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Summary

Stock market activity cycles through periods of trends and fluctuations due to external

economic factors and the psychology of participants. Many stock prediction models

exist for predicting prices, trends and volatility. However, models focusing on individual

or few prediction methods suffer from a lack of adaptability, meaning they perform well

at specific stages of the market cycle rather than over the whole range. A prediction

model developed and tested during a period of strong growth may perform well under

these conditions, but fail during market downturns.

It is desirable that a prediction model adapts to new circumstances so investors can

profit across the entire market cycle. For this reason and because of the absence of

adaptive models in the literature, this research has developed a dynamic stock in-

vestment system that combines the intelligence of multiple predictors using a scoring

system to give more weight to predictions that have performed best under recent mar-

ket conditions and a filtering system to identify the most potentially profitable trades,

thereby effectively adapting to market behaviour.

Differently to other research in this area, the performance of the new system is not

evaluated based on the accuracy of predictions, but primarily by investment metrics

such as profit, drawdown and the Sharpe Ratio, the latter two of which also account

for the risk of the system.

The experimental results show that our model works effectively on more than 100 stocks

from the UK, US, Chinese and Singaporean markets. These stocks come from more

than 10 different market sectors covering a wide-range of market conditions during the

testing periods. We concluded that our model shows an excellent capability of handling

predictions in fluctuated situations and is effective regardless of the characteristics of

the stock data.
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Chapter 1

Introduction

There are a lot of factors which affect stock prices, such as rates of inflation and

interest, the economic outlook, political and economic turmoil etc. These make stock

price prediction extremely challenging. Most investors attempt this by analysing the

time-series data of stock prices. For this, there are two main methods: Fundamental

and Technical analysis.

Fundamental analysis focuses on investigating the statistics of macroeconomic data

such as money supply, interest rates, currency strength, inflation and deflation rates,

daily news events and company accounts in order to evaluate the real value of the

company. In fundamental analysis, investors are interested in the high-value companies

and may try to buy their shares when the price is lower than the perceived value of

a company’s assets or future cash flow in order to make a profit when the share price

increases.

On the other hand, technical analysis is concerned with historical financial time-series

data. The prediction of the direction of stock prices is made by identifying patterns

or trends within the time-series data and seeing how they correlate with patterns that

have emerged in the past. These patterns are shown in charts of prices and volumes.

In technical analysis, investers try to make profit whether share price increases or

decreases.

Predicting future prices in a stock market is complicated due to the continued fluctua-

tion of prices, which are affected by many factors. However, historical data has shown

that there are repetitive, recognisable patterns and relationships within markets that it

may be possible to use to predict future stock prices. As such, there are many existing
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methods available to predict stock prices.

There are two main areas of research into stock prediction. In the first, research is

mainly focused on individual stock information [102]. Approaches focus mainly on the

history of a stock’s price, including financial indicators which are calculated from his-

torical prices. The second takes international stock market linkages into account [86].

Stocks and markets are investigated in order to find relationships in the price move-

ments between them that can be used to predict future price movements. Investigating

such relationships is not just limited to predicting the direction of price movements, as

it can also applied to a portfolio management model in order to create diversification in

a portfolio. Diversification is an important aspect in reducing portfolio risk [85], since

too much exposure to any geographical region, market, sector or security could result

in large losses. To create a diversified portfolio, an investor must select uncorrelated

stocks in the hope that when a macroeconomic event causes a held stock’s price to

drop, the prices of other stocks will not be affected, therefore minimising losses for the

portfolio as a whole.

Many stock prediction models exist for predicting prices, trends and volatility. Each

model makes predictions based on one or a combination of indicators, such as moving

averages or relative strength, and the use of machine learning techniques, for example

neural networks or genetic algorithms. However, models focusing on individual or few

prediction methods suffer from a lack of adaptability, meaning they are often limited

to performing well at a specific stage of the market cycle rather than over the whole

range.

Much like stock prices, market activity also fluctuates due to external economic and

psychological factors such as recessions and their accompanying pessimism. A pre-

diction model developed and tested during a period of economic growth and investor

optimism may perform well under these conditions, but fail during inevitable market

downturns or when the market is ranging (fluctuating with no clearly-defined trend).

Examples of this phenomenon include the k-Nearest Neighbour model, which only per-

formed well during market uptrends [5] and the neural network model [128], which also

only performed well when certain patterns appeared in the data.

It is desirable that a prediction model adapts to new circumstances so investors can

profit across the entire market cycle. For this reason and because of the absence of

adaptive models in the literature, the research direction proposed here is to develop a

new, adaptive model that focuses on combining the intelligence of several predictors

using a scoring system to give more weight to the predictions that are most appropriate
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given recent market behaviour and a filtering system to identify the most potentially

profitable trades.

From the experimental results, we find that multiple predictors which are trained on

different pieces of data work better than a single predictor. However, to make these

predictors work together effectively we must have a control system to manage switch-

ing between predictors. This research proposes a new predictor selection technique

called a scoring system. The model adopts the reward and punishment technique from

reinforcement learning, giving or taking away points according to the predictors’ past

performance. We initially use only the cumulative score as the criteria to select predic-

tors. However, only using the score is not enough, as the predictors which work well

build a high cumulative score which takes too much time to decrease when market con-

ditions change, meaning our system cannot switch to a new predictor quickly enough to

profit and instead loses money. Therefore, we introduced a second layer to the scoring

system, which is not only interested in the cumulative scores, but also other features

such as patterns in the scores. This two-layer scoring system performs very well across

a range of stocks and market sectors as can be seen in our results from over 100 stocks

in chapter six. Besides the scoring system, we also introduce an optimisation method

to filter undesirable or weak signals from the scoring system. This makes the system

able to be used by individual investors with limited amounts of funds, which is our

goal.

This research aims to benefit individual investors for the following reasons: 1) We

would like to support traders with limited funds to trade responsibly. We support the

idea that everyone should be given the opportunity to make money, even with limited

capital to start with. Financial markets are a place where that can be achieved and,

as we will discuss shortly, are now accessible to almost everyone. 2) We would like

to be able to simulate our trading system as realistically as possible. We realise than

designing parameters to mimic institutional trading is difficult for outsiders with no

experience. We also relish the challenge of designing a successful trading system despite

the limits imposed by focusing on retail traders, such as not being able to profit from

a declining share price. Positive results despite missing half of trading opportunities

are a vote of confidence in our system, and it can be inferred that profits would be

even bigger if short (profiting from decline) trades were included too. 3) We recognise

that online trading platforms have been a growing industry for the last two decades

or so. Nowadays, there are many choices of online trading platforms and applications

which support people who trade from home, allowing people to learn how to trade in

their own time and on the back of their own interest. Therefore, we decided to build a
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system that individual people could realistically follow, people who can connect with

an online broker to buy and sell shares but for whom trading may not be a full-time

occupation. 4) Selecting individual traders who can only profit from a share price

rising as our focus confers a degree of indirect risk control. We did not include in our

system elements of trading that might be categorised as risk management or money

management. Examples of these elements include decisions about what percentage

of one’s capital to invest per trade and a predetermined loss at which point shares

will be sold (a stop-loss). It is sometimes argued that a blunt-instrument, rules-based

approach is safer for this than predictive models. But we did give some thought to risk

control in our selection of individual investors, as seen in the following example. While

our system recommends selling shares in anticipation of a decline, it is possible that

the signal may come too late or not at all in reality. By only being able to buy shares

and not short-sell them, the worst possible outcome is if the share price declines to

zero and the money invested in that share is lost. But, importantly, the loss is capped,

it cannot go beyond the amount invested if the share hits zero. However, if investors

can short-sell shares, the price can go up an unlimited amount, potentially causing a

loss beyond what they planned to invest if they are unable to exit the position quickly

enough. After carefully considering the reasons mentioned above, we decided to build

a trading system aimed at individual traders.

We believe our selection of individual investors adds value to this research since trading

systems focused on or usable for individual retail investors have been largely absent

from the research literature. However, with the growth of online trading platforms and

even mobile applications, such traders may be coming to represent a larger share of

participants in the market and we might expect some portion of these to turn to compu-

tational research in order to gain an edge that will generate consistent profits. We hope

and expect to see more research applicable to individual investors in the future. More-

over, our research demonstrates that increasing the sophistication of machine learning

algorithms is not the only way to improve their performance on the stock prediction

problem. Counter-intuitively, we find that simpler machine learning approaches can

work well when several are combined and managed effectively, though there is room

in our model to include more complex algorithms too. In this research we review the

efficient market hypothesis, discovering that as markets become increasingly efficient,

techniques for prediction become obsolete as other market participants expect people to

trade using them. The investment of resources into developing a complex new machine

learning approach could be wasted if market efficiency diminishes its predictive value.

Although this may not be permanent, it could leave one unable to profit and unable

to know when their predictor might work again. A system such as ours is necessary
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in the long term, as it removes signals from out-of-favour predictors and selects better

ones until they change places, aiming to exploit short-lived inefficiencies for consistent

profits. The core idea of this research is this effective management of multiple machine

learning algorithms, which we achieve with our novel two-layer scoring system. We

believe this is a strong contribution to the study of machine learning as applied to

stock price prediction, as the existing ensemble approaches we reviewed included fewer

predictors and did not attempt to select the best predictor for a specific stock and time.

Instead they tended to use the output from one algorithm as the input for the other

which would make the prediction. Although we selected individual investors as our

focus, in principle our scoring-system approach can be readily adapted for institutional

trading. With the ability to short-sell and more money to trade, it is possible the

results for institutional traders may be even better than the individual trader results

reported here. We consider this adaptability a strength of our research.

This report begins with the financial and machine learning backgrounds in chapters

two and three. Chapter two, financial background, discusses fundamental topics in

finance related to our research, while chapter three reviews multiple related machine

learning areas, such as machine learning algorithms used in the stock market, ensemble

models, prediction and common frameworks of trading systems using machine learning.

Chapter four describes the full design of our machine learning ensemble trading system.

Our system follows six main steps which will be explained in this chapter and referred

to in the following chapters for a better understanding of our experimental design.

Chapter five discusses a number of experiments we conducted in order to obtain the

complete system as described in chapter three. There are four main experiments in this

chapter. The first three experiments relate to the main design of our system and will be

discussed in order, while the last experiment is about small adjustments of our system

which do not effect the main design but can improve the results. Chapter six shows

our system’s performance. In this chapter our system will be tested on various stocks

from different markets and business sectors. The results will be compared to the buy &

hold and the market benchmark. Then, some of the results will be compared to other

trading systems. To compare our results, we mainly consider the Sharpe Ratio as this

value accounts for both profit and risk. Next to the Sharpe Ratio, we consider profit as

this is the main desire for investors. Please note that in this research we do not compare

accuracy as a main criteria. We found from our experiments that accuracy does not

lead to profit since in finance, it is not enough to get the direction correct only, but

to get it correct on high-profit days and to make sure losses from incorrect predictions

are kept small. The details of this issue will be discussed in chapter five, together

with the real trading examples. Finally, in the last chapter, we discuss conclusions and
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recommendations for future work.
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Chapter 2

Financial Background

This chapter will provide the reader with some brief background information about

financial markets, including definitions of terminology that will be used throughout the

dissertation.

As with material goods such as clothes and books, stocks and other types of financial

instruments are traded on Electronic Markets where buyers and sellers can execute

transactions on computers over the internet. The most well-known type of financial

markets is probably the stock market. The stocks are released to the market by com-

panies that wish to raise capital, also known as an IPO, and following this, market

participants such as private investors, hedge funds, banks and, more recently, comput-

ers acting on behalf of market participants, can trade these stocks among each other.

During these secondary sales of the stocks, participants aim to make a profit by buying

the stocks and waiting for an increased demand in a particular stock before selling.

Alternatively, they may profit by borrowing the stock to sell it at a high price, then

awaiting a lower demand and subsequent lower price before buying it back and return-

ing it to the original owner. Below are a few definitions of stock market terminology.

2.1 Efficient Market Hypothesis

The Efficient Market Hypothesis, also know as EMH, is an economic theory first intro-

duced in 1965 by [36].It has been influential in both academic and commercial contexts

since its introduction. It is a necessary consideration for any research attempting to

model or trade financial markets, since in its strongest form the hypothesis concludes
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that prediction of stock prices is impossible. As we will discuss, the EMH rests on

some assumptions that may not necessarily hold in reality, but the principle that the

predictive value of information can be lost as markets become more efficient could be

important to this research, which proposes a multi-predictor approach in anticipation

of individual predictor’s performance being diminished. Therefore, a comprehensive

understanding of EMH is important in the context of the stock market. This section

will provide a brief description of the EMH concept followed by a critical analysis of

the theory.

2.1.1 Efficient Market Hypothesis

EMH states that stock prices in an efficient market are the reflection of all available

information about a company and investors’ expectations. This implies that it is im-

possible to profit from trading stocks [59] using information of any kind: private, public

or price history information [81]. In 1965, Eugene Fama defined an efficient market as

one which satisfies the condition of current information being available to a large num-

ber of rational market participants, who are competing to maximise profits through

predicting the future market values of securities.

In 1970, Fama developed his efficient markets idea into the Efficient Market Hypothesis

[37], of which there are three forms. Firstly, weak-form EMH, which is defined by cur-

rent and future security prices already including the information contained in historical

prices. Secondly, the semi-strong form is where current and future prices already reflect

past prices and all available public information. Finally, strong-form, which asserts that

securities’ prices already include all relevant information, including inside information.

More detail is given on these below. However, the important conclusion of all forms

of efficient markets is that, since there are no predictable patterns, the prices must be

random. This is why in the experiments that follow in the discussion section, evidence

of prices following a random walk are sought to demonstrate market efficiency.

2.1.2 Weak Form Efficiency

Under the weak form of EMH, future prices cannot be predicted by historical price

movement or volume since prices already account for this information. Therefore, the

historical price data has no correlation with present prices [70] [40]. Moreover, the

randomness of price movements makes it impossible to discover trends, so one cannot

take advantage of such movements to make money in the market. Future earnings
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or growth does not rely on past prices either. This version of EMH implies that one

cannot profit using technical or trend analysis. The reason for this is that if the

past information carried reliable signals for predicting the future, everyone would have

learned and exploited them. Note that an efficient market assumes the existence of

a large number of rational competing agents. Therefore, these signals will ultimately

lose their value since the expectation of price increase would be priced into the current

price, leaving no room for profit.

In summary, as it is believed to be impossible to achieve a return greater than a

weak-form efficient market with technical analysis [40] [55], investors who believe in

weak-form efficiency can randomly select securities and should end up with similar

returns.

Here is an example of weak-form efficiency [58]. An investor observes that the share

price of Company B consistently rises on Monday and declines on Friday. Therefore,

one Friday, she buys 100 shares of this stock at 10p per share in the expectation she can

sell them for a higher value on Monday. However on Monday, the share price declines

to 9p per share. This situation indicates that the market is a weak-form efficiency since

the investor was unable to use information about past prices, in this case a historical

pattern in the prices, to produce a profit.

2.1.3 Semi-strong Form Efficiency

Semi-strong form efficiency believes that historical, present and future information

impacts the prices of stocks to varying degrees. It proposes that all public financial

information is already included in security prices [113]. This implies that historical

prices and other public information is immediately reflected in the price [40], again with

the conclusion that investors are not able to predict future values - and thereby profit -

using public information, which can include fundamental data such as the management

quality, balance sheets, patents held or earnings forecasts of a company. This is in

addition to the weak-form of Market Efficiency, so technical analysis also cannot yield

a profit. Notably, semi-strong form efficiency excludes non-public information that

could affect the price but is known only to company insiders.

An example of semi-strong form efficiency would be if the investor from the previous

example reads a news report saying company B is about to release outstanding results

due to the popularity of a new product. The price jumps on the news report as it reflects

this expectation, meaning the investor is unable to benefit from this announcement.
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Once they own the shares, they may profit only if the actual results posted by the

company exceed the expectation reflected in the current price, or they may disappoint

and cause the share price to decline, but in either case the public information, the news

report, is inconsequential and cannot be used to predict the future value.

2.1.4 Strong-Form Efficiency

Strong-form efficiency proposes that all relevant information, including non-public in-

formation only available to insiders, is already reflected in stock prices [37]. In this

context, insiders can be company employees, managers or board-members who have

the privilege to see some exclusive information that is not available to the public. The

strong-form EMH is an extreme situation in which all information available in the world

is already incorporated into the price. Therefore, no one can take advantage of any

information to profit from the market, even insiders who have exclusive information.

An example of strong-form EMH [54] could be the chief technology officer (CTO) of

a public company taking a short position against his company based on non-public

information he has seen which predicts a new product feature will cause a loss of

customers and therefore revenues. He will profit if the share price of his company

declines. However, upon release of the feature the share price doesn’t decline as he

expected, even though customers are dissatisfied with the new product. This situation

is therefore considered an example of strong-form market efficiency because even the

insider information was already priced in.

2.1.5 Discussion

EMH has been lengthily debated. What follows are some examples of research which

have performed various experiments to test whether the market is efficient. Due to

the volume of academic research into the various levels of EMH, we will only focus

on the weak-form EMH in this section as this has the greatest implications for our

research, which attempts to predict future values using only historical price data. After

discussing academic research examples, we will also review examples of EMH as applied

in practice in real-world financial markets.

Kendall [60], was a British statistician who investigated the characteristics of time-

series data of stocks. The objective of this work was to identify whether correlations

exist within and between financial series. Kendall reported little correlation within and
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between series, therefore concluding that stock markets were unpredictable without

outside data, although importantly some scope was left for individual stocks being

predictable assuming they do not behave the same as the average of a group of similar

stocks.

This work ultimately led to the later random walk model of market prices. In 2003,

research by Burton [71] accepted that there are anomalous behaviours in the market

but proposed the market had become more efficient and less predictable, concluding

that anomalies were not large enough to create trading opportunities. This means

investors are still unable to achieve extraordinary returns over the long term.

In research from 2014, Fatih and Yasin [62] examined weak-form efficiency in the FTSE

100 index of shares from the UK market. The period of investigation ranged from 2001

to 2009. The main objective was to investigate whether the index follows a random

walk model. Unit root tests were applied to test the stationarity of the time series.

The results from the Phillips-Perron (PP test) and Dickey-Fuller test (ADF Test) show

that the FTSE 100 was not stationary over the test period. Moreover, the movement of

prices showed a pure random walk with no drifts or trends. Additionally, they applied

the Generalised Auto-Regressive Conditional Hetroskedasticity, or GARCH(1,1), to

investigate volatility in the time series. The results of this also supported market

prices following a random walk model in all experiments (ADF, PP and GARCH). In

summary, Fatih and Yasin’s results support the weak-form hypothesis as applied to the

FTSE 100 index.

On the other hand, there are many researchers who have produced results opposing the

EMH. For example, in 1996, Sunil [88] argued that while there is evidence of market

efficiency in developed markets, the situation is different in emerging markets, such

as the Indian market from 1987 to 1994. Sunil performed several experiments testing

whether the Indian market during that time followed the weak-form hypothesis and

whether the day of the week demonstrated any predictability of stock price performance.

The dataset in this research was the Bombay Stock Exchange National Index (BSENI)

from 2nd of January 1987 to 31st October 1994. In order to make the results comparable

with other works, the daily index values were converted to US Dollars. Since Sunil

mainly focused on the weak-form hypothesis, the null hypothesis was that stock prices

in the BSENI followed a random walk. In order to test this hypothesis, Sunil attempted

to prove that the Indian index has no first-order correlation. In terms of the day-of-the-

week effect, this research hypothesised that there would be no day-of-the-week effect

up to five consecutive day lags. . Sunil performed several experiments and interpreted

the results statistically. Firstly, the distribution of the dataset was evaluated. The
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result showed that the distribution was positively skewed with a kurtosis value of -

0.530. These results proved that the distribution of BSENI was not normal. Therefore,

it did not follow the random walk model. Secondly, Sunil ran more experiments to

confirm the result. The non-parametric test called the Kolmogorov Smirnov Goodness

of Fit test (KS) was used in this experiment. The result clearly showed that BSENI’s

distribution was neither normal or uniform with a Z value of 0.0000 at 95% level of

confidence. Thirdly, the Wald-Wolfowitz Runs test was performed and also indicated

similar results that the null hypothesis - the price is random - was rejected. Fourthly,

the correlation of the prices was tested. The results showed that the values on the

1st, 4th, 10th, 14th and 15th lags are dependent. Therefore, the hypothesis that there

is no serial correlation in the BSENI was rejected. Finally, Sunil found out that the

returns on Fridays are significantly higher than other days for BSENI. Therefore, the

results rejected the hypothesis that there is no difference between the returns obtained

on different days of the week. Overall, Sunil concluded that BSENI does not follow the

weak-form efficiency hypothesis.

Sachin and Kantesha [59] also performed multiple tests for the weak-form hypothesis.

Twenty-three stocks from various sectors of the Indian stock market were tested to

investigate whether the market is efficient. They experimented over a 10-year period

starting from the 1st of April 2004 to the 31st of March 2014. To investigate the weak-

form EMH, the random walk hypothesis and auto-correlation were used. The objective

of this study was to identify whether the Indian stock market follows a random walk

model. To produce the results, both non-parametric and parametric statistics were

included, for example Dickey Fuller and Auto-correlation coefficient tests. Their study

found that the Indian stock market doesn’t follow a random walk model, therefore the

market is not efficient.

Sachin and Kantesha used a series of experiments to come this conclusion. Here we

present a few. Firstly, the experiment to test the efficiency of the market using a non-

parametric model on six different stocks from the banking sector showed that the Z

values are negative, while the critical value of Z for the level of confidence at 95% is

1.96. Therefore, the null hypothesis that the stocks follow a random walk was rejected.

Similar results were also found in all of the sectors in their experiments. Secondly, the

experiments on auto-correlation found auto-correlation values fell between 0.941 and

0.999. When the lag time was increased, the impact of historical prices decreased. If

the market is weak-form efficient, the correlation should be near zero. Therefore, for

the correlation values Sachin and Kantesha came up with, it can be concluded that

the prices do not follow the weak-form hypothesis. In conclusion, the Indian market in
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that period of testing was not efficient in its weak form.

On the basis of their experiments, Sachin and Kantesha summarised that share prices

in the Indian stock market are not a reflection of the fair value of the stock, there-

fore investors could be able to profit in excess of the market return using historical

information.

Saqib and Muhammad [81] presented empirical evidence from the major stock mar-

kets in South Asia supporting that prices do not follow a random walk model. They

summarised that these markets are not efficient. The four stock markets their research

focused on are the Karachi Stock Exchange (KSE-100), Bombay Stock Exchange (BES-

SENSEX), Dhaka Stock Exchange (DSE-GEN) and Colombo Stock Exchange (CSE-

MPI). This research used daily price information, as the majority of research has, but

also considered bigger timeframes, such as monthly and weekly information. The test

period spanned 14 years from July 1997 to June 2011. The statistical methods they

applied are similar to the other research presented in this chapter: serial correlation

and non-parametric runs test. However, they also included new tests which have not

been used much in the past, such as variance ratio and unit root tests.

Saqib and Muhammad performed four different experiments based on four statistical

methods: serial correlation, runs test, unit root tests and variance ratio. For each

testing method, the daily, weekly and monthly data were tested separately. Firstly, for

the runs test, most of the results were in contradiction to the random walk hypothesis,

but the weekly and monthly data of BSE and DSE, as well as the monthly prices of KSE,

turned out to follow a random walk according to the higher Z values. Therefore, out of

a total 12 experiments, 5 results supported the random walk and 7 results rejected it.

However, it can be concluded from these experiments that not all daily prices follow

the random walk hypothesis, and daily information is therefore not believed to be

random. The second experiment used the Durbin-Waston correlation test. All results

consistently show that the prices from all timeframes and all datasets do not follow a

random walk model. Results from the rest of experiments, unit root tests and variance

ratio, have also turned out to be consistent. All results support the rejection of weak-

form EMH. Therefore, Saqib and Muhammad concluded that their findings illustrate

that none of the four South Asian markets follow the random walk hypothesis. Hence,

they are not the weak-form efficient markets.

We have mentioned multiple research examples testing the efficient market hypothesis

in developing markets and have found much evidence contradicting EMH. However, as

Sunil [88] hypothesised, these may be different to developed markets, implying results
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from these markets cannot be generalised to disprove EMH across all markets. In 2010,

Chien et al [65] tested EMH with wider datasets. This research used 32 developed

and 26 developing countries. The developed countries included Canada Australia, the

United States and the United Kingdom. For the developing countries they selected, for

example, Brazil, Colombia, India and China. All datasets were tested over the period

from 1999 to 2007. The main objective of the research was to investigate whether there

were failures of previous EMH studies. The researchers designed experiments to decide

whether the stocks of their chosen markets are stationary or do not follow a random

walk model.

The methodology to perform the stationary test in this work was proposed earlier

in 2005 by Carrion [52]. Carrion proposed a stationary test capable of testing the

null hypothesis while allowing multiple structural breaks. This model was tested with

monthly stock prices for the designated countries as mentioned above, which were not

limited to one continent. The results from developing and developed countries are

similar in that they did not reject the stationary hypothesis. Moreover, the results

show that in developing markets, stock prices do not instantaneously reflect relevant

information. Finally, Chien et al summarised that EMH does not hold for developing

or developed markets.

Another research which tested the EMH on both developing and developed markets

was published in 2011 by Pabitra [76]. This research examined the efficiency of markets

around the world, including emerging markets (such as India and China) and developed

markets (such as the UK and USA). The period of testing ranged from January 2007

to December 2010. The GARCH (1,1) and ADF tests were used on the logarithm

returns of the daily index from each country in order to investigate the volatility and

the random walk model. Firstly, the reported results from the ADF unit root test

for all selected markets show that index prices do not follow a random walk, hence

are not efficient. Secondly, in order to confirm the results of the ADF test, Pabitra

estimated the GARCH (1,1) model for each selected market individually and found

evidence of high persistence of volatility during the period of testing for both emerging

and developed markets. Such high persistence of volatility indicates inefficiency of the

markets.

Finally, Pabitra concluded that markets are moving toward efficiency in the long term,

citing how inefficiencies provide incentives and opportunities for novel financial prod-

ucts to emerge. Therefore, there is a possibility in the meantime for investors to

outperform the markets; not only the big corporations with inside information, but

individual traders with high data-analysis skills can also do consistently well.
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EMH has become a long-standing and well-known theory in finance and despite ample

literature both in support of and attempting to disprove the hypothesis in its various

forms, there is yet to be a definitive answer as to its truth. Any empirical evidence is

limited by the period the data is taken from, whereas financial markets are continuous

and changing. Evidence that markets follow a random walk over any one period of

any length does not mean it always has or always will be random. For example, [62]

and [76] tested the efficiency of the same market, the FTSE 100 index, over slightly

different time periods. The former selected the period between 2001 to 2009 but the

latter worked on the period between 2007 and 2010. Even with the intersection of

timeframes, the results turned out to be totally different, with one supporting and the

other rejecting the EMH. In this context, it is worth considering evidence from market

participants outside of academia, since there are examples even in developed markets of

inefficiencies being consistently exploited to profit over the market return by the likes

of hedge funds such as Renaissance Technology’s Medallion and others as shown in

table 2.1. These are well-known funds which have been profitable in the markets for a

long time and reflect a mixture of strategies, including statistical arbitrage - looking for

statistically significant inefficiencies in price behaviour - and the use of company and

socio-economic data. The performance of these funds makes a good case for rejecting

EMH.

The problem these present for research is that while their track record contradicts

the EMH, great care is taken to prevent the inefficiencies and strategies used becoming

widely-available, lest they become over-exploited and lose their predictive value, so they

are not readily available for study. However, this seems like an implicit recognition from

market participants that markets tend toward efficiency, but not necessarily that they

are efficient, otherwise they arguably would not be in business at all. This tendency

for markets to render some patterns and indicators obsolete shows the importance in

the proposed system of being able to incorporate many predictors, reduce the influence

of weaker ones, exploit the strong and add new ones into the system.

There is an additional problem when considering the performance of real world funds,

and that is survivorship bias. This is using only a sample of survivors or “winners” - in

this case funds with exceptional long-term returns - to support an argument without

considering the size of the original sample including the subsequent “losers”. The

implication in this context would be that while the aforementioned returns of individual

funds support the possibility of exploitable inefficiencies existing in developed financial

markets, it is possible that the accumulated losses of unsuccessful funds render the

collective expected return of market participants zero or negative, which would support
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the argument that developed markets are mostly efficient.

Investor Key Fund Period Annualised Returns

Jim Simons Medallion Fund 1988-2018 39.1%
George Soros Quantum Fund 1968-2000 32%
Steven Cohen SAC 1992-2003 30%
Perter Lynch Magellan Fund 1977-1990 29%

Warren Buffett Berkshire Hathaway 1965-2018 20.5%
Ray Dalio Pure Alpha 1991-2018 12%

Table 2.1: Returns on leading funds [129]

2.2 Common Trading System

In an ordinary stock trading system, the main objective is to create a profitable portfolio

(a collection of stocks). This section explains the main three aspects in finance that

could be referred to in this research.

1. Ordinary Shares Shares, or common stocks, are the most abundant assets in

the market and allow buyers to claim an ownership stake in a company and the

right to vote in the corporation’s annual shareholder meeting.

2. Portfolio A portfolio comprises shares that an investor currently holds. It will

change over time after the investor has successfully completed buy and sell orders.

3. The CAPM Model CAPM or Capital Asset Pricing Model is an important

mathematical model of portfolio management. It was originally proposed by

William T. Sharpe [97]. CAPM describes the relationship between the expected

return of assets and systematic risk [114]. The basic formula of CAPM is pre-

sented in Equation 2.1 [87].

E(ri) = rrf + βi[E(rmkt)− rrf ] (2.1)

where
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E(ri) = expected return of stock i.

rrf = return of risk free assets which are guaranteed zero risk in theory

βi = beta of stock i which compare the volatility of this stock and the market.

E(rmkt) = expected return of the market.

From Equation 2.1, the expected return of a specific stock E(ri) is the difference be-

tween the expected return of the market and the return of the risk free rate. An example

of a so-called risk-free asset are U.S Treasury securities - debt instrument of the U.S.

government. Along with the expected return of the stock, another important aspect in

the CAPM formula is β. β is basically the measurement of the stock’s sensitivity to

market changes and can be calculated as shown in Equation 2.2 [87].

βi =
cov(rmkt, ri)

var(rmkt)
(2.2)

From Equation 2.2, the result can be interpreted as high β, high sensitivity and low β,

less sensitivity. High sensitivity means that the movement of the stock is more likely

to change according to how the market changes. On the other hand, low sensitivity

means that the stock is less likely to respond to market movements. If a stock moves

in the opposite direction from the market, beta is negative [26]. This means that when

the market goes up, a negative-beta investment decreases.

Another important parameter in portfolio management is α, which is the indicator

for measuring the specific asset’s performance. It indicates the asset’s relative under

or over-performance when compared to the market. α can be computed as shown in

Equation 2.3 [87].

αi = ri − [rrf + βi(rmkt − rrf)] (2.3)

As can be seen from the Equation 2.3, α is the difference between the actual return of

the stock and the expected return obtained from the benchmark or CAPM calculation.

If α is positive, it means that the stock has outperformed the market. On the other

hand, if α is negative it indicates that the stock underperformed the market. Zero

α means the stock return is exactly the same as the result obtained from the CAPM

prediction.

CAPM is used in financial research to setup portfolios in order to maintain a balance

between risky and riskless assets. It can be assumed that the risk free asset - 3-month
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US Treasury Bills are a common example - will not be correlated with other assets

[23]. The initial portfolio is built by following the CAPM model. The weight rebalanc-

ing process is performed following every change. After rebalancing, the accumulated

weights of stocks in the portfolio will be equal to one. This way, the performance of a

portfolio can be controlled, ensuring that the portfolio is not overexposed to any kind

of asset. In this research we adapt some ideas from CAPM, most notably the ideas

of risk-adjusted return and comparison of returns against a benchmark and risk-free

asset.

CAPM allows for the comparison of investment alternatives which are to be held si-

multaneously (a portfolio). In practice, investors use a range of approaches to portfolio

construction, including so-called naive approaches such as 1/N: investing equal amounts

into each stock with no effort to measure the risk based on past data. Such simple ap-

proaches have been shown to be as effective as more complex portfolio management

models (OPTIMAL VERSUS NAIVE). This idea of simple approaches matching more

complex approaches used in finance is interesting with regards to the research presented

in thesis, since we will test whether a combination of simple existing machine learning

approaches can produce good results as opposed to developing a sophisticated new

machine learning approach.

We include this brief discussion of CAPM and portfolio construction as potential users

of our final system will have to decide how our system’s recommendations will fit into

their portfolios. Note that portfolio here refers to a collection of investments held

simultaneously. Investors create a portfolio so as to diversify, that is, to split their

capital across investments so as to be exposed to lots of opportunities for profit and

also so that smaller amounts are lost in the case of a bad investment (only the portion

allocated to the bad investment will be lost). This research focuses on a different means

of diversification by having a range of investment strategies - as opposed to assets - that

change over time instead of being traded simultaneously. There is no reason, however,

that investors using our system cannot combine our proposed approach with portfolio

management methods described above.

2.3 Algorithmic Trading System

Algorithmic Trading or Systematic Trading refers specifically to the use of mathemat-

ical and statistical methods to analyse the historical data of stocks or other financial

instruments that investors are interested in. Results from analyses are then used to
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create mathematical models that provide rational and unbiased data to support invest-

ment decisions. People who work in this area are normally called quantitative analysts

(or quants). Algorithmic trading ultimately aims to predict stock price performance

and automatically execute profitable trades for investors while maintaining a diversified

portfolio.

Below are three important aspects that must be understood in order to gain a better

understanding of existing algorithmic trading models.

2.3.1 Order and Exchange

There are two well-known types of orders that an algorithmic trading system can pro-

duce. The first type is Market Order or MOs, and another type is Limit Order or LOs.

MOs can be considered an aggressive order which means that when the order has been

sent, it is expected to be executed immediately. By sending MOs, an investor expects

to buy or sell their shares at the best available price in the market at that time. On

the other hand, LOs are considered to be passive orders and are not expected to be

executed immediately. In this type of order, the investor has to specify their desired

buy or sell price, and the order will be executed only if that price is matched in the

market. Normally, the limit order price is worse than those in the market, for example

it might be higher than the best buy price for sell LOs or lower than the best sell price

for the buy LOs, so it will not be immediately executed as with MOs. Examples of

MOs and LOs can be seen below:

GOOG, buy, 100, Market

The example above shows a market order saying the investor wants to buy 100 shares

of Google stock at market price. So, if there is someone selling this asset, this order

will be executed no matter what the price. For a limit order, the order works similarly

as shown below:

GOOG, buy, 100, Limit, 200.15

For a limit order, the intended price has to be specified. As in the previous example,

the investor wants to buy 100 shares of Google stock at the price at $200.15 or lower

only.

Naturally, different order types have their pros and cons. For example, while a limit

order can guarantee a share get bought at a price specified by the investor or better,

that price might never be reached, resulting in missed opportunities. In addition to the
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opportunity cost of missed profit, traditionally this would have meant time analysing

the share may have been wasted, although a benefit of algorithmic trading is that

the investor does not have to spend much time or their own effort analysing securities.

Market orders suffer from two main problems: the bid-ask spread and slippage. Market

orders can be filled near-instantly in highly liquid shares and are the quickest and easiest

orders to make. However the shares are bought at a slightly higher price than that

which they can immediately be sold at, effectively meaning the investor makes a small

loss as soon as they buy the share. This is the spread, and the share price has to increase

to cover this. In highly traded shares, the spread tends to be very small. Slippage is

when the market order is filled at a different price what was offered when the order

was submitted. It can be better or worse. This is likely to happen in fast-moving and

volatile markets. For our proposed system, we will use market orders. Our datasets

represent highly liquid shares of large companies, which tend to have small spreads and

for which slippage is less of a problem since there are more buyers and sellers in the

market and therefore a greater chance of getting the quoted price. Additionally, we see

limit orders as adding unnecessary complexity to our system. For example, since limit

orders usually attempt to buy at a cheaper price than currently, our system would have

to predict how far down the price will go before it goes up again. Should it not go down

that far, good opportunities may be missed. Moreover, the fact it has declined some

amount and that we have had to wait may change the prediction, so we have selected

market orders for this experiment.

2.3.2 Order Book

A stock exchange will publish information about orders - including the parties to the

transaction, the number of shares and the price being paid - in what is called an order

book. Some traders use information published in the order book to inform their trading

decisions, for example if a respected institution or investor recently purchased a large

amount of a particular share, a trader may wish to copy them. They might also be

able to determine whether trading of a particular share is being driven by retail traders

(individuals at home) or institutions. This may be important because retail investors

generally represent only a small amount of agents in the market, and they transact in

smaller sizes, which means shares with prices driven by retail traders are less liquid -

it may be harder to buy or sell the shares at desirable prices. Institutions can make

large and frequent transactions and represent a larger portion of market players, so an

order book showing a lot of active institutional investors suggests a stock will be highly

liquid and better prices can be sought.
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Liquidity can be important to consider due to the supply and demand mechanism in

the market [77]. If one holds a share whose price is driven by retail traders, and some

bad news is announced about the company, demand can dry up very quickly as there

are fewer retail traders, and those who want to buy can only purchase small amounts.

Therefore, those holding the shares who want to sell them end up stuck with them and

have to offer much lower prices - probably incurring a loss - in order to sell them. This

is a case where supply exceeds demand and is an example of why stock prices decline

[24]. Alternatively, the holder of a stock for which there is little supply (few shares have

been issued by the company, or those holding the shares want to keep them as they

expect the company to grow) will see the value of their shares increase if large buyers

such as institutions become interested in buying them, for example if the company

generated a strong profit for the year, causing demand to outstrip supply of the stock.

It should be noted that the order book is only available to traders for a fee, it is not

freely published. Perhaps for this reason, it is more widely used by institutions than

retail traders, and is generally used by those who trade frequently such as day traders.

This makes sense since their shorter time horizon means they trade more frequently to

make lots of small profits, meaning buying or selling at bad prices has a larger impact

on their results. So calculating their chances of getting a good price is more important.

2.3.3 Technical Indicator

In technical analysis, there are many metrics calculated from the price history of stocks.

These metrics are called indicators or technical indicators and attempt to recognise

when a predictive pattern occurs in order to long (buy) or short (sell) a stock. In the

following section, popular indicators will be described:

1. Moving Average (MA):

A widely-used technical indicator is the Moving Average. MA smooths price

action by removing the noise from fluctuations in the price. MA can be used as

a trend following or lagging indicator, since it is calculated from the historical

price. There are many different ways to calculate the Moving Average depending

on how the investor expects this indicator to react to price changes.

(a) Simple Moving Average (SMA): SMA is considered the simplest and oldest

way to calculate the moving average from a stock’s prices [29]. SMA can be

easily calculated from recent prices. SMA is suitable for normally distributed

data and will react slowly to price changes compared to other moving average
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approaches. The formula for SMA is represented as follows:

Mk =
1

n

k∑
i=k−n+1

Ci (2.4)

Ci =
(Ck−n+1 + Ck−n+2 + Ck−n+3 + ...+ Ck)

n
(2.5)

where:

Mk = simple moving average at period k.

Ci = closing price of period i.

n = total number of periods to be used in the calculation.

k = number of positions of the period being studied within the periods.

(b) Weighted Moving Average (WMA): In WMA, data is observed in proportion

to its position in time. The most recent data will be given the highest weight

and the oldest data the lowest weight. Then the sum of the daily values

multiplied by their weights is divided by the sum of all weights [29].

Example

Assume that we want to calculate a 6-day WMA. The calculation processes

can be seen as Figure 2-1

Figure 2-1: Weight Moving Average (WMA)
[29]

From the Figure 2-1, the five steps to calculate WMA are as follows:
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Step 1: Assigning the weights 1, 2, 3, 4, 5, 6 to the 6 most recent daily data

positions, where 1 is assigned to the oldest day and 6 means the

present.

Step 2: Multiplying the closing price of each day with its weight from step

1

Step 3: Calculating the summation of all values in step 2

Step 4: Adding up sum of all weights from step 1

Step 5: Dividing the summation from step 3 by the summation of the weights

from step 4

To complete the WMA calculation, these 5 steps will be calculated repeat-

edly during every period of calculation, as shown in Figure 2-2;

(c) Exponential Moving Average (EMA): EMA is also called Exponential Smooth-

ing. EMA is considered to be the best moving average [29] and is increasingly

preferred by technical analysts over other moving average approaches. EMA

responds quickly to new data in the market. It is considered a good compro-

mise between the insensitive SMA and over-sensitive WMA. Compared to

other moving average techniques, EMA follows trends of the data smoothly

and minimises jumps very well.

EMA is calculated by using just two values, the data for the current period

and the EMA for the previous period. Hence EMA does not need to pre-

serve and handle many historical prices. A key benefit of EMA is that it

is not distorted by old data suddenly dropping out of the calculation. Old

data is never suddenly dropped because it is not explicitly included in the

calculation. The effect of past data gradually fades away due to the ever

decreasing weight of yesterday’s EMA. Also, the EMA method of calcula-

tion avoids erratic current movement due to obsolete and irrelevant data

dropping out of the calculation process [29]. EMA is calculated as follows:

EMA = (C − Ep)K + Ep (2.6)

where:
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Figure 2-2: Weight Moving Average (WMA)
[29]
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EMA = the Exponential Moving Average for the current period.

C = the closing price of the current period.

Ep = the Exponential Moving Average for the previous period.

K = the Exponential smoothing constant, which equal to 2
n+1 .

n = the total number of periods in SMA to be approximated by EMA.

2. Relative Strength Index (RSI)

RSI is an indicator that acts as a price-momentum indicator [29]. It is used to

identify the general trend of stock prices and evaluate the speed of price move-

ment. RSI normally ranges from 0 to 100. One way to use RSI as a decision-

making indicator is monitoring when the RSI value goes over the upper bound

threshold and selling that stock or buying when RSI is beneath the lower bound-

ary. RSI can be calculated as Equations 2.7 - 2.8.

RSI = 100− 100

1 + RS
(2.7)

RS =
AvgGain

AvgLoss
(2.8)

Where RS represents Relative Strength. There are two steps to calculate average

gain and average loss;

First calculation

AvgGain =

∑n
i=1 Gaini

n
(2.9)

AvgLoss =

∑n
i=1 Lossi
n

(2.10)

Where Gaini and Lossi are gain and lose at the day i and n is the period of the

RSI calculation. The default number of n is 14 days.

Second and subsequent calculations

AvgGaint =
(AvgGaint−1 ∗ (n− 1)) + Gaint

n
(2.11)
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AvgGaint =
(AvgLosst−1 ∗ (n− 1)) + Losst

n
(2.12)

Where t represent the present day

When RSI goes over the upper bound, it can be interpreted as meaning the price

at that time is overbought or overpriced. It can be assumed that the price will

fall in the near future. On the other hand, if RSI drops under the lower bound, it

can be considered oversold or underpriced and the price of that stock is expected

to rise [29]. The bounds are normally determined by the standard deviation of

the price’s moving average.

3. Bollinger Band or BB is an indicator based on Standard Deviation of prices

changes [128] which can be used to compare relative prices and volatility over a

specific period of analysis. BB are composed of 3 main values or three bands,

called Upper Band, Middle Band and Lower Band, which are calculated as follows

[19]:

Upper band = X̄ + 2σ (2.13)

Middle band = X̄ (2.14)

Lower band = X̄ − 2σ (2.15)

σ =

√∑N
j=1(Xj − X̄)2

N
(2.16)

X̄ =

∑N
j=1(Xj)

N
(2.17)

where

X = stock price

N = period of time (days).

σ = standard deviation.
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Bollinger bands are plotted above and below the simple moving average of the

stock prices. The standard distance is two standard deviation away which can be

seen in figure 2-3.

Figure 2-3: Higher and lower bollinger bands

Figure 2-3 shows the Bollinger bands composed of the rolling mean, upper band

and lower band. The rolling mean is the SMA calculated from the stock prices

(SPY). The lower and upper bands are computed by expanding the rolling mean

by adding and subtracting its product with the standard deviation. An example

of applying these bands to the stock signal generation process is if the price

increases until exceed the upper band, a sell signal is generated. On the other

hand, if the price drops below the lower band, the buy signal is sent.

4. Average True Range (ATR) Average True Range or ATR is a financial indicator

for measuring the historic volatility of a market [119]. ATR is typically calculated

using a 14-day moving average. Although developed for use in commodity mar-

kets, ATR is now widely used across many different types of investments including

indices and stocks. ATR can be interpreted easily as a high ATR indicates high

volatility and a low ATR indicates low volatility. As such, this indicator does not

predict the price’s direction. It is commonly used as an exit signal together with

other indicators.

ATR is a subjective measurement. A single ATR value cannot inform of any

particular trend. To use ATR, traders must compare ATR with an earlier value

or use it together with other indicators, e.g. ADX, which is explained in the

following section.
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ATR can be computed as follows:

TR = max[(high−low), abs(high−closeprevious), abs(low−closeprevious)] (2.18)

ATR =
1

n

n∑
i=1

TRi (2.19)

where:

TRi = a particular true range

n = time period employed (default 14 days)

5. Average Directional Index (ADX) Average Directional Index or ADX is a finan-

cial indicator used to evaluate the strength of a trend. Trends in stock prices can

be either up or down, and this can be shown by two additional indicators, the

Positive Directional Indicator, DI+ and the Negative Directional Indicator (-DI).

The three indicators are generally used together to generate a signal.

The direction of a stock price trend can be interpreted as follows: an uptrend is

expected when +DI is more than -DI. On the other hand, a downtrend is expected

when -DI is greater than +DI. To make a decision on going short or long, traders

wait for crossover moments when one of the indicators becomes greater than the

other, which they will take as a signal. When a crossover or trend happens,

traders will use ADX to evaluate its strength. If ADX is below 20, the trend

can be classified as Weak. Meanwhile, any value above 25 can be considered a

strong signal. [119]. A weak or absent trend does not necessarily mean the price

is stable, but may instead mean that the price is too volatile to identify a clear

direction. ADX, +DI and -DI can be calculated as follows:

DI+ = (
SmoothedDM+

ATR
) ∗ 100 (2.20)

DI− = (
SmoothedDM−

ATR
) ∗ 100 (2.21)
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DX = (
|DI+ −DI−|
|DI+ +DI−|

) ∗ 100 (2.22)

ADX = (
(PriorADX ∗ 13) + CurrentADX

14
) ∗ 100 (2.23)

where:

+DM = Current High - Previous High

−DM = Previous Low - Current Low.

SmoothDM (+)/DM(−)
=

∑14
t=1DM −

∑14
t=1DM
14 + CurrentDM

ATR = Average True Range

The above are some traditional technical analysis methods used by traders in financial

markets. As can be seen, they suffer to a degree from elements that are arbitrary, such

as how many days over which to calculate the moving average or the upper and lower

bounds of RSI. Each technical analyst may use different figures. In the past, it may

have been difficult to figure out the best values for each stock to which an indicator was

applied, and traders might select one set of values to apply to all stocks. Nowadays, it

might be possible to figure out the best values for each stock based on its past, and this

research builds on this idea that each stock’s historical price data has it’s own unique

characteristics. However, these may be more subtle and complex than can be identified

by the models above. This may because as such indicators have become widely known

the market prices in their expectations, and as predicted by the EMH the predictive

value of the indicators has been diminished. As will be seen, this research borrows one

traditional technical analysis technique, EMA, but applies this to monitor the scores

of different predictors rather than predict future stock prices.

2.3.4 Backtesting and System Evaluation

Backtesting is the process of evaluating a trading system by testing it with an unseen

dataset. The purpose of this is to see whether a trading strategy can work out of

sample, on data other than that which it was trained. The backtesting dataset covers

a certain period from the available past price data of a stock, but the algorithm is

not allowed to observe this data and use it to train. Backtesting can be performed by

running the system on various sets of historical data and measuring the performance.
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1. Annual Return: The annual return or yearly return is a basic metric for measuirng

trading systems. A common method to calculate the return is the percentage

increase or decrease in capital, also known as the “Simple Return” or “Arithmetic

Return”. While the simple return provides an intuitive and meaningful evaluation

of an investment, there are some quirks that make it difficult to use. For example,

the continuously compounded arithmetic return is not symmetric. A loss of

50% requires a subsequent 100% to return to break-even. Such asymmetries

are not always obvious when simple return values are presented. To avoid this

peculiarity, the logarithmic return or continuously compounded return is often

used in academic and valuation settings. This presents the above returns, -50%

and 100% as -69.31% and 69.31% respectively. In this section, we will include

both the simple return and logarithmic return. However, in our experiment, the

logarithmic return is favoured as we take into account the compounding value.

• Simple Return

simRt =
Pt − Pt−1

Pt−1

=
Pt
Pt−1

− 1

(2.24)

Where

simRt = Simple return at time t

Pt = Price at time t

Pt−1 = Price at time t-1

• Logarithm Return or continuously compounded Return

logRt = ln (
Pt
Pt−1

)

= ln(Pt)− ln(Pt−1)

(2.25)

Where

logRt = logarithm return at time t

Pt = Price at time t

Pt−1 = Price at time t-1
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2. Sharpe Ratio (SR): The Sharpe Ratio is also a common measure used to evaluate

investments that includes the mean and variance of returns. It was introduced by

Sharpe [98] in order to measure the performance of mutual funds. This measure-

ment is also known as the reward-to-variability, Sharpe Index [90] and Sharpe

Measure [1].

Beyond evaluation, many common financial measurements are also calculated

from historical data to make decisions about future investments, under the as-

sumption that historic results have some predictive value [99]. For example, if

the historical performance of security X is higher than security Y, it is assumed

that X will have higher performance than Y in the future too. More specifically,

it may be higher or lower by some multiple of the historic measure. In acknowl-

edgement of these two uses, Sharpe [99] defined two versions of his ratio, ex ante

for theoretical discussion, and ex post after an investment has been made. Both

are defined below.

• Ex Ante Sharpe Ratio: the differential return can be computed as equation

2.26. In this equation, the tildes over variables mean that the exact values

may not be available in advance.

d̃ ≡ R̃F − R̃B (2.26)

Where

d̃ = differential return

RF = Return of fund F

RB = Return on a benchmark portfolio (or a security)

In this case, the Sharpe Ratio which indicates the expected differential return

per unit of risk can be calculated as equation 2.27

S ≡ d̄

σd
(2.27)

Where

S = Sharpe Ratio

d̄ = the expected values of d

σd = the predicted standard deviation of d
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• Ex Post Sharpe Ratio: the differential return at time period of t can be

computed as equation 2.28.

Dt ≡ RFt −RBt (2.28)

Where

Dt = differential return in time period t

RFt = the return on fund F in time period t

RBt = the return on a benchmark portfolio (or a security) in period t

The average of Dt between time period t = 1 and t = T is calculated as

equation 2.29.

