values making their way to the root
from parts of the tree that have not been processed yet.

6. Lines 4 and 43 are to accommodate truth values of child cells below changing as a
result of a different formula being used. The root cell must have children cells to
have even commenced building a non trivial CAD, and at line 43 we know child
cells exist.

7. Line 57 accommodates the case for a cell which previously held a boolean truth
value (in other words, it was previously a proper leaf cell), however upon repur-
posing now has an indeterminate truth value. Hence it is unevaluated, and we
can build a stack over it, hence it is added to cad.

8. Line 26 reflects the need to check for a Lazard curtain on the traversed cell when
a new pivot was introduced by incremental projection (Algorithm 50) at the
projection level corresponding to this cell. This is predicated by an element of
the Array “newPivots” produced by projectionIncremental such that we only do
this when a new pivot was introduced. When the cell is a curtain, we identify
it as a curtain as usual by addition to problemCells, to reconcile with the aim
to avoid and/or eventually recover from lifting failures. We also unevaluate it in
case it is a level n− 1 curtain to be processed by Algorithms 32 and 34, to match
the fact that curtain cells found in regulation lifting are similarly unevaluated
sans retaining a local sample point.

Having delineated all the algorithms required for poly-algorithmic QE, we can be-
latedly prove the validity of Algorithm 44.

Proposition 81. Given an IQER I and CADData C, Algorithm 44 successfully produces
the quantifier free equivalent of I by repurposing the CAD.

Proof. In this case, projectionIncremental actually receives polynomial sets decom-
posed from the formula for I, and because of the caching approach, the projection
bases for I end up “coexisting” amongst polynomials from previous projection bases.
Due to the “poly-share criteria”, we assume there is a significant intersection between
the polynomials generated from projection on I and the existing projection bases at
every level, but this is an efficiency issue unrelated to the validity. Incremental pro-
jection outputs bases of polynomials known to be new to each level, and disjoint from
previously used projection polynomials in lifting. The rest of the algorithm follows from
Algorithm 52 and Algorithm 51, with traverseCADTreeModify reevaluating the truth
values of cells in the lifted CAD tree for the formula held by I, and instigating merging
in of new geometry via incrementalCADMerge. We receive containers of unevaluated

213

FAIL

FAIL

false . . . FAIL

... FAIL

t1 . . . tk

Figure 5-2: A CAD tree visualising only the truth values of cells, as of first traversal
via Algorithm 52 to a level n = 2 cell c highlighted in red. The tree is assumed to be for
a fully existentially quantified problem. traverseCADTreeModify, and in general any
CAD tree traversal function which involves reevaluation of truth values overwrites truth
values of nearby unprocessed cells in such a way that we cannot propagate erroneous
truth values from those cells in light of the fact they do not evaluate the formula that
we wish them to (yet). The truth values t1, . . . , tk can be any boolean value or FAIL
owing to a past evaluation without being able to interfere with any other truth values
if one is to attempt to call PRPTV on the parent of c.

cells and leaf cells, and any further lifting and curtain recovery resumes in the case
for normal Partial CAD, such that we are eventually able to deduce the quantifier free
formula for I from the container of leaf cells.

Next is an algorithm somewhat analogous to Algorithm 46, but for CAD, to modify
the CAD tree for insertion. Again, this is a recursive tree traversal algorithm acting
root down. Much of its structure and logic is similar to Algorithm 52, but instead
of having the CAD tree evaluate a potentially entirely distinct formula, we perform
insertion of a new formula by atomic position. Hence structural formulae enable us to
retain the information about the evaluation of formulae on cells. Much as the same
case for VTS, the formula is evaluated by recursion, such that each cell evaluates a
formula in terms of just its canonical variable via its sample point.

Proposition 82. Algorithm 53 inserts the formula Ψ′ into the structural formula for
each CADCell in the subtree rooted at c, where Ψ′ is the evaluation of Ψ at the full sample
point of c. In doing so, every CADCell holds truth values for Ψ. Additionally, we merge
in new geometry owing to new projection polynomials owing to Ψ by incBases generated
by Algorithm 50 at every traversed cell via Algorithm 51 incrementalCADmerge.

Proof. 1. Much of the structure of the algorithm is the same as Algorithm 52, ex-
cept for what is done with the formulae associated to each cell. Rather than
replacement of these formulae by another potentially different formula (repur-
posing), we use that we merely need to insert a new formula into the structural
representation of the formula in the cases where we know that the sample point
for this cell is valid, i.e. when we reach cells that have remained evaluated, hence

214

not unevaluated by usage of incrementalCADMerge. By simplifying this unstruc-
tural formula, we receive the cell’s tarski formula, hence able to rededuce its truth
value on the top level formula after insertion.

2. The algorithm also shares similarities with its counterpart for VTS, Algorithm
46. Because of structural formulae, we only need to evaluate the new formula to
insert at the sample point for self, rather than evaluation of a whole formula, and
this evaluation happens via recursion such is the case for Algorithm 52.

3. Due to similarities of the algorithms, most remarks on Algorithm 52 apply sim-
ilarly to Algorithm 52. This includes protection & propagation of truth values
(lines 5 and 5, example viz: Figure 5-2) which occurs for similar reasons as in Al-
gorithm 52. Changing formulae in cells of the tree mean that their truth values
are uncertain until the whole subtree beneath them has been fully traversed.

4. Other almost identical facets as in the case for traverseCADTreeModify are treat-
ment of unevaluated cells, checking for Lazard curtains on existing cells where
there is now a new pivot in projection at the relevant level.

5. No insertion features on the (real) Tarski formula held by the root cell —
QuantifierElimination does this before tree traversal ever happens, because
it is required in order to rededuce equational constraints before incremental pro-
jection.

Via incremental projection and incremental lifting to achieve insertion, we can
realise the counterpart of incremental poly-algorithmic QE via insertion of formulae
for Partial CAD, Algorithm 54.

Proposition 83. Usage of Algorithm 54 CADIncremental achieves the goal of incre-
mental QE by Partial CAD, enabling insertion of a new formula ψ into Φ at atomic po-
sition α with operation oper for a past quantified QE problem Qn−m+1xn−m+1 . . . Qnxn Φ
donating CADData data from that elimination, such that we can produce QE output for
the problem after insertion.

Proof. We insert the new formula into the Tarski formula held by the root cell before
tree traversal and incremental projection, such that we can decompose the new top
level formula after insertion to rededuce equational constraints for passing to incre-
mental projection (doing so without usage of getPolySets is difficult, because we allow
for insertion at arbitrary atomic position). In this case, incremental projection gen-
uinely does feed supersets of past polynomials fed through projection to extend upon
projection. In this way, if there was a polynomial that was previously an equational
constraint, if it is now identified as not an equational constraint due to insertion with
atomic position, usage of Algorithm 50 populates the projection bases with appropriate
polynomials in light of the fact this equational constraint is missing, because the logic
is on the current set of equational constraints, and so if restricted projection cannot
be done with the sets currently held, we receive the necessary polynomials without
restricted projection.

215

Similarly to the case for proof of validity of Algorithm 47, usage of projectionIncre-
mental into traversal of the entire CAD tree via traverseCADTreeInsert is sufficient to
make the CAD tree correct in light of the top level formula after insertion, but may not
necessarily be sufficient to describe quantifier free output. If it isn’t, we commence with
standard regulation lifting into lifting recovery with respect to the held projection bases.

CADIncremental offers the option to completely relift the CAD. This is not strictly
in the spirit of incrementality, but the option is offered to discard the existing tree,
perhaps because it is too fine due to successive usage of incrementality. In this case,
the projection object contains projection bases sufficient to build a sign invariant
CAD for the formula, so a newly lifted tree accommodating the formula after insertion
follows. If the formula to insert contained free variables (k > 0), incremental projection
is canonical, but the past lifted CAD fails to be, so we must relift (see discussion
following Algorithm 41).

5.2.3 Decremental CAD

Lemma 77 implies that modification of the tree in terms of addition or removal of
cells (i.e. CAD tree nodes) is unnecessary when one requires a sign invariant CAD for
pairwise subsets of the two sets of polynomials previously used.

Deletion of a subformula from an original input formula in QE first induces possible
deletion of polynomials in retained projection bases associated with the deleted sub-
formula. This requires a complex data structure for projection that allows for tracking
of “reasons” for any one polynomial’s existence (at a non trivial level). For example,
one can only justify removal of a polynomial if, recursively, its existence can only be
attributed to a polynomial to be removed via decrementality. This is important when
cognizant of the fact that CAD projection sets are really set theoretic, and one should
be careful not to delete, for example, a discriminant that is actually also equal to the
resultant of two polynomials from the previous level. QuantifierElimination does
not feature such a complex data structure, so where deletion is concerned, the projec-
tion bases remain the same. In other words the projection object is untouched. This
also means we cannot “merge” CADCells together, because while CADCells have some
“reasons” for existence via their local cell description, the polynomials from that de-
scription themselves do not have reasons for existence. Decremental CAD here reduces
entirely to modification of the lifted CAD tree via traversal into continued regulation
lifting. Hence, CAD subtrees may be removed due to changing truth values of cells in
light of the modified input formula.

[45] describes a projection data structure that enables decrementality (backtrack-
ing) to the extent that projection polynomials can be removed on removal of constraints.
The projection data structure forms a graph such that the aforementioned “reasons”
are available for projection polynomials. The associated projection operator is the
McCallum projection, and equational constraints are not considered. Equational con-
straints are essentially the frustration such that QuantifierElimination chooses a
caching approach for incremental projection, while [45] can take a set arithmetic ap-
proach. Further, cells associate the polynomials that they were lifted with, to enable

216

more bespoke decrementality on cells than can be provided here. There is potential for
QuantifierElimination to eventually support a more sophisticated projection data
structure similar to [45] that would better accommodate decremental CAD. This would
change the methods to be described in this section significantly, but enable individual
calls to decremental CAD, and subsequent evolutionary operations to suffer less from
“geometry bloat”. In other words, evolutionary CAD can become more “destructive”
instead of merely constructive, where the only “destruction” possible in decremental
CAD at present is upon reevaluation of cells’ truth values and the associated discarding
of CAD subtrees. An example of a proactive destructive operation enabled by a more
sophisticated data structure may include “merging” of existing cells together. Cur-
rently there is no analogy to a proactive destructive operation such as tree pruning in
VTS (Section 5.1.4). Development of QuantifierElimination has mostly focused on
constructive incremental CAD to enable poly-algorithmic QE.

We require two algorithms for decremental QE by CAD. As usual, the first, Al-
gorithm 55, is a tree traversal algorithm acting root down. We perform deletion of a
subformula at a specific atomic position from the structural formula of every CADCell

traversed, such that cells evaluate the top level formula after identical deletion. Much
of the logic is exactly the same as that of Algorithm 52 or 53 to deduce when to trun-
cate a CAD subtree, or identify a cell that now has an indeterminate truth value where
it did not previously. The logic on deduction of curtains from those algorithms does
not need to appear here, because there are no new projection polynomials and hence
no new pivots to check for additional curtains. As discussed above, truncation of the
CAD tree is the only destructive operation, and there exists no proactive “merging” or
similar in this algorithm.

Proposition 84. Usage of Algorithm 48 modifies the CAD subtree rooted at c by dele-
tion of the subformula at atomic position α from the structural (real) Tarski formula
associated with each cell at that subtree. The containers cad and leaves are populated
with unevaluated cells and meaningful leaf cells from the subtree of c respectively.

Proof. 1. Much of the discussion from Algorithm 52 holds similarly due to the sim-
ilar structure of the algorithms. This includes protection of truth values, treat-
ment of unevaluated cells, and recursion to evaluate the repurposing formula are
all once again relevant.

2. Checking for new Lazard curtains is irrelevant because there are guaranteed to
be no new pivot polynomials to check, due to no new projection polynomials.
Likewise, merging in of new geometry is seen to be irrelevant, hence there are no
calls to Algorithm 51.

Proposition 85. Usage of Algorithm 56 CADDecremental achieves the goal of decre-
mental QE by Partial CAD, enabling deletion of a subformula at atomic position α
from Φ for a past quantified QE problem Qn−m+1xn−m+1 . . . Qnxn Φ donating CADData

data from that elimination, such that we can produce QE output for the problem after
this deletion.

217

Proof. Considering QuantifierElimination has no methodology for “pruning” the
projection bases due to removal of subformulae from the original formula, we rely
entirely on usage of Lemma 77, because the past sets of polynomials fed through pro-
jection are guaranteed to be supersets of those required to lift to sign invariance for the
top level formula after deletion. As usual, we move to “correct” the CAD tree such that
it evaluates truth values for the top level formula after deletion via usage of Algorithm
55 to traverse the entire tree, and considering the tree may be insufficient to describe
QE, proceed with regulation lifting into lifting failure recovery. The regulation lifting
may be overly verbose when the projection polynomials are excessively numerous due
to the lack of removal of such, and so the lifting is certainly merely “sufficient”. Alter-
natively one relifts the tree from scratch before lifting failure recovery, again such an
option controlled by the Maple keyword option ‘Relift’.

218

Algorithm 51 Incremental CAD Merge Part 2

27: if pastLB ≤ lb then
28: if pastUB < ub then
29: try
30: (cellright 7→ lowerbound, rtf) ←

refineIsolatingIntervals(cellright 7→ lowerbound, rtf
)

31: cellleft 7→ upperbound← cellright 7→ lowerbound
32: b′ ← the polynomial from rtf
33: (lb, ub) ← the interval from rtf
34: (pastLB, pastUB) ← the interval from

cellright 7→ lowerbound
35: if c 7→ children[i+ 1] 7→ local index mod 2 = 1 then
36: cellcentral 7→ lowerbound← cellright 7→ lowerbound
37: end if
38: i++ . Because if the above succeeded, lb > pastUB
39: catch “Roots the same”:
40: dontAdd← true
41: end try
42: else
43: try
44: (cellright 7→ lowerbound, rtf) ←

refineIsolatingIntervals(cellright 7→ lowerbound, rtf
)

45: cellleft 7→ upperbound← cellright 7→ lowerbound
46: b′ ← the polynomial from rtf
47: (lb, ub) ← the interval from rtf
48: (pastLB, pastUB) ← the interval from

cellright 7→ lowerbound
49: if c 7→ children[i+ 1] 7→ local index mod 2 = 1 then
50: cellcentral 7→ lowerbound← cellright 7→ lowerbound
51: end if
52: catch “Roots the same”:
53: dontAdd← true
54: end try
55: end if
56: elseif pastLB ≤ ub then
57: try
58: (rtf, cellright 7→ lowerbound)← refineIsolatingIntervals(

rtf, cellright 7→ lowerbound)
59: cellleft 7→ upperbound← cellright 7→ lowerbound
60: b′ ← the polynomial from rtf
61: (lb, ub) ← the interval from rtf
62: (pastLB, pastUB) ← the interval from

cellright 7→ lowerbound

219

Algorithm 51 Incremental CAD Merge Part 3

63: if c 7→ children[i+ 1] 7→ local index mod 2 = 1 then
64: cellcentral 7→ lowerbound← cellright 7→ lowerbound
65: end if
66: catch “Roots the same”:
67: dontAdd← true
68: end try
69: end if
70: end if
71: until dontAdd or (i = 1 or lb > self 7→ children[i]7→ lowerbound) and

(i > nc− pastInc or
ub > self 7→ children[i]7→ upperbound)

72: if not dontAdd then
73: mRtf ← RootOf(T [b′], index = real[j]). Real algebraic function for

new root
74: if sections then
75: newCell← CADCell(x = mRtf, c, lvl, cellleft 7→ local index + 1,

false, rtf)
76: Insert newCell at position i+ 1 in c 7→ children . To keep child

cells sorted, we do this manually
77: end if
78: Let crRtf be the real algebraic function describing the upper bound

of cellright
79: if nc ≤ i then . edge case, construct “rightmost” cell
80: if bounds were passed then
81: newCell← CADCell(mRtf < x, c, lvl,

cellleft 7→ local index + 2, false, rtf, bounds[2])
82: else
83: newCell← CADCell(mRtf < x, c, lvl,

cellleft 7→ local index + 2, false, rtf, ∞)
84: end if
85: else
86: newCell← CADCell(mRtf < x ∧ x < crRtf, c, lvl,

cellleft 7→ local index + 2, false, rtf, cellright 7→ lowerbound)
87: end if
88: replaceUpperBound(cellleft, rtf, mRtf)
89: Insert newCell at position i+ newInc in c 7→ children . To keep the

child cells c 7→ children sorted, we do this manually
90: for k from i+ newInc + 1 to |c 7→ children| do
91: c 7→ children[k] 7→ local index += 2
92: end for
93: end if
94: end for
95: end for
96: end procedure

220

Algorithm 52 Repurposing of a CAD Tree for a different formula

Input: self a CADCell to modify, cad a QEContainer for unevaluated cells, leaves
a QEContainer for meaningful leaf cells, problemCells a QEContainer for
cells with lifting failures, quants an Array of the quantifiers Qn−m+1, . . . , Qn,
vars an Array of the variables for the problem x1, . . . , xn, m the number of
quantifiers, n the number of variables, incBases an Array of bases of
polynomials coprime to those used in the existing projection for this CAD, Ψ
the new formula to repurpose this cell with, newOpen boolean flag dictating
if incrementalCADMerge only builds “open” new geometry, newPivots an
Array of boolean flags representing if a new pivot was introduced per every
canonical CAD projection level, bases the projection object for the CAD

Output: No meaningful return, but self modified in place (and via traversal, the
CAD subtree with root self modified in place)

1: procedure traverseCADTreeModify(self, cad, leaves, problemCells,
quants, vars, m, n, incBases, Ψ, newOpen, newPivots, bases)

2: if self 7→ level = 0 then
3: self 7→ tarski formula← Ψ
4: Unassign self 7→ truth value
5: for i from 2 to |self 7→ children| do
6: self 7→ children[i] 7→ truth value← FAIL
7: end for
8: incrementalCADMerge(self, incBases[1], vars[1], 1, newOpen)
9: for c in self 7→ children do

10: traverseCADTreeModify(c, cad, leaves, problemCells, quants, vars, m,
n, incBases, Ψ, newOpen)

11: end for
12: elseif self 7→ sample point is unset or self 7→ tarski formula is unset then
13: Unassign self 7→ truth value
14: try
15: if evalAndSetTruthValue(self, leaves) = FAIL then
16: Add self to cad
17: return
18: else
19: return
20: end if
21: catch “Could not deduce sign”:
22: Add [self,“Could not deduce sign”] to problemCells
23: return
24: end try
25: else
26: if n > 1 and self 7→ level < n and newPivots[self 7→ level + 1] and

detectLazardCurtain(self, bases) then
27: Unevaluate self by discarding its truth value, tarski formula,

tarski formula structural, children
28: Add [self,“Lazard curtain”] to problemCells
29: return

221

Algorithm 52 Repurposing of a CAD Tree, Part 2

30: end if
31: try
32: self 7→ tarski formula← evaluateTFArrayAtSP(Ψ, self 7→ sample point

)
33: catch “Could not deduce sign”:
34: Add [self,“Could not deduce sign”] to problemCells
35: return
36: end try
37: if self 7→ tarski formula is a boolean value then
38: self 7→ truth value← self 7→ tarski formula
39: Unassign self 7→ children
40: Add self to leaves
41: return
42: else
43: Unassign self 7→ truth value
44: if self 7→ children is an Array then
45: lvl← self 7→ level + 1
46: x← vars[lvl]
47: SP← GetSamplePoints(self) . Full sample point of self
48: (B, T) ← univariateBasisAtLazard(incBases[lvl], c)
49: incrementalCADMerge(self, B, T , x, lvl, newOpen)
50: for i from 2 to |self 7→ children| do
51: self 7→ children[i] 7→ truth value← FAIL
52: end for
53: for c in self 7→ children do
54: traverseCADTreeModify(c, cad, leaves, problemCells, quants,

vars, m, n, incBases, self 7→ tarski formula, newOpen)
55: end for
56: else
57: Add self to cad
58: return
59: end if
60: end if
61: end if
62: PRPTV(self, quants, m, n, cad, leaves, problemCells)
63: return
64: end procedure

222

Algorithm 53 Traversal of a CAD tree inserting a formula at a certain atomic position
in the Tarski formula for every cell

Input: self a CADCell to perform formula insertion on, cad a QEContainer for
unevaluated cells, leaves a QEContainer for leaf cells, problemCells a
QEContainer for cells where lifting failed, quants an Array of the quantifiers
Qn−m+1, . . . , Qn, vars an Array of the variables for the problem x1, . . . , xn,
m the number of quantifiers, n the number of variables, incBases an Array of
bases of polynomials coprime to those used in the existing projection for this
CAD, operation, Ψ the formula at the top level to insert, atpos, newOpen,
boolean flag representing whether incrementalCADMerge should build
“open” new geometry only, newPivots an Array of boolean flags representing
if a new pivot was introduced per every canonical CAD projection level,
bases the projection object for the CAD

Output: No meaningful return, but self modified in place (and via traversal, the
subtree with root self modified in place)

1: procedure traverseCADTreeInsert(self, cad, leaves, problemCells, quants,
vars, m, n, incBases, operation, Ψ, atpos, newOpen, newPivots, bases)

2: if self 7→ level = 0 then
3: self 7→ tarski formula← insertFormula(self 7→ tarski formula, operation,

Ψ, atpos)
4: Unassign self 7→ truth value
5: for i from 2 to |self 7→ children| do . Protection of truth values
6: self 7→ children[i] 7→ truth value← FAIL
7: end for
8: incrementalCADMerge(self, incBases[1], vars[1], 1, newOpen)
9: for c in self 7→ children do

10: traverseCADTreeInsert(c, cad, leaves, problemCells, quants, vars, m,
n, incBases, oper, Ψ, atpos, newOpen, newPivots, bases)

11: end for
12: elseif self 7→ sample point is unset or self 7→ tarski formula is unset then
13: Unassign self 7→ truth value
14: try
15: if evalAndSetTruthValue(self, leaves) = FAIL then
16: Add self to cad
17: return
18: else
19: return
20: end if
21: catch “Could not deduce sign”:
22: Add [self,“Could not deduce sign”] to problemCells
23: return
24: end try
25: else
26: if n > 1 and self 7→ level < n and newPivots[self 7→ level + 1] and

detectLazardCurtain(self, bases) then

223

Algorithm 53 Traversal of a CAD tree to perform insertion of a new subformula, Part
2

27: Unevaluate self by discarding its truth value, tarski formula,
tarski formula structural, children

28: Add [self,“Lazard curtain”] to problemCells
29: return
30: end if
31: Let α be self 7→ sample point
32: try
33: subbed← evaluateTFArrayAtSP(Ψ, α)
34: catch “Could not deduce sign”:
35: Add [self,“Could not deduce sign”] to problemCells
36: return
37: end try
38: self 7→ tarski formula structural← insertFormula(

self 7→ tarski formula structural, operation, atpos)
39: if self 7→ tarski formula is a boolean value then
40: self 7→ truth value← self 7→ tarski formula
41: Unassign self 7→ children
42: Add self to leaves
43: return
44: else
45: Unassign self 7→ truth value
46: if self 7→ children is an Array then
47: lvl← self 7→ level + 1
48: x← vars[lvl]
49: SP← GetSamplePoints(self) . Full sample point of self
50: (B, T) ← univariateBasisAtLazard(incBases[lvl], c)
51: incrementalCADMerge(self, B, T , x, lvl, newOpen)
52: for i from 2 to |self 7→ children| do . Protection of truth values
53: self 7→ children[i] 7→ truth value← FAIL
54: end for
55: for c in self 7→ children do
56: traverseCADTreeInsert(c, cad, leaves, problemCells, quants,

vars, m, n, incBases, oper, self 7→ tarski formula, atpos,
newOpen, newPivots, bases)

57: end for
58: else
59: Add self to cad
60: return
61: end if
62: end if
63: end if
64: PRPTV(self, quants, m, n, cad, leaves, problemCells)
65: return
66: end procedure

224

Algorithm 54 Incremental QE by pure Partial CAD, via insertion of a new formula
at a certain atomic position

Input: data CADData for a previous computation solving
Qn−m+1xn−m+1 . . . Qnxn Φ, “oper” a boolean operator — either And or Or, α
the atomic position to insert at, ψ the incoming formula to insert into Φ at
atomic position α with operation oper, a myriad of CAD keyword options
such as “UseGroebner”, “UseEquations”, “PropagateECs” related to
projection, and Relift a boolean flag dictating if the user wants the CAD to
be relifted, OpenCAD a boolean flag via keyword option representing if the
user requests only sectors to be lifted

Output: General QE output from CAD obliging however many output
arguments requested (anything up to and including witnesses, quantifier free
output, and CADData)

1: procedure CADIncremental(data, oper, α, ψ, UseGroebner, UseEquations,
PropagateECs, OpenCAD)

2: k ← the number of new variables contained in ψ not contained in the variables
for data . Such variables are taken to be free variables

3: if k > 0 then
4: Sort the new variables [y1, . . . , yk] from ψ by an appropriate heuristic such

as the Brown heuristic or ECHeuristic using A and E, and prepend
them to the past variable ordering data 7→ Vars = [x1, . . . , xn] to
receive vars

5: end if
6: Let data 7→ RootCell be the root cell for the past QE computation, and

data 7→ Bases the projection object for the past computation
7: Insert Ψ at atomic position atpos with operation oper in

data 7→ RootCell 7→ tarski formula, inplace
8: (A, E) ← getPolySets(data 7→ RootCell 7→ tarski formula)
9: (incBases, newPivots) ← projectionIncremental(data 7→ Bases, A, E, vars,

n+ k, 0, k, UseGroebner, PropagateECs, UseEquations) . Algorithm 50
10: problemCells← an empty container
11: if Relift or k > 0 then
12: data 7→ RootCell← CADCell(data 7→ RootCell 7→ tarski formula) . Such

that we receive a fresh root cell without child cells
13: cad← a container containing data 7→ RootCell
14: leaves← an empty container
15: localopen← OpenCAD and hasAllStrongRelations(

data 7→ RootCell 7→ tarski formula)
16: else
17: localopen← OpenCAD and hasAllStrongRelations(ψ)
18: if not localopen and Open CAD used before for data then
19: ERROR — the lifting may fail to deduce QE due to lack of sections

(proof of Proposition 83)
20: end if

225

Algorithm 54 Incremental CAD by Pure Partial CAD, Part 2

21: traverseCADTreeInsert(data 7→ RootCell, cad, leaves, problemCells,
[Qn−m+1, . . . , Qn], vars, m, n+ k, incBases, oper, Ψ, atpos, newPivots,
data 7→ Bases) . Algorithm 53

