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Abstract 

 

As more is demanded from dimensional measurement capability, more is demanded from the 

understanding of its main sources of uncertainty. At the large volume scale, thermal effects 

contribute significantly to dimensional uncertainty, particularly through thermal expansion 

and contraction of parts, tooling, and instruments. The problem was highlighted in aerospace 

assembly, while marine, and automotive assembly are other sectors affected by complex 

thermal environments. 

This thesis focuses on the problem of thermal expansion compensation of objects being 

measured. Most of the current understanding of thermal expansion compensation has been 

gained at the instrument level, in which manufacturers have modelled the effects of ambient 

temperature on measurement error and provided a calibrated correction. Simulation based 

thermal-structural modelling is well established for several applications. A lot of temperature 

measurement research and standards have focused on sensors, and not as much on the 

practicalities of using the sensors to produce the best outcomes.  

Experimentation on structures at the laboratory scale provided insights into how simulation 

could be used to compensate for thermal expansion. It became evident that the position of the 

sensors plays a significant role in accurately reproducing temperature distributions. Industrial 

measurements showed spatial and temporal thermal variation of several degrees, further 

highlighting the need for a tool to integrate dimensional and temperature measurement 

planning. 

A computational tool was built to test the task specific performance of temperature sensor 

networks in the context of thermal expansion. The tool allows for temperature distributions to 

be generated and FEA simulations to be run to test specified sensor networks. Results for 

temperature measurement capability were calculated, and its ultimate impact on the 

simulation’s ability to determine thermal expansion can be assessed. The approach was first 

applied to the case of a large beam to develop the tool, and to understand how different 

factors affected the ability to reconstruct temperature distributions. Sensor positioning and 

models for reconstruction had a more significant impact on temperature distribution 

reproduction than individual sensor uncertainties for this task.  

The final case study focused on a more complex assembly structure. Random search 

optimisation and sensor removal sensitivity studies of the network positions revealed most 

impactful sensors. Simulation of daily temperature variation using the tool demonstrated its 

ability to determine performance over time with varying temperature distributions. A 

polynomial interpolation model using a 16-sensor network with 0.1 °C (confidence interval, k 

= 2) uncertainty sensors could produce a consistent temperature reconstruction error of ~0.04 

°C RMS, corresponding to a thermal expansion error of ~1.5 µm in aluminium over the 1.6 

m-tall structure. Results such as this could impact how temperature measurement planning is 

valued and how resources are allocated to measurement activities. 

The creation of this tool demonstrates a computational, low-risk approach to temperature 

measurement planning and uncertainty quantification for dimensional. It is anticipated that in 

the future this tool can be used for increasingly complex cases and further validated through 

detailed uncertainty studies at large scales.  
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Nomenclature 

 

Abbreviation Definition 

AIT Assembly, integration and test 

BIM Building information modelling 

BIPM Bureau International des Poids et Mesures (International Bureau of 

Weights and Measures) 

BSI British Standards Institution 

C Celsius 

CAD Computer-aided design 

CAIP Computer-aided inspection planning 

CFD Computational fluid dynamics 

CMM Coordinate measuring machine 

CTE Coefficient of thermal expansion 

DfM Design for manufacturing 

DfV Design for verification 

DfX Design for X 

DMSC Dimensional Metrology Standards Consortium 

FDS Fibreoptic distributed sensing 

FEA Finite element analysis 

FEM Finite element method 

GUM Guide to the Expression of Uncertainty in Measurement 

IPRT Industrial platinum resistance thermometer 

IR Infrared 

ISO International Standards Organisation 

ITS-90 International Temperature Scale of 1990 

K Kelvin 

LVM Large volume metrology 

MAA Measurement assisted assembly 

MSA Measurement systems analysis 

NIST National Institute of Standards and Technology (US NMI) 

NMI National measurement institute 

NPL National Physical Laboratory (UK NMI) 

NTC Negative temperature coefficient thermistor 

PLM Product lifecycle management 

PMI Product manufacturing information 

PRT Platinum resistance thermometer 

Pt100 Platinum resistance thermometer referenced to 100-ohm resistor 

QIF Quality information framework 

RTD Resistance temperature detector 

SMR Spherically mounted retroreflector 

SPRT Standard platinum resistance thermometer 

T Temperature 

TC Thermocouple 

TLC Thermochromic liquid crystal 

U Uncertainty 
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Thermal Effects in Dimensional Measurement 

 

1.1 Introduction 

 

Temperature measurement provides a quantitative description of how hot or cold a body is. 