D̄ ≡ 1

T

T∑
t=1

Dt (2.29)

Where

D̄ = the average value of Dt over time period t = 1 to T

The equation to calculate standard deviation of D is shown in equation 2.30.

σD ≡

√∑T
t=1(Dt − D̄)2

T − 1
(2.30)

Where

σD = standard deviation over over time period t = 1 to T

Dt = differential return in time period t

D̄ = the average value of Dt over time period t = 1 to T

Finally, the Sharpe Ratio or historic Sharpe Ratio, which indicates the his-

torical average of the differential return per unit of the historic variability,

is shown in equation 2.31.

Sh ≡
D̄

σD
(2.31)
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Where

Sh = historical Sharpe Ratio

D̄ = the average value of Dt over time period t = 1 to T

σD = standard deviation over over time period t = 1 to T

Both the ex ante and ex post Sharpe ratios are time dependent and relate to the

period over which they are measured. For example, the Sharpe ratio when the

return is calculated between adjacent days will be different from when it is calcu-

lated between adjacent weeks. d̄1 and σd1 are the one-period mean and standard

deviation of the differential return. Assuming that the differential return over

time period T is calculated by accumulating the one-period differential returns,

and the returns have zero serial correlation, the mean and standard deviation of

the T -period returns can be calculated as equations 2.32 - 2.34.

d̄T = Td1 (2.32)

σ2dT = Tσ2d1 (2.33)

∴

σdT =
√
Tσd1 (2.34)

Where

d̄1 = one-period mean of the differential return

σd1 = one-period standard deviation of the differential return

d̄T = mean of the T period return

σdT = standard deviation of the T period return

Under the assumed conditions above, the Sharpe Ratio for the one-period and

T -period can be computed as equation 2.35.

ST =
√
TS1 (2.35)

Where
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S1 = Sharpe Ratio for one-period

ST = Sharpe Ratio for T -period

Practically, the Sharpe Ratio will be shown as an annualised value in order to

provide reasonable meaningful comparisons to other strategies. In this research,

we use the ex-post Sharpe Ratio because this value takes into account both profit

and risk, which are considered to be important in our system. However, we will

also provide other measurements to give more details of the system’s performance.

Clearly, the Sharpe Ratio for a trading strategy is not stable and changes over the

period tested, as the volatility and achievable profit will be different. In practice

this opens the measure up to being abused by backtesting over the period that

gives the best Sharpe Ratio. We have avoided this in our research by selecting

a neutral test period and using the same period for all stocks tested. However,

this means that when comparing strategies based on Sharpe Ratios, the method

used to select the sample is an important consideration also.

In order to make the calculations in this research closer to what is practised in the

real world and comparable to other research, a risk-free return rate is taken into

consideration. While the Sharpe ratio can indicate whether the return achieved

is good for a given level of risk, an investment may still not be a good idea if a

similar return could be achieved for theoretically no risk. The risk-free rate of

return is included by subtracting it from the total return of a strategy: the return

on a strategy is the amount that outperforms the risk-free rate [68] [89] [17].

It is common to use the yield of short-dated domestic government bonds as a

proxy for the theoretical risk-free rate as a government is unlikely to default.

Given the USA’s dominance in finance, the yield on US Treasury bills or bonds

are often used as a risk-free rate in investment, or a historical average of them

in order to smooth out periods of exceptionally high or low interest rates. This

is because they are viewed not only as the safest investment but also used as

a proxy for many important financial matters, for example mortgage rates [56].

The yield of a 10-Year treasury bond from 2010 to 2019 ranged from 1.80% (in

2012) to 3.22% (in 2011), giving an average of 2.405% [83]. Other research has

used 3% as the risk-free rate, which is close to the returns of the bonds described

previously, so to allow for comparison 3% will be used as the risk-free rate.

3. Drawdown: Drawdown is a decline in equity between a successive peak and trough

[11]. Therefore, the maximum drawdown is the largest peak-to-trough decline
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over a given period of time. When presented on a graph, we see the drawdown

as the distance between the highest point and the successive lowest point [107].

Figure 2-4: Drawdown and Maximum Drawdown

Figure 2-4 shows that the drawdown period is that from when the stock price

starts to fall until the price changes direction and surpasses the initial price.

Drawdown is calculated from the difference between the initial price and the

lowest price during the drawdown period. There can be many drawdown periods

but only one maximum drawdown for a given period of time.

2.4 Discussion

This chapter described some basic financial concepts that influenced the development

of our new trading system. Firstly, we considered the EMH, which if conclusively

correct would render efforts to create a trading system futile. However, while developed

markets may be largely efficient and becoming more so, there is evidence that they are

not completely random - that they do not follow a random walk - and inefficiencies

that can be exploited for profit still exist which we can see from their exploitation by

hedge funds and other market participants. However, we agree with the EMH that

widely-followed technical indicators, like those described in this chapter and meant to

identify repeat patterns and inefficiencies, become invalid by their being well-known.

The inefficiencies that still exist must have become more complex and subtle, and may

even be unique to particular stocks and particular times. This is the justification for
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out multiple machine learning approach, as we believe this gives the strongest chance

of spotting tradeable patterns. Moreover, machine learning offers the opportunity

to predict future prices rather than just the direction of the share price movement.

Traditional indicators tend to focus on the direction, although traders may interpret

particular indicators as being strong - the stock price will move far - or weak, but this

is largely subjective. In this dissertation, we focus on machine learning techniques for

predictors and will use several of them together to create a dynamic stock forecasting

system. Technical indicators are only represented by the inclusion of EMA to track

trends in our proposed scoring system.
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Chapter 3

Machine Learning and Ensemble

models in Stock Prediction

Due to enormous interest from many major companies, stock market forecasting is a

popular and active area. A lot of researchers are investigating prediction models for

future prices or trends of stocks with high accuracy. Despite the research activity in

this area, successful models are still limited due to the non-stationary nature of data.

In this section, we consider the applications of several Machine Learning techniques to

this problem and the various degrees of success reported.

3.1 Machine Learning Algorithms

In this section, machine learning algorithms and the applications of machine learning

to financial market prediction are explained.

3.1.1 Regression

One classic technique for continuous value prediction is regression. This takes input

variables and tries to map output onto the continuous result function, finally giving

the predicted values based on the function. There are two common approaches, linear

and polynomial regression, explained in this section.
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3.1.1.1 Linear Regression

The basic idea of this technique is to find the line that best fits the training dataset by

minimising the cost function. The prediction will be made by simply computing the

weighted sum of all input features, plus a constant term, the so-called Bias. The linear

regression equation is shown in 3.1;

ŷ = θ0 + θ1x1 + θ2x2 + ...+ θnxn (3.1)

where

ŷ = predicted value.

n = number of features.

xi = the ith feature value .

θj = the jth model parameter.

θ0 = bias term

As mentioned above, training the model means trying to find its parameters so that

the model fits the training set. To achieve this, we need a measurement value to report

how well or poorly the model and the specific set of parameters fit the training data.

The most common metric is Mean Square Error (MSE). To train a linear regression

model, we need to find the values of θ that minimise MSE. MSE of a linear regression

hypothesis hθ on a training set X is shown in equation 3.2

MSE(X,hθ) =
1

m

m∑
i=1

(θT ˙x(i) − y(i))2 (3.2)

where

m = number of instances.

x(i) = a vector of all feature vectors.

X = a matrix containing all feature values .

h = system’s prediction function, called a hypothesis.

MSE(X,hθ) = the cost function measured using hypothesis h

The aim of this regression problem is to minimise the cost function MSE(X,hθ). The

process repeats until the minimum value is found. Then the line according to that cost
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Figure 3-1: Linear Regression: TSLA and SPY 01-01-2012 to 01-01-2013

function is fitted to the data as shown in Figure 3-1, where the x-axis is the price of

SPY, the index used in the prediction process, and the y-axis is the price of TSLA, the

stock that we want to predict.

From Figure 3-1, the upward trend of the line of best fit indicates that the prices of

the SPY index and our TSLA stock are related. If the price of SPY goes up, the TSLA

price will go up even more so.

Linear regression is simple to implement and easy to understand. However, this algo-

rithm is not good with outliers or noise [109]. There is not a lot of research in finance

that uses linear regression in isolation. However, research by Bhuriya et al [16] used

linear regression as a single model to predict a stock price. The accuracy from this

model is outstandingly high at 0.9774. However, as they tested only a single stock

- TCS, Tata Consultancy Service - over a single time period, the results might be

due to luck. We found from our own experiment that stock prices are not stationary.

Therefore, we focused on predicting the return instead of the stock price. Also, the

results from an experiment are much more valid if they are performed on a variety of

stocks or over different time frames in order to confirm the performance of the linear

regression model. Having run linear regression on multiple stocks during the course of
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Figure 3-2: Polynomial Regression

this research, we found that testing on only a single stock is insufficient as the results

could be completely different for another dataset.

A possible reason linear regression is rarely used in isolation in finance is because of the

fluctuation of stock prices, which can be driven by various factors and to which linear

regression is sensitive. Other models can be included to reduce fluctuations before

using linear regression to make a prediction about a stock. This is the approach of

our research, which clusters our data into multiple groups representing different levels

of volatility, then trains multiple machine learning approaches on specific datasets.

Clustering reduces the effect of fluctuations on predictors such as linear regression,

which we have included as a predictor in this research.

3.1.1.2 Polynomial Regression

If the dataset is too complex to fit a single straight line, a simple way to solve this

problem is to add new features to the original dataset. The new features are the

powers of the original features. Then, a linear model can be trained on these added

features. This is called polynomial regression. An example of a linear model fitting on

a simple quadratic equation is shown in Figure 3-2

In Figure 3-2, polynomial feature degree 2 is used. Therefore, before trying to fit a

linear model to the data, an additional feature was added to the original dataset. With

multiple features, polynomial regression is able to find non-linear relationships between
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features.

The basic idea behind polynomial regression is similar to linear regression, which is

to find the line of best fit to our data. While linear regression cannot fit non-linear

data, polynomial regression is able to manage non-linear data well. An important

hyperparameter for polynomial regression is the degrees of freedom. Higher degrees

of freedom fit non-linear data better. However, too many degrees of freedom lead to

overfitting [47]. Overfitting is when the model tries too hard to fit the training data by

increasing the number of parameters. This makes the model fit the training data well,

but when tested on a different dataset it works badly. So while polynomial regression

can provide a better fit than linear regression, it should be used carefully by paying

attention to the degrees of freedom to avoid overfitting.

In [82], researchers compared the performance of linear regression, polynomial regres-

sion and support vector machine on stocks from the US market. The methods used in

the research are not complicated, starting with loading and normalising the dataset.

The regression models are then trained on the normalised data. Random sampling of

the stocks is used to select data to evaluate each regressor.

In order to evaluate the performance of each algorithm, two groups of data are randomly

selected. The first is the stock while the second is the period of time to test. From

the experimental results, this research concludes that polynomial regression is more

sensitive to the normalisation method than linear regression. However, the accuracy

of linear regression is lower than polynomial regression. Also, this research confirms

that linear regression has less chance of overfitting the training data. Linear regression

provided less accuracy at the beginning, but went on to perform better than polynomial

regression, which suffered from overfitting.

For these reasons, this research suggests swapping between linear and polynomial re-

gressions as needed to achieve a balance. This is what we would like to do with our

system. Therefore, we decided to include both linear and polynomial regression into

our model to benefit from the lack of overfitting of linear regression and the fitness to

non-linear data of the polynomial regression.

3.1.2 Support Vector Machine (SVM)

Support Vector Machine or SVM is a machine learning approach suitable for small

or medium-sized complex datasets [74]. SVM is capable of handling both linear and

non-linear classification or regression problems.
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Figure 3-3: Support Vector Machine with parameter c = 1 and c = 100 [39]

3.1.2.1 SVM Classification

The fundamental idea of SVM for classification is to find the best decision boundary

that can separate two classes of data. These two classes can be either linear-separable

or non linear-separable as follows:

3.1.2.2 Linear Classification

Figure 3-3 represents the SVM boundary which separates two classes of the Iris dataset

[39]. The boundary is represented by the space between two dashed lines in Figure 3-3.

This boundary is sometimes called street as it looks like a street separating the two

classes. If this street is too wide, there will be too many misclassified data points (data

points within red circles on the street). On the other hand, if this street is too narrow,

even though there are fewer misclassified data points, this boundary will be overfit to

the training set, leading to poor classification accuracy on the test set. Therefore, the

ideal street should be the best trade-off between the misclassified data points on the

training set and the classification accuracy, concerning both the training and testing

sets. The parameter that controls the width of this street is c. If the value of c is

small (Figure 3-3 on the left), the street will be wide. On the other hand, if c is large

(Figure 3-3 on the right), the street will be narrow.

3.1.2.3 Non-linear Classification

When the dataset is non-linear separable, one way to approach this problem is to add

more features, for example the polynomial features as discussed in Section 3.1.1.2

on page 53. Figure 3-4 shows an example of a non-linear separable dataset. As

you can see, for Figure 3-4 on the left, the two classes represented by blue squares
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Figure 3-4: Example of a non-linear separable dataset [39]

Figure 3-5: Example of using polynomial SVM degree = 3 with a non-linear separable
dataset [39]

and green triangles cannot be separated by a straight line. However, when adding a

second feature (polynomial feature degree = 2), the dataset becomes linear separable as

shown in Figure 3-4 on the right. Another example of separating a non-linear separable

dataset with polynomial SVM classification degree 3 is shown in Figure 3-5.

The benefits of SVM are that it is considered to be a robust and accurate technique

which requires only a relatively small sample for training, but a trade-off for this is that

it is computationally inefficient [120]. Specifically, it is robust to distributions which

do not behave as expected, and also insensitive to the number of dimensions [12].
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Figure 3-6: SVM Regression [39]

3.1.2.4 Supper Vector Regression (SVR)

SVM is a versatile method that can be used for both classification and regression

problems [39]. The general idea of using SVM for a regression problem is the opposite

of using SVM for classification. SVM regression will try to fit as many data points

as possible on the street while limiting the number of misclassified points outside the

street. The width of the street is controlled by a parameter ε. Figure 3-6 shows that a

smaller ε leads to a narrower street and a larger number of ε results in a wider street.

[122], an adaptive version of SVR is proposed to cope with high fluctuation and noise.

Instead of using the standard SVR, they proposed SVR with an adjustable margin. The

typical loss function of SVR contains a fixed and symmetrical margin called FASM.

When the margin is very small, the model is prone to overfitting. On the other hand, if

the margin is too large, the model is more generalised and tends to incur more errors.

The disadvantage of having a fixed margin is the model cannot adapt well to the data

[108]. Their research focuses on margin adaptation in two ways. The first approach is

FAAM (fixed and asymmetrical margins) and the second method is NASM (non-fixed

and symmetrical margins).

In FAAM, the upper and lower margins can be asymmetric but are fixed numbers.

However, in NASM, the margin can be adapted according to inputs. This adaptation

is performed by a shift window. These approaches are tested on stocks from Hong

Kong’s Hang Seng Index (HSI) from January 2001 to June 2001. Experimental results

show that the fixed margin is not helpful for prediction, even with an asymmetrical

margin. However, the dynamic or non-fixed margins work well, resulting in significantly

decreased errors (from above 130 to 116). In the experiment, the margin for NASM is

57



calculated from the standard deviation of the input. Therefore, it keeps changing when

a new input is obtained.

From the results, neither the upper or lower margin matter when they are fixed. In-

creasing the upper margin makes the error of positive class higher. However, at the

same time, the error of negative class decreases. Therefore, varying these values does

not help. The key point here is to deal with fluctuated data, and for this the margins

need to be able to automatically adapt. This research could be improved by incorporat-

ing normalisation into this adaptive margin system, such as using two times standard

deviation or another value. Then, we can see the effect of this dynamic system from a

different perspective.

3.1.3 Auto-Regressive Integrated Moving Average model (ARIMA)

ARIMA is the acronym for Auto-Regressive Integrated Moving Average model. It is

a mathematical model introduced for short-term predictions [3], [117]. Even though

ARIMA is good for short term forecasting, it requires long-term training data to make

accurate predictions [67]. The ARIMA model is composed of three main parts: Au-

toregressive model or AR(p), Integrated procedure or I(d) and Moving Average Model

or MA(q). The Autoregressive model estimates the value of Y at time t by observing

the values of time series X within the time period p. Moving average is the process

that creates a q-day lead-lag dataset to observe and decrease error from the predic-

tion process. Finally, the integrated process is performed to achieve stationarity [67].

Therefore, it is represented as ARIMA(p,q,d).

ARIMA has been the focus of much research since its introduction, some of which is

described in the following paragraphs beginning with Wang and Leu’s work [115] on

the application of a recurrent neural network trained using features extracted from an

ARIMA model. The model was trained on TSEWSI (Taiwan Stock Exchange Weighted

Stock Index) data between 1991 and 1994, then tested on the 1995 data. Based on

these stocks, they found that the best period for the AR and MA models to give

effective predictions is one day, but they could not determine a best value for the

Integrated process. An ARIMA model was also used to perform short-term predictions

of the U.S. dollar [116]. In this work, an ARIMA model provides the short-term trend,

rather than price, to describe the volatility of the currency. The model comprised

three steps: smoothing input data, identifying parameters (p, d, f) and testing them by

the addition of noise. Moreover, they investigated the model further by studying the

relation between U.S. dollar and Shanghai index. A few conclusions emerged:
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1. ARIMA does not cope well with fluctuating situations. When the test dataset

shows a downward trend overall, but has some small segments of fluctuation,

ARIMA does not work.

2. ARIMA is much more suitable for short-term prediction. In this particular case,

it did not work well for periods longer than a month.

3. Other economic factors should be taken into account, such as the correlation

between datasets, in order to improve the performance of ARIMA model.

Another interesting point of this work is that the authors used weekly closing prices to

make predictions. It would be interesting to see how this model would work with daily

closing prices, since the daily closing price is the most popular indicator and is used in

most stock prediction models.

3.1.4 K-Nearest Neighbors

K-NN or K-Nearest Neighbors works by selecting similar time-series factors in the past

from before the observation point which is to be forecast. Unlike other approaches, K-

NN selects the nearest neighbour by focusing on relevant previous observations based on

their geometry, trajectories, and levels, not their location in time. Most K-NN classifiers

use Euclidean distance to measure the similarity between objects or neighbours [105].

However, it can be calculated with other distance functions too, such as Manhattan

distance.

K-NN can be used for both classification and regression problems [53]. K-NN can be

used to classify objects, for example it has been applied to image classification problems

[42] [124]. This method classifies objects based on the distance between objects in the

feature space. K-NN is an example of instance-based learning as it learns by measuring

the similarity between objects. As for K-NN in regression, K-NN simply predicts

the value of an object by averaging the same values from other objects, K nearest

neighbours. K-NN works well for the regression problem when the contribution of data

points is weighted, so the closest neighbours have more impact on the data [75].

The performance of K-NN is determined by the number of K [105] [53]. Since K is a

hyperparameter, much research aims to solve the problem of the optimal number of

K. In [105], the number of K is not fixed to a single value. In traditional K-NN, the

number of neighbours is fixed for every data point. However, that research proposes a

new approach to finding the most suitable K for each individual sample.
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The proposed algorithm is able to define the optimal K, which is the minimum number

of neighbours that are able to provide the correct class label for each new incoming data

point. This means that K will change with different inputs during the test period. The

proposed algorithm, called the Adaptive K-Nearest Neighbors Algorithm or AdaNN,

starts from the training process. In the training step, instead of trying to run multiple

experiments with different K (grid search) to find the most suitable K for the whole

training data, this approach looks at each sample in the training set individually. Then,

it finds the minimum number of neighbours that could provide the correct class from

that sample. The number of neighbours in this training step starts from one to nine. If

nine neighbours still can’t give the correct class, then nine will immediately become the

optimal K for that sample. After training, each sample in the training set is assigned

the K number which suits them best. Then, when it comes to testing, AdaNN will

calculate the Euclidean distance for each input to find the closest neighbours in the

training set and adopt this number to define neighbours in order to get its class. In

order to evaluate their model, 15 datasets from the UCI repository are used. The

number of clusters of these datasets ranges from 2 to 8. AdaNN results are compared

with the results from other K-NN models which use fixed K numbers (from 1 to 9).

The results show that there are 3 datasets out of 15 where AdaNN overcomes the

other fixed K-NN models. There are six datasets for which AdaNN comes up as the

second best algorithm. Finally, there are two datasets in which AdaNN performs badly

(comes 6th and 10th). The study concludes that for most of the data, AdaNN has a

high possibility to overcome traditional K-NN. Even though it cannot win over every

model, it often comes second place. Another conclusion is that AdaNN works better

with small scale datasets

This research changes the traditional method of K-NN in classification. Even though

it was not the best on every dataset, it gave good results with clearly less work making

the decision on the number of K. However, one should consider whether decreasing the

amount of work infantilising K at the beginning is worth this much effort to calculate

the distance and find the closest neighbour for the new test data every time. This

could increase the processing time substantially. And the time will depend on the size

of both training and testing sets, instead of only the training set like in traditional

K-NN. Therefore, it is necessary to consider further the trade-off between increasing

accuracy and time consumption.

K-NN is also applied in the stock market to predict the future returns [?] [?]. [?]

developed an ensemble model of K-NN and SVM. SVM is used in the first step to

classify stock data while K-NN is used to predict the future return of two indices, the
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Bombay Stock Exchange (BSE Sensex) and CNX Nifty. This research is composed of

three main stages, which are data preparation, training and testing. The final output

of the system is the future return. In the preparation step, the system calculates

additional features related to the price movement, such as the simple moving average,

relative strength index and average true range. Then these features will be normalised.

Step 2 obtains the normalised data from the previous step and divides this data into two

sets, training and testing. The training set will then be used to train the SVM regressor.

Finally, step three takes the classifications obtained from SVM and applies K-NN in

order to predict the future return by averaging from the K nearest neighbours. To

evaluate their system, a comparison between the proposed method and other systems

is shown for the two indices mentioned above. The system performance is represented

by MAPE. The comparison between the proposed model and the other 2 models shows

that the proposed model performs much better, resulting in much lower MAPE. For

example, for the BSE Sensex index, the proposed model obtained a MAPE of 0.0650,

while another model had a much bigger error at 0.23 for the 1-day prediction. After

confirming that the proposed model works significantly better than the others, the

researchers performed more comparisons on different periods of prediction: 1 day, 1

week and 1 month. As might be expected, the results show that the minimum error is

obtained from the 1-day prediction, followed by 1 week and 1 month, respectively.

The only issue we noticed here is in the data preparation process; the additional features

are calculated altogether for the whole dataset at the very fist step, then the training

and testing sets are separated later. This could cause accidental look-ahead bias in the

calculation, especially at the beginning of the test set. Therefore, it would be better to

separate the data first and prepare them separately.

3.1.5 K-means clustering

K-means clustering is an unsupervised learning technique. It is normally used to iden-

tify similarities or dissimilarities between data points in order to compose meaningful

clusters within the data [63]. K is a hyper-parameter which is set at the initialisation

step before starting other calculations. It refers to the number of clusters. In the

initialisation stage, K can either be randomly picked from data points or can be any

random point within the range of the dataset.

X is a set of data points in r-dimensional space. Besides being the number of clusters,

K represents the centroid of each cluster. To make a decision about which group a data

point should belong to, the K-means algorithm will decide from the distance between
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it and the centroids. The data point will then be sent to the nearest centroid.

The K-means algorithm comprises three steps, as follows:

1. Initialising K-cluster centroids: This can be done by randomly picking some data

points, or any points within the range of data. These K-points are taken as the

initial centroids.

2. Assigning clusters to data points: This is done by calculating the distance, such

as the Euclidean distance between each data point to every centroid. Each data

point will then be assigned to the nearest centroid.

3. Update new centroids: In this step, the system will recalculate to find new cen-

troids. New centroids for each group can be computed by averaging all the data

points in that group.

Steps two and three are repeated until the centroids do not move any more, or when

other criteria, such as a time limit, have been met.

K-means clustering has been applied to many areas, such as network anomaly detection

[63], enhancing prediction performance [112][27] and data mining in agriculture [106].

In [63], Kumari et al applied K-means clustering to prevent cyber attacks. In network

attacks, intrusions play very important roles as they will be the first step before damage

happens. This research proved the K-means algorithm is able to identify intrusions. To

run the experiments, the researchers obtained network intrusion datasets from KDD

cup 1999 data which was used in a competition to build a network intrusion detector in

the fifth international conference on knowledge discovery and data mining. KDD cup

1999 is the 38-dimensional data of good and bad connections. Good connections are

normal traffic while bad connections refer to intrusions or attacks. Researchers found

that the optimal number of clusters for their data was 150 by performing grid search.

After obtaining the best number of clusters, the thresholds for each cluster were set to

be used in real time testing with new datasets, such as Flume, Kafka and HDFS. Any

data points beyond the threshold are considered attackers.

A paper by [112] focuses on another problem of K-means clustering: finding the best

value for K [100]. As K is the number of clusters, this problem is basically how to

find the optimal number of clusters. Normally, the number of K needs to be defined

at the beginning of a K-means operation. K-means clustering normally uses Euclidian

distance to identify clusters. This work focuses on improving the Euclidian formula

to enhance the cluster quality. The new enhancement methodology is based on an

ensemble of normalisation and majority voting techniques. The performance of this
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system is evaluated on a well-known dataset, Iris. The results from this research show

better accuracy and less processing time. Therefore, the researchers confirmed that

their technique can be used to improve the quality of K-means clustering in different

problem spaces.

K-means clustering has several benefits: it is simple, doesn’t require supervision, and

versatile, with stable - if only moderate - performance across different applications

[126]. Although, it has been pointed out that it is unable to handle very large datasets

well, and it is also sensitive to both the initial conditions and the presence of outliers

[120]. As with all machine learning approaches described in this chapter, there are

advantages and disadvantages, which validates our ensemble approach as one machine

learning technique can make up for the pitfalls of another.

3.1.6 Hidden Markov Model

The Hidden Markov Model (HMM) was initially developed to solve problems with

speech recognition and is also used for DNA sequencing and ECG analysis. HMM is a

statistical model composed of two types of state: hidden and observed. The main idea

of HMM is to classify or predict the hidden state by extracting the possibility from the

observed states. This is similar to a GP testing patients for a fever but being unable

to check on the patients directly. The only thing the GP can do is ask the patients if

they feel normal, cold or dizzy. In this case, the hidden states are healthy or fever, and

the observed states are normal, cold or dizzy. The GP collects this information and

performs a calculation based on statistics which will tell him the probability of whether

the patient is healthy or has a fever [25].

In order to improve the performance of stock prediction, Hassan [45] introduced HMM

to this area in 2009 with a model that combined HMM and fuzzy logic together to

make a prediction about a stock’s future. The main idea of this combination is using

a HMM model to identify patterns, before creating fuzzy rules using fuzzy logic. With

this technique, multivariate financial data can be predicted with more precision than

previous approaches. The results from this paper improved upon those of previous

models based on ARIMA and combination models of HMM with neural networks and

genetic algorithms when tested on six stocks, including Apple, IBM and Dell.

HMM has also been used to predict the closing prices of four stocks: TATA Steel,

Apple Inc, IBM Corporation and Dell [43]. There were two main adaptive aspects in

this paper. Firstly, HMM probability is remodelled using Gaussian Mixture Models
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(GMMs), and secondly, the observation states were changed from the actual open,

high, low and close prices to fractions of them. Therefore, the observation states can

be calculated as shown in equation 3.3:

Ot = (
close− open

open
,
high− open

open
,
open− low

open
) := (fracChange, fracHigh, fracLow)

(3.3)

After testing this model on the four different stocks, the results from two stocks, Apple

and IBM, outperformed three other models: HMM Fuzzy, ARIMA and ANN, while for

the other stocks this model gave comparable results. A future improvement that might

be added to this model is correlation analysis. This model assumes that all stocks are

independent, yet in the real world where there may be some relations between equities,

which means correlation analysis should make this model provide better results.

Another work that supports the strong performance of HMM in the field of finance

is the literature survey of [102]. This paper compares HMM performance with other

state-of-the-art approaches. The results of this paper show support vector machine and

multi-kernel modes give 60% and 64.35% accuracy respectively, while two HMM-based

models give significantly better results: the first HMM work, from Hassan et al. [45],

has more than 90% accuracy, and the second paper from Gupta and Dhingra [43] gives

84.40%, 84.90%, 93.89% and 91.76% accuracy for the four stocks.

According to the previous results from many HMM models, the performance of HMM

is better than other models. However, the paper does not confirm if all models were

investigated on the same stocks, over the same periods, or otherwise under any of the

same conditions. Hence it cannot be concluded that HMM outperforms the others

because in the real word, financial data acts differently over different time periods and

across stocks.

We have discussed some existing applications of HMM to financial markets, now we will

discuss some general advantages and disadvantages of the concept of HMM. Its primary

strengths are its strong statistical foundations, computational efficiency and ability to

handle new data [46]. At the same time, it is sensitive to the initial parameters chosen

to build the HMM structure, which if poor will result in bad performance. We also

discussed how HMM assumes independence between stocks, which may not hold in

reality.
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3.1.7 Artificial Neural Networks

Because market behaviour is dynamic, chaotic and complicated [9], it is difficult to

analyse and forecast with analytical models. The nature of a Neural Network makes this

method effective for predicting financial time-series data. Artificial Neural Networks

(ANN) have also been successfully applied to stock market prediction, however some

disadvantages have been identified, for example performance is limited in some market

situations [45].

A Neural Network (NN) is a data-driven algorithm. It can discover non-linear relation-

ships within datasets without prior knowledge of the input-output relationship. An NN

is structured in layers and is normally composed of two or more, typically input, output

and hidden layers. The input will be fed into the neural network at the input layer,

then these inputs and its weights will be sent to the hidden layer(s). At the hidden

layer(s), weights will be recalculated and adapted. Then the output from the hidden

layer might be recurrently fed back into the input layer until the result is obtained

later at the output. However, this depends on the type of NN. Some NN have only two

layers, input and output, for example the Self-Organising Map Neural Network (SOM).

SOM will take input data at the input layer and the calculation will be (re)performed

at the output later until the result is obtained or the groups of data are found [118].

Figure 3-7 shows the structure of a multi-layer Neural Network. This network comprises

an input layer, an output layer and two hidden layers. The characteristics and patterns

of input are captured in these hidden layers.

There are many publications with different levels of success on financial forecasting

based on Neural Network models. Zhou and Hu [128] proposed a novel time-series

pattern-finding program using a Neural Network model. The model has two main

steps, feature extraction using a sliding window method and pattern recognition using

an Artificial Neural Network. Moreover, in order to decrease the computational run-

ning time, the PIP (Perceptual Important Point) was incorporated within the feature

extraction process. This model was evaluated with Hong Kong, USA and China in-

dices’ data over five years. The results showed that the proposed method can recognise

some price patterns well.

[103] is very positive about ANN as an approach, although not specifically for its

application to stock market prediction. Some benefits they highlight are ANNs’ abilities

to self-organise, recognise patterns and handle difficult and complex data. However,

ANNs can suffer from overfitting problems as they can become too dependent on the
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Figure 3-7: Muti-layer Neural Network structure

samples observed. Moreover, they require relatively more data and processing time

[125].

3.1.8 Random Forest

Random forest is an ensemble of decision trees. Trees in the random forest are trained

using different pieces of data [48]. Two popular techniques to train random forest

are bagging and pasting. These two techniques are widely used to train the ensemble

models by dividing the training data into smaller parts and deciding which parts are

to be used to train which tree. Basically, each tree will be trained on the same data

but on a different random subset. With bagging, the training data will be sampling

with replacement [21], while pasting is sampling without replacement [22].

Random Forest is one way to avoid overfitting by a decision tree as it builds multiple

decision trees instead of one and lets them get involved in the prediction or classification

by voting. Random Forest has been widely applied in many areas, such as feature

selection [64], solar components forecasting [13], short-term load forecasting [33], and

the stock market.
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Research by [61] proposed a new method for reducing prediction errors in the stock

market. The key idea is to manage the prediction problem as a classification problem.

This method will minimise risk in the stock market with an ensemble-based model

of decision trees, a random forest. Firstly, the historical data is smoothed by taking

the exponential moving average in order to remove noise or random variance, then

multiple technical indicators are created as extra forecasting features, such as stochastic

oscillator and moving average convergence divergence. These features will be taken to

train the random forest classifier. With this method, the model is able to produce

signals to buy or sell a stock with high accuracy for multiple stocks, such as Samsung,

Apple and GE. The accuracy this system provides is outstanding, more than 90%. The

accuracy is also compared with other machine learning algorithms, such as support

vector machine and logistic regression. However, there is no report of other financially

relevant factors, for example the Sharpe Ratio, profit or any risk values. This is very

unfortunate as in finance it is necessary to report a strategy’s performance in terms of

return and risk.

Further research into the stock market is done by [96]. This research, like the previous

example, aims to be used for stock prediction. However, this research predicts the value

of a stock, not the direction only. The premise for this research is that classification

and regression trees (CART) are mainly built to learn extremely irregular patterns,

and this makes the trees are very prone to overfitting. Even a little noise or an outlier

can affect the structure of the trees greatly. This problem can be overcome by using

several CARTs which are trained differently. This research proposed a new method

to improve performance by combining answers from multiple CARTs. The proposed

model is Least Square Boost-based Random Forest or LS-RF. The model improves

the performance of the ensemble CARTs by reducing the variance and the overfitting

of the trees or CART. This model was tested on two market indices, CNX Nifty and

S&P BSE Sensex. There are multiple evaluation values, such as MAPE and MSE. The

results are shown as predictions 1-10, 15, 30 and 40 days in advance, which is quite a

long time. The results show that at every period of prediction, their model performs

much better than the support vector machine. However, there is no clear reason why

the model was compared with support vector machine only. Comparison with multiple

models would have been better to give an idea of what kind of models this system can

overcome.

A drawback of Random Forests is that there is a threshold number of trees which, when

crossed, offers only marginal improvements if any, but increases the computational cost

[84]. However, an important problem in this area is working out how many trees to
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include in the Random Forest, similar to the need to find the optimal value for K in

other machine learning techniques. We are including Random Forest as it has proven

high accuracy over a range of dataset types [123], it is robust against outliers, errors

and random variations in a dataset, and it is fast to construct so processing speed is

good [111].

3.1.9 Genetic Algorithm

Genetic Algorithm or GA is a very useful method in many areas of research, including

financial forecasting. It provides many possible solutions across the problem space.

The common processes of GA can be described as follows:

1. Initialisation: in this step the initial population chromosome is created.

2. Evaluation: calculate the fitness of every offspring in the new population.

3. Selection Process: parent chromosomes are selected based on probabilistic ac-

cording to the chromosomes’s fitness.

4. Modification: apply cross-over and mutation to the parent chromosome to pro-

duce a new generation.

5. Assigning: set the new populations to be the new parents by considering the

maximum fitness.

Steps 2-5 are repeated until the desirable fitness value or maximum fitness of the new

population does not change any more. GA is a robust algorithm [?] There is possibility

to obtain the results close to the global optimum with GA if it is allowed to run long

enough. However, this is not guaranteed. GA can be effective but it is hard to explain

as its processes are a black box once the input has been fed in.

What follows are some GA applications to financial forecasting, starting with GA

applied by itself and followed by combinations of GA and other state-of-art machine

learning techniques. Mallick et al. [72] proposed an automatic trading-rule generation

system based on GA. The goal of this work is to create trading signals - buy, sell or hold

- automatically. The model was tested on the DJIA (Dow Jones Industrial Average)

and its performance evaluated by comparison with a start-of-art rule creation method

called MACD (Moving Average Convergence/Divergence). The results show that GA

performed better than MACD on more than 75% of the stocks that this research tested.
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Another financial prediction model based on GA was published by Matsui and Sato

[72]. This paper focused on identifying the best genotype coding method which needs

to be done at the beginning of GA. They indicated that simple binary chromosome cod-

ing was not the best way to encode GA chromosomes. Therefore, two new chromosome

encoding methods, called Locus-based and Allele-based representations, were experi-

mented on. The experiments were performed on four types of technical indicators,:

SMA (Simple Moving Average), EMA (Exponential Moving Average), BB (Bollinger

Band) and PCB (Price Channel Breakout). The datasets were 10-year historical stock

prices taken from 20 different stocks in Tokyo. The experimental results show that the

best genotype representation method was the Allele-based method because it provided

the largest profit and lowest computational cost.

The main advantages of GA are its effectiveness at dealing with non-stationary data

(like financial market data) [32]. Moreover, it does not require much information

to search large, complex search-spaces effectively [18]. However, GA can be time-

consuming and computationally costly.

3.1.10 Other models

In this section, further methods and models that combine more than one Machine

Learning techniques will be described in order to investigate the performance of com-

bination models

Another model that incorporated GA in financial prediction was introduced by [50].

They proposed a model that combines GA with reinforcement learning technique in

order to create the most suitable algorithm for the Foreign Exchange market. The

main idea of the model was selecting the best financial indicators for predicting sell

and buy signals in the Foreign Exchange market. It starts by setting a base indicator

and applying more indicators. It continued performing based on GA and Reinforcement

learning until it could no longer increase the performance of the system. This model

was evaluated on the 5-month USD dataset and provide 49% profit. Even though the

researchers claimed that the model was effective, it was only tested on one dataset at

one period of time. Therefore, it would be better to confirm the model with other

different datasets and time periods.

Leu and Chiu introduced a novel combination model of GA and Fuzzy logic in order to

construct the maximum return portfolio [66]. The main task of this model is selecting

stocks to add to the portfolio. In this model, GA was used to build the optimum
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portfolio and Fuzzy logic takes part in the return prediction. This model also has a

stop-loss system to control risk for the portfolio. This executes an automatic sale of

stocks when a predetermined lower price limit is reached. To evaluate the model, 7-years

of data covering 50 Taiwanese index stocks (TAIEX) was used. The period of portfolio

adaptation for the test is a month. The result was compared to the common buy-hold

policy and the market benchmarks and shows that the proposed model performed very

well with significantly improved return about 28%, while the other models gave below

10%.

Another Combination of GA model is the application of corporate Support Vector

Machine and GA which was introduced by Cheng and Shiu [28]. The aim of this re-

search was to create a method for selecting the best financial indicators to forecast

stock trends. There are two main processes in this model. The first is the indicator

selection process. In this process, financial indicators will be selected by using multi-

variate adaptive regression splines and stepwise regression method. The second step is

trend prediction using SVM. In this process, GA is used in order to optimise SVM’ s

parameters. The model was tested on the Chunghwa telecom stock price during the

years 2003 to 2012. The experimental results indicated that this model only works well

for short-term prediction and also is not suitable for fluctuating datasets.

There are stock prediction systems using multiagent strategy. Davis et al [30] introduce

a stock prediction system that incorporated many agents which are collecting informa-

tion from different sources, both fundamental and technical information, for example,

news, trading data and comment from analysts. This framework can be used to manage

a portfolio. However, it is still need to be improved in the knowledge representation

process. Another model with agent-based learning is the combination of Multi-Agent

and GA model which was proposed by Schoreels et al. [94]. The objective of this model

is different from Davis’s work in that this model aims to generate the signals that make

the best profit, instead of constructing a portfolio. The system comprises many agents

which deal with different trades. The decisions are made by considering six financial

indicators. GA takes part in the task of keeping the good agents and removing the

unprofitable agents. The model was tested on three groups of German index (DAX)

data and the results showed outstanding returns with more than 175% during the year

1998 and 2003.

Recent research has introduced a new inverse approach in sentimental analysis in order

to generate profit in stock market. Birbeck and Cliff [17] applied a new sentimental

labelling method to Twitter posts. Instead of labelling the data by the true sentiment of

the posts, for example positive or negative, they reversed the idea by labelling them on
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the ground-truths or the price of the related stock at the time. Therefore, the collected

Twitter posts were labelled as buy or sell based on the movement of the stock prices.

In order to make predictions, three machine learning models - Support Vector Machine,

Naive Bayes and Logistic Regression - were applied. To evaluate their system, they

selected four well-known stocks, which were Apple (AAPL), Tesla (TSLA), Twitter

(TWTR) and Facebook (FB). The datasets were originally collected over two years as

it was expected that data further in the past would be less useful for the prediction,

then they later decreased the time frame to three months based on their experiments.

The evaluation process was executed from January 2017 every trading day from 10am

to 3pm. To show their system’s performance, the monthly return rates after estimated

trading fees for AAPL, TSLA, TWTR and FB were 4.48%, 8.27%, 0.04% and -4.08%,

respectively. These results will be compared with our model in chapter 6, section 6.4.

The results are promising, however, the number of trade orders is relatively high: can

be up to 120 trades per month for every stock. If trading with this maximum number,

this system buys and sells 6 times everyday on average, which is not convenient for

non-professional traders with low initial funds due to brokerage fees and the speed

at which they can place orders through brokers. Also, even though these results are

promising, they’ve only been tested on technology stocks, which normally have a high

Sharpe Ratio, high volatility and small drawdown in general. It would be better to

see the performance of this model different sectors of the market which might exhibit

different characteristics.

3.1.11 Discussion

Section 3.1 demonstrated many machine learning techniques that have been applied to

financial prediction. Due to their ability to understand and learn from large quantities

of data, machine learning approaches have been applied not only to predict prices,

but also to select indicators and predict trends. Two well-known regression techniques,

ARIMA and KNN, have been successful in their predictions of short-term future prices,

as well as HMM techniques, as demonstrated in the CARIMA model [117], which

provided less than 3% prediction error for the majority of tested stocks and [43] more

than 90% prediction accuracy using HMM techniques. ANN has not only been used

for price prediction, but also price pattern recognition as in [128], where the model

recognised diamond and bump & run patterns. GA was applied to predict the future

prices as well. Even though the GA-based model did not provide high accuracy, it still

outperformed using financial indicators alone, as in [72]. Finally, other combination
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models, including multi-agent models, were presented. In the multi-agent system,

agents make predictions by collecting data from different sources, as can be seen in

[30] and [94].

Machine learning techniques have often been applied in combinations, rather than

individually, in order to achieve better results. For example in [45], HMM was used

for identifying patterns, and fuzzy logic for creating the trading rules. However, the

results from most of the ML models are still attributable to specific times, locations

and situations; they are not representative of all financial data and may not perform

well under different circumstances, as will be discussed further in the Section 3.2. For

that reason, this research aims to create a system that can dynamically select different

models depending on the situation. The proposed system will be able to deal with

all the main market situations, bull, bear and ranging, by applying multiple machine

learning models. The model selected as the main indicator will vary appropriately to

different situations.

The table 3.1 below summarises the advantages and disadvantages of several machine

learning approaches which have been discussed in this section.
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3.2 Ensemble model

Financial time-series prediction is considered to be one of the most challenging fields

in time-series forecasting. Many researchers have investigated this topic with hopes of

making and improving profits from short-term investments [72], [9], [69]. Researchers

and traders have also tried to use Technical Analysis as a tool for analysing and predict-

ing stock behaviour. Machine learning has applied in order to forecast more consistently

and accurately the future prices of stocks, and subsequently stock market movement

prediction become an area of research that receives a lot of attention. Common al-

gorithms, for example artificial neural networks [9], [4] and Support Vector Machines

[7], [51], have been widely applied in this area but there is difficulty in selecting the

best machine learning techniques to suit different market situations, such as extended

uptrend (bull), extended downtrend (bear) or when there is not clearly defined trend

(ranging). To overcome this problem and improve accuracy over state-of-the-art ma-

chine learning algorithms, it has become popular to combine them, forming so-called

ensemble systems [31].

A simple ensemble model was proposed in 1974 for handwritten-digit recognition [104]

in which the method counts the votes or answers of many artificial models and takes

the majority as the final result. Ensemble models can be divided into two categories,

non-hybrid and hybrid models [57]. The non-hybrid ensemble model comprises versions

of the same model with different parameters. On the other hand, the hybrid model

comprises different models. According to Dietterich [31], the ensemble model is an

improvement over individual classifiers because the model can receive a good approx-

imation of an answer, especially when the question cannot be satisfied with only one

hypothesis.

3.2.1 Basic Ensemble Framework

Common ensemble models in classification tasks contain the following components;

1. Training set: A labeled dataset constructed for training an ensemble model. The

training set usually represents attribute-value vectors. A represents an input set

composed of n attributes: A = a1, ..., ai, ..., an, and y represents the class variable

or target attribute.

2. Base Inducer: An algorithm that receives a training set and models a classifier

(predictor) which generalises the relationship between an input and a target at-
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tribute. The notation can be M = I(S) for representing a classifier M which is

induced by an inducer I on a training set S.

3. Diversity Generator: This component will control the diversity of classifiers.

4. Combiner: This component combines the results of classifiers.

The following sections describes some common ensemble techniques.

3.2.2 Majority Voting

With this technique, the class that obtains the highest number of votes is the answer

[69]. This method is also called Plurality Vote (PV) or the Basic Ensemble Model

(BEM). The mathematical specification of this method can be written as [93];

class(x) = arg max(

n∑
K=1

g(yk(x), ci) (3.4)

where yk(x) represents the classification of classifier K and g(y, c) is 1 if y = c or zero

if y 6= c

Hansen and Salamon [44] use Majority Voting in conjunction with a neural network

ensemble model for improving performance of the classification. In this model, sev-

eral different neural networks were trained separately and their results combined by

using simple regression and majority voting. To optimise the network parameters and

architectures, this model applies cross-validation to select the best design. Errors in

prediction are reduced by applying the ensemble of the different networks. The model

is tested on the simple linear clustering problem with different neural network and noise

levels. The results indicate the neural network with six hidden layers provides the best

performance for this problem space.

3.2.3 Stacking

Stacking tries to obtain an accuracy by using a meta-learner by trying to identify

whether classifiers are reliable [93]. In this approach, an ensemble model works in layers.

The results of individual classifiers from the first layer [69], called base classifiers, will

be taken and used as input for different classifiers at the second layer. The stacked

approach is different from bagging and boosting because stacking does not combine the
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results of the same type of base classifiers, but combines those of different algorithms

[57].

Merz [73] combines stacking and nearest neighbour in order to classify the unseen data.

Dzeroski and Zenko [34] proposed an enhancement of the stacking approach. The model

employs a multi-response technique tree to learn at the meta-level. The performance

of this model is tested using cross-validation and shows that the new model is better

than existing stacking approaches in terms of enhancing forecasting accuracy by about

5%.

3.2.4 Bagging

Bagging stands for bootstrap aggregating. This method aims to create different sub-

sets of the training data which are selected randomly [69] and trained with different

predictors. Then results from every predictor are selected by simple majority vote [57].

The bagging strategy is commonly used to construct an ensemble model of decision

tree, neural network and linear regression [127].

Bagging is commonly incorporated with decision trees or random forest, as can be seen

in Pradeep and Vahida’s research [69]. The objective of their model is to construct

an ensemble model to predict future prices of gold and silver. Their ensemble model

includes many state-of-the-art classifiers, for example Support Vector Machine (SVM),

Logistic, Decision tree, NaiveBayes, and Multilayer Perceptron. They then compared

the performance of different techniques, bagging and majority voting, with the histor-

ical gold and silver prices. The experimental results show that majority voting was

the least effective technique with prediction accuracy of only 50%, while bagging and

stacking performed significantly better with accuracy between 70% and 90%.

Bagging has also been used as a benchmark for other ensemble algorithms. In 2010,

[121] Wei et al. introduced a new constraint bagging method, which can reduce errors

in the prediction process. In comparison to the traditional bagging model, constraint

bagging is slightly better in terms of Mean Absolute (MAE) Error which decreases

about 1.22%.

3.2.5 Upper Confidence Bound and Multi-armed bandits

Upper Confidence Bound or UCB is a popular method of online recommendation sys-

tem. There are two main approaches in the recommendation system, offline and online.
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With the offline approach, the system performs a classical machine learning method,

either classification or regression, on the historical data, then exploits the knowledge

or policies it found in order to predict or recommend the next item for the user in

the future. On the other hand, the online approach can be considered a reinforcement

learning problem or multi-armed bandit problem [78]. The system makes suggestions

based on the user’s current situation, which means that to make a suggestion about a

new item, the system will take into account the current preferences that a user has.

THe multi-armed bandit problem allows machine learning to learn from data that was

gathered while it was running (or during the testing period). The name, multi-armed

bandit, is obtained from the casino situation [101]. In the casino, there are a multiple

slot machines with different payouts. The gamblers intend to maximise their outcome

(money). However, they never know in advance the probability of each machine. The

problem is how they can select the correct machine that is going to make them rich.

One of the easiest methods to resolve this is to spend time trying every machine and

collecting statistical data until they are able to identify the best machine (if possible).

However, this could take a lot of time and, more importantly, money. There is a high

possibility that the gambler runs out of money before finding the best machine. This

is the same problem as the online recommendation system. Imagine a campaign for

a new product about to be released to the market. The advertising team has come

up with 10 different posters to be used to promote their new product. How can they

identify which is the best poster and attract the highest number of customers. If they

have to run A/B tests for all of them, it could take a lot of time and cost a lot of

money, especially in opportunity cost. With this type of problem, UCB can be applied

to speed up the process and reduce the cost since it is able to manage the balance

between exploitation and exploration [8]. The exploitation is the process of applying

knowledge or policies that the system already knows (making use of the poster that

the system already knows will attract customers), while exploration is the process of

expanding or randomising for new options (occasionally using a different poster) with

the hope of obtaining new policies which lead to better performance. This makes sense,

as an algorithm intends to gain maximum profit, so it repeatedly maximises the reward

(exploitation). However, by repeatedly trying to maximise the reward, the algorithm’s

overall knowledge is limited. Therefore, exploration is needed occasionally in order to

improve knowledge.

UCB focuses not only on exploiting the best arms and exploring other arms randomly,

but on tracking on the arms’ reliability. Therefore, it takes into account the arms’

confidence. UCB estimates the arms’ reward and confidence based on the size of the

77



past experience of each arm [79]. Throughout the testing, the UCB method will select

the arm which has highest upper confidence bound, which is defined by equation 3.5.

UK,t = µi +

√
α log t

Ni
(3.5)

where

µi = mean of arm i.

Ni = number of times that arm i has selected up to time t

α = coefficient

The upper confidence bound in 3.5 is calculated from an estimation of the mean reward

and the confidence of the arms. Therefore, UCB is composed of two steps. Firstly, UCB

will select each arm once. At this stage, the selection is an exploration to ensure that

every arm is selected at least once. Then, the confidence bounds for all arms are

initialised. Secondly, the confidence bound of each will be adjusted.

In [78], researchers applied UCB in order to enhance product recommendation in an

online advertisement system. The original idea of this research comes from the multi-

armed bandit problem. Instead of using the standard procedure, such as ε greedy, which

only focuses on exploitation of the best arm and randomly exploring other arms, UCB

takes each arm’s confidence into account. This research presents a new recommenda-

tion system based on UCB, called UCB-RS. The main objective of this new method

is to better deal with non-stationary and large state multi-armed bandit problems.