22: end if
23: Code Fragment 28 (regulation Partial CAD lifting), applied in an evolutionary

context to the relevant variables
24: Code Fragment 35 (lifting failure recovery by curtain decomposition), applied

in an evolutionary context to the relevant variables
25: return QE output dependent on how many output arguments requested
26: end procedure

226

Algorithm 55 Traversal of a CAD tree to perform deletion of a formula at a particular
atomic position from the Tarski formula held by each cell

Input: self a CADCell to perform formula insertion on, cad a QEContainer for
unevaluated cells, leaves a QEContainer for leaf cells, problemCells a
QEContainer for cells where lifting failed, quants an Array of the quantifiers
Qn−m+1, . . . , Qn, vars an Array of the variables for the problem x1, . . . , xn,
m the number of quantifiers, n the number of variables, atpos

Output: No meaningful return, but self modified in place (and via traversal, the
subtree with root self modified in place)

1: procedure traverseCADTreeDelete(self, cad, leaves, problemCells, quants,
vars, m, n, atpos)

2: if self 7→ level = 0 then
3: Delete the subformula at atomic position atpos from self 7→ tarski formula
4: Unassign self 7→ truth value
5: for i from 2 to |self 7→ children| do . Protection of truth values
6: self 7→ children[i] 7→ truth value← FAIL
7: end for
8: for c in self 7→ children do
9: traverseCADTreeDelete(c, cad, leaves, problemCells, quants, vars, m,

n, atpos)
10: end for
11: elseif self 7→ sample point is unset or self 7→ tarski formula is unset then
12: Unassign self 7→ truth value
13: try
14: if evalAndSetTruthValue(self, leaves) = FAIL then
15: Add self to cad
16: return
17: else
18: return
19: end if
20: catch “Could not deduce sign”:
21: Add [self,“Could not deduce sign”] to problemCells
22: return
23: end try

227

Algorithm 55 Traversal of a CAD tree to perform deletion of a formula at a particular
atomic position, Part 2

24: else
25: self 7→ tarski formula structural ← insertFormula(

self 7→ tarski formula structural, operation, atpos)
26: Delete the subformula at atomic position atpos from

self 7→ tarski formula structural
27: self 7→ tarski formula← simplify(self 7→ tarski formula structural)
28: if self 7→ tarski formula is a boolean value then
29: self 7→ truth value← self 7→ tarski formula
30: Unassign self 7→ children
31: Add self to leaves
32: return
33: else
34: Unassign self 7→ truth value
35: if self 7→ children is an Array then
36: for i from 2 to |self 7→ children| do . Protection of truth values
37: self 7→ children[i] 7→ truth value← FAIL
38: end for
39: for c in self 7→ children do
40: traverseCADTreeDelete(c, cad, leaves, problemCells, quants,

vars, m, n, newOpen)
41: end for
42: else
43: Add self to cad
44: return
45: end if
46: end if
47: end if
48: PRPTV(self, quants, m, n, cad, leaves, problemCells)
49: return
50: end procedure

228

Algorithm 56 Decremental QE by Partial CAD, by deletion of a formula at a certain
atomic position

Input: data the CADData from a previous QE computation by Partial CAD for
Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn), α the atomic position of the
subformula to delete from Φ, “Relift” a boolean flag dictating if the user
requests the CAD tree to be relifted, “OpenCAD” a boolean flag via keyword
option representing if the user requests only sectors to be lifted

Output: General QE output from CAD obliging however many output
arguments requested (anything up to and including witnesses, quantifier free
output, and CADData)

1: procedure CADDecremental(data, α, Relift, OpenCAD)
2: Let data 7→ RootCell be the root cell for the previous QE computation
3: problemCells← an empty container
4: if Relift then
5: Ψ← the formula resulting from deletion of the subformula at atomic

position α from data 7→ RootCell 7→ tarski formula
6: data 7→ RootCell CADCell(Ψ)
7: cad← a container containing data 7→ RootCell
8: leaves← an empty container
9: else

10: cad← an empty container
11: leaves← an empty container
12: traverseCADTreeDelete(data 7→ RootCell, cad, leaves, problemCells,

[Qn−m+1, . . . , Qn], [x1, . . . , xn], m, n, α) . Algorithm 55, and the
deletion at the root cell happens in first call

13: end if
14: localopen← OpenCAD and hasAllStrongRelations(

data 7→ RootCell 7→ tarski formula)
15: Code Fragment 28 (regulation Partial CAD lifting), applied in an evolutionary

context to data
16: Code Fragment 35 (lifting failure recovery by curtain decomposition), applied

in an evolutionary context to data
17: return QE output dependent on how many output arguments requested
18: end procedure

229

Chapter 6

Other Features of the Software

A software demo demonstrating many of the features mentioned in this section, in-
cluding working with CADData, and the subpackage QuantifierTools can be found at
[67].

6.1 The Subpackage QuantifierTools

QuantifierTools is a Maple subpackage of QuantifierElimination intended to make
usage of QE more tractable, especially in terms of pedagogy. It attempts to extend
Maple’s status as a mathematical learning tool and toolbox. It features several func-
tions that act on, manipulate, or produce Tarski-like formulae (i.e. rational or real
Tarski formulae via Definitions 6 or 32):

• ConvertRationalConstraintsToTarski,

• ConvertToPrenexForm,

• AlphaConvert,

• GetAllPolynomials,

• NegateFormula,

• GetUnquantifiedFormula,

• GetEquationalConstraints,

• and SuggestCADOptions.

ConvertToPrenexForm will convert any rational Tarski formula expressible via
Maple’s inert operators to prenex form in the spirit of Definition 4, e.g. ∀x P (x) ∧
∀x Q(x) 7→ ∀x∀x1 P (x) ∧ Q(x1). Prenex conversion may involve alpha conversion
to resolve conflicts between variables. Pure alpha conversion without the prenex
conversion of moving of quantifiers is implemented via AlphaConvert, under which
∀x P (x)∧ ∀x Q(x) 7→ ∀x P (x)∧ ∀x1 Q(x1), hence renaming one of the variables. New

230

variables introduced in this way are generally indexed versions of those variables that
had conflicts. GetAllPolynomials will return a set or list of the polynomials from all
the constraints in a rational Tarski formula, for the purposes of passing to functions
performing full CAD such as QuantifierElimination’s CylindricalAlgebraicDecom-
pose, or the similarly named function below RegularChains. GetUnquantifiedFormula
will remove all quantifiers from any rational Tarski formula. NegateFormula performs
negation of a rational Tarski formula, pushing all instances of negation to the leaves
of the expression (that is distributing ¬ via De Morgan’s laws, such that ¬ does not
manifest in the output).

ConvertRationalConstraintsToTarski is a function that will convert rational func-
tions (of polynomials) within constraints to the equivalent Tarski formulae, i.e. taking
formulae from Definition 6 to Definition 32. As many problems may arise as Ratio-
nal Tarski formulae rather than (real) Tarski formulae, this is intended to encourage
conversion of such problems to the conventional Tarski framework such that they are
amenable as input to QE packages such as QuantifierElimination. Conversion of
rational constraints to equivalent Tarski formulae will result in formulae on the numer-
ators and denominators of such rational constraints, especially conditions of the sign
of the denominators. For example

x

y
< 0 7→ x < 0 ∧ y > 0 ∨ x > 0 ∧ y < 0

where it is clear that on the right hand side y being identically 0 is excluded, which
would result in a singularity on the left hand side.

GetEquationalConstraints will return a set of polynomials of all logically implied
equational constraints from an input formula able to be deduced by
QuantifierElimination (Section 3.7). Such a returned set coincides entirely with
what QuantifierElimination would identify as equational constraints for projection
with equational constraint optimisations — in other words, the set E from Algorithm
21 is returned by this function.

SuggestCADOptions is a function to easily realise the performance increases asso-
ciated with the lifting related optimisations of Sections 3.5 and 3.6 (OpenCAD and
lifting constraints). By examining a (quantified or unquantified) real Tarski formula
intended for CAD input, SuggestCADOptions can provide a recommended sequence of
arguments to pass to a QuantifierElimination CAD function such that lifting is less
costly, omitting cells with less meaning for the associated problem. SuggestCADOp-
tions provides the recommended values for the keyword options ‘LiftingConstraints’
and ‘OpenCAD’, which are keyword options for all top level CAD procedures offered
by QuantifierElimination, such as CylindricalAlgebraicDecompose or PartialCylin-
dricalAlgebraicDecompose. Of course the first argument to return by SuggestCADOp-
tions is the input formula, potentially modified as a result of extraction of lifting con-
straints as to avoid their use in projection. The remainder of the returned sequence is
keyword options for ‘LiftingConstraints’ and ‘OpenCAD’. The accepted values for
‘LiftingConstraints’ are a set of lifting constraints (Definition 43), or the symbol
‘positive’, meaning “build in Rn+”, which is not explicitly ever returned as part of
output of SuggestCADOptions, in lieu of the equivalent {x1 > 0, . . . , xn > 0}. By

231

default the value of ‘LiftingConstraints’ is the empty set. The accepted value for
‘OpenCAD’ is either true or false, and is by default false. If passed a conjunction with-
out universal quantifiers, SuggestCADOptions will extract all lifting constraints from
the formula as an appropriate Maple set to pass for ‘LiftingConstraints’ (hence
the output conjunction has those necessarily top level constraints removed). Mean-
while, it uses Algorithm 19 on the unquantified part of the formula to deduce if Open
CAD would be appropriate due to lack of any weak relations providing rationale for
production of sections. If it is, ‘OpenCAD’ = true appears in the returned sequence,
else we see ‘OpenCAD’ = false. Figure 6-1 demonstrates usage of SuggestCADOptions
producing non trivial output for relevant examples from this project’s QE example
database in Maple. SuggestCADOptions allows for easy usage of the OpenCAD and
lifting constraint optimisations for users without insisting on usage of their potentially
“destructive” CAD properties by default, because usage of either option in a non triv-
ial way may omit production of cells of the CAD that may be desired for inspection
by the user via CADData. Usage of SuggestCADOptions does not in itself deduce if
extracted lifting constraints from a formula are intrinsically unsatisfiable (i.e. false) —
this deduction lies with the parsing of lifting constraints by manageLiftingConstraints
(Algorithm 20) within the ensuing CAD call.

6.2 Other Features

Querying properties of CAD via CADData

Being largely object oriented, QuantifierElimination allows for querying of CADData
and CADCell objects for various properties. One may:

• Request the cell containing a point via GetCellContainingPoint to return a
CADCell object to query, or simply its description as an extended Tarski for-
mula via GetCellDescriptionContainingPoint. The cell may not be unique if the
point is under-specified, i.e. has fewer than n coordinates. It may not be possible
to find a satisfactory cell if the CAD omits cells due to usage of lifting constraints
or OpenCAD.

• Use GetAllLeafCells to acquire a list of all leaf cells from a CAD, potentially
per truth value via passing e.g. ‘TruthValue’ = true. The function Num-
berOfLeafCells enumerates the number of leaf cells in the CAD, and also accepts
the keyword option ‘TruthValue’ to only enumerate the number of leaf cells
with a specific truth value. The keyword option ‘TruthValue’ is only intelligible
whenever truth values were relevant for the CAD (the CADData must have been
generated from usage of PartialCylindricalAlgebraicDecompose).

• Query the sign of a polynomial on a cell via SignOfPolynomialOnCell. Any cell
is only guaranteed sign invariant on polynomials from the CADData’s projection
bases, so the polynomial passed must factor into constituents from said bases
for this function to be correct. We can check that the factors are contained
in the projection bases more efficiently by only checking the bases of the same
polynomial level as each factor.

232

>
e
x

p
r

:=
Q

E
E

x
a
m

p
le

s
[

‘
C

o
ll

is
io

n
’

];

ex
p
r

:=
∃y
∃x
∃t

(x
−
t)

2

4
+

(y
−

1
0
)2
−

1
=

0
∧

(−
a
t+

x
)2

4
+

(−
a
t

+
y
)2
−

1
=

0
∧

0
<
t
∧

0
<
a

>
Q

u
a

n
t
if

ie
r
T

o
o

ls
:−

S
u

g
g

e
st

C
A

D
O

p
ti

o
n

s
(

e
x

p
r

)
;

∃y
∃x
∃t
t2
−

2
x
t

+
x
2

+
4
y
2
−

80
y

+
39

6
=

0
∧

5
a
2
t2
−

2
a
tx
−

8
a
ty

+
x
2

+
4
y
2
−

4
=

0,
L

if
ti

n
gC

o
n

st
ra

in
ts

=
{−
a
<

0,
−
t
<

0}
,

O
pe

n
C

A
D

=
fa

ls
e

>
a

li
a

s
(

R
1

=
R

o
o

tO
f(

5
∗

Z
ˆ

2
−

1
2
∗

Z
+

6
,

7
0

/
1

0
..

7
2

/
1

0
)

)
:

>
a

li
a

s
(

R
2

=
R

o
o

tO
f(

5
∗

Z
ˆ

2
−

1
2
∗

Z
+

6
,

1
6

8
/

1
0

..
1

7
0

/
1

0
)

)
:

>
P

a
r
t
ia

lC
y

li
n

d
r
ic

a
lA

lg
e

b
r
a

ic
D

e
c

o
m

p
o

s
e

(
e
x

p
r

)
;

a
=

R
1
∨

R
1
<
a
∧
a
<

5 7
∨
a

=
5 7
∨

5 7
<
a
∧
a
<

1
∨
a

=
1
∨

1
<
a
∧
a
<

5 3
∨
a

=
5 3
∨

5 3
<
a
∧
a
<

R
2
∨
a

=
R

2

>
e
x

p
r

:=
Q

E
E

x
a
m

p
le

s
[

‘
B

a
ll

a
n

d
C

ir
c

u
la

r
C

y
li

n
d

e
r

’
];

ex
p
r

:=
∃z
∃x
∃y

x
2

+
y
2

+
z
2
<

1
∧
x
2

+
(y

+
z
−

2
)2
<

1

>
Q

u
a

n
t
if

ie
r
T

o
o

ls
:−

S
u

g
g

e
st

C
A

D
O

p
ti

o
n

s
(

e
x

p
r

)
;

∃z
∃x
∃y

x
2

+
y
2

+
z
2
<

1
∧
x
2

+
y
2

+
2
y
z

+
z
2
−

4
y
−

4
z
<
−

3,
L

if
ti

n
gC

o
n

st
ra

in
ts

=
{}
,

O
pe

n
C

A
D

=
tr

u
e

>
P

a
r
t
ia

lC
y

li
n

d
r
ic

a
lA

lg
e

b
r
a

ic
D

e
c

o
m

p
o

s
e

(
%

)
;

tr
u

e

F
ig

u
re

6
-1

:
U

sa
ge

o
f

S
u

gg
es

tC
A

D
O

p
ti

o
n

s
to

d
ed

u
ce

su
gg

es
te

d
ke

y
w

or
d

op
ti

on
ar

gu
m

en
ts

as
so

ci
at

ed
w

it
h

li
ft

in
g

op
ti

m
is

at
io

n
s

(O
p

en
C

A
D

,
S

ec
ti

o
n

3
.5

,
li

ft
in

g
co

n
st

ra
in

ts
,

S
ec

ti
on

3.
6)

to
p

as
s

to
P

ar
ti

al
C

y
li

n
d

ri
ca

lA
lg

eb
ra

ic
D

ec
om

p
os

e
fo

r
q
u

an
ti

fi
ed

fo
rm

u
la

e.
T

h
e

R
o
o
tO

fs
R

1
a
n

d
R

2
re

p
re

se
n
t

d
is

ti
n
ct

ro
ot

s
of

th
e

sa
m

e
p

ol
y
n

om
ia

l
—

th
ei

r
is

ol
at

in
g

in
te

rv
al

s
ar

e
tr

u
n

ca
te

d
to

lo
w

p
re

ci
si

on
fo

r
b

re
v
it

y.

233

• Print the full projection bases for a CAD’s CADData via PrintProjection, including
with highlighting of equational constraints and pivot sets by passing the keyword
option ‘verbose’ = true.

• Examine all the cell descriptions for a CAD for a full description of the geometry
formed by the polynomials (map(GetFullDescription,GetAllLeafCells(C))
where C is the CADData for the CAD). Via Section 3.4, the descriptions are
particular extended Tarski formulae. Real algebraic numbers appear over real
algebraic functions where possible in these descriptions.

This concludes a non exhaustive discussion of features which may even be extended
by further development of QuantifierElimination. These features intend to add to
QuantifierElimination’s goal to provide intuitive input and rich output.

234

Chapter 7

Benchmarking, Examples, and
Comparisons to Other Software

7.1 Example Databases

Members of the SC2, and Computer Algebra community have been keen to have ex-
amples for QE that arise from real world examples, or at the very least examples
that aren’t “cherry-picked” and invented for the purpose of benchmarking. The use
of randomly generated examples can also be contentious. Part of this project of-
fers a Maple script compiling two databases of examples for Quantifier Elimination.
These examples are built in the syntax of Maple, and in particular in the syntax of
QuantifierElimination. Much of this database is adapted from [72], which was orig-
inally a database of examples for pure CAD (with many examples being QE examples
stripped of their quantifiers). This is referred to further as “the QE database”. Fur-
ther examples are added to the database from mechanics applications in [39], and other
examples from real algebraic geometry via [26, 58]. A last example added from real al-
gebraic geometry is the Sharir cube [76]. This is a shape that can be modelled in space
by polynomial constraints. Existence of a point within the shape implies its existence
at all.

An additional database of economics examples is adapted for Maple (with format-
ting intelligible for QuantifierElimination) from [53], and offers a function that can
pose the appropriate QE problems formed by “assumptions” A and “hypotheses” H
in the spirit of [54]. For example, these can be fully universally quantified “theorems”
∀x A(x)⇒ H(x), or fully existentially quantified “examples” ∃x A(x)∧H(x) or “coun-
terexamples” ∃x A(x)∧¬H(x). The formulae themselves are largely linear or at worst
quadratic. The existentially quantified “examples” are referred to as “the Economics
database”, and feature in QE benchmarking.

Lastly, this work also makes use of the example database [34], attributed to SyNRAC

and its developers, referred to as the “SyNRAC database”, featuring QE examples
that can be parsed by Maple in a format intelligible to the SyNRAC package. Other
QE example databases such as Remis [33] exist. Here we only use examples originally
written/stored in Maple (Remis, for example, is for Redlog).

235

The retained CAD example database adapted from [72] is all unquantified, so is
only relevant for benchmarking CAD. The CAD benchmarks also incorporate the QE
examples from the QE and SyNRAC example databases, where they are always treated
as unquantified to enable full scope for variable strategy. This database is referred to
further as “the CAD database”. The CAD benchmarks do not use the economics
database, as these examples are largely highly numerous in the number of variables,
yielding fairly poor data for full CAD. QE benchmarking incorporates examples from
the QE, SyNRAC, and Economics example databases.

There is a repository of data [65] associated with the project, containing:

• The example databases contributed from the project, as files that can be read into
Maple defining tables of examples, and associated functions to build or examine
various examples,

• A .pdf file providing references for all examples from the example databases, and
typesetting of the examples as associated QE problems,

• The benchmarking data produced from the benchmarking of this section as .csvs,
and the Excel workbooks as .xlsx files processing said data into survival plots
for the figures of this section,

• Copies of the survival plots themselves as .png files,

• The bash and Maple scripts used to generate the raw benchmarking data,

• Maple files providing auxiliary tools allowing for conversion of QE formulae be-
tween formats (such as that of SyNRAC, RegularChains, QuantifierElimination,
and QEPCAD B),

• Maple worksheets (and corresponding identical .pdfs of the output) used in soft-
ware demos to demonstrate features of QuantifierElimination at conferences
and other events (a video of the latest software demo is available via [67]),

• Some .pdf files generated from Maple demonstrating case studies on Lazard
curtains generated from an early development build of QuantifierElimination
(matching those from Section 7.2),

• A README file to support the repository and explain the purpose of the afore-
mentioned files further.This README also provides contact details for the author
and information about obtaining the QuantifierElimination package before its
official release.

7.2 Case Studies on Lazard Curtains

The following are case studies of occurrences of Lazard curtains (see Section 3.7.2) on
various examples from the QE example databases used here. Full CAD (via Cylindri-
calAlgebraicDecompose) is used on each example treated as an unquantified formula,
with the variable ordering inherited from usage of ECHeuristic. Multiple equational

236

constraints are used via passing the keyword option ‘UseEquations’ = multiple unless
otherwise stated. All other keyword options, including those related to propagation of
ECs and usage of Gröbner bases are as default unless otherwise stated. The case studies
below were generated with the monomial ordering prod(tdeg(H(x1, . . . , xn−min(n,k))),
plex(xn, . . . , xn−min(n,k)+1)) for Gröbner bases in an early development build of
QuantifierElimination as opposed to the ordering under symmetry as suggested
in Section 3.7.3. However, the discussion about curtains is entirely representative
of the presented projection bases with respect to the associated variable orderings,
and the case studies below could be induced via passing ‘UseGroebner’ = false with
appropriately modified equational constraints within each formula (as can be pro-
duced via GB with the given monomial ordering) when using the latest version of
QuantifierElimination. The accompanying .pdf files in the supporting repository
[65] demonstrate the methodology to generate the data from Maple with
QuantifierElimination. Here, we are interested in the distinctions between point
curtains and non point curtains, and to what extent usage of Algorithm 30 decompose-
CurtainCellsCAD introduced by [56] allows us to recover from point and non point
curtains.

A Real Implicitization Problem

∃u∃v − uv + x = 0 ∧ −uv2 + y = 0 ∧ −u2 + z = 0

For this 5 variable problem, the ordering chosen by ECHeuristic is [u, v, y, z, x].

Multiple Equational Constraints

The full projection bases are:

{vx− y, uv − x,ux− vz}
{−v2z + uy,u2 − z}

{uv2 − y}
{v}
{u}

with equational constraints chosen as pivot highlighted in bold (all the polynomials at
level 5 are the result of Gröbner bases on the original polynomials, which were all ECs).
15 cells with curtains have been collected by the end of standard lifting. The curtain
cells are visualised as Table 7.1. None are identified as point curtains in Algorithm
30, which reconciles with the fact that every cell in Table 7.1 has a neighbour cell also
existing in the table in terms of a perturbed index.

The set of polynomials treated as inequalities at the top level in projection is {vx−
y, uv−x}, which is hence the set BA as input in Algorithm 31. The corresponding sets
resulting from full Lazard projection on this set are:

237

Cell Description Sample Point Cell Index

u = 0 ∧ v = 0 ∧ y = 0 ∧ z < 0 [u = 0, v = 0, y = 0, z = −1] [2, 2, 2, 1]
u = 0 ∧ v = 0 ∧ y = 0 ∧ 0 < z [u = 0, v = 0, y = 0, z = 1] [2, 2, 2, 3]
u = 0 ∧ v = 0 ∧ y = 0 ∧ z = 0 [u = 0, v = 0, y = 0, z = 0] [2, 2, 2, 2]
u = 0 ∧ v < 0 ∧ y < 0 ∧ z = 0 [u = 0, v = −1, y = −1, z = 0] [2, 1, 1, 2]
u = 0 ∧ v < 0 ∧ y = 0 ∧ z = 0 [u = 0, v = −1, y = 0, z = 0] [2, 1, 2, 2]
u = 0 ∧ v < 0 ∧ 0 < y ∧ z = 0 [u = 0, v = −1, y = 1, z = 0] [2, 1, 3, 2]
u = 0 ∧ v = 0 ∧ y < 0 ∧ z = 0 [u = 0, v = 0, y = −1, z = 0] [2, 2, 1, 2]
u = 0 ∧ v = 0 ∧ y < 0 ∧ z < 0 [u = 0, v = 0, y = −1, z = −1] [2, 2, 1, 1]
u = 0 ∧ v = 0 ∧ y < 0 ∧ 0 < z [u = 0, v = 0, y = −1, z = 1] [2, 2, 1, 3]
u = 0 ∧ v = 0 ∧ 0 < y ∧ z < 0 [u = 0, v = 0, y = 1, z = −1] [2, 2, 3, 1]
u = 0 ∧ v = 0 ∧ 0 < y ∧ z = 0 [u = 0, v = 0, y = 1, z = 0] [2, 2, 3, 2]
u = 0 ∧ v = 0 ∧ 0 < y ∧ 0 < z [u = 0, v = 0, y = 1, z = 1] [2, 2, 3, 3]
u = 0 ∧ 0 < v ∧ y < 0 ∧ z = 0 [u = 0, v = 1, y = −1, z = 0] [2, 3, 1, 2]
u = 0 ∧ 0 < v ∧ y = 0 ∧ z = 0 [u = 0, v = 1, y = 0, z = 0] [2, 3, 2, 2]
u = 0 ∧ 0 < v ∧ 0 < y ∧ z = 0 [u = 0, v = 1, y = 1, z = 0] [2, 3, 3, 2]

Table 7.1: Non-point curtains generated for ‘A Real Implicitization Problem’.

{vx− y, uv − x}
∅,

{y, uv2 − y}
{v}
{u}

In particular, the polynomials at level 1 completely coincide, with the innermost recur-
sion on Algorithm 31 taking a set difference to receive the empty set to isolate roots
of, hence building no new geometry as a result. After lifting the 15 cells with curtains
normally in the lifting loop from Algorithm 30, we receive a total of 591 leaf cells.

Single Equational Constraint

The projection bases produced with usage of just a single equational constraint in x
allowed by passing ‘UseEquations’ = ‘single’ are:

{vx− y, uv − x,ux− vz}
{−v2z + uy, u2 − z}
{y, uv2 − y}
{v}
{u}

where one notes an extra contribution of y because of the addition of the trailing
coefficient of −v2z + uy in z. Hence we receive a total of 951 leaf cells, roughly double
of that of the case with multiple equational constraints due to y splitting the real line

238

in half in y. The situation in terms of curtain cells however remains exactly the same
as that for multiple equational constraints.

Ellipse A

∃y ∃x x2+y2−1 = 0∧b2(x−c)2+a2y2−a2b2 = 0∧0 < a∧a < 1∧0 < b∧b < 1∧0 ≤ c∧c < 1

For this 5 variable problem, the ordering chosen by ECHeuristic is [y, x, c, b, a].