This corresponds to the amount of energy there is present in such a body. At absolute zero (-

273.13 K), atoms do not have the energy to move. This temperature cannot be fully realised 

by humans on earth and would not make for ideal conditions in which to carry out assembly 

operations. At common working temperatures in manufacturing, atoms are moving around a 

great deal more. 

Different materials exhibit different behaviour at different temperatures. Each material within 

the solid state, will experience a change in length corresponding to a change in temperature. 

For most solid materials, this is a proportional relationship. The coefficient of thermal 

expansion (CTE) for each material is used to describe the specific relationship for that 

material. Most commonly the linear coefficient of thermal expansion is used as this pertains 

to length. Similarly, the areal and volume coefficients exist to describe changes in area and 

volume. Linear CTE is given in units of microns per metre, per degree. That is to say: if a 

body of length 1 metre is raised uniformly by 1 °C then it will increase in length according to 

its CTE. 

Thermal expansion then poses a problem for dimensional measurement. Measurement is a 

means of communication. We have units of measure so that others may understand the 

quantities we seek to describe – a sentiment expressed by Robert Boyle in 1662 in calling for 

a standard temperature scale [1]. If everyone is trying to communicate length measurement, 

they necessarily need to be speaking the same language by measuring at the same 

temperature. After some debate, 20 °C was agreed as the standard temperature for 

dimensional measurement as specified by ISO 1:2016 [2]. Metrology laboratories all around 

the world can now control temperature to around 20 °C, which makes the quantitative 

description of objects more straightforward. 

Unfortunately, it is not always possible to control temperature in every scenario where a 

dimensional measurement is required. Not every part and assembly can be taken to a 

metrology laboratory for inspection. Not every part and assembly would fit into a metrology 

laboratory.  

Although the problem with these environments is clear, there are several important drivers 

exist for wanting to carry out measurements at non-standard temperatures: 

• Costs – cost of temperature control, cost of moving a part to a controlled facility; 

• Practicality – large scale environments make control difficult, outdoor environments, 

risk of damage in transport; 

• Scale – large scale products cannot be easily moved and may not even fit into a 

metrology laboratory; 

• Time – time taken to take a product to a laboratory; 

• Energy – temperature control takes a lot of energy which adds to costs and impacts 

sustainability metrics. 
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If there is not the opportunity to measure in a temperature-controlled environment, then what 

could be done? Below is a suggestion for a solution: 

‘With the knowledge of the CTE for different materials, it makes sense to measure the 

temperature and scale the dimensions accordingly.’ 

For many applications where manufacturing tolerances are not too challenging, this sentence 

describes a completely acceptable solution. Four portions of this sentence when viewed in 

further detail for higher specification products start to raise some questions: 

1) “Knowledge of the CTE” – How well do you know the CTE for the material present 

in the workpiece and how much does this vary? 

2) “Different materials” – What if I’m using more than one material in the same 

assembly? 

3) “Measure the temperature” – With what do I measure? How? When? And where do I 

measure it? 

4) “Scale the dimensions” – How best do I scale them back to standard temperature? 

The first question regarding the knowledge of the CTE can be difficult to answer. 

Dilatometry is used to measure the CTE of various material samples and are published in 

tables. This is a very helpful resource, but materials can and do vary – it has been anecdotally 

reported by those in the field of metrology that CTE can vary up to ±10% in some cases. 

The second question implies that more than one CTE could be present in an assembly, which 

is often the case. This needs to be dealt with appropriately when a method for determining the 

thermal expansion is selected. Materials with different CTE will have far more complex 

interactions under expansion than homogeneous materials. 