The idea of this method is to use the recommendation system to estimate the arms’

rewards. To estimate the rewards, the recommendation system takes the information

correlated to the arm such as, when a user clicks on an item, automatically referring

the user to another item in a similar category by considering other customers’ histor-

ical behaviours. With this inference technique, the system estimates higher rewards

for those products too. This method is able to enhance the performance of UCB in

the online recommendation system by increasing the click through rate from 20% when

using ordinary UCB, to 40%.

3.2.6 Ensemble models in financial prediction

Ensemble models have commonly been used in pattern recognition, for example hand-

writing, image and signal recognition. However, recent research has applied ensemble
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models to financial prediction in the hope it will to improve the accuracy of predictions

despite the dynamic and complicated nature of financial data. There are two types of

ensemble model application: hybrid and non-hybrid. There are several machine learn-

ing approaches that have been applied to create ensemble models. The neural network

is one of the common techniques that used to create both hybrid and non-hybrid en-

semble models [2], [4]. Other machine learning techniques, such as decision tree or

random forest, have also been applied to create ensemble prediction models [41].

Abdullah [2] and Xu [121] proposed neural network ensemble models to predict financial

time-series data. Their two models are non-hybrid with only Neural Network based

predictors. Abdullah’s model [2] employs multilayer neural networks to predict the

next-day’s stock prices. The performance of this model was evaluated with the Kuala

Lumpur stock exchange and compared to the performance of a single neural network.

The result from the ensemble model was slightly more accurate than the single network,

about 0.5% per trade. In my opinion, since the accuracy is not much improved, in order

to confirm the performance of this model time should also be taken into account since

the architecture of the ensemble model is more complicated, but it is not mentioned in

this publication.

Xu’s algorithm [121] aims to reduce errors in the prediction process. This model is

a non-hybrid neural network ensemble. All classifiers are neural network model with

different architectures. They have their own, optimised architecture and parameters

obtained from the bagging method. The method was improved by adding the con-

strained condition to leave out weak classifiers during the process. This model was

tested on the Dow Jones Index (DJI) and compared with traditional classification and

bagging approaches. The results show that the proposed model reduces the MAPE

(Mean Absolute Percentage Error) from 14.8 % to 3.95%, comparing to a traditional

neural network model.

There is not much research on financial prediction using an ensemble model. Now, we

present the few ensemble systems that combine different machine learning techniques to

preform financial forecasting. A recent hybrid Neural Network-based ensemble model

was presented by Al-Hnaity and Abbod [4]. This ensemble model, named EEMD,

worked by combining back propagation neural network with Empirical Model Decom-

position (EMD). The aim of this work was to predict the closing price of the FTSE100

index. The model of this proposed ensemble system can be seen in Figure 3-8;

As shown in Figure 3-8 , the model uses EEMD to decompose stock index data and

send it separately as input to the next stage, called Intrinsic Mode Functions (IMFs).
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Figure 3-8: The NN-based EEMD model
[4]

Each IMF comprises one or more neural network. This step also combines the ensemble

results before being sent to the final prediction stage, which works by using a weighted

average combination function. A GA (Genetic Algorithm) is used to optimise the

combiner’s weights in this step. The model’s performance is tested against the FTSE100

index. The results show the model produces less prediction errors, while a neural

network has the worst performance with an almost 50% error rate.

Similar to Al-Hnaity and Abbod’s reseach [4], in terms of using neural networks to

construct a hybrid ensemble model, Asad [7] and Anish [6] also applied neural network

techniques to create their model. Asad [7] proposed an ensemble model based on three

different machine learning techniques: support vector machine (SVM), random forest

and neural network. The objective of this model is to optimise portfolio allocation. The

inputs of this model rely on technical indicators instead of historical prices. The result

shows that after 67 iterations, this model can construct the high correlated portfolio

which including a stock from Istanbul market (ISE), an index of Istanbul market (ISE-

500) and an index of the German market.

Genetic Algorithm (GA) is another technique used to construct ensemble models to

predict stock prices. Gonzalez et al. [41] proposed a novel ensemble model of GA,
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named GAENSEMBLE, to predict the weekly direction of stock prices. This model

uses SVM as the main classifier and GA as an optimisation tool. Figure 3-9 illustrates

the architecture of this model.

Figure 3-9: Architecture of GAENSEMBLE system
[41]

The performance of this model was evaluated with the stock indices of many countries,

for example; S&P Index (U.S.), FTSE100 (UK) and Nikei225 (Japan), and some in-

ternational currencies, for example; USD, EUR and CNY. The results were compared

with other models, bagging and AdaBoost, as well as random forest and support vector

machine and show that two of the ensemble models, GAENSEMBLE and AdaBoost,

were the best in terms of the accuracy. The model provide more that 75%, while other

models only give between 65% to 69% accuracy.

Recent research has applied machine learning to financial prediction with the aim of

improving accuracy. Qin [89] proposes a prediction system based on gradient-boosted

random forest. The model uses a scoring system for the indicators that are the input for

the prediction. Indicators with better performance get higher scores and more weight

when fed into the predictor. The model is evaluated on 9 stocks and 1 index from the

Singapore Exchange (SGX) and compared with the buy-and-hold strategy. Although

Qin’s research also uses a scoring system, its use differs in that ours assigns scores

to the predictors, whereas Qin assigns them to the financial indicators which are the

features of the predictors. Also, our model is ensemble based, while in Qin’s there is
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Table 3.2: Result Comparison with Related Work [89]

Algorithm
Yearly

Profit (%)
Correction

Prediction (%)
Sharpe
Ratio

Drawdown
(Max)

Buy & Hold -1.94 - 0.01 -47.34
Gradient Boosted Random Forest 25.14 30.25 0.03 -10.06

no coordination of predictors. Qin’s results are listed in Table 3.2 and compared with

our model in chapter 6, section 6.4

3.2.7 Discussion

Many machine learning techniques have been explored to create hybrid and non-hybrid

ensemble models. For non-hybrid models, neural networks seem to be more popular,

while hybrid ensembles exhibit a greater diversity of prediction models, such as Support

Vector Machines (SVM) or Genetic Algorithm (GA). The results from the ensemble

models are normally compared to prediction models based on a single Machine Learning

technique. However, when designing new ensemble models in the future, comparing

performance between different ensemble models could be analysed.

The objective of our research is to create a new model for stock prediction, based

on machine learning, which can offer effective predictions of stock prices under any

market conditions. As can be seen in section 2.2, it is difficult to achieve such a system

with only one predictor that works well with different situations. The ensemble model

can be a suitable way to create a dynamic prediction model based on many types of

machine learning algorithm. Such a model can enhance the accuracy of the prediction

and remain accurate under a variety of market conditions.

3.3 Prediction Market

Prediction Market was introduced in 1988 at Iowa Electronic Marketplace (IEM). The

first purpose for releasing this model was to bet on the political elections. A prediction

market is commonly used to predict the future outcome by aggregating the results from

the environment or the crowd. So it can be said that the Prediction Market forecasts

by analysing and summarising the wisdom of the crowd [91]. After its introduction,

Prediction Market has been applied to many prediction problems, for example political

voting and sport outcomes [80]. Research suggested the outputs from prediction market

even more accurate than the predictions of experts [14]. The main concept of wisdom
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of the crowd is to let populations with different backgrounds and information make

predictions on future events on the basis that people with diverse knowledge can provide

high-performance solutions to a huge array of problems [49], [15].

The common process of Prediction Market starts with each trader or participant betting

their money on the outcome of future events, based on their background knowledge.

Every event’s outcome has a separate security associated with it. So there are costs

and gains in every bet. If a trader made the right prediction, they will gain money. On

the other hand, if they made an incorrect prediction, they will lose the money they bet.

In the next round of the prediction, a trader with more money can bet more money.

Eventually, the weak traders will no longer be able to participate in the system.

3.3.1 Applications in Prediction Market

Even though Prediction Market is widely used in many areas of forecasting, applications

to stock price prediction remains limited. In this section, the relevant prediction market

applied to financial area will be analysed.

The Hollywood Stock Exchange (HSX) 1 and Iowa Electronic Market (IEM) 2 are

popular online prediction market websites. HSX utilises Prediction Market to forecast

the future profits of movies, while IEM has an online website where people can buy

or sell contracts based on their belief about the election or other outcome. As for in

business, a prediction market is used by some companies in order to make valuable

decisions to keep information classified [20]. Hewlett-Packard or HP 3 is an example of

a company that utilised Prediction Market to make important company decisions.

In terms of financial systems, Velic et al. [110] propose a new model for stock rating

prediction using wisdom of the crowds, which assumes that a group has better knowl-

edge than an individual alone, while an individual can help improve group performance

by providing information. The researchers present the main algorithmic implementa-

tion but do not disclose the mathematical model. This model works as a game. In the

game, there are many players that have to give ratings for stocks. During the game,

there is a function, called keep it fair to control the game by limiting time span after

start affecting player’s or minimal number of active predictions for a stock to have a

rating. The performance of this model was evaluated on 130 artificial stocks with 47

players. The result shows top 10 stock as can be seen in Figure 3-10;

1http://www.hsx.com/
2https://tippie.biz.uiowa.edu/iem/
3http://www.hp.com

83



Figure 3-10: Prediction market in finance [110]

From Figure 3-10, it can be seen that there are 3 times out of 10 then the rankings

are totally wrong when then unprofitable stocks were selected. There are only about 4

or 5 times that the model seems pick the right stocks. The authors analysed that the

problem occurred when the inexperience players would copy the high ranked players

and make prediction in the same way.

3.3.2 Discussion

The prediction market works well in many areas. Although it is still rarely applied to

the problem of stock price prediction, its performance shows that it can be suitable

for our research, since we want to create a dynamic stock prediction based machine

learning model. In our system, there will be many different types of machine learning

predictors. To make a good prediction, we will apply the prediction market method

in order to create the momentum of the predictors. The predictors that work well

will have more weight than the weak predictors which are the predictors that did not

provide correct answers recently. This weight will be used for evaluating the level of

confidence of each predictors before making generating the trading signals.

3.4 Machine Learning in a Trading System

The term trading system usually covers the following aspects of investment: portfolio,

orders and data [10]. In this research however, we are omitting portfolio construction
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since our focus is on developing a mechanism to effectively manage machine learning

predictors. Figure 3-11 illustrates how a basic trading system is organised, excluding

the portfolio.

Figure 3-11: Basic Framework of Machine Learning in a Trading System
[10]

Figure 3-11 shows that the trading algorithm is the central component which connects

other parts of the system, and altogether the structure takes historical price data and

eventually turns this into an order signal which is entered into the market through a

broker. If the algorithm predicts a positive return for the stock, then an order to go

long (buy the stock) will be passed onto the broker who facilitates the purchase of the

shares from the market, charging a fee for doing so. If a negative return is expected,

then the order will state to sell any shares the investor holds to the market, again

incurring a fee from the broker. Brokerage fees will be included later in our system

evaluation.

The last process of this framework is when the broker purchases or sells shares from

or to the market. During this process, a typical trading system does not necessarily

send the order all at once: very large orders may have to be separated. However, given

our decision to focus on retail traders, we do not expect this to be necessary for our

trading system as the funds retail traders have to trade with are significantly smaller.

85



3.5 Discussion

This chapter reviewed multiple areas in machine learning which could be useful for

developing our trading system. The chapter started with an overview of well-known

machine learning algorithms and applications of machine learning to the stock market.

What follows are things we considered when selecting machine learning algorithms for

our research. Firstly, the type of algorithm. In order to build our trading system, we

focused on regression algorithms as we would like to predict the future returns of stocks.

However, there are many regression algorithms to choose from, and one consideration

when we narrowed them down was their relative complexity. While there are a lot of

computer scientists continuously trying to come up with new complex algorithms, such

as deep learning neural networks, we believe that this is not the only way to improve

the quality of the predictors, and they would still suffer from needing to be applied

at the right time. We believe existing machine learning could be enough if we are

able to consistently select predictors at the right times. Additionally, in a complex

area subject to regime shifts such as the stock market, we consider a redundancy of

machine learning algorithms to be an advantage in that our model should be robust

to abrupt changes in the characteristics of the data and able to adapt and consistently

profit. We discussed advantages and disadvantages of the approaches we have included,

which demonstrates how they can make up for each other’s weaknesses. For example,

if polynomial regression gives poor results due to overfitting, its predictions will not be

used for the final signal to buy or sell and another approach less overfit and making

good predictions will be chosen instead. For any given historical period there may be

an individual algorithm that could beat our model, but this does not invalidate the

principle of the ensemble model. Finding the very best algorithm out of all machine

learning for a time in the future is nearly impossible and with a single algorithm the

strategy is fragile if the nature of the market changes. Moreover, we hope to show that

it is unnecessary, since making a handful of existing algorithms work together effectively

as an ensemble should consistently profit above the benchmark strategy. These may

even be ordinary, less complex algorithms, none of which are the optimum out of the

universe of machine learning. This is the idea from which we started our work.

Our proposed model is able to select the best algorithms and predictors for a given stock

at a given time. Therefore, it is able to make many different predictors work together

effectively, resulting in higher performance than a benchmark strategy or any individual

model within the system. Finally, the last concern for our machine learning choice is

the time processing. Algorithms with short processing times are desirable because
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one algorithm will be used to create multiple predictors according to the number of

clusters. Outside of this research, the processing time decision depends on the needs

of users. However, as discussed previously, this research would like to show that even

basic machine learning can work well if used correctly. For these reasons, we excluded

time-consuming algorithms, such as neural networks and deep learning. However, the

choice of machine learning to include need not be limited as our model is designed to

be able to add or remove predictors easily. We restricted ourselves as our aim was to

prove that our model can effectively put different predictors to work together.

The machine learning algorithms we selected are common algorithms which most en-

gineers and scientists will know 4 5 We started with the most basic ones, polynomial

and linear regressions. Once we found out that this initial selection of algorithms could

not deal with some characteristics of the data, we started to add more algorithms.

SVM was the next choice as it a little more complicated and works well with outliers.

For SVM, we used three different kernels, which are rbf, linear and polynomial. Since

changing kernels leads to different results, these SVMs are considered to each be dif-

ferent predictors. Finally, we added one more popular algorithm called random forest.

Even though it takes a little longer to run than the other algorithms, random forest

is added as it is supposed to handle imbalance and missing data well, and these issues

affect some stocks. As mentioned earlier, the model is not limited to these choices. This

is just the set of algorithms that we started with in order to prove that our system

works. These choices can be changed if needed in the future.

In addition to machine learning, this section reviewed multiple possible methods for

the proposed ensemble model. Then, we discussed predictive markets, which build on

a similar idea called the wisdom of the crowd. Finally, this section reviewed common

trading systems with machine learning frameworks in order to form a better under-

standing of where and how machine learning predictors could be incorporated in the

system.

4https://www.simplilearn.com/10-algorithms-machine-learning-engineers-need-to-know-article

retrieved 2019-09-15
5https://medium.com/analytics-steps/top-10-machine-learning-algorithms-77704f259638

retrieved 2019-09-15
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Chapter 4

Ensemble Machine Learning for

Individual Stock Investment

System

This chapter aims to provide the overview of our ensemble machine learning system in

order to provide the board understanding. Then in the next chapter, the experimental

details during the process of designing this system will be explained. The system

comprises six main subsystems as shown in Figure 4-1 on page 89.

The first step is data preparation, where the dataset will be loaded, cleaned and di-

vided. After that, all the necessary features will be created in order to be used by the

following step. The second step is the clustering process. In this step, the training

set will be clustered into different classes. The third step is the process where all the

predictors will be created and trained with a specific cluster of training data. After

this the training, predictors are ready to work together in the next step which is called

system development. This step is the most important process in this research as the

system have to design how all the predictors will work together with the highest ef-

ficiency. Therefore, we create a scoring system in order to measure the accuracy of

each predictor. These scores will be used as the criteria for selecting the appropriate

predictors at the right time.

The final two steps are signal creation & evaluation and testing. The signal creation

& evaluation step takes the predicted result from the predictors selected in step 4 and

produces the trading signals. The signals will then be evaluated and optimised. After
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Figure 4-1: System Diagram

optimising the signal, we will perform the last step, testing the model with unseen data

and measuring the performance of the whole system.

4.1 Step 1: Data Preparation

The first step, data preparation, composes of three tasks which are loading & checking

dataset, separating dataset and creating features. The diagram of this step shows in

Figure 4-2.

4.1.1 Data Loading and Format Checking

The first task is loading a stock dataset into the system, following which we will check

the validity of the data format to make sure that we have got all the necessary infor-

mation. The correct format of the dataset comprises the date, Open - High - Low -

Close prices and Volume, as shown in Figure 4-3.
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Figure 4-2: Data Preparation Diagram

Figure 4-3: Correct format of dataset

4.1.2 Data Separation

In this step, the dataset is divided into three sets: training, development (or validation)

and test sets. These are shown in Figure 4-4 on page 91. The training set is used for

creating the predictors. The development or validation set will be used to create the

ensemble trading system and to optimise the trading parameters. Finally, the test set

will be used for the purpose of system evaluation.

Figures 4-4 shows training, validating and testing set in blue, orange and green colour

graphs, respectively. Training set starts from the beginning of 2000 until the end of

2014. Then, the next two years (2015-2016) is used as the validation set. Finally, the

last two years (2017-2018) is the test set.
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Figure 4-4: Train, Development and Test sets

4.1.3 Feature Creation

In this step, additional features will be created for two reason, firstly, to be used to

cluster our training data and secondly, to be used by machine learning predictors to

predict the future returns of a stock. Therefore, there are two type of features in this

step.

• Clustering Features: These features are to be used in order to cluster the

training data into smaller groups. We decide to use two features which related

to the trend & the volatility of stock’s price. These clustering features are the

mean and standard deviation of returns.

• Prediction Features: The prediction features aim to be used by machine learn-

ing predictors to predictor the future return. As the price is normally not station-

ary, in this research, we will predict the future returns instead of the prices. As

for the return, we will use the return in logarithm scale to show the percentage

change or multiplicative factors and to avoid the problem of skewness towards

large values when a few trading days having much larger returns than the other

days. The equations for the logarithmic calculation can be seen in Chapter 2

section 2.3.4 on page 42. The prediction features created in this step are the

logarithm returns of the previous week. For example, in order to predict the

tomorrow return, a series of five day returns in the past will be taken into the

prediction. In this research, the look-back period is a control parameter setting

to 5 days but this can be changed. However, this research will not focus on this
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issue.

4.2 Step 2: Clustering

In this step, we apply clustering features from section 4.1.3 to cluster the training set

into smaller groups. The framework of this step is shown in Figure 4-5. The framework

shows that the clustering features from the training set (items in dashed lines are the

values obtained from the previous step) are fed into the K-means clustering module in

order to cluster the training data into small groups.

The purpose of this step is to cluster the training set into groups based on their charac-

teristics. Since we want to create an ensemble model which incorporates many machine

learning predictors, training each predictor to be the best at predicting a specific pat-

tern is the key idea. Therefore, we cluster the training set to clusters and train each

predictor only on a specific cluster in order to make them act like an expert on that

pattern. After training, a predictor should provide accurate predictions when facing

the pattern they have been trained for. On the other hand, they might not be very

good at other patterns. We will then put all of the predictors to work together with

our control system which aims to select suitable predictors for the present. Therefore,

our prediction system is able to adapt itself to cope with different patterns of input

data over different periods of time.

Figure 4-5: Clustering process diagram

We have conducted a numbers experiments to confirm that having multiple groups of

training sets increase the performance of the system. The detail of these experiments

can be seen in chapter 5, section 5.1.1, on page 118. The clustering technique used in

this step is k-means cluster as it is one of the well-known and effective machine learning

algorithm. Beside that, dataset we would like to cluster has only two dimensions (mean

and standard deviation) therefore, k-means clustering would work effectively.
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4.3 Step 3: Training

In this step, we initialised and trained machine learning predictors with our clustered

training data. Figure 4-6 shows the framework of this step. There are m different

machine learning algorithms to be used as predictors and n groups of training data.

Therefore, the number of predictors in total is m ∗ n, since each machine learning

algorithm will be trained for each clusters.

Figure 4-6: Training process diagram

From Figure 4-6, it can be seen that the training data in each cluster is used to train

only predictors that were created for that specific cluster. As for the choice of machine

learning model, our model is designed with the flexibility to add, remove or change

the type of predictor. To begin with, we will work with the four most well-known

and widely-used machine learning algorithms, which are linear & Logistic regression,

support vector machine and random forest. The same algorithms with different kernels

will be accounted for as different models as they provide different results. The list of

our starting predictors is as follows:

• Linear Regression

• Polynomial regression

• Support Vector Regression (rbf)

• Support Vector Regression (linear)

• Support Vector Regression (Polynomial)
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• Random Forest

4.4 Step 4: Scoring System

After fitting the predictors from the previous section, in this step we will bring all the

trained predictors to work together as an ensemble predictive model. In order to build

this ensemble model, we created a control system, which we refer to as the scoring

system. The scoring system manages the results of individual predictors, then makes a

decision on which predictor or set of predictors will be selected for the next prediction.

With this scoring system, the different predictors will be activated at the different

times based on their scores, which indicate their performance. The scoring system is

composed of the two layers, the predictor layer and ensemble model layer, which means

that there will be two main scoring computations in this model. The framework of this

step is shown in Figure 4-7. on page 94.

Figure 4-7: System Development diagram

The framework in Figure 4-7 shows that the system development step starts from
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loading the dataset (dev set) into the system, then every predictor making its own

prediction individually. Then, predictors will be rewarded or punished according to

the prediction they have made. Rewards and punishments are turned into scores which

will be sent to the two following scoring layers. These two scoring layers comprise the

intermediate models and the final model.

Firstly, in order to create the intermediate models, the scores obtained from the predic-

tions will be used to calculate five scoring features for each predictor, and the predic-

tors with the highest values in each feature will be selected in the intermediate models.

Secondly, the intermediate models will provide their own predictions. These interme-

diate models’ predictions will be assessed and a score again calculated to create the

intermediate-models’ scoring features. Finally, the intermediate models with highest

score will be selected as the final model. The predictors that are in the final model will

be nominated to predict for the next round. More details of this scoring system are

explained below.

To make many predictors work together effectively, a two-layer scoring system has been

invented. The first layer is predictor scoring layer and the second layer is the ensemble

scoring layer. The predictor scoring layer provides intermediate models which will be

used in the next layer, ensemble scoring layer in order to create the final model or to

select the nominated predictor(s) for the next prediction.

4.4.1 The predictor scoring layer

The predictor scoring layer is the first stage in the scoring system. The purpose of this

stage is to obtain the intermediate models. Figure 4-8 on page 96 shows the framework

of this step. All predictors start predicting from day t (after the look-back period), and

every predictor obtains new information of day t and uses that information together

with the previous information they have, then gives the prediction for the next day

(t + 1). In this step, each predictor will give one result, which is the predicted future

return for the next day. The results from the predictions are shown in the grey circles.

Predicted values are the real numbers which will be changed to -1,0 or 1. A result of

-1 means that the predictor has made the decision that the future price will be lower

the next day. On the other hand, a result of 1 means the future price is expected to

increase. If a predictor predicts no change is to be expected, the predicted value will

be 0.

After the predicted return on day t+ 1 had been made, at the end of the day t+ 1, the
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Figure 4-8: The predictor scoring layer

scoring assigning will start working. It will compare the actual return and predicted

return then predictors will be rewarded or punished based on their accuracy. Rewards

and punishments are the scores (points) that each predictor will be given. A positive

score will be given when the prediction is accurate. On the other hand, a negative

score will be assigned to a predictor as a punishment if it has given the wrong answer.

The values of the rewards and punishments vary based on how well the predictor did.

A better prediction provides the correct answer and leads to more profit, which means

that predictors which are accurate on high-return days are very important. On the

other hand, if the predictions lead to massive loss, the predictors that gave the answer

will lose more points.

There are 4 different scores (points) that will be given to our predictors. The best

predictors (those giving answers leading to high profit) are given a full score of 1. The

accurate predictors (which give the correct answer but on the days that have a low

return) will be given 0.5. The predictors that work very poorly (their answers lead to

a big loss) will be punished with -1, and the inaccurate predictions that do not effect

much of the overall system (their answers are incorrect but not on very important
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days) will be punished with only -0.5. To set the thresholds of this scoring system, we

calculated the different quartiles from the distribution of the return from our training

set.

Here is an example of how we get these thresholds. Figure 4-9 illustrates the return

distribution of Marks and Spencer Group Plc shares, or MKS. The figure comprises two

sub graphs. The top graph represents the logarithm returns for each trading day. The

logarithm returns vary between -0.3 and 0.18. The are a few peak points on the positive

side of the graph which indicate the extraordinary high return days of that stock in the

training set. On the other hand, the spiky points on the negative side indicate the days

on which the price dropped enormously. The bottom sub graph shows the distribution

of logarithm return. There are three vertical lines on the graph which represent quartile

1 (Q1), quartile 2 (Q2) and quartile 3 (Q3), respectively.

Figure 4-9: Return Distribution

From Figure 4-9 on page 97, the best predictors are the predictors which provide

answers resulting in a return higher than Q3 (0.0101), and the worst predictors are

the ones that gave answers leading to a loss more than Q1 (-0.0097). These 2 types

of predictors will be assigned scores of 1 and -1, respectively. As for the accurate and

inaccurate predictors that lead to returns between Q1 and Q3, these will be given scores

of 0.5 and -0.5, respectively.
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After each predictor is assigned a new score, their accumulated scores are updated

and will be used for creating the additional 4 predictor scoring features, which are the

Exponential Moving Average (calculated over both shorter periods and longer so as

to respond more quickly or slowly to information, respectively), derivative and slope.

These features are stored in the memory part of each predictor. Every predictor has a

set of these features as shown in the yellow rectangle in the framework (Figure 4-8 on

page 96).

At the beginning of the process, only the accumulated score is updated until day t.

Another 4 additional features will be created from day t+ 1. A number, i, is the pre-

set value indicating the look-back period (how many days) that we want our predictor

to take information in order to make prediction. The details of predictors’ scoring

features are as follows:

• Score: storing accumulated score for each predictor

• Exponential Moving Average (Quick): storing values of exponential moving

average of the accumulated score with beta = 0.9. This feature will keep track

of the changes in the score over a short period (about 10 days). Therefore, this

feature will monitor the rapid changes in each predictor’s performance.

• Exponential Moving Average(Slow): storing values of exponential moving

average of the accumulated score with beta = 0.98. This feature will keep track

of the changes in the score for a longer period (about 50 days). Therefore, it is

used to identify the gradual changes in predictors’ performances.

• Derivative: storing the derivative of the accumulated score for the period of

i days. This feature is only interested in the changes that happen between the

beginning and the end of a period, not the other days in between.

• Slope: storing the slope of the accumulated score within i days period. This

feature is similar to the derivative in that it is trying to monitor the changes from

the beginning to the end of the period. However, the difference is it will consider

the values of other days in between this period as well.

The predictors’ scoring features as listed above are created for different purposes in

order to capture the changes of a predictor’s performance. After each prediction, these

features will be calculated. Then, we will create intermediate models which can be

seen in the blue rectangle in Figure 4-8. There are five different intermediate models

according to predictors’ scoring features as illustrated in the purple rectangles. In each

intermediate models, the predictors with the maximum values for each feature will be
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selected to be members of each model. For example, the predictors with maximum

accumulated score will be added as members of the max score model. While, the

predictors with maximum derivative will be added into the max derivative model, etc.

Each intermediate model can have one or multiple predictors as members.

In the case of having multiple predictors in an intermediate model, the results from

the member predictors will be averaged to provide the result. With this strategy, the

performances of each predictor will be identified with different perspectives as follows:

• The predictors which perform well in general will become members of the max

score model.

• The predictors which are not performing very well presently but have done well

recently will be added into the max ema quick model

• The predictors which are not performing very well presently but have done well

for a long time in the past will be added into the max ema slow model.

• The predictors with suddenly improving performance will be assigned to the max

derivative model

• The predictors with continuous change of performance will be counted as members

of the max slope model

Once the intermediate models are created, we will be ready to move to the next layer

of the scoring system, the ensemble scoring layer.

4.4.2 The ensemble scoring layer

The ensemble scoring layer is the final process of the scoring system. The framework

of this process can be seen in Figure 4-10 on page 100. After all the intermediate

models have been created from the previous process, as seen in the dashed-rectangle,

each intermediate model will predict a result for day t again but this time the result

from each model will come from every member within that intermediate model. There

are two types of results from an intermediate model: return and signal. Return is

averaged from all of the members’ results in that intermediate model, while signals are

obtained from the majority voting of all members.

Every intermediate models’ result will be rewarded or punished by the score-assigning

module in the same way as the predictors’ scoring system. Each of the models will

be rewarded or punished with a score of 1, 0.5, -1 or -0.5. To decide the score each
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intermediate model, we will again take the returns’ distribution into account as seen

in Figure 4-9 on page 97. According to the distribution, the best intermediate mod-

els which gave answers leading to profit more than Q3 will be awarded 1. Correct

intermediate models which made profit but less than Q3 will be given only 0.5. The

worst intermediate models which provide incorrect answers on the day that lead to a

loss more than Q1 will be punished with -1. The intermediate models which also give

incorrect answers but lost only a small amount, less than Q1, will be punished less with

-0.5.

Figure 4-10: The ensemble scoring layer

After having been assigned a new score, each will update their accumulated score

individually. These accumulated scores become the features of intermediate models

which are to be used in order to select the intermediate model that will be a member

of the final model. In the final model, the predictors which have been selected to be

members will act as representatives of all the predictors to provide the prediction for

the next day (day t + 1). And the scoring process will continue from the beginning

with the next day’s data until the end of the development period.

4.4.3 Example of how the predictors’ scoring layer works

In this example, we use an artificial stock as shown in Figure 4-11 on page 101. The

predictors’ scoring layer starts working from the beginning of this data. The dash
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rectangle shows the area where the scores will be illustrated. The predefined look-back

period is a week or 5 days (i = 5).

Figure 4-11: Focus period of an example

Figure 4-12: Example of how scoring system works on the predictor scoring layer
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Figure 4-12 on page 101 shows the mechanism inside the predictors’ scoring layer. At

the end of day t− 1, the closing price of day t− 1 and those of the previous i days are

sent to every predictor (blue square). Each predictor uses these inputs to predict the

return of the next day (day t). Then, the predicted returns will be transformed into

signals which can be either 1, -1 or 0. If the signal is 1, it means that the predictor

predicts an increase in the value of that stock. On the other hand, if the signal is -1, it

means that a decrease in value is expected. Then every signal from the predictor will

be evaluated at the end of the next day (day t) when the actual price is reported.

The predicted direction will then be compared with the actual direction of the stock

price. A predictor that provided the correct answer will be awarded either 1 or 0.5

points based on how much profit that predictor made on that day. On the other hand,

a predictor which gave an incorrect answer is punished with either -1 or -0.5 depending

on how much of a loss that predictor caused. The criteria for score assigning can be

seen in section 4.4.1 on page 95. After getting a new score, the accumulated score

on day t of each predictor will be updated, followed by other features, which are EMA

quick, EMA slow, derivative and slope.

For example, on day t− 1, predictor 1 predicts that the price will go up (the signal is

1). Then, the actual price increases the next day (day t). Therefore, in the predictor’s

scoring features section, the accumulated score (shows as score) of predictor 1 increases

from 9 to 10. Predictors 2,4 and 6 also increase their accumulated score by 1 as they

have all given the correct prediction. On the other hand, predictors 3 and 5 which gave

wrong predictions get -1, and their accumulated scores decrease.

After all of the predictor’s scoring features are calculated for every predictor, five

intermediate models are created by selecting the predictors with the maximum value

from each feature to be their members. The maximum values of each feature at day

t are highlighted in red in the tables. For example, in order to create a max-scoring

model, the predictor(s) with the highest score (highest score is 10), which is predictor

1, will be selected. As there is only one predictor with the maximum score, the max-

score model has only one member as shown in the purple rectangle on the top right of

the framework. On the same basis, the max EMA quick model is created by selecting

the predictor(s) with the highest ema quick value (highest ema quick is 6), which are

predictors 2 and 3. As predictors 2 and 3 both have the same ema quick value and it is

the maximum, the max-EMA quick model has 2 members. Other intermediate models

are also crated in the same way. At the end of this process, each intermediate model

should have at least one predictor as a member, except when the maximum feature

values are negative. In this case, it will not be possible to select the predictor as no
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predictor is doing well enough. Therefore, that specific intermediate model does not

have any members on that round and will provide the signal 0 for the next day.

Figure 4-13 on page 103 shows the mechanism of the second part of the scoring system

called ensemble scoring layer. In this example, the max-scoring model, max-derivative

model and max-slope model have only one predictor, while the max-ema quick model

and max-ema slow model have two and three members respectively.

Figure 4-13: Example of how scoring system works on the ensemble scoring layer

In Figure 4-13, the intermediate models are represented as purple rectangles with the

predictor function inside. Some of them have only one member, which means that the

result will come from that specific predictor. Therefore, the result will stay the same

as in the previous layer. For example, the max-scoring model has only one predictor

which is predictor 1. Therefore, the result of this intermediate model is the result of

predictor 1, 0.001 and 1 for the predicted value and signal, respectively. These results

are the same as the result of predictor 1 in the previous step as shown in Figure 4-12

on page 101. This works the same for the max-derivative and max-slope models as all

have only one member.

For the intermediate models with multiple members, their results come from the results
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of every member inside. For example, the max-EMA quick model has two members

which are predictor 2 and predictor 3. As predictors 2 and 3 provided predicted returns

of 0.051 and -0.03 (as can be seen in Figure 4-12), the return of the max-EMA quick

model is the average value of 0.051 and -0.03, which is 0.0105. The predicted signal of

this model comes from the majority vote of predictors 2 and 3, which are 1 and -1 as

shown in Figure 4-12. Therefore, the majority vote result is 0.

After getting the return and signal from the member, these two results will be compared

with each other in order to create the intermediate model’s answer. If the return and

signal are both a positive number greater than 0, the intermediate model’s result will

be 1. On the other hand, if the return and signal are negative, the intermediate model’s

signal is -1. Otherwise, that intermediate model’s signal will be set to 0. For example,

in the max-ema quick model, the predicted return is 0.0105, while the predicted signal

is 0. Therefore, the answer of this model will be 0.

As for the max-ema slow model, it has three members, which are predictors 1,3 and

4. Therefore, the predicted return of this model comes from the average of results

from every member. As predictors 1, 3 and 4 provide predicted values as 0.001, -0.03

and 0.121 respectively, the average predicted value is 0.0306. As for the predicted

signals, predictors 1, 3 and 4 predicted signals of 1, -1 and 1, and the average signal is

calculated from the majority vote of these results. Therefore, the signal of the max-ema

slow model is 1.

As explained above, each intermediate model sends out two values, return and signal,

as can be seen in the two circles sent out by two arrows from every purple rectangle in

Figure 4-13. To obtain a final signal of each model, these two values will be compared

with each other. If they are both positive values greater than 1, the resulting signal

is 1. If these two values are negative, the resulting signal will be -1. Otherwise, the

resulting signal will be 0.

For example, the predicted return and signal of max-ema slow are 0.0306 and 1, which

are both positive numbers. Therefore, the answer of this intermediate model is 1. This

means that the max-ema slow model predicts that the price will increase and suggests

buying this share at the beginning of the next day. On the other hand, the return and

signal of the max-ema quick model are 0.0105 and 0. The value 0.0105 is positive which

means to buy and 0 means to hold or do nothing. Therefore, the resulting signal from

the max-ema quick model will be 0, which means that this model suggests holding the

position or not doing anything, neither buying nor selling, because there is no clear

signal to buy or sell.

104



After getting a signal from every intermediate model, the intermediate models’ features

will be updated. The intermediate model feature here is the score. As same in the first

layer scoring, we always start with score merely. If the score does not work, we then

investigate further on the additional features. It turns out as the score in this ensemble

scoring layer works really well as can be seen later in chapter 5, section 5.3.2.4, on

page 181. We then conclude that the only score is enough for this second layer scoring

system. Therefore, the intermediate predictors with the maximum cumulative score

will be selected in the final model and are able to predict in the next round. This

process will continue throughout the development set (dev set). When finishing, we

will move onto the process of simulation and signal optimisation in order evaluate and

improve the quality of trading.

4.5 Step 5: Trading Simulation and Optimisation

Results for step 4 in section 4.4 are obtained in this section through simulating a realis-

tic trading environment which accounts for brokerage fees and initial funds. There are

four sub modules in this step, which are signal creation, trading simulation, evaluation

and signal optimisation, as shown in Figure 4-14.

Figure 4-14: Trading simulation and optimisation diagram
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4.5.1 Signal Creation

This step feeds in the values obtained from the scoring system in step 4 section 4.4,

which are the predicted return and the predicted direction (either -1, a decrease in

price, 1, an increase, or 0, no clear prediction). The predicted return and direction can

be different as they are calculated in different ways. The predicted return comes from

averaging the return forecast by each individual predictor in the final model, while

the direction is obtained by a majority vote on the direction forecast by each of the

predictors. Mostly, if the predicted return is positive, the predicted direction is also

positive, and the same applies when the predicted return is negative. However, there

are a few cases where the predicted return and direction are opposites. Therefore, in

order to make decision which calculation is the best for creating the final signal, we

performed a number of experiments which the detail can be found in chapter 5, section

5.5.2, on page 212.

From those experiments, we conclude that the combined return & signal is the best

option for creating our final signal. Here we will illustrate how this method works

by providing an example. An example of the final signals created by the combined

direction & return method can be seen in Figure 4-15 on page 106.

Figure 4-15: Signal creation method
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From Figure 4-15, it can be seen that in order to create the final signal in the last

column (grey), we will combine the predicted return and direction. If they are both

positive, the final signal will be 1, which means ”buy”. On the other hand, if the return

and signal are both negative, the final signal is -1, which instructs investors to ”sell”.

Most of the time, the predicted return and direction are either both positive or both

negative. However, there are some cases where these values are in counter directions.

In such cases, the final signal will be 0, which implies ”to hold” or not do anything as

the signals are not strong enough to recommend any actions. However, as described

earlier, the interpretation of a ”hold” signal depends largely on the individual investor

and their appetite for risk and does not necessarily mean they must hold on to shares

they currently own or stay in cash if the previous signal instructed them to sell.

4.5.2 Trading Simulation

This section takes the final signals from the previous step, 4.5.1, and applies them by

simulating a realistic trading environment, by which we mean brokerage fees and initial

funds are taken into account.

This research aims to be used by individual investors followed our objective to sup-

port the investor to trade with the limited funds. We will only use a flat-rate fee

as opposed to a percentage of the order size, as this is a more common fee structure

for private and retail investors. Brokerage fees are subject to the broker companies.

In this research, we take the fee information from the 16 popular brokers including

Fidelity, ChoiceTrade, SpeedTrader, TradeStation and Interactive Brokers (https:

//www.stockbrokers.com/guides/features-fees retrieved 2019-09-15). The trad-

ing fees of these companies range from £0.00 - £5.61, and we have taken an average of

these values. The average fee of the 16 companies is £3.79. Therefore, for every trade,

£3.79 is deducted to represent the brokerage fee throughout the simulation. In reality,

inflation might lead to fees being increased over time, however as our testing dataset

is quite recent, we have not simulated this. Additionally, as the average of fees was

calculated recently, the effect of any inflation would mean that the brokerage fees are

larger in our simulation than they might have been in reality.

Figure 4-16 shows an example of the result from the trading simulation process. There

are four columns in this example, comprising the date, close price, signal, profit and

trading fee. Please note that the close prices are shown in normalised form. In this

case, we start with initial funds of £10,000. The first signal that this model sends out

is 1, which means ”buy”. This signal comes in at the end of 2000-02-08. So, at the
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Figure 4-16: Example of the result for signal creation step

beginning of the next day (2000-02-09), this share was bought to the value of £9,996.21

(£10,000 less the brokerage fee of £3.79). This research uses the closing price of the

purchase day as the purchase price. The signal would have been generated the prior

day. The reasoning behind this is that executing an order can sometimes take a long

time, so we considered it an appropriate and simple approach to use the last possible

price for the execution. The opening price or an average price would also have been

viable alternatives, as would using the high price to run a more conservative simulation,

but in all cases the simulated prices will be slightly inaccurate owing to the slippage

that occurs in reality. Additionally, as ours is not an intraday trading system and holds

shares for multiple days, we do not expect the results to vary much among the different

possible purchase prices. The first trade is shown in the green rectangle. After this

share was purchased, the price continued to increase. Then, at the end of 2000-02-16,

the model sent out a -1 signal, instructing to sell. Therefore, the next day (2000-02-17),

all of the shares were sold, closing the first trade. At the end of this trade, our money

increased to £10,742.80 after paying an additional brokerage fee of £3.79 to close the

trade.

To summarise, in this example of the first trade’s performance, we started with 10,000

108



and ended up with 10,742.80, which means that we made a profit of 742.80. As this

trade started on 2000-02-09 and ended on 2000-02-16, we held this trade for a period

of 8 days in total (including the weekend when the market is closed). Therefore, we

made 7.4% during the first 8 days of our trading.

The second buy signal appears on 2000-02-18, which is only two days after the previous

sell signal. The period of the second trade is shown in the red rectangle, starting with

the buy signal on 2000-02-18. A buy position is opened the next trading day after the

weekend (2000-02-21). However, the buy signal is not as the previous time. This signal

happens only for one day before the sell signal. Therefore, we only held on to this trade

for a day. The price dropped on that day so we ended up losing money. After exiting

this position our money declined from 10,742.80 to 10,479.70 or -2.45%.

To summarise the second trade, we held on to the trade for only a day and ended up

with a 2.45% loss or around 263. However, this loss isn’t only due to the decrease of

the price, it is made larger by the brokerage fee, which had to be paid twice in quick

succession. Although the signal produced by our system was wrong this time, it did

not last long. The model realised the fault in its decision very quickly and brought

us out of the wrong position straight away to prevent a bigger loss, which could have

happened as the price continued going down after we exited the position.

4.5.3 Trading Evaluation

After finishing the simulation in the previous step, the results shown in Figure 4-16 on

page 108 have their performance calculated and evaluated using the following process.

Performance cannot be measured by profit only. Higher profit does not always indicate

a better model since it is not going to be a good model if a trader can make a lot of

profit but has to take massive risks at the same time. Therefore, the most important

value that we use to evaluate our trading performance is the Sharpe Ratio, also known

as the Risk Adjusted Return. The Sharpe Ratio adjusts the return by the risk that an

investor had to take to achieve it. The Sharpe Ratio can be calculated as shown in

Chapter 2 section 2.3.4 on page 42.

Other metrics will also be calculated alongside the Sharpe Ratio. There are two types

of other measurements we will feature, relating to money (both profit and loss) and risk.

In terms of money-related metrics, we will calculate the annual profit as mentioned in

Chapter 2 section 2.3.4 on page 42 and the brokerage fee that the trader has to pay.

As for the risk-related metrics, we calculate the annual volatility and maximum draw-
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down, which is the biggest percentage decline over a given period of time. A bigger

drawdown indicates more difficulty to return to a profit for a trading strategy. More

details about drawdown can be seen in Chapter 2 section 2.3.4 on page 42

An example of results from the trading evaluation process can be seen in Figure 4-17,

page 111. This result comes from a stock in the UK market called CARR, representing

CARR’s Group plc. The results are shown in four sub-graphs. The first graph on the

top shows the closing price. The X-axis represents trading days and the Y-axis shows

the closing price. The areas in green show the periods when we have positions open

(holding shares that we have bought). These periods correspond with the second graph

which illustrates the signals obtained from the model. When the signal in the second

graph is 1 (on the Y-axis), this period of time will be coloured green in the top graph

as well, representing when we have bought shares.

From these two graphs at the top, it can be seen that in the period of trading from the

beginning of 2017 to then end of 2018, we opened positions (bought shares) 199 times

and paid total brokerage fees of £754.21. There are few positions open for long before

shares are sold again.

The third graph shows the balance in our portfolio when we invest with initial funds

of 10,000 and we have bought and sold shares following every signal from the system.

This balance has already taken the brokerage fees into account. At the end of the

trading period, we obtained a profit of 79.17% with a Sharpe Ratio 1.12.

The bottom graph shows the logarithm return (Y-axis), comparing our model’s result

(green) and the buy & hold strategy (red). The brokerage fee is not included in these

graphs. The result shows that even though our model does not work very well from the

beginning until about August 2017, it is still be able to track the buy & hold. Then,

after August 2017, it shows an extraordinary result which is much better than the buy

& hold until the end of the test period.

The result’s summary of Figure 4-17 is shown in table 4.1.

It can be seen from table 4.1 that our model performs better that the buy & hold

strategy, as it has a higher Sharpe Ratio and profit. Moreover, our model shows a better

result in terms of risk as it provides lower volatility and a much smaller drawdown. The

buy & hold strategy has negligible brokerage fees, while for our model the total fee is

£754.21 as it placed 199 orders.
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Figure 4-17: Result from signal creation of CARR when the initial fund is 10,000

Performance Buy & Hold strategy Our model

Sharpe Ratio 0.01 1.12
Profit (%) 0.92 79.17
Volatility 0.386 0.3

Maximum Drawdown (%) -23.08 -17.77
Number of Trades 2 199

Brokerage fee £7.59 £754.21

Table 4.1: Performances summary of CARR comparing between our model and the
buy & hold strategy

4.5.4 Signal Optimisation

This is the process of adjusting the number of trades by filter out some weak trades.

Weak trades here means the trades that related to the expected small returns. In this

research, we consider a trade with higher profit as stronger trade or stronger signal.

The signal optimisation process will improve the quality of trading by filtering out weak
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signals in order to decrease the effect of brokerage fees since fewer trades will be placed.

During signal optimisation, initial funds are taken in to account. With lower amounts

of initial funds, more signals will be filtered out to decrease the impact of brokerage

fees and reduce the risk of following unclear signals. On the other hand, if traders start

with more money, the system may retain more signals even if they are not the strongest

ones as they are worthy to trade even when considering the brokerage fee. If taking

this module out of this step, an investor will try to follow every signal the system had

given. This could be problematic, especially, when the investor has limited amount of

fund. The experimental results to support this step can be found in chapter 5, section

5.5.2, on page 212.

This optimisation process takes the development set and run grid search on it to find the

optimum point to filter signal for the test set. The signals are filtered by considering

the level of expected returns. Basically, signals with small expected returns will be

filtered out as they indicate a smaller amount of profit.

To make this easy to understand, we will provide example as seen in figure 4-18.

Figure 4-18: Example of the signal filtering

Figure 4-18 shows example of the result from our system performing on the development

set. There are four different parts, showing in different colours. The first two columns

(Close and Log Rets), shown in grey, indicate the closing price and the logarithm

returns. The next two columns (Predict Value and Predict Signal), shown in green,

are the result from our predictor(s). The predicted value is the forecast return that

our predictor had made, while the predicted signal is the signals which our predictors

provided. The last two columns (Strategy Return before and after filtering), shown in

yellow and blue, are the return our system will obtain before and after performing this

signal optimisation (signal filtering) step.
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Without signal optimisation, our predicted value for the day 2013-01-03 is negative

(column predict value), -0.00000012. Since the actual return on that day is also neg-

ative (-0.00190655), the strategy return in the yellow column is calculated as positive

(0.00190655) as the system got the direction correctly. On the other hand, on the day

2013-01-09, the actual return is negative, however, our system predicted positive result.

Therefore, the strategy return in the yellow column is negative as the system got the

wrong answer.

Now, we will look at the same table but the result will be after performing signal

optimisation. Let’s say, the optimisation module provide the information that best

signal cutting area is between -0.0005 and 0.0005. Therefore, the predict values that

fall in this area will be filtered out. This makes the system filter our the signal on the

day 2013-01-03 and 2013-01-09. This makes the strategy return on these two day equal

two zero. This is how the signal filtering works. It runs grid search on the predicted

return (or predicted value) to find the best cut off area. The best cut off area means if

the signals in this area got filtering out, the cumulative profit in the blue column will be

higher. In fact, the key value we used to optimise the signal is Sharpe Ratio, therefore,

the optimum cutting area is actually the area leading to the maximum Sharpe Ratio.

Once obtaining the best cutting area from the development set, this parameters will

be taken to filter out the signals in the testing set.

To perform this optimisation in order to get the cutting area, we take the distribution

of predict values (predicted returns) and run grid search as shown figure 4-19 and 4-20.

(a) (b) (c)

Figure 4-19: Signal filtering using the returns’ symmetric distribution

In order to filter the signals, signals are firstly filtered out symmetrically as can be seen

from the example in Figure 4-19. This graph shows return distribution of the training

set. The grey areas in the graphs show areas where signals are filtered out. From sub

Figure A, we start filtering out signals in the grey area in the middle, which are signals
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(a) (b) (c)

(d) (e) (f)

Figure 4-20: Signal filtering using the return distribution

with low expected returns (near 0). Then, the size of the grey area is increased which

means that more signals will be filtered out, as can be seen in sub Figures (b) and (c).

In this system, between 10% and 90% of signals will be filtered out and the number

that provides the maximum Sharpe Ratio will be selected.

Signals will be optimised using asymmetric filtering as well. An example of asymmetric

filtering can be seen in Figure 4-20 on page 114. In sub Figures (a) to (c), more buy

signals are filtered out than sell signals, which might be a good way to deal with stocks

with a left-skewed distribution when starting with less money. This means an investor

does not have to open as many positions. On the other hand, in sub Figures (d) to (f),

the sell signals are filtered out more than the buy ones. This might be used for stocks

with a right-skewed distribution as they tend to have too many sell signals which will

make the investors have to sell their positions too often. Selling too often will affect

the performance of the trade greatly, especially when starting with less capital.

After finishing the optimisation process including both symmetric and asymmetric

filtering, the best parameters or the regions that provide the maximum Sharpe Ratio

will be used to filter the signals from the test set.
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4.6 Step 6: Testing

This is the last step of the model. After every predictor was trained, the scoring system

was created and all the parameters for signal optimisation were obtained, we put them

all together in order to work with the last part of our data, the testing set. The testing

set is shown in the green database sign in figure 4-1 on page 89. This data is completely

unseen by our model and we will use it to evaluate our model’s performance against

other benchmarks and other methods. The framework for this step is shown in Figure

4-21.

Figure 4-21: Testing process diagram

Figure 4-21 shows that the testing process is composed of two sub tasks, prediction

and signal creation and system evaluation. Firstly, the testing set will be fed into the

completed set of predictors which have been trained and have their scores ready to be

employed. Test data will be fed into these predictors daily and the predicted result will
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be put into the signal creation process, for which the parameters were obtained from

the optimisation process in the previous step. Each day, if there is a signal sent out

from the system, the result will be stored in the result file.