Multiple Equational Constraints

The full projection bases are:

{a, a− 1,b2(x− c)2 + a2y2 − a2b2}
{b, b− 1, b− y, y + b, b2c2 − b2cx− b2y2 + y2}
{c, c− 1, c− 2x, cr − 2cx− y2, c2 − 2cx− y2 + 1}

{x, 2x− 1, x2 + y2, y2 + 2x− 1, y2 + 2x− 2,x2 + y2 − 1}
{y, y − 1, y + 1, y2 + 3, 4y2 − 3}

with equational constraints chosen as pivot in bold. This problem is not purely of equa-
tions. The Gröbner basis changes nothing for the equational constraints. 277 curtain
cells that are not point curtains are obtained via standard lifting on this full projection.
They are far too numerous to list in full here, but a sample of them are visualised in
Table 7.2.

There are an additional 36 point curtains identified in Algorithm 30 via the criteria
on neighbour cells. Again, a sample of them are visualised in Table 7.3.

The basis of inequalities BA in Algorithm 30 is this time {a, a − 1}. They are
univariate in the last variable a, hence projection on this set is trivial, and none of the
calls on Algorithm 31 receive any polynomials at all to build geometry around. Having
passed this, after lifting the cells with curtains as standard we receive a total of 92233
leaf cells.

Single Equational Constraint

With just one single equational constraint in a being used due to passing of the keyword
option ‘UseEquations’ = ‘single’, the projection sets become:

{a, a− 1,b2(x− c)2 + a2y2 − a2b2}
{b, b− 1, b− y, y + b, b2c2 − b2cx− b2y2 + y2}
{c, c− 1, c− 2x, cr − 2cx− y2, c2 − 2cx− y2 + 1}

{x, 2x− 1, x2 + y2, y2 + 2x− 1, y2 + 2x− 2, x2 + y2 − 1}
{y, y − 1, y + 1, y2 + 3, y2 − 2, 4y2 + 1, 4y2 − 3, y2 + 1, y2 − 2y + 2, y2 + 2y + 2}

239

C
el

l
D

es
cr

ip
ti

on
S

a
m

p
le

P
o
in

t
C

el
l

In
d

ex

1
<
y
∧

1 2
<
x
∧
c

=
R

o
ot

O
f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

1

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

2

)
[y

=
2,
x

=
2,
c

=
R

o
ot

O
f
(Z

2
−

4
Z
−

3,
−

1
1
6
3
2
8
2
1
4
5
5
5
3
8
0
1
7

1
8
0
1
4
3
9
8
5
0
9
4
8
1
9
8
4
..
−

2
3
2
6
5
6
4
2
9
1
1
0
7
5
9
5
3

3
6
0
2
8
7
9
7
0
1
8
9
6
3
9
6
8

) ,b=
2]

[1
1
,9
,4
,8

]
1
<
y
∧
x

=
1 2
∧
c

=
R

o
ot

O
f
(Z

2
−
y
2
−

Z
+

1
,i

n
d

ex
=

re
al

1

) ∧b
=

R
o
o
tO

f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

2

)
[y

=
2,
x

=
1 2
,c

=
R

o
ot

O
f
(Z

2
−

Z
−

3
,−

5
7
2
9
6
6
7
8
4
8
2
8
1

4
3
9
8
0
4
6
5
1
1
1
0
4
..
−

2
2
9
1
8
6
7
1
3
9
3
0
9
7

1
7
5
9
2
1
8
6
0
4
4
4
1
6

) ,b=
2]

[1
1
,8
,4
,8

]
1
<
y
∧
x

=
1 2
∧
c

=
R

o
ot

O
f
(Z

2
−
y
2
−

Z
+

1
,i

n
d

ex
=

re
al

1

) ∧b
=

R
o
o
tO

f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

1

)
[y

=
2,
x

=
1 2
,c

=
R

o
o
tO

f
(Z

2
−

Z
−

3
,−

5
7
2
9
6
6
7
8
4
8
2
8
1

4
3
9
8
0
4
6
5
1
1
1
0
4
..
−

2
2
9
1
8
6
7
1
3
9
3
0
9
7

1
7
5
9
2
1
8
6
0
4
4
4
1
6

) ,b=
−

2
]

[1
1
,8
,4
,2

]
1
<
y
∧

0
<
x
∧
x
<

1 2
∧
c

=
R

o
o
tO

f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

1

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

2

)
[y

=
2,
x

=
1 3
,c

=
R

o
ot

O
f
(3

Z
2
−

2
Z
−

9,
−

8
4
4
4
1
8
6
7
2
6
6
2
0
8
5
0
5
8
2
6
3

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

1
6
8
8
8
3
7
3
4
5
3
2
4
1
7
0
1
1
6
4
9
9

1
1
8
0
5
9
1
6
2
0
7
1
7
4
1
1
3
0
3
4
2
4

) ,b=
2
]

[1
1
,7
,4
,8

]
1
<
y
∧

0
<
x
∧
x
<

1 2
∧
c

=
R

o
o
tO

f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

1

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

1

) [y
=

2,
x

=
1 3
,c

=
R

o
ot

O
f
(3

Z
2
−

2
Z
−

9
,−

8
4
4
4
1
8
6
7
2
6
6
2
0
8
5
0
5
8
2
6
3

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

1
6
8
8
8
3
7
3
4
5
3
2
4
1
7
0
1
1
6
4
9
9

1
1
8
0
5
9
1
6
2
0
7
1
7
4
1
1
3
0
3
4
2
4

) ,b=
−

2
]

[1
1
,7
,4
,2

]

T
a
b

le
7
.2

:
S

a
m

p
le

of
fi

ve
of

th
e

n
on

p
oi

n
t

cu
rt

ai
n
s

ge
n

er
at

ed
fo

r
‘E

ll
ip

se
A

’.

240

C
el

l
D

es
cr

ip
ti

o
n

S
a
m

p
le

P
oi

n
t

C
el

l
In

d
ex

1
<
y
∧

1 2
<
x
∧
c

=
R

o
ot

O
f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

2

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

2

)
[y

=
2,
x

=
2,
c

=
R

o
ot

O
f
(Z

2
−

4
Z
−

3
,
3
4
2
7
9
5
9
4
1
8
6
1
2
3
6
4
6
4
5
7
7

7
3
7
8
6
9
7
6
2
9
4
8
3
8
2
0
6
4
6
4
..
8
5
6
9
8
9
8
5
4
6
5
3
0
9
1
1
6
1
5
1

1
8
4
4
6
7
4
4
0
7
3
7
0
9
5
5
1
6
1
6

) ,b=
2
]

[1
1,

9,
12
,8

]

R
o
o
tO

f
(4

Z
2
−

3
,
2
5
5
6
0
5
5
8
3
7
5
9
0
8
0
2
4
1
6
2
1

2
9
5
1
4
7
9
0
5
1
7
9
3
5
2
8
2
5
8
5
6
..
5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
6
9

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2

) <y
∧
y
<

1
∧
−
y
2 2

+
1
<
x
∧
c

=
R

o
o
tO

f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

2

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

1

)
[y

=
8 9
,x

=
2,
c

=
R

o
ot

O
f
(8

1
Z

2
−

32
4

Z
+

17
,
2
3
2
9
7
9
3
6
3
6
5
2
5
8
9
8
8
0
0
3
0
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
2
9
1
2
2
4
2
0
4
5
6
5
7
3
7
3
5
0
0
4
1

7
3
7
8
6
9
7
6
2
9
4
8
3
8
2
0
6
4
6
4

) ,b=
−

8 9
]

[9
,1

3,
10
,2

]

0
<
y
∧
y
<

R
o
ot

O
f
(4

Z
2
−

3,
2
5
5
6
0
5
5
8
3
7
5
9
0
8
0
2
4
1
6
2
1

2
9
5
1
4
7
9
0
5
1
7
9
3
5
2
8
2
5
8
5
6
..
5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
6
9

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2

) ∧−
y
2 2

+
1
<
x
∧
c

=
R

o
o
tO

f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

2

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

1

)
[y

=
1 2
,x

=
2,
c

=
R

o
o
tO

f
(4

Z
2
−

1
6

Z
+

3
,
2
7
4
0
1
8
8
6
3
1
2
1
0
1
4
2
0
7

7
2
0
5
7
5
9
4
0
3
7
9
2
7
9
3
6
..
6
8
5
0
4
7
1
5
7
8
0
2
5
3
8
1
5

1
8
0
1
4
3
9
8
5
0
9
4
8
1
9
8
4

) ,b=
−

1 2
]

[7
,1

3,
10
,2

]

y
=

R
o
ot

O
f
(4

Z
2
−

3
,−

5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
5
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

4
0
8
9
6
8
9
3
4
0
1
4
5
2
8
3
8
6
5
9
8
1

4
7
2
2
3
6
6
4
8
2
8
6
9
6
4
5
2
1
3
6
9
6

) ∧−
(R

o
o
tO

f (
4

Z
2
−
3
,−

5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
5
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

4
0
8
9
6
8
9
3
4
0
1
4
5
2
8
3
8
6
5
9
8
1

4
7
2
2
3
6
6
4
8
2
8
6
9
6
4
5
2
1
3
6
9
6
))

2

2
+

1
<
x
∧
c

=
R

o
ot

O
f
(4

Z
2
−

8
Z
x

+
1
,i

n
d

ex
=

re
al

2

) ∧b
=

R
o
ot

O
f
(4

Z
2
−

3
,i

n
d

ex
=

re
al

2

) [y
=

R
o
ot

O
f
(4

Z
2
−

3,
−

5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
5
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

4
0
8
9
6
8
9
3
4
0
1
4
5
2
8
3
8
6
5
9
8
1

4
7
2
2
3
6
6
4
8
2
8
6
9
6
4
5
2
1
3
6
9
6

) ,x
=

2,
c

=
R

o
o
tO

f
(4

Z
2
−

16
Z

+
1
,
1
7
3
1
2
8
7
3
4
6
8
8
8
3

4
3
9
8
0
4
6
5
1
1
1
0
4
..
1
3
8
5
0
2
9
8
7
7
5
1
0
9
1

3
5
1
8
4
3
7
2
0
8
8
8
3
2

) ,b=
−

R
o
o
tO

f
(4

Z
2
−

3
,−

5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
5
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

4
0
8
9
6
8
9
3
4
0
1
4
5
2
8
3
8
6
5
9
8
1

4
7
2
2
3
6
6
4
8
2
8
6
9
6
4
5
2
1
3
6
9
6

)]
[4
,1

1,
10
,6

]

−
1
<
y
∧
y
<

R
o
o
tO

f
(4

Z
2
−

3,
−

5
1
1
2
1
1
1
6
7
5
1
8
1
6
0
4
8
3
2
5
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
−

4
0
8
9
6
8
9
3
4
0
1
4
5
2
8
3
8
6
5
9
8
1

4
7
2
2
3
6
6
4
8
2
8
6
9
6
4
5
2
1
3
6
9
6

) ∧−
y
2 2

+
1
<
x
∧
c

=
R

o
ot

O
f
(Z

2
−

2
Z
x
−
y
2

+
1
,i

n
d

ex
=

re
al

2

) ∧b
=

R
o
ot

O
f
(Z

2
−
y
2
,i

n
d

ex
=

re
al

2

)
[y

=
−

8 9
,x

=
2,
c

=
R

o
o
tO

f
(8

1
Z

2
−

3
24

Z
+

17
,
2
3
2
9
7
9
3
6
3
6
5
2
5
8
9
8
8
0
0
3
0
1

5
9
0
2
9
5
8
1
0
3
5
8
7
0
5
6
5
1
7
1
2
..
2
9
1
2
2
4
2
0
4
5
6
5
7
3
7
3
5
0
0
4
1

7
3
7
8
6
9
7
6
2
9
4
8
3
8
2
0
6
4
6
4

) ,b=
8 9
]

[3
,1

3,
10
,6

]
y

=
−

1
∧

1 2
<
x
∧
c

=
R

o
ot

O
f
(

Z
(

Z
−

2
x

)
,i

n
d

ex
=

re
al

2
)
∧
b

=
R

o
ot

O
f
(Z

2
−

1,
in

d
ex

=
re

al
2

)
[y

=
−

1,
x

=
2,
c

=
4,
b

=
1]

[2
,5
,8
,6

]

T
a
b

le
7
.3

:
S

am
p

le
of

fi
ve

of
th

e
p

oi
n
t

cu
rt

ai
n

s
ge

n
er

at
ed

fo
r

‘E
ll

ip
se

A
’.

241

Cell Description Sample Point Cell Index

t = 0 ∧ 0 < s ∧ r < −s ∧ b = 0 [t = 0, s = 1, r = −2, b = 0] [2, 3, 1, 2]
t = 0 ∧ 0 < s ∧ r = −s ∧ b = 0 [t = 0, s = 1, r = −1, b = 0] [2, 3, 2, 2]
t = 0 ∧ 0 < s ∧ −s < r ∧ b = 0 [t = 0, s = 1, r = 0, b = 0] [2, 3, 3, 2]
t = 0 ∧ s = 0 ∧ 0 < r ∧ b = 0 [t = 0, s = 0, r = 1, b = 0] [2, 2, 3, 2]
t = 0 ∧ s = 0 ∧ r = 0 ∧ b = 0 [t = 0, s = 0, r = 0, b = 0] [2, 2, 2, 2]
t = 0 ∧ s = 0 ∧ r < 0 ∧ b = 0 [t = 0, s = 0, r = −1, b = 0] [2, 2, 1, 2]
t = 0 ∧ s < 0 ∧ −s < r ∧ b = 0 [t = 0, s = −1, r = 2, b = 0] [2, 1, 3, 2]
t = 0 ∧ s < 0 ∧ r = −s ∧ b = 0 [t = 0, s = −1, r = 1, b = 0] [2, 1, 2, 2]
t = 0 ∧ s < 0 ∧ r < −s ∧ b = 0 [t = 0, s = −1, r = 0, b = 0] [2, 1, 1, 2]

Table 7.4: Non-point curtains generated for ‘Hong-90’.

where one notes that the polynomials in y are more numerous as a result due to x2 +
y2−1 not being used in (semi-)restricted projection for x. Only b2(x−c)2+a2y2−a2b2
is used as a pivot for a. There are 5 more polynomials in y on top of the 5 similar
ones in usage of multiple equational constraints. The number of non point curtains
increases to 409, and the number of point curtains increases to 32. This is unsurprising
given the further leaf cells produced via the presence of more univariate polynomials
in y, yielding a total of 123665 level 5 leaf cells.

Hong-90

∃a∃b r + s+ t = 0 ∧ rs+ tr + st− a = 0 ∧ rst− b = 0

Yet another 5 variable problem, the ordering chosen by ECHeuristic is [t, s, r, b, a].

Multiple Equational Constraints

The full projection bases are:

{s2 + st+ t2 + a, t3 + at− b}
{b− t3, s2t + st2 + b}

{r + s + t}
{s, s+ t, s2 + st+ t2}

{t}

and yet again pivot sets are highlighted in bold. Gröbner bases significantly change the
input polynomials, which are all ECs, however the size of that Gröbner basis is still 3.
There are 9 curtain cells to process after standard lifting, visualised as Table 7.4. None
are identified as point curtains in Algorithm 30, which owes to the fact there are packs
of neighbouring cells in the cylinder owing to t = 0, all sharing the element b = 0 in
their sample point, which is sufficient to nullify t3 + at− b, regardless of the value of s
or r, of which there are several identified by root finding.

242

BA, the basis of inequalities from the top level of projection, is {s2 + st+ t2 + a}.
Full Lazard projection on this generates:

{s2 + st+ t2 + a}
∅
∅

{s2 + st+ t2}
{t}

And the set of univariate polynomials in t generated entirely coincides with the
original set of univariates, {t}. Hence, there is no extra geometry to merge at the root
cell, and we commence with standard lifting on the curtain cells to obtain a total of
771 leaf cells.

Single Equational Constraint

Usage of a single rather than multiple equational constraints changes nothing for this
example — the produced projection sets are the same, hence there are the same 771
leaf cells, and the curtains produced the same.

Piano Mover’s Problem (Wang)

∃a ∃b∃c∃d a2+b2 = r2∧0 ≤ a∧b < 0∧1 ≤ c∧d < −1∧c−(1+b)(c−a) = 0∧d−(1−a)(d−b) = 0

Usage of ECHeuristic generates the variable ordering [b, a, r, d, c].

Multiple Equational Constraints

In usage of multiple equational constraints via passing the keyword option ‘UseEquations’

= ‘multiple’, we encounter a level 3 < n−1 = 4 curtain on the level 4 pivot ab−ad−b
on the cell with sample point [b = 0, a = 0, r = 1], cell description b = 0 ∧a = 0 ∧ 0 < r
and full index [4, 2, 3], and hence are unable to produce a Lazard invariant CAD with
multiple equational constraints with this variable ordering.

Single Equational Constraint

Without the danger of production of low level curtains by passing the keyword option
‘UseEquations’ = ‘single’, we avoid the curtain from the above case, but produce
15 level n− 1 = 4 curtain cells. All of them are non point curtains, and are visualised
in Table 7.5, where one can see cell indices are such that all the cells have at least one
neighbour in the table. BA in Algorithm 30 is {c− 1, bc− cd− b− 1, ad− bc+ a+ b}.
Full Lazard projection on this generates the bases:

243

Description Sample Point Cell Index

b = 0 ∧ a = 0 ∧ 0 < r ∧ 0 < d [b = 0, a = 0, r = 1, d = 1] [4, 2, 3, 5]
b = 0 ∧ a = 0 ∧ 0 < r ∧ d = 0 [b = 0, a = 0, r = 1, d = 0] [4, 2, 3, 4]

b = 0 ∧ a = 0 ∧ 0 < r ∧ −1 < d ∧ d < 0 [b = 0, a = 0, r = 1, d = −1
2] [4, 2, 3, 3]

b = 0 ∧ a = 0 ∧ 0 < r ∧ d = −1 [b = 0, a = 0, r = 1, d = −1] [4, 2, 3, 2]
b = 0 ∧ a = 0 ∧ 0 < r ∧ d < −1 [b = 0, a = 0, r = 1, d = −2] [4, 2, 3, 1]
b = 0 ∧ a = 0 ∧ r = 0 ∧ 0 < d [b = 0, a = 0, r = 0, d = 1] [4, 2, 2, 5]
b = 0 ∧ a = 0 ∧ r = 0 ∧ d = 0 [b = 0, a = 0, r = 0, d = 0] [4, 2, 2, 4]

b = 0 ∧ a = 0 ∧ r = 0 ∧ −1 < d ∧ d < 0 [b = 0, a = 0, r = 0, d = −1
2] [4, 2, 2, 3]

b = 0 ∧ a = 0 ∧ r = 0 ∧ d = −1 [b = 0, a = 0, r = 0, d = −1] [4, 2, 2, 2]
b = 0 ∧ a = 0 ∧ r = 0 ∧ d < −1 [b = 0, a = 0, r = 0, d = −2] [4, 2, 2, 1]
b = 0 ∧ a = 0 ∧ r < 0 ∧ 0 < d [b = 0, a = 0, r = −1, d = 1] [4, 2, 1, 5]
b = 0 ∧ a = 0 ∧ r < 0 ∧ d = 0 [b = 0, a = 0, r = −1, d = 0] [4, 2, 1, 4]

b = 0 ∧ a = 0 ∧ r < 0 ∧ −1 < d ∧ d < 0 [b = 0, a = 0, r = −1, d = −1
2] [4, 2, 1, 3]

b = 0 ∧ a = 0 ∧ r < 0 ∧ d = −1 [b = 0, a = 0, r = −1, d = −1] [4, 2, 1, 2]
b = 0 ∧ a = 0 ∧ r < 0 ∧ d < −1 [b = 0, a = 0, r = −1, d = −2] [4, 2, 1, 1]

Table 7.5: The non point curtains generated for ‘Piano Movers Problem (Wang)’.

{c− 1, bc− cd− b− 1, ad− bc+ a+ b}
{b− d, d+ 1, ab− ad− b, ad+ a+ b}

∅
{a, a− 1, a+ b, ab+ a− b, ab+ a+ b}

{b+ 2, 2b+ 1}

while the original projection bases are:

{c− 1, bc− cd− b− 1, ad− bc+ a+ b,ab + bc + a}
{b− d, d+ 1, ab− ad− b, ad+ a+ b}

{a2 + b2 − r2}
{a, a− 1, a2 + b2, ab+ a− b}
{b, b+ 1, b2 + 1, b2 + 2b+ 2}

with the one equational constraint used as pivot highlighted in bold. In particular
{b + 2, 2b + 1} \ {b, b + 1, b2 + 1, b2 + 2b + 2} = {b + 2, 2b + 1}, and hence we obtain
the first example where there is a non trivial iteration of Algorithm 31 at level 1. As
a result of recursive curtain decomposition, we receive 4, 18, 18, and 140 new cells per
level. In total we receive 6501 leaf cells after conclusion of Algorithm 30.

7.3 Case Studies on the Poly-algorithmic Methodology

We investigate case studies on the poly-algorithmic method for examples where it is
relevant. We mainly investigate this in terms of the statistics for the CAD(s) used.

244

Other than the clear varying of the keyword option ‘HybridMode’ to control usage of
the poly-algorithm, all other options are as default for QuantifierEliminate, most rel-
evant being ‘UseEquations’ = ‘multiple’, ‘UseGroebner’ = true, ‘MaxVSDegree’
= 2.

The CAD statistics are deduced from usage of userinfo in Maple — it is sufficient to
set infolevel[QuantifierEliminate] := 2, for example, to deduce such statistics
via the associated information printed. The number of leaf cells as a statistic refers to
the number of leaf cells upon solution of the last IQER.

All examples are from the QE example database unless otherwise stated.

Piano Movers Problem (Wang)

∃a∃b∃c ∃d a2 + b2 = r2 ∧ 0 ≤ a ∧ b < 0 ∧ 1 ≤ c ∧ d < −1 ∧ c− (1 + b)(c− a) = 0∧
d− (1− a)(d− b) = 0

The problem is homogeneously existentially quantified. VTS can eliminate 3 out
of 4 quantifiers, but the common polynomial −a6 + a4r2 + 2 a5 − 2 a3r2 − 2 a4 + a2r2

appears in all resulting IQERs of level 3, which factors into the irreducibles a2(a4 −
a2r2 − 2 a3 + 2 ar2 + 2 a2 − r2), of which one is degree 4, and so intraversible for VTS.

The first IQER passed to CAD (QEPCADL) forms the QE problem:

∃a a2 − r2 ≤ 0 ∧ a2 − r2 6= 0 ∧ a 6= 0 ∧ −a ≤ 0 ∧ a2 − r2 < 0 ∧ ((a3 − ar2 − a2 + r2 ≤ 0∧
− a6 + 2 a4r2 − a2r4 + 2 a5 − 4 a3r2 + 2 ar4 − 2 a4 + 3 a2r2 − r4 ≤ 0) ∨ (a ≤ 0∧
a6 − 2 a4r2 + a2r4 − 2 a5 + 4 a3r2 − 2 ar4 + 2 a4 − 3 a2r2 + r4 ≤ 0)) ∧ ((a2 < 0∧
− a6 + a4r2 + 2 a5 − 2 a3r2 − 2 a4 + a2r2 < 0) ∨ (−a2 + a ≤ 0 ∧ (a2 < 0∨
a6 − a4r2 − 2 a5 + 2 a3r2 + 2 a4 − a2r2 < 0)))

resulting in a CAD using 10 polynomials in projection (5 of which are in r, 5 are in a),
and 135 leaf cells on termination (also 154 cells traversed in total). On the next IQER,
4 new projection polynomials need to be introduced to extend the CAD. In solving
the next 8 IQERs no new polynomials are introduced, so the repurposing is purely to
accommodate different boolean structures between IQERs. The resulting CAD is of 143
leaf cells with 154 total cells traversed in total, and these data are static across these 9
IQERs. In the first instance of repurposing, a polynomial is identified as an EC where
it was not under the original CAD, but this is purely a semantic identification, because
the projection sets are sufficient to describe geometry for the IQERs featuring no new
polynomials. In other words this EC (a2 − r2) was already used as an “inequality”
polynomial in projection. If QuantifierEliminate were to solve the later IQERs first,
then this EC would manifest similarly in each, resulting in faster solution of all but
what was the first solved IQER here.

The case for usage of breadth-wise traversal of the VTS tree to pass over to CAD is
the same, considering all IQERs formed by VTS are level 1, and the lack of a true/false
quantifier free equivalent means every such IQER must be traversed anyway.

245

Methodology # Projection Polynomials # ECs Total Cells Created Total Leaf Cells

Depth 10 1 154 143
Breadth 10 1 154 143
Whole 13 0 314 283

Table 7.6: CAD statistics for QuantifierEliminate per poly-algorithmic methodology
on ‘Piano Mover’s (Wang)’.

In contrast, collapsing the whole VTS tree to one QE problem for CAD to traverse
results in an existentially quantified disjunction. The structure of this formula is a
disjunction of conjunctions due to the elimination of existential quantifiers. Equations
are nested in conjunctions amongst other relations that are not equations, so CAD
can deduce no equational constraints. The resulting CAD has 13 total polynomials in
projection, 7 of which are for r, and 6 for a. There are 283 leaf cells on termination,
with 314 created in total including parent cells.

However, usage of this methodology is able to “simplify” away the formula −r2 ≤
0 ∧ −r2 < 0 ∧ −r2 = 0 from the output disjunction. This conjunction is clearly
equivalent to false, but weak simplification on such a formula cannot deduce as such.
This comes from a level 1 IQER included in the collapsing of the VTS tree. The same
is not true when traversing the tree via the poly-algorithmic method, where the IQER

is ignored.

Collision

∃y ∃x ∃t (x− t)2

4
+ (y− 10)2− 1 = 0∧ (−at+ x)2

4
+ (−at+ y)2− 1 = 0∧ 0 < t∧ 0 < a

Once again the problem is homogeneously existentially quantified, but not fully
quantified, with a being a free variable. VTS is able to eliminate ∃t alone, but given
x, y, and t all appear quadratically it is not surprising that the degree of the resulting
operands increases, and in particular introduces irreducible polynomials in both x and

246

Methodology # Projection Polynomials # ECs Total Cells Total Leaf Cells

Depth 65+ 1+ ? ?
Breadth 65+ 1+ ? ?
Whole 1328 0 ? ?