The third question is perhaps the deepest (and most interesting) one here. Selection of 

temperature sensor and how it should be used is an important consideration that will depend 

entirely on the requirements and constraints of each individual application. More accurate 

sensors will provide a more accurate reading, meaning a potentially more accurate 

dimensional scaling. Potentially is the key here, as there were other questions asked of: how, 

when, and where. Temperature distributions, particularly in large volume metrology (LVM) 

scenarios are unlikely to be completely spatially uniform, or temporally invariant. 

Finally, the fourth question asks how the dimensions can be scaled. In the most basic case, a 

straightforward calculation can be carried out in a case where we can assume that temperature 

distribution is uniform. In cases where there are thermal gradients, this becomes more 

difficult. In cases where the thermal gradients are non-linear, this becomes more complex. 

Multiple interacting materials also adds complexity. 

The seemingly innocuous sentence is now left with not much more than punctuation and 

conjunctions, but it has prompted a new discussion. Looking at these four points, they can be 

categorised into three groups of problems: CTE; temperature measurement; and scaling. 

Solving the CTE problem would involve the creation of a suitable technique for carrying out 

an in-situ CTE measurement. Solving the scaling problem is best achieved with more 

sophisticated methods that allow for non-linear scaling and/or mechanical interactions. 

Solving the temperature measurement problem is perhaps the most significant of them all. 

The method of scaling is only as accurate as the temperature measurement data that is being 

used. In-situ CTE measurement would be useful but may not always be practical and would 
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add a level of complexity into manufacturing processes. Temperature is one of the most 

widely measured quantities [3] and there are several ways to approach it. Thinking of 

measurement as communication, it could be argued that measurement traceability would be 

better achieved through agreement in how to plan temperature measurement to support 

dimensional measurement.  

 

1.2 Problem Summary 

 

The problem can be summarised as follows: 

• Thermal expansion can have significant effects upon dimensional measurement; 

• Temperature cannot always be controlled in environments in which dimensional 

measurement is required; 

• Temperature is not routinely measured as part of dimensional measurement; 

• There is no agreed methodology for temperature measurement planning. 

• There is no process or tool available for testing and comparing temperature sensor 

network configurations for thermal expansion compensation. 

 

1.3 Research Question 

 

How can a temperature measurement planning process be 

created to produce better outcomes for thermal compensation 

of large assembly-scale measurements? 

1.4 Aims 

 

The aim of this work was to create a process for temperature measurement to support thermal 

expansion compensation of dimensional measurement. 
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1.5 Objectives 

 

Initially, a review needed to be carried out to determine the state of the art and associated 

opportunities for research. Some experimentation had to be done to determine how thermal 

compensation could work in practice, as well as gaining more intimate understanding of the 

challenges faced by industry. Considerations for how temperature measurement should be 

planned and carried out had to be made, to determine how best to approach the problem. A 

method for comparing different temperature sensor networks had to be defined and tested for 

different cases. This method for testing and comparison needed to be used to optimise 

temperature sensor networks so that they are better adapted to the challenges of their 

environment. The objectives of this thesis are listed in Table 1, which shows which chapter(s) 

fulfil each of the objectives, for ease of reference. 

 

Table 1. Thesis objectives and location of associated content. 

Objective 

Number 
Objective Description Fulfilled By 

1.  Review the academic literature, 

industrial standards and 

published measurement 

guidelines; 

Chapter 2 - Literature Review 

2.  Experiment with thermal 

expansion and simulate thermal 

effects; 

Chapter 3 - Experimentation in 

Temperature Measurement and 

Thermal Compensation 

3.  Create and digitally validate a 

high-level framework for 

temperature measurement 

strategy for dimensional 

measurement; 

Chapter 4 - Temperature 

Measurement Planning 

4.  Create and digitally validate a 

method for establishing sensor 

positions of interest based upon 

environmental temperature 

distributions; 

Chapter 5 - Sensor Network 

Performance Testing 

 

Chapter 6 -  

Case Study: Barrel Section 

Assembly 

5.  Determine temperature sensor 

network performance; 

Chapter 5 - Sensor Network 

Performance Testing 

 

Chapter 6 -  

Case Study: Barrel Section 

Assembly 

6.  Consider the implications for 

optimising temperature sensor 

networks for thermal 

compensation. 