After finishing the process of prediction and creation for all of the testing data, the

result, which contains all signals for the days that the system recommended to buy or

sell, is sent to the trading evaluation process. The evaluation process will calculate the

profit of each trade including the fee, followed by calculating other metrics mentioned

in section 4.5.3 on page 109. An example of the final result can be seen in the following

table:

Metric Result

Sharpe Ratio 1.13
Profit (%) 53.36

Daily Volatility 0.01
Yearly Volatility 0.166

Maximum Drawdown -16.49
Average Drawdown -3.7

Number of trades (days) 28
Brokerage fee (£) 106.12

Table 4.2: Example of system evaluation on MCD during 2017-2018

Table 4.2 shows the final result when testing on MCD with initial funds of £10000.

At the end of the process, the eight values provided indicate the performance of our

system on the selected dataset. For MCD, testing over two years from 2017-2018, the

system provides a 53.36% profit with daily and yearly risk (volatility) of 0.01 and 0.166,

respectively. The maximum drawdown is -16.49% which indicates the maximum loss

that an investor has to accept throughout this period. The average drawdown is 0.01%.

During these two years, the system trades 28 times in total (including both buying and

selling), which makes the brokerage fees equal to £106.12, this is only just over 1% of

the initial funds.
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Chapter 5

System Design

This chapter explains the process of designing our system step-by-step. In order to

understand this chapter clearly, we refer to the previous chapter at some points. There

are four main experiments in this chapter which will lead the reader to the final design

of our system. The first three experiments test the main design of our research and

are presented in order, while the fourth is an additional experiment. It provides small

adjustments to the system which are not critical, having only a minor effect on the

main design of our trading system. The following briefly explains the structure of the

chapter.

The first experiment aims to investigate our original idea about the benefit of having

multiple predictors and training them differently, so they each act as experts on specific

characteristics of the data. In order to perform this experiment, we have to control the

predictor selection process to make sure that the correct predictor is selected for the

given time. In order to do that, look-ahead bias is included in this experiment. At the

end of this experiment, we show the results that support our idea that having multi-

ple predictors is better than a single predictor. The second experiment is designed to

remove the bias and make sure that the conclusion from the first experiment remains

correct. This experiment is set up the same way as experiment 1. The only difference is

the removal of the bias from the predictor selection method. Experiment 3 investigates

different predictor selection methods. In this experiment, four different predictor selec-

tion techniques will be discussed. After finishing these three experiments, we complete

the design of our scoring system, which is the heart of this research. Then, the last

experiment is composed of several smaller experiments designed to provide adjustments

to our system.
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5.1 Experiment 1: Proof of concept

The objective of this experiment is to establish that our original idea of having multiple

predictors and machine learning algorithms is helpful for our trading system. Please

note that in this research,

• Multiple Predictors means having more than one predictor, but all of them could

be the same algorithm (created from same machine learning model) but trained

differently.

• Multiple Algorithms means having more than one machine learning model working

together (as opposed to one algorithm having multiple predictors).

This experiment comprises two sub experiments. Experiment 1.1 aims to investigate

whether multiple predictors work better than a single predictor. Experiment 1.2 aims

to investigate whether having more machine learning algorithms is better than a single

algorithm.

5.1.1 Experiment 1.1: Multiple Predictors

In this experiment, the training set is clustered into smaller groups. Multiple predictors

are then created (from the same machine learning algorithm) according to the number

of clusters. Each predictor will be trained on a specific cluster of data. Our hypothesis

is that predictors which are trained on different clusters will act as an expert for a

specific characteristic of the data. This means each predictor should work best at

different times. So, when performance drops for one, another is at its best. By having

them work together in this way, our trading performance will be improved.

5.1.1.1 Experiment design

The structure of this experiment follows the system framework in chapter 4, figure 4-1

on page 89 up until step 3. However, there are a number of points which are designed

differently as this experiment is the very first experiment we worked on, while the

framework in chapter 4 is for the completed model. The details below explain all of

the differences and demonstrate how this experiment is set up step-by-step.

1. Data Preparation
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Stock data was loaded and cleaned following the processes described in chapter 4,

section 4.1, on page 4.1. The dataset was divided into two sets, instead of three.

The two sets of data are for training and testing. The training set covers from

the year 2000 until 2012, and the testing set ranges from the beginning of 2013

to the end of 2014.

Then, clustering and prediction features were created, as described in section

4.1.3 on page 91. The clustering features are the standard deviation and mean of

the returns. For the prediction features, we created a series of the past five-day

logarithmic returns. Examples of the clustering features are shown in figure 5-1.

Figure 5-1: Example of TSCO training data, including mean and standard deviation
of the returns

Figure 5-1 shows an example of the training data. The dataset here is for Tesco

PLC. The training data starts from the beginning of January 2000 as can be

seen from the index of the table. The first column is the closing price, shown as

Close. The second column, Rets, shows the logarithmic return of that day, which

can be calculated following equation 2.25 on page 43. As the return is computed

using the closing prices from the previous day and the current day, the return

of the first day cannot be identified and is shown as NaN. The third and fourth

columns, named Rets std and Ret mean, represent the standard deviation and

mean of the returns, respectively. These values are calculated from the returns

over the past five days, including the present day. For example, the Rets std at

row index 2000-01-10 is calculated from the standard deviation of the return from

day 2000-01-04 to 2000-01-10, which are -0.035139, 0.016371, 0.000000, -0.013624

and -0.032058.
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2. Clustering

In this step, we take the clustering features created in the previous section and

cluster the training set into two groups as shown in figure 5-2 .

Figure 5-2: Example of the clusters of TSCO’s training data

Figure 5-2 shows the clusters of the training set of TSCO. The X and Y axis

are the mean and standard deviation of the returns. Since k-means is one of the

algorithms which is sensitive to different scales of data, the clustering features

were normalised before being used by the k-means cluster. Clusters 0 and 1 are

represented by red and green in this figure. For ease of reference, we name them

the low and high volatility groups, respectively. The black stars at the middle of

each group represent the centre of each. These two coordinates will be used later

in order to select the predictor in the testing process.

3. Training In this step, we initialise two polynomial regression predictors according

to the number of groups from the previous step. The detail of this step is described

in section 4.3, on page 93. These two predictors will be named predictor 0, which

was created for the low volatility group, and predictor 1, which was created for

the high volatility group.

Figure 5-3 shows that there are two clusters of training data. Cluster 0 contains

data with low volatility while cluster 1 is composed of high volatility data. We

initialised two predictors, predictor 0 and predictor 1. In this experiment, we used

only the polynomial regression model for both predictors. These predictors were

created with exactly the same initial parameters. Therefore, they were identical

at the beginning.

After creating the predictors, we trained them with different groups of data.
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Figure 5-3: Training process in experiment 1.1

Predictor 0 was trained on cluster 0 training data, while predictor 1 was trained

with cluster 1 training data. Using this method, we expected predictor 0 to

be specialised for low volatility data. On the other hand, predictor 1 should

work better with high volatility data. Therefore, predictor 1 will be used during

fluctuating periods, but in calmer times the system will select predictor 0.

Ideally, the system should be able to switch between high and low volatility

predictors. For example, during periods of high volatility, a predictor which

was trained specifically on high volatility data will be called. On the other hand,

another predictor which was trained with lower volatility data should be selected.

If our hypothesis works as expected, these methods could provide better results

than having only one predictor.

4. Testing

In the completed system shown in chapter 4, figure 4-1 on page 89, there are three

steps after the training. However, this first experiment is not as complicated.

At the time of this experiment, the scoring system and the signal optimisation

process had not yet been designed. The trading fee was not included either.

Instead of using the scoring system to select the suitable predictor(s) during

the test, as mentioned in the completed system, the method we used to select

the predictor in this experiment is only the standard deviation and mean of the

logarithmic return (as shown in the Rets std and Rets mean columns). On each

day of testing, the standard deviation and mean of the returns over a one week

period are calculated and normalised with the same parameters obtained from the

training set. Then these values will be fed into k-means clustering. The k-means

clustering will classify the data into either cluster 0 or 1, based on the shortest

distance between them and the centre of each group. If the cluster turns out 0,

predictor 0 will be selected. Otherwise, predictor 1 will be selected. The process
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of switching between these two predictors will go on until the end of the test.

Figure 5-4: Example of TSCO’s testing data in experiment 1.1

Figure 5-4 shows the testing dataset of TSCO stock. As the testing data was

completely separate from the training set and unknown to the predictors, the

process of calculating the return and standard deviation had to start from the

beginning of the testing data. Therefore, we could not calculate the return on

the first day (2013-01-02), so this is shown as Nan. The Ret mean and Ret std

columns are the mean and standard deviation of the returns over the first week

(2013-01-02 to 2013-01-08), so these values could only be calculated after the first

week. Therefore, the mean and standard deviation of the first week are shown as

NaN too.

Please note that we deliberately include the return of the present day in the

calculation and are aware of the look-ahead bias this causes. The reason for this

is to control the correctness of the predictor selection and to be able to support

our hypothesis that if we can select the suitable predictor(s) for the time, then

having multiple clusters and predictors will be helpful. Then, in section 5.2

on page 147, we study selecting the correct predictors and investigate the most

suitable strategy to get rid of the look-ahead bias issue.

After the prediction had been made, the signal creation was simply that if the

predictor predicts a positive return, the stock will be bought. On the other hand,

if the predictor predicts a decreasing price, we will sell that stock the next day.

The system profits if predicting 1 (increasing price) on days that the stock goes

up. If the stock goes down, it loses money.
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5.1.1.2 Experiment results

We performed this experiment on a variety of stocks from different sectors, ranging from

food producers, retailers, general industrial, construction and electronics to computer

and technology companies. These stocks are mainly from the UK (listed on the London

stock Exchange) and some of them are well-known companies from America (NASDAQ

and NYSE markets). The list of stocks that have been selected can be seen in table

6.1 on page 233. The results include the cumulative profit over the testing period of

two years, the Sharpe Ratio, maximum drawdown, accuracy and standard deviation.

More details of the evaluation process can be seen in chapter 4, section 4.5.3, on page

109.

We ran this experiment on 11 different stocks as mentioned above. In this section, we

present a few visualisations. All results will be shown in table 5.1 later.

Figure 5-5: Result from experiment 1.1 on CARR

Figures 5-5 and 5-6 show the results from this experiment on CARR and TSCO stocks,

respectively. Each figure comprises three sub-graphs. The top one shows the closing

price of the stock. The middle graph compares the cumulative log return of three
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Figure 5-6: Result from experiment 1.1 on TSCO

different strategies: buy & hold (black line), multiple and single predictors (green and

red graphs). The bottom graph shows the drawdown throughout the period using the

multiple-predictor strategy (green line). The maximum drawdown of each period is

shown by the red line.

It can be seen from figure 5-5 that the price of CARR stock starts just above 100 pence

and goes in an upward direction overall during the testing period, until ending up at

almost 180 pence. There are two notable drops at the beginning of April 2013 and

2014. We can see the outstanding result from the multiple predictors in the middle

graph. The multiple-predictor model (green line) performs much better than the other

strategies throughout. The single predictor (red) did not seem to work much better

than the buy & hold, as we can see the red graph mostly tracks the black graph (buy

& hold). Even though the single predictor overtook the buy & hold at the beginning,

it suffered during both the April 2013 and 2014 declines and performed worse than buy

& hold after the latter.

On the other hand, the multiple-predictor strategy performed very well as can be seen
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from the green line, which is much higher than the others throughout almost the whole

period except the first two months. It also performed well during both the sharp drops

in 2013 and 2014. It can be seen that when the price drops in April 2013 and 2014,

the multiple predictor strategy still increased.

Finally, the buy & hold strategy ends up with 62.38 % profit over two years. The single

predictor could not do better and ends up with lower profit than the buy & hold, at

52.92 %. Meanwhile, the multiple-predictor model finishes with an outstanding profit

of 183.38 %, which is almost three times higher than the benchmark (buy & hold).

Not only is it better than the others in terms of profit, but the multiple predictor

strategy also experienced a smaller drawdown. While the other strategies had maximum

drawdowns of more than 25 % (26.32 % and 29.33 % drawdown from the buy & hold and

the single-predictor strategies respectively), using multiple predictors gave a maximum

drawdown of only 19.05 %.

The-multiple predictor strategy also provides a much higher Sharpe Ratio than the

others, suggesting higher profit with lower volatility. The multiple-predictor strategy

has the highest Sharpe Ratio of 1.78, while the buy & hold and single-predictor strate-

gies achieved only 0.77 and 0.66 respectively. The accuracy of multiple predictors is

also higher than the others, but not by very much. Its accuracy is over 54 % while the

buy & hold and single predictor only managed about 52%. However, as we mentioned

in section 5.4.1, on page 192, accuracy is not the most important measure to evaluate

trading performance. We are not concerned about this value unless it is dramatically

different.

Figure 5-6 shows the result from another UK stock: TSCO. The period of testing is

the same as the previously presented result (CARR), starting from the beginning of

2013 until the end of 2014. However, the character of TSCO is totally different from

CARR. While the price of CARR goes up, TSCO’s price goes down throughout the

period of testing. The price starts from about 350 pence and ends up below 200 pence.

Even though the character of the TSCO share price is different, the results are similar

to CARR. From the second graph we can see the multiple-predictor strategy (green

line) performs much better than the other strategies throughout the period of testing,

except in the first few months. During the first few months of testing, both the single

and multiple predictor strategies could not perform better than the buy & hold. But

it does not take long for the multiple-predictor strategy to outperform the buy & hold,

which it does after the 3rd month and then continuously performs better until it ends

with a profit of 44.84 % in two years. Meanwhile both the buy & hold and single

predictors end up losing 44.86 % and 17.42 %, respectively.
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In addition to greater profit, the accuracy of the multiple-predictor model is also higher

than the other models. It obtains about 50.5 % accuracy while the others only have

46.91 %. The drawdown of multiple predictors is lower than the others too. Almost all

of the key measurements are better when using multiple predictors; the Sharpe Ratio,

which is the most important value here, is positive (0.64) while the others obtained

negative values.

Although using multiple predictors performed very well in both of the stocks we men-

tioned above, this was not always the case. There are a few cases where it did not

perform as well as expected, such as the results from MKS and FERG shown in figures

5-7 and 5-8, respectively. Therefore, further investigation will be performed later in

this chapter.

Figure 5-7: Result from experiment 1.1 on MKS

Figure 5-7 shows the result from MKS. As we can see from the middle graph, both the

single and multiple-predictor strategies did not perform well. Both of them underper-

formed the benchmark (buy & hold). There was only a small period before the end

of the test (between September and November 2014) that multiple predictors outper-

formed buy & hold. Performance declined again shortly after. The single predictor
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Figure 5-8: Result from experiment 1.1 on FERG

seemed to work better than multiple predictors in 2013. On the other hand, shortly

after January 2014, the multiple-predictor model showed a much better result than the

single predictor. The best strategy for this specific dataset is the buy & hold, which

gained more than 25 % profit over two years, followed by the multiple predictor strat-

egy which was able to make just over 4 %. The single predictor performed worse than

the others and ended up with a loss over 18 %.

The second dataset that did not go as well as we thought is FERG. In figure 5-8, the

middle graph shows that multiple predictors performed significantly better than the

buy & hold strategy throughout the testing period, except for the fist half of 2013.

As for the single predictor, it also performed much better than the buy & hold, even

better than the multiple-predictor model most of the time, however the performance

was less stable. To decide on the best strategy for this data, we consider the Sharpe

Ratio because it takes into account both profit and risk. From the Shape Ratio in

table 5.1, the best Sharpe Ratio is 0.42 and belongs to the multiple-predictor strategy,

followed by the single predictor with a Sharpe Ratio of 0.31. Although the result from

the multiple predictors is not we expected, it can still be considered the best strategy
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in this test.

There are many reasons that the results from MKS and FERG were not as good as

expected. Firstly, the price of these two stocks was ranging, while CARR and TSCO

had clear overall trends (see figure 5-5 and 5-6). Therefore, there is a possibility that

multiple predictors might not be suitable to deal with datasets with ranging patterns.

Secondly, in figure 5-7 it can be seen that both the single and multiple-predictor strate-

gies did not perform better than the buy & hold. The reason for this might be because

of the limited predictor used. In this experiment, we used only one machine learning

predictor (polynomial regression). This predictor might not be a suitable predictor for

this data, resulting in both strategies not performing well. Finally, the problem might

relate to the criteria for predictor section. To investigate further, we will experiment

with adding more machine learning predictors in section 5.1.2 on page 131 and testing

different criteria for predictor selection in section 5.3 on page 159.

After discussing some of the results for both good and bad cases, we show all of the

results from the 11 different datasets in table 5.1. This table shows the comparison

of three different strategies, which are the buy & hold, single predictor and multiple

predictor strategies. The values presented are profit, Sharpe Ratio, drawdown, accuracy

and standard deviation. Please note that the accuracy of the buy & hold in this research

refers to percentage of the days when a stock’s price goes up. The details of how these

values are calculated can be seen in chapter 2 section 2.3.4 on page 42. The details of

each company in this table can be seen in table 6.1 on page 233.
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Table 5.1: The comparison between Buy & Hold, Single and Multiple predictor methods

Data & Model Profit Sharpe Ratio Max DD Accuracy Stdev

(%) (%) (%)

CARR

Buy & Hold 62.38 0.77 -26.32 52.89 0.302

Single Predictor 52.92 0.66 -29.33 52.46 0.302

Multiple Predictors 183.38 1.78 -19.05 54.39 0.300

COST

Buy & Hold 11.57 0.09 -22.26 51.26 0.296

Single Predictor 81.97 0.97 -15.72 51.46 0.295

Multiple Predictors -14.54 -0.38 -38.90 49.37 0.296

D4T4

Buy & Hold 39.10 1.19 -37.76 51.75 0.586

Single Predictor -27.22 -1.25 -46.08 49.12 0.586

Multiple Predictors 70.71 1.98 -17.22 58.77 0.583

FERG

Buy & Hold 18.59 0.26 -16.09 49.10 0.211

Single Predictor 20.85 0.31 -32.67 48.70 0.211

Multiple Predictors 26.61 0.42 -13.84 50.90 0.211

GOOG

Buy & Hold 45.71 0.74 -18.72 50.10 0.213

Single Predictor 48.67 0.79 -15.49 50.50 0.213

Multiple Predictors -8.45 -0.35 -24.30 48.31 0.213

MACF

Buy & Hold 26.96 0.65 -28.06 49.81 0.312

Single Predictor -1.83 -0.15 -36.28 52.92 0.313

Multiple Predictors 114.62 2.33 -19.23 58.37 0.309

MCD

Buy & Hold 3.97 0.08 -14.61 54.6 0.124

Single Predictor 1.78 0.17 -14.61 54.2 0.124

Multiple Predictors 23.87 0.63 -10.33 54.2 0.124

MKS

Buy & Hold 25.11 0.35 -25.24 48.8 0.237

Single Predictor -18.61 -0.56 -29.86 48.6 0.237

Multiple Predictors 4.13 0.04 -27.50 53.2 0.238

Continued on next page
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Table 5.1 – Continued from previous page

Data & Model Profit Sharpe Ratio Max DD Accuracy Stdev

(%) (%) (%)

OXIG

Buy & Hold -15.00 -0.33 -46.91 48.07 0.346

Single Predictor 21.61 0.20 -27.29 50.10 0.346

Multiple Predictors 357.01 2.19 -16.29 52.55 0.343

SXS

Buy & Hold 0.67 0.10 -35.85 51.70 0.263

Single Predictor -45.88 -1.30 -52.22 47.29 0.262

Multiple Predictors 67.36 0.88 -22.65 53.91 0.262

TSCO

Buy & Hold -44.86 -1.35 -57.50 46.91 0.244

Single Predictor -17.42 -0.52 -29.66 46.91 0.244

Multiple Predictors 44.84 0.64 -15.80 50.50 0.244

Table 5.1 shows eight datasets - CARR, D4T4, MACF, MCD, OXIG, SXS, TSCO,

FERG, - where the multiple predictor strategy performed as expected or better than

the other strategies. Please note that for FERG, it did not perform as expected but still

better than the other strategies. Some of these datasets already do well using the buy

& hold strategy (profitable stocks) but the multiple predictors performed even better,

for example CARR, D4T4 and MACF. Not only does the multiple-predictor strategy

perform well on profitable stocks, but also unprofitable stocks (stocks that lost money

with the buy & hold strategy), for example OXIG and TSCO.

Although the multiple-predictor strategy performed well on the stocks we mentioned

above, there are three stocks that it could not work well with. These three stocks are

COST, GOOG and MKS. To improve this, we will run more experiments later on in

this chapter in order to find the most suitable model for a wide range of stocks.

We ran a paired T-test on the Sharpe ratios of these eleven datasets in the table

to compare between the multiple-predictor and single-predictor strategies (polynomial

regression). We obtained a p-value of 0.042, which indicates that our model was signif-

icantly better than the single predictor with greater than 95% confidence. The mean

Sharpe Ratios of the single and multiple predictor strategies are -0.092 and 0.92, respec-

tively. Although our system made a significantly higher profit, the standard deviation
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was slightly higher. This indicates slightly more variance in the Sharpe Ratio across

stocks, however the p-value is small enough to show our results were significant.

We also ran a non-parametric statistical test called Wilcoxon signed-rank test on the

Sharpe ratios of these results, comparing between the multiple-predictor and single-

predictor strategies. The obtained two-tail p-value in this test is 0.0329 which also

indicates that the multiple-predictor strategy was significantly different from the single

predictor with greater than 95% confidence. Therefore, in the following experiments

we continue using multiple predictors.

5.1.1.3 Discussion

This experiment was designed to investigate whether clustering training data, training

a specific machine learning predictor on each group of data, and then putting multiple

trained predictors to work together will improve stock price prediction. From the

results, we can see that the multiple-predictor strategy performed very well on most

of the stocks we tested on. Therefore, we conclude that having multiple predictors is

helpful for the system. However, there were a few datasets for which this strategy did

not work well. There are multiple possible reasons to explain the problem. Firstly, the

machine learning algorithm we used in this experiment might not be good enough for

all the datasets, or the criteria used to select the predictors was not suitable. Therefore,

we will investigate these issues later on in this chapter in order to obtain a better model.

5.1.2 Experiment 1.2: Multiple Machine Learning Predictors

From experiment 1.1, we believe one of the problems that made some results turn out

badly (for example MKS in figure 5-7 on page 126) was the insufficiency of the predic-

tion model. This means that a single machine learning model is not good enough for

some stocks. Therefore, this experiment aims to resolve this problem by having mul-

tiple machine learning algorithms added to the system. Our hypothesis is that having

multiple machine learning algorithms will help achieve better results for a wider range

of stocks. We will perform an experiment to test our hypothesis by using multiple well-

known machine learning algorithms, such as linear regression, support vector machine

and random forest. The reasons for selecting these well-known and simple algorithms

are, firstly, that we would like to establish that our system is as good as or even better

than more complicated machine learning algorithms, even though it is composed of

simple algorithms. Secondly, the choice of machine learning algorithm is not the main
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concern of this research, as we are focused on selecting the best predictor for a period

of time. Therefore, the system will be able to add more predictors in the future.

If trading performance can be improved by using multiple machine learning algorithms,

we will then investigate further the techniques for predictor selection. Please note that

in this experiment, we only aim to confirm that multiple machine learning models

can increase the trading performance, but the technique to make them work together

effectively (to select which algorithms/predictors for the time) will not be discussed in

this section. Also, the biases are again included in this experiment.

5.1.2.1 An issue from the previous experiment

In the previous experiment (5.1.1), we found that the machine learning algorithm we

used, polynomial regression, did not work well on some datasets, for example MKS.

For ease of reference, the result for experiment 1 of MKS is shown here in figure 5-9

below:

Figure 5-9: Result from experiment 1 on MKS

From figure 5-9, the middle graph (cumulative log return) shows that the result from
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only a single polynomial predictor (red graph) could not overcome the buy & hold

(black graph) result for most of the testing period. Using multiple predictors (green

graph) - two of the same machine learning predictors (polynomial regression) trained

differently - performed better than the single predictor (red graph), but was still unable

to overcome the buy & hold result for almost the whole period of testing. Therefore,

this experiment will try to solve this problem by adding different types of machine

learning algorithm. The bottom graph shows the drawdown. There are two graphs in

the drawdown result, the green graph shows the drawdown value and the red graph

shows the maximum drawdown.

5.1.2.2 Experiment Design

This experiment is set up similarly to Experiment 1 but adds different models of ma-

chine learning predictors. Therefore, we will not mention all the details of the ex-

periment again. Readers can find the details of step 1 to step 3 from the previous

experiment on page 118. As for steps 4 and 5, the training and testing steps, these

are different in this experiment. In step 3, training, we added more machine learning

algorithms as shown in figure 5-10.

Figure 5-10 shows that the training data is clustered into two groups, high and low

volatility, as in the previous experiment. However, the machine learning predictors are

not only polynomial regression. There are 5 more types of machine learning predictor.

As previously, for each type of machine learning model, we created two predictors,

one trained to predict using the low-volatility data, while another is trained for high-

volatility data prediction. All of the predictors created for low-volatility (the predictors

whose names end with c0) will be trained with the same training data (cluster 0). On

the other hand, the predictors created for high-volatility (the predictors whose names

end with c1) are going to be trained with another cluster of training data (cluster 1).

To perform this experiment, we add new predictors one at a time in order to observe

the result of having more predictors. As for step 5, testing, the method for selecting

the predictor from one model (for example, selecting between Poly c0 and Poly c1) is

the same as mentioned in the previous step in 4 on page 121. However, we do not have

a method to select the predictors across different algorithms yet. Therefore, the results

from all algorithms will be shown in the form of average values in this experiment. If

the averaging method does not work well, we will investigate a new method for selecting

the predictors across different algorithms later in this chapter.
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Figure 5-10: Training process in experiment 1.2

5.1.2.3 Experiment Results

This section begins with demonstrations of some of the results. Then, we will summarise

all results at the end of the experiment.

• Examples of the results

– Results from individual algorithm In this section, we present the bene-

fits of using multiple machine learning algorithms. We start with polynomial

regression (as in the previous experiment) and linear regression as an ad-

ditional algorithm. Firstly, we would like to show the results from these

algorithms individually in figure 5-11 and 5-12.

Figures 5-11 and 5-12 show the results from using polynomial regression and

linear regression on MKS, respectively. The top graph shows the cumulative

returns, comparing between buy & hold (black line) and a regression algo-

rithm (green line). Please note that each green graph is the result from using

two predictors of the same algorithm. One predictor was trained on the low-
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Figure 5-11: Result from using polynomial regression on MKS

volatility data while another was trained with high volatility, as mentioned in

the previous experiment. The bottom graph shows the drawdown obtained

from the regression. In this experiment, we run each machine learning al-

gorithm separately. Then, we will bring them to work together in the next

experiment. The bottom graph indicates drawdown. The drawdown values

can be seen from the green graph, while the maximum drawdown is shown

by the red graph.

As mentioned in the previous experiment, using polynomial regression did

not work well for MKS (see figure 5-11). Therefore, we selected MKS to

demonstrate this experiment. Figure 5-12 shows the result from changing

polynomial regression to use linear regression on the same set of data from

MKS.

Comparing the top graphs from these two figures, it can be seen that poly-

nomial regression (see figure 5-11) did not work well on MKS for most of

the period of testing, as the green line is lower than the black line (buy &

hold). The linear regression worked much better, as can be seen from figure
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Figure 5-12: Result from using linear regression on MKS

5-12. The cumulative return from using linear regression (green line) was

better than the buy & hold for the most of the second half of the testing

period. Intuitively, if our model is able to switch the predictor to a linear

regression predictor for the second half of testing, the model’s performance

would surely be better.

Using polynomial regression resulted in gaining about 4% profit with around

a 47% error rate. The error shows the percentage of incorrect predictions.

Even though it ended with a positive return, the overall performance was not

good throughout the testing period. Most of the time performance was below

that of the buy & hold strategy. However, using linear regression provides

38% profit with 46% error. Even though the error rate is not much lower, the

profit increases sharply. This means that even though the accuracy of using

linear regression does not increase much (only about 1%), the performance

is much better. The explanation for this is that linear regression is able

to provide correct predictions on more important days (higher profit days),

which is of paramount importance in this area. The return distribution from
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the correct and incorrect days is shown in Figure 5-13.

Figure 5-13: The comparison between return distribution from the correct and incorrect
prediction days of MKS

There are two sets of return distribution in figure 5-13 represented by green

and red colours. The green colour shows the return distribution on the

days where linear regression predicted the correct direction, while the red

colour shows the return distribution on the incorrect prediction days. The

X-axis represents the daily logarithm returns. The Y-axis shows the fre-

quency. From this figure, it can be seen that the first three red bars are

higher than the green bars, which means that on those days profits were

missed. However, the available profits on those days were very small. This

could be benefit our system because when the profit is too small, it is not

worth incurring the trading fees and risk that apply when taking a position.

Therefore, it is desirable for the system to avoid these trades, thereby avoid-

ing paying the trading fees for the unworthy positions. Looking at the green

coloured distribution, representing the days when linear regression predicted

the correct direction, it can be seen that once the return gets bigger, linear

regression is still able to provide correct answers, as can be seen from the
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green bars on the right side of the graph. This is the reason why linear

regression - which only reduces the error rate 1% - is able to increase the

profit from 4 % to 38 %. Linear regression does not particularly increase

the number of correct predictions, however it is able to avoid trading on

very low profit days and correctly spots the days with higher profits. The

average profit on the incorrect days (that linear regression missed) was only

0.87 %, while the average profit on the correct prediction days is 1.15 %.

These daily profits might seem small, however, once profits accumulate and

the avoidance of unnecessary trading fees are taken into account, this leads

to improved results.

– Results from combined algorithms In the previous section, we showed

the results from polynomial and linear regressions individually. We also

mentioned the advantages we could have from being able to use these two

algorithms together. In this section, we will compare between the results

from those two algorithms and discuss the different ways we put them to

work together.

As mentioned at the beginning of this experiment, we do not yet have a

method for selecting predictors across different algorithms yet. In this sec-

tion, we use two basic methods to combine the results from multiple algo-

rithms, averaging (realistic) and maximum (unrealistic).

∗ Averaging Selection : This method will average the results from all

algorithms involved. For example, from figure 5-10 on page 134, if the

standard deviation shows that the low volatility group of predictors

should be selected, all predictors in the low-volatility group (Poly c0,

Linear c0 ... RandomForest c0) will be equally weighted in the final re-

sult. On the other hand, if high-volatility is selected, all the results from

predictors in high-volatility (Poly c1, Linear c1, ... , RandomForest c1)

will be averaged to create the final result.

∗ Best Selection (Maximum) : This method is chosen only for com-

parison and to observe the range of possible results. It is not going to

be added to our system since it deliberately selects the better predic-

tor(s) by looking at the price of the next day (look-ahead bias included).

Therefore, it is able pick the better predictor(s) at all times. Results

from this method only show how well the result can be if we are able

to select the better predictor(s) 100% of the time. However, this would
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not happen when applied in the real world.

The visualisation of the results comparison is shown in figure 5-14.

Figure 5-14: The comparison of results from buy & hold, polynomial and linear regres-
sions, as well as averaging and best selection strategies on MKS

In figure 5-14, the top sub-figure compares the cumulative log return of the

buy & hold strategy (black), polynomial regression (green) and linear re-

gression (blue). The X and Y axis represent the trading day and cumulative

return, respectively. As previously mentioned, linear regression seems to

perform much better than polynomial regression, not only for the second

half of testing period, but for most of the testing period. From this graph, it

can be seen there are only a few days during the first 100 days during which

polynomial regression appears to work better than linear regression.

There are two dashed lines in this sub-figure representing the results from

the basic methods of combining values from the two machine learning al-

gorithms (polynomial and linear regression). The average of the results is

represented by the light pink graph. The result of this averaging method is

located as expected in between the two results. Being the average of mul-

tiple algorithms, this method will not be as bad as the result of the worse

algorithm or from the consistent selection of the worse algorithm, but it will

not show the best possible result either. Therefore the brown dashed line

shows the combined results if the best predictor is selected for each day.

This is called the best selection method.

Please note that the only way to select the best predictor 100% of the time
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is to select it after the end of that day (or after knowing the actual closing

price). However, this bias makes the result very unrealistic as it is impossible

to trade after the end of the day and extremely difficult or almost impossible

to select the best predictor in advance every time. We only show this result

so that the reader has an idea of the best possible result these combined

algorithms could achieve. The expected result we aim for will fall somewhere

between the average and the best selection results. As for the predictor

selection strategy, we will discuss and investigate this further in section 5.3

on page 159.

From figure 5-14, one might think that the only way to get the closest

result to the best selection result (brown dashed line) is to follow the better

algorithm (linear regression) for the whole time. In fact, this is not true, as

can be seen from the bottom sub-figure. This sub-figure shows the correct

predictor or the best predictor which could be selected at each time in order

to get the best result (brown dashed line). The X axis shows the trading

days corresponding to the top sub-figure. The Y axis represents the choice of

predictor(s) with the correct answer at the time. There are 4 lines of points

in this sub-figure. When only the polynomial predictor provides the correct

answer, points show on the top line in the yellow colour. On the other hand,

if only the linear predictor is correct, points are shown in blue in the second

line. In cases where both predictors are correct, points are shown in green

in the third line. On the other hand, if neither of the predictors are correct,

points are shown in red colour in the bottom line.

There are only 34 days in total where only the polynomial regression predic-

tor needed to be correctly selected and linear regression did not, as shown

by the orange points. Therefore, this is not the same as the accuracy of

polynomial regression shown in table 5.1 on page 129. Meanwhile, there are

about 40 times in total where only the linear regression predictor was needed

(shown in the blue points). The rest of the time it did not matter which

predictor was selected. There are 232 days on which both of them provided

correct predictions, and 195 days where neither was correct, represented by

the green and red points respectively. In these two cases, it does not matter

which predictor is used because the result is not going to change. Our next

task is to investigate effective methods of selecting a suitable predictor(s)

among different algorithms. For example, in this case we needed to correctly

select the polynomial predictor on 34 days and the linear predictor on 40
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days.

The accuracy we will discuss in terms of the error rate. In this experiment,

an error happens on a day when the predictor(s) cannot provide a correct

prediction, for example predicting the share price will increase on days when

the price actually decreases. The error rate of using only polynomial regres-

sion is 46.8%, which means that 46.8 percent of the testing period (or 235

days out of 501 days) the polynomial regression cannot provide the correct

predictor. As for linear regression, the error rate reduces to 45.6% (or 229

days out of 501 days). However, when using these two predictors together,

the error rate decreases to 38.8% (or about 195 days out of 501 days) which

is much lower than using those predictors individually. As expected, more

predictors means a higher probability of getting the correct answer. If one

fails, the other might succeed, especially when they were trained differently

because they will provide better predictions for different situations.

So far, we have explained how we have done this experiment and showed

visualisations of the results using only two machine learning algorithms for

clarity. In practice, we have performed further iterations of this experiment,

adding more algorithms one-by-one. The summarised result of using various

numbers of predictors for the stock MKS can be seen in figure 5-15.

Figure 5-15: Result from experiment 1.2 on MKS
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Figure 5-15 shows a summary of the results of using different numbers of

predictors for MKS stock, adding one predictor at a time. The top sub-

figure shows the error from the experiments, while the bottom sub-figure

illustrates the standard deviation. These two sub-figures share the x axis,

which shows the number of machine algorithms used in each experiment.

The top sub-figure shows the error rate of using combined polynomial and

linear regression in different ways. The orange bars indicate rates of error

from the averaging model, while the blue graph shows the error from using

the best selection model. As can be seen, the error rate decreases when

using more predictor (blue line). Starting with one algorithm, the error

rate is 46.8% and reduces to 38.8% when using two algorithms. This error

decreases further to only 11.8% when we increase the number of algorithms

to six. This means that, when using multiple predictors created from six

different algorithms working together, there are only 60 days out of 501 days

when no predictor is able to provide a correct prediction. This is a notable

improvement. However, we still have a lot more work to do to get to this

point. In order to get to closer to this great result, we need to have the right

strategy to select the correct predictor(s) each time. This issue is going to

be discussed later in section 5.3 on page 159.

On the other hand, the result from the averaging model, represented by the

blue bar plot, does not show the same trend. As can be seen, the size of the

bars does not get smaller when adding more predictors. The error seems

to fluctuate since the average value suffers from the worst predictors. Even

though the error rate of the average model does not decrease significantly

when more predictors are added, it is still lower than the error rate of the

buy & hold strategy, represented by the black dash-graph on the top sub-

figure. The error rate of buy & hold is 51.2%, which is significantly higher

than the error rate from both combined algorithms.

The bottom sub-graph compares the standard deviation of buy & hold and

the two combined algorithm models. The back dashed line shows the stan-

dard deviation of the buy & hold strategy, which is higher than that of

the averaging model and the best selection models when using two or more

algorithms. As can be seen, the standard deviation of both combined mod-

els decreases as more algorithms are added. The lowest standard deviation

comes from the averaging model, which makes sense. Averaged values result

in lower variance but cannot guarantee better predictions. As for the best
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selection model, the standard deviation values are higher than those from

the averaging model. However, they are still significantly lower than the

buy & hold strategy, which is as we expected. From these results, the best

standard deviation is a trade off between the best selection and averaging

models.

All the results mentioned above come from one dataset, MKS. In practice,

we have experimented with the datasets of many other stocks. The rest of

the results will be shown in the following section.

• All Results

This section discusses the results of the previous experiment conducted on 11

datasets. The list of these stocks can be seen in table 6.1 on page 233. Instead

of showing the result from each dataset separately, the results of all stocks are

averaged and shown in figure 5-16.

Figure 5-16 is composed of three sub-figures comparing the results from the best

selection, averaging and buy & hold strategies. The X-axis shows the number

of machine learning algorithms while the Y axis of these three sub-figures shows

the error rate, standard deviation and Sharpe Ratio, respectively. The top figure

illustrates the distribution of the errors. The blue colour relates to errors from the

best selection model, which are more skewed to the right (or to the bottom in this

figure) with the increasing number of machine learning predictors added to the

model. This means that fewer errors are possible when having more algorithms

than when using fewer. The average error value of each violin plot is shown as

a dash in the middle. It can be seen clearly from the average values that the

average errors are smaller when a higher number of machine learning algorithms

is involved. The average error with a single algorithm is 46.87%, which decreases

to 40.76% and 28.05% when increasing the number of algorithms to two and

three, respectively. Finally, when using six algorithms, the average error ends up

being only 15.43%. These blue graphs clearly show that the error rate decreases

when adding more machine learning algorithms.

However, the results from the averaging model (in orange colour) show the op-

posite. That is, the error rate does not decrease clearly with additional machine

learning algorithms. When the number of machine learning algorithms is one

(comprising low and high volatility predictors), the results from the best selec-

tion and the averaging method are identical as the system will only pick one

predictor at a time (either a predictor for high or low volatility). When increas-
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Figure 5-16: Result from experiment 1.2 averaging from all 11 datasets

ing the number of machine learning algorithms to 2 (4 predictors), the errors are

smaller and similar to the error for the best selection method. However, when the

number of algorithms increases to three, four, five and six, instead of seeing the

expected decrease in errors, the errors seemed to fluctuate. Even the distribution

changed, as there is no downward trend here. The errors from this method do

not show better results, but are still lower than the error rate of the buy & hold

strategy (black dashed line).

We have noticed that in the best selection model, the error rate is lower when the

number of machine learning algorithms is even. We attribute this effect to the

averaging of the final predicted direction (-1, 1). Therefore, the averaging here

functions similarly to majority voting. When the number of algorithms is even,

there is a higher probability of getting the answer 0, meaning the system will not

do anything. This means when the predictors are not very sure of their answers,
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holding any positions or do nothing can result in better performance. This point

will be taken in to account subsequently. If the price is stable, the system will be

able to provide a signal for holding.

From the comparison of blue and orange violin plots in the top sub-figure, it can

be concluded that the error can be lower when more machine learning algorithms

are used. However, this can happen only when the correct predictors are selected,

as the error rate reduces only for the best selection model. Therefore, we will run

further experiments to find an effective method of selecting predictors.

The middle sub-figure shows the average standard deviation of the returns at

different numbers of machine learning algorithms. The blue and orange graphs

represent the standard deviation of the best selection and averaging methods,

respectively. These results turned out as we expected; having more algorithms

decreases variance. For the best selection (blue graph), the decrease in the stan-

dard deviation is very clear as the best predictor(s) is selected. The standard de-

viation from the averaging technique also gave expected results, being lower than

the best selection method since it averages all predictors. The standard deviation

from both methods were lower than the standard deviation of the benchmark buy

& hold strategy (black dashed line).

The average Sharpe Ratio at different numbers of algorithms is shown in the

bottom sub-figure. The blue graph shows the Sharpe Ratio when the system is

able to select the best predictors at all times. The ratio keeps increasing but it

must be remembered that these are the most optimistic results, which can only

happen with the benefit of hindsight. Therefore, we are not hoping to achieve this

very high Sharpe Ratio of 10, but one that falls between this and the Sharpe Ratio

from averaging (orange graph). This was still relatively low (raging from 0.9 to

1.2), showing that having more machine learning algorithms (more predictors)

will not be helpful without an effective strategy to select the right predictors

for the right time. Nonetheless, all Sharpe Ratio values were higher than the

benchmark buy & hold strategy (black dashed line) ratio.

From the results, we conclude that increasing the number of machine learning

algorithms can improve the performance of the system. However, it only works

well when suitable predictors are selected at a time. We can see the outstanding

results from the best selection method, but as we have mentioned, it is practically

impossible to get these results. Therefore, the results we expect to fall somewhere

between the best result and the averaging method. Our focus going forward is to
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find an effective method to select the right predictor(s) in order to get closer to

the best selection method’s result.

5.1.2.4 Discussion

This section started with the premise established by the previous experiment, that

multiple predictors could outperform a single predictor. However, if both predictors use

the same machine learning algorithm, performance may be reduced if this is not the best

algorithm for the data. This problem could be solved by adding more machine learning

algorithms to the model. Adding more machine learning algorithms means having more

different types of predictors and we can expect to predict better since each predictor

specialises in a different characteristic of the data (as they were trained differently).

Each added machine learning algorithm has two predictors, trained for high and low

volatilities. All low-volatility predictors were trained with the same datasets (cluster

0). The rest of the data (cluster 1) was used to training all high-volatility predictors.

We have experimented with six different machine learning algorithms in total. We

increased the number of algorithms one at a time so we could see the effect of having

more types of predictors.

In the absence of a specific method to select the best predictor, we opted during these

experiments to use the average result from all predictors. Another method we used was

best selection. The best selection method simply selects the best predictor by looking

at the next day’s prices. In reality, we would not be able to see this information.

Therefore, the best selection method was included only to show the best results that

could be achieved using these six algorithms. To compare the results, we used the buy

& hold strategy as a benchmark.

The results show that using the average value is not a useful method as the results

suffer from the bad predictors. However, from the best selection method results we saw

that using multiple algorithms provides scope for significant improvement of trading

performance. Even though this method cannot be used since we cannot know prices

in advance, we conclude that performance can be improved with an effective method

to select predictor(s). This leads us to the next experiment, which focuses on different

methods to select the best predictors.
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5.2 Experiment 2: Bias Removal and Predictor Selection

with a Statistical Approach

This research aims to use multiple machine learning predictors to build a trading sys-

tem, as we have shown that using multiple predictors can potentially improve trading

performance. The premise of this system is that each predictor will specialise in a

different type of data, which means that in dynamic and changing financial markets,

one can consistently profit since when performance drops in one predictor, another

will start performing better. Thus far, the criteria used to select the correct predic-

tors (within the same algorithm) has included the look-ahead bias, as the experiments

only intended to show the validity of our hypothesis that multiple predictors perform

better, as mentioned in section 4 on page 121. This section aims to remove the bias,

necessitating a method to consistently select good predictors for unseen times in the

future. The first approach we have chosen is called statistical selection. Then, in the

following experiments, other approaches will be considered.

Please note that we will not address the selection of predictors across different algo-

rithms in this experiment. We will continue using the averaging method to select the

predictors, as in experiment 1.2.

5.2.1 Statistical Selection Method

This is the first and easiest method we came across when starting to investigate pre-

dictor selection methods. The reason we classified this method as the easiest one is

because it is very similar to the selection method in the first experiment, mentioned in

section 4 on page 121. This method selects the predictor by considering the mean and

standard deviation (the same as the method which is used in experiment 1). The only

difference between the selection process in this experiment and the one in the previous

experiments is we take out the look-ahead bias in this experiment. The comparison of

this difference can be seen in figure 5-17.

Figure 5-17 shows the data for the testing period which started at the beginning of

2013. There are two predictors in this experiment (for high and low volatility). In

order to predict the direction of the price each day, the system will have to decide

which predictor to use. The selected predictor is supposed to be the most suitable

predictor for the data in that region. To perform this, we use k-means clustering. The

k-means clustering will classify the data into either cluster 0 or 1, based on the shortest
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(a) Testing in experiment 1 with look-ahead in-
cluded

(b) Testing in experiment2 with look-ahead bias re-
moval

Figure 5-17: The comparison between testing data in experiment 1 and 2

distance between the data and the centre of the group. If the data is classified as cluster

0, the system will select the low-volatility predictor, otherwise the other predictor is

selected.

As for the difference between these two sub-figures, Sub-figure (a) shows that in order

to select the correct predictor to predict the price direction on the 9th of January, it

takes the values of the mean and standard deviation of the return (0.003700, 0.010686)

which were calculated by including the return on that day (the red rectangle in column

Rets). This situation is impossible since we will never know the closing price of that

day until the end of the day, when we can no longer trade. This is an example of how

the look-ahead bias was included in the first experiment to ensure that selecting the
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correct predictor among multiple predictors did improve the results. More detail can

be seen in section4 on page 121.

Sub-figure (b) shows the selection method in this experiment (with bias removed). It

can be seen that we have removed the bias by taking the mean and standard deviation

only up to the day before. Therefore, in order to predict the price direction for the 10th

of January, making the decision to buy or sell after market close the previous day. Only

the returns up to the 9th are included. This is our first predictor selection strategy,

called Statistical Selection Method. Removing the bias this way makes the predictor

selection realistic.

5.2.1.1 Experiment Design

This experiment is designed to investigate whether a multiple-predictor and multiple-

algorithm trading system continues to work well after removing the look-ahead bias.

The design and result sections will be divided into two sections as follows.

• Section 1 shows the results after removing bias from the multiple-predictor

experiment. Therefore, the results from section 1 should be compared with the

results from experiment 1.1.

• Section 2 shows the results after removing bias from the multiple-algorithm

experiment. Therefore, the results from section 2 should be compared with the

results from experiment 1.2.

As mentioned above, this experiment uses the same predictor selection method as in

Experiment 1: the mean and standard deviation of the returns. The purpose of this

experiment is to compare the results after removing the bias with the initial results

from Experiment 1 which included the bias. If the results turn out well, it means that

1) multiple predictors and multiple algorithms continue working well even without the

benefit of looking ahead, and 2) statistical predictor selection can be used in order to

switch between predictors over time.

The design of this experiment will be the same as in Experiment 1, except for the

bias removal. Section 1 of this experiment is designed the same way with Experiment

1.1, while Section 2 follows the design of Experiment 1.2. Therefore, the training

processes of Sections 1 and 2 can be seen in figure 5-3 on page 121 and 5-10 on page

134, respectively.
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5.2.1.2 Experiment Results

The results in this experiment will be separated into two sections. Section 1 presents

the results from only a single algorithm (but multiple predictors). Therefore, these

results are meant to be compared with the results from Experiment 1.1 (5.1.1 on page

118). Section 2 illustrates the results of using multiple machine learning algorithms.

Therefore, the results from this section will be compared with those from Experiment

1.2 (5.1.2 on page 131)

• Section 1: Results from multiple predictors with bias removal

The results from this section are to be compared with the results from Experiment

1.1 since they have the same experimental design (using only one algorithm but

two predictors). The only difference is the removal of the look-ahead bias from

the testing process so we can compare performance with and without the bias.

Before presenting all the results, examples will be shown in order to illustrate

some of the differences between the results between before and after removing

the look-ahead bias. We have selected two stocks, CARR and TSCO, which are

the same stocks whose results were presented in Experiment 1. The results from

Experiment 1 (including look-ahead bias) of CARR and TSCO can be seen in

Figure 5-5 on page 123 and 5-6 on page 124, respectively.

The results of CARR and TSCO were very good in Experiment 1. However, when

we re-run the experiment with the bias removed, the results were worse, as can

be seen in Figure 5-18 and Figure 5-19.

Figures 5-18 and 5-19 show the comparison of the results of the new method -

Statistical Selection - and the other strategies (Buy & Hold benchmark, multiple

predictor with bias included, and single predictors). Each result is composed of

three sub-graphs. The top and bottom sub-graphs represent the daily closing

price and the drawdown of the Statistical Selection method. The middle graph is

the most important because it compares the cumulative return of all the strategies

mentioned earlier. The black line is the closing price. The red and green dashed

lines represent the results from the biased single and multiple predictors (as in

experiment 1). As before, the bottom sub-figure shows the drawdown and the

maximum drawdown (red line).

From CARR’s results, the Statistical Selection method’s performance - shown

by the blue line - was worse than that of the original multiple predictor from

Experiment 1 (green line). Some decrease in performance was to be expected
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Figure 5-18: Result from experiment 2 on CARR

given removal of the look-ahead bias. The Statistical Selection method ended up

with 68.83 % profit while the multiple predictors with bias obtained an unrealistic

result of 183.38 % profit. The Statistical Selection method saw the Sharpe Ratio

decrease to 0.84 from 1.78 with bias. It can be seen clearly that for this data,

when using Statistical Selection (removing bias) to select a suitable predictor,

the results are not great. The system could not change to the more suitable

predictor as quickly as needed. For example, after the beginning of April 2014, it

was supposed to use the high volatility predictor, but it did not change quickly

enough, resulting in a big loss (-33.23 %) during this testing period. It is overfitted

to a specific predictor (or the specific group of data which that predictor was

trained on). However, this result still outperformed the buy & hold strategy and

single predictor strategy.

The result from TSCO in Figure 5-19 is worse. The cumulative return of the

Statistical Selection method is worse than expected in comparison to the mul-

tiple predictors (with bias). From this result, it is plausible that the Statistical
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Figure 5-19: Result from experiment 2 on TSCO

Selection method (using the standard deviation of returns for predictor selection)

is unsuitable for this data. Although, despite performing worse than the multiple

predictor model, the Statistical Selection method seems to be competitive among

the rest of the strategies. The exception is after the end of the fist half of the year

2014, where it performed worse than the single predictor but still better than the

benchmark.