Table 7.7: CAD statistics for QuantifierEliminate per poly-algorithmic methodology
on ‘Collision’. “65+” signifies that there are a minimum number of 65 polynomials
required, but almost certainly not maximum.

y for every IQER. The first such to traverse is

∃y ∃x a2 6= 0 ∧ a2x2 − 2 a2xy + a2y2 − 5 a2 ≤ 0∧
125 a6x3 + 500 a6xy2 − 10000 a6xy − 75 a5x3 − 300 a5x2y − 100 a5xy2 − 400 a5y3+

49500 a6x+ 2000 a5xy + 8000 a5y2 − 5 a4x3 + 160 a4x2y + 220 a4xy2 − 9900 a5x

− 39600 a5y + 3 a3x3 − 4 a3x2y − 76 a3xy2 − 48 a3y3 + 100 a4x− 20 a3x− 80 a3y ≤ 0∧
25 a6x4 + 200 a6x2y2 + 400 a6y4 − 4000 a6x2y − 16000 a6y3 − 20 a5x4 − 80 a5x3y

− 80 a5x2y2 − 320 a5xy3 + 19800 a6x2 + 239200 a6y2 + 1600 a5x2y + 6400 a5xy2

+ 14 a4x4 + 32 a4x3y + 80 a4x2y2 + 128 a4xy3 + 96 a4y4 − 1584000 a6y − 7920 a5x2

− 31680 a5xy + 480 a4x2y − 2560 a4xy2 − 1920 a4y3 − 4 a3x4 − 16 a3x3y − 16 a3x2y2

− 64 a3xy3 + 3920400 a6 − 2416 a4x2 + 12672 a4xy + 9664 a4y2 + a2x4 + 8 a2x2y2

+ 16 a2y4 − 3200 a4y + 16 a3x2 + 64 a3xy + 15840 a4 − 8 a2x2 − 32 a2y2 + 16 a2 = 0∧
(− a3x− 4 a3y < 0 ∧ −a2x2 − 4 a2y2 + 4 a2 < 0 ∨ (a2 ≤ 0) ∧ −a3x− 4 a3y < 0∨
a2x2 + 4 a2y2 − 4 a2 < 0) ∧ −a < 0

which is both of high degree (unfortunately for CAD, in the free variable a) and of
many operands. The initial CAD for this IQER uses one equational constraint, with a
total of 65 polynomials in projection, 6 for y, 7 for x, and 52 for a. The problem is
unsurprisingly intractable for pure Partial CAD (unless one is to use lifting constraints
(Figure 3.4)), even if one is able to observe more progress of the problem via usage of
the poly-algorithm.

Usage of the “whole” methodology collapsing the VTS tree results in an initial
CAD with 1328 polynomials in projection (1265 for a, 52 for x, 11 for y). There are
no equational constraints deduced. The problem is unsurprisingly less tractable due to
the far more numerous projection polynomials.

Ellipse A

∃y ∃x x2+y2−1 = 0∧ b2 (x− c)2+a2y2−a2b2 = 0∧ 0 < a∧ a < 1∧ 0 < b∧ b < 1∧ 0 ≤ c∧ c < 1

A homogeneously existentially quantified problem, but unsurprisingly due to the
first two operands, elimination of either x or y results in a formula with an irreducible
degree 4 polynomial in the variable not chosen by VTS, due to the doubling in degree

247

Methodology # Projection Polynomials # ECs Total Cells Total Leaf Cells

Depth 50 1 10834 7095
Breadth 50 1 10834 7095
Whole 2462 0 ? ?

Table 7.8: CAD statistics for QuantifierEliminate per poly-algorithmic methodology
on ‘Ellipse A’.

resulting from quadratic VTS. Given that there are two quantifiers, all IQERs are forced
to be level 1. As a result, breadth vs. depth-wise traversal of the tree is trivially the
same. The first IQER to traverse is:

∃y b2 < 0 ∧ −a2b4 + a2b2y2 < 0 ∧ −a2b6c+ a2b4cy2 − b6c3 − b6cy2 + b6c ≤ 0∧
(a4b6 − 2 a4b4y2 + a4b2y4 − 2 a2b6c2 + 2 a2b6y2 + 2 a2b4c2y2 − 2 a2b4y4 + b6c4 + 2 b6c2y2

+ b6y4 − 2 a2b6 + 2 a2b4y2 − 2 b6c2 − 2 b6y2 + b6 = 0) ∧ −a < 0 ∧ a < 1 ∧ −b < 0∧
b < 1 ∧ −c ≤ 0 ∧ c < 1

where one notes the large equation is irreducible and degree 4 in y. Calling QEPCADL
on this yields a CAD with 1 equational constraint, 14 polynomials total in b, 13 in c, 9
in a, and 4 in y, making 40 total polynomials in projection and 23 leaf cells. The CAD
is then always repurposed amongst the remaining 5 ineligible IQERs, where twice no
polynomials need to be added, and otherwise 10 polynomials are added cumulatively.
In total 50 polynomials are used, and on termination the CAD is of 5071 leaf cells. The
same EC is able to be identified and coerced for each IQER.

Using standard methodology to perform Partial CAD on the formula formed by the
whole VTS tree leads to a cumulative projection basis consisting of 2462 polynomials
with no identification of ECs, which is intractable to lift within the allotted time span.

One notes that the IQER above is in principle amenable to usage of lifting constraints
via the latter operands defining a “box” being untouched by action of VTS. The poly-
algorithm does not currently attempt to use lifting constraints, because there is no
assumption later IQERs could be consistent with last usages of lifting constraints, which
makes repurposing of the CAD tree difficult.

Off-Center Ellipse

a 6= 0 ∧ ∀x ∀y 16 a2y2 − 8 a2y − 3 a2 + 4x2 − 4x+ 1 = 0⇒ x2 + y2 ≤ 1

After conversion to prenex formula we obtain the universally quantified ∀x∀y a 6=
0∧ 16 a2y2 − 8 a2y− 3 a2 + 4x2 − 4x+ 1 6= 0∨ x2 + y2 ≤ 1. Unlike the most canonical
case for a universally quantified formula, the outer operator is a conjunction after this
conversion. Despite that, in proceeding with poly-algorithmic QE, our first IQER to

248

Methodology # Projection Polynomials # ECs Total Cells Total Leaf Cells

Depth 20 0 749 735
Breadth 20 0 749 735
Whole 28 0 1581 649

Table 7.9: CAD statistics for QuantifierEliminate per poly-algorithmic methodology
on ‘Off-Center Ellipse’.

examine is

∀x a2 6= 0 ∨ a2 = 0 ∨ (a 6= 0 ∧ 9 a4 − 24 a2x2 + 16x4 + 24 a2x− 32x3 − 6 a2 + 24x2

− 8x+ 1 6= 0 ∨ 64 a4x2 − 55 a4 − 24 a2x2 + 16x4 + 24 a2x

− 32x3 − 6 a2 + 24x2 − 8x ≤ −1)

which yields a CAD with 6 polynomials in a, 2 in x, 8 total without any equational
constraints. 15 leaf cells are required to solve this IQER. Unlike the case for the prenex
top level formula, the IQER’s formula is an outer disjunction, as is the minimal example
we’d like to act upon for a universal quantifier. As the maximal level for an ineligible
IQER is 1, all ineligible IQERs are level 1, and depth-wise vs. breadth-wise traversal is
identical. The next IQER introduces 8 polynomials in a, 4 in x, which yields us our
maximal projection sets of 20 polynomials, and the last IQER to examine requires 739
leaf cells. This is in principle larger than the CAD used to solve the “whole” QE problem
formed by VTS, requiring just 649 leaf cells, but more cells in total pass through
CCHILD to yield these (1581 as opposed to 749), and there are 8 more polynomials
in total necessary beforehand. The raw benchmarking data produced for Section 7.4.4
implies that despite the more numerous leaf cells from the poly-algorithmic approach,
the methodology is still faster, albeit producing a longer formula.

Joukowsky Upper Half Plane

∀a∀b∀c∀d a(c2 + d2)(a2 + b2 + 1)− c(a2 + b2)(c2 + d2 + 1) = 0

∧ b(c2 + d2)(a2 + b2 − 1)− d(a2 + b2)(c2 + d2 − 1) = 0 ∧ 0 < b ∧ 0 < d⇒
a− c = 0 ∧ b− d = 0

After conversion to prenex form, we obtain

∀a∀b∀c∀d 0 6= a3c2 + a3d2 − a2c3 − a2cd2 + ab2c2 + ab2d2 − b2c3 − b2cd2 − a2c+ ac2 + ad2

∨ − b2c0 6= a2bc2 + a2bd2 − a2c2d− a2d3 + b3c2 + b3d2 − b2c2d− b2d3 + a2d+ b2d− bc2

−bd2 ∨ 0 ≤ −b ∨ 0 ≤ −d ∨ a− c = 0 ∧ b− d = 0,

a fully homogeneously universally quantified formula, and in particular first fully quan-
tified formula amongst the case studies. It takes a long time to yield the ineligible IQERs

249

in the first place. For the first time, we receive IQERs of non uniform level, hence depth-
wise and breadth-wise traversal act differently for the first and only time amongst the
case studies. An ineligible IQER of greatest depth is

∀a a2 6= 0 ∨ a ≤ 0 ∨ −a4 ≤ 0 ∧ a4 6= 0 ∨ a2 ≤ 0 ∨ −4 a11 − 3 a9 ≤ 0 ∧ 4 a11 + 3 a9 6= 0

∨ 8 a11 + 10 a9 + a7 ≤ 0 ∧ 8 a11 + 10 a9 + a7 6= 0 ∨ −400 a9 − 100 a7 − a5 ≤ 0∧
400 a9 + 100 a7 + a5 6= 0 ∨ 36 a7 + a5 ≤ 0 ∧ 36 a7 + a5 6= 0 ∨ −a5 < 0 ∨ −a3 ≤ 0

∧ a3 6= 0 ∨ a ≤ 0 ∨ a = 0 ∧ a3 − a = 0 ∧ a3 ≤ 0 ∧ a3 6= 0 ∨ −a ≤ 0 ∧ a3 = 0

∧ a5 − a = 0.

while an ineligible IQER of lesser depth is

∀a∀b a2 + b2 ≤ 0 ∨ a3 + ab2 + a ≤ 0 ∨ −a12 − 4 a10b2 − 6 a8b4 − 4 a6b6 − a4b8 + 4 a8b2+

12 a6b4 + 12 a4b6 + 4 a2b8 + 2 a8 + 12 a6b2 + 18 a4b4 + 8 a2b6 + 4 a4b2 + 4 a2b4 − a4 ≤ 0∨
a19b2 + 7 a17b4 + 21 a15b6 + 35 a13b8 + 35 a11b10 + 21 a9b12 + 7 a7b14 + a5b16 + 3 a17b2+

18 a15b4 + 45 a13b6 + 60 a11b8 + 45 a9b10 + 18 a7b12 + 3 a5b14 + a15b2 + 5 a13b4+

10 a11b6 + 10 a9b8 + 5 a7b10 + a5b12 − 5 a13b2 − 20 a11b4 − 30 a9b6 − 20 a7b8 − 5 a5b10

− 5 a11b2 − 15 a9b4 − 15 a7b6 − 5 a5b8 + a9b2 + 2 a7b4 + a5b6 + 3 a7b2 + 3 a5b4

+ a5b2 6= 0 ∨ b ≤ 0 ∨ −a9 − 3 a7b2 − 3 a5b4 − a3b6 + a7 + 6 a5b2 + 9 a3b4 + 4 ab6 + a5

+ 5 a3b2 + 4 ab4 − a3 ≤ 0 ∨ a3 + ab2 − a = 0 ∧ −a3b− ab3 − ab ≤ 0 ∧ a9 + 7 a7b2

+ 15 a5b4 + 13 a3b6 + 4 ab8 − a7 − 2 a5b2 − a3b4 − a5 − 5 a3b2 − 4 ab4 + a3 = 0.

The quantifier free equivalent of the original formula is true, so as it happens QE
necessarily needs to traverse every IQER in some sense to deduce a quantifier free
equivalent, because of no meaningful truth value. To trace depth-wise traversal of the
tree, our starting IQER yields 8 polynomials in a, so 8 total polynomials, and 7 leaf cells
are sufficient. 42 polynomials in a are added in traversing all the maximum level IQERs,
with the CAD being reused each time, and quite often the CAD is sufficient in the sense
no polynomials need to be added. In reaching the first level 2 IQER in a and b, we need
to add 4 and 7 polynomials in a and b respectively, and the CAD extends canonically
due to the fact the new variable is quantified similarly to a. Lifting failures related to
evaluation of truth values occur in further IQERs, which are unrecoverable because QE
categorically know the quantifier free equivalent of such in lieu of a meaningful truth
value anywhere else. QuantifierEliminate is finding the CAD increasingly intractable,
failing to evaluate various IQERs in search for a meaningful truth value before timeout.
Any which way, the CAD is always reused amongst these IQERs, and the total number
of polynomials in projection bases before timeout is 123. In breadth-wise traversal,
we actually begin with an IQER of level 1 — quantified with a, b and c. The IQER

yields 944 polynomials in projection, so QEPCADL does not make the timeout, but in
presence of the IQERs of other levels, we know that this is likely not the minimal set of
projection polynomials required.

For usage of CAD in a “whole” sense, we cannot even complete one step of projection
due to the enumerable and large polynomials created in usage of VTS, so are uncertain
how many polynomials would be yielded in the projection bases.

250

Methodology # Projection Polynomials # ECs Total Cells Total Leaf Cells

Depth 123+ ? ? ?
Breadth 944+ ? ? ?
Whole ? ? ? ?

Table 7.10: CAD statistics for QuantifierEliminate per poly-algorithmic methodology
on ‘Joukowsky Upper Half Plane’. “+” signifies that at least as many that polynomials
are required in projection with these methodologies.

7.3.1 Conclusions

One notes that the VTS trees traversed by the poly-algorithm in every case are almost
always alike in terms of the fact depth and breadth wise traversal are entirely alike
due to the uniform levels of the ineligible IQERs produced. Additionally, the CAD used
is always repurposed, i.e. the “poly-share ratio” for every IQER on the retained CAD
always exceeds POLY SHARE THRESHOLD= 1

2 for every IQER. Usage of the whole method-
ology often produces more simplified output due to CAD “being its own simplifier”,
so where the CAD is omitted from usage on individual IQERs, we fail to provide any
simplification (such as with the “Piano Mover’s” case study), or when attributing CAD
results to individual IQERs, this may lead to some redundancy amongst output formula
operands.

Only one example is fully quantified, and its quantifier free equivalent is not a
meaningful truth value for the quantifier — instead the opposite. This same example
does however provide cause for extension of the CAD to a new quantifier when depth-
wise traversal is used. A non trivial example that is fully homogeneously quantified,
and yields a meaningful truth value is created out of an existing example in Figure 4-2
to exemplify poly-algorithmic witnesses.

Comparisons of usage of poly-algorithmic QE against QE by pure Partial CAD
are largely left to Section 7.4.4, and meanwhile one can also see that the case studies
leading to smaller CADs with the poly-algorithmic methodology also lead to better
performance in these benchmarks, sometimes allowing examples to finish where they
otherwise would not without such methodology. Further case studies would be useful
to investigate cases where the “whole” methodology outperforms non trivial usage of
the poly-algorithm, or examples where the poly-share ratio is not met for successive
IQERs.

7.4 Benchmarking

7.4.1 Methodology of Benchmarking

[6] discusses the typical methodology of benchmarking SAT & SMT software, imploring
the wider symbolic computation community to use the same methodology. In particu-
lar, it introduces survival/cactus plots to format the data in an intelligible way where
usage of a timeout threshold is necessary. We cite the definition of a survival plot as
follows:

251

1. For each method separately:

(a) Solve each problem pi, noting the time ti (up to some threshold T).

(b) Sort the ti into increasing order (discarding the time-out ones).

(c) Plot the points (t1, 1), (t1 + t2, 2) etc., and in general (
∑k

i=1 ti, k).

2. Place all the plots on the same axes, optionally using a logarithmic scale for time.

N.B. There is therefore no guarantee that the same problems were used to produce
time results from different solvers.

Survival plots are effective in the sense they encapsulate a lot of information in a
very concise way — one can see how many benchmarks finish in total and the cumula-
tive time taken, and one can aggregate data with respect to other varying “dimensions”
of the data while still being able to examine another single dimension of the data ef-
fectively. For this project, each “problem” is a QE problem or an unquantified formula
for CAD, and the methods are various implementations of QE and/or CAD, or imple-
mentations of variable strategy for CAD and generation of the associated projection
bases. The benchmarking here always uses a logarithmic scale for time.

All benchmarking was undertaken on a computer running Ubuntu 18.04.3 with
16GB of RAM and an Intel i5-4590T CPU running at 2.00 GHz. Where Maple is con-
cerned, the version is Maple 2020.1. Care must be taken to ensure any effects of Maple
caching or any other properties of a Maple session are avoided (one recalls that polyno-
mial operations in projection in QuantifierElimination are always cached). Hence,
all benchmarks for any packages implemented in Maple are run in their own Maple
session. The timing and memory data are provided by wrapping relevant function calls
with CodeTools:-Usage, and providing the argument ‘output’ = [cputime, bytesused,
output] to obtain the amount of time and memory used while also obtaining the out-
put. This also avoids including Maple startup time into the benchmarks. Timeouts
are achieved by calls from the operating system (here Linux Ubuntu using timeout).
This is for two reasons: Maple’s timelimit is unreliable at ceasing low level C code in
subroutines, and because Maple’s timelimit is inapplicable for software implemented
outside Maple. Because every benchmark needs its own Maple session, the iteration
over different packages, examples, and/or options has to be abstracted to something
that can call Maple, i.e. scripting with bash. Hence any benchmarking process here
consists of usage of Maple scripts that takes “arguments” from bash via a sequence
of startup commands to Maple via “-c”. These arguments define what example to
benchmark on, the function to use, and any other data relevant to writing the bench-
marking data, including the path to the “comma separated values” (.csv) file to write
data to. Any row of such a .csv corresponds to data for exactly one benchmark. Via
the Maple option -c, we can define variables for Maple intelligible to the Maple script
to run to coerce the benchmarking process to benchmark what is required. Usually
the initial data such as the name of the example, function to be used, etc. is written
by Maple as the first portion of a new line of the .csv, and if Maple completes the
example before the time limit, writes the rest of the line of the .csv, including the time

252

taken, etc. Otherwise, on time outs, bash detects that Maple has timed out via the
prescribed exit code for time outs, 124, and writes the rest of the line to notify that the
benchmark timed out. Maple writes data via fprintf, while bash writes data by printf.
Other options passed to Maple are ones such as -q, and -b to define the list of archives
to read from to import e.g. QuantifierElimination and RegularChains (for parity,
any Maple package is always read from .mla). The timeouts to use vary between the
sections, because some benchmarks to perform are more numerous than others. The
Maple scripts also catch any relevant errors from functions to benchmark such that
that information can be written when necessary (often, the errors are expected in some
capacity, i.e. lifting failures). In writing comma separated value files, the data is easily
readable by software such as Excel, MATLAB, or even Maple for processing — the
survival plots are generated via Excel after sorting relevant rows of data.

Benchmarking against QEPCAD B presents a couple challenges via the fact that it is
interactive software. This means that the example to benchmark must be redirected in,
and the output redirected to a file. Timings for QEPCAD B are via its own output, where
this is gleaned from the output that QEPCAD B itself writes. QEPCAD B also includes no
intrinsic variable orderings, so it is only meaningful to benchmark where an ordering
is provided.

The semantics of .csv files produced are that Inf in a timing or memory column
corresponds to the software running out of time (i.e. exceeding the time limit set) or
running out of memory (deduced by Maple producing an error about failing to allocate
enough memory for the computation, which can be caught). In this case the other
respective column will contain -1. -1 in both columns refers to the case where an error
occurred. Such an error can be:

• An expected error in a mathematical sense — a curtain or nullification occurrence
in the sense of Section 3.7.2,

• An unexpected error in a mathematical sense — any of the other lifting errors dis-
cussed specifically in Section 3.7.2, usually specifically under
QuantifierElimination,

• Or any other bug in very low level code, including that of Maple’s, of which each
implementation usually features at least one.

One notes the “mathematical errors” from above are often induced in the sense we
request ProjectionCAD to error out on such, or we use multiple equational constraints
in QuantifierElimination’s CAD despite its incompleteness in terms of low level
curtains. In this case it is obvious that we are timing completion of CAD or QE only
on mathematically correct output. Failures of QEPCAD B to finish are less apparent as
the scripts do not attempt to deduce why QEPCAD B failed to finish in detail beyond
when it is apparent via exceeding a time limit, but any other error code not associated
with a time out is printed to the right of the “Error” column.

253

7.4.2 CAD Variable Strategies

The benchmarking here examines the time taken to produce the variable ordering &
projection to use per example in the CAD and QE databases. The main reason for
amalgamating this investigation is that for three of the strategies implemented by
QuantifierElimination, generation of all projection bases is intrinsically tied to gen-
eration of the ordering (Section 3.8). Usage of any of these is worst case O(n!) in
practice due to commutativity of similarly quantified or unquantified variables, but
here we treat all examples as unquantified to enable full scope for variable strategy,
to reconcile with the benchmarking process in Section 7.4.3, where the variable or-
derings were generated independently, untimed, for each strategy, before generating
the full CAD via each implementation using that ordering. This goes some way to
investigate which orderings yield CADs with the fewest possible cells, and one can also
begin to separate the cost of projection from lifting (where projection and lifting is
applicable, i.e. not RegularChains). Lifting follows from projection, and the cost of
lifting is intrinsically tied to that of projection. Although not a variable strategy sup-
plied by QuantifierElimination, we also make use of the variable strategy for CAD
implemented by RegularChains, SuggestVariableOrder, which takes one set of poly-
nomials. Here, we supply A ∪E for the canonical sets A and E supplied to projection
in QuantifierElimination, and the keyword optional argument ‘decomposition’

= ‘cad’ to indicate that we are interested in a CAD relevant variable ordering. In
particular, RegularChains’ variable ordering does not distinguish ECs as part of its
variable strategy. SuggestVariableOrder is functionally a heuristic, in the same manner
as Brown or ECHeuristic, in that it only attempts to examine trivial data. Usage of
SuggestVariableOrder before CAD in QuantifierElimination could be achieved by
a user by usage of QuantifierTools’ GetAllPolynomials with ‘output’ = ‘list’ on
the desired formula, which produces a list amenable to passing to SuggestVariableOrder
in this way. The full list of variable strategies to benchmark, essentially all discussed
previously in Section 3.8, is as follows:

• ndrr (Definition 67)

• sotd (Definition 66)

• ECHeuristic (Algorithm 36)

• Brown ([13], “Brown heuristic”)

• Greedy ([25], Section 3.8)

• RegularChains’ SuggestVariableOrdering with usage of the keyword option
‘decomposition’ = ‘cad’.

Although it is not documented as such within Maple help pages or otherwise,
RegularChains:-SuggestVariableOrdering actually implements the Brown heuristic on
usage of the keyword option ‘decomposition’ = ‘cad’. The variable strategy offered
by this function was originally incorporated in the benchmarking of this work assumed

254

to implement a distinct heuristic from one offered by QuantifierElimination, includ-
ing one that could cater specifically to a CAD under the differing methodology that
RegularChains offers to construct a CAD.

These benchmarks are generated with every single combination of the keyword
options relevant to projection in QuantifierElimination’s CAD, ‘UseEquations’,
‘PropagateECs’, ‘UseGroebner’, and because of the combinatorics of such data, Fig-
ure 7-1 aggregates all data generated to just examine the dimension of usage of strategy
as a survival plot.

The file var_order_testing.sh is the bash script iterating across the CAD and QE
example sets, starting fresh sessions of Maple to run the Maple script
var_order_benchmark.mpl with “arguments” to define the variable strategy, example,
and other options to use for projection. Together, they write the file
ProjectionBenchmark.csv found in the repository [65]. The Maple script is es-
sentially benchmarking the QuantifierElimination function CADChooseVarsProjec-
tion, which handles variable strategy and projection according to the value of the key-
word option ‘VariableStrategy’ passed, which can be a list of variables if generated
already (here, via usage of the “heuristics”), else a symbol defining a strategy. Of
course CADChooseVarsProjection must also take into account the keyword options
corresponding to usage of equational constraints. Additionally, generation of the file
HeuristicBenchmark.csv by the relevant scripts for variable strategy benchmarking
verifies that usage of the heuristics in themselves (without projection) is completely
negligible for each, hence why the orderings given by the heuristics are generated be-
fore passing to CADChooseVarsProjection, but the end result is the same as having
passed e.g. ‘VariableStrategy’ = ‘Brown’ in this case, because projection immedi-
ately follows from the generated ordering. Figure 7-1 is a survival plot of the timings for
generation of ordering & projection per strategies as discussed, where the plot is gen-
erated from ProjectionBenchmark.csv. The benchmarking data including the .csvs
was generated by usage of the bash script var_order_testing.sh.

The use of the greedy strategy appears to perform best here. Usage of greedy is
less expensive than that of “full sotd” while still generating O(n) projection sets for
each choice of x1 in this case. Considering QuantifierElimination’s attention to
equational constraints corresponding to the keyword options supplied in any context,
variable strategies such as greedy generating and examining the projection sets will
be expectedly sensitive to usage of equational constraints (Remark 68). However,
one must also take into consideration that QuantifierElimination finds usage of
Gröbner basis preprocessing to be incompatible with usage of the greedy CAD variable
strategy (Section 3.8)), so the timings never include generation of a Gröbner basis where
equational constraints are concerned, which may flatter the timings for projection for
greedy, but we may not see the benefits in terms of number of leaf cells produced in
the benchmarking of the next subsection, where we note one of the intentions of usage
of Gröbner bases via the methodology implemented in QuantifierElimination is to
remove spurious roots arising from propagation of equational constraints.