Chapter 6 -  

Case Study: Barrel Section 

Assembly 
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1.6 Chapter 1 – Summary 

 

Chapter 1 provided: 

• An introduction to the problem of thermal expansion in assembly environments. 

• Variables affecting thermal compensation capability. 

• A list of aims and objectives for the thesis and where these are addressed. 

Contributions: 

• Posed a research question that has not yet been answered about how best to plan for 

temperature measurement in assembly environments. 

 

Measured dimensions are temperature-dependent, so there is a 

clear need to understand how best to measure temperature.  
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2 Literature Review 

 

2.1 Approaches to Scaling in Spatiothermal Metrology 

 

The problem of thermal effects is well established, so the literature was reviewed to see how 

this was being solved and consider how it might otherwise be solved. It was apparent that 

scaling could be carried out in a few different ways, so that seemed like a sensible place to 

start. Looking at the variables required would provide an indication of where the errors might 

start to build up. 

Various approaches to scaling dimensional measurements for thermal expansion using 

measured temperatures exist. These approaches generally fall into one of the following 

categories: 

• Uniform scaling; 

• Analytical linear gradient scaling; 

• Analytical non-linear spatiothermal scaling; 

This list of potential scaling methods are all analytical. It should be noted that after 

observation from working in metrology with various companies, multiple temperature 

measurements are rarely taken, and if they are, are often not used beyond the instrument level 

thermal compensation. Similarly, only uniform scaling has readily available, published 

guidance for its use by a national measurement institute. The methods described in this 

section are limited to those that deal with thermal expansion in dimensional measurement – 

more sophisticated methods are used for different thermal compensation applications, which 

will be discussed later. 

The selection of the most appropriate method ultimately depends upon the: 

• Dimensional tolerances from design specification; 

• Access to temperature measurement instrumentation; 

• Complexity of the environmental temperature distribution. 

 

2.1.1.1 Uniform Scaling 

 

Thermal expansion compensation is usually achieved by applying a uniform scale factor to a 

set of measured coordinate measurements. Compensation using a uniform scale factor is 

somewhat limited, but it is widely practiced and is taught in the National Physical 

Laboratory’s dimensional measurement training [4]. 

The uniform scale factor is based upon the average temperature difference ΔT from the 

standard metrology temperature of 20 ºC, and the linear coefficient of thermal expansion α of 

the material, where L is the original length, and ΔL is the change in length. The new length of 

an object can be found using Equation 1. 

Equation 1 

𝐿 + 𝛥𝐿 = 𝐿(1 +  𝛼𝛥𝑇) 
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In large volume metrology applications where the temperature distribution shows a large 

amount of variation, the use of a uniform scale factor becomes a limiting factor to 

compensation accuracy in reflecting true thermal expansion at different points on the artefact. 

 

2.1.1.2 Analytical Linear Gradient Scaling 

 

A more sophisticated approach to scaling than uniform scaling is used in environments where 

the spatial variation of temperature is more significant, and assuming uniform expansion is 

not acceptable. The measurement of the gradient can be arrived at by measuring temperature 

at the extremities of the measurement volume, often the top and the bottom in the absence of 

any additional heat sources. The application of this correction for points within the volume 

can be achieved using linear interpolation. 

2.1.1.3 Analytical Non-linear Scaling 

 

Real temperature distributions are likely to be non-linear in nature. The distribution curve of 

the temperature is an important aspect to consider as it is not just the maximum temperature 

difference over a length, but the amount of material that is subjected to each temperature. 

The distribution of non-standard temperatures is the principle driver of thermal expansion, 

which can be described as a polynomial function of temperature. Integration of the 

temperature function then would yield the total thermal expansion, considering the full 

temperature distribution.  

In one dimension, the compensated length can be given as: 

Equation 2 

𝐿 + 𝛥𝐿 = 𝐿[1 +  𝛼 ∫ 𝑇(𝑥)𝑑𝑥] 

 

Where: 

L is the length of material between positions x0 and x1, (x1 – x0); 

ΔL is the change in length; 

α is the linear coefficient