Results from the two datasets above show that using only a statistical value

(standard deviation) does not work very well. It appears the Statistical Selection

method cannot select a suitable predictor in advance. However, these two results

(two datasets) might not be enough to draw this conclusion. Therefore, we ex-

perimented further with the rest of the stocks. All results are shown in Table

5.2.
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Table 5.2: The comparison between Buy & Hold, Single predictor, Multiple pre-
dictor (with bias) and Statistical Selection (Multiple predictor with bias removal)
methods

Data & Model Profit Sharpe Ratio Max DD Accuracy Stdev

(%) (%) (%)

CARR

Buy & Hold 62.38 0.77 -26.32 52.89 0.302

Single Predictor 52.92 0.66 -29.33 52.46 0.302

Multiple Predictors 183.38 1.78 -19.05 54.39 0.300

Statistical Selection 74.01 0.89 -33.23 49.89 0.302

COST

Buy & Hold 11.57 0.09 -22.26 51.26 0.296

Single Predictor 81.97 0.97 -15.72 51.46 0.295

Multiple Predictors -14.54 -0.38 -38.90 49.37 0.296

Statistical Selection -10.94 -0.31 -25.88 49.79 0.296

D4T4

Buy & Hold 39.10 1.19 -37.76 51.75 0.586

Single Predictor -27.22 -1.25 -46.08 49.12 0.586

Multiple Predictors 70.71 1.98 -17.22 58.77 0.583

Statistical Selection 105.02 2.69 -31.57 57.89 0.579

FERG

Buy & Hold 18.59 0.26 -16.09 49.10 0.211

Single Predictor 20.85 0.31 -32.67 48.70 0.211

Multiple Predictors 26.61 0.42 -13.84 50.90 0.211

Statistical Selection -43.56 -1.51 -45.74 48.7 0.210

GOOG

Buy & Hold 45.71 0.74 -18.72 50.10 0.213

Single Predictor 48.67 0.79 -15.49 50.50 0.213

Multiple Predictors -8.45 -0.35 -24.30 48.31 0.213

Statistical Selection 5.12 0.02 -24.23 47.91 0.213

MACF

Buy & Hold 26.96 0.65 -28.06 49.81 0.312

Single Predictor -1.83 -0.15 -36.28 52.92 0.313

Multiple Predictors 114.62 2.33 -19.23 58.37 0.309

Statistical Selection 56.54 1.31 -18.51 55.64 0.312

Continued on next page
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Table 5.2 – Continued from previous page

Data & Model Profit Sharpe Ratio Max DD Accuracy Stdev

(%) (%) (%)

MCD

Buy & Hold 3.97 0.08 -14.61 54.6 0.124

Single Predictor 1.78 0.17 -14.61 54.2 0.124

Multiple Predictors 23.87 0.63 -10.33 54.2 0.124

Statistical Selection 8.66 0.1 -12.20 53.6 0.124

MKS

Buy & Hold 25.11 0.35 -25.24 48.8 0.237

Single Predictor -18.61 -0.56 -29.86 48.6 0.237

Multiple Predictors 4.13 0.04 -27.50 53.2 0.238

Statistical Selection -19.13 -0.58 -27.35 50.8 0.237

OXIG

Buy & Hold -15.00 -0.33 -46.91 48.07 0.346

Single Predictor 21.61 0.20 -27.29 50.10 0.346

Multiple Predictors 357.01 2.19 -16.29 52.55 0.343

Statistical Selection 13.92 0.11 -37.62 49.49 0.346

SXS

Buy & Hold 0.67 0.10 -35.85 51.70 0.263

Single Predictor -45.88 -1.30 -52.22 47.29 0.262

Multiple Predictors 67.36 0.88 -22.65 53.91 0.262

Statistical Selection 79.62 1.01 -17.98 53.51 0.262

TSCO

Buy & Hold -44.86 -1.35 -57.50 46.91 0.244

Single Predictor -17.42 -0.52 -29.66 46.91 0.244

Multiple Predictors 44.84 0.64 -15.80 50.50 0.244

Statistical Selection -51.88 -1.64 -59.82 45.71 0.243

Table 5.2 shows the results from our experiment performed on 11 stocks, as they

were in the previous experiment. We also ran a paired T-test on the Sharpe

ratios of these datasets to compare between the multiple and single-predictor

(polynomial regression) strategies, this time with the intentional look-ahead bias

removed. The p-value on this occasion was 0.59, which is not statistically signifi-

cant. This is much higher than the critical value, so we accept the null hypothesis

154



that there is no statistical difference in the Sharpe ratios between the multiple

and single predictor approaches. Our expectation for this experiment was for

the results to turn out in one of three ways. Firstly, the results could be better

than the benchmark and the single predictor, even though the multiple predictors

would perform worse after removing the bias. This would mean that the statisti-

cal selection method works well overall. This result was met for the majority of

the stocks, such as CARR, D4T4, MACF, MCD, OXIG and SXS.

Secondly, we hypothesised that the results of Statistical Selection for some stocks

might be worse than the multiple predictor with bias and the benchmark. The

stocks which fall into this group are FERG and TSCO. For these stocks, the

results from multiple predictors in Experiment 1 (including the bias) were good,

which meant that having multiple predictors could be helpful. However, the

Statistical Selection method is unable to select or change the predictor effectively

to deal with the fluctuations, leading to worse performance in this experiment.

When analysing, we found that prices of the stocks in this group fluctuated highly.

Therefore, the predictor selection method needs to be able to switch predictors

quicker. Without the benefit of look-ahead bias, the Statistical Selection method

predicts a continuation of the past, for example by selecting the low volatility

predictor because the most recent period has seen low volatility. However, it

is not the case in financial markets that this will continue, and a sudden and

unexpected highly volatile market could harm performance. This problem will

be brought up again when we investigate on the different methods of predictor

selection (section 5.3.2 on page 167)

Thirdly, we expected that stocks results that used to be bad (for example MKS)

would not be improved. These are the stocks for which we concluded the predictor

could not deal with them. As this result came from using only one machine

learning predictor (polynomial regression) which was unsuitable for the stock, it

does not matter if the method for selecting the predictor has changed because

polynomial regression itself could not perform well on this stock. The only way

to improve the performance on such stocks is to add more useful predictors.

The stock in this group is MKS, which we discussed in the previous experiment,

section 5.1.2 on on page 5.1.2. Therefore, we did not expect a better result

here. However, this result is expected to be better when more machine leaning

algorithms are involved in the following section.

We have discussed the three groups of stocks that behaved as we expected. Now,

we will discuss the unexpected results. These are stocks for which predictor
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selection methods performed poorly with and without look-ahead bias included.

There are two stocks in this group: COST and GOOG. The reason for these

results could be either that the current predictor selection method, Statistical

Selection, is ineffective, or that the idea of having multiple predictors does not

work with these datasets. To deal with this problem, we will investigate further

predictor selection strategies in section 5.3 on page 159.

The results from table 5.2 are obtained on a single-stock training basis. This

means that the predictors were trained on a single stock’s historical data and

tested on data from the same stock but a different test period. However, an

alternative way to train predictors would be a multiple stock basis, with the

trained predictors then applied to individual test set for each stock. Therefore,

we performed multiple stock training on five of our stocks to see the difference in

results. Details of this experiment can be seen in appendix D on page 333. We

are not including it here since the results did not affect the design of our trading

model and we want the development of our model in this chapter to be easy to

follow for the reader.

• Section 2: Results from multiple machine learning algorithm with bias

removal

This section aims to compare the results before and after removal of the look-

ahead bias in experiment 1.2 5.1.2 on page 131. The results are shown in Figure

5-16 on page 144. In this experiment, the conditions are the same as in experiment

1.2, except that the bias is removed. The results after removing the bias can be

seen in figure 5-20. Please note that the results shown in this section are averaged

from all 11 datasets.

Figure 5-20 comprises three sub-figures, representing the results from the best

selection model, the averaging model and the buy & hold strategy. The X-axis

shows the number of machine learning algorithms while the Y axis of the sub-

figures represent the error, standard deviation and Sharpe ratio. The top figure

illustrates the distribution of error. The blue violin plots relate to errors from the

best selection model. The average error from the best selection decreases over

the number of machine learning algorithms involved in the system, from about

48% to 18 %. As in experiment 1.2, the orange colour shows errors from the

averaging model, which do not decrease with an increasing number of machine

learning algorithms. This is not unexpected as the results are similar to those

from experiment 1.2. Therefore, it confirms the same conclusion; that the error
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Figure 5-20: Result from experiment 2 averaging from 11 datasets

is lower when more machine learning algorithms are included. However, this can

happen only when the correct predictors are selected. Therefore, we run further

experiments to find an effective method of selecting predictors.

The middle sub-figure shows the average standard deviation of the returns at

different numbers of machine learning algorithms. The blue and orange graphs

represent the standard deviation from the best selection and averaging methods,

respectively. The standard deviation steadily decreases for the best, fluctuating

a little but the overall trend is still downward. Both of the methods provide a

smaller standard deviation than the buy & hold strategy (black dashed line)

Comparisons of the Sharpe Ratio are shown in the bottom sub graph. The blue

and orange graphs represent the Sharpe Ratio from the best selection and the

averaging methods, respectively. As expected, the Sharpe Ratio from the best

selection method increases clearly. It follows the same trend as that seen in
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experiment 1.2 (before removing the bias), but the values are lower. Meanwhile,

the Sharpe Ratio from the averaging method (orange graph) is still relatively low

(raging between 0.1 to 1.4), which is much lower than the best selection method

but still greater than the benchmark.

It can be seen clearly that the results before removing the bias (5-16) and after

removing the bias(5-20) behave in the same way. The results from the best se-

lection method are excellent. However, as we have mentioned, these optimistic

results will only happen if the most suitable predictors are selected at all times,

which is extremely difficult or almost impossible. On the other hand, the results

from the averaging method did not demonstrate the ability to select suitable

predictors. This means that the conclusion we made at the end of experiment

1, that increasing the number of machine learning algorithms can improve the

performance of the system, remains correct but only holds when we have a good

strategy to select suitable predictors. Therefore, the next section aims to inves-

tigate predictor selection strategies. The expected performance of this strategy

falls somewhere between the results of the best selection and averaging methods.

5.2.1.3 Discussion

In this experiment, we separate the results into two sections based on our objectives.

The objective of section 1 was to investigate a method for selecting predictors, called

Statistical Selection. The objective of section 2 is to investigate a method to combine

the predictions of multiple predictors.

In section 1, we investigated the possibility of using Statistical Selection to select suit-

able predictors. The Statistical Selection method is a simple way to select predictors

since it make the choice of predictor(s) based on the standard deviation of the data.

This method was also used in Experiment 1 when trying to establish our concept. How-

ever, the important difference between the statistical selection in Experiment 1 and in

this experiment is the look-ahead bias. In Experiment 1, we deliberately included the

bias only to gauge the best potential performance should the most suitable predictor

always be chosen, but the bias has been removed in this experiment to make the system

realistic.

The results from Section 1 were compared with the results from Experiment 1.1. There-

fore, each stock was only tested with a single machine learning algorithm, a Polynomial

Regressor. There were two predictors, specialising in low and high volatility. Both pre-

158



dictors are polynomial regressors which were created identically but trained with dif-

ferent clusters of training data. The results show that after removing look-ahead bias,

the majority of stocks performed as expected; worse than before removing the bias but

still better than the buy & hold benchmark. However, there are a few stocks for which

multiple predictors still performed badly, which we attribute to not having enough ma-

chine learning algorithms to deal with the different characteristics of datasets. This

leads us to the investigation in Section 2.

In order to solve the problem of not having enough machine learning predictors, Sec-

tion 2 adds more machine learning algorithms into the system. When the number of

machine learning algorithms increases, the number of predictors also goes up by twice

as much. For example, when using two machine learning algorithms, there will be 4

predictors (each algorithm will have two predictors, one each for low and high volatil-

ity). In this experiment, the number of machine learning algorithms increases gradually

from one to six. The results show that having more machine learning algorithms can

increase trading performance, but only if we have an effective method to select suitable

predictors. However, up to this point, we have not found such a selection method.

Therefore, in the next section, we will investigate a few predictor selection strategies

in order to find the best method to incorporate into our trading system.

5.3 Experiment 3: Prediction Selection

In this experiment, we investigate multiple strategies for predictor selection. We would

like to find a more effective way to select the correct predictors than using the statis-

tical selection or averaging method used in the previous experiments. There are two

predictor selection strategies in this experiment, which are Upper Confidence Bound

(UCB) and scoring system. Some examples of using these methods individually will be

shown, followed by a comparison of the results between all of the predictor selection

strategies, including the averaging method from the previous experiment.

5.3.1 Upper Confidence Bound

This section applied the Upper Bound Confidence selection method to select the pre-

dictor, as explained in Chapter 3 section 3.2.5 on page 76. The idea of using UCB

comes from its application to general problems in recommendation or advertisement

systems. The main problems of these systems are the non-stationary environment and
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the large-state spaces. In advertisement, there are many choices of advertisement pic-

tures and the company wants to select the most loved picture to put on their main

page. However, the advertising team cannot spend so much time and money to run

tests on the massive potential customer base. So, using the UCB algorithm, the team

start randomly showing these pictures to their customers (showing one picture to one

customer). Once every picture has been shown, the algorithm will start selecting the

next picture by analysing the obtained responses. Using this process, the selected

picture will be changed over time.

As there are many predictors in our system which need to be managed, we considered

the idea of UCB to manage the selection process. In our analogy with the advertis-

ing problem, our predictors function the same way as the advertising pictures. The

system needs to start with exploration by allowing every predictor to perform a pre-

diction. After every predictor has made their prediction, the system then starts to

select predictors based on their past performance. This means that the system is now

exploiting instead of exploring. However, as the surrounding environment changes,

the system cannot keep exploiting forever and must switch to exploration occasionally.

This exploitation-exploration process is controlled by the UCB algorithm. The details

of our experimental setup can be seen in the next section.

5.3.1.1 Experimental Design

The main idea of this experiment is to test a new method of selecting predictors.

In experiment 2, we used the statistical selection method to select the predictors, as

mentioned in 5.2.1 on page 147. Since this experiment is set up similarly to Experiment

2, we will only detail the differences here. There 12 predictors in this experiment, as

shown in 5-10 on page 134. All the predictors are created and trained the same way,

just as in Experiment 2. The only difference is the method of selecting a suitable

predictor for the time. We applied the UCB algorithm instead of Statistical Selection.

The framework of using UCB for predictor selection is shown in Figure 5-21.

Figure 5-21 shows how UCB was applied to our predictor selection problem. The

framework starts once all the predictors have been trained and ends after obtaining

the predictor to be selected for the next round. The processes before and after this

framework is applied have been discussed previously, therefore they will not be discussed

again in this section. The UCB framework is composed of 4 steps. Step 1 is the

initialisation. There are 12 trained predictors which are shown in blue rectangles in

this step. The dark and light blue rectangles represent the predictors for low and high
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Figure 5-21: UCB framework

volatility clusters, respectively (details can be seen in figure 5-10 on page 134). All of

these predictors start with the same default parameters, which are the number of times

the predictor was selected (Ni) and the cumulative reward (Ri). These two values are

set to zero at the beginning. The red line in the middle of each box shows the average

reward of each predictor. The horizontal black dashed lines at the top and bottom of

the boxes are the upper and lower confidence bounds, respectively. Please note that all

three of these values start at zero and we show them in top-middle-bottom positions

for visualisation only.

Step 2 is the average reward calculation. Once the system starts, the predictor will

earn a reward if it produces the right predictive signal. This step calculates the average

reward of each predictor up until that point of time. Step 3 is the confidence interval

calculation. From this stage, each predictor will recalculate the upper and lower confi-

dence bounds, which will be taken into account in order to select the predictor in the

next step. The final step is predictor selection. In this step, the predictor with the

maximum upper confidence bound will be selected. Only this selected predictor is used

to make a decision for the next day.
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The process from step 2 to step 4 will be repeated until the end of the testing period.

The average rewards and confidence bounds of the selected predictor will be recalculated

each round based on performance. During the testing period, the choice of predictor

will keep changing to try and balance between exploration and exploitation, except

at the beginning when all predictors will be given an equal chance to perform the

prediction.

5.3.1.2 Results

In this section, the results from a few stocks are shown as examples. These results will

be illustrated in graphs for clarity. At the end of this experiment, the results from all 11

stocks we have investigated will be shown in a table. Moreover, these results compare

the performance of every predictor-selection method we investigated. The first stock

we experimented on is CARR, the result of which can be seen in figure 5-22.

Figure 5-22: Comparison results of using UCB and averaging strategies with the buy
& hold on CARR

When discussing the result in figure 5-22, we will not refer to the results from ex-

periment 1 as the bias was included in that experiment. The results we will discuss

start from experiment 2. Figure 5-18 on page 151 shows the result of using polyno-

mial regression on CARR. Since the result was not too bad (Sharpe Ratio equal to
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0.84), one might question why we would add more machine learning predictors. Recall

from experiment 2, polynomial regression did not work well with all datasets, such as

MKS (discussed in section 5.1.2.1 on page 132). That is why we added more algorithms.

Having more algorithms increases the ability to predict across a wide-range of datasets.

Moreover, we have shown in figure 5-20 on page 157 that having more algorithms is

helpful. However, it will only work when we have an effective method to select the

correct predictor. Otherwise, we cannot obtain good results. For example, averaging

the answers from all predictors does not work in figure 5-20. Therefore, in this section

we start to investigate predictor-selection methods.

The first predictor selection method we used was UCB. The result of applying UCB on

CARR is shown in figure 5-22 on page 162. This figure comprises two sub graphs. The

top sub graph compares the cumulative returns of the buy & hold benchmark strategy

(black), UCB strategy (green) and averaging strategy (blue). It can be seen clearly

that averaging answers from every predictor does not work at all as the graph shows

how badly the blue line does. Even though we know polynomial regression works well

on this stock, the averaged result suffers from the bad predictions.

The result from using UCB to select predictors is even worse than those of the averaging

method. The green graph illustrates the worst result out of these three strategies. UCB

ends up with a -23.31% loss, while the buy & hold and averaging methods do better,

profiting 62.38% and 5.55% respectively. The drawdown of UCB is also worse than the

other strategies, as can be seen in the bottom sub-figure. The maximum drawdown of

UCB is -37.90%, while the buy & hold and averaging strategies have smaller drawdowns

of -26.32% and -12.79% respectively. It is clear from the results that UCB does not

work on CARR and that we must run the experiment on more stocks. The next stock

we have selected to show as an example is TSCO, the results of which can be seen in

figure 5-23.

Figure 5-23 shows the result from TSCO. UCB does not work well for TSCO either as

we can see from the top sub graph. This sub graph compares the cumulative return

of the UCB (green), averaging (blue) and buy & hold (black) strategies. These three

strategies all end up with losses: -32.43%, -5.93% and -44.86%, respectively. Although

UCB ends up with a smaller loss than the buy & hold benchmark, it performed poorly

most of the time and could be considered too risky for an investor. An investor would

have lost money for the whole time until the very end of the testing period. It is likely

that an investor could not bare with such a loss and would have exited positions before

the end of this period.
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Figure 5-23: Comparison results of using UCB and averaging strategies with the buy
& hold on TSCO

Unlike for CARR, the averaging strategy seems to work better than the buy & hold.

The result from the averaging model was very good for the last 200 days. When the

buy & hold ’s performance started to go downhill, the averaging model stayed flat

(although we would prefer to see it going up). As for the first 300 days, even though

the averaging method could not win over the buy & hold completely, it was less volatile.

This means that an investor faces less risk when investing using the averaging model.

The bottom sub graph shows an even worse result from UCB. The green line in this

sub graph shows the drawdown of the UCB strategy. It can clearly be seen that the

loss continuously gets worse over time. The downward trend of this graph means the

loss kept getting bigger. The biggest loss or the maximum drawdown is -42.32%, which

means that the investors need to stomach a loss of almost half their money. A bigger

loss means much more difficulty and more time taken to return to profit. Therefore,

this level of drawdown is likely unbearable for most investors.
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5.3.1.3 Discussion

From the results of the two stocks above, it can be seen that UCB did not work well

as a predictor-selection method. The results from the other stocks tested show the

same conclusion. All results from UCB can be seen later in the comparison section, in

table 5.3 on page 187. In this section, we will discuss why UCB did not work as well

as we expected. To understand how UCB works, we will show the results from less

complicated experiments. The results we will show in this discussion were obtained

by running experiments on CARR using UCB with 2 predictors. Both of them are

polynomial regressors, but each of them was trained with a different cluster of data

(high and low volatility). Other parameters, such as the period of testing, stay the

same as in the experiment above. The results are shown in figure 5-24.

Figure 5-24: Comparison results of using UCB and averaging strategies with the buy
& hold on TSCO

Figure 5-24 comprises three sub-figures. The top sub-figure shows a comparison of the

cumulative returns from the buy & hold (black), statistical selection (yellow) and UCB
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(green) strategies. Please note that when we have only 2 predictors we can use the

statistical selection method instead of the averaging method as in 5-22 or 5-23. We list

the differences between these two methods below:

• Statistical Selection method: This method selects the predictor based on the

mean and standard deviation. Therefore, when we have only two predictors, the

system can select predictors based on the cluster that the data fell into: high or

low volatility.

• Averaging method: This method is used in cases with more than two predictors.

We cannot select a suitable predictor by considering whether they are high or

low volatility. Therefore, we average the results from all predictors to create the

final answer. This method is used when we do not have any other strategies for

predictor selection.

It can be seen from the top sub-figure that the best predictor selection method here

is statistical selection since it performs better than buy & hold most of the time. The

worst model is UBC, which ends up with only 4.70% profit while the buy & hold and

statistical selection end up with 62.38& and 68.83%, respectively.

The middle and bottom sub-figures represent the choice of predictors. The X-axis

shows the trading days while the Y-axis shows which predictor is selected at a time. Y

equal to 0 means predictor 0 (a predictor for low volatility) is selected. On the other

hand, when Y equals 1, it means that predictor 1 is selected on that day. The middle

sub-figure shows choice of predictor made by the UCB strategy, while the bottom one

shows the choice from the statistical selection method.

Overall, it can be seen that the UBC strategy changes predictors more often than the

statistical selection method. Another difference is that UBC seems to favour predictor

1 more than predictor 0, while statistical selection has more of a balance between the

two predictors. Having a closer look into the beginning of the test period, in the first

blue rectangle (about the first 70 days), UBC tries to perform exploration by changing

the predictors often. As mentioned in section 3.2.5 on page 76, the UBC system is

about the trade off between exploration and exploitation. In the second blue rectangle,

UCB starts to exploit. It mostly stays with predictor 1 while the statistical selection

method mostly selects predictor 0. In this case, predictor 0 seems to be the right

predictor since the cumulative return of statistical selection is distinctively better than

the UCB (as can be seen in the top sub-figure).

From the results above, it can be concluded that UCB as used here does not work. UCB
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changes predictor more often than the statistical selection method because it tries to

perform exploration. Under more realistic conditions, such as including brokerage fees,

UCB might have worse performance as it costs investors more by keep changing the

position. Therefore, even though UCB is very suitable for the advertising problem, it

does not work well for stock prediction. In the next section, we will investigate more

predictor-selection methods in order to find a better strategy than UCB.

5.3.2 Scoring System

Since the predictor-selection techniques we have investigated so far - statistical selection

and UCB - did not perform as well as we expected, this section introduces a new

predictor-selection strategy: the scoring system. The basic idea behind the scoring

system is the reward and punishment of predictors. After all of the predictors have

been trained, they start working (predicting). In the beginning, all predictors have

the same chance to predict. Then, the scoring system will reward the predictors that

gave the correct answer. The successful predictors will be given different scores, higher

scores if their answers lead to more profit. On the other hand, predictors with the wrong

answer will be punished by having their score reduced. Similarly, a higher score will

be taken away if their answers lead to a bigger loss. Therefore, the predictor with the

highest score is not only able to provide the most correct answers, but also provide it on

the correct days (days with the highest profits). Using this method, the scoring system

will start to select predictors based on past performance. Predictors with high scores

will be selected more often, potentially leading to better overall trading performance.

The scoring system sounds sensible, but since the score is based on the past we do not

know whether selecting predictors using their scores will work. The movement of a stock

price can be extremely volatile; Can a scoring system switch between predictors quickly

enough to catch up with the changes? With this question in mind, we started the

following series of experiments. There are three main experiments in this investigation.

We will start with an explanation of each experiment and show some stocks’ results

as examples. Then, at the end of this section, a comparison of the results from each

experiment will be provided, alongside the results of the final scoring model we designed.

5.3.2.1 Experiment Design

This experiment was designed the same way as the previous experiments. The only dif-

ference is the predictor-selection method. Therefore, we will only explain the predictor-
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selection process. For the details of the other steps, we will provide references to other

sections where these have already been discussed. There are six steps in this exper-

iment. Steps 1 - 3 are data preparation, clustering and training, which have been

discussed already. The details can be seen in 4 on page 88.

In step 2, the number of clusters is two, representing high and low volatility. The

number of machine learning algorithms in step 3 is six. Therefore, there are 12 predic-

tors altogether in this experiment. The training process in this experiment is the same

as in experiment 1.2, figure 5-10 on page 134. However, instead of adding two more

predictors at a time, all predictors will be working together throughout this experiment.

The heart of this experiment is step 4, where the scoring system is built. Therefore, the

details of this step will be explained here. The scoring system is one of the predictor-

selection methods we are investigating, and its main idea is gradually building up a

score that will be used to pick suitable predictors. The complete framework of step 4

is shown in chapter 4 in figure 4-7 on page 94. To obtain this complete scoring system,

three experiments were conducted. Before providing the details of each experiment, a

brief explanation of each experiment will be provided to give readers an overview. In

the complete framework of the scoring system, we have highlighted the different parts

with different colours according to each experiment in figure 5-25.

• 1st experiment (Only Score): This experiment relates to the red highlight in

figure 5-25. Since this is the first design of the scoring system, it is less complicated

than the later ones. In this model, the score assigning process will give points

to the predictors if they provide correct predictions. On the other hand, points

are taken away for wrong predictions. The predictor selection criteria in this

experiment is the score only. At this stage, the intermediate-model, called the

Max Score model, acts as the final model.

In the final model, the predictor(s) with the highest score will be chosen to

predict for the next day. This method works well in some cases. However, it

has the problem of the ability to switch the predictors quickly enough to cope

with changes (examples will be given later). Therefore, we move on to the next

experiment.

• 2nd experiment (Multiple Feature): This experiment added more features

to the model, which can be seen in the blue highlighted boxes in figure 5-25. As

mentioned earlier, the cumulative score is not good enough. We included the

other features in order to find a better feature to replace the score. The features

we have considered are the exponential moving average, derivative and slope of
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Figure 5-25: Scoring system separating into different experiments

the scores. The reasons for selecting these features can be seen on page 98. As in

the previous experiment, at this stage we did not have the ensemble scoring layer

yet. The intermediate models are acting as the final model. Therefore, there are

five different final models all together. And we compare these models to decide

which is the best to select suitable predictors.

However, the results from this experiment did not show clearly which model is

the best. The performance of each keeps changing over time and across different

stocks (examples will be given later). Therefore, we concluded that there is no

best feature to use as the predictor-selection criteria. The best way is to put

them to work together. This leads to the next experiment, where we applied the

same technique as that which made the predictors work together. Therefore, the

a second layer of scoring system was created, called the ensemble scoring layer.

• 3re experiment (Two-layer Scoring system): This experiment produces

the final part of the scoring system design. The additional design is shown in

a green highlighted box. As mentioned in the second experiment, there are five
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final models (Max Score, Max Ema Short, Max Ema Long, Max Derivative, Max

Slope models) and we cannot conclude which one is the best. Therefore, we

designed a second layer of the scoring system, called the ensemble scoring layer.

In this added layer, we create another score-assigning process. This process works

similarly to the first score-assigning process (in the red highlighted box), except

it will give or take points for the final models. Now we are adding a new layer to

manage these models, they have become intermediate models.

Since the results from this experiment seem to be the best out of these three

experiments, we have summarised the final design of our scoring system in figure

5-25. More details and some examples of the results of these experiments will be

discussed in the following sections.

5.3.2.2 Scoring experiment 1: Only score

This experiment was designed as mentioned above. We started investigating the scoring

system with a simple idea: Predictors gain higher scores for correct predictions and lose

points for incorrect ones. Then, the predictor with the highest score will be selected

to predict for the next round. higher scores will be given or taken away in cases where

predictors provide correct or incorrect predictions on big change days (leading to a

large profit or loss).

There are four different score levels that will be given to our predictors. The best

predictors are given a full score of 1. These are predictors that give buy signals correctly

on days that return a large profit and sell signals on days which a large loss would

have been incurred had the shares been held. This is a very important feature of

our system, since avoiding large losses is at least as important as making a profit in

financial markets. This is especially important as it requires a greater percentage gain

to return to breakeven after a loss than the original percentage loss itself, which can

greatly diminish compound returns. Accurate predictors which give correct answers

but on days with small profits or losses will be given 0.5. Conversely, predictors that

work very poorly will be punished with -1. These are predictors whose signals lead

to large losses or significant missed profits. The latter is an example of how we have

incorporated the economic concept of opportunity cost into our model, opportunity

cost being the idea that a missed profit opportunity is theoretically equivalent to a

loss. Such costs can significantly affect compound returns in the long run. Inaccurate

predictions on days with less price action will be punished with only -0.5. To set

the thresholds of this scoring system, we calculated the different quartiles from the
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distribution of the return from our training set. Details of this point threshold can be

seen on page 96.

• Experiment Design

The framework of this experiment can be seen in figure 5-26.

Figure 5-26: Scoring system design in scoring system experiment 1 (Only Score)

Figure 5-26 shows the framework of the first scoring system experiment, which

only investigates the score. The light and dark blue boxes on the left of the

framework represent the 12 predictors we have in this experiment. Ever predictor

will start predicting from day t (after the look-back period). At the end of the

day, all predictors are given the closing price of the stock. The predictors use

that information together with the previous information they had and predict the

price direction for the next day (t+ 1). The answer from a predictor is shown in

the grey circle next to it. The answer or predicted value is a real number: the

expected return. This predicted return will be changed to -1, 0 or 1. A result of

-1 means that a predictor has predicted that the price will go down. On the other

hand, a result of 1 means the future price is expected to increase. If a predictor

predicts no change is to be expected, the predicted value will be 0.

After the return is predicted on day t+ 1, the scoring system will wait until the

end of day t+1 to start working. It will compare the actual return and predicted

return, then predictors will be rewarded or punished based on their performance.
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In the framework, scores are collected in the predictors’ scoring feature section

(the yellow rectangle). The criteria of the score given can be found on page 96.

After assigning points to the predictors, the cumulative scores are computed.

Then, the predictor(s) with the highest score will be selected to be in the final

model, as shown in the blue rectangle at the bottom-right of framework. The

final model, or max score model, is able to have more than one predictor. If

multiple predictors have been selected, the scoring system will use a majority

vote in order to give the final signal (buy, sell or hold). Then, when the market

opens again on the next day, the trading system will perform an order according

to the final signal given by the scoring system. These are the details of the initial

scoring design. The next section shows some examples of the results from this

experiment.

• Example of results

The results of testing this scoring system with our 11 stocks did not turn out

as we expected. Most of the results were not good, meaning the scoring system

performed worse than the buy & hold strategy. There were three stocks (COST,

FERG and SXS) where the scoring system worked better than the buy & hold

occasionally, and there is only one stock (TSCO) for which it worked significantly

better than the buy & hold. In this section, we will show some examples of

the results. Then, all the results will be shown in the comparison section after

finishing scoring-system experiment 3.

The first stock we will discuss is TSCO. As mentioned, the scoring system worked

much better than the buy & hold for TSCO stock. The result is shown in figure

5-27.

Figure 5-27 shows the result of the experiment on TSCO stock. There are two

sub-figures: the top sub-figure compares the cumulative return of each strategy.

The X and Y axis show trading days and cumulative return, respectively. There

are 24 graphs in this sub-figure. Each graph shows the cumulative return of each

strategy. The black thick graph is the buy & hold result which, can be seen going

down overall, especially from 2014-07 when the price decreased sharply. Even

though the buy & hold benchmark performed badly, the scoring system worked

better here, as shown by the thick green line. While the buy & hold ended up

with a -44.86% loss, the scoring system provided a 50.55% profit. As for the

Sharpe ratio, the scoring system increased the Sharpe ratio from -1.35 (for buy

& hold) to 0.73. The standard deviation of the return from the scoring system
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Figure 5-27: Scoring system design in scoring system experiment 1 (Only Score)

also decreased from 0.2444 (buy & hold) to 0.239.

Apart from those two thick lines we discussed above, there are many faint lines in

this sub-figure which represent the results from each individual predictor. Dashed

lines are the results from cluster 1 predictors (high volatility), and the rest are

the results from the cluster 0 predictors. From the beginning of this period until

after the beginning of 2014, most of the predictors seemed to work similarly.

This is because the stock’s price during this period was fairly flat. However, the

situation changed dramatically after the 2014-04. When the price dropped to its

lowest, most of the predictors seem to give different answers. Most of them tried

to stay flat as the price had been quite flat until 2014-07, for example Linear C0

and Poly C1. Some of them lost money along with the buy & hold benchmark,

such as Poly C0 and SVR(linear) C0. However, some predictors seem to cope

with the changes and stay profitable, such as SVR(rfb) C0 and SVR(Poly) C1.
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Our scoring system seemed to work really well in this situation. It managed to

pick the correct predictors to follow, here SVR(rfb) C0 or SVR(Poly) C1 or both.

There was quite a big lag when switching, but when it finally followed the correct

predictors it ended up profitable.

The bottom sub-figure shows how often each predictor was selected. The X-

axis shows the number of times predictors were selected, while the Y-axis shows

the name of each predictor. As expected, predictor SVR(Poly) C1 is the most

popular. It was selected almost 200 times meaning it was the most often-used

predictor. As expected, this predictor started to be selected after 2014-04 which

made the scoring system profitable.

The first result (TSCO), saw our system work very well. Some contrasting results

will be presented in figure 5-28.

Figure 5-28: Scoring system design in scoring system experiment 1 (Only Score)
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Figure 5-28 shows the result from COST, which is very different from TSCO. As

can be seen, predictors seem to have different answers at all times for this stock.

The faint lines perform differently. It looks like none of them have any idea how

to cope with this stock, which confused the scoring system so it was unable to

pick the best predictor. Up until about 2014-03, the scoring system selected the

wrong predictor, SVR(linear) C0. Unfortunately, SVR(linear) C0 was one of the

worst predictors for this stock. In fact, it ends up with the largest loss at -59.49%

and a Sharpe Ratio of -1.72, which is also the worst Sharpe Ratio.

• Discussion

This experiment tested the first design of our scoring system. The design is

simple. The scoring system gives or takes points from each predictor based on

their recent performance. Then, for the next round (or next day), the predictor(s)

with highest cumulative score will be selected to provide the next day’s signal

to buy, sell or hold. In this experiment, there was only one final model, called

the max score model. In this max score model, there can be more than one

predictor. For example, in the case that multiple predictors share the same

highest cumulative score. If there is more than one predictor in the final model,

the final answer (or signal) can be obtained by performing a majority vote. If a

majority vote does not work - because the number of buy votes and sell votes are

equal - the final signal will be to hold any open positions or not buy anything

if no positions are open. Please note that it is also possible that no predictor is

selected for the final model if all of them have negative cumulative scores. In this

case the system will not open any new positions, thus the signal is to hold.

As the results of this initial version of the scoring system were not very good, we

cannot rely on this criterion alone for predictor selection. We believe the reward

and punishment principle is valid, but basing the signal on the cumulative score

alone results in poor performance because the predictors in the final model cannot

change quickly enough; we have to wait for their cumulative score to gradually

decrease. So, the result will turn out badly as shown in figure 5-28.. In order

to respond to this, we investigated further other features that could improve the

scoring system. This will be discussed in the next experiment.
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5.3.2.3 Scoring experiment 2: Multiple features

As the simple scoring system did not work well, this section introduces more features

to be considered for incorporation into the scoring system. We concluded in the last

section that the problem of using only the score might be that the score alone is not

a good enough feature to identify the best predictors. For example, some predictors

might have done well recently and have achieved a high cumulative score, but now their

performance is going downhill sharply. But the cumulative scores take time to decrease.

This makes the scoring system unable to switch to better predictors in time. Therefore,

this section introduces new features to identify the best predictors, instead of only the

score. The features which will be considered in this experiment are the exponential

moving average, derivative, and slope of the scores. The reasons for selecting these

features can be seen on page 98.

• Experiment Design

The new features we added to the scoring system are the exponential moving

average (EMA), derivative and slope of the cumulative score. The reasons for se-

lecting these features can be found on page 98. The framework of this experiment

is shown in the following figure.

Figure 5-29 shows the framework of the scoring system for experiment two. As can

be seen, it looks similar to the previous experiment’s framework (5-26). Therefore,

we will only describe the additional features we are testing. Firstly, there are

additional features in the yellow box, which is no longer composed of only the

cumulative score any more. Each predictor has extra features (EMA short, EMA

long, derivative and slope). At the end of the day, the scoring system will compare

the actual return and the predicted return, then add or deduct points for every

predictor as before. However, in this experiment it will also calculate the other

feature values of EMA short, EMA long, derivative and slope. Each value will be

calculated daily. The scoring system will use these different features individually

to select the predictors which provide a signal for the following day, as opposed

to the first experiment which only chose the highest cumulative score. Now, the

system will select the predictor(s) with the maximum EMA short value to create

the max EMA short model. Likewise with EMA long to create the max EMA

long model, and so on. Finally, instead of having only one final model - the max

score model in the previous experiment - there will be four more final models

which can be seen in the blue rectangle box.
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Figure 5-29: Scoring system design in scoring system experiment 2 (Multiple features)

Each final model is able to contain many predictors or it can have none. If it

has more than one predictor inside, the final signal will be obtained by majority

vote from all predictors contained. Finally, each final model will provide their

signal, either sell, buy or hold. Therefore, each final model is one strategy. At

the end of the experiment, the performance of each strategy will be calculated

and compared. When we started this experiment, we were hoping to discover the

best final model to use in our trading system. However, the results did not turn

out as we expected (some examples of the results are shown in the next section).

We are unable to draw a conclusion as to which is the best feature, which leads

us to the next experiment and adding a second layer to the scoring system.

• Example of results

By adding more features into our scoring system, we produced five different final

models (one model for one feature) from which we hoped to select the best model

(feature) to select suitable predictors for our system. However, the results were
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inconclusive. We tested these versions of the scoring system with 11 stocks, as in

the other experiments. The results show that the best model kept changing over

time or was different between stocks. Here, some examples of the results will be

presented. The first result is TSCO, which can be seen in figure 5-30.

Figure 5-30: Result of TSCO from scoring system experiment 2

Figure 5-30 shows results from five different final models (max score, max EMA

short, max EMA long, max derivation and max slope). As in the previous exper-

iment, the top and bottom sub-figures represent the cumulative return and the

predictor selection. In the top sub-figure, there are six thick lines representing

results from the buy & hold (black), EMA short (light green), EMA long (blue),

derivative (grey), slope (orange) and scoring (dark green) strategies. As for the

faint lines, they represent the results from individual predictors as mentioned in

the previous experiment. In this figure, we have to make them more faint for the

reader to see the results from each added feature with ease. As can be seen, the
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scoring system itself works very well on this stock (as mentioned earlier). How-

ever, when compared to other features, the EMA long model seems to outperform

the scoring system from 2014-01 onward.

After 2014-01, the EMA long strategy (blue) switched to a better predictor

much quicker than the scoring system, as it started to follow the best predic-

tor (SVR(Poly) C1) shortly after its performance increased. Moreover, when the

SVR(Poly) C1 started to decrease, the EMA long model switched to following

the new leading strategy (SVR(reb) C0). This meant the it was able to remain

profitable through to the end of the testing period. Finally, the EMA long model

ended up with the most profit, at 112.39% over the period of two years, while the

scoring and buy & hold strategies only attained 50.55% and -44.86%, respectively.

From the TSCO result above, it might look like the best strategy is the long

EMA. However, this was not always the case. For example, see the results from

COST in figure 5-31.

It can be seen from result of COST in figure 5-31 that the EMA long (blue)

is not the best strategy any more. In fact, it is almost the worst. It performs

badly throughout the period of testing. Clearly the best strategy can change

dramatically, and even become the worst. It is not easy to identify any single

suitable feature to use in the scoring system. In the following figure, we show

another two results, from OXIG and MCD respectively.

Figure 5-32 shows results from OXIG and MCD respectively. It can be seen that

we cannot clearly identify the best strategy (or feature). From sub-figure (a), the

result of OXIG, the derivative strategy (grey) seems to provide the best result

overall. However, in sub-figure (b), the result of MCD, the derivative turns out to

be one of the worst-performing strategies compared to the others, including the

buy & hold strategy. We show these results to demonstrate how the best feature

seems to change over the period of time or over different datasets. Therefore, we

cannot identify the best feature to include in our system from the results of this

experiment.

• Discussion

In this experiment we tested more features in the scoring system in order to iden-

tify the best feature for selecting appropriate predictors. We tried five features,

all of which following the results of the previous experiment, which showed that

having a high cumulative score is not adequate to use as a prediction selection
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Figure 5-31: Result of COST from scoring system experiment 2

criteria. The details of the five features can be found on page 98.

We expected that the results from this experiment will help us to identify the best

feature to use for switching our predictors over time. However, the results did not

turn out as we expected. The best feature changes over time and over different

datasets, like the predictors do. We conclude that there is not a best feature

that can be used as the main criteria to select the best predictors. Therefore, we

decided to create a second layer of scoring system to control the use of the features.

This second layer will select a suitable feature to choose predictors. For example,

when the price changes rapidly, selecting predictors based on their cumulative

score is too slow and harms performance, but the long EMA may work very well.

Ideally, this second layer of scoring will manage this and hopefully improve the

trading system.
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(a) OXIG (b) MCD

Figure 5-32: Results of scoring system experiment 2 of OXIG and MCD

5.3.2.4 Scoring experiment 3: The second layer scoring system

• Experiment Design In the previous experiment we were unable to identify the

best feature (or final model), and to solve this problem we added another scoring

system, called the ensemble scoring layer. This new layer is shown in a green

highlight rectangle in figure 5-25 on page 169. This model works in the same

way as the first score assigning model that we used for the predictor scoring layer

(shown in the red highlight rectangle in the same figure). It gives and takes

points using the same criteria (details of this point threshold can be seen on page

96). However, this new score assigning layer will allocate points for the final

models (each model is created by an individual feature) instead of the machine

learning predictors. Therefore, the final models in this experiment will henceforth

be called intermediate models. The final model going forward is obtained from

the maximum intermediate-model score.

We are aware that the scoring system itself did not work very well to select pre-

dictors, as shown in scoring experiment 1 (section 5.3.2.2 on page 170). However,

in scoring experiment 2 (section 5.3.2.3 on page 176), the results showed that

other features besides score could be useful. If we are able to select useful fea-

tures at suitable times, this would increase our trading performance. Therefore,

we designed this experiment to develop the feature-scoring layer. The framework

of this experiment is shown in figure 5-33.
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Figure 5-33: Framework of scoring system experiment 3 (only the added module)

Figure 5-33 shows the framework of scoring system experiment 3. The blue high-

light rectangle shows the intermediate models (formerly called final models in the

previous experiment) obtained from the previous experiment. In scoring exper-

iment three, each intermediate model will be assessed by a new score-assigning

module. The answer from each model will be compared with the actual return

the next day and the models will be given or points or have them taken away, so

each feature score is updated every day. Then, the intermediate model with the

maximum cumulative score will be selected and used as the signal for the next

day. This process is the same as the first layer of the scoring system (predictor

scoring) so we will not go in to the detail here. If needed, details can be seen in

the beginning of section 5.3.2 on page 167.

After running this experiment with our 11 stocks, the signal from the final model

often turned out to be the best one. For some datasets, it did not provide

outstanding performance, but it was able to overcome other models. The next

section demonstrates some examples of the results, while all the results can be

seen in the result comparison section on page 187.

• Example of results

The first example of the results shown in this section are for TSCO. The results

are composed of two sub-figures, representing the cumulative return and number

of times each predictor was selected. These results are shown in figure 5.3.2.

We discussed in the previous experiment how the EMA long strategy (blue line)

worked better than the predictor-scoring system (in figure 5-30 on page 178) and

seemed to be a better option. However, when we performed this experiment

using the second layer scoring system to select the feature for the final model,
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Figure 5-34: Result of TSCO from scoring system experiment 3

we outperformed the EMA long strategy for most of the testing period, although

the second layer scoring system ended the period with a smaller profit. From this

result it appears the second layer scoring system could be a beneficial addition

to our trading system. In this case it was able to pick the best features to use

to select the best predictors throughout the testing period, and it ended up with

an 82.45% profit. Meanwhile, the buy & hold performed badly, losing -44.86%.

The second layer scoring system also worked better than the predictor-scoring

system, which did not do too bad by itself, achieving 50.55% profit.

It can be seen that the second layer scoring system outperformed the long EMA

strategy for most of the test period, but finally ended with less profit. The long

EMA strategy had the best profit (112.39%) and best Sharpe Ratio (1.46). As

for the accuracy, the long EMA achieved 57.09% while the second layer scoring

system got a little better at 58.88%. However, accuracy is not the main criteria
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(a) CARR (b) MCD

Figure 5-35: Results of scoring system experiment 3 of CARR and MCD

we consider as we have seen that greater accuracy cannot guarantee higher profit.

To be able to obtain higher profit, the system needs to be correct on days with

high profit. For example, a system X provides the correct prediction 8 times out

of 10, but on those days it only earns about 1 percent profit. Meanwhile system Y

provides only 5 times correct answers, thus having lower accuracy, but there are

two days where the prices increase rapidly, say 5% on each day. If system Y was

correct on those days, while system X was not, system Y with lower accuracy will

outperform system X on profit. The result from TSCO provides further evidence

to support this argument. The long EMA strategy ends up with higher profit

but lower accuracy than the second layer scoring strategy. This suggests highly

profitable days were missed, but this result could be unique to TSCO, so we will

discuss how the second layer performed for other stocks.

Besides TSCO, the second layer scoring system works well for other stocks too,

for example CARR and MCD in figure 5-35.

Figure 5-35 shows results from CARR and MCD. It can be seen that the second

layer scoring outperforms the other strategies. We tested our second layer scoring

system on the other stocks too. The results were consistent and all of the results

can be seen in section 5.4 on page 186.

• Discussion

This was the final experiment on our scoring system. The scoring system in
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this experiment is the complete version that will be used in our trading model,

and the details of this model can be seen in chapter 4 on page 88. In this

section, we discussed the design of our scoring system from its beginning to its

final iteration. Our scoring system started with the basic idea of rewarding and

punishing predictors according to their recent performances. The details and

results of this application of the scoring system are shown in section 5.3.2.2 on

page 170. In summary, the results from this first version of the scoring system

were poor, and we concluded that the cumulative score of points allocated to the

best-performing predictors is not consistent enough to be the sole feature used to

select the predictors.

To solve the problem above, scoring system experiment 2 was created to try more

features besides the scoring system. The objective of experiment 2 was to find

the best feature to select predictors. We expected the best feature need be the

only criteria to select the best predictors throughout the trading period. The

four features we added were short and long EMA, derivative and slope. Details

of these features and the design of this experiment can be found in section 5.3.2.3

on page 176. Unfortunately, the results were extremely varied. Identifying a

single best feature was not possible. Therefore, we decided to try applying the

scoring system - the same as we originally used to manage the predictors’ scores

in scoring experiment one - to the features instead. Since each feature created

one intermediate model, the added module in the next experiment was called the

ensemble scoring layer.

The ensemble scoring layer was added in scoring experiment three in order to be

able to switch between intermediate models when the market situation changes.

For example, when the market has a clear trend, the intermediate model related

to the cumulative score is the best option, as the predictors which have been

doing well should continue working well. On the other hand, when the market

changes rapidly, the cumulative score does not work any more and is too slow to

change predictors as their cumulative scores need time to decrease. This would

result in the system losing money. The ensemble scoring layer should help solve

this problem. When the market behaviour changes, it is able to switch effectively

and quickly from one intermediate model to another, keeping the trading system

profitable.

From the reasons above and the results from the three experiments, we conclude

that the double scoring layer (features to select predictors, and the ensemble

scoring layer to select features) design is suitable for our trading system, and we
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will use this in the final design. The details of the final design can be found in

chapter 4 on page 88. The complete comparison of the results will be shown in

section 5.4 on page 186.

5.4 Results Comparison

We performed many experiments in order to design an effective scoring system, which

is the central focus of this research. Throughout this chapter, we have discussed how

an ensemble model can outperform an individual predictor model, although we have

only showed some examples of the results so far. In this section, we will provide all

results and compare the strategies we have investigated in one table.

This comparison table aims to compare and summarise the performance of an individual

machine learning algorithm and our ensemble-based scoring system. There are 11

strategies to be compared here. The first strategy is buy & hold, which we used

as a benchmark. The next six strategies are individual machine learning algorithms,

comprising polynomial regression, linear regression, support vector machines with 3

different kernels, and random forest. Following these machine learning algorithms, three

ensemble-based strategies were designed to make multiple machine learning algorithms

work together effectively. The first ensemble-based strategy was the simplest, which is

the averaging strategy. The second ensemble strategy was the upper confidence bound,

and in the penultimate column in the table below is the single-layer scoring system.

Finally, the last strategy - shown in the last column of this table - is our complete

scoring system, which is composed of two layers of selection: predictors chosen by

features and features chosen by the ensemble scoring system. A comparison of all these

results is shown in table 5.3.
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Table 5.3 shows the comparison of the 11 trading strategies’ performances, tested on 11

stocks. These performances were evaluated using the profit, Sharpe Ratio, maximum

drawdown, accuracy and standard deviation (more detail can be found in section 2.3.4

on page 42). The profit, maximum drawdown and accuracy are shown as percentage

values. The following is an example result.

For the stock CARR, the maximum profit of 264.52% was obtained by the two-layer

(2L) scoring system. Note that this profit was computed over the two years. There-

fore, it is about 91.04% yearly after taking the compounding return into consideration

(calculating from (1 + 2.65)1/2− 1). The maximum Sharpe Ratio for CARR, 2.33, also

came from the 2L scoring system. As this stock trended up during the testing period

(as can be noticed by the 62.38% profit of the buy & hold), the individual machine

learning predictors seemed to perform well too. Support Vector Regression (SVR) with

linear kernel is the best algorithm out of all six individual algorithms, providing 214%

profit with a Sharpe Ratio of 1.96. The other predictors also performed well on this

stock, except for SVR with rbf kernel. The SVR with rbf kernel performed really badly,

ending up with -28.57% loss. It also ends up with the worst maximum drawdown at

-41.02%, meaning an investor would have to bear with losing almost 50% during this

trading period. Note that 100% profit is needed to recover to break-even from a 50%

loss. Results such as this justify our use of multiple predictors, since they demonstrate

that if the wrong predictor is used in the case of a single-predictor system, large losses

could result or traders may abandon the system altogether.