ECHeuristic is essentially equivalent to usage of the Brown heuristic for most exam-
ples, which is unsurprising considering not every example features ECs, and ECHeuris-

255

Figure 7-1: Survival plot for usage of each variable strategy for CAD implemented in
QuantifierElimination, and that defined by RegularChains:-SuggestVariableOrder
against time taken to generate the variable ordering & projection (in seconds, with a
logarithmic scale). The data points are on aggregate in terms of the other options used
in terms of ECs (propagation of equational constraints, Gröbner bases, and usage of
anything up to multiple ECs).

tic is equivalent to usage of Brown in this case. Overall, we see a slight improvement
from ECHeuristic via the tail end of the curve, most likely as a result of the extra atten-
tion to equational constraints. The shape of the curve for RegularChains’ heuristic is
similar to that of Brown or ECHeuristic, and considering in hindsight RegularChains’
heuristic actually implements Brown’s heuristic, one must consider why it does not
entirely imitate QuantifierElimination’s Brown heuristic. One reason could be that
RegularChains pays attention to e.g. partial factorisations offered by formulae when
computing degrees, or that it makes different choices in ordering variables under gen-
uine ties after all three tiebreakers of the Brown heuristic. Such a choice would be
genuinely arbitrary. That being said, the relative significance of the difference in the
curve between RegularChains’ heuristic with QuantifierElimination’s Brown im-
plies the gain by ECHeuristic suggests that the implied gain of ECHeuristic may not
be largely significant.

To conclude inspection of the strategies, one sees that ndrr and sotd live up to their
O(n!) expectations. ndrr carries the expected overhead of real root isolation on the
univariate bases generated amongst all n! projection objects. This root isolation must
support real root isolation of polynomials with coefficients that are real algebraic num-
bers, i.e. the implementation uses QuantifierElimination’s wrapper isolateRootsOf
(Section 3.4.1). Input polynomials from examples involving radicals are converted to

256

real algebraic numbers in terms of RootOfs on parsing for QuantifierElimination,
and such RootOfs would be carried throughout the full projection process such that
the univariate projection bases could feature irrational coefficients. However one notes
that very few of the examples in the databases used here feature radicals. Hence the
concerns raised by Section 3.4.1 on root isolation of polynomials over irrational real
algebraic numbers are likely not of large consequence for ndrr. One notes that usage
of ndrr and sotd may compute O(n!) different Gröbner bases for sets of ECs per each
ordering to “test”, which is of course included in the timings.

Additionally, one notes that for the the sotd and ndrr variable strategies, that
QuantifierElimination caches the results of expensive polynomial operations in pro-
jection (Section 5.2.1). The purpose of this is to support incremental projection via
caching, but this caching is always enabled. Hence, polynomial operations called from
ordering to ordering may coincide to some extent. For example, if two orderings
amongst those valid permutations such that xn and xn−1 are the same are tested
in succession, we have retained the results of projection on xn via caching, which is
a win. To make this process even faster considering the caching, it would be best to
ensure that this is coerced, such that one iterates across valid permutations such that
the last variable is fixed for as long as possible, to ensure that we retain the projection
bases for xn in the cache each time. The current implementations of sotd and ndrr
as variable strategies unfortunately have the opposite behaviour in usage of Maple’s
combinat:-permute to generate the variable ordering permutations, which instead in
effect fixes x1 for as long as possible in the generated list — this list would require sort-
ing in order to have the desired behaviour in total. A current loss here is that because
Maple’s implementation of caching (via option cache), is a “Least Recently Used”
(LRU) implementation (that forgets the results of arguments least recently used due to
the necessary maximum cache size), some of the results of projection may be “forgot-
ten” from the cache by the time of the first usage of incremental projection when sotd
or ndrr are used, if the best possible ordering in terms of those metrics was found very
early on amongst those permutations to iterate across. For QuantifierElimination,
the maximum cache size for discriminants is 512, and twice that for resultants (due to
the enforced symmetry).

Largely, the variable strategies fall into three classes — the greedy strategy, usage
of the pure “heuristics”, and usage of the O(n!) strategies, but projection and variable
orderings are a means to an end, and so this analysis merely prefaces their performance
in usage to generate a full CAD including the lifting. That being said, timeouts where
projection is concerned preclude the option of usage of the projection to generate the
lifting, which is reflected in the benchmarking methodology of the following subsection.

7.4.3 Cylindrical Algebraic Decomposition

We benchmark various implementations of CAD in Maple with an interest in CADs
for unquantified formulae or sets of polynomials to enable full scope for variable strat-
egy, while taking into account aspects of formula structure (in particular equational
constraints). A description of the background of the other implementations can be
found in Section 1.3. In some sense the benchmarking of this section imitates previous

257

investigations such as that of [38] in benchmarking sotd, ndrr and Brown, but includes
further strategies, and takes a specific view to the Lazard projection with ECs where
appropriate.

• QuantifierElimination’s CylindricalAlgebraicDecompose or
PartialCylindricalAlgebraicDecompose depending on if the example attributes
boolean structure or not.

• ProjectionCAD, including e.g. ECCAD, TTICAD, which is a CAD with respect
to designated equational constraints or a truth table invariant CAD for a formula
respectively. Meanwhile CADFull provides a full CAD for examples attributing
no boolean structure, i.e. lists of polynomials.

• RegularChains’ SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose, which
takes a list of polynomials (for the “full CAD” case), else a “list of semi-algebraic
systems”, where the latter is essentially equivalent to a formula in disjunctive
normal form, hence attributing boolean structure, via a list of lists, where the
inner lists are conjunctions of relations.

QuantifierElimination includes standalone implementations of CAD via Cylin-
dricalAlgebraicDecompose and PartialCylindricalAlgebraicDecompose, the former of
which is a tool to produce full CADs for formulae or sets of polynomials and the latter
QE via full CAD. Although CylindricalAlgebraicDecompose accepts (quantified) Real
Tarski formulae, because of the intention to produce every single maximum leaf cell,
it never evaluates truth values on the leaf cells it yields. It essentially decomposes
the formula as the canonical sets A and E and performs full CAD. It can also accept
pure sets of polynomials without relational operators, in which case evaluation of truth
values is ill defined. The benchmarking on CAD here uses the CAD and QE databases
described at the beginning of this section. Usage of the economics examples would
not generate very useful or interesting data, with most examples being purely linear in
many variables, which is not a hugely interesting case for projection or lifting in CAD.

The pure CAD examples are rather inhomogeneous in type, some being lists of
polynomials, or relations, else just unquantified formulae. Because most examples are
formulae, they attribute structure, including equational constraints. We want to al-
low the benchmarked software to identify any boolean structure that it can possibly
use. Additionally, RegularChains has the semantics of only returning cells holding
the truth value true on formulae (lists of semi algebraic systems). RegularChains is
used with default option arguments, in particular those enabling it to use its incremen-
tal methodology and enabling it to identify and use optimizations related to boolean
structure and ECs in its own way (‘method’ = ‘recursive’ and ‘optimization’

= ‘TTICAD’). Lastly ‘output’ = ‘cadcell’ is specified as an option such that we
can easily enumerate the number of cells returned by RegularChains. PartialCylin-
dricalAlgebraicDecompose accepts an unquantified formula, and in this case produces
a CADData object, which can be examined to enumerate statistics on cells, such as the
number of cells with truth value true. In this way Partial CAD is extended to the case
where m = 0. In this case there is no scope for removal of CAD subtrees via propaga-
tion of truth values, however CAD subtrees may truncate at cells with a determinate

258

truth values with respect to the unquantified input formula, and so we may not con-
struct every single level n cell, in contrast to the case for full CAD. When an example
is not a formula, but e.g. a list of polynomials, this is passed to a different appropriate
function or with different input semantics such that a full CAD is generated instead.
Because RegularChains only returns a list of cells with an implicit truth value of
true, and ProjectionCAD returns all leaf cells even when passed something attributing
boolean structure, the number of cells generated is not directly comparable between
these two packages. This is because ProjectionCAD’s input understands and requires
some boolean structure, such as the designated ECs, but cannot evaluate truth values
because it only understands that certain polynomials owe to “inequalities”, without a
specific relational operator in this case. However, two columns in the .csv generated
appear, one for enumeration of the total number of leaf cells, and the other for number
of true cells. QuantifierElimination CADData objects are amenable to examination
of both statistics, by usage of the method NumberOfLeafCells, with keyword option
‘TruthValue’ = true in the latter case. Therefore there always exists an appropri-
ate cell statistic from QuantifierElimination comparable to either RegularChains

or ProjectionCAD. To convert formulae to a “list of semi algebraic systems” as is
required for RegularChains, we can use the not directly exported function TRDcad-
LogicFormulaToLsas from that module. QEPCAD B is only relevant where quantifier
elimination is concerned, so does nothing non trivial on the unquantified examples to
use here and is not benchmarked. One notes that failure to evaluate the truth value
of a cell is one type of lifting failure associated with QuantifierElimination where
convoluted RootOfs are produced. In the fully unquantified case as such as this, lifting
failure recovery is not particularly relevant due to lack of removal of CAD subtrees via
propagation of truth values, so we note that unfortunately QuantifierElimination

may fail to complete various benchmarks due to (precedented) errors. Because Cylin-
dricalAlgebraicDecompose does not evaluate truth values, this type of lifting failure
is not relevant when CylindricalAlgebraicDecompose is used, but we have interest in
generating and comparing the same functionality as RegularChains on unquantified
formulae. Again, this type of lifting failure is due to the developmental usage of the
particular representation of real algebraic numbers.

Other lifting failures can be prevalent in any case, including curtains, such as low
level curtains in varying usage of ‘UseEquations’ for QuantifierElimination. We
force production of errors from ProjectionCAD via the keyword option ‘failure’ =
‘err’ such that we can examine the frequency of nullification occurrences, in particular
in comparison with the frequency of Lazard curtains from QuantifierElimination.
RegularChains has no such analogous type of error to inspect. Examples that are prin-
cipally Real Tarski formulae featuring radicals fail for RegularChains and
ProjectionCAD, being invalid input for those packages.

Any one invocation of timelimit uses a timeout of 750 seconds for this benchmark-
ing, to match the timeout used for the projection benchmarks of Section 7.4.2. In this
section, all examples are treated as unquantified, to give full scope to variable strategy,
exaggerating the effects of the generated variable orderings (in practice in the context
of QE, only similarly quantified or unquantified variables commute). Primarily, the
variable orderings to use are those generated from the strategies used in the previous

259

section 7.4.2. This is of course to extend upon the investigation of that section for
QuantifierElimination, to examine the efficacy of the lifted CADs having examined
the performance of generation of the full projection sets with ordering. For what it’s
worth, we also obtain information as to whether usage of these strategies are ever
effective for other implementations of CAD, especially RegularChains, which is not
a projection & lifting CAD where ProjectionCAD and QuantifierElimination are.
We note that some of the projection based strategies generate orderings informed by
information specific to QuantifierElimination, such as usage of the Lazard projec-
tion with equational constraints, which does not immediately reconcile with the other
packages. Therefore it may be unsurprising that the orderings generated here cater
only to QuantifierElimination, but we still obtain data comparing the strategies in
terms of QuantifierElimination at the very least.

Hence we generate every ordering independently in a separate Maple session using
CADChooseVarsProjection in a similar manner to that of the previous section, which
is the job of the Maple script cad_var_order.mpl, taking into account the passed
“argument” of a QuantifierElimination variable strategy to use. CADChooseVar-
sProjection is the QuantifierElimination function generating variable ordering via
strategy and generating the full projection sets, so in this call being time limited by
timeout, only the same example and variable strategy pairings not timed out in terms of
the previous projection benchmarking manage to be reused here. The variable ordering
is written to a file and picked up by Maple with the script cad_benchmark.mpl, which
actually performs the CAD benchmark for whatever example and package, preparing
the appropriate arguments to pass to an appropriate function to benchmark. The vari-
able strategies to use are the same as those from the previous subsection. Generation of
the variable orderings is also time limited by timelimit, because of the number of exam-
ples to process. If generation of the variable ordering times out for an example, clearly
the benchmark cannot be performed for any of the packages. The iteration over exam-
ples and packages is handled by bash as usual, with the shell script cad_testing.sh.
One notes that several of the examples time out in terms of projection in the pre-
vious subsection. The options used in generation of the variable orderings only vary
in terms of usage of number of equational constraints used (‘none’, ‘single’, or
‘multiple’). For whatever options are used in generation of the variable ordering,
QuantifierElimination follows suit in usage of those options for the CAD bench-
mark. The data recorded alongside a benchmark corresponding to the options used
in generation of the variable ordering is unintelligible beyond generation of the vari-
able ordering for ProjectionCAD and RegularChains, where such options related to
equational constraints would be irrelevant.

In addition, and perhaps most pertinently, the last set of benchmarks to perform
aside from the above is by running each package on each example with usage of its
“own” variable strategy, that is it gets to define variable strategy in whatever way
is intended as default for those packages. In addition, the benchmarking also varies
usage of equational constraints and Gröbner bases in terms of the keyword options
‘UseEquations’ and UseGroebner for QuantifierElimination in this case. In the
case of ProjectionCAD, the default variable strategy offered involves weighted usage
of the ndrr and sotd metrics on projection bases to decide, so it is relevant to note that

260

here timing of usage of variable strategy is included in the benchmark for usage of each
package’s “own” ordering. Because for RegularChains and ProjectionCAD, strategy is
provided by functions outside of the main CAD function, such calls providing strategy
are unevaluated such that the timings for strategy are incorporated into the timings
returned by CodeTools:-Usage to be recorded for the CAD benchmark. Some cyclic
dependency occurs when using ProjectionCAD’s variable ordering to examine its own
internal variable orderings. Designation of equational constraints in ProjectionCAD

depends on overall variable ordering, which in turn depends on the designation of
equational constraints (when using ECCAD or TTICAD, i.e. those functions that
actually make any use of equational constraints). In this case the overall variable
ordering chosen by strategy takes precedence, and equational constraints are chosen
amongst clauses by use of a heuristic, but with the variable ordering passed to the
heuristic for ECs passed as lexicographic. This is relevant as cad_benchmark.mpl

attempts to let ProjectionCAD designate equational constraints by its own heuristic for
such. In some sense, this parallels similar cyclic dependencies encountered in variable
strategy for QuantifierElimination with respect to equational constraints, variable
strategy, and Gröbner bases (Section 3.8), or the cyclic dependency of IQER selection
strategy with variable strategy in VTS (Section 2.3.2).

Obviously there are a myriad of dimensions available to examine in terms of the
data generated here, but the following figures examine various important ones among
them. Each are generated from the generated .csv of benchmarking data for CAD
associated with usage of the bash script cad_testing.sh, CADBenchmark.csv.

Figures 7-2 and 7-3 examine data about usage of each variable strategy offered by
QuantifierElimination for CAD. The plots are expectedly similar, with the data
being highly correlated. One again notes the variable ordering is generated separately
before usage, so any one benchmark calculates exactly one set of projection bases of
all orders. The calculation of any one benchmark is predicated on generation of the
ordering, implying strategy must complete for that example. These figures tell an ex-
pectedly similar story considering the two statistics to examine are related. The classes
of strategies identified by Figure 7-1 are somewhat reflected again in this data. Once
again ECHeuristic is a small improvement, if any, over usage of the Brown heuristic,
with the RegularChains heuristic falling shorter of this still. The same discussion from
the projection benchmarking applies again to explain the potential small differences in
the curves, considering RegularChains’ heuristic has the same sentiment as Brown,
with potential slight implementation differences. The performance of the “projection
based” heuristics then falls into a better performance class. This differs from the case of
performance in projection, where ndrr and sotd fell in the similarly worst performance
class than the other strategies, although “greedy” allows for completion of the most
examples, likely enabled by generation of the most orderings via Figure 7-1.

In light of Figure 7-1, we can deduce that the total case for CAD strategy implies a
clear win for greedy. While ndrr and sotd similarly manage to make use of intricate low
level data from projection to find similar performance to greedy out of the constructed
CAD, their expense in terms of projection means that they cannot manage to be a win
in total. While usage of the surface level heuristics line up in a fairly expected way, they

261

Figure 7-2: Survival plot for QuantifierElimination CAD per every strategy offered
in terms of time for computation in seconds plotted logarithmically. The data here is
on aggregate with respect to usage of equational constraints (‘UseEquations’), and
Gröbner bases are enabled where possible.

262

Figure 7-3: Survival plot for QuantifierElimination CAD per every strategy offered
in terms of total number of leaf cells plotted logarithmically. The data here is on aggre-
gate with respect to usage of equational constraints (‘UseEquations’), and Gröbner
bases are enabled where possible.

263

Figure 7-4: Survival plot per each benchmarked CAD implementation in Maple in
terms of time for computation in seconds plotted logarithmically, where each implemen-
tation’s “own” variable ordering was used. Only data from usage of single equational
constraints is shown in terms of QuantifierElimination due to its completeness,
and other options for QuantifierElimination are fixed as default (Gröbner bases are
enabled).

end up being reasonably “middle of the road” in total, not managing to lift CADs that
are as effective as greedy’s, and the cost of projection being less than the fully verbose
strategies, but again not beating greedy. A slight anomaly is the current incompati-
bility of the greedy strategy and Gröbner bases in terms of QuantifierElimination’s
implementation. Gröbner is used for the CAD benchmarks to receive Figures 7-2 and
7-3, but is not used in the projection benchmarking of Figure 7-1. Again, this may
flatter the projection benchmarks for greedy.

Figure 7-4 examines all three Maple packages together. RegularChains manages
to be a more complete implementation, never failing in terms of something analogous
to a “lifting failure”. In total it is also most competitive. In particular there are no
mathematical impediments in the methodology analogous to curtains or nullification.
Additionally, it acts entirely incrementally, differing from the other packages in this
sense. However, Figure 7-4 only examines the predicted best complete options for
CAD offered by QuantifierElimination, i.e. usage of a single EC to exclude the
possibility of low level curtains. ECHeuristic is used as the default variable strategy for
QuantifierElimination here, although the previous analyses implies that the greedy
variable strategy may be a better default strategy, which could improve the competi-

264

tiveness of QuantifierElimination here. Additionally this data only includes where
Gröbner was used, hence the analysis of usage of GBs is a factor. In general, cell selec-
tion strategy is used to largely pointless effect below PartialCylindricalAlgebraicDecom-
pose for QuantifierElimination, because of lack of removal of CAD subtrees when
m = 0 as is the case here. This of course does not result in a large amount of overhead,
and is far from a bottleneck. The curve of the survival plot for ProjectionCAD is
likely heavily truncated due to nullification occurrences which force an error here, so
there is not a wealth of data to examine for ProjectionCAD in terms of timings. The
shapes of the curves imply that the Lazard projection is an improvement over usage
of McCallum’s, however one notes that ProjectionCAD’s default “own” strategy used
here is a weighted usage of ndrr and sotd, and we know from Figure 7-1 that usage
of these are essentially as costly as it appears. On paper, usage of these to calculate
O(n!) full projection bases can be no less expensive as the same case for the Lazard
projection with ECs. 43 instances of nullification implying lack of well orientedness
occur out of 85 attempts at examples with 28 completions with respect to the relevant
data. Of course, many of these instances of nullification impede ProjectionCAD from
finishing examples such that the “survival rate” would otherwise be higher. For what a
comparison is worth, low level curtains account for two failures to complete examples in
usage of multiple ECs in usage of QuantifierElimination’s “own” variable strategy,
but of course the contexts are entirely different, because curtains can only occur in the
context of ECs. Further views to the frequency of curtains can be found in the QE
benchmarking of Section 7.4.4.

Figure 7-5 examines the comparable metric in terms of the number of cells with a
true truth value between QuantifierElimination and RegularChains. The num-
ber of cells with a particular truth value is assumed to essentially be commensu-
rate with the number of cells in total, but we cannot generally examine the latter
from RegularChains. In a sense this removes some element of quality of imple-
mentation and more precisely examines the output. Again, RegularChains’ differing
methodology results in fewer cells on aggregate. This analysis only examines usage
of each implementation’s default “own” variable strategy. In consideration of Figure
7-3, QuantifierElimination could become more competitive in such a comparison if
“greedy” were used as the default ordering, where greedy appeared to be more com-
petitive than ECHeuristic as a strategy in terms of the number of leaf cells yielded,
mirroring the similar remark made with respect to timing performance.

Figure 7-6 examines usage of QuantifierElimination’s Gröbner bases in a boolean
sense (as opposed to a comparison of differing monomial orderings used beneath). Min-
imization of the number of leaf cells produced (more broadly the number of cells in
general) is a key goal of the particular usage of GBs in this package (Section 3.7.3),
so this plot examines the total number of cells produced. This analysis shows that a
few more examples complete owing to usage of Gröbner bases, with the curve show-
ing at most a marginal improvement via the usage of GBs overall. While the curves
are very close, individual cases from the data are more nuanced — Gröbner bases are
occasionally helpful in terms of the number of leaf cells produced, and occasionally

265

Figure 7-5: Survival plot per RegularChains and QuantifierElimination CADs in
Maple in terms of number of leaf cells with a true truth value plotted logarithmically,
where each implementation’s “own” variable ordering was used. Only data from usage
of single equational constraints is shown in terms of QuantifierElimination due to
its completeness, and other options for QuantifierElimination are fixed as default
(Gröbner bases are enabled).

266

Figure 7-6: Survival plot for QuantifierElimination CAD per varying usage of
Gröbner bases in terms of total number of leaf cells plotted logarithmically. The data
here is on aggregate with respect to single and multiple equational constraints, where
QuantifierElimination’s “own” variable strategy was used (i.e. ECHeuristic)

267

unhelpful. This is true for cases with usage of both a single EC and multiple ECs,
and for cases outside of the “Cyclic” problems. The dataset is of course limited, and
further the number of cases with applicable ECs even more limited. It is also possible
that the Gröbner basis produced for a set of ECs could be equivalent to the original
set of ECs amongst some cases. This analysis only incorporates data from usage of
QuantifierElimination’s “own” variable strategy, and in reality it may be useful to
examine data from every strategy, considering the number of leaf cells can be seen to
vary significantly per strategy in Figure 7-3. Once again we note the “greedy” variable
strategy is currently not applicable with Gröbner bases in this formulation. Ideally, a
comparison against other monomial orderings could also be appropriate, including as
part of a larger data set, perhaps those that always feature (identifiable) ECs. The
case studies of Section 3.7.3 and 7.4.3 on individual examples still remain as claims to
support that GBs in a Lazard projection CAD with ECs, especially with the bespoke
monomial ordering presented here can be vastly helpful to a CAD using (multiple)
ECs. Even outside of those cases which really are purely ECs, the data here supports
that other more commonplace examples can benefit from these Gröbner bases. As for
cases where the Gröbner basis was unhelpful, it could be that the resulting ECs at the
lower polynomial levels of (3.5) are of a higher degree than they would be without this
processing, hence more enumerable cells are produced at such levels, which hence has
increasingly negative effects at higher levels yielding the leaf cells.

Lastly, Figure 7-7 examines the performance of varying usage of equational con-
straints via the option ‘UseEquations’ beneath QuantifierElimination. The anal-
ysis is in terms of performance in terms of timings. The curves are surprisingly close,
with ‘none’ expectedly coming up short overall. More interestingly, the curves between
‘single’ and ‘multiple’ are close enough to be barely differentiable. Again, the data
set is somewhat limited, and not every example will feature identifiable ECs, let alone
multiple. Individual data points are again more nuanced, supporting that multiple ECs
can of course be helpful. In fact, they can never be unhelpful in terms of the number of
leaf cells to yield, unless they yield a low level curtain, which is always unrecoverable
in this context of unquantified formulae. Immediately, one notes that usage of multiple
ECs when multiple ECs are genuinely used in restricted projection implies more check-
ing for (low level) curtains (Code Fragment 27, and in particular Algorithm 26) on the
more enumerable pivot sets appearing in projection. In other words there can be pivots
of more levels to check for a non zero Lazard valuation on, which may affect the tim-
ings to some extent. The data only includes that where Gröbner bases were enabled,
which of course affects the usage of ECs as well, but there are various combinatorics
in terms of dimensions to examine. The curve for multiple ECs is slightly truncated
due to fewer instances of “survival” due to low level curtains. 14 examples failing due
to low level curtains are identified amongst the examples that could otherwise appear
in the aggregation of data here (there are 388 completions for ‘multiple’, and 398
for ‘single’, amongst 546 and 538 attempted examples respectively). Hence more
examples process to completion under a single equational constraint, which is expected
due to its completeness. This supports that usage of a single equational constraint is
a sane default option for CAD. The curve for multiple ECs may support its use more

268

Figure 7-7: Survival plot for QuantifierElimination CAD per varying usage of equa-
tional constraints (‘UseEquations’ = ‘none’, ‘single’, or ‘multiple’) in terms of
time for computation in seconds plotted logarithmically. Gröbner bases are enabled
when relevant in every case, and the data is on aggregate with respect to variable
strategies.

269

if those examples that fall to the wayside due to low level curtains were to otherwise
complete, more quickly than the corresponding example under a single EC. In fact
the existence of a low level curtain implies that multiple ECs were genuinely used in
(semi-)restricted projection for such an example. The investigation as to efficacy of
varying usage of equational constraints continues in QE benchmarking (Section 7.4.4),
where usage of a single EC is compared against usage of multiple — this is also on a
much larger dataset, albeit with a slightly differing context. The completeness of the
approaches varies slightly there, due to the methodology of recovery from lifting failures.

There are some initially curious instances where usage of no equational constraints
(‘UseEquations’ = ‘none’) in usage of QuantifierElimination’s default “own”
ordering can result in fewer cells. This is explained by QuantifierElimination dis-
carding ECs (A ← A ∪ E; E ← ∅) before usage of ECHeuristic to generate a variable
ordering. In this way, usage of ECHeuristic essentially reduces to usage of the Brown
heuristic on the set A, but this is not the same as usage of ECHeuristic when ECs
would actually be present. Hence the ordering generated can actually differ, and in
fact be more effective in the number of leaf cells produced compared to the case for
usage of ECs with non trivial usage of ECHeuristic. Because ECs are not discarded
when ‘UseEquations’ = ‘single’ or ‘multiple’, the variable ordering generated
with ECHeuristic is always the same in this case, and the number of cells produced in
usage of a single EC is always at least the number when using multiple ECs.

In conclusion, the greedy strategy seems to be effective enough to warrant its pro-
motion to the default variable strategy for CAD in QuantifierElimination, with
some slight mitigations in terms of investigation of Gröbner bases in this context.
‘UseEquations’ = single also seems to be a safe default option for usage of ECs in
CAD for QuantifierElimination. The complications of low level curtains are ex-
pectable, and the opportunities to improve various aspects of methodology to deal
with such are constantly highlighted in this work. The performance and rate of suc-
cess of QuantifierElimination’s CAD is expected to be improved by development of
various low level operations. The current projection & lifting methodology appears to
fall short of RegularChains’ differing methodology, but may be improved by variable
strategy and further research on multiple ECs.

Usage of Gröbner Bases for Examples of Pure ECs

One briefly notes specific examples in this benchmarking exemplifying the extra perfor-
mance from usage of Gröbner bases (Section 3.7.3). Many of the formulae are purely
of equational constraints, i.e. a conjunction of purely equations. In particular this
is true for the Cyclic-n problems, which are traditionally Gröbner basis benchmark
problems in Computer Algebra. However, one can existentially quantify these formu-
lae with all but one variable each to examine conditions on that variable such there
exist real solutions to the equations (the examples are fully symmetric in terms of the
variables). This is not the same problem as just generating all the solutions to the
system of equations, where usage of CAD or even QE in general would be extremely
verbose compared to a Gröbner basis approach not least due to the creation of open

270

geometry.
Regardless, we find that usage of Gröbner bases on these problems is clearly ben-

eficial in terms of the number of leaf cells yielded and time taken to produce such. In
particular these examples yield the case where k = n in terms of Section 3.7.3, and with
the solutions being zero dimensional the particular monomial ordering used coerces the
desired triangular system (3.5), restricting propagation of equational constraints that
produce spurious solutions hence yielding more numerous unnecessary cells. While
Section 3.7.3 compares the case in terms of cells against usage of a typical monomial
ordering from past literature, here we briefly examine QuantifierElimination’s usage
of Gröbner bases against no usage of GBs. Figure 7-6 is the survival plot providing the
full comparison in terms of cells from examples on aggregate just in terms of ECHeuris-
tic as the variable strategy. In terms of the Cyclic-3 example from Section 3.7.3, we
note the difference in terms of cells is 45 with GBs, and 181 without (‘UseGroebner’
= true and false respectively). This is via 6 and 11 projection polynomials respec-
tively. If one is to use full CAD with the monomial ordering plex(c, b, a) to match past
literature with identical other options, one also produces 119 leaf cells, identical to the
example under QE from Section 3.7.3.

7.4.4 Quantifier Elimination

We benchmark various implementations of QE in Maple, and QEPCAD B. As usual the
description of the background of the software is in Section 1.3. The list of imple-
mentations to benchmark, with particular options varying in terms of those below
QuantifierElimination are the following:

• QEPCAD B, which requires a file to be redirected in defining an example in order
to automate the process. It also has no intrinsic variable strategy, with the
ordering having to be defined at input with the example. Hence we use the Brown
heuristic in generation of the file to redirect in from Maple, qe_to_qepcad.mpl
or synrac_to_qepcad.mpl.

• SyNRAC’s SyNRAC:-qe. The input semantics are similar to that of QuantifierElim-
inate in QuantifierElimination, albeit with the symbols ‘All’ and ‘Ex’ being
used in place of ∀, ∃ as quantifiers, and ‘Impl’ the symbol replacing ‘Implies’.

• RegularChains’ SemiAlgebraicSetTools:-QuantifierElimination [47]. The input
semantics are quite different, requiring a sequence of blocks of quantifiers using
All and Ex followed by a boolean formula using &and, &or.

• QuantifierElimination’s QuantifierEliminate, QE by poly-algorithmic QE with

– depth-wise traversal of the VTS tree for CAD,

– breadth-wise traversal of the VTS tree for CAD, or

– standard usage of VTS into CAD (‘HybridMode’ = ‘whole’).

• QuantifierElimination’s PartialCylindricalAlgebraicDecompose, QE by Par-
tial CAD with the Lazard projection and equational constraints, where we vary
usage of equational constraints in terms of

271

– single equational constraint (‘UseEquations’ = ‘single’),

– multiple equational constraints (‘UseEquations’ = ‘multiple’), which
may lead to low level curtain errors.

An obvious competitor to QuantifierEliminate is SyNRAC, being similarly im-
plemented in Maple, and implementing both VTS and CAD. When QE in SyNRAC

by VTS yields a formula of entirely excessive degree, SyNRAC switches to CAD in a
non poly-algorithmic sense. In terms of QuantifierElimination, we experiment with
usage of QuantifierEliminate’s ‘HybridMode’ keyword option to control usage of the
poly-algorithm, either via ‘depth’ or ‘breadth’-wise traversal of the VTS tree, or by
passing of the symbol ‘whole’ to disable usage of the poly-algorithm. When we receive
the situation of all ineligible IQERs in an early block of quantifiers, ‘whole’ is implicitly
always used as the poly-algorithm is inapplicable, so not all examples donating ineligi-
ble IQERs are amenable to the poly-algorithm. Additionally, one notes that formulae
that are not Tarski formulae in the sense of Definition 3, i.e. those with irrational num-
bers always pass through directly to Partial CAD despite usage of QuantifierEliminate,
as the methodology that can deal with Real Tarski formulae. When CAD is used in the
poly-algorithm, multiple equational constraints are always used in projection, due to the
poly-algorithm’s attempt to globally avoid lifting failures from CAD. RegularChains
provides QuantifierElimination below the sub-package SemiAlgebraicSetTools as of
Maple 2020.1, using their methodology for CAD to achieve QE. RegularChains does
not appear to accept Real Tarski formulae, being only amenable to quantified Tarski
formulae. In other words, it will not accept radicals or RootOfs in quantified input. This
only rules out one example from the QEExamples database, although it does not seem
to reject the formula up front. In terms of PartialCylindricalAlgebraicDecompose, we
experiment with usage of single vs. multiple equational constraints (‘UseEquations’
= ‘single’ or ‘multiple’), where only the latter will result in low level curtains,
but perhaps introduce extra efficiency in examples via the lifting failure avoidance of
Partial CAD.

Each function generates their own variable ordering for QE via whatever is default
for that function. More generally, other than any varying options as are delineated
above, every implementation always uses default options in terms of strategy etc. for
every benchmark. Notably, ‘MaxVSDegree’ = 2 for QuantifierEliminate such that VTS
can eliminate variables appearing up to quadratically. RegularChains’ QE default
options has the returned output formula for QE as a Tarski formula. There is an option
to define the level of simplification for output [16], and it seems by default at least some
level of simplification is deployed on the “cylindrical formula” gleaned from CAD. The
underlying CAD methodology is always incremental, and by default “partial” with
truth values to enable early termination for QE as is common. qe_benchmark.mpl is
the Maple script to prepare the arguments to pass to the function to benchmark. The
QE and economics databases are in format compatible with QuantifierElimination,
but the SyNRAC database is in format compatible with SyNRAC, so in general we need
to convert any one example to format amenable to the implementation to benchmark.
Additionally examples may as well always be passed in prenex form to remove any
instances of that conversion from timings. qe_testing.sh is the bash script iterating

272

over examples and packages as usual.
In order to benchmark QEPCAD B, it must be redirected a file defining the exam-

ple. qe_to_qepcad.mpl is the Maple script to write the file for QEPCAD B to read for
the QE or SyNRAC databases respectively. We use the Brown heuristic implemented
from QuantifierElimination in order to provide QEPCAD B with a variable ordering
for the example, which forms a part of this Maple script. The output from QEPCAD B

can be redirected to a file such that we can deduce almost all the same data that we
would be able to from the Maple implementations, sans the amount of memory used.
qepcad_test_qe.sh is the bash script handling the QEPCAD B call with timeout and
recording of relevant data. QEPCAD B is passed the option +N8000000 to allow for more
cells in the garbage collected space (4x that of default, so 8000000 garbage collected
cells) as per basic documentation of QEPCAD B. QEPCAD B here produces output formu-
lae as Tarski formulae rather than Extended Tarski formulae in the sense of Definition
33. This is the default for QEPCAD — the examples needing to be redirected in non
interactively means that we have difficulty requesting an ETF at the relevant time in
computation. If QEPCAD B is to fail to complete QE due to nullification (Section 3.7.2),
then we do not restart using PROJH, such that we can compare against occurrences
of curtains from QuantifierElimination. Examining a reason for failure for QEPCAD

B to complete an example is difficult considering the generality of working with general
text output, but one can always glean an exit code in these cases, recorded in the error
column of the .csv. As always we must check for timeouts from Maple or QEPCAD B.

All that is left to do is to examine the survival plots produced from usage of
every methodology above on the QE, economics, and SyNRAC example sets, which
forms a total of 452 QE examples to benchmark. Figure 7-8 represents a survival
plot per methodology in terms of time, created from the generated .csv file of raw
data from the QE benchmarks, QEBenchmark.csv, which itself was generated using
the bash script qe_testing.sh. Some calls for the Maple implementations are ob-
structed slightly by bugs in low level Maple routines, generally at the same rate. For
QuantifierElimination these are usually failures in floating point type operations
within CAD, that are in some sense lifting failures, although not categorised as such
due to their impending resolution in future releases of the software.

Figure 7-8 evidently identifies SyNRAC as a very competitive implementation. The
Maple native RegularChains falls not too far short, with QE being a relatively recent
addition to the package, based on their CAD methodology. QEPCAD B is the only
software tested outside of Maple, and performs admirably. One notes timings may not
be directly comparable with those generated specifically by Maple, but the usage of
timeouts are always equal, and so QEPCAD B’s “survival rate” is directly comparable.
Of course the low level operations used by QEPCAD B are completely disjoint from any
of those used by the Maple packages. The shape of the curve for QEPCAD B largely
keeps pace with that of SyNRAC, with a sudden sharp rise toward the later end of the
curve, implying impressive performance on smaller examples, but some difficulty on
the much larger ones. The considerations of QEPCAD B’s interface is otherwise well
discussed elsewhere in this section.

The QuantifierElimination methodologies all implemented for this project ev-

273

Figure 7-8: Survival plot for various Quantifier Elimination implementations with vari-
ation of certain delineated options, against time (s) logarithmically.

idently provide key comparison, being from the same author. Firstly, PartialCylin-
dricalAlgebraicDecompose’s performance is close under differing usage of equational
constraints (‘single’ vs. ‘multiple’). Their usage can clearly be identical for exam-
ples that do not feature ECs, so some broad similarity of the curves is to be expected,
but in fact exactly the same number of examples are completed between these two
approaches. There are a number of examples that fail to complete for multiple ECs
due to unrecoverable low level curtains, but on the other hand multiple ECs manages
to complete roughly the same number more over usage of a single EC due to the ex-
tra performance introduced by multiple ECs when unimpeded by curtains. In total
the two approaches manage to be surprisingly close. One consideration is that in the
case for ‘UseEquations’ = ‘multiple’, when multiple ECs are genuinely identified,
CAD lifting must check for curtains more frequently, and in particular on larger (lower
level) projection polynomials, which attributes cost. In addition Partial CAD must
generally attempt avoidance of more low level curtains as a result. The data suggests
‘single’ should become the default option for usage of ECs beneath PartialCylindri-
calAlgebraicDecompose due to its mathematical completeness. Usage of multiple ECs
can remain a viable “Monte-Carlo” option for examples with highly numerous ECs
where the user finds an attempt at QE with usage of a single EC too slow, due to
the existence of examples where multiple ECs beats its counterpart. Gröbner bases
are always used to preprocess ECs here, but the previous analysis suggested this is
sometimes a detriment, which could complicate this analysis slightly. Meanwhile, the
poly-algorithm via QuantifierEliminate outperforms the pure Partial CAD approaches.
A sizeable portion of the example set tested on are the economics QE problems via

274

the economics database. These examples are largely all linear per variable, and usually
highly enumerable in the number of variables. These are evidently cases where VTS is
understood to outperform CAD, with CAD suffering from the number of variables es-
pecially. That being said, PartialCylindricalAlgebraicDecompose can sometimes make
good use of single or multiple ECs to solve some of these examples, which quite often
feature many ECs. Curiously, this includes cases where it can solve examples where
VTS fails to. Use of PartialCylindricalAlgebraicDecompose is surprisingly competitive
on linear examples considering a pure CAD approach compared to RegularChains,
and more broadly the QuantifierElimination functions seem reasonably competitive
on examples that are largely linear or quadratic, whether it be due to usage of VTS or
surprising cases where CAD solves such examples despite enumerable variables (but po-
tentially many ECs). Use of the poly-algorithm on the economics examples always falls
to usage of pure VTS without CAD, with VTS being able to traverse problems that are
purely linear without assistance. In terms of more standard examples, comparison of
the poly-algorithm and Partial CAD varies. Infrequently, usage of VTS appears to be
vastly unhelpful before CAD in any context. Lack of strong simplification for VTS is a
constant lamentation always highly identified as to when VTS introduces poor perfor-
mance. Other cases are more nuanced, such as examples which feature a high number of
ECs. Most particularly, one notes that the poly-algorithm performs worse than Partial
CAD approaches on the Cyclic-n problems, which are entirely of ECs. Usage of VTS
for QE never uses Gröbner bases for preprocessing, but the Partial CAD approaches
are using the bespoke Gröbner basis preprocessing (Section 3.7.3) by default, because
there is a clear view to optimising the projection process. VTS’ poor performance here
is more interesting in terms of the fact the Cyclic-n problems are linear in terms of
any one variable, albeit not in terms of total degree. In other cases where ECs do not
appear as prominently, but VTS still appears as unhelpful, one notes quadratic elimi-
nation via VTS can induce degree bloat. This is where investigation of variance of the
keyword option ‘MaxVSDegree’ to restrict VTS to a maximum of linear elimination
could inform this discussion better. One notes that usage of PartialCylindricalAlge-
braicDecompose is functionally equivalent to usage of QuantifierEliminate with usage
of the option ‘MaxVSDegree’ = 0. The previous sections identified that “greedy” may
be a better default variable strategy for CAD than ECHeuristic as was used here, sug-
gesting potential performance increases for QuantifierElimination would be possible
under this strategy.

In examination of the poly-algorithmic methodologies, we note that all the method-
ologies default to usage of multiple ECs under the hood whenever CAD is concerned,
but this has never resulted in low level curtain errors when the poly-algorithm is used in
a non trivial sense (“Solotareff-3” from the QEExamples database immediately resorts
to full Partial CAD immediately due to excessive degree). Usage of the poly-algorithm
in a non trivial sense implies that CAD acts upon real space in fewer variables, perhaps
restricting the opportunity for low level curtains to arise. The case studies of Section
7.3 are usually in few variables after action of VTS. One notes that the incremental
methodologies for CAD implemented in QuantifierElimination pay careful attention
to identify curtains in the context of incrementality, such as Algorithm 52. Because
the poly-algorithm only acts in the context of a last homogeneous block of quantifiers,

275

it may be the case that this maximises opportunity for “local” avoidance of curtains
within CAD calls, although such examples usually feature free variables. Additionally,
one notes that the poly-algorithm ignores lifting failures beneath IQERs until they are
deduced to be entirely blocking to deduction of QE due to the search for meaningful
truth values, so it is more likely QuantifierEliminate times out in searching for mean-
ingful truth values than survives to reraise such an exception. While curtains never
cause the poly-algorithm to error out, there are instances where CAD below the poly-
algorithm successfully recovers from curtains, case studies for which are delineated in
Section 7.4.4. These case studies support the methodology used to avoid and recover
from curtains, while also furthering the case for improvement of such.

There is currently no way to disable the avoidance and recovery of lifting failures
within CAD in QuantifierElimination without loosening early termination criteria
to the extent that performance would be significantly impeded, so it is difficult to ex-
amine to what extent such failures are dealt with in the context of QE, especially with
respect to curtains. We only know when we certainly had to error out of an example,
because QuantifierElimination is true to Code Fragment 35 in the sense a mathe-
matical error about a Lazard curtain is always reraised in preference of any other lifting
failure if any others exist, when QE could not be reliably deduced. Hence the bench-
marking data always reflects whenever an unrecoverable curtain is found. Hence we
are sure to have identified 18 examples attributing low level curtains amongst 452 total
attempts at examples in usage of multiple equational constraints for PartialCylindri-
calAlgebraicDecompose. This is of course not a maximum of 18 low level curtains, due
to the presence of timeouts, or other lifting errors impeding computation on examples
that could otherwise yield such curtains. Multiple ECs attributes 4 fewer completions
of examples than usage of a single EC under PartialCylindricalAlgebraicDecompose.
The 18 manifestations of low level curtain errors imply that multiple ECs could easily
attribute more completions than usage of a single equational constraint if the low level
curtains could be overcome — both projection and regulation lifting must complete for
the CAD to raise such an exception, due to the methodology that attempts recovery
as far as possible.

The options for ‘HybridMode’ beneath QuantifierEliminate to vary usage of the
poly-algorithm are also similarly close, to the extent they are barely differentiable in
the survival plot. Again, the curves are expected to be similar in shape, even more so
than the differing cases for PartialCylindricalAlgebraicDecompose. This is because the
poly-algorithm is often inapplicable in a non trivial sense, either because CAD is not
required due to no ineligible IQERs, production of an obstructive ineligible IQER in an
early block of quantifiers, or even possibly the rare case of completion of the VTS tree
for a last block of quantifiers with just one ineligible IQER. Hence in the majority of cases
QuantifierEliminate acts in exactly the same way, which can be seen by examination
of the benchmarks. The same number of examples are completed between the three
available options for QuantifierEliminate, even while individual cases can differ —
the same number are completed, but this is not owing to the same set of examples.
The aspects of incrementality of the genuine poly-algorithmic approach of course incur
some overhead in comparison to the “whole” methodology. Variable strategy & the

276

resulting orderings can vary significantly between usage of the incremental depth or
breadth-wise methodologies and the “whole” methodology, and we note usage of the
former can fix a poor ordering for later incremental CAD operations, which is not
accounted for by the existing “poly-share criteria”. In fact, strategy in general could
pay more attention to what is the “poly-share criteria”, given traversal in terms of
height is prioritised before evaluation of the criterion. Variable strategy in the “whole”
methodology is more unconfined, being purely a means to an end (Section 4.1). The
intrinsic simplification provided by the “whole” methodology often results in building
much smaller QE output formulae. The usage of ECs under incremental projection may
be imperfect when we cannot be sure of reusing the same EC in restricted projection
(line 38 of Algorithm 50). To observe differences in variable ordering, one can see that
often the quantifier free output from usage of the “whole” methodology often owes to a
different ordering — the conjunctions in CAD QE output owing to the cell descriptions
follow the same ordering as that used for the unquantified variables. Further, via the
case studies of Section 7.3 we note that usage of depth and breadth-wise traversal in
the poly-algorithm can be identical. Where depth or breadth-wise traversal performs
well, we note that reuse of boolean structure including ECs seems to be a particular
boon. The benefits of usage of poly-algorithmic QE remain with the canonicality of the
approach allowing for evolutionary methods and production of witnesses in the fully
homogeneously quantified cases, paired with the opportunity for further research to
improve the methodology itself and to cater the package further for the case of QF NRA.
Once again, there are non trivial considerations in terms of simplification that may
support the case for the poly-algorithm further as well, due to simplification on the
formulae for individual IQERs being more canonical (Section 4.3). The poly-algorithmic
approach is essentially never a detriment, hence being the virtually best approach for
QE offered by QuantifierElimination, especially in light of the features offered.

It is not easy to tell from this investigation exactly which examples can yield a
situation where the poly-algorithmic methodology has scope to differ from the other
approaches in a non trivial sense — in particular from the ‘whole’ methodology.
Quantifier free output for a benchmark being an extended Tarski formula (in particular
featuring real algebraic functions) is not a sufficient identification — there must be at
least two leaf IQERs, including at least one ineligible IQER occurring in elimination of a
last block of quantifiers such that the genuine poly-algorithm (with depth or breadth-
wise traversal) has scope to differ from the ‘whole’ methodology. A function that
would directly allow for examination of the frequency of this situation is noted as
important canonical further work (Section 8.3) — a function that performs pure VTS
with no CAD below QuantifierElimination, which would be incomplete in terms
of QE due to degree limitations. Various examples of non trivial usage of the poly-
algorithm have been identified in individual case studies, Of course instances where
benchmark timings for the methodologies differ to a large extent exemplify examples
where the methodology differs. Beyond this, the need for time outs of course limit the
extent to which differences in methodology can potentially be identified — at least by
failure to complete propagation of VTS. Furthermore, there is a distinction between
identification of an ineligible IQER, and a case where this impedes QE, due to meaningful
truth values of IQERs.

277

Curtain Decomposition in QE by Partial CAD

There are at least three instances of usage of Algorithms 32 and 34 to attempt to recover
from level n− 1 curtains in the context of PartialCylindricalAlgebraicDecompose. The
first arises via the example “Simplified Putnum” from the QEExamples database, viz:

∃a∃d a2 + d2 − 4 dy + 4 y2 − 1 = 0 ∧ a2 − 4xa+ d2 + 4x2 + 20 a− 40x+ 91 = 0.

We briefly explore this example as a minor case study of an instance of curtain de-
composition in QE. Both usage of single and multiple ECs in PartialCylindricalAl-
gebraicDecompose fail on this example due to failure to evaluate a deduced lifting
constraint (which has irrational coefficients) during root isolation within Algorithm 34.
The obstructive lifting constraint differs per the value of ‘UseEquations’. Failure to
evaluate a lifting failure with irrational coefficients is a precedented type of lifting fail-
ure (item 4, Section 3.7.2). Because this is the only situation where lifting constraints
are used as standard within QE in any context, this notifies that curtain decomposition
was attempted. Further, the curtain decomposition here does not reduce to anything
trivial in the same way as the majority of the case studies of curtain decomposition for
full CAD (Section 7.2). More specifically the generated set of univariate polynomials
after set difference with projection is not empty. It is also obvious that the single round
of regulation lifting to attempt to recover from any point curtains that could be de-
duced via confidence was also insufficient for recovery. There are initially 18 cells with
lifting failures, all of which are due to curtains. Amongst the 18 curtains, all are of level
n − 1 = 3. The confidence criteria from Lemma 59 allows us to classify 6 of them as
point curtains. This is the case for both single and multiple ECs. Regulation lifting on
those 6 point curtains does not allow us to achieve QE by propagation of truth values to
ignore the other 12. Hence the other 12 enter recursive curtain decomposition, and it is
unclear if they cannot be identified as point curtains due to lack of required neighbour
cells, or the latter clause in Lemma 59. As a result of lack of full confidence to deduce
point curtains, it is conceivable that we enter curtain decomposition on more than just
non point curtains here, which anecdotally results in a large number of new cells dur-
ing this decomposition. One notes these level 3 cells are within existentially quantified
space immediately below unquantified space, i.e. their neighbours should always exist
because every level 3 cell should exist, being the child of a cell in unquantified space.
Considering the lack of other lifting failures in this example, it is likely the example
would finish if CAD was able to overcome being unable to evaluate the deduced lifting
constraints.

A second known example of curtain decomposition in the context of PartialCylindri-
calAlgebraicDecompose appears via “kanazawa2014-Ri-1-m-2” (i.e. the second example
under such a file name) from the SyNRAC QE database under PartialCylindricalAl-
gebraicDecompose with single or multiple ECs. In the case for a single EC, there are
8 curtains amongst 3 other stored lifting failures. In the case for multiple ECs there
are just 4 curtains with no other lifting failures. In any case no curtains can be identi-
fied as point curtains via confidence criteria. Again, the recursive process attributes a
significant time investment to the extent that the example fails to complete within the
time limit with usage of single or multiple ECs. This is of course a corollary of the set

278

difference at level 1 not yielding the empty set, in contrast to the majority of the case
studies in the case for full CAD.

In both cases for these examples, deduced lifting constraints often feature real al-
gebraic numbers making root isolation more difficult, in the first case to the point
of failure. While it is not benchmarked here, usage of no equational constraints
(‘UseEquations’ = ‘none’) actually allows these examples to finish under Partial-
CylindricalAlgebraicDecompose within the allotted time out, with less time being ex-
pended than in the case with even multiple ECs. The examples also finish success-
fully if usage of GBs is disabled with any usage of ECs, implying any curtains can
be avoided or not produced in this case. Lastly, usage of VTS to “preprocess” the
examples allows the poly-algorithm with any options to complete these examples suc-
cessfully. Further inspection of the details of the curtain decomposition in the context
of QE for these examples can be found via Maple userinfo by specifying infolevel[

PartialCylindricalAlgebraicDecompose] := 10. These cases for curtain decompo-
sition in QE by Partial CAD are non trivial, in contrast to the analogous case studies
of Section 7.2 investigating usage of Algorithm 30. In other words, the level 1 projec-
tion basis created in recursion is not a subset of the original level 1 projection basis in
these cases. The cases for recursive curtain decomposition in PartialCylindricalAlge-
braicDecompose for QE are relatively rare, with there being two identified amongst a
total of 452 examples. Lastly, there is an additional example where CAD recovers by
lifting point curtains. The third and final known example of curtain decomposition be-
neath PartialCylindricalAlgebraicDecompose appears via “kyoto1999-Ri-6-m-1” from
the SyNRAC QE database. Poly-algorithmic QE via QuantifierEliminate is equivalent
to pure Partial CAD here, due to the root IQER being ineligible in this case. Here,
curtains being identified as point curtains via confidence criteria allows us to lift to
success without entering recursive curtain decomposition. The examples specific to the
poly-algorithm discussed below also work similarly, where the discussion about lifting
of point curtains to success continues.

There are two instances of usage of Algorithm 32 that can be observed via non triv-
ial usage of breadth-wise traversal in poly-algorithmic QE — “yozemit2016-1-Ri-3-s-1”,
and “kyushu1999-Ri-5e-m-2”from the SyNRAC QE database. As usual these cases can
be investigated via userinfo with high values of infolevel. In these cases, we enter
Algorithm 32 for at least the first instance of Partial CAD (via QEPCADL) on an
ineligible IQER of non trivial level. For both examples, we immediately recover from all
lifting failures that are present by identifying curtains as point curtains via confidence
criteria, and then subsequently lifting them to complete QE without entering Algorithm
34. In other words the first instantiation of regulation lifting at line 4 of Algorithm 32 is
sufficient to deduce QE on the first IQER in these cases, despite exceeding the time limit
in attempting to solve subsequent IQERs in the “global” QE call. In the first instance
listed here, Algorithm 32 is called to success in terms of lifting point curtains to solve
several further IQERs (via QEPCADL, i.e. without repurposing of a CAD) as well. In
total, this is good news, as we obtain examples where identification of point curtains
via confidence criteria can allow us to avoid a significant amount of work. We once
again note the discussion which identifies that once a point curtain has been identified
and lifted, or else a curtain cell has undergone further decomposition, it will no longer

279

be identified as a curtain by the incremental processes of QuantifierElimination,
which is helpful in the highly incremental contexts of CAD such as the poly-algorithm
(Section 4.1). This is likely the case as to why Algorithm 32 need only be called once
beneath poly-algorithmic QE for the second example referenced here. Again, the cases
for level n − 1 curtain recovery below the poly-algorithm in a non trivial way come
at a rate of 2 cases out of the total 452 benchmarked. A reason for Partial CAD in
any context more rarely requiring recovery from level n− 1 curtains than the case for
full CAD could be that usage of Partial CAD restricts the scope for curtains to occur,
because we do not brazenly construct every level n leaf cell. More generally the more
non uniform construction of the CAD reconciling with exactly the same frustrations
that impede identifying point curtains (e.g. discussion preceding Lemma 59) may mean
that level n− 1 curtains less frequently offer the opportunity to impede QE over more
obstructive lifting failures that can occur earlier in construction of the CAD.