As for the ensemble-based strategies (average, UCB, 1L and 2L scoring strategies), the

average and 1L scoring strategies also ended up profitable in addition to the 2L scoring

system, but their profits were small. The average model returned 5.55% profit while

the 1L scoring strategy returned 20.72%. However, the average strategy has a negative

Sharpe Ratio of -0.01 in spite of it making a profit. This indicates that the profit did

not justify the risk taken to earn it.

As for the accuracy, the maximum accuracy was 60.39%, which was obtained by the 2L

scoring strategy. The second highest accuracy was 57.39%, from the averaging model.

As we discussed, ending with only 5.55% profit and a -0.01 Sharpe Ratio indicates that

the averaging strategy is not profitable enough to be worth investing. But it came

second place in terms of accuracy. This is not surprising since we already recognised

that greater accuracy does not translate into greater profits, or only does so above a

high threshold.

We ran a paired T-test on the Sharpe ratios of these eleven datasets to compare be-
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tween our scoring system and the other individual strategies. We obtained the p-values

between our scoring system (2L scoring system) verses the buy & hold benchmark,

polynomial regression, linear regression, svr (rbf), svr(linear), svr(polynomial), ran-

dom forest, Averaging, UCB and the 1L scoring system, which all are very significant,

p-values are less below 0.005. With only eleven pairs, each individual result may not

tell us much, although the values are very promising, all sitting above the 95% con-

fidence level. Taken together, these support that our ensemble approach leads to a

meaningful improvement in the Sharpe Ratio above the 95% confidence level over the

benchmark and individual machine learning algorithms. The details of these tests can

be seen in appendix E on page 336.

5.4.1 Discussion

What follows are some conclusions we have drawn from our results:

1. No best individual predictor: From these results, it is not possible to select an

individual predictor which could perform well with all stocks at all times. For ex-

ample, polynomial regression performs very well, beating the buy & hold strategy

for COST, FERG, GOOG and OXIG stocks. However, for D4T4, MACF, MKS

and SXS it did not perform well at all. SVR with linear kernel works really well

on COST, giving more than 100% profit, but did very badly on GOOG, ending

up with -38.66% while the buy & hold profited 45.71%. Similar situations applied

to all the individual machine learning predictors tested (polynomial regression,

linear regression, SVR with rbf, linear and polynomial kernel, and random for-

est). Each predictor seemed to do well on specific stocks or at specific times,

the reasons for which are hard to identify. Nonetheless, such results validate

our theory that the characteristics of financial market data changes through time

and across stocks, which underpins this research and our belief that an adaptive

trading system is needed to be consistently profitable. However, changes in the

characteristics are more complex than switching between high and low volatility,

necessitating the inclusion of multiple machine learning algorithms to increase

our chance of noticing changes and making better predictions.

Another point to consider here is the similarity of the results from polynomial

and linear regressions. It can be seen that for most stocks, they provide the

same or very similar results. This raises the question of whether one of them is

redundant and can be removed. The answer here is no, because in this research we

performed clustering on the training data and created multiples of these predictors
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specialising in different characteristics of the data. Although their results in the

testing period used in this research were similar, it is possible for the results to

diverge when the system is used in the future or on different stocks, and therefore

it is worth keeping them in our system.

2. Performance of 2L scoring strategy: The best strategy here is the 2L scoring

system. It performed better than the buy & hold in every dataset except MKS.

This stock seemed to be difficult for most of the predictors, as the price fluctuated

a lot. There were also several big drawdown periods which most predictors failed

to cope with. Apart from MKS, the 2L scoring system strategy works really well,

ending up with a relatively high profit and Sharpe Ratio.

Additionally, the 2L scoring system also performed well in terms of drawdown.

For most of the stocks, it provided relatively small drawdowns compared to the

other models, except for the averaging model, for example in D4T4, FERG,

GOOG, MACF, MCD, MKS, OXIG and TSCO. This means that not only does

it offer investors a high profit, but it is also safer, as a smaller drawdown means

investors do not need to endure big losses during the trading period. It is im-

portant when developing a trading system that investors can stick with it and do

not abandon it, which large drawdowns may cause them to do. It is well-known

that losing money is more psychologically painful than gaining the same amount,

and that earning a profit then losing most of it back can be difficult even when

the investor still ends up with more than they started with.

3. Accuracy does not guarantee profit: We discussed that when the averaging

strategy was applied in the case of CARR it ended up with higher accuracy but

much lower profit than SVR with rbf kernel predictor. This was not the only

case. There were many times when this situation happened in our experiment.

For example, in the results from MACF, the averaging strategy ended up with

much higher accuracy (68.09%) than that of SVR with rbf kernel (53.31%), UBC

(52.53%) and the 2L scoring (62.26%). However, the profit it made was much

lower than the others. It only provided 20.35% profit while the SVR, UBC and

2L scoring strategies gave 27.04%, 30.5% and 103.61%, respectively. Another

example of this situation is SXS. The accuracy of the 1L strategy (59.91%) is

greater than the accuracy of the 2L scoring strategy (56.91%), but the profit of

the 2L strategy (83.04%) is much greater than the 1L strategy (13.24%). There

are many results where this happened besides the aforementioned examples.

In financial trading, it is not enough to get the direction correct only, but to get
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it correct on high-profit days. For example, if we get the direction correct on a

day which only gives us £1 profit at the end, it is not even worth the trading fee

that the investor needs to pay. Therefore, it is not about the number of times

you predict the direction correctly, it is about whether you get it correct on the

right days too. Getting the direction correct 10 times and each time only making

£(1) profit is worse than getting it correct only one time and making £20. The

distribution of financial market returns is such that missing high-profit periods

can have a severe impact on results, since just a few such periods can account for

most of the available profit. This is the so-called opportunity cost. For this reason

and what we have observed in our results, we are not going to take accuracy to

be the main criteria to evaluate our results. In this research, we consider Sharpe

Ratio to be the superior evaluation metric as it takes both profit and risk into

account (more details of the Sharpe Ratio can be seen in section 2.3.4 on page

42).

4. Averaging strategy with high accuracy but low profit: Another interesting

point that can be noticed is the high accuracy of the averaging strategy (but low

profit, as mentioned earlier). There are two further observations worth addressing

here. Firstly, it provided the lowest standard deviation among all strategies. This

makes sense as it averages the answers from all predictors, leading to low variance.

In finance, this means less risk to invest with this strategy as the chance of large

negative deviations is small. This is also demonstrated by its having the smallest

maximum drawdown. However, saving an investor from big losses does not mean

a strategy is worth investing with (since big losses are guaranteed to be avoided

if one does not invest at all). In this case, usually ended up making only a

small profit compared to the other strategies, typically between 5 to 20 percent.

Sometimes it was not profitable at all; there are four stocks out of 11 for which

it ended up with losses.

Another point to consider is that this method acted very similarly to majority

voting. Because this strategy averaged the answer from every predictor, which all

predicted either 1, -1 or 0, the average answer and the majority vote are pretty

much the same. Although we did not perform an experiment using majority

voting to select features, we can still confirm that this method would not be

better than the 2L scoring system because the results would closely resemble the

averaging strategy.

Finally, the fact that the averaging model achieved mostly higher accuracy than

the other models - in fact the highest for 6 stocks out of 11: COST, FERG,

194



GOOG, MACF, MCD and MKS - means that the majority of our predictors

provided correct answers most of time. If we were working on other problem

spaces, this would be very good. However, as we are working in the financial

area, we primarily want to achieve high profit and low risk, not high accuracy.

As discussed earlier, high accuracy and profit are not the same. Even though the

averaging model was able to provide high accuracy, it did not make much profit

and performed poorly for some stocks in terms of profit and Sharpe Ratio, such

as FERG, GOOG, MCD, MKS and TSCO.

From the experiments and discussion presented, we conclude the 2L scoring strategy

is the best model we evaluated as it provided superior and consistent results in terms

of Sharpe Ratio, profit and drawdown. We will take this design to use in our trading

system.

Experiments one to three developed the essential parts of our scoring system, which

is central to this research. These experiments are presented in order and it is rec-

ommended readers follow them from the beginning of experiment one to the end of

experiment three in order to understand the rationale and design of our scoring sys-

tem. All datasets used in these experiments spanned the same period of time to allow

for comparison and to identify the best solution for our system. The next experiment,

experiment four, is not as essential as the previous three experiments. Experiment four

discusses a few different system adjustments and comprises a number of small experi-

ments which focus on different parts of our trading system. These experiments are not

in any order and the datasets used in each are not always the same. However, these

issues do not affect the heart of our system, which is the scoring mechanism.

5.5 Experiment 4: Other System Adjustments

This experiment is separate from the three main experiments. It describes some short

experiments conducted to test adjustments to the system, such as how the final signal is

created or how signals can be optimised. These experiments aimed to improve the per-

formance of the system without affecting the scoring mechanism of our trading system

(the scoring system). We also don’t expect their improvements to be as substantial.
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5.5.1 Number of Clusters

This section investigates how the number of clusters affects the system. Although

satisfied with the results in table 5.3 on page 187, we would like to investigate further

the effects of the number of clusters. Throughout this chapter, we used two clusters,

representing low and high volatility, and the results we achieved were good. Therefore,

this experiment only aims to improve upon this result if possible.

This experiment increases the number of clusters one by one to see whether the result

is affected. In this section, we will only demonstrate some of the results. At the end

of experiment 4, all the results will be shown and compared, followed by a discussion.

Firstly, we take TSCO as an example and perform the experiment using an individual

machine learning algorithm: polynomial regression. The reason we decided to show the

result from an individual predictor is firstly, that it is easier to understand the effect

of the number of clusters and, secondly, we would like to see whether the effects will

hold for different machine learning predictors. By making individual predictors work

better, the ensemble result will be better as well, given we have already established the

benefit of our scoring system in the first three experiments.

The number of clusters starts from one, which is equivalent to not performing clus-

tering and using only one single predictor. The TSCO result for the single predictor

(polynomial regression) strategy was shown in table 5.2 on page 153. However, the

reader can see the results again here. The performance of the single predictor and

cluster for TSCO stock, tested over a period of two years (2013 - 2014) can be seen in

figure 5-36.

(a) One cluster (b) Result of one cluster

Figure 5-36: Example of TSCO with one cluster

Figure 5-36 shows the result on TSCO stock with only 1 cluster. This result is the same

as shown in 5.2 on page 147, because it is the result from having only one predictor.
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This result comprises two sub-figures, sub-figure (a) shows the cluster result and (b)

shows the trading performance according to the cluster in (a). The black and red

graphs in (b) represent the cumulative profit from the buy & hold and single cluster

strategies, respectively. With only one cluster, even though the result (red) is better

than the buy & hold (black) benchmark strategy, TSCO still ends up at a -17.42%

loss. The Sharpe Ratio is a poor -0.52. Not only are these two key values bad, but the

drawdown is also very large at -29.66%. These figures suggest that trading this stock

with only one cluster does not lead to a good outcome.

This is a problem that we found out in experiment 2 (5.2 on page 147), and we tried to

improve the result by using 2 clusters. However, it did not help much (as can be seen

in 5.2 on page 153). For the reader’s convenience, we show the result with two clusters

again in figure 5-37.

(a) Two cluster (b) Result of two clusters

Figure 5-37: Example of TSCO with two clusters

In figure 5-37, the black and green graphs in sub-figure (b) represent the results from

the buy & hold and two cluster strategies respectively. As can be seen, TSCO performs

even worse overall, finishing with a -51.88% loss. The Sharpe Ratio is bad at -1.64.

Once again, the drawdown is very low at -59.82%. This means that trading this stock

with only two clusters is also far from optimal. Investors not only end up with a big

loss, but have to endure losing more than half of their capital during the trading period.

Therefore, for these results, it can be said that increasing the number of clusters to two

does not help.

We also identified this problem in experiment 2, where we found two stocks, TSCO and

FERG, for which having two clusters did not help when using the polynomial regression

predictor. In that experiment, we concluded that we could solve the problem by adding

more machine learning predictors and having them work together. The solution works

well once the right method to manage the cooperation of multiple machine learning
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predictors had been identified, as shown in the results after finishing experiment 3 (5.3

on page 187). Although satisfied with the results of multiple predictors and the scoring

system, we acknowledge that the increasing the number of clusters may also have

improved the performance, which is why we have included this additional experiment.

(a) Three cluster (b) Result of three clusters

Figure 5-38: Example of TSCO with three clusters

(a) Seven cluster (b) Result of seven clusters

Figure 5-39: Example of TSCO with seven clusters

(a) Ten cluster (b) Result of ten clusters

Figure 5-40: Example of TSCO with ten clusters

Figure 5-38 to Figure 5-40 represent the results from TSCO using 3, 7 and 10 clusters,

respectively. In each figure, sub-figure (a) and (b) shows the clusters of data and

the result. From these three different clusters’ results in all sub-figures (b), it can

be seen that once the number of clusters increases to three, the result is better than

with one and two clusters. The loss is gets smaller, from -51.88% (at cluster = 2) to
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-2.93%. The Sharpe Ratio also increases from -1.64 to -0.18. The drawdown is also

much better, shrinking from -59.82% to -35.72%. This means that once the number of

clusters increases to three (therefore the number of predictors is equal to 3), polynomial

regression works much better for TSCO stock. Not only would an investor lose less

money, the investor would also encounter less stress from the maximum loss of about

35% of their funds rather than 59.82% during the trading period.

The result above matches our expectation that as the number of predictors increases,

the more likely a predictor will be good at the specific characteristics of that data will

emerge. One might think of the analogy that more specialist doctors might provide

a more accurate diagnosis and better course of treatment. With this rationale, we

experimented further with even more predictors.

However, the result did not show a linear relationship between a greater number of

clusters and performance, as can be seen from figure 5-39. Once the number of clusters

reaches seven, the results get worse, even worse than buy & hold. The cumulative

profit of having 7 predictors (clusters) is -43.74%, while the buy & hold is -44.86%.

As can be seen from sub-figure (b), most of the time the cumulative profit of the 7-

predictor strategy is lower than the buy & hold. Another example is when the number

of clusters is 10 in figure 5-40. Even though the cumulative profit of the 10-predictor

strategy (-16.96%) ends up much higher than the 7-predictor strategy (-43.74%), its

result overall is still much worse than the 3-predictor strategy.

From the results above, it can be concluded that trading performance can be improved

by a higher number of clusters, but only to a point. The results will get better when

there are enough predictors that some can specialise in the characteristics of the data,

confirming our original idea as discussed in experiment 1 and 2. For some stocks, two

predictors are enough for the results to get better (the results can be seen in table 5.2

on page 153). On the other hand, two clusters or predictors are not enough to deal

with all different characteristics in the data for some stocks, such as TSCO, which need

at least three clusters. The fact that results are worse at seven and ten clusters follows

the intuitive expectation that too many clusters results in overfitting - predictors are

too specialised for the training data and unable to work on unseen data that does

not resemble the past. However, we cannot draw too general conclusions after having

presented only one stock’s result. Below we present the result for FERG, because it is

another stock for which the results from using two predictors were not good.

The results of FERG with 1, 2, 3, 7 and 10 clusters can be seen in figure 5-41 to 5-45,

respectively.

199



(a) One cluster (b) Result of One clusters

Figure 5-41: Example of FERG with one clusters

(a) Two cluster (b) Result of two clusters

Figure 5-42: Example of FERG with two clusters

(a) Three cluster (b) Result of three clusters

Figure 5-43: Example of FERG with three clusters

The results from FERG are similar to TSCO. The single cluster (single predictor)

strategy performed much better than two clusters. While the single predictor provides

20.85% profit, the two cluster strategy ends up with a big loss of -43.56%. Consequently,
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(a) Seven cluster (b) Result of Seven clusters

Figure 5-44: Example of FERG with seven clusters

(a) Ten cluster (b) Result of ten clusters

Figure 5-45: Example of FERG with ten clusters

the Sharpe Ratio of the single cluster (0.31) is much higher than the two clusters (-

1.51). When the number of clusters is increased to 3, as shown in figure 5-43, it can

be seen that the clusters help improve the cumulative return from -43.56% to 54.34%.

The Sharpe Ratio also increases from -1.51 to 0.89. While it appears the conclusion

can be drawn that more clusters lead to more profit, this is premature as the results are

similar to TSCO and the profit and Sharpe ratio decline once the number of clusters

increases to 7 and 10, as shown in figure 5-44 and 5-45. The profit and Sharpe Ratio

of the 10-cluster strategy drop to -26.14% and -0.86, respectively.

It can be seen from the results of TSCO and FERG above that the performance of our

ensemble predictor system can be improved by increasing the number of clusters but

only up to a specific point. Once the number of clusters is too high, the performance

starts to drop sharply, which we would expect as the final predictions become too fit

to the past data. In the next section, we will experiment further to find the optimum

number of clusters.

201



5.5.1.1 Experimental Results

In this section, we experiment further on the effect of clusters on our system’s perfor-

mance. We selected four stocks to be investigated. These four stocks are classified into

two groups, as follows:

• Group 1: Stocks for which the two-cluster strategy did not work very well in

experiment 2 (results in table 5.2 on page 153). We select these stocks in order

to investigate whether a different number of clusters will improve the predictors’

performances. Stocks selected for this group are FERG and TSCO.

• Group 2: Stocks for which the two-cluster strategy performed well in experiment

2 (results in table 5.2 on page 153). These stocks are selected to make sure that

increasing the number of predictors will not decrease the performance. The stocks

selected for this group are MACF and CARR.

The visualisations above result from polynomial regression only. In this section, we

experiment further with all 6 machine learning models used in our system to ensure

that the effect of the number of clusters holds for the other algorithms. Firstly, we will

present visualisations of some results, as can be seen in figure 5-46.

Figure 5-46 shows the result for FERG. This experiment is set up the same as exper-

iment 2, but instead of clustering the training set into two groups, we experimented

with different numbers of clusters between 1 to 10. The objective of this experiment

was to observe the effect of the number of clusters on our trading performance. The key

value we used to evaluate the performance here was the Sharpe Ratio, which has been

discussed in section 5.4.1 on page 192. This visualisation is composed of three graphs.

The top graph shows the comparison of Sharpe Ratios when using different numbers of

clusters and different algorithms, while the middle and bottom graphs show the average

Sharpe Ratio and the standard deviation related to each number of clusters.

The Y-axis of the top graph shows the Sharpe Ratio and the X-axis shows the number

of clusters from 1 to 10. Please note that when there is only one cluster, this is actually

the single predictor strategy. Each line in the top graph shows the Sharpe Ratio from

a machine learning model. There are six lines representing the six algorithms we have

used. It can be seen that when the number of clusters is two, all the algorithms perform

badly, which we expected from the results of experiment 2 (seen in table 5.2 on page

153). In this table, the trading performance of polynomial regression with two clusters

drops to -43.56% and the results support that two clusters is inadequate for prediction

of this stock’s price. However, although all the predictors seemed to perform badly
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Figure 5-46: The comparison of Sharpe Ratio of six machine learning algorithms testing
on FERG

individually, our scoring system managed very well and selected the correct predictors

at the right times, resulting in 77.95% profit at the end (this can be seen in ref 5.3 on

page 187).

Although the scoring system worked well on this stock with just two clusters, we decided

to run the experiment with different numbers of clusters in order to investigate whether

we can improve the system’s performance by increasing clusters. From results in figure

5-46, it can be seen that with 3, 4 or 5 clusters the Sharpe Ratio is higher and does not

change much among different algorithms. With 7, 8 and 10 clusters, the Sharpe Ratio

from some algorithms - such as SVR with linear kernel - was high, but the differences

between the Sharpe Ratios of different algorithms was very high too. It is difficult

to decide from the top graph which cluster number should be best, but three clusters

seems to be suggested.

In order to make a better decision, the average and standard deviation should be taken

into account. The middle graph shows that the maximum average Sharpe Ratio (0.18)

is obtained when the number of clusters is five. The second highest Sharpe Ratio is

with three clusters. But when looking at the standard deviation in the bottom graph,
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five clusters results in a lower standard deviation. Therefore, five clusters seems to be

the best number for this stock. But this may not be the case for other stocks, so we

need to look at other results, for example the result from TSCO in figure 5-47.

Figure 5-47: The comparison of Sharpe Ratio of six machine learning algorithms testing
on TSCO

The results from TSCO in figure 5-47 have a few differences from FERG. Firstly, the

variance of the Sharpe Ratio at three and four clusters is not as low as for FERG.

The differences among predictors’ Sharpe Ratios are bigger. However, this should not

matter much because once the scoring system is used, the best predictors should be

selected. Therefore, a high Sharpe Ratio is more important than low variance. Sec-

ondly, five clusters does not provide the maximum average Sharpe Ratio any more.

The highest average Sharpe Ratio (0.24) is obtained by three clusters, with five pro-

viding the second highest. However, three clusters (with the maximum average Sharpe

Ratio) result in a higher standard deviation than five clusters (the second highest av-

erage Sharpe Ratio). However, a high Sharpe Ratio is more important for our scoring

system. For this reason, three clusters seems to be the best option for TSCO.

FERG and TSCO were selected to demonstrate the results of the experiment on stocks

from group 1 (stocks for which two clusters did not perform well). Now, we will present

an example from a stock in group 2 (for which 2 clusters resulted in good performance).
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The example stock from this group is MACF, and the results are shown in figure 5-48.

Figure 5-48: The comparison of Sharpe Ratio of six machine learning algorithms testing
on MACF

The effect of increasing the number of clusters is clearer from the MACF results than

FERG and TSCO. From five clusters upwards, the Sharpe Ratio drops. From exper-

iment 2 (seen in table 5.2 on page 153) we know two clusters already works well for

MACF when using polynomial regression, resulting in a high Sharpe Ratio of 1.31.

After experimenting with other machine learning algorithms, it can be seen that most

of them also work well with two clusters. Polynomial and linear regressions, as well as

SVR (with rbf and linear kernel), provide good Sharpe Ratios higher than 1, especially

linear regression which provides the maximum Sharpe Ratio of 1.74. The remaining

algorithms, SVR with polynomial kernel and randomforest, did not produce a Sharpe

Ratio as high as the aforementioned algorithms but their Sharpe Ratios were still

greater than 0. Therefore, the average Sharpe Ratio for this share with two clusters is

a good 1.005. Now, let us look further at the effect of more clusters.

With three clusters, the top graph shows that the performance was consistent for most

of the algorithms that performed well with two clusters, except polynomial regression.

Its performance drops sharply with three clusters. The Sharpe Ratio falls from 1.74

to 0.02. However, the average Sharpe Ratio is still high at 0.97, as the SVR with

205



polynomial kernel works very well with three clusters. The middle graph shows that

two and three clusters give the best Sharpe Ratios, with two performing a little better.

Taken with the other results discussed, the results here further support the general idea

that between three and five clusters is optimal.

From the results of the three stocks above, it seems between three and five clusters

could improve the performance of our trading system. Therefore, we ran experiments

on a further stock, CARR, and calculated the average and standard deviation for every

algorithm which should help us decide how many clusters is most suitable. The results

are shown in 5-49.

Figure 5-49: The average Sharpe Ratio from six machine learning algorithms of CARR,
FERG, MACF and TSCO

The result from figure 5-49 is very helpful. It is much clearer to analyse the results

from the average values for every algorithms. The top graph shows the average Sharpe

Ratio for each stock. The four dashed lines represent the average Sharpe Ratio for every

algorithm on four stocks: CARR (blue), FERG (yellow), MACF (green) and TSCO

(orange). The bold navy line shows the average value from all stocks (all four dashed

lines). The maximum Sharpe Ratio is obtained by three clusters (0.50), followed by

five clusters (0.26).

The standard deviation seems to go down after three clusters. Accordingly, the Sharpe

Ratios start to converge from four clusters upwards. This convergence could not be

noticed earlier. Although three clusters provided the highest Sharpe Ratio, the stan-
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dard deviation of this cluster is higher than with five clusters, and we must decide

between including either three or five clusters or using both together. Finally, we de-

cided to go three clusters for the following reasons: 1) We will put all the algorithms to

work together using the scoring system, which is able to identify the best predictors.

Therefore, we will focus on having predictors with high Sharpe Ratios ready for the

scoring system to select. The variance should not be a problem for the scoring system,

especially as the standard deviation of three and five clusters is similar like this. 2)

We must consider time consumption. More clusters means more predictors for each

machine learning algorithm. For now, we only have six algorithms and none of them

take a lot of time to process. However, our system is designed to be able to add new

algorithms. The processing time can increase vastly, especially if time-consuming al-

gorithms are added such as neural networks. More clusters would only increase time

consumption further, with little to gain.

On the subject of time consumption, we will also discuss the time our system takes

at the moment. Since the machine learning algorithms used in our current model are

not time-consuming ones, they work very quickly. The average processing times of our

model at each step can be seen in table 5.4.
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Table 5.4: The average processing times (in second) of our system at different designs

Cluster Step 1 Step 2 Step 3 Step 4 Step 5 Total

Preparation Clustering Training Development Simulation Total

1 Cluster

1 algorithm 0.0208 0.0000 0.0202 0.1024 52.8232 52.9666

2 algorithms 0.0208 0.0000 0.0266 0.2014 52.8232 53.0720

3 algorithms 0.0208 0.0000 0.2521 0.1157 52.8232 53.2117

4 algorithms 0.0208 0.0000 0.4402 0.3072 52.8232 53.5914

5 algorithms 0.0208 0.0000 0.8443 0.2980 52.8232 53.9863

6 algorithms 0.0208 0.0000 1.7259 0.3120 52.8232 54.8819

2 Clusters

1 algorithm 0.0208 0.7868 0.0404 10.7147 52.8232 64.3858

2 algorithms 0.0208 0.7868 0.0533 21.4293 52.8232 75.1134

3 algorithms 0.0208 0.7868 0.5041 32.1440 52.8232 86.2789

4 algorithms 0.0208 0.7868 0.8805 42.8587 52.8232 97.3699

5 algorithms 0.0208 0.7868 1.6886 53.5733 52.8232 108.8927

6 algorithms 0.0208 0.7868 3.4518 64.2880 52.8232 121.3706

3 Clusters

1 algorithm 0.0208 0.9925 0.0606 16.0720 52.8232 69.9691

2 algorithms 0.0208 0.9925 0.0799 32.1440 52.8232 86.0604

3 algorithms 0.0208 0.9925 0.7562 48.2160 52.8232 102.8086

4 algorithms 0.0208 0.9925 1.3207 64.2880 52.8232 119.4451

5 algorithms 0.0208 0.9925 2.5329 80.3600 52.8232 136.7293

6 algorithms 0.0208 0.9925 5.1777 96.4320 52.8232 155.4462

3 Clusters

1 algorithm 0.0208 1.2409 0.1010 26.7867 52.8232 80.9725

2 algorithms 0.0208 1.2409 0.1332 53.5733 52.8232 107.7914

3 algorithms 0.0208 1.2409 1.2603 80.3600 52.8232 135.7052

4 algorithms 0.0208 1.2409 2.2012 107.1467 52.8232 163.4327

5 algorithms 0.0208 1.2409 4.2214 133.9333 52.8232 192.2396

6 algorithms 0.0208 1.2409 10.3555 160.7200 52.8232 225.1604

Table 5.4 shows the time usage for different conditions in our model. All times are

shown in seconds and separated into steps 1 through 5, according to the design in

figure 4-1 on page 89. Time usage was measured from a single computer with Core
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i7-8750H and CPU 2.20GHz * 12. Time usage is shown for different numbers of clusters

and numbers of machine learning algorithms used in the experiment. The numbers of

clusters used were 1, 2, 3 and 5. For each case, we measured the time with different

numbers of machine learning algorithms involved. The number of algorithms ranged

from 1 to 6.

The time usage in step 1, data preparation, does not depend on the number of clusters

or machine learning algorithms. Therefore, this is almost the same in every case and

only varies a little between datasets. In this table, we measure the data preparation

times for three different stocks (TSCO, CARR and MKS). Each stock was tested 5

times. The average times for step 1 for TSCO, CARR and MKS were 0.0185, 0.0230

and 0.0207, respectively. The standard deviations are very low: 0.0009, 0.0095 and

0.0047. All time usage values in this table are averaged over these three stocks, 5 runs

on each stock. The standard deviations are very low. Consequently, we are not going

to go into detail about all the values. Instead, we will focus on the average time usage

shown in table 5.4.

Please note that steps 1, 2, 3, 4 and 5 are data preparation, clustering, training, system

development and trading simulation & evaluation, respectively. For 1 cluster, we don’t

need step 2 as there is no clustering to perform. As for step 3, training, it can be

seen that each machine learning algorithm works quickly. For example, a polynomial

regression only takes 0.0202 seconds to train. When adding another algorithm (linear

regression) into the model, the time only increased a little to 0.0266 seconds. The

maximum time taken for this step was only 1.7259 seconds when all six algorithm were

involved. Time usage in step 4 is very quick too. The longest time taken is by step

5, trading simulation & evaluation. However, there is only one process within step 5

that takes long to run, which is the signal optimisation. Signal optimisation performs

grid search in to order find the optimal point to filter the trading signals, which is time

consuming. The average time taken for optimisation is still only under a minute, and

the time taken is not affected by the number of clusters or predictors. Therefore, for 1

cluster, the maximum possible time usage is only 54.8819 seconds when all 6 algorithms

are included.

The time usage for other numbers of clusters can be seen in the table. The processing

time is not long at all as we have deliberately chosen machine learning models which

are not time consuming. The maximum time, when using 5 clusters and 6 algorithms,

is under 4 minutes (225.1604 seconds). However, our system is designed to be able to

add new algorithms of interest. Therefore, the time could increase depending on the

choice of algorithms and the number of clusters. Therefore, it would be better not to
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have too many clusters. On balance, we selected three clusters, which allows the model

to provide good results - as can be seen in table 5.5 - while running quickly and with

scope to add more algorithms.

Table 5.5: The comparison between results from the buy & hold strategy and our
system with two, three and five clusters, evaluated over two years (2013-2014)

Data/Model B&H 2 clusters 3 clusters 5 clusters

CARR

Profit 62.38 264.52 243.43 211.20

SP 0.77 2.33 2.18 1.99

Max DD -26.32 -12.16 -25.75 -15.83

ACC 52.89 60.39 59.10 58.67

Stdev 0.302 0.286 0.292 0.293

FERG

Profit 18.59 77.95 110.78 47.27

SP 0.26 1.26 1.66 0.81

Max DD -16.09 -12.54 -13.54 -19.75

ACC 49.1 57.49 56.69 59.28

Stdev 0.211 0.207 0.208 0.203

MACF

Profit 26.96 103.61 74.13 44.35

SP 0.65 2.19 1.65 1.06

Max DD -28.06 -14.92 -19.20 -21.43

ACC 49.81 62.26 59.5 56.03

Stdev 0.312 0.304 0.310 0.312

TSCO

Profit -44.86 82.45 127.60 88.66

SP -1.35 1.13 1.60 1.19

Max DD -57.5 -20.74 -16.11 -22.38

ACC 46.91 58.88 59.48 57.09

Stdev 0.244 0.242 0.240 0.243

Table 5.5 compares the results from the buy & hold strategy and our system with two,

three and five clusters. It can be seen clearly that our system performs better than

buy & hold with any number of clusters. The best cluster number for CARR, FERG
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and TSCO seems to be three. With three clusters (18 predictors in total), our system

provides the highest Sharpe Ratio of 2.18, 1.66 and 1.60 for CARR, FERG and TSCO,

respectively. However, three is not the best number of clusters for MACF. It provides

a good Sharpe Ratio of 1.65, but two clusters resulted in a Sharpe Ratio of 2.19. As

this is still considered good, and three clusters seemed to work better for the other

stocks, we decided to use three clusters in our model. Please note that this is the result

before adding other factors, such as the brokerage fee. Once other factors are taken

into account, these results may change, which we will discuss in the next experiment.

5.5.1.2 Discussion

This section investigated the number of clusters with a view to improving the perfor-

mance of our system. For some stocks such as FERG and TSCO, having two clusters

is not enough, and so we designed an experiment to add more clusters. Please note

that even though two clusters did not work very well for TSCO and FERG, our scoring

system was still able to cope well with them, as can be seen in experiment 3. There-

fore, without increasing number of clusters, our model was still good overall. However,

researching different numbers of clusters might be helpful and improve our system’s

performance. To perform this experiment, we set every condition up in the same way

as experiment 3, except for the number of clusters. The number of clusters in this

experiment ranged from 1 to 10. The key metric to evaluate our system’s performance

was the Sharpe Ratio. After running the experiment with different numbers of clusters,

we found that the Sharpe Ratio tends to increase with the number of clusters, but only

to a certain point after which it starts to decline or varies more widely between stocks.

This is partly because when the number of clusters is high, a lot more predictors are

involved. For example, if we have 10 clusters and 6 machine learning algorithms, there

will be 60 different predictors in total. This could be very confusing for both the scor-

ing system and the predictors, as can be seen in our results. We have also discussed

how creating too many clusters may result in overfitting - predictors become too spe-

cialised to the past data on which they have been trained. After careful consideration

of our results, we decided to go with three clusters, which seems to provide the best

result in terms of having a high Sharpe Ratio, low standard deviation, and low time

consumption.

The results obtained from this experiment are very good but we have not yet concluded

the development of our trading model. The results up until this point lack a degree

of realism since we are yet to consider other factors, such as trading fees. Therefore,
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in order to simulate our trades as realistically as possible, the next section will include

such real-world factors in the investigation.

5.5.2 Signal Optimisation

In all previous experiments, we followed every signal the trading system provided with-

out considering factors such as the starting capital (initial funds) an investor has to

trade with, and trading fees which must be paid. Therefore, the results for some stocks

may show unrealistically high profits, so we expect some changes to the results when

we account for these factors. For example, our system provided a very good profit

of 243% over two years (2013-2014) for CARR stock when using three clusters. The

Sharpe Ratio was also good (2.18). These results can be seen in table 5.5 on page 210.

The details of these trades compared to the buy & hold strategy can be seen in table

5.6 below:

Performance Buy & Hold strategy Our model

Sharpe Ratio 0.77 2.18
Profit (%) 62.38 243.43

Maximum Drawdown -26.32 -25.75
Stdev 0.302 0.292

Number of Trades 2 202

Table 5.6: Performances summary of CARR comparing between our model and the
buy & hold strategy during two years testing period (2013-2014)

From table 5.6, the number of trades made by our model is much higher than the buy

& hold, which simply buys at the beginning of the period and sells at the end. If the

investors followed every signal our model provided, there would be 202 trades (which

means positions are opened or closed every other day), which is a high number over

two years considering our focus is on retail traders. The details of these trades are

shown in figure 5-50.

Figure 5-50 shows all trades our model made for CARR during 2013-2014. This figure

relates to the results of CARR in table 5.6. Please note that in this figure, the cumula-

tive return is shown in logarithmic scale but the profit in table 5.6 is scaled normally.

The top graph compares the cumulative logarithmic return of our model (green) and

the buy & hold strategy (black). Our model shows a much better result than the buy

& hold. Details can be seen in table 5.6. However, the number of trades our model

made was much higher than the buy & hold. The signals from our model are shown in

the bottom graph. It provides and switches between trading signals (-1, 1 and 0) very
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Figure 5-50: Results of all trades for CARR from our model during 2013-2014

often. Following all these signals, an investor will change position 202 times within two

years, which in reality may lead to trading fees having a large negative effect on the

investor’s return, especially if they started with only a small amount of funds.

In this research, the representative brokerage fee (trading fee) is set to a flat rate of

£3.79 per transaction (both buying and selling), calculated by averaging the brokerage

fees of 16 well-known retail brokerages (details show in section 4.5.2 on page 107).

Therefore, the total brokerage fee over the test period for our system, which made 202

transactions over two years, is £765.58. Trading this often is only feasible if with a

large amount of starting capital, otherwise this amount in fees may be too expensive

and will greatly diminish an investor’s compound return over their investment lifetime.

Some examples of how trading with different amounts of initial funds affects the result

can be seen in the next section.

5.5.2.1 Comparison of different initial funds

According to the results in table 5.6 on page 212, if an investor follows all 202 trades

the system suggests, the fees that the investor ends up paying amounts to £765.58.

This is probably fine if they start with a large amount of capital. For example, the

visualisation of results with £10000 starting capital can be seen in figure 5-51.

Figure 5-51 shows the result when a trader has initial funds of £10000. In the following

example, we will show the results of trading under the same conditions (strategy and
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Figure 5-51: Result from signal creation of CARR when the initial fund is £10,000

dataset) with a smaller amount of initial funds.

Figure 5-52 shows the result of CARR with starting capital of £1000, which is far

less than the initial funds in the previous example (£10000). This result is much

worse than the previous result in Figure 5-51 on page 214. When starting with only

£1000, following all the trading signals results in a decreased profit of 17.28% (instead of

105.13% as in the previous example starting with £10000). The Sharpe Ratio therefore

also decreases to 0.38 (from 1.73 previously). These two values clearly indicate that

trading performance decreases as a direct result of trading fees when starting with less

capital.

These two examples were tested under the exact same conditions, the only changed

variable being the amount of initial funds. The only reason that the second experiment

provided a worse result than the first is because of the brokerage fee effect. As the

total number of trades of these two experiments was the same, the amount paid in

brokerage fees was also the same for each, £765.58. The second experiment initially

had only £1000 but still had to pay £754.21 in fees, while the percentage profit and

the volatility of the trades stayed the same. The result was that the profit the investor

starting with the lower amount made was not enough to compensate for the brokerage
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Figure 5-52: Result from signal creation of CARR when the initial fund is £1000

fees, which cannot be avoided. Even though at the end of the trading period the balance

increased, the gain was only slight as it was greatly diminished by the fees. We have

only presented the results here over the relatively short testing period, but over their

lifetime an investor expects to compound their trading returns by reinvesting profits.

Over a long time horizon, profit unable to be compounded because it is paid back in

brokerage fees can make a huge difference to an investor’s returns.

A detailed comparison of the trading results with £10000 and £1000 can be seen in

table 5.7.

Table 5.7 shows all of the results from the Buy & Hold strategy and from our strategy

with initial funds of £10000 and £1000. The Buy & Hold strategy has a positive Sharpe

Ratio of 0.77, indicating that this strategy ends up with a profit after taking risk into

account. The exact profit made was 62.38%. This number is the profit calculated

from the accumulated logarithmic return over the whole trading period without taking

brokerage fees into account.

The results from our model with initial funds of £10000 and £1000 are shown in the
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Performance Buy & Hold Our model Our model fund Our model
(no fee/fund) (£10000) (£1000)

Sharpe Ratio 0.77 2.18 1.73 0.38
Profit (%) 62.38 243.43 105.13 17.28

Maximum Drawdown -26.32 -25.75 -19.12 -21.1
Stdev 0.302 0.292 0.226 0.227

Number of Trades 2 202 202 202
Brokerage fee £7.58 £765.58 £765.58 £765.58

Table 5.7: Performances summary of CARR comparing between our model and the
buy & hold strategy

third and fourth columns. With initial funds of £10000, our model performs very

well, with a Sharpe Ratio of 1.73 and profit of 105.13%. This profit is calculated after

taking brokerage fees into account. However, even though our model works very well

with a high amount of money to start with, it does not perform well with lower initial

amounts. With only £1000 to start with, this model ended up with a smaller profit

of 17.28% over the test period of two years. The Sharpe Ratio decreases to 0.38. The

performance of our system before including these factors in the experiment is shown in

the second column (shown as our model (no fee/fund)).

To solve the problem of trading too many times without sufficient initial funds, signal

optimisation is proposed in the following section.

5.5.2.2 Signal Filtering

Having observed the problem of brokerage fees when starting with a small amount of

funds in the previous section, this section proposes a method for signal optimisation.

The signal optimisation process will improve the quality of trading by filtering out weak

signals and will decrease the effect of brokerage fees, since fewer trades will be placed.

This signal optimisation module takes into account the initial funds that an investor is

starting with, then performs grid search to find the optimal point to filter the signals.

The details of this method can be found in chapter 4, section 4.5.4, on page 111.

In order to perform the signal optimisation, we need a development set (or dev set).

We took the first half of the test set to be our dev set, starting from the beginning

of 2013 until the year’s end. The test set therefore starts from the beginning of 2014

through to the end of the year. The dev set is used for signal optimisation by running

grid search in order to obtain the parameters for filtering out signals for the test set.

216



Before optimising, we present our system’s and the buy & hold performances on the

test set for CARR in figure 5-53.

Figure 5-53: The comparison of our model’s result and the buy & hold performance of
CARR for the year 2014

For the year 2014, our test set in this experiment, our scoring system performed better

than the buy & hold, which can be seen from the top graph of figure 5-53. The green

graph (scoring system) is much better than the black graph (buy & hold), especially

for the second half of the year. Our model ended up with 28.61% profit and a Sharpe

Ratio of 0.79, while the buy & hold only obtained 1.07% profit with a 0.04 Sharpe

Ratio. However, this result is before taking the fee and initial funds into account. The

question remains whether our model’s performance is still good once the brokerage fee

and limited initial funds of £1000 and £10000 are accounted for.

Figure 5-54 and 5-55 show the results from our model after adding a brokerage fee of

£3.79 to every trade and setting the initial funds to £1000 and £10000, respectively.

Figure 5-54 clearly shows that with initial funds of £1000, our model cannot make a

profit on CARR during this test period (the year 2014). Four graphs are shown in the

results. The top graph shows the closing price of CARR during the year 2014. The

green highlighted areas represent long positions (from when a stock is bought until it

is sold) which correspond to the second graph below. The second graph shows the

signals from our system. The third graph shows the balance in the account, starting

with £1000 and ending with below £800. Therefore, at the end of the testing period,

the investor would have lost -23.43%. The bottom graph compares the cumulative log

return of our model and the buy & hold.
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Figure 5-54: Result from our model with fee and an initial fund of £1000 (without
signal optimisation)

Figure 5-55 shows results from the same stock, CARR, over the same period and with

the all same conditions as the previous figure except greater initial funds. This iteration

starts with £10000, not £1000 as earlier. The result from the third graph of this figure

clearly shows that our model is able to make a profit (10.63%) when starting with

more money, as we expected. Because the trading fee is flat, it now shows a smaller

percentage of the amount invested in each trade, so we expected the model to achieve

a higher profit. Details of the comparison between buy & hold and our model before

and after accounting for brokerage fees can be seen in table 5.8.

Table 5.8 shows the comparison between the buy & hold strategy and our model under

three different conditions. 1) Our model without taking any fees or initial funds into

account, 2) our model with the brokerage fee included in every trade and initial funds of

£1000. Finally, 3) our model with brokerage fees and initial funds of £10000. From the

result of buy & hold, we see that this stock does not perform very well over this period,

only ending up with a tiny profit of 1.07%, which is a very low return considering the

stock had to be held for the whole year. Such a return is comparable to that of far

less-risky cash in bank account. However, our model is able to obtain a much higher
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Figure 5-55: Result from our model with fee and an initial fund of £10000 (without
signal optimisation)

Performance Buy & Hold Our model Our model Our model
(no fee/fund) (£1000) (£10000)

Sharpe Ratio 0.04 0.79 -1.21 0.46
Profit (%) 1.07 28.61 -23.43 10.63

Maximum Drawdown -26.32 -25.75 -27.71 -19.17
Stdev 0.296 0.295 0.232 0.23

Accuracy 52.5 57.45 57.45 57.45
Number of Trades 2 96 96 96

Brokerage fee £7.58 £363.84 £363.84 £363.84

Table 5.8: Performances summary of CARR comparing between our model and the
buy & hold strategy for the test period of year 2014

profit of 28.61%, although this is the profit before taking the fees and initial funds into

account and is therefore unrealistic.

Once we try to simulate these trades closer to the real world by adding the fees and

initial funds, the results changed completely. In the case of only having £1000 to start

with, the model ends up with -23.43% loss, instead of almost 30% profit as mentioned

earlier. This is because of the brokerage fee effect. Every time the model produces

a trading signal that is acted upon, there is a brokerage fee the investor has to pay.
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During this trading year, there are 96 transactions, which means that £363.84 were

paid in fees. That’s almost 40% of the money already gone. There are not enough

opportunities to make a profit with the leftover money. Therefore, the model results

in a loss. However, with £10000 to start with, our model is able to make money and

end up with 10.63% profit. This is not considered to be a big gain, but is considerably

better than the buy & hold strategy. Still, our model did not manage very well with

this stock, as can be seen from the top graph of figure 5-54 or 5-55. There were five

occasions during this testing period that our model bought the stock and its price

subsequently went down (represented by the big green highlighted areas). The reason

that our model could not cope very well and gave out the wrong signals is because this

testing period was different from and more fluctuated than before, as can be seen in

figure 5-56.

Figure 5-56: The closing price of CARR from 2000 to 2014

From figure 5-56, it can be seen the testing period of 2014 has more fluctuation than

in previous years. Since our predictors were trained on a period with less fluctuation,

it is possible that the model experienced some difficulty dealing with the fluctuations,

although with enough initial funds it did still provide a reasonable profit. When there

is a problem with the fluctuation of the data, the signals can be all over the place and

there may be more wrong signals than usual. If we follow every signal, the model’s

performance may be poor, especially when starting with less money to trade. Therefore,

performing signal optimisation can be helpful in this situation, since it will ideally filter

unprofitable signals or those that result in little or no profit after fees. By doing this,

we expect our model to be able to make more profit, even with less initial funds.
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Examples of the results from the signal optimisation process with initial funds of £1000

and £10000 are shown in Figure 5-57 and 5-58.

Figure 5-57: Trading’s performance after optimisation of CARR with an initial fund
of £1000

We have shown results from our system before and after the signal optimisation in two

cases, with initial funds of £1000 and £10000.

Firstly, the results with £1000 initial funds. Without signal optimisation, our model

performs badly when starting with £1000. This can be seen in figure 5-54 on page 218.

Our model had to take all the trading signals, resulting in 96 trades in total. Finally,

it ended up with a negative Sharpe Ratio of -1.21 and a -12.43% loss. The top graph

of this figure shows there were wrong trades, such as after 2013-03, when two long

positions should not have been opened since the price subsequently went down during

those periods. Another two incorrect long positions were taken during 2014-09 and

2014-11. These incorrect signals lead to big drops as can be seen in the third graph of

the same figure. Next, we will see if signal optimisation would help filtering these kind

of signals and bring us back to profit.

Figure 5-57 shows results from the same conditions as figure 5-54 on page 218 but with

signal optimisation included. It can be seen that at the same periods in the two red
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Figure 5-58: Trading’s performance after optimisation of CARR with an initial fund
of £10000

boxes, the number of trades is reduced when signal optimisation is performed. There

will be fewer changes of signals, as seen by the longer green areas in this result compared

to the previous result.

Figure 5-58 shows the result after the signal optimisation for the same conditions, for

example starting with £1000. Unfortunately, the signal filtering method was unable to

get rid of the bad signals we mentioned above, as can be seen in the two red rectangle

boxes. These signals were strong signals (signals with high expected returns) so the

filtering model did not filter them out. However, the filtering helped a little by making

the first wrong position shorter (the first long position in the first red box). This means

that it actually got rid of the initial buy signal so this incorrect position started a little

bit later, resulting in losing less money.

Even though the filtering module could not get rid of the wrong signals mentioned

above, it still ended up with a much bigger profit of 24.81% (instead of losing -23.43%).

This is because of two reasons. Firstly, the system is able to get rid of bad small trades.

As can be seen from the top graphs, the small and noisy signals are filtered out. The

number of times the system has to change position decreases from 96 to only 32 times,
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incurring far less trading fees as well as avoiding some losses. This is the first reason

that the optimisation worked well. The second reason is that the optimisation module

is able to make profitable trades be held for longer. For example, when the stock price

is trending generally up, it is often best for our system to buy on day 1 and hold the

position while the trend continues. However, there are a few sell signals that come

during these times and without filtering our system will follow these and close the long

position. Then, after the turbulence, it will buy again in order to ride the trend again,

but having lost some of the profit in the intervening period when it closed the position.

We found that signal optimisation can be helpful with this situation by filtering out

the small noisy signals. If the sell signals are not too strong, they will be filtered out

and our profitable trade will continue (thereby not incurring more fees).

The results of the second situation are very positive, so we will show the results before

and after optimisation in figure 5-59 for ease of comparison.

(a) Before signal filtering

(b) After signal filtering

Figure 5-59: The signals for CARR before and after performing signal optimisation

Figure 5-59 shows the result of our system before and after performing signal optcom-

parison withimisation. The top graph (a) shows the result before signal filtering. The
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red rectangle shows a situation where the system started to catch an upward trend

and correctly bought the stock. However, not long after opening the position, a sell

signal was received. Without optimisation, it only takes one sell signal for the system

to close the buy position, after which it will hold cash until another buy signal is re-

ceived. In this case, the second buy signal came too late, at the end of the upward

trend. Therefore, the system missed a good profit opportunity.

The result after signal optimisation is shown in the bottom graph. Over the same

period of time (shown in the red box), the system was able to catch the trend at the

very beginning, opening a long position by buying the stock. As we saw from the top

graph, a sell signal comes shortly after this. However, in this case our signal filtering

got rid of that signal. So, the stock was held until the end of the upward trend. This

led to a large profit in this case.

From the results shown above, we see that signal filtering is very helpful, especially

when the investor has limited funds such as only £1000 to start with. It helped results

change from losing over 20% to gaining 24.81%. The optimisation process also improved

the trading performance of our system when starting with initial funds of £10000. The

comparison between the result before and after signal optimisation with £10000 can

be seen in figure 5-55 on page 219 and figure 5-58 on page 222, respectively.

Comparing between these two figures, it can be seen clearly that the results after

optimisation in figure 5-58 are significantly better than before. The two bottom graphs

clearly show more profit after optimisation. A comparison of the details of these two

cases can be seen in table /reftab: Ex evaluation CARR realTest after optimisation.

Performance £1000 £10000
(Before) (After) (Before) (After)

Sharpe Ratio -1.21 0.99 0.46 1.47
Profit (%) -23.43 24.81 10.63 36.63

Maximum Drawdown -27.71 -18.2 -19.17 -17.12
Stdev 0232 0.236 0.232 0.225

Accuracy 52.5 80 57.45 69
Number of Trades 96 32 96 80

Brokerage fee £363.84 £121.28 £363.84 £303.2

Table 5.9: Performance summary of CARR comparing our model and the buy & hold
strategy after optimisation for the test period of the year 2014
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Table 5.9 shows all of the improvements of our system after performing signal optimi-

sation. For both cases, starting with initial funds of £1000 and £10000, profits improve

after optimisation. For £1000, the profit increases from -23.43% to 24.81%, as well as

the Sharpe Ratio which improves from -1.21 to 0.99. This is similar to the result from

starting with £10000. Profit increases from 10.63% to 36.63%.

When starting with less money, our signal filtering is helpful in that it decreases the

number of trades and therefore fees. In the case of having initial funds of £1000, the

number of trades after optimisation decreases from 96 to only 32. This makes the

fees much less, decreasing from £363.84 to £121.28. However, the number of trades

goes up when starting with more money. With £10000 initial funds, the number of

trades increases to 80 even after signal filtering. This is because our system performs

filtering by taking the amount of money an investor has into account. Having more

money means investors suffer less from the impact of fees and make more trades so

as to have more opportunities to profit. The signal filtering module tries to find the

optimum point where investors have the maximum Sharpe Ratio given their original

money. However, please note that the module will not guarantee maximum accuracy.

Taking more trades could cause a decrease or increase in accuracy as can be seen from

the accuracy when trading starts with £10000. When the initial funds increase from

£1000 to £10000, the signal filtering module will attempt more trades, increasing from

32 to 80 times. Even though this makes more profit and gives a higher Sharpe Ratio, the

accuracy decreases from 80% to 69%. However, as we have mentioned in the discussion

section (5.4.1 on page 192), accuracy is not our main interest and we do not consider

the decrease in accuracy to be a problem.

Before moving to the discussion section of this experiment, we will show one more

example of our system’s performance before and after performing signal optimisation.

We will show the result from FERG. The conditions of the test are the same as those

we used to run the experiment on CARR. The dev set is the whole year of 2013 and the

test set that we are going to use to compare results is the whole year of 2014. There

will be two values of initial funds, £1000 and £10000. The results can be seen in table

5.10.

Table 5.10 shows the comparison of FERG’s results for the buy & hold strategy and our

model with different conditions, which are our model before adding fees and the initial

funds, our model with initial funds of £1000 before & after optimising the signals and

our model with initial funds of £10000 before & after optimising the signals.
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Table 5.10: Performances summary of FERG comparing between our model and the
buy & hold strategy for the test period of year 2014 after optimisation

Performance Buy& Hold Our model £1000 £10000
(No fee/fund) (Before) (After) (Before) (After)

SR 0.41 1.71 -0.75 1.59 1.33 1.59
Profit(%) 7.62 38.83 -8.63 19.48 17.11 19.48
Max DD -14.47 -13.54 -11.39 -6.56 -7.4 -6.56

Stdev 0.178 0.175 0.121 0.113 0.119 0.113
Acc 49.6 57.37 57.37 60 57.37 60

Trades 2 68 68 40 68 40
Fee £7.58 £257.72 £257.72 £151.6 £257.72 £151.6

The buy & hold strategy for FERG in this testing period made a profit of 7.62% with

a Sharpe Ratio 0.41, which is not very much. When our model traded this stock,

the model provided a much better result than the buy & hold, as shown in the third

column. The Sharpe Ratio increased to 1.71 while the profit increased to 38.83%.

However, this is the unrealistic result before taking the brokerage fees and the initial

funds into account. To get more realistic results, we have included a £3.79 brokerage

fee for every trade and set the initial funds to £1000 and £10000.

For each amount of initial funds, we have shown the results before and after the signal

optimisation process. With £1000, the return goes from a -8.63% loss to a 19.48%

profit. The Sharpe Ratio also increases from -0.75 to 1.59. These are very good results

given the initial money is only £1000. The signal optimisation is able to filter out bad

signals, resulting in the number of trades decreasing from 68 times to only 40.

However, when more initial funds are provided, such as £10000, the number of trades

remains at 40. The accuracy and the standard deviation also did not change. This

suggests that all the trades were the same even after adding more money. This will

clearly lead to more profit and a greater Sharpe Ratio as it is just the same trades as

before but with more money. Ideally, putting more money should allow an investor to

trade more often. However, this is not the case here. The reason that the number of

trades did not increase when starting with more money here is that the noisy signals

are too weak (signals with very little expected return). The optimisation module did

not find them worth trading even with more money. This suggests that the optimal

number of trades for FERG in 2014 was 40 times with initial funds between £1000 and

£10000.
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5.5.2.3 Discussion

This experiment shows the importance of filtering signals out, especially for individual

retail investors. Since this is the audience this research focuses on helping, this process

is of great importance and is necessary to include in our trading system. The filtering

process helps optimise the number of trades for each individual trader. The number

of trades will be adjusted according to the initial fund that investors start with. More

funds means the investor is able to take more trades. One the other hand, when an

investor starts with limited funds, the number of trades will be low. In this section,

we showed some examples of the results to demonstrate this conclusion. Besides those

presented here, we performed the experiment on each stock with different initial funds,

raging from £1000 to £10000, the results of which will be shown in the next chapter.

5.6 Summary

This chapter described the experiments we conducted as we developed our model step-

by-step. There were two sets of experiments in this chapter. The first group comprised

the three main experiments, related to the development of our central idea, the scor-

ing system. Experiment one started by testing our initial hypothesis that multiple

predictors would be better than a single predictor. Experiment two dealt with how

multiple predictors could work together and removing look-ahead bias from the first

experiment in order to make system more realistic. After confirming the advantage of

having many predictors, experiment three investigated the most essential part of our

trading system, which is the scoring mechanism. This experiment aimed to build an

effective scoring system which could manage the cooperation of predictors effectively.

The final design of the scoring system was obtained after this experiment. Finally, the

second set of experiments tested some system adjustments: cluster selection and signal

optimisation. We call these adjustments only since they improve the performance of

our model but do not affect our central scoring system. The system would still work

without performing these last experiments, but it would perform worse.

During these experiments, we encountered the look-ahead bias a few times. Initially,

this was deliberately included to test the validity of our multiple predictors idea, but

at one point it did appear by mistake. This type of bias can make the results very

different. Therefore, it worth mentioning before moving to the next chapter. The

intentional bias has been discussed at length in experiments one and two, especially in

experiment 2 on page 147. Here, we will only discuss the potential effect of this bias
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that could have happened in another experiment, that of the number of clusters, 5.5.1

on page 196.

In this experiment, we investigated the best number of clusters for our system. We

found that increasing the number of clusters will help our system but only up to a

certain point. Once the number of clusters is too high, our results start to decrease

and exhibit more fluctuation across different stocks. The results we have just described

can be seen in 5.5.1 on page 196

However, had we accidentally included the look-ahead bias in this experiment by in-

cluding the price of the next day in the calculation of the mean and standard deviation,

the results would have turned out very differently. What follows are the results with

look-ahead bias included when experimenting on the number of clusters from two to

five. These results come from TSCO stock (the same stock as shown in 5.5.1). Every

setting is the same as in section 5.5.1, except that in the process of selecting the pre-

dictor, the mean and standard deviation are calculated by including the value from the

next day.

It can be seen from figure 5-60 that something has gone wrong. We realised right away

once this kind of result happened; it was just too good to be true. We expected that

the performance could only increase with the number of clusters up to a certain point

because of overfitting, but here, as the number of clusters increases (in the left figure),

the results from our trading model go up rapidly (the green line from the graphs on the

right side). With the number of clusters increasing from two to five, the Sharpe Ratio

has increased from about 1.5 to 4.0 and could keep on going thanks to the impact of

look-ahead biases, but the results would be impossible to achieve in real life.

We have already seen that the look-ahead bias can have a big impact on the results,

so below we briefly describe the measures we took to avoid this bias.

• Separate data: Our data was separated into three files: the training, dev and test

sets. The training set was only used to train the predictors, while the dev and

test sets were used for creating the system and testing our model.

• Separate code: We separated our code into multiple files and functions. The code

we used to train our predictors was separated from the others. The training code

will read the training set and train predictors. Then, the trained predictors will

be saved separately, one file for one predictor. Therefore, the predictors are 100%

certain never to have seen other parts of the data. Once the system wants to

predict, the predictors will be read from files by the testing code.
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• Separate calculation: To prevent miscalculations that might include the look-

ahead bias, in the testing code, we only read data up to the close of the day the

signal is generated (the day before order execution) and calculate the mean and

standard deviation daily to make sure that only data up to the present day has

been included in the calculation.

• Other settings: We were also careful about normalisation. As some of machine

learning models are very sensitive to the scale of data, such as k-means clustering

or SVR, we performed normalisation on the training set, which was separated

from other parts of data. Then, we saved our normaliser into a file. When it

came to the testing time, we read the normaliser and used it to adjust our testing

data (only adjust, not recalculate: in other words, transform but not fit the model

again). This method makes sure that the normalisation is calculated (or fits) only

on the training data.

Given the methods we selected, we are certain that our model was not exposed to any

look-ahead bias. Therefore, the results we have shown are correct. The only possible

small difference that could affect our results is the simulation conditions, such as the

fees. There might be other type of fees that an investor needs to pay - such as stamp

duty, a tax paid when purchasing a share in the UK (excluded in this research because

it may not apply in other countries, while trading fees are universal)- or the amount of

fees may be different from our program since we only considered an average fee when

running the simulation.

The result comparison section 5.4 on page 186 compares all the methods we investi-

gated, which are six individual predictors and 4 ensemble-based strategies. The results

from these strategies are presented in terms of profit, Sharpe Ratio, maximum draw-

down, accuracy and standard deviation. The conclusions of our main experiments (one

to three) can be found shortly after that in section 5.4.1 on page 192. After that, we

moved onto experiment four, which looked at other system configurations to improve

performance and simulate real-world trading systems. From all experiments, we con-

cluded the final design of our trading system, which can be seen in chapter 4 on page

88. This design will be used in the next chapter where we evaluate our system. The

system will be tested with a lot more stocks to ensure that the design works well for a

variety of stocks.
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(a) Two cluster (b) Result of tow clusters

(c) Three cluster (d) Result of three clusters

(e) Four cluster (f) Result of four clusters

(g) Five cluster (h) Result of five clusters

Figure 5-60: Example of TSCO with 2-5 clusters once biases included
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Chapter 6

System Evaluation

In this chapter, the performance of our model is shown on different stocks.

6.1 Key metrics for system evaluation

In this section, each stock from the previous section will be used to evaluate the per-

formance of our trading system. There are several metrics for identifying model perfor-

mance but the most important one is the Sharpe Ratio as this value already includes

two main important aspects of the trading process: profit and risk. A system’s perfor-

mance cannot be judged only by how much profit it has made. One cannot simply say

high profit, high performance because it does not matter large the profit your system

can make if investors have to take too much risk. In such cases, it is more likely that the

investors will run out of funds before getting rich. Therefore, the Sharpe Ratio, which

is also known as the “Risk adjusted return”, is considered to be the most important

performance evaluation feature in this project and in the investment area. Besides the

Sharpe Ratio, several other metrics will be measured. The details of all the metrics are

as follows:

• Sharpe Ratio (SR): Also known as Risk Adjusted Return. This value is the most

important for the system evaluation process. It adjusts the return by the risk

that an investor has to accept to achieve it. The detail and equations of SR

calculation can be seen in section 2.3.4 on page 42.

• Profit: This is the annual return or yearly return. This value is one of the basic

metrics in system evaluation. However, profit taken on its own may not be reliable
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as more profit does not always indicate a better system. The risk of the system

needs to be taken into account as well. Annual profit calculation detail is shown

2.3.4 on page 42

• Drawdown (DD): This is the decline in equity between a successive peak and

trough. In this project, we will calculate the maximum drawdown, which is the

largest peak-to-trough decline over a given period of time. Therefore, drawdown

is the loss at a specific time and maximum drawdown is the biggest loss of the

whole trading period. This value is important because a bigger drawdown means

that the system will need more time and money to recover from the loss. More

details of drawdown can be seen in Figure 2-4 on page 48.

• Volatility: This is the key metric to evaluate risk within the system. The volatility

is calculated from the standard deviation of the return. This value will identify

the stability of your system. In this project, the annual volatility will be taken

in to account.

• Fee: This is one of the most important considerations for traders, especially

traders with less funds to start with. THe fee is the price that every trader has

to pay to their broker. Therefore, it can be called a brokerage fee as well. Every

time a trader opens or closes his/her position, a fee is paid to the broker for the

execution of the order. There are two types of brokerage fee which are flat-rate

or percentage-rate fees. A percentage fee is normally applied to the institutional

investors or the investors with a very large amount of funds, while a flat-rate fee

is the normal fee for an individual investor. As this research aims to be used by

individual investors, we will only use a flat-rate fee. Throughout this research, a

fee of 3.79 will be paid for every opening or closing a position. This fee is taken

from the average of 16 popular brokers [92], as mentioned in chapter 5 section

4.5.2 on page 107.

6.2 Experimental results on 11 selected stocks

6.2.1 Datasets

In order to evaluate our model, we have selected variety of stocks from different sectors,

ranging from food producers, retailers, general industrial, construction and electronics

to computer and technology compamies. These stocks are mainly from the UK (London

stock Exchange) and some of them come from the well-known companies in America
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(NASDAQ and NYSE markets). The list of stocks that have been selected can be seen

in table 6.1 on page 233.

Symbol Name Detail Market

CARR.L Carr’s Group plc. Food producers LON
TSCO.L Tesco plc. Multinational groceries LON
MKS.L Marks & Spencer Group plc. Multinational retailer LON

MACF.L Macfarlane group plc. General Industrials LON
FERG.L Ferguson plc. Industrial suppliers LON
COST.L Costain Group plc. Construction and Materials LON
OXIG.L Oxford Instruments plc. Electronic and Electrical Equipment LON
SXS.L Spectris plc. Electronic and Electrical Equipment LON

D4T4.L D4T4 solutions plc. Software and computer service LON
GOOG Alphabet Inc. Multinational conglomerate NASDAQ
MCD McDonalds Fast food company NYSE

Table 6.1: Stock list

The reasons we selected stocks from a wide range of business sectors is to be able to

evaluate our model against a variety of stock characteristics. Figure 6-1 shows the

closing prices from the year 2000 to 2018 of all the stocks we mentioned in table 6.1

above.

As can be seen from Figure 6-1, the stocks can be grouped based on three different

characteristics, and they were selected specifically because of this. The top group, sub

figures (a) - (c), contains stocks have generally shown an upward trend over the given

period. MCD and GOOG have very clearly shown an increasing trend over almost all

of the period, while SXS.L exhibited more fluctuations but in general it also shows an

increasing trend.

Sub figures (d) - (g) shows the closing prices of stocks with up and down characteristics.

The first two stocks, MKS.L and TSCO.L, are more fluctuated, which can be seen from

the prices going up and down all across the period. The remaining two stocks, COST.L

and FERG.L, also have fluctuating prices but less so. These two stocks mainly go up

and down for two big cycles.

The final group of stocks are shown in sub figures (h) - (k). These are stocks which

have an uncommon characteristic. They have a long period of stability before the prices

start to change. The first three stocks, CARR.L, MACF.L and OXIG.L, were stable

for more than half the time, then the prices started shooting up and down. Therefore,
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(a) MCD (b) GOOG (c) SXS.L

(d) MKS.L (e) TSCO.L (f) COST.L

(g) FERG.L (h) CARR.L (i) MACF.L

(j) OXIG.L (k) D4T4.L

Figure 6-1: Stock’s closing price data

the predictors will be fitted with a lot of stable prices and have to perform predictions

when the prices have different characteristics (as we train our predictors with the data

from years 2000-2014). The last stock, D4T4, is a little different as it starts with a big

increase and decrease in price. However, after the first year, it goes into a long period

of stable pricing, as do the other stocks in this group.

In this section, the results from the 11 stocks mentioned in table 6.1 will be illustrated in
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order to show the trading system’s performance. Firstly, we select a few stocks to show

in detail and present graphs of their results to offer a better understanding. Secondly,

all of the results from every stock are summarised to show the overall performance of

our system.

6.2.2 Example of Results

6.2.2.1 Datasets

The results of three different stocks will be shown in this section. To demonstrate the

results across a variety characteristics, we have selected one stock out of every group

in Figure 6-1 on page 234.

Firstly, we selected McDonalds which is a company from the first group for which the

price increases overall throughout the period of the dataset (2000-2018). McDonalds

is one of the biggest fast food companies from the United States and has branches

all around the world. This company’s symbol in the market is MCD. Secondly, we

selected Tesco from the second group. Stocks in this group have both upward and

downward trends and are more fluctuated than those in the first group. Tesco is a

well-known multinational grocery retailer from the United Kingdom which has almost

7,000 branches around the world. This company’s symbol in the market is TSCO.

Finally, for the third group which are stocks with uncommon characteristics as they

include some stable periods before the prices start to change and there are many more

fluctuations in the test set than in the training set, we selected CARR’s group plc. It

is a company that focuses on agricultural activities in the UK. It is also known in the

market as CARR.

These three selected stocks are divided into three sets, which are training, validation

and test sets. The test set is to be used for the evaluation of our model’s performance.

Therefore, all of the results in this chapter come from testing our model on the test set

only. Figure 6-2, 6-3 and 6-4 represent the closing price of McDonalds, Tesco and

CARR’s group plc, respectively. The training set is represented in blue, ranging from

2000 to 2014. The validation set is shown in yellow and starts from 2014 to 2016. The

test set is green and encompasses the rest of the data ranging from 2017 to 2018.

The closing prices of MCD which comes from the first group show in Figure 6-2.

Dataset has an upward trend in overall. However, it shows downward trends and

ranging behaviour in the first six years of training, with the price still shooting up
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Figure 6-2: Closing price of MCD from 2000 to 2018

Figure 6-3: Closing price of TSCO from 2000 to 2018
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Figure 6-4: Closing price of CARR from 2000 to 2018

for the rest of this period. The characteristics of this data should be helpful for the

predictors in the training period as they will be able to learn from different trends. As

for the testing period, this displays a combination of upward and downward trends. At

the beginning of 2018 there is a sharply decreasing period which never happened in the

training period. This could be especially challenging for our model.

As for TSCO which represents the second group, closing price is shown in Figure 6-3.

There are a variety of characteristics in the training period. This should benefit the

learning process of our model as the predictors can learn different patterns. TSCO is

very fluctuated overall, except for the obvious uptrend which lasts for about four years

from 2003 to 2007. At the end of the training period, TSCO experiences a massive

drop in the share price of about 58%. In the case that only one predictor is used, this

characteristic of the training set would be very confusing for the predictor. However,

as we have created multiple predictors and trained them with specific clusters of data

representative of different market behaviours, it is not expected that sudden drops

in price should be a problem. However, the validation and testing sets also had a

combination of trends, and at the end of the test set the price drops by about 25%,

so we will see how our model copes with the challenge of drastic price changes. Even

though this drop is not biggest loss for this dataset, it is the biggest in the testing set.
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It will be interesting to see whether our model is able to handle such sudden changes

by selecting the correct predictor(s) to be used during this period.

Figure 6-4 shows the closing prices of CARR’s group plc which is a stock from the

third group. It can be seen that CARR has more different characteristics than the

two datasets in the previous section. The difference between the characteristics of the

training set and the other sets is very clear. The training set has two characteristics

which are going up overall and having little fluctuation in the middle of the period,

meanwhile the validation and test sets are very fluctuated. It is clear that these two

sets are ranging and bullish or bearish periods cannot be identified. The overall char-

acteristic of this dataset could be challenging for our model because the predictors will

be fit for the overall uptrend data and a little bit of ranging. However, the validation

and test sets are almost totally ranging. It would be interesting to see how well our

model can work with this dataset.

6.2.2.2 Buy & Hold strategy

The buy & hold strategy is one of the most common benchmarks against which to

measure performance for every stock. It measures how much an investor could have

got if he/she had bought the stock at the beginning and sold it at the end of the

testing period. Therefore, in this experiment, buy & hold strategy means an investor

had bought this stock at the beginning of 2017 and sold at the end of 2018. The details

of buy & hold performance of MCD, TSCO and CARR can be seen in table 6.2. Please

note that this table shows result without taking the risk-free rate into account to make

it easier when comparing to the results from graphs. However, we realise risk-free rate

is important, therefore the 3% risk-free rate will be added in the comparison tables at

the end of each experiment.

Stock Sharpe Ratio Profit (%) STDEV Max DD Avg DD

MCD 1.07 44.23 0.174 -16.87 -4.18

TSCO -0.19 -8.4 0.231 -28.79 -10.26

CARR 0.01 0.92 0.386 -23.08 -9.43

Table 6.2: Results from Buy & Hold strategy of MCD during the test period of 2017-
2018 (not taking risk-free rate into account)

The buy & hold strategy of MCD shows that the buy & hold already works very well,
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with a Sharpe Ratio 1.07 indicating that this strategy achieves a good profit even after

adjusting for the risk the investor has to take. This high Sharpe Ratio corresponds

with the graph in Figure 6-2 on page 236, which shows that for the testing period,

if an investor bought at the beginning (at a price of around 119) and sold at the end

of the period (at a price around 175), that investor would have made a profit of over

40%.

As for TSCO, the buy & hold for this stock performs poorly, much worse than the

previous dataset (MCD). The resulting loss is able to seen from Figure 6-3 on page

236 which shows that for the testing period, if an investor bought this stock at the

beginning at a price of around 210 pence, they would have sold at the end at a price

around 190 pence. In this case, buy & hold also has a negative Sharpe Ratio of -0.19.

Finally, the buy & hold strategy of CARR show that it does not perform very well but

still performs better than the previous dataset (TSCO) as the Sharpe Ratio and profit

are positive. The Sharpe Ratio of the buy & hold strategy is 0.01, indicating that after

taking risk and brokerage fees into account, buying this stock at the beginning of 2017

and selling at the end of 2018 does not really give an investor any significant return.

The very low Sharpe Ratio (0.01) means an investor almost does not gain or lose after

taking risk into account, even though there is a profit. Therefore, it is not a worthy

investment. As can be seen in Figure 6-4 on page 237, the last price of the testing

period is very similar to the price at the beginning.

These results from the buy & hold strategy in table 6.2 will be used for comparison

with the results from our model in the following section.

6.2.2.3 Results from our model

• The best results

Our model performances on MCD, TSCO and CARR are shown in Figure 6-5,

6-6 and 6-7, respectively.

Figure 6-5 shows the results of MCD from our trading system. There are four

different sub-graphs. The top graph shows the closing price, and the periods of

buying are shown in green. The second graph represents the signals during the

testing period. A signal of 1 means buy or continue to hold and -1 means sell the

existing positions, while 0 means take no action. The buy signals in this graph

correspond to the periods of having this stock in the portfolio on the top graph.
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Figure 6-5: Final result of MCD from the testing period of 2017 to 2018

The third graph shows the balance throughout the testing period. Brokerage

fees are applied. The balance starts from £10,000 and ends with £15,335 which

means gaining over 50% profit. The bottom graph illustrates the comparison of

logarithm returns from the buy & hold strategy (red) and our trading system

(green). Brokerage fees are not applied in this graph. It can be seen that our

system performs a little better than the buy & hold strategy almost throughout

the testing period, and especially at the end of testing. It can be seen that even

though this stock performs, very well which makes it hard for other strategies to

overcome, our model is able to win over buy & hold.

As for TSCO, the result can be seen in Figure 6-6. The second graph shows

the balance throughout the testing period. Brokerage fees are applied in this

graph. The balance starts from £10,000 and ends with £11,669.7 which means

about 16% profit is achieved. This is not bad given this dataset is very fluctuated

and could have been difficult for many machine learning algorithms to predict.

The bottom graph illustrates the comparison of logarithm returns from the buy

& hold strategy (red) and our trading system (green). Brokerage fees are not

applied in this graph. It can be seen that our system performs better than the
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Figure 6-6: Final result of TSCO from the testing period of 2017 to 2018

buy & hold strategy almost throughout the testing period, except for the period

near the end of the testing. As can be seen, from about the 310th day until the

410th day, our model’s performance is worse than the buy & hold because it could

not catch the big increase at the beginning of this period. However, even though

it did not catch this initial rising opportunity, it seems to work well after that

and is able to identify multiple increasing prices, then it starts to outperform the

buy & hold again after day 410.

Even though the model does not perform as well for the dataset as it does for

MCD, it does very well in terms of risk control. The bottom graph compares the

return of our model and the buy & hold, and it can be seen that while the buy

& hold’s log return continues to drop throughout the first 220 days, our model is

able to maintain profitability. This can also be seen in the Sharpe Ratio of our

model, which is 0.59, much better than the buy & hold strategy (-0.19). This

means that our model ends up with a profit after taking risk into account.

Finally, the result from CARR shows in Figure 6-7.The third graph shows the

balance throughout the testing period after taking brokerage fees into account.

The balance starts from £4,000 and ends with £6,848.63; a profit of about 70%.

241



Figure 6-7: Final result of CARR from the testing period of 2017 to 2018

Gaining 70% within such few trades (37 times over 2 years) can be considered

a very good performance. The bottom graph illustrates the comparison of loga-

rithm returns from the buy & hold strategy (red) and our trading system (green).

Brokerage fees are not applied in this graph. It can be seen clearly that our sys-

tem performs much better than the buy & hold strategy throughout the period

of testing and ends up with a much higher profit.

All result comparison between the performance of the buy & hold strategy and

our model can be seen in table 6.3. All results in this table are computed after

taking a 3% risk-free rate into account. In this comparison, we have selected the

results when starting with the initial funds of £10,000, £10,000 and £4,000 for

MSC, TSCO and CARR, respectively, as they provided the best performance.

Then, in the next section, the results when starting with different amounts of

capital will be shown.

The comparison result of MCD after taking 3% risk-free rate into account in

Table 6.3 shows that the Sharpe Ratio from our model is 1.19, which is greater
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Stock Strategy Sharpe Ratio Profit (%) STEDV Max DD Acc Fee
(%) (%) (%) £

MCD Buy & Hold 0.95 38.14 0.174 -16.87 - £7.58
Our system 1.31 53.36 0.166 -16.49 47.27 £432.06

TSCO Buy & Hold -0.32 -14.49 0.231 -28.79 - £7.58
Our system 0.59 16.7 0.133 -9.27 53.73 £511.65

CARR Buy & Hold -0.06 -5.17 0.386 -23.08 - £7.58
Our system 1.98 71.22 0.157 -5.44 63.13 £140.23

Table 6.3: Comparison between buy & hold and our system testing on MCD, TSCO
and CARR during 2017-2018 (not taking risk-free rate into account)

than the Sharpe Ratio of the buy & hold strategy (0.95). The profit from our

model is 47.27%, which is also better than the buy & hold, which provided only

38.14% profit. The annual volatility represents the risk of the trading. Our model

offers less risk and also a smaller drawdown. All of these results are calculated

after taking the brokerage fee into account.

As for the result of TSCO, it can be seen clearly that our model outperforms

the benchmark with a Sharpe Ratio of 0.37 and 10.61% profit, compared to the

benchmark Sharpe Ratio of -0.32 and an -14.49% loss. This supports that our

model performs well in terms of risk control, which is evident from the drawdown

and volatility values. Our model has a much smaller maximum drawdown (-9.27)

than the buy & hold (-28.79) which means that the furthest drop in the balance

of our model is much less than the buy & hold. This means our model is able

to recover from losses much easier and quicker. As for the volatility, our model

also provides less volatility (0.133) than the buy & hold (0.231), which means

that our model’s profit is more stable and therefore less risk than the buy & hold

strategy.

Finally, it can be seen clearly from the result of CARR that our model perform

much better than the benchmark, achieving a Sharpe Ratio of 1.78 (compared to

-0.05, the Sharpe Ratio of the benchmark). Moreover, the model also provides

a much higher profit of 65.13%, compared to the benchmark’s loss of -5.17%.

Not only is our model better than the buy & hold strategy in terms of profit

and Sharpe Ratio, it is also better at controlling the risk, as can be seen from

the values of annual volatility and drawdown. The maximum drawdown of our

model is -5.44, which is much smaller than the drawdown of buy & hold (-23.08).

This means that the maximum drop of our model is only 5.44%, which makes it
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much easier for our model to recover from the loss and return to profit. As for

the volatility, our model also provides less volatility (0.157) than the buy & hold

(0.386) which means that our model’s profit is more stable and less risky.

• Results when having different initial funds

As mentioned, our trading system aims to be used by the individual trader,

therefore different starting amounts of funds should be taken into account. There-

fore, we have experimented using different amounts of initial funds, ranging from

£1,000 to £10,000. The results of MCD, TSCO and CARR can be seen in Figure

6-8, 6-9 and 6-10, respectively.

Figure 6-8: Result summary of MCD at different initial funds

In Figures 6-8, 6-9 and 6-10, the top graph shows the Sharpe Ratio from our

system when starting with different amounts of funds. The Y-axis is the Sharpe

Ration, while the x-axis shows the amount of funds, which ranges from £1,000 to

£10,000. The red dashed-line shows the Sharpe Ratio of the buy & hold strategy,

here considered as a benchmark. The middle graph shows the profit from our

model starting with different amounts of funds. Finally, the volatility or risk can

be seen in the bottom graph.

From the result of MCD in Figure 6-8, the top graph clearly shows that our model
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Figure 6-9: Result summary of TSCO at different initial funds

Figure 6-10: Result summary of CARR at different initial funds
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provides a better Sharpe Ratio regardless of the initial amount of funds. As for

the profit, it can be seen from the middle graph that our model also provides

better profit than the buy & hold strategy. Finally, considering the risk from the

bottom graph, our model also has less risk than the buy & hold strategy. In this

graph, every value of volatility from our model is lower than the volatility of the

buy & hold strategy, which is shown by the red dashed-line.

As for the result from TSCO, the top graph of Figure 6-9 shows that our model

provides a better Sharpe Ratio on the condition of having more than £2,000 in

initial funds. This graph clearly shows that when the starting amount of capital

is only £1,000, the model is not able to profit as there are few opportunities and it

is difficult to profit in highly-fluctuated situations. Also, with less money to start

with, the brokerage fee will have a greater effect on the profit. However, in this

case, adding another £1,000 into the initial funds leads to making a profit with

the model, which can be seen from increase of the Sharpe Ratio. Considering the

profit, it can be seen from the middle graph that our model also provides better

profit than the buy & hold strategy, when starting with initial capital of £2,000

and upwards.

Our model also demonstrates less risk than the buy & hold strategy, as can be

seen in the bottom graph. In this graph, every value of volatility is lower than

the volatility of the buy & hold strategy, which is shown by the red dashed-line.

However, increasing initial funds from £6,000 to £10,000 seems to increase the

volatility of our model as the model tries to increase the number of trades in

order to increase the opportunities to make a profit. In this case, it turns out

that some of the trades our model made were incorrect. However, overall, most

of them were correct, that is why our model still ends up making a profit.

The result of CARR shows in Figure 6-10 which can be seen from the top graph

that our model provides a better Sharpe Ratio than the buy & hold strategy

regardless of initial funds. Starting with only £1,000, the model already provides

a very high Sharpe Ratio (1.66). The Sharpe Ratio continues to increase with

funds up to £4,000, there achieving the maximum Sharpe Ratio of 1.98. In this

case, increasing initial funds beyond this point does not increase the Sharpe Ratio

further.

This is an unusual situation. Mostly, increasing money increases the Sharpe

Ratio. However, our model tries to trade more often as initial funds increase.

The number of trades increases from 37 to 161. The volatility also almost doubles
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(from 0.157 to 0.284). Also, increasing the initial funds from £4,000 to £5,000 also

makes the drawdown bigger, from -1.23 to -5.23. This means that the additional

trades that our model tries to make include at least one incorrect decision. That

trade was unfortunately on a day which saw a big decrease in price. Therefore,

even though the amount of funds is £5,000, and the profit increases to 84.07%

(see the middle graph), the Sharpe Ratio still decreases, according to the risk

from the drawdown of the incorrect decision.

As for the profit, it shows from the middle graph that our model also provides

better profit than the buy & hold strategy regardless of the initial amount of

funds. Considering the volatility in the bottom graph, our model also has less

risk than the buy & hold strategy, as can be seen in the bottom graph. From

£1,000 to £4,000 in starting capital, the volatility is lower than the volatility of

the benchmark. However, after £5,000, our model provides worse volatility than

the buy & hold strategy. This means that investors have to accept more risk

when using our model.

Even having provided more risk from £5,000 onward, the profit also increases.

It can be said that our model has more risk but also more profit. Therefore, at

this point, in order to evaluate whether the risk is worth taking, we have to see

the value of the Sharpe ratio. If the value of the Sharpe Ratio is still high, it

is still worth investing. From £5,000 onward, the Sharpe Ratio values are still

positive. Moreover, the values are more than 1 regardless of the amount of funds.

Therefore, the model still performs well and the investment worth making for

every amount of starting capital.

6.2.3 All Results and Comparisons

Having looked at a few examples of the results in the previous section, this section

presents the results from all datasets in our experiment together with the benchmarks

for comparison.

6.2.3.1 All Results

Table 6.4 shows the results from our model on every stock mentioned in section 6.2.1

on page 232 after taking a 3% risk-free rate into account. For each stock, the Sharpe

Ratio and profit starting with initial funds from £1,000 to £10,000 will be shown. The
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first column lists the stock’s symbol on the market. If the return of the buy & hold

strategy was positive, the symbol will be shown in black. On the other hand, if the buy

& hold is negative, the symbols are shown in red. There are five positive stocks (MCD,

GOOG, CARR, MACF and OXIG) and six negative stocks (SXS, MKS, TSCO, COST,

FERG, CARR and D4T4) in this table. As for the results from our model (Sharpe

Ratio, profit and accuracy), columns are coloured in green if our model outperforms

the buy & hold strategy (benchmark), otherwise columns are shown as normal. The

performance from the buy & hold strategy, here considered as a benchmark. Please

note that the accuracy of buy & hold strategy means the percentage of the days which

the price increases.
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In table 6.4, the buy & hold strategy for every stock is used as benchmark. The

symbols are shown in black or red in the first column. If the Sharpe Ratio of a stock

is negative, the symbol is red. Otherwise, symbols are shown in black. The first two

stocks, MCD and GOOG, perform very well as shown by their respective Sharpe Ratios

of 0.95 and 0.52. This good performance also can be seen in the high profit of 38.14%

and 28.28%. Another two stocks, MACF and OXIG, also have positive Sharpe Ratios

which means that these stocks achieved positive returns from the buy & hold strategy.

The rest of the stocks which are shown in red did not perform very well and ended up

with a loss and negative Sharpe Ratio.

Based on this comparison, we separate stocks into three groups, as follows:

• Excellent (3 stocks) : Stocks that outperformed their buy & hold regardless

of the amount of initial funds. There are three stocks in this group, which are

MCD, SXS and CARR.

• Good (7 stocks) : Stocks that performed better than buy & hold under the

condition of having at least £2,000 initial funds. There are seven stocks in this

group, which are MKS, TSCO, COST, FERG, MACF, OXIG and D4T4.

• Fair (1 stocks) : The stock that could not overcome the buy & hold strategy.

There is only GOOG in this group. We call this group Fair as even though our

model could not outperform the benchmark, the results are still good. All Sharpe

Ratios are positive as well as the profit at every amount of initial funds. This

situation can happen sometimes for stocks with an upward trend as the buy &

hold already performs very well. Therefore, it is not easy to overcome with other

models.

6.3 Experiments on FTSE 100

In this section, we experiment further on more stocks from a wider range of economic

sectors. The objective of this experiment is to ensure that our system works effectively

on stocks with many different characteristics. The group of stocks we have selected

are stocks in the Financial Times Stock Exchange 100 index, also called the FTSE 100

index, as it is a well-known index which comprises a variety of stocks from different

sectors.
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6.3.1 FTSE 100 index

The FTSE 100 index is composed the 100 stocks with the highest market capitalisations

listed on the London Stock Exchange. Stocks in the FTSE 100 operate in many different

sectors which is very good for our experiments. The predictors within our model are

primarily based on movements in the share price, so-called price action or technical

indicators, as opposed to fundamental data to do with the operations of the underlying

businesses. However, a large influence on the behaviour of the share price, trending or

ranging and the extent to which it does so, is the nature of the sector a business operates

in. Some industries are considered cyclical, meaning they profit when the economy is

doing well and decline in worse times. Some industries are growing, others reclining.

Meanwhile some, such as utilities and consumer staples, are considered defensive as

they do not change much. Testing our model across shares in the FTSE 100 index

allows us to identify the share price behaviour of different sectors and see how our

model performs under these influences. FTSE 100 datasets are available for free from

the Yahoo Finance website [38].

6.3.1.1 FTSE 100 index separated by business sectors

There are many different types of business in the FTSE 100 index. The proportion of

stocks in each sector can be seen in figure 6-11.

Figure 6-11: FTSE 100 data sectors

From figure 6-11, it can be clearly seen that the biggest proportion (24%) of stocks

in the FTSE 100 are in the financial sector, reflecting the large impact of the financial
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services sector on the UK economy. Example companies in this sector are Hargreaves

Lansdown plc (HL.L), HSBC Holdings plc (HSBA.L) and Prudential plc (PRU.L).

The second biggest sector in the FTSE 100 is the consumer discretionary sector, which

accounts for 19%. This sector relates to goods and services that are classified as non-

essential by consumers but favourable if they have sufficient income. Consumer pur-

chases in this sector are influenced by the economic situation. Consumer discretionary

goods include automobiles, leisure, entertainment and durable goods. Some examples

are Burberry Group plc (BRBY.L), Flutter Entertainments plc (FLTR.L) and Inter-

national Consolidated Airlines Group (IAG.L).

Another two sectors representing more than ten percent share of the index are Mate-

rials and Consumer Staples (13% and 11%, respectively). The materials sector is the

category of stocks from companies involved in the development and processing of raw

materials. This sector also includes mining, metal refinery, forestry and chemical prod-

ucts. Examples of the companies in this sector are Anglo American (AAL.L), Johnson

Matthey plc (JMAT.L) and BHP Group plc (BHP.L). As for consumer staples, this sec-

tor relates to essential products in everyday life, for example food & beverages, hygiene

and household products. These are the products that most people are unable to cut

out of their lives, regardless of their financial situation. However, tobacco and alcohol

are also included in this sector. Examples of companies in this sector are Coca Cola

HBC AG (CCH.L), WM Morrison Supermarkets plc (MRW.L) and British American

Tobacco (BATS.L).

Apart from those large sectors mentioned above, there are other smaller sectors included

in the FTSE 100, such as Communication (7%), Industrials (7%), Technology (6%),

Utilities (5%), Energy (4%) and Health Care (4%). The complete list of companies in

the FTSE 100 index and sector information can be seen in appendix A Table A.1 on

page 298. It should be noted that sources can differ on sector labels and constituents.

These sector groupings are taken from the London Stock Exchange website [35].

6.3.1.2 FTSE 100 index grouped by performances during testing period

Stocks in the FTSE 100 have delivered both positive and negative returns, which can

be seen in figure 6-12.
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Figure 6-12 illustrates the number of positive and negative return stocks within each

sector of the FTSE 100. These returns are considered within the testing time frame

from the beginning of 2017 to the end of 2018. The x-axis indicates the sector in

the index, while the y-axis shows the number of stocks. It can be seen that there

are a lot more positive than negative stocks in the financial sector (the ratio is 17:5),

which indicates a bullish trend in this sector. On the other hand, for the consumer

discretionary sector, there are more negative stocks (11) that positive ones (5), which

indicates that only about half of the stocks in this sector are making a profit. As for

energy and utilities, there are only positive return stocks within these sectors. However,

there are only 3 and 5 stocks in the energy and utilities sectors respectively that have

made their way into the FTSE 100. Therefore, one can assume that compared to other

sectors, they are not very well-performing businesses.

6.3.1.3 FTSE 100 index separated by the length of becoming public

There are some stocks in the FTSE 100 for which data is shorter than others as they

became public at a later stage. For example, Lloyds Banking Group plc (LLOY.L) is

one of the oldest banks in the UK. They became public on the stock market on the 28th

of December 1995. Therefore, we have plenty of data to train our model. Meanwhile,

Just Eat plc (JE.L) is one of the most recently successful businesses, which only became

public on the 3rd of April 2014. Therefore, we have very limited data on this stock.

For the reason above, we have divided the data into four different groups as shown in

figure 6-13. Firstly, we assigned the stocks that were listed on the stock exchange before

2000 to be in group A. Secondly, we assigned stocks that were listed on the market

after 2003 to group B. Thirdly, the stocks that were listed on the stock exchange after

2010 were placed in group C. Lastly, stocks that have been listed very recently, after

2014, were classified as group D.

The numbers of stocks in each group is shown in figure 6-13. In this research, we

divided our data into three different groups as shown in figure 4-4 on page 91. There

are training, validation and test sets which cover 2000-2014, 2015-2016, 2017-2018,

respectively. For all of the stocks, the validation and test sets are 2015-2016 and 2017-

2018. However, the length of training sets vary as detailed below:

• Group A : Stocks that became public before 2000. There are 76 stocks (31

positive, 45 negative) in this group. The training set ranges from 2000 to 2014.

Therefore, we have more than 10 years of training data for the stocks in this
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Figure 6-13: Number of stocks which overcome their Buy and Hold strategy

group.

• Group B : Stocks that became public between 2004 and 2010. There are 10

stocks (5 positive, 5 negative) in this group. The training set ranges from the

earliest point available from the data. Therefore, for the stocks in this group, we

have at least 5 years of training data but less than 10 years.

• Group C : Stocks that became public between 2011 and 2013. There are 6 stocks

(5 positive, 1 negative) in this group. We have very limited training data, less

than 5 years, for the stocks in this group, but it is still possible to test with our

model.

• Group D : Stocks that became public after 2014. There are 8 stocks (8 positive,

0 negative) in this group. As they are very new companies to be listed on the

stock exchange, we have not got enough data to work with. Therefore, we have

excluded these 8 stocks from the evaluation process.

The full list of all companies which are listed on the London Stock Exchange and

included in the FTSE 100 index can be seen in table A.1 in appendix A section A.1

on page 298. Column Symbol shows the symbol of each stock in the index and the year
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which data begins according to the four groups of data mentioned earlier. The second

column contains the companies’ full names and the last column shows the sector into

which each stock is classified.

6.3.2 Experiment and result analysis

In the previous section, we provided details of the stocks within the FTSE 100. In this

section, how the experiment was prepared and the results of our model on the FTSE

100 will be analysed.

6.3.2.1 Experiment

In preparation for the experiment, the stocks in group D which are shown in figure

6-13 on page 256 were excluded as they became public after 2014, which means the

data is too short to be analysed by our model. After excluding the stocks in group D,

we have 92 stocks left, 41 with a positive return over the testing period from 2017 to

2018, and 51 with a negative return, as shown in figure 6-14.

Figure 6-14: Percentages of positive and negative stocks in experiment

Table 6.5 shows that the excluded stocks comprised two stocks from the financial sector,

three from consumer discretionary and one stock from the communication, technology

and utilities sectors. It can be seen from the table that 3I GRP (III.L) became public

in 2001. The reason it was excluded is not because of the length of the data as with

the others, rather because we could not obtain a complete dataset. Therefore, we will

not experiment on III.L either.
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Sector Stocks Year of becoming public (%)

Financials III.L, SMT.L *2001, 2017
Consumer Discretionary FLTR.L, JD.L, TUI.L 2019, 2018, 2014

Communication AUTO.L 2015
Technology JE.L 2014

Utilities RDSA.L 2018

Table 6.5: Stocks that are excluded from experiment

In the following section, we will analyse the result from the 92 remaining stocks in

order to evaluate the performance of our model. The full details of these results are

shown in appendix A Section A.3 on page 307.

6.3.2.2 Results from all sectors

In this section, the overall result which is calculated from the average of every stock in

every sector will be shown. This is designed to determine whether we should keep all of

the datasets or whether some of them should be excluded, for example group C which

has shorter datasets than the other groups. The results are shown in three different

graphs, as in figure 6-15.

There are two sub-figures in figure 6-15, the top shows the average Sharpe Ratio and

the bottom shows the average profit from every dataset at each different amount of

initial funds. As can be seen, the results from these two graphs have very similar

trends. Both Sharpe Ratio and profit increase with the amount of initial funds. The

most important result that we focus on is the Sharpe Ratio from the top graph as this

value takes both profit and risk in to account.

The top figure shows three different Sharpe Ratio values which are calculated from all

stocks (blue), all stocks excluding group C (orange) and all stocks excluding groups B

and C (green). It can be seen clearly that excluding stocks in group C (orange) does

not result in a significant change to the overall result (blue). Similarly, the graph that

excludes groups B and C (green) also provides similar results to overall (blue). It can

be seen clearly that even though data for the stocks in groups B and C are shorter, they

do not affect the overall result. Therefore, all stocks will be included in the following

sections.

It can be safely said from these results that our model is able to profit on the condition

that investors have initial funds of at least £2000 and that the profit will increase when
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Figure 6-15: Sharpe Ratio and profit of all stocks at different initial fund

the amount of initial funds increases.

The result when starting with only £1000 capital can be seen in the first group of bars

in figure 6-21 on page 269. There four bars represent the percentage of stocks that

overcome the buy & hold strategy (blue), the percentage of stocks that overcome the

market index (orange), the percentages of stocks that end up with a profit (green) and

the percentage of stocks that end up with a loss (red). It can be seen that if an investor

starts with £1000, the probability of having a profit is 58.7% and the probability of

getting a loss is 41.3%. However, even though there is more chance to profit, it still is

not worth an investment when the risk is taken into account, and the average Sharpe

Ratio is a negative in figure 6-15.

Figure 6-16 shows the performance of our model on separate groups only to gain more
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understanding of the individual group’s performance.

Figure 6-16: Sharpe Ratio and profit of each group at different initial fund

There are two sub-figures in figure 6-16. The stocks in group C are new stocks which

have recently become available to the market and have performed very well, hence being

selected to join the FTSE 100 very quickly after arriving to the market. Therefore,

as can be seen in the bottom figure, the red graph which shows the average profit of

stocks in group C is the highest of all. However, looking at the top graph, group C does

not perform very well in terms of the Sharpe Ratio. This means that even though they

are the most profitable stocks, it is not guaranteed that their performance is the best

after adjusting for their risk. On the other hand, stocks in group B seem to perform

better than the others, as can be seen by the high Sharpe Ratio in the top figure and

the stable trend of their profit in the bottom graph. However, there are only a very

small number of stocks in groups C and B (only 6 and 10 stocks) out of the 92 stocks

in the experiment. Therefore, their performances do not affect the overall result, as
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mentioned earlier.

6.3.2.3 Results from individual sectors

In this section, we analyse the results by sector in order to see how well our model works

in specific business areas. The results separated by sector can be seen in Figure 6-17.

This Figure shows the average Sharpe Ratio of each sector, which can be seen in each

bar, with initial funds of £1,000, £2,000, £3,000, £9,000 and £10,000. We show the

results from several different amounts of funds in order to see the results more clearly.

The additional detail of the result from individual sector can be seen in Appendix A

Section A.3.0.1 on page 322
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In Figure 6-17, the x-axis represents different amounts of initial funds (£1,000, £2,000,

£3,000, £9,000 and £10,000), while the y-axis shows the average Sharpe Ratio. There

are 10 different bars in each result, which represent the Sharpe Ratio of each business

sector. It can be seen from the overall results that the average Sharpe Ratio increases

with the amount of initial funds.

Our model seems to do very well in the health sector, which has the highest Sharpe

Ratio regardless of initial funds. There are a number of reasons for this, firstly that

stocks in healthcare sector have low volatility (the volatility of this sector is very low

compared to the other). Secondly, stocks in this sector would have profited well if

bought and held for the duration of the test period (having the highest average profit

and Sharpe Ratio among the sectors). Finally, the average drawdown of this sector

was very small, the second smallest out of all sectors. This combination of attributes

meant our model provided a very good result for this sector.

On the other hand, our model did not perform very well on the financial and commu-

nication sectors, as these two sectors include the majority of low performance stocks.

Moreover, stocks in the financial sector often decreased sharply, resulting in a large

average drawdown. For our model, it is difficult to make a profit with stocks that per-

form poorly (stocks with downward trends) as our model can only go LONG, meaning

buy in expectation of a price increase, or stay in cash when it is expected the price will

decrease. It cannot SHORT in order to profit from a stock price decline.

Starting with initial capital of £2,000 or upwards, our model performs very well in

the utilities sector, even though the buy & hold result of this sector is very bad. This

sector has the lowest Sharpe Ratio and profit. Moreover, its drawdown is very large.

The only positive in this sector is that the stocks are not volatile. This shows that our

model can work well with badly performing stocks if the prices are not too volatile and

even if it has to deal with big drops a few times, it will profit eventually.

Although our model’s results are very good from initial funds of £2,000 onward, it

seems to perform badly when starting with £1,000. This is because when starting with

less capital, the performance will be more greatly affected by the brokerage fees. Also,

the profit will mostly rely on the buy & hold performance of that individual stock, since

fewer trades will be made. As can be seen, when starting with only £1000, the model

tends to lose money in almost every sector. The biggest loss happens in the utilities

sector as the stocks in this sector already perform poorly (the average Shape ratio of

this group is only -2.7 which is the lowest Sharpe Ratio out of all sectors). Another two

sectors that our model performed badly in when the starting capital was £1,000 were
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communication and financial, for the same reason that the stocks in these two sectors

are mostly poorly performing (the Sharpe Ratios of these two sectors are only -1.4 and

-1.16).

On the other hand, our model done well in the technology, health care and energy

sectors, even with only £1,000 of initial funds. This is because these three sectors’

buy & hold performances were very good, resulting in a high Sharpe Ratio and small

drawdown.

In summary, our model seems to correlate with the buy & hold strategy and is greatly

impacted by the brokerage fee if starting with only £1,000 to invest. With more funds,

the model performs much better and is less correlated with the buy and hold result and

less affected by the fees. Therefore, having adequate initial funds will give our model

the opportunity to perform better without relying on the buy & hold result and being

too affected by the brokerage fee.

6.3.2.4 Results on positive & negative stocks

In order to confirm that our model is able to work well with stocks that result in both

profit and loss when bought and held, this section illustrates the model’s performance

on both types of stocks separately. Figure 6-18 shows the performance when using our

model with stocks that achieved a positive return over the test period. On the other

hand, Figure 6-19 shows the results from the losing stocks. There are two sub-figures

in each figure. The top is the average Sharpe Ratio and the bottom shows the average

profit. The X-axis is the amount of initial funds.

It can be seen from Figures 6-18 and 6-19 that the performance of our model is

consistent. The model profits in both cases with initial funds of £2,000 upwards. The

Sharpe Ratio and profit increase when investing more money.

The average Sharpe Ratio and profit of the upward stocks are much better than the

downward stocks, but still have the same trend whereby profit increases with the

amount of capital to begin with. It is understandable that there should be more

opportunities to make a profit on stocks that already offer a positive return, especially

when our model employs a LONG-only strategy and cannot go SHORT. Therefore, we

only profit from an increasing price. When the price decreases, the model can only

stay in cash and wait for the next opportunity.

The full details of these results are shown in appendix A Section A.3 on page 307.
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Figure 6-18: Result from positive stocks

Figure 6-19: Result from positive stocks

To test the statistical significance of our model’s improvements over the benchmark

strategy, we ran a paired T-test on the Sharpe ratios of these 92 stocks from the FTSE

100 to compare between our scoring system at different levels of initial funds and the
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benchmark. The p-value of our system at £1000, £2000,£3000, £4000, £5000, £6000,

£7000, £8000, £9000, £10000 versus the buy & hold were 0.000002, 0.18991, 000039,

1.29092E-07, 1.77812E-12, 7.51923E-14, 1.22771E-14, 1.65419E-15, 1.07489E-16 and

4.26843E-17, respectively. We selected a two-tailed T-test since we need to test if our

system results in significantly worse performance also.