In conclusion, SyNRAC’s performance, and the poly-algorithmic approaches perfor-
mance over PartialCylindricalAlgebraicDecompose imply that usage of VTS is still at
least of interest, if not usually a win especially whenever particular linear examples are
concerned, such as those from economics. With respect to QuantifierElimination,
there are several identified factors to improve in terms of the implementation, most
particularly with respect to VTS, such as simplification and the handling of universal
quantifiers. The refactoring of these elements is unlikely to make the poly-algorithm’s
performance worse relatively to pure Partial CAD, but may change the balance of
performance between the offered poly-algorithmic methodologies, and improve perfor-
mance of these as a whole. The occasional increases in performance offered by usage
of multiple ECs for pure Partial CAD and the confirmation that there exist examples
where low level curtains impede completion of QE validates “completing” multiple ECs
in the same manner as the completion of single ECs by [56] as useful further research.
Additionally, and not orthogonally, methodology arising from solution of Open Prob-
lem 62 can mitigate low level curtains further, where multiple ECs clearly has some
benefit over a single EC while still being impeded by these mathematical obstacles.
Incorporation of propagation of truth values to remove subtrees of QE in such a more
complex methodology could certainly assist Partial CAD to ignore low level curtains
further than the current implementation, but would never “complete” multiple ECs
with the Lazard projection. Further development of the low level elements of the CAD
implementation in QuantifierElimination will mitigate the non mathematical types
of lifting failure delineated in Section 3.7.2, and similar developments will also improve
the performance of QuantifierElimination’s CAD when used in any capacity (Sec-
tion 3.4.1). Investigation of QuantifierElimination in more “SMT-like” contexts,
including actual SMT over the theory of real linear or non linear arithmetic will inform
better discussion and evaluation of the greedy strategies implemented with a view to
searching for meaningful truth values.

280

7.5 Comparisons of Input & Output

CAD in QuantifierElimination makes use of real algebraic numbers and real alge-
braic functions in the context of definitions 30 and 31 respectively, both internally
and for output. Cell descriptions in QuantifierElimination intend to use real al-
gebraic numbers where possible, else real algebraic functions (Section 3.4). The pres-
ence of RootOfs means there is some similarity between cell descriptions yielded by
QuantifierElimination and those gleaned from usage of full CAD in RegularChains

or ProjectionCAD using the keyword option ‘output’ = rootof, but neither use interval
indexed RootOfs in terms of algebraic numbers, instead using “complex” indexing via
‘index’ = ‘i’ for i ∈ N whenever RootOfs are requested for output. Complex index-
ing orders roots of polynomials in terms of “principal branching”, which in particular
may not correspond with the ordering of real roots with respect to the real line. Mean-
while, for RegularChains and ProjectionCAD the analogy of a real algebraic number is
a regular chain, as is the namesake of the former package and underlying technology of
both. The usage of real algebraic numbers as RootOfs indexed by intervals for output
is intended to provide the user with as much information as possible, including the sign
and approximate rational values of the root, although the rational numbers are usually
of many digits because they are inherited from use of real root isolation under the hood,
where the isolating intervals produced by RootFinding:-Isolate are of dyadic rationals.
Reducing the Maple global value Digits feeds through to the precision used in real
root isolation under QuantifierElimination’s CAD. isolateRootsOf uses a starting
precision of Digits, and in general anything involving floating point operations such
as root refinement starts with a precision as a function of Digits. An unnecessarily
low value of Digits makes much of the floating point oriented operations very slow,
such as root refinement and isolation (one may require much more root refinement in
this case due to the coarseness of the isolating intervals produced). Some operations on
real algebraic numbers in Maple are not highly well supported, and in particular may
fail on highly nested real algebraic numbers, which is indeed one of the lamentations
of Section 3.4.1. Additionally, RootOfs in terms of real algebraic functions are indexed
with “real indices”, i.e. ‘index’ = ‘real[i]’ (Definition 31). These have even more
rudimentary support, but the intention of their usage in QuantifierElimination is
entirely cosmetic to describe a CADCell, and as a consequence quantifier free output of
QE.

QuantifierElimination’s variable strategy is always handled via keyword option,
whereas RegularChains may require such to be outsourced by another function in the
same package where CylindricalAlgebraicDecompose is concerned, but QuantifierElim-
ination beneath RegularChains automatically calls its own variable strategy under the
hood. While QuantifierElimination’s variable strategy is definable by providing the
name of a strategy to use where CAD is concerned (Section 3.8), however an ordering
can be forced by providing a list of variables as override, which is checked for valid-
ity. SyNRAC offers no obvious options for variable strategy, or indeed any options at
all. QuantifierElimination offers a wealth of options related to QE or CAD where
either or both are relevant. QuantifierElimination also offers the QuantifierTools

package to assist with understanding Tarski formulae (Chapter 6).

281

RegularChains input for QE requires a sequence of blocks of quantifiers (one can
group variables quantified in the same block by a list) followed by a formula. Usage of
expression sequences in this way is often confusing for users, not being one object, but
able to be assigned to variables, but not amenable to usage of the “op” command to
iterate across it as a DAG (Directed Acyclic Graph). Input semantics for SyNRAC for QE
are QuantifierElimination are similar, except for the fact that usage of the symbols
exists and forall for QuantifierElimination typeset as ∃ and ∀, while Ex and All

in SyNRAC do not. SyNRAC and QuantifierElimination share usage of the inert And
and Or operators in Maple, which also typeset nicely, as opposed to RegularChains’
operators. Curiously, SyNRAC uses the symbol Impl instead of Implies, the latter of
which typesets well. QEPCAD B being interactive command line software is accessible,
but lacks much of the quality of life features offered by use of any of the Maple packages.
Obviously one can attribute much of this to its age and independence from integration
within a Computer algebra package. Being an implementation of QE by CAD, its QE
output with its version of extended Tarski formulae [12] is comparable to that of usage
of PartialCylindricalAlgebraicDecompose, with real indexing of roots of polynomials
making an appearance.

CylindricalAlgebraicDecompose’s non optional input is highly coercible, being able
to take sets, sets of relations, sets of equations, or a formula, always attempting to
deduce ECs in an intelligible way in every case. PartialCylindricalAlgebraicDecompose
performs QE on a quantified formula, but also produces a CADData object when an
unquantified formula is passed, such that one can examine all leaf cells produced in
the context of Partial CAD, including their truth values. One can deduce all leaf cells
holding various truth values, or all leaf cells that may not be of level n due to evaluation
of truth values on lower level cells making stack construction on such inapplicable.
RegularChains and ProjectionCAD both take input that can be a list of polynomials,
or something equivalent to a semi algebraic system in disjunctive normal form, via lists
of relations and not via boolean operators.

QuantifierElimination is able to produce witnesses to prove truth of a fully ex-
istentially quantified formula or falsity of a fully universally quantified formula. This
is not the case for the other Maple packages, or QEPCAD B. SMTLIB technically pro-
vides such functionality for unquantified formulae passed in conjunctive normal form
as formulae for SMT (in this context over the theory of real arithmetic). Hence strip-
ping a fully existentially quantified Tarski formula of all quantifiers and passing to
SMTLIB provides similar functionality to passing the existentially quantified formula
to a QE function from QuantifierElimination and requesting witnesses. SMTLIB:-
Satisfy currently uses Z3 [75] as its SMT solver under the hood, and returns a set of
witnesses (as a Maple set) on satisfiability, or NULL if the formula is unsatisfiable.
QuantifierElimination is able to produce as many witnesses as possible by loosen-
ing early termination criteria in usage of QE in any context via the keyword option
‘eagerness’. This option is by default set at 3, but reducing it will enable more
traversal of the VTS or CAD trees alike (including in a poly-algorithmic sense), and
will therefore attempt to yield more meaningful leaf IQERs or CADCells for witness
production.

Quantifier free output of QE by QuantifierEliminate where VTS can yield the an-

282

swer alone is a Tarski formula, albeit sometimes an egregiously unsimplified one, that
without strong simplification may even be equivalent to true or false in a candid sense.
SyNRAC:-qe’s output is far more simplified, with simplification being a focus of the
developers in [40], but in some cases still cannot (or does not attempt to) deduce the
candid equivalent of an output expression technically equivalent to true or false (such
as c2 + c+ 1 = 0 ≡ false). Quantifier free output of QuantifierEliminate where CAD is
used to define the quantifier free output is always candid in terms of individual atoms,
due to CADs with truth values being “their own simplifier” in this sense. This is also
true of other implementations using CAD for output, and so SyNRAC’s failure to deduce
c2 + c+ 1 = 0 ≡ false is likely due to pure use of VTS and not CAD. While individual
atoms in output from CAD are always candid, the overall formula may not be, and
QuantifierElimination could perhaps benefit from simplification in terms of cylin-
drical formulae — some relevant work in this area is [16]. As a result of simplification of
cylindrical formulae in this way, RegularChains’ QE by CAD manages to have output
which is closer to candid. Where the poly-algorithm is concerned, non candid atoms
can be displayed in output owing to IQERs that did not undergo processing by CAD
in any way (Section 4.3). The implementation of QE in QuantifierElimination in
any context never factors out atoms completely of free variables. For VTS, this is no
issue, as VTS intrinsically ignores such atoms. However, for CAD, this is an issue —
as can be seen with usage of PartialCylindricalAlgebraicDecompose on the QE exam-
ple “Hong-90” from the QEExamples database, where CAD produces an unsimplified
“cylindrical” formula equivalent to r + s+ t = 0, which is the unquantified atom from
the original formula, and also the quantifier free equivalent of such. VTS from the
poly-algorithm, or the other packages correctly identify r + s + t = 0 as the simplest
answer. However ideally QuantifierElimination would just factor such unquantified
atoms out of the input formula Φ to process in all instances, especially before QE by
Partial CAD.

Whenever CAD is used to achieve QE in QuantifierElimination, the formula is
certain to be an Extended Tarski formula, which is a supertype of a Tarski formula,
while output from all the other implementations is always a Tarski formula by de-
fault. Both QEPCAD B and RegularChains can return Extended Tarski Formulae for
QE output by definable options. In the latter case this is by passing ‘output’ =
‘rootof’, and the formulae produced are actually of relations on real algebraic func-
tions using real indexing in the same way as QuantifierElimination. However, unlike
QuantifierElimination RegularChains actually uses radicals over RootOfs when the
polynomial for the RootOf is quadratic in Z. Real indexed RootOfs via ‘index’ =
‘real[i]’ differ from “complex indexing” in that the indexing corresponding to the
roots’ positions along the real line. For interval indexing, the roots’ position along
the real line is clear. QEPCAD B offers support for generating output via ETF via an
option, but by default will produce a Tarski formula, which may require addition of
projection factors to the projection sets. QuantifierElimination CAD does not cur-
rently offer support for production of a Tarski formula where CAD is used for QE
in this way. QEPCAD B’s Extended Tarski Formulae are represented very similarly to
those of QuantifierElimination’s, via “real indexing” of roots of projection polyno-
mials. ETFs can often be quite concise and meaningful, requiring fewer atoms than

283

an equivalent Tarski formula, but other times confusing via the density of information
contained in the representation. This is also especially true of the representation of
real algebraic numbers in QuantifierElimination, where by default the intervals can
contain fractions of a very high precision.

284

Chapter 8

Closing, Conclusions and Further Work

8.1 Summary of Contributions

This project has contributed a new package QuantifierElimination for Maple that
attempts to amalgamate various aspects of contemporary research in Quantifier Elimi-
nation to investigate the nuances of using them together. The focus of the project is a
comprehensive investigation into a “poly-algorithm” between VTS and CAD to explore
a first ever bespoke methodology for their usage together, enabling extra efficiency and
features for QE. The package includes the first implementation of Virtual Term Substi-
tution developed in collaboration with Maplesoft for Maple, the first implementation of
a Lazard projection & lifting CAD in Maple, and the first implementation of a Lazard
projection CAD with equational constraint optimisations in any context. This includes
investigation of very recent research on curtains in a Lazard projection & lifting CAD to
make projection and lifting with a single equational constraint complete. Much atten-
tion is paid to equational constraints in CAD, including Gröbner bases, pivot selection
strategy, and the identification and resolution of curtains. Implementation of recent
methodologies completing a single equational constraints confirm the efficacy of the
methodology. In the case of multiple equational constraints, the CAD implementation
is complete to the extent it knows when output cannot be proven mathematically cor-
rect and so produces an error, but attempts to avoid exit via error when it can deduce
curtains are not a mathematical impediment to output or can otherwise be recovered
from.

The CAD implementation offers use of a new feature, “lifting constraints” in order
to become more amenable to a subset of problems featuring constraints that imply a
hyperrectangle in space. A returning feature from research “Open CAD” can similarly
make use of boolean structure of formulae beyond equational constraints. The work
presents and discusses existing and new greedy strategies in various contexts across
VTS and CAD alike. Such strategies often require non trivial usage of data structures,
and some difficulties are highlighted here. These strategies are often examined in
the context introduced by the work, such as the particular examination of equational
constraints and usage of VTS and CAD together. The usage of Gröbner bases in
conjunction with ECs for CAD aims to improve on existing monomial orderings used
with a view to the behaviour of projection.

285

Various case studies to investigate data for usage of curtain recovery, Gröbner bases,
and the poly-algorithm are explored to extend upon the benchmarking. Further fea-
tures related to QE including witnesses & incrementality are explored in depth, and we
have provided the first known methodology for production of witnesses when VTS and
CAD are used together to achieve homogeneous QE. Witnesses are a feature involved
in a greater scheme to provide rich output for users in the context of QE and similar
topics. Other pedagogical functions in the subpackage QuantifierTools enable users
to understand Tarski-like formulae further, and most functions offer a wealth of key-
word options with defaults to customize usage of QE. The particular usage of RootOfs
in Maple to represent real algebraic numbers and functions is developmental with re-
spect to low level operations, but has a view to informing users with potentially more
readable output. Output data structures are highly examinable, such that for example
one can query properties of cells, which again often displays output in terms of real
algebraic numbers or functions. A major view is taken towards intelligible interface for
the package.

Incrementality is made more general in terms of “evolutionary” algorithms that
additionally act at specific “atomic positions” to assist users to understand QE prob-
lems as efficiently as possible. This makes incrementality more general than is typically
presented in research. The evolutionary algorithms are highly contextual to the algo-
rithms beneath QuantifierElimination, and largely reconcile with an object oriented
approach to the aspects of VTS and CAD and retention of data. The evolutionary
methods are comprehensively presented in the contexts of VTS, the poly-algorithm,
and CAD for QE. The object oriented approach continues a tree based canonicaliza-
tion of VTS, enabling the poly-algorithmic methodologies and raising further explo-
ration on the state of VTS in terms of elimination of one block of quantifiers, with its
ramifications on usage of CAD to complete QE.

8.2 Conclusions

Various implementations of CAD and QE have been benchmarked against each other,
also exploring the frequency of nullification & curtain occurrences in CAD, the ef-
ficacy of various variable strategies and other options in CAD, and the efficacy of
QuantifierElimination’s QE by pure CAD against a standard VTS into CAD ap-
proach to QE or poly-algorithmic approach to QE. In terms of CAD, the benchmarking
finds that the projection based variable strategies for CAD are especially effective for
the Lazard projection and lifting CAD that is highly sensitive to the projection step
of CAD due to equational constraints. In terms of QE, the poly-algorithm’s appli-
cability in a non trivial sense is limited, but is rarely a detriment in comparison to
the “standard” approach for VTS into CAD on amenable examples. In some cases it
enables extra performance, and always enables full production of witnesses and spe-
cific methodology for further general evolutionary operations where applicable due to
the association of a CAD to at most one VTS node at a time. Use of VTS before
CAD can be varied, often being helpful, while sometimes frustrating CAD in terms of
degree, however this is likely nuanced in terms of simplification and maximum degree
for elimination by VTS. VTS is largely a win on linear problems over CAD, including

286

those from economics, but the provided QE by CAD can be surprisingly effective on
such problems as well, likely due to enumerable ECs. Curtains remain an obstruction,
although case studies confirm that the methodology for “avoidance before resolution”,
including identification of point curtains can be a boon. In particular low level cur-
tains prevent multiple equational constraints from reaching full potential as a complete
optimisation.

8.3 Further Work

One notes that this work identifies various open problems throughout. Beyond that,
there are some immediate ways to improve QuantifierElimination and otherwise
extend upon the work of this project. Other further work is more mathematical, or
otherwise outside the scope of QuantifierElimination.

VTS Simplification

VTS in QuantifierElimination suffers from only featuring “weak” rather than “strong”
simplification (Section 2.4.2), which can make both intermediate and output formulae
where VTS is concerned very messy. Strong simplification reflects that we should
aim for candid representations of formulae, but not at cost to outweigh the benefits.
QuantifierElimination implementing a better simplifier should immediately improve
the package on the whole. A non exhaustive list of relevant works is [9, 23, 7, 40, 16].
Further, this simplification would likely affect the methodology of the poly-algorithm.
While the simplification could improve the formulae formed out of multiple IQERs, it
would also act on the individual formulae held by any one IQER, which may allow them
to manifest meaningful truth values in lieu of usage of the poly-algorithm, or other-
wise the formulae received by CAD within the poly-algorithm may become simpler.
Whether this makes a better or worse case for the poly-algorithm, including in terms
of the “poly-share criteria” remains to be seen.

Section 4.3 highlights that strong simplification would clearly be beneficial on the
formulae held by individual IQERs, but can complicate matters when used to deduce
the quantifier free equivalent implied by VTS at any one time, in terms of the very
tree based formulations of many of the operations used in the package for VTS (in
particular, tree traversals). The poly-algorithmic methodology is uncomplicated by
simplification on individual IQERs, and may benefit from it significantly.

Tarski Formulae for CAD Output in QE

QuantifierElimination’s CAD currently always outputs an extended Tarski formula
(Definition 33) when used to achieve QE. More specifically, this is as a result of cell
descriptions always being formulae of relations on real algebraic functions (Section 3.4),
hence the overall produced formula for QE output is a disjunction of such formulae (3.1).
QEPCAD B offers support for output of an extended Tarski formulae (in QEPCAD B’s for-
mat), but also a Tarski formula via potential addition of polynomials to the projection

287

sets such that the CAD is “projection definable” [12, 8], but QuantifierElimination
does not offer support for this at present (Section 7.5).

Negations in Universal QE in VTS

VTS in QuantifierElimination currently liberally distributes negations through for-
mulae to achieve elimination of universal quantifiers, but it could be refactored such
that it always treats the universal case as an existential one as to not require continual
nested negations of formulae (Section 2.2).

Polynomial Operations in CAD

As per Section 3.4.1, Maple awaits some improvements to low level functions regarding
real root isolation & refinement, which immediately improves the efficiency of its use
beneath CAD, and minimises the risk of the associated lifting failure. This additionally
applies to evaluation of relations of polynomials of real algebraic numbers for evaluation
of the truth values of cells, which is another current type of lifting failure.

Data Structures for Storage

QuantifierElimination uses a mutable container QEContainer for storage of inter-
mediate IQERs and CADCells. It supports addition of elements, removal of elements
at generic positions, and is iterable, but is rudimentary in the sense that strategy for
selection of the next object to “propagate” on is O(k) when there are k elements in the
container. Sections 2.3.1 and 3.9 highlight that other structures such as a heap may
be more efficient, but one must consider the costs associated to arbitrary removal of
elements as well, other mitigations such as minor restrictions on strategy, and even the
context of the QE problem in terms of its quantifiers.

Further Benchmarking

QuantifierElimination provides a wealth of keyword options available to customize
usage of QE and CAD alike. Due to the combinatorics of such, this project can-
not hope to benchmark every possible combination, but further investigation of the
poly-algorithm including the optimal value of the macro POLY SHARE THRESHOLD (Open
Problem 70) is very canonical further work. One could even replace the “poly-share cri-
teria” (Section 4.1) with another criterion. More canonical further work includes inves-
tigation of whether restricting VTS to merely linear elimination rather than quadratic
is more efficient (i.e. varying the value of the keyword option ‘MaxVSDegree’). The
“top level” evolutionary methods that act at atomic positions could be investigated,
for example in terms of their usage to process an SMT formula over the theory of real
arithmetic by full incrementality. Its use beneath actual SMT solving software could
be interesting, especially with or against Maple’s current package for SMT SMTLIB,
which uses Z3 [75]. Most strategies within QuantifierElimination are greedy, and
try to aim to deduce a meaningful truth value as soon as possible, which is most ori-
ented towards the fully existentially quantified context of QF NRA. As an example, the

288

poly-algorithm by default proceeds with depth-wise traversal of every tree. However,
further code development and refactoring to optimise the package should likely precede
its presentation to SMT, where most examples will be in many more variables than
those used for the benchmarking of this project. The economics examples used within
the QE benchmarking (Section 7.4.4) are “SMT-like”, being almost always fully exis-
tentially quantified, but only ever in low degree, hence CAD was never used beneath
the poly-algorithm there. Various features such as lifting constraints and Open CAD
could be benchmarked further on applicable examples via usage of QuantifierTools’
SuggestCADOptions (Chapter 6), and the greedy CAD variable strategy could also be
used, as as the better suggested default option for CAD variable strategy via the CAD
benchmarking of this work. Lastly, this work does not largely benchmark against QE
implementations outside of Maple, and Redlog [24] implemented in REDUCE would be
another natural point of comparison, having an implementation of VTS.

QuantifierElimination currently does not export a function providing just VTS
without usage of CAD, and if it were to do so then one could more easily explore
the frequency of ineligible IQERs (i.e. degree violations) and hence the rate at which
VTS fails to be complete, at least within the context of the implemented strategies.
Such a function may return a quantified formula when ineligible IQERs arose without
a meaningful truth value. Further, the frequency at which VTS yields at least two leaf
IQERs, at least one of which is ineligible, is commensurate with the frequency at which
the poly-algorithm inherits scope to act with different methodology than the ‘whole’

methodology. The cases where VTS yields at least two ineligible IQERs are the cases
where the poly-algorithm may have scope to act in an incremental way, depending on
the truth value of the first IQER processed. These cases can better be inspected by such
a function that returns a quantified formula, where the ineligible IQERs are inherently
quantified.

Lazard Projection with Multiple Equational Constraints

While [56] provided completeness for usage of the Lazard projection with usage of a sin-
gle equational constraint in projection, one notes the same completeness is yet to be pro-
vided for multiple equational constraints (Section 3.7.2). QuantifierElimination of-
fers support for multiple equational constraints via the keyword argument
‘UseEquations’ = ‘multiple’ at the risk of low level curtain errors. Even then.
usage of CAD with multiple equational constraints is used under the hood in the poly-
algorithm where the chance of recovery in some context is estimated to be high —
often the avoidance and recovery methodologies enable completion of examples in us-
ing multiple ECs in any context, as can be seen often in the QE benchmarking. The
framework for avoidance & recovery from curtains easily still applies if an algorithm
(or algorithms) to decompose low level curtains is provided, but this is more of a the-
oretical improvement in comparison to the more practical discussions of Section 3.7.2.
Development of methodologies presented here may allow CAD in any context to ignore
curtains further, or otherwise identify such curtains as non obstructive point curtains
— Open Problem 62 offers opportunity for further practical improvement to avoidance
of curtains. The benchmarking highlights that curtains are still obstructive to varying

289

extents in differing contexts, giving impetus to this area of further research.

Cubic VTS

The cubic case for VTS in QuantifierElimination such that ‘MaxVSDegree’ can
be specified as 3 to enable elimination of variables appearing cubically in irreducible
polynomials is under development, without cubic clustering. The cubic case was
much of the contribution of [43]. Naturally, the appearance of cubic VTS within
QuantifierElimination may affect the case for poly-algorithmic QE. A description
of the current state of cubic VTS in QuantifierElimination may be added to the
repository [65].

NuCAD and CAC in Maple

Non-uniform Cylindrical Algebraic Decomposition (NuCAD) is a technique introduced
in [10, 14]. It shares many similarities with CAD. At present, it can be used as a
tool for SMT over the theory of real arithmetic. As of the time of writing, there is
no implementation of NuCAD for Maple in development known to the author. Such
an implementation could be used to improve QuantifierElimination, in particular
because many “SMT-like” problems about sign conditions of single polynomials arise
in the course of VTS (functions such as at-cs-fac from [43] ask questions about whether
the leading coefficient of a polynomial for candidate solution generation is always pos-
itive, or can vanish, etc.).

Cylindrical Algebraic Coverings (CAC) are again a variation on CAD, and were
introduced with [2]. Again, the algorithm is a tool for SMT over the theory of real
arithmetic, processing conjunctions of real polynomial constraints. The work states
that the algorithm takes inspiration from incremental CAD, NLSAT [41], and NuCAD.
The conflict driven search of the algorithm is essentially a concept from SAT solving.
[1] highlights that in comparison to QE tools such as VTS or CAD, CAC is far more
amenable to providing algorithmic proof of falsity (UNSAT) for a fully existentially
quantified problem (hence analogously proof of truth for a fully universally quantified
problem). In contrast, such a proof from VTS or CAD requires proof of completeness
of VTS or CAD (that is, the confidence that the (virtual) substitutions used by either
algorithm were a complete covering of all those that were necessary). Meanwhile, both
VTS and CAD can prove satisfiability via witnesses (Sections 2.5 and 3.10). Again, as
of the time of writing, there is no implementation of CAC for Maple in development
known to the author.

290

Bibliography

[1] E. Ábrahám, J.H. Davenport, M. England, G. Kremer, and Z. Tonks. New Oppor-
tunities for the Formal Proof of Computational Real Geometry? In Proceedings
SC2 Workshop 2020, 2020. URL: http://ceur-ws.org/Vol-2752/paper13.pdf.

[2] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kremer.
Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Con-
flict Driven Search Using Cylindrical Algebraic Coverings, 2020. URL: https:
//arxiv.org/abs/2003.05633.

[3] P. Alvandi, C. Chen, F. Lemaire, M.M. Maza, and Y. Xie. The RegularChains
Library. Accessed: 18/11/2020. URL: http://www.regularchains.org/.

[4] T. Becker and V. Weispfenning (with H. Kredel). Groebner Bases. A Com-
putational Approach to Commutative Algebra. Springer Verlag, 1993. doi:

10.1007/978-1-4612-0913-3.

[5] R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising prob-
lem formulation for Cylindrical Algebraic Decomposition. In Intelligent Computer
Mathematics, pages 19–34, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-39320-4_2.

[6] M. Brain, J.H. Davenport, and A. Griggio. Benchmarking Solvers, SAT-style.
In Proceedings SC2 Workshop 2019. CEUR Workshop Proceedings, 2017. URL:
http://ceur-ws.org/Vol-1974/RP3.pdf.

[7] C W. Brown and A. Strzebonski. Black-Box/White-Box Simplification and Ap-
plications to Quantifier Elimination. In Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, ISSAC 2010, pages 69–
76, New York, NY, USA, 2010. Association for Computing Machinery. doi:

10.1145/1837934.1837953.

[8] Christopher W. Brown. QEPCAD B: A Program for Computing with Semi-
algebraic Sets Using CADs. SIGSAM Bull., 37(4):97–108, December 2003. doi:

10.1145/968708.968710.

[9] Christopher W. Brown. Fast Simplifications for Tarski Formulas Based on Mono-
mial Inequalities. J. Symb. Comput., 47(7):859–882, July 2012. doi:10.1016/j.

jsc.2011.12.012.

291

http://ceur-ws.org/Vol-2752/paper13.pdf
https://arxiv.org/abs/2003.05633
https://arxiv.org/abs/2003.05633
http://www.regularchains.org/
https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-3-642-39320-4_2
http://ceur-ws.org/Vol-1974/RP3.pdf
https://doi.org/10.1145/1837934.1837953
https://doi.org/10.1145/1837934.1837953
https://doi.org/10.1145/968708.968710
https://doi.org/10.1145/968708.968710
https://doi.org/10.1016/j.jsc.2011.12.012
https://doi.org/10.1016/j.jsc.2011.12.012

[10] Christopher W. Brown. Open Non-uniform Cylindrical Algebraic Decompositions.
In Proceedings of the 2015 ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC ’15, pages 85–92, New York, NY, USA, 2015.
ACM. URL: http://doi.acm.org/10.1145/2755996.2756654, doi:10.1145/

2755996.2756654.

[11] Christopher W. Brown, M’hammed El Kahoui, Dominik Novotni, and Andreas
Weber. Algorithmic methods for investigating equilibria in epidemic model-
ing. Journal of Symbolic Computation, 41(11):1157 – 1173, 2006. Special Is-
sue on the Occasion of Volker Weispfenning’s 60th Birthday. URL: http://

www.sciencedirect.com/science/article/pii/S074771710600054X, doi:10.

1016/j.jsc.2005.09.011.

[12] C.W. Brown. Solution Formula Construction for Truth-Invariant CADs. PhD
thesis, University of Delaware, 1999.

[13] C.W. Brown. Companion to the tutorial: Cylindrical Algebraic Decomposition,
ISSAC 2004, 2004. Accessed: 07/12/2020. URL: https://www.usna.edu/Users/
cs/wcbrown/research/ISSAC04/handout.pdf.

[14] C.W. Brown. Constructing a single cell in cylindrical algebraic decomposition.
Journal of Symbolic Computation, 70:133–140, 06 2013. doi:10.1145/2465506.

2465952.

[15] C. Chauvin, M. Müller, and Andreas Weber. An Application of Quantifier Elim-
ination to Mathematical Biology. In J. Fleischer, J. Grabmeier, F. W. Hehl, and
W. Küchlin, editors, Computer Algebra in Science and Engineering, pages 287–
296. Zentrum für Interdisziplinäre Forschung, World Scientific, August 1994.

[16] Changbo Chen and Marc Moreno Maza. Simplification of Cylindrical Alge-
braic Formulas. In Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler,
and Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific Computing,
pages 119–134, Cham, 2015. Springer International Publishing. doi:10.1007/

978-3-319-24021-3_9.

[17] Changbo Chen and Marc Moreno Maza. An Incremental Algorithm for Computing
Cylindrical Algebraic Decompositions. In Ruyong Feng, Wen-shin Lee, and Yosuke
Sato, editors, Computer Mathematics, pages 199–221, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-43799-5_17.

[18] G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Al-
gebraic Decomposition. In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975. doi:10.1007/3-540-07407-4_17.

[19] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika
Ábrahám. SMT-RAT: An Open Source C++ Toolbox for Strategic and Parallel
SMT Solving. In Marijn Heule and Sean Weaver, editors, Theory and Applica-
tions of Satisfiability Testing – SAT 2015, pages 360–368, Cham, 2015. Springer
International Publishing. doi:10.1007/978-3-319-24318-4_26.

292

http://doi.acm.org/10.1145/2755996.2756654
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/2755996.2756654
http://www.sciencedirect.com/science/article/pii/S074771710600054X
http://www.sciencedirect.com/science/article/pii/S074771710600054X
https://doi.org/10.1016/j.jsc.2005.09.011
https://doi.org/10.1016/j.jsc.2005.09.011
https://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1007/978-3-319-24021-3_9
https://doi.org/10.1007/978-3-319-24021-3_9
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-319-24318-4_26

[20] D.A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergrad-
uate Texts in Mathematics. Springer, Heidelberg, 2015. URL: http://dx.doi.
org/10.1007/978-3-319-16721-3, doi:10.1007/978-3-319-16721-3.

[21] J.H Davenport. Computer Algebra. Accessed: 30/03/2020. URL: http://staff.
bath.ac.uk/masjhd/JHD-CA.pdf.

[22] J.H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Expo-
nential. Journal of Symbolic Computation, 5(1):29–35, 1988. doi:10.1016/

S0747-7171(88)80004-X.

[23] A. Dolzmann and T. Sturm. Simplification of Quantifier-free Formu-
lae over Ordered Fields. Journal of Symbolic Computation, 24(2):209–
232, 1997. URL: http://www.sciencedirect.com/science/article/pii/

S0747717197901231, doi:10.1006/jsco.1997.0123.

[24] A. Dolzmann, T. Sturm, and M. Košta. Redlog — Computing with Logic. Ac-
cessed: 19/04/2019. URL: http://www.redlog.eu/.

[25] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Efficient Projection Or-
ders for CAD. In Proceedings of the 2004 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’04, pages 111–118, New York, NY, USA, 2004.
ACM. doi:10.1145/1005285.1005303.

[26] H. Du and N. Alechina. Qualitative Spatial Logic over 2D Euclidean Spaces is
Not Finitely Axiomatisable. In AAAI Conference on Artificial Intelligence 2019,
volume 33, pages 2776–2783, 07 2019. doi:10.1609/aaai.v33i01.33012776.

[27] M. England, D.J. Wilson, R. Bradford, and J.H. Davenport. Using the Reg-
ular Chains Library to build Cylindrical Algebraic Decompositions by project-
ing and lifting. In H. Hong and C. Yap, editors, Mathematical Software —
ICMS 2014, pages 458–465. Springer Berlin Heidelberg, 2014. doi:10.1007/

978-3-662-44199-2_69.

[28] Matthew England, Russell Bradford, and James H. Davenport. Cylindrical alge-
braic decomposition with equational constraints. Journal of Symbolic Computa-
tion, 100:38–71, 7 2019. doi:10.1016/j.jsc.2019.07.019.

[29] Matthew England and David Wilson. An Implementation of Sub-CAD in Maple.
Number CSBU-2015-01 in Department of Computer Science Technical Report Se-
ries. Department of Computer Science, University of Bath, March 2015. Accessed:
18/11/2020. URL: https://researchportal.bath.ac.uk/en/publications/

an-implementation-of-sub-cad-in-maple.

[30] D. Florescu and M. England. Algorithmically generating new algebraic features
of polynomial systems for machine learning. In Proceedings SC2 Workshop 2019.
CEUR Workshop Proceedings, 10 2019. URL: http://ceur-ws.org/Vol-2460/
paper4.pdf.

293

http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
http://www.sciencedirect.com/science/article/pii/S0747717197901231
http://www.sciencedirect.com/science/article/pii/S0747717197901231
https://doi.org/10.1006/jsco.1997.0123
http://www.redlog.eu/
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1609/aaai.v33i01.33012776
https://doi.org/10.1007/978-3-662-44199-2_69
https://doi.org/10.1007/978-3-662-44199-2_69
https://doi.org/10.1016/j.jsc.2019.07.019
https://researchportal.bath.ac.uk/en/publications/an-implementation-of-sub-cad-in-maple
https://researchportal.bath.ac.uk/en/publications/an-implementation-of-sub-cad-in-maple
http://ceur-ws.org/Vol-2460/paper4.pdf
http://ceur-ws.org/Vol-2460/paper4.pdf

[31] D. Florescu and M. England. Machine Learning to Improve Cylindrical Algebraic
Decomposition in Maple. In Jürgen Gerhard and Ilias Kotsireas, editors, Maple
in Mathematics Education and Research - 3rd Maple Conference, MC 2019, Pro-
ceedings, Communications in Computer and Information Science, pages 330–333,
United Kingdom, 2020. Springer. doi:10.1007/978-3-030-41258-6_25.

[32] Patrizia Gianni. Properties of Gröbner bases under specializations. In James H.
Davenport, editor, EUROCAL ’87, pages 293–297, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg. doi:10.1007/3-540-51517-8_128.

[33] Redlog group. Redlog Example Management and Information System. Accessed:
26/06/2021. URL: https://www.redlog.eu/remis/.

[34] SyNRAC Group. SyNRAC QE Example Database, 2017. Accessed: 28/05/2020.
URL: https://github.com/hiwane/qe_problems.

[35] H. Hong. An improvement of the projection operator in cylindrical algebraic
decomposition. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, ISSAC ’90, pages 261–264, New York, NY, USA, 1990.
ACM. URL: http://doi.acm.org/10.1145/96877.96943, doi:10.1145/96877.
96943.

[36] H. Hong and G.E. Collins. Partial Cylindrical Algebraic Decomposition for
Quantifier Elimination. Journal of Symbolic Computation, pages 299–328, 1991.
doi:10.1016/S0747-7171(08)80152-6.

[37] Z. Huang, M. England, J.H. Davenport, and L. Paulson. Using Machine Learn-
ing to Decide When to Precondition Cylindrical Algebraic Decomposition With
Groebner Bases. In 18th Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC). IEEE, 2017. doi:10.1109/SYNASC.2016.020.

[38] Zongyan Huang, Matthew England, David Wilson, James H. Davenport, and
Lawrence C. Paulson. A Comparison of Three Heuristics to Choose the Vari-
able Ordering for Cylindrical Algebraic Decomposition. ACM Commun. Comput.
Algebra, 48(3/4):121–123, 2 2015. doi:10.1145/2733693.2733706.

[39] Nikolaos Ioakimidis. Sharp bounds based on quantifier elimination in truss and
other applied mechanics problems with uncertain, interval forces/loads and other
parameters. Technical report, 08 2019. doi:10.13140/RG.2.2.22662.52803.

[40] H. Iwane and H. Anai. Formula Simplification for Real Quantifier Elimination
Using Geometric Invariance. In Proceedings of the 2017 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2017, pages 213–220,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/
3087604.3087627.

[41] Dejan Jovanović. Solving Nonlinear Integer Arithmetic with MCSAT. In Ahmed
Bouajjani and David Monniaux, editors, Verification, Model Checking, and Ab-
stract Interpretation, pages 330–346, Cham, 2017. Springer International Publish-
ing. doi:10.1007/978-3-319-52234-0_18.

294

https://doi.org/10.1007/978-3-030-41258-6_25
https://doi.org/10.1007/3-540-51517-8_128
https://www.redlog.eu/remis/
https://github.com/hiwane/qe_problems
http://doi.acm.org/10.1145/96877.96943
https://doi.org/10.1145/96877.96943
https://doi.org/10.1145/96877.96943
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1145/2733693.2733706
https://doi.org/10.13140/RG.2.2.22662.52803
https://doi.org/10.1145/3087604.3087627
https://doi.org/10.1145/3087604.3087627
https://doi.org/10.1007/978-3-319-52234-0_18

[42] Michael Kalkbrener. Solving systems of Algebraic Equations by using Gröbner
Bases. In James H. Davenport, editor, EUROCAL ’87, pages 282–292, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/3-540-51517-8_127.

[43] M. Košta. New Concepts for Real Quantifier Elimination by Virtual Substitution.
PhD thesis, Universität des Saarlandes, 2016. doi:10.22028/D291-26679.

[44] Košta, M. and Sturm, T. and Dolzmann, A. Better answers to real ques-
tions. Journal of Symbolic Computation, 74:255 – 275, 5 2016. URL: http://
www.sciencedirect.com/science/article/pii/S0747717115001078, doi:10.

1016/j.jsc.2015.07.002.

[45] Gereon Kremer and Erika Ábrahám. Fully Incremental Cylindrical Algebraic De-
composition. Journal of Symbolic Computation, 100:11–37, 2020. URL: http://
www.sciencedirect.com/science/article/pii/S0747717119300847, doi:10.

1016/j.jsc.2019.07.018.

[46] D. Lazard. An Improved Projection for Cylindrical Algebraic Decomposi-
tion. In Chandrajit L. Bajaj, editor, Algebraic Geometry and its Applica-
tions, pages 467–476. Springer New York, New York, NY, 1994. doi:10.1007/

978-1-4612-2628-4_29.

[47] Maza, M. M. and Chen, C. Quantifier elimination by cylindrical algebraic decom-
position based on regular chains. Journal of Symbolic Computation, 75:74 – 93,
2016. Special issue on the conference ISSAC 2014: Symbolic computation and com-
puter algebra. URL: http://www.sciencedirect.com/science/article/pii/
S0747717115001078, doi:10.1016/j.jsc.2015.11.008.

[48] S. McCallum. On projection in CAD-based quantifier elimination with equa-
tional constraint. In Proceedings ISSAC 1999, pages 145–149, 1999. doi:

10.1145/309831.309892.

[49] S. McCallum. On propagation of equational constraints in CAD-based quantifier
elimination. In Proceedings ISSAC 2001, pages 223–231, 2001. doi:10.1145/

384101.384132.

[50] Scott McCallum. An improved Projection Operation For Cylindrical Algebraic
Decomposition of Three-dimensional Space. Journal of Symbolic Computation,
5(1):141–161, 1988. doi:10.1016/S0747-7171(88)80010-5.

[51] Scott McCallum, Adam Parusiński, and Laurentiu Paunescu. Validity proof of
Lazard’s method for CAD construction. Journal of Symbolic Computation, 92:52–
69, 2019. doi:10.1016/j.jsc.2017.12.002.

[52] David Monniaux. Quantifier elimination by lazy model enumeration. In By-
ron Cook, Paul Jackson, and Tayssir Touili, editors, CAV 2010, volume 6174
of Lecture notes in computer science, pages 585–599, Edimburgh, United King-
dom, July 2010. Springer-Verlag. URL: https://hal.archives-ouvertes.fr/
hal-00472831.

295

https://doi.org/10.1007/3-540-51517-8_127
https://doi.org/10.22028/D291-26679
http://www.sciencedirect.com/science/article/pii/S0747717115001078
http://www.sciencedirect.com/science/article/pii/S0747717115001078
https://doi.org/10.1016/j.jsc.2015.07.002
https://doi.org/10.1016/j.jsc.2015.07.002
http://www.sciencedirect.com/science/article/pii/S0747717119300847
http://www.sciencedirect.com/science/article/pii/S0747717119300847
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-1-4612-2628-4_29
http://www.sciencedirect.com/science/article/pii/S0747717115001078
http://www.sciencedirect.com/science/article/pii/S0747717115001078
https://doi.org/10.1016/j.jsc.2015.11.008
https://doi.org/10.1145/309831.309892
https://doi.org/10.1145/309831.309892
https://doi.org/10.1145/384101.384132
https://doi.org/10.1145/384101.384132
https://doi.org/10.1016/S0747-7171(88)80010-5
https://doi.org/10.1016/j.jsc.2017.12.002
https://hal.archives-ouvertes.fr/hal-00472831
https://hal.archives-ouvertes.fr/hal-00472831

[53] Casey Mulligan, Russell Bradford, James H. Davenport, Matthew England, and
Zak Tonks. Dataset of automated economic reasoning problems for QE / SMT,
April 2018. doi:10.5281/zenodo.1226892.

[54] C.B. Mulligan, R. Bradford, J.H. Davenport, M. England, and Z. Tonks. Non-
linear Real Arithmetic Benchmarks derived from Automated Reasoning in Eco-
nomics. In Proceedings SC2 Workshop FLoC 2018. CEUR Workshop Proceedings,
2018. URL: http://ceur-ws.org/Vol-2189/paper2.pdf.

[55] A. Nair. Curtains in Cylindrical Algebraic Decomposition. PhD thesis, University
of Bath, 2021. To appear.

[56] A. Nair, J. Davenport, and G. Sankaran. Curtains in CAD: Why Are They a
Problem and How Do We Fix Them? In Anna Maria Bigatti, Jacques Carette,
James H. Davenport, Michael Joswig, and Timo de Wolff, editors, Mathematical
Software — ICMS 2020, volume 12097 of Lecture Notes in Computer Science,
pages 17–26, Cham, 2020. Springer. doi:10.1007/978-3-030-52200-1_2.

[57] Akshar Sajive Nair, James Davenport, and Gregory Sankaran. On Benefits of
Equality Constraints in Lex-Least Invariant CAD. In Proceedings SC2 Work-
shop 2019. CEUR Workshop Proceedings, 10 2019. URL: http://ceur-ws.org/
Vol-2460/paper6.pdf.

[58] K. Röbenack, R. Voßwinkel, and H. Richter. Calculating Positive Invariant Sets:
A Quantifier Elimination Approach. Journal of Computational and Nonlinear
Dynamics, 14:1–5, 2019. doi:10.1115/1.4043380.

[59] A. Seidl. Cylindrical Decomposition Under Application-Oriented Paradigms.
PhD thesis, Universität Passau, 2006. URL: https://opus4.kobv.

de/opus4-uni-passau/frontdoor/index/index/year/2006/docId/46,
doi:10.22028/D291-26679.

[60] D. Stoutemyer. Ten commandments for good default expression simplification. J.
Symbolic Comp., 46:859–887, 2011. doi:10.1016/j.jsc.2010.08.017.

[61] Adam Strzebonski. Real Polynomial Systems, Wolfram Mathemat-
ica. URL: https://reference.wolfram.com/language/tutorial/

RealPolynomialSystems.html.

[62] A. Tarski. A Decision Method for Elementary Algebra and Geometry. 2nd ed.,
Univ. Cal. Press. Reprinted in Quantifier Elimination and Cylindrical Algebraic
Decomposition (ed. B.F. Caviness & J.R. Johnson), Springer-Verlag, Wein-New
York, 1998, pp. 24–84., 1951. doi:10.1007/978-3-7091-9459-1_3.

[63] Z. Tonks. Evolutionary Virtual Term Substitution in a Quantifier Elimination
System. In Proceedings SC2 Workshop 2019. CEUR Workshop Proceedings, 10
2019. URL: http://ceur-ws.org/Vol-2460/paper7.pdf.

296

https://doi.org/10.5281/zenodo.1226892
http://ceur-ws.org/Vol-2189/paper2.pdf
https://doi.org/10.1007/978-3-030-52200-1_2
http://ceur-ws.org/Vol-2460/paper6.pdf
http://ceur-ws.org/Vol-2460/paper6.pdf
https://doi.org/10.1115/1.4043380
https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/year/2006/docId/46
https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/year/2006/docId/46
https://doi.org/10.22028/D291-26679
https://doi.org/10.1016/j.jsc.2010.08.017
https://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
https://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
https://doi.org/10.1007/978-3-7091-9459-1_3
http://ceur-ws.org/Vol-2460/paper7.pdf

[64] Z. Tonks. A Poly-algorithmic Quantifier Elimination Package in Maple. In
Jürgen Gerhard and Ilias Kotsireas, editors, Maple in Mathematics Education
and Research, pages 171–186, Cham, 2020. Springer International Publishing.
doi:10.1007/978-3-030-41258-6_13.

[65] Z. Tonks. Repository of data supporting the thesis “Poly-algorithmic Techniques
in Real Quantifier Elimination”, 2020. Accessed: 04/01/2021. URL: https:

//zenodo.org/record/4382083, doi:10.5281/zenodo.4382083.

[66] Z. Tonks. VTS and Lazard Projection CAD in Quantifier Elimination with Maple.
Technische Universität Braunschweig, 2020. Last accessed: 06/08/2020. doi:

10.5446/48017.

[67] Tonks, Z. Quantifier Elimination and projection & lifting Cylindrical Algebraic
Decompositions in the QuantifierElimination Package in Maple, 2020. Video of
Software Demo recorded for Maplesoft Conference 2020. Accessed: 16/11/2020.
URL: https://www.youtube.com/watch?v=n4u0_IxWCUc.

[68] Yumi Wada, Takuya Matsuzaki, Akira Terui, and Noriko H. Arai. An Auto-
mated Deduction and Its Implementation for Solving Problem of Sequence at
University Entrance Examination. In Gert-Martin Greuel, Thorsten Koch, Pe-
ter Paule, and Andrew Sommese, editors, Mathematical Software — ICMS 2016,
pages 82–89, Cham, 2016. Springer International Publishing. doi:10.1007/

978-3-319-42432-3_11.

[69] V. Weispfenning. The complexity of linear problems in fields. Journal of Symbolic
Computation, 5(1):3–27, 1988. doi:10.1016/S0747-7171(88)80003-8.

[70] V. Weispfenning. Quantifier Elimination for Real Algebra — the Quadratic Case
and Beyond. Applicable Algebra in Engineering, Communication and Computing,
8(2):85–101, 1 1997. doi:10.1007/s002000050055.

[71] D. Wilson, J. H. Davenport, M. England, and R. Bradford. A “Piano Movers”
Problem Reformulated. In 2013 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 53–60, Sep. 2013. doi:10.

1109/SYNASC.2013.14.

[72] David Wilson. Real Geometry and Connectedness via Triangular Description:
CAD Example Bank, April 2013. Accessed: 18/11/2020. URL: https://

researchdata.bath.ac.uk/69/.

[73] David Wilson, Russell Bradford, and James Davenport. Speeding up Cylindri-
cal Algebraic Decomposition by Gröbner Bases. In CICM 2012, pages 279–293.
Springer LNCS 7362, 2012. doi:10.1007/978-3-642-31374-5_19.

[74] Hitoshi Yanami and Hirokazu Anai. SyNRAC: A Maple Toolbox for Solving Real
Algebraic Constraints. ACM Commun. Comput. Algebra, 41(3):112–113, Septem-
ber 2007. doi:10.1145/1358190.1358205.

297

https://doi.org/10.1007/978-3-030-41258-6_13
https://zenodo.org/record/4382083
https://zenodo.org/record/4382083
https://doi.org/10.5281/zenodo.4382083
https://doi.org/10.5446/48017
https://doi.org/10.5446/48017
https://www.youtube.com/watch?v=n4u0_IxWCUc
https://doi.org/10.1007/978-3-319-42432-3_11
https://doi.org/10.1007/978-3-319-42432-3_11
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1007/s002000050055
https://doi.org/10.1109/SYNASC.2013.14
https://doi.org/10.1109/SYNASC.2013.14
https://researchdata.bath.ac.uk/69/
https://researchdata.bath.ac.uk/69/
https://doi.org/10.1007/978-3-642-31374-5_19
https://doi.org/10.1145/1358190.1358205

[75] Z3 Group. The Z3 Theorem Prover. Accessed: 26/10/2020. URL: https://

github.com/Z3Prover/z3.

[76] G. M. Ziegler. Sharir’s Cube, 2000. Accessed: 02/12/2019. URL: http://www.
eg-models.de/models/Polytopes/2000.09.028/_preview.html.

298

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
http://www.eg-models.de/models/Polytopes/2000.09.028/_preview.html
http://www.eg-models.de/models/Polytopes/2000.09.028/_preview.html

	Introduction to Quantifier Elimination over the Reals
	Applications of Quantifier Elimination
	Satisfiability Modulo Theories

	Maple and QuantifierElimination
	Other QE Related Software

	Virtual Term Substitution
	Background
	Universal Quantifiers
	Blocks of Quantifiers & the VTS Tree
	IQER Selection Strategy
	VTS Variable Strategy
	Test Point Selection Strategy

	Tarski Formulae for VTS
	Delayed Evaluation of Virtual Substitution
	Simplification of Tarski Formulae

	Production of Witnesses for QE via VTS
	Propagation of VTS

	Cylindrical Algebraic Decomposition
	Background
	Tarski Formulae for CAD
	Projection
	Lifting
	Real Root Isolation
	Delayed Evaluation of Substitutions in CAD

	Open CAD
	Lifting Constraints
	Equational Constraints in CAD
	Pivot Selection Strategy
	Curtains in a Lazard projection CAD
	Gröbner Bases for Equational Constraints

	CAD Variable Strategy
	Cell Selection Strategy
	Production of Witnesses for QE via CAD
	Comparison with VTS
	Algorithms

	The Poly-algorithmic QE System
	From VTS to CAD
	Strategy
	Standard Usage of QE by CAD
	Rich QE Output
	Production of Meaningful Witnesses for QE via VTS and CAD

	Evolutionary Techniques
	Evolutionary VTS & Poly-algorithmic QE
	Structural Tarski Formulae & Atomic Position for Evolutionary QE
	Incremental VTS & Poly-algorithmic QE
	Decremental VTS & Poly-algorithmic QE
	VTS Tree Pruning

	Evolutionary CAD
	Incremental Projection
	Incremental Lifting
	Decremental CAD

	Other Features of the Software
	The Subpackage QuantifierTools
	Other Features

	Benchmarking, Examples, and Comparisons to Other Software
	Example Databases
	Case Studies on Lazard Curtains
	Case Studies on the Poly-algorithmic Methodology
	Conclusions

	Benchmarking
	Methodology of Benchmarking
	CAD Variable Strategies
	Cylindrical Algebraic Decomposition
	Quantifier Elimination

	Comparisons of Input & Output

	Closing, Conclusions and Further Work
	Summary of Contributions
	Conclusions
	Further Work

	Bibliography