Most of the p-values validate that our approach is meaningfully better than the bench-

mark, above the 95% confidence level. However, there are a few points to consider.

With initial funds of £1000 our T-test returned a p-value of 0.000002, meaning there

is a significant difference between our model and the buy & hold with above 95% con-

fidence. However, the mean Sharpe ratio of our model compared to the buy & hold for

this level of initial funds was actually lower, at -1.07, than the buy & hold (-0.16). The

variance of our model (3.86) was also higher than the buy & hold (0.39). These results

mean that our model did perform differently than the benchmark at above 95% but for

this case only the performance was worse. This observation leads us to conclude that

our model does not work with £1000 initial funds.

Another point of interest is when initial funds of £2000 were compared with the bench-

mark. When increasing initial funds in our model to £2000, we obtained a p-value of

0.18991, from which we conclude that at £2000 our model performed better than buy

& hold but not at a significant level (taking the standard 0.05 to be the significance

level). There is too large a chance the results may have been due to random variation.

Therefore, if the investors would like to be confident about improving their performance

with our model, they should invest with a minimum amount of £3000. At all initial

fund values £3000 and above, our model performs better than the buy & hold at above

the 95% confidence level. The p-value at£3000 declines to 0.000036, and the average

Sharpe Ratio (0.09) of our model is also better than the buy & hold (-0.16) at this

amount of funds. We also confirm that increasing the initial funds from this point to

£10000, our model will provide better results than the buy & hold with more than 95%

confidence that these results are due to our system.

6.3.3 Result Comparison with benchmarks

In this section, the performance of our model will be compared with the benchmarks.

We have selected two benchmarks in this section: the buy & hold strategy and the

market index. Firstly, we compare our model’s with the performance of the buy &

hold strategy for each stock in order to confirm that using our model is better than

buying at the beginning and selling at the end of the test period. Secondly, we widen
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our comparison to the market index, which is the standard benchmark for the fund and

unit trust industry and would allow retail investors to compare our model’s performance

with popular alternatives available to them. The rationale behind this benchmark is

that if a model cannot beat the index, it is easier and cheaper for investors to invest

in index tracker funds; highly liquid, often automated instruments which seek only to

match the return of an index. Comparing the performance of our model to the market

index is one of the best ways to show an investor how well our model works.

6.3.3.1 Buy & Hold strategy and Market Index

In this section, we first calculated the performance of the buy & hold strategy for all

100 stocks in the FTSE 100 index. The complete list of results can be seen in Appendix

A Section A.2 on page 302. Secondly, we showed the performance of the FTSE 100

index during the period of testing. These two performances were then used in order to

summarise our model’s efficiency.

In this experiment, we selected all of the stocks from the London Stock Exchange which

are listed on the FTSE 100 index. The performance of this index during the testing

period (2017-2018) will be used as the benchmark. The daily closing prices of the FTSE

100 from the beginning of 2017 to the end of 2018 can be seen in Figure 6-20 and the

corresponding details of this benchmark can be seen in table 6.6.

Benchmark Sharpe Ratio Profit (%) Annual Risk Max DD Avg DD

FTSE100 index -0.3 -6.27 0.109 -16.34 -3.76

Table 6.6: FTSE100 performance during the testing period of 2017-2018

From Figure 6-20 it can be seen that the FTSE 100 is very fluctuated for the whole

of 2017. There is a huge drop during the first quarter of 2018, however, the market

recovered very quickly in the second quarter. It even made a new high price during this

period. Unfortunately, before the end of the testing period, the price started to drop

sharply again. The detail of the FTSE 100 index’s performance in this testing period

is shown in table 6.6. As expected, the FTSE 100 does not perform well and therefore

ends up with a negative Sharpe Ratio of -0.3 and maximum drawdown of -16.34%.

The Sharpe Ratio of our model is compared with the buy & hold strategy and the

FTSE 100 index. The summary of this comparison can be seen in Figure 6-21.
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Figure 6-20: Closing price of FTSE 100 during 2017-2018
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In Figure 6-21, the x-axis shows the amount of initial funds, ranging from £1,000 to

£10,000. The y-axis represents the percentage of stocks within the FTSE 100 index

that meet the following 4 conditions. Firstly, the stocks which overcame their buy &

hold performance (blue bars). Secondly, stocks that overcame the market index (orange

bars). Thirdly, stocks that ended up with a profit after investing with our model (green

bars), and lastly the stocks which ended up with a loss after investing with our model

(red bars). There will be four of these values corresponding to each amount of starting

capital.

Overall, the potential to overcome the buy & hold (blue) and the market index (orange)

increases with more initial funds, which can be seen from increasing the size of the blue

and orange bars. The possibility of gaining profit is also increased with the amount of

funds, as the green bars also increase when initial funds are higher. On the other hand,

the sizes of the red bars, which indicate the possibility of losing money, decrease with

more funds.

The biggest gaps in the possibility of winning over the buy & hold strategy (blue bar)

are between initial funds of £1,000 and £2,000. With only £1,000 to invest, there is

about a 46.7% chance to overcome the buy & hold strategy. However, by increasing

the initial funds to £2,000, investors have more than a 75% to gain more profit using

our model than following the buy & hold strategy.

Similarly to the buy & hold strategy (blue bars), an investor has a 65.22 % probability

of beating the market index with initial funds of £1,000. However, this possibility

increases to over 83% if the initial funds increase to £2,000.

We have mentioned the probabilities of winning over the benchmarks above, and now

we will analyse the likelihood of gaining or losing money (green and red bars). As can

be seen from the sizes of the green bars, which indicate the chance of making a profit,

the chance of investors ending up with a profit using our model to invest in FTSE

100 constituents is 58.7% with starting capital of £1000. This will increase to more

than 80% if more than £3,000 is available to invest, and more than 90% if investing

more than £6000. Finally, with initial funds of £10,000, an investor would have had a

93.48% to make a profit on stocks listed in FTSE 100 during 2017-2018.

As the likelihood of a profit increases with initial funds, the possibility of losing money

decreases when greater initial funds as can be noticed from the decreasing sizes of the

red bars as initial funds increase. If investors had only £1,000 to invest in FTSE 100

stocks during 2017-2018, they would have had to accept that a 40% chance of losing

money. However, this drops by almost half (26.09%) when initial funds increase to
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£2,000. Moreover, starting from £5,000 onward decreases the risk of losing money to

below 10%. With £10,000, an investor had only about a 6% chance of losing when

investing in stocks listed on the FTSE 100 during 2017-2018 using our model.

6.4 Comparison with other systems

After considering the results of our model in comparison with the benchmarks in the

previous sections, this section compares our model with other recent research with the

same objective. In order to compare our model with other works, we ran our model

on the same datasets over the same period of time as the system with which we are

comparing. The most important result we consider is the Sharpe Ratio, followed by

other values such as profit, volatility and drawdown.

Our experimental result in table 5.3 on page 187 indicates that accuracy alone is not

enough to evaluate financial models. The full discussion on this matter can be seen

right after this table in section 5.4.1 on page 192. The logic behind this is that one

can still be profitable even if their predictions are wrong most of the time provided

that their losing trades are much smaller than their profitable trades. For example,

the result in table 5.3 on page 187 shows that when using SVR (linear kernel) with

FERG stock, the accuracy was only 49.5 %. This means that more than half of the

time the predictor provided the incorrect answer. However, the result still ended up

with a profit of 37.62 %. This was because the model was able to pick highly profitable

trades. There were about 249 days profitable days and 253 losing days. Even though

the number of profitable days was lower than the losing days, the average return on

winning days was higher than the losing days. The average return on the winning days

was about 1.09 %, while the average return on the unprofitable days was only 0.92

%. This might not seem a big difference but once daily profits accumulate and related

fees are taken in to account, the profit is increased from 18.59 % to 37.62 %, with the

former being the benchmark return. More details are provided in section 5.4.1 on page

192

We found the idea that one need not be accurate to be profitable not just in our results,

but reported by experienced professional traders in [95]. The superiority of asymmetric

risk-reward over accuracy has been widely recognised by professional traders outside

of academia. Non-academic trading literature is still largely dominated by individual,

discretionary traders, as opposed to automated trading systems, so the principle of

asymmetric opportunities where the potential profit is a multiple of the possible loss
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had to be manually enforced by the traders exiting losing positions. Hence, they often

talk about “cutting” or “taking” losses, but the underlying principle to which they are

referring is the same as what automated systems should be trying to achieve. It is

shown that successful traders understand intuitively how they can be inaccurate yet

still make a profit over the long run if they have the discipline to limit their losses to

keep them much smaller than their profitable trades. It is ubiquitous across trading

literature that this is perhaps the most important principle of successful trading.

Ed Seykota, an early pioneer of trading systems, summarized his approach in an inter-

view for Jack Schwager’s popular Market Wizards book: “The elements of good trading

are: (1) cutting losses, (2) cutting losses, and (3) cutting losses.” This sentiment is

expressed in some form or other by almost all the interviewed traders, including rules-

based and systematic traders like Richard Dennis (“You have to minimize your losses

and try to preserve capital for those few instances where you can make a lot”) and

Michael Marcus (“Perhaps the most important rule is to hold on to your winners and

cut your losers. Both are equally important. If you dont stay with your winners, you

are not going to be able to pay for the losers.”) as well as discretionary traders such

as Paul Tudor Jones (“If I have positions going against me, I get right out; if they are

going for me, I keep them. Risk control is the most important thing in trading.”) and

Bruce Kovner (“You have to be willing to make mistakes regularly; there is nothing

wrong with it. Michael taught me about making your best judgement, being wrong,

making your next best judgement,being wrong, making your third best judgement, and

then doubling your money.”)

6.4.1 Comparison with Birbeck and Cliff’s system

As mentioned in chapter 3 section 3.1.10 on page 69, Birbeck and Cliff [17] introduced

a new sentiment analysis labelling approach in order to generate profits in the stock

market using Twitter posts. Instead of labelling the posts by the true sentiment as

in previous research, for example if it is expressing a positive or negative opinion,

they created a new method by reverse labelling each post based on the ground-truths,

that whether the relevant stock price moved up or down during the period in which

the posts were collated. In this research, Support Vector Machine, Naive Bayes, and

Logistic Regression were applied in order to make predictions. The new system was

tested on four well-known stocks from the technology sector: Apple (AAPL), Tesla

(TSLA), Twitter (TWTR) and Facebook (FB).

We compare the performance of our model with Birbeck and Cliff’s system by using
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our model on the same dataset and time frame (January 2017). Before having a look

at the comparison, a few differences between our system and Birbeck and Cliff’s should

be understood. Firstly, in Birbeck and Cliff’s research, the datasets come in the minute

format, while our model uses the daily format. Secondly, as Birbeck and Cliff’s model

uses the minute data, it aims to trade much more often than our model. The number

of trades can be up to 120 times per month or 6 times per day. Meanwhile our model

aims to be used by the individual investor for whom we assume a restrictive amount of

starting capital and potentially time to spend trading, so the number of trades and the

associated transaction fees must be kept within reason otherwise they will significantly

impact profitability or the model will become unrealistic for the retail investor.

We ran our model on AAPL, TSLA, TWTR and FB and compared the Sharpe Ratio

and Profit with Birbeck and Cliff’s model over the same period (January 2017). Before

comparing these results, we would like to show the result of our model for the whole of

2017. The detailed results from testing our models on AAPL, TSLA, TWTR and FB

are shown in Figures 6-22, 6-23, 6-24 and 6-25, respectively. All of these results are

calculated based on initial funds of £10,000.

Figure 6-22: Result from AAPL in 2017

Figure 6-22 shows the final result from AAPL for the whole of 2017. Our model made

51 trades and provided a Sharpe Ratio of 3.12 and profit of 51.55 %. The maximum

and average drawdown were -4.88% and -1.12% respectively. As can be seen from the

top graph, only two trades happened in January which are shown in green. As the
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latter was held for the majority of the month, the profit and Sharpe ratio of this month

were not very different from the buy & hold strategy.

Figure 6-23: Result from TSLA in 2017

Figure 6-23 shows the result from TSLA. There are 13 trades for the whole of 2017.

Our model ended with a Sharpe Ratio and profit of 1.2 and 37.18% respectively. The

maximum and average drawdown were -13.3% and -2.8%. It can be seen from the top

graph that our model started the first buy order just before the beginning of March

and held the first trade until after June. After that there are six buy orders which were

sold shortly after buying, until the model opened the long position again just after

November and held this position until the end of the year.

Figure 6-24 shows result from TWTR and it can be seen that our model did not trade

much in the first half of the year. The total number of trades is 11 throughout the

year. The Sharpe Ratio and profit are 1.48 and 64.79%. The maximum and average

drawdown are -23.39% and -6.22 %, respectively.

Figure 6-25 shows the result from FB, which is very close to the buy & hold as most

of the trades were held for a long time. The total profit and Sharpe Ratio are 42.1%

and 2.15 for 2017. The maximum and average drawdown are -6.32% and -1.28%,

respectively. The total number of trades is 20.

All of the results mentioned earlier were tested over the whole of 2017. However, we

want to compare our result with Birbeck and Cliff’s system, which only shows the
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Figure 6-24: Result from TWTR in 2017

Figure 6-25: Result from FB in 2017

results for January. Therefore, we will only calculate our model’s performance for

January of 2017 in the comparison. The comparison of our model and Birbeck and

Cliff’s model for all four stocks is shown in table 6.7.
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Stock AAPL TSLA TWTR FB

Profit ([17]) 4.48 8.27 0.04 -4.08
Profit (Our model) 4.51 0 1.56 6.69

Sharpe Ratio ([17]) 2.78 3.06 -0.016 -5.46
Sharpe Ratio (Our model) 6.94 0 2.67 7.01

Orders ([17]) 120 120 120 108
Orders (Our model) 2 0 2 7

Table 6.7: Profit comparison between our model and the sentiment analysis model on
January 2017

Table 6.7 shows the comparison between our model and Birbeck and Cliff’s model for

AAPL, TSLA, TWTR and FB during January 2017. The first difference between our

model and Birbeck and Cliff’s model is the number of trades. Our model only traded

two times for AAPL and TWTR in that month, while Birbeck’s system traded 120

times on almost every stock, except 108 times from FB. As mentioned earlier, this is a

major difference between the two models as a result of their different objectives.

Both models provide a very good result for AAPL. The profits are very similar at

4.51 and 4.48. However, as our model only traded twice and both of the trades were

profitable, our Sharpe Ratio (6.94) was higher than Birbeck and Cliff’s model (2.78).

As for TSLA, while Birbeck and cliff’s model provided a very good result at 8.27%

profit and 3.06 Sharpe Ratio, our model did profit at all as there were no order signals

provided that month.

TWTR and FB did not perform very well with Birbeck and Cliff’s model; our model

provided better results on these two stocks. We only had one order for TWTR which

ended up with a little profit of 1.56% profit, while Birbeck and Cliff’s model resulted

in 0.04%. As for the Sharpe Ratio, as our model only had one order and that order

was correct, our Sharpe ratio was 2.67, while Birbeck and Cliff’s model ended up with

-0.016. As for FB, our model traded seven times in that month and ended up with a

very good Sharpe Ratio of 7.01 and 6.69% profit.

From the results, it can be seen that our model works well on most of the datasets.

It provides fewer trade instructions which is important for the individual investor.

Most of the trades it made were correct, making the Sharpe Ratio for the period quite

high. However, it is better to see the performance over a longer period of time as our

model aims to not trade often and therefore, might not provide any order instructions
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over short periods of time, as shown in the result for TSLA. Please note that as this

comparison period is only 1 month, we did not include the risk-free rate into the

calculation in this table .

6.4.2 Comparison with Qin’s system

We compared our model with that of Qin [89] which was mentioned in chapter 3

section 3.2.6 using the same stocks. Qin uses 9 stocks and 1 Index from the Singapore

stock exchange, but we could only obtain data for 8 stocks from our source, Yahoo

Finance (https://finance.yahoo.com/ retrieved 2019-09-15); the STI index (Straits

Times Index) and SMRT (S53) were not available at the time. The stocks tested were:

Capitalland (C31), DBS (D05), UOB (U11), SGX-Singapore Exchange (S68), Starhub

(CC3), Singtel (Z74), Semb Corp (U96), and and SIA-Singapore Airline (C6L). Qin’s

datasets cover a 5-year period from 2005-09-01 to 2010-08-31, with the first 3 years for

training and the last 2 for testing. Therefore, results in this comparison are for 2009

and 2010 (417 trading days, ending 2010-08-31).

Before having a look at the comparison, we present the results from our system on the

individual stocks in table 6.8. Then, we will show the comparison between our model

and Qin’s (Gradient Boosted Random Forest) along with buy-and-hold, Score, Least

Square and Random Forest, which are also used in Qin’s work in table 6.9. Please note

that Qin did not show the result for each dataset separately, therefore we are only able

to compare these results in average values.

Stock Sharpe Ratio Profit Volatility Max DD Avg DD Trades

C6L 1.85 94.54 0.219 -12.28 -2.77 164
C31 1.26 109.76 0.359 -14.76 -6.7 68
CC3 2.32 59.77 0.143 -7.56 -1.01 98
D05 1.62 80.51 0.222 -12.67 -2.25 14
S68 1.53 71.83 0.209 -15.23 -2.82 122
U11 1.39 71.19 0.234 -20.14 -4.37 124
U96 0.91 72.34 0.383 -22.49 -6.12 18
Z74 1.86 67.99 0.176 -10.05 -2.06 162

Average 1.60 78.50 0.243 -14.40 -3.51 96.25

Table 6.8: Result from our model on Qin datasets for the testing period of 417 days
during 2009-2010
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Table 6.9: Result Comparison with Related Work [89]

Algorithm
Yearly

Profit (%)
Correction

Prediction (%)
Sharpe
Ratio

Drawdown
(Max)

Buy & Hold -1.94 - 0.01 -47.34
Score 21.71 19.12 0.02 -10.20

Least Square 16.77 21.97 0.03 -6.66
Random Forest 24.32 26.38 0.02 -12.05

Qin’s model 25.14 30.25 0.03 -10.06
Our model 33.6 57.40 1.60 -14.40

Table 6.8 shows that our model works well with all of the datasets. Most of the Sharpe

Ratios are over 1.5, which is very good. The number of trades our model made varies

from 14 to 164 times during the testing period of 417 days. The average of our model’s

performance can be seen in the last line of this table. The average Sharpe Ratio is very

high at 1.60 with over 78% profit. These average results are compared with Qin’s model

in table 6.9. The additional detail result from these stocks can be seen in Appendix

B section B.1 on page 325.

Table 6.9 shows the average results for yearly profit, correct prediction, Sharpe Ratio

and maximum drawdown during the testing period of 417 days. It can be seen that

the buy & hold profit of these stocks is negative, which means that if investors had

invested in all of these stocks at the beginning of the test period and held until the

end, they would have ended up with about a 1.94% loss. Other algorithms, score,

least square, random forest and Qin’s model, preformed much better than the buy

& hold with 14.71%, 16.77%, 24.32% and 25.14% returns respectively. However, our

model provided a much better result than the other models mentioned, with a profit

of 33.60%.

As for the most important comparison metric, Sharpe Ratio, our model gave an ex-

traordinary result with a high Sharpe Ratio of 1.60, while the other models only ended

up with below 0.1. Therefore, it can be seen clearly that after considering the profit and

risk, our model performed much better than Qin’s model and the others. Even though

the drawdown of our model is about 4% bigger than Qin’s model, our model still ended

up with a high Sharpe Ratio, which includes drawdown in its consideration of risk.

The percentage correct predictions is not one of our performance metrics, therefore we

will not compare this value.
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6.4.3 Comparison with Li’s system

This paper [68] presents a system that uses machine learning models to invest in

momentum and reversal strategies in the stock market. In their experiment many

models of machine learning - Decision Tree (DT), Support Vector Machine (SVM),

Multilayer Perceptron Neural Network (MLP) and Long Short-Term Memory Neural

Network (LSTM) - are investigated. The experimental results on an index from China,

CSI300, show that SVM is the best machine learning approach to capture momentum

and reversal situations, leading to profitable trading. In this research, each strategy

was run 20 times with different parameters. In this section, we are going to show only

the results that related to minimum, average and maximum Sharpe. Results from Li’s

system on every machine learning model tested are shown in 6.10.

Model Sharpe Ratio Profit (%)
Min Avg Max Min Avg Max

Momentum -0.15 0.26 0.79 -33.78 21.73 116.55
Reversal 0.14 0.48 0.85 -0.87 51.95 124.32

DT 0.05 0.55 1.52 -9.00 55.73 175.90
SVM -0.60 0.67 1.68 -37.43 77.48 239.43
MLP -0.22 0.56 1.41 -24.52 61.43 215.26

LSTM -0.31 0.41 1.25 -32.40 45.89 201.30

Table 6.10: Results from Li’s work [68] for each strategy at the minimum, average and
maximum Sharpe Ratio

In order to compare the results of Li’s model with our results, we decide to compare with

their average results. The reason is as Li’s work run experiment multiple times with

different hyperparameters and the best results from each strategy are obtained from

different choices of paremeters. Therefore, this work cannot identify which parameters

should be related to the best results. Therefore, instead of deliberately pick best results,

which is really unfair to us, or pick the worst result, which is unfair to them, we decide

to compare with the average values. The comparison between our results and Li’s

results can be seen in table 6.11.

Table 6.11 shows the result from CSI300 during the testing period from 2012-01-04

to 2016-02-05. There are two main values, Sharpe Ratio and profit, selected for this

evaluation. It can be seen clearly that our model provides the best Sharpe Ratio (0.83)
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Model Sharpe Ratio Profit (%)

Momentum 0.26, 21.73
Reversal 0.48 51.95

DT 0.55 55.73
SVM 0.67 77.48
MLP 0.56 61.43

LSTM 0.41 45.89

Our model 0.83 89.01

Table 6.11: Profit comparison between our model (after taking 3% risk-free rate into
account) and Li’s work [68]

and profit (89.01). The accuracy of our model is 43.43% The detail of this result is

shown in Figure 6-26.

Figure 6-26: Result from our model testing on CSI300 during 2012 - 2016

The top graph of Figure 6-26 shows that our model starts sending orders at the very

beginning of the testing period but stops for almost a year. Then, at the beginning

of 2013, it starts to trade again but not very often. Long-term trades happen at the

end of 2014 when the stock price increases. The total number of trades is 199. The

middle graph shows the balance throughout the period of testing. It can be seen that

our model starts to make a profit when the price increases before the end of 2014 (the

closing prices of this stock is shown in the top graph in black). The comparison between

our model and the buy & hold strategy can be seen in the bottom graph. Our model’s
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return (green) is better than the buy & hold, especially when the price decreases at

the end of the testing period. Our model’s profit does not go down as sharply as the

buy & hold return.

6.5 Discussion

This chapter illustrates the performance of our model by simulating the trading system.

We have made the simulation as close to the real world as possible by taking the

brokerage fee into account and the process of buying and selling is made realistic by

taking the 3% risk free rate into account. As for the evaluation of our model, we have

run experiments on a variety of stocks. Firstly, our model was tested on a group of

11 stocks with different characteristics to make sure that our model works well under

different market conditions. Secondly, we widened the test set to the UK market. We

selected the 100 stocks which make up the FTSE 100 index. These stocks come from

different business sectors which make them have different characteristics. All of the

results are promising. Our model shows good performance regardless of market sector.

After finishing the experiments on a wide rage of stocks, we compared our model with

other recently developed systems by taking the same datasets and test periods to run

with our model. This gave our model an opportunity to run on even more stocks from

new markets such as the USA, China and Hong Kong. This is important not just from

a geographical perspective, but also because China is widely considered an “emerging

market”, as opposed to “developed market” such as the US. This can effect market

conditions, as higher growth but greater volatility and risk are typically expected from

emerging markets. The comparison shows that our model works well with stocks from

other markets in terms of Sharpe Ratio, profit, volatility and drawdown, and indicates

that it can also perform well over shorter time-frames.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Predicting the future direction of stocks in order to trade profitably is extremely chal-

lenging as there are a lot of factors that affect the stock prices, and it is not possible

to identify them all. Fluctuations in the data (price) also make it difficult to predict

future values. However, technical investors believe that all fundamental factors are

already reflected in the price movements, but analysing historical price patterns should

be able to provide orders (buy or sell) based on investors’ behaviour which will lead to

profit.

Many machine learning models have been applied to the stock market in attempts to

achieve profit and avoid risk. However, they still suffer from a lack of adaptability and

only work well with specific datasets or periods of time, rather than over the whole

range of market scenarios. In order to solve this problem, we created a new adaptive

trading model that has been proven to work well for a wide range of data representing

different business sectors and market conditions.

Our model is composed of many machine learning predictors which have been trained

on specific pieces of the dataset to develop specialities in prediction across different

situations. To make these machine learning predictors work together, we have created

an effective scoring system which is capable of selecting suitable predictor(s) for specific

periods of time. Only the selected predictor(s) will be allowed to make decisions. As the

market situation and stock price characteristics are changing over time, the model needs

to be able to re-select predictors in order to respond to the fluctuations. Therefore,
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in our scoring system, we have created different features in order to track changes in

each predictor’s performance. Predictors whose performance concerning these features

has been strong will be selected. This process continues and scores get updated every

day. Finally, at the end of the day, a new set of predictors will be activated to produce

a forecast. However, not every forecast results in an instruction to buy or sell shares.

The model will consider other criteria before giving instructions, for example how much

capital the investor has to start with and whether the trade would be worth making in

consideration of the risk and related fees.

The experimental results show that our model works effectively with a wide range

of stocks from different market sectors and different markets globally. In the experi-

ment and comparison section, we showed that our model works well on more than 100

stocks from the UK, US, Chinese and Singaporean markets. These stocks come from

more than 10 different market sectors. We believe that this covers a wide-range of

market conditions. Therefore, we confirm that our model shows an excellent capabil-

ity of handling predictions in fluctuated situations and can be used regardless of the

characteristics of the stock data.

In summary, this research proposed an ensemble system of many well-known machine

learning predictors on the basis that machine learning models have already been identi-

fied that work well in certain areas or with specific types of data, but struggle to adapt

when new patterns emerge. Therefore, instead of creating a novel model, we focused

on combining the intelligence of existing models to produce a system that could profit

under varying conditions.

7.2 Future work

While our model has shown excellent performance based on our experiments across the

broad datasets, it can be readily adapted for future research and the following are some

areas in which such research may focus. Firstly, the number of predictors is flexible. It

is easy to increase or decrease the predictors. This model created an effective way of

putting many predictors to work together automatically, however it did not vary the

number of predictors or which predictors were included in the experiments. Therefore,

if one wants to change the type of predictor or add or delete some of them, this is easy

to perform. It is possible that performance may be improved by the addition of new

predictors that can handle new stock price patterns well, however as the processing

time of this system depends on the complexity of the predictor(s), it could be possible
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that some which might only be useful in very niche conditions are not worth keeping.

Secondly, in the case of using this model over a long period, then re-training can

be considered. For example, the training process can be activated every month, for

example, or at any other interval, instead of only training at the beginning and running

indefinitely. Thirdly, in this model, the number of trades is likely to increase with more

funds as the system allows weaker forecasts with less potential profit to be traded that

would otherwise have been filtered out if starting capital was smaller. However, this

is not always helpful, as for some datasets the number of trades should not have been

increased even when starting with more funds, as is shown in the result of CARR in

Figure 6-10 on page 245. Therefore, the process to optimise the number of trades

in this model could be improved. Thirdly, even though this system was designed

for individual traders, the idea of the scoring system can be adapted for institutional

traders. Details and some suggestions of how it can be adapted can be seen in appendix

C on page 328, where we also show results on some of our stocks after adaptations such

as the inclusion of short-selling and percentage-based trading fees.

Finally, it is recommended to use this model together with other risk control methods,

for example a stop loss order which automatically sells all shares in a trade in the

event of a predetermined loss so as to prevent further loss of capital. This can help

prevent a large drawdown, which is more likely to happen when the starting capital

is low, as can be seen in the results of starting with £1,000 in Figure 6-16 on page

260. Stop losses also help protect against unforeseen events that can be of significant

negative consequence to a company. These do not show up in historical volatility or

past price information and cannot be predicted by models, which is why we emphasise

that our model is intended for use only in conjunction with additional risk control

methods. Further to this, it is not recommended to place all available capital into each

trade, as was simulated here. A common recommendation is to invest a predetermined

percentage of available capital into each trade, known as position sizing, such that if

the worst happens and the share price goes to zero, one still has money for other trades

to recoup the loss.

Another form of risk control is investing in the shares of large companies, such as

constituents of the FTSE 100 index, which are said to be highly liquid. This means

there are many buyers and sellers, therefore orders are more likely to be executed

in the specified size and closer to the price at that moment. This is an important

consideration both to minimise slippage - the difference between the price used to

generate the model’s instruction and that at which the shares are actually purchased

- and in order to exit trades quickly when necessary to preserve capital. Slippage also
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affects the hypothetical performance of all trading models.

Something this model did not incorporate is diversification. Diversification in its sim-

plest terms is closely related to position sizing in that it attempts to prevent a catas-

trophic loss from which one can’t recover, and to do that it aims to reduce the correla-

tion between several shares or other financial assets traded simultaneously. One way to

do this is to spread shares in a portfolio across different countries. As it has been shown

that our model works well for several international markets, this could be a promising

area for future improvement as successfully incorporating geographical diversification

could offer the profit potential of our model with even less risk.

Fundamentally, this model was created in order to handle fluctuations in time-series

data, and therefore it is not necessarily limited to only the stock market. There are

a lot of time-series problems in other areas that face problems of fluctuation, which

makes them extremely difficult to predict. Examples could be disaster prediction or

gaming, as the behaviours or situations are difficult to predict and there are a lot of

factors having an impact and these factors can change rapidly over time. This idea

could be used in order to handle these types of problems.
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Appendix A

FTSE 100 Experiment

A.1 List of stocks in FTSE 100

Table A.1: Stock list (Access on 2 Aug. 2019)

Symbol Company Name Sector

AAL.L (2000) Anglo American Materials

ABF.L (2000) Associated British Food Consumer Staples

*ADM.L (2004) Admiral Group plc Financials

BDEV.L (2000) Ashtead Group plc Industrials

ANTO.L (2000) Antofagasta plc Materials

*** AUTO.L (2015) Auto Trader Group plc Communications

AV.L (2000) Aviva Financials

AVV.L (2000) Aveva Group plc Technology

AZN.L (2000) Astrazeneca plc Health Care

BA.L (2000) Bae sys. Industrials

BARC.L (2000) Barclays plc Financials

BATS.L (2000) British American Tobacco Consumer Staples

BDEV.L (2000) Barratt Developments plc Consumer Discretionary

BHP.L (2000) BHP Group plc Materials

BKG.L (2000) Berkeley Group Holdings plc Consumer Discretionary

BLND.L (2000) British Land Co plc Financials

BNZL.L (2000) Bunzl plc Consumer Discretionary

BP.L (2000) BP plc Energy
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Symbol Company Name Sector

BT.A.L (2000) BT Group plc Communications

*** III.L (2001) 3I GRP. Financials

BRBY.L (2002) Burberry Group plc Consumer Discretionary

** CCH.L (2013) Cocacola HBC AG Consumer Staples

CCL.L (2000) Carnival plc Consumer Discretionary

CNA.L (2000) Centrica plc Utilities

CPG.L (2000) Compass Group plc Consumer Discretionary

CRDA.L (2000) Croda International plc. Materials

CRH.L (2000) CRH plc. Materials

DCC.L (2000) DCC plc. Energy

DGE.L (2000) Diageo plc Consumer Staples

** DLG.L (2012) Direct Line Insurance Group plc. Financials

** EVR.L (2011) EVRAZ plc. Materials

* EXPN.L (2006) Experian plc Technology

FERG.L (2000) Ferguson plc. Industrials

* FRES.L (2008) Fresnillo plc Materials

** GLEN.L (2011) Glencore plc Materials

GSK.L (2000) GlaxoSmithKline plc Health Care

*** FLTR.L (2019) Flutter Entertainment plc Consumer Discretionary

* HL.L (2007) Hargreaves Lansdown plc Financials

HLMA.L (2000) HALMA plc Industrials

HSX.L (2000) Hiscox Ltd Financials

HSBA.L (2000) HSBC Holdings plc Financials

IAG.L (2003) International Consolidated Airlines Consumer Discretionary

IHG.L (2003) InterContinental Hotels Group plc Consumer Discretionary

IMB.L (2000) Imperial Brands plc Consumer Staples

INF.L (2000) Informa plc Communications

ITRK.L (2002) Intertek Group plc Consumer Discretionary

ITV.L (2000) ITV plc Communications

*** JD.L (2018) JD.com Inc Consumer Discretionary

JMAT.L (2000) Johnson Matthey plc Materials

*** JE.L (2014) Just Eat plc Technology

KGF.L (2000) Kingfisher plc Consumer Discretionary

LAND.L (2000) Land Securities Group plc Financials

Continued on next page
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LGEN.L (2000) Legal & General Group plc Financials

LLOY.L (2000) Lloyds Banking Group plc Financials

LSE.L (2001) London Stock Exchange Group plc Financials

* MCRO.L (2005) Micro Focus International plc Technology

MKS.L (2000) Marks & Spencer Group plc Consumer Discretionary

* MNDI.L (2007) Mondi plc Materials

MRO.L (2003) Melrose Industries plc Financials

MRW.L (2000) Wm Morrison Supermarkets plc Consumer Staples

NG.L (2000) National Grid plc Utilities

** NMC.L (2012) NMC Health plc Health Care

NXT.L (2000) Next plc Consumer Discretionary

** OCDO.L (2010) Ocado Group plc Consumer Staples

* PHNX.L (2009) Phoenix Group Holdings Financials

PRU.L (2000) Prudential plc Financials

PSN.L (2000) Persimmon plc Consumer Discretionary

PSON.L (2000) Pearson plc Communications

RB.L (2000) Reckitt Benckiser Group plc Consumer Staples

RBS.L (2000) The Royal Bank of Scotland Group plc Financials

*** RDSA.L (2018) Royal Dutch Shell plc Energy

RDSB.L (2000) Royal Dutch Shell plc Energy

REL.L (2000) RELX plc Technology

RIO.L (2000) Rio Tinto plc Materials

* RMV.L (2006) Rightmove plc Communications

RR.L (2000) Rolls-Royce Holdings plc Industrials

RSA.L (2000) RSA Insurance Group plc Financials

RTO.L (2000) Rentokil Initial plc Consumer Discretionary

SBRY.L (2000) J Sainsbury plc Consumer Staples

SGE.L (2000) The sage Group plc Technology

SDR.L (2000) Schroders plc Financials

SGRO.L (2000) Segro plc Financials

* SKG.L (2007) Smurfit Kappa Group plc Materials

* SLA.L (2006) Standard Life Aberdeen plc Financials

SMDS.L (2000) DS Smith plc Materials

SMIN.L (2000) Smith Group plc Industrials

Continued on next page
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Symbol Company Name Sector

*** SMT.L (2017) Scottish Mortgage Investment Trust plc Financials

SN.L (2000) Smith & Nephew plc Health Care

SPX.L (2000) Spirax-Sarco Engineering plc Industrials

SSE.L (2000) SSE plc Utilities

STAN.L (2000) Standard Chartered plc Financials

STJ.L (2000) St. James’s Place plc Financials

SVT.L (2000) Severn Trent plc Utilities

TSCO.L (2000) Tesco plc Consumer Staples

*** TUI.L (2014) TUI AG Consumer Discretionary

TW.L (2000) Taylor Wimpey plc Consumer Discretionary

ULVR.L (2000) Unilever plc Consumer Staples

UU.L (2000) United Utilities Group plc Utilities

VOD.L (2000) Vodafone Group plc Communications

WTB.L (2000) Whitbread plc Consumer Discretionary
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A.3.0.1 Individual sector

(a) Financial sector (b) Material sector

(c) Consumer Staple sector (d) Consumer Discretionary sector

Figure A-1: Results sectors Financial, Material, Consumer Staple and Consumer Dis-
cretionary
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(a) Industrial sector (b) Communication sector

(c) Technology sector (d) Health Care sector

Figure A-2: Results sectors Industrial, Communication, Technology and Health Care
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(a) Industrial sector (b) Communication sector

Figure A-3: Results sectors Industrial and Communication
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Appendix B

Additional results from the

comparison section

B.1 Result from dataset from Qin’s system

This section shows the results from our system testing on the same datasets as Qin

et al. research [89] in section 6.4.2 on page 277. The stocks tested were: Capital-

land (C31), DBS (D05), UOB (U11), SGX-Singapore Exchange (S68), Starhub (CC3),

Singtel (Z74), Semb Corp (U96), and and SIA-Singapore Airline (C6L). The testing

period is between 2009 and 2010 (417 trading days, ending 2010-08-31). Results of

these 8 stocks can be seen in Figures B-1 and B-2
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(a) C6L (b) C31

(c) CC3 (d) D05

Figure B-1: Results from C6L, C31, CC3 and D05
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(a) S68 (b) U11

(c) U96 (d) Z74

Figure B-2: Clustering features

327



Appendix C

Institutional Trading: Long -

Short Strategy

Stock market trading can be divided into two styles: institutional and retail trading.

Institutions are companies such as investment banks, hedge funds and mutual funds,

participants who invest the most in the markets and often manage money on behalf of

others. Retail traders are individuals primarily investing for their own account. Trading

may not necessarily be their primary source of income. In this work we focused on the

latter, who we also refer to as individual investors. We present the reasons why we

selected individual investors below, but in this section we explain how our approach

could be adapted for an institutional context.

1. Supportive: We would like to support traders with limited amounts of funds to

start trading responsibly. For some, sensible trading offers a chance for financial

independence. There are a lot of traders who would like to start trading with this

goal or others in mind, but often they cannot afford to open an account with a

big broker. Many brokers have minimum deposits required to open an account,

which are often too much for many people as are the additional fees which come

later. We support the idea that everyone should be given the opportunity to

make money, that people learn best by their own experiences and can judge for

themselves if trading is for them. Therefore, we aimed for a system that can

profit with limited initial funds and in spite of trading fees.

2. Realistic: We realise that designing parameters to mimic institutional trading is

extremely difficult for outsiders with no experience. For example, trading fees may

be negotiated with investment banks or stock exchanges, and there might be other
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fees or interest payments (institutional traders may use leverage; they can borrow

money to make larger profits) that remain unrevealed to the public. We also

cannot know the capital allocated to individual traders or trading desks within

institutions, some of which will be allocated to hedging positions. Moreover,

the ability to go short for individual investors is almost impossible without using

alternative products such as spread bets. Most brokers do not offer a short-selling

service, especially the now-popular online platforms which form one of our focus

groups. In addition to our support of helping individual investors to trade with

their broker of choice, we believe attempting to mimic institutional trading may

be very unrealistic.

3. Goes with the trend: Nowadays, there are a lot of online trading platforms for

people who would like to trade from home, and these platforms have grown

significantly in recent decades as technology has improved also. People are able to

learn how to trade by themselves or trade as a way to exercise their own interests.

We would like to be part of this trend as this is a most interesting area for us

too. Therefore, we decided to build a system that people can realistically follow.

For example, one that is able to connect with a broker to buy and sell online.

4. Risk control: Shares are convex products, by which we mean a share price can only

decrease to 0, therefore the maximum loss (assuming a trader has not borrowed

money to invest) is the total invested in the shares, but the potential profit is

unlimited. On the other hand, as the price of a share can increase unlimitedly,

short-selling shares can cause a loss greater than the total invested, such that

one ends up owing money. Stop-losses are rarely guaranteed and can be missed

in fast-moving markets. As our system does not have a module to manage risk,

we decided to go with long only for our individual trading system, which for the

aforementioned reasons is inherently less risky.

Although we made the decision to create our system for individual investors, we un-

derstand that one might want to know how it may perform for an institutional client.

Therefore, we include this appendix as a feasibility study to give an idea of whether our

system may be appropriate for institutional traders. What follows are the adaptations

we made in order to show the results from our system as if traded institutionally.

• Long & Short signal: Normally, our system is long only. This means that once

the system gets a signal 1, it will send out the buy order. But once it gets a

signal -1, it will only close existing long positions and stay in cash. However, if

we want to imitate the institutional trading, a reasonable first step is to include
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short selling. So we have taken signal -1 as a signal to short sell. Once the system

gets a signal -1, it will not only close an existing long position, but it will also

open a new short-selling position.

• Trading Fee: In our research, we used a flat rate brokerage fee, which is realistic

for individual investors. However, to mimic institutional trading, the fee needs to

be changed. Please note that we are aware that there might be some hidden fees

or interest involved that we are unable to find information about. We also expect

in reality that trading fees for institutions are negotiated based on the ongoing

business relationship, liquidity of the shares being purchased or any number of

other factors. In this simulation, we will only add the most common fee, which is

a brokerage fee. The brokerage fee here changes from a flat rate to a percentage.

The percentage we are going to use is 0.2%, as most of the brokers publish this

as their standard fee.

• Initial funds: The initial funds available here will be changed to £1000000, as

institutional traders have more equity to trade with.

• Signal Optimisation: As our system is aimed at individual investors, we have

added a module for signal optimisation. The signal optimisation module filters

some signals out if they are not worth taking with the amount of money an in-

vestor has. However, institutional traders with more capital should not need this

optimisation and may make all the trades suggested by the system. Therefore, it

is fair to simulate trading without signal filtering. However, the results when the

signals are filtered will be shown as well for the sake of comparison.

In order to demonstrate the results, we have selected 5 stocks, comprising 3 positive

and 2 negative-performing stocks. Positive and negative stocks are compared against

the buy & hold return during the testing period, from the beginning of 2017 to the end

of 2018.

Table C.1 shows the results of five stocks when our system is traded as though an

institutional trader. The results presented are the Sharpe Ratio, profit, volatility,

maximum drawdown and accuracy. The trading period spanned 2 years, starting from

the beginning of 2017 until the end of 2018. The first column indicates the performance

of the buy & hold strategy, while the next 2 columns show the performance from our

system before and after performing signal filtering.

The results show that the system could not make a profit without signal filtering. All of
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Performance Buy & Hold Before Signal filtering After Signal Filtering

AAL
Sharpe Ratio 0.61 -0.42 0.7

Profit (%) 50.67 -16.66 60.83
Volatility 0.3390 0.34 0.339

Maximum Drawdown -31.93 -54.11 -29.52
Accuracy - 47.71 50.7

Number of Trades 2 214 88

ABF
Sharpe Ratio -0.7 -0.28 1.28

Profit (%) -25.57 -12.13 68.49
Volatility 0.215 0.216 0.214

Maximum Drawdown -39.45 -28.06 -17.28
Accuracy - 50.4 51.82

Number of Trades 2 229 36

AHT
Sharpe Ratio 0.23 -1.35 0.46

Profit (%) 3.16 -51.38 30.18
Volatility 0.276 0.277 0.276

Maximum Drawdown -34.93 -61.74 -30.13
Accuracy - 47.79 54.22

Number of Trades 2 201 10

AV
Sharpe Ratio -0.78 -0.64 1.17

Profit (%) -22.8 -17.86 48.64
Volatility 0.17 0.171 0.168

Maximum Drawdown -33.95 -28.9 -11.29
Accuracy - 46.73 50.82

Number of Trades 2 217 84

BA
Sharpe Ratio -0.68 -0.92 0.71

Profit (%) -22.37 -29.03 30.04
Volatility 0.193 0.194 0.192

Maximum Drawdown -34.19 -38.36 -21.73
Accuracy - 47.02 52.16

Number of Trades 2 198 2

Table C.1: Performances summary AAL, ABF, AHT, AV and BA from the beginning
of 2017 to the end of 2018 £1000000

the results ended up negative. This suggests that even though institutional traders can

take more chances to make a profit, as they can take all signals, it is costly for them

to do so. The signals the system provided comprised both weak and strong signals

which can be detected by our optimisation module. Without optimisation, investors
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need to open positions following every signal, including the weak ones, but clearly the

small profit available is not worth the risk. This explains the poor results in the second

column.

As mentioned, our system is able to filter out the weak signals. This was necessary

for individual traders with little capital. The details can be seen in section 5.5.2 on

page 212. We performed another experiment for the institutional system but this time

filtering the weak signals. Then leftover signals were all followed, opening both long

and short positions. The results turned out much better for every dataset, as shown in

the third column. Most of the results ended up with much higher profit than the buy

only strategy (the results can be seen in table A.1 on page 298), especially BA. For BA,

the long only system made almost no profit at all and ended up with only 2.33% profit

over two years. However, with the long & short strategy available to an institution, it

ended up over 30% in profit. The results from AHT were also much better too. With

the long only strategy, it ended up with a -13.46% loss, but when trading with the

institutional long & short strategy, it made a profit of 48.64% over the two-year period.

However, this was not the case for AAL. For AAL, the buy only strategy made 75.21%

but when trading with the buy & sell strategy, the profit decreased to 60.83%.

From these results, we conclude that our system is able to make more profit by trading

both long & short signals (1 and -1). However, it must be borne in mind that it has

to include the signal optimisation process. Once the weak signals are filtered out, for

both long and short, the system has a chance to make more profit. Also, there might

be some more fees and interests that need to be taken into account, so our results may

be optimistic. Some further suggestions for improvement when adapting our trading

system to trade using the long & short strategy include:

• Consider more hidden issues: As we have no experiences with institutional

trading, there may be information - for example other types of charges - that we

have overlooked. Therefore, these could be taken into account.

• Redesign the optimisation process: The optimisation module of our system

works by considering the limitation of initial funds. With less funds, the system

will try to take less risk, resulting in trading less often. However, for institutional

trading, limited funds may not be a problem and our method of filtering may not

be optimal. Therefore, we suggest finding new criteria to filter the signals out as

we have already seen that this process is very important.

• Prepare plenty of funds to start with!
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Appendix D

Multiple Stock Training

In this research, we train our predictors on a single stock basis. This means that for

every stock included, we will collect historical data and use it to train our predictors.

These trained predictors will then be used to predict a test set from the same stock.

There are reasons we selected to train predictors on single stocks. Firstly, we would like

our predictors to be able to recognise specific patterns which only happen in the stock of

our interest. If we train them with other stocks (even including the focus stock itself),

it is possible that our predictors will be subjected or overfit to other patterns which are

not useful when we test our predictions on the stock initially selected. Secondly, time

is not a problem here. As we have shown in table 5.4 on page 208, the training process

is very quick, so it will be no problem at all to regularly retrain predictors, which will

be important for investors using the system. However, we do not retrain the predictors

in this research. We will only train them once per stock.

One might suggest, given the training process is so quick, training on multiple stocks at

the same time. Therefore, the predictors will only be trained once but theoretically can

be used to predict any stock. This would lead to another question, that of how many

we should train. For example, if we plan to use our system in the UK, we might train

predictors on all FTSE 100 stocks. However, given so much data the predictor is likely

to discover, and use, spurious correlations during the training period that do not exist

in practise, and hence fail during testing. We ran a little experiment to demonstrate

the effect of training our predictors on a multiple stock basis.

This section takes the top 5 stocks from table 5.2 on page 153, which are CARR,

COST, D4T4, FERG and GOOG. This table shows the performance of our predictors,

which were trained on a single stock basis. There are two predictors included in this
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experiment. They were trained on a single stock using the training data from the year

2000 to 2012. Then, these trained predictors were taken to predict the same stock

but for different years (year 2013-2014). The result from this algorithm was shown

in Statistical Selection strategy (the fourth line of the results from each stock) in the

original table (table 5.2 on page 153). However, in this section, this result will be shown

as Statistical Selection.

In this experiment, we take the same stocks from the top of this table and set every

condition the same way. The only difference is that instead of training our predictors on

a single stock basis, we train our predictors with all stocks in one go. These predictors

will then be used perform prediction on each stock individually later. Here are the

comparisons of the new training method (shows as Multiple Training) and the previous

one (shows as Statistical Selection).

Table D.1: The comparison between Buy & Hold, Single predictor, Multiple predictors
(with bias) and Statistical Selection (Multiple predictor with bias removal) methods

Data & Model Profit Sharpe Ratio Max DD Accuracy Stdev

(%) (%) (%)

CARR

Buy & Hold 62.38 0.77 -26.32 52.89 0.302

Statistical Selection 74.01 0.89 -33.23 49.89 0.302

Multiple Training -45.09 -1.17 -48.75 47.75 0.302

COST

Buy & Hold 11.57 0.09 -22.26 51.26 0.296

Statistical Selection -10.94 -0.31 -25.88 49.79 0.296

Multiple Training -29.71 -0.73 -34.96 48.95 0.296

D4T4

Buy & Hold 39.10 1.19 -37.76 51.75 0.586

Statistical Selection 105.02 2.69 -31.57 57.89 0.579

Multiple Training 91.74 2.43 -28.07 57.02 0.581

FERG

Buy & Hold 18.59 0.26 -16.09 49.10 0.211

Statistical Selection -43.56 -1.51 -45.74 48.7 0.210

Multiple Training -27.65 -0.91 -36.35 49.1 0.211

GOOG

Buy & Hold 45.71 0.74 -18.72 50.10 0.213

Statistical Selection 5.12 0.02 -24.23 47.91 0.213

Continued on next page
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Table D.1 – Continued from previous page

Data & Model Profit Sharpe Ratio Max DD Accuracy Stdev

(%) (%) (%)

Multiple Training 4.41 0.18 -17.06 48.11 0.213

Table D.1 shows that when changing the training method from a single-stock basis

to a multiple-stock basis the predictors do not work as well. Most of the results from

multiple stock training are much worse than the single stock training method, especially

CARR. CARR is one of the stocks that our model worked very well with. The buy

& hold strategy also did well. However, the model trained on multiple stocks ended

up with a big loss of -45.09%. This is not surprising because we thought training our

predictors with highly fluctuated data (data from many stocks) would make our system

worse as the predictors could not recognise specific characteristics included in the data

of the stock of interest. In fact, they try to learn to recognise broad characteristics

that might hold across stocks. With these results and the observation above that the

training time is not a problem, we cannot see any benefits from including the multiple-

stock training method in our trading system. Therefore, we used a single-stock training

basis.
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Appendix E

Statistical Results

Here we will provide the detail of statistical tests we have run on our results from table

5.3 on page 187.
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(a) Buy & hold (b) Polynomial Regression

(c) Linearn Regression (d) SVR(rbf)

(e) SVR(linear) (f) SVR(Polynomial)

(g) Random Forest (h) Average

(i) UCB (j) 1L Scoing

Figure E-1: P-value when comparing our model (two-layer scoring system) with other
strategies
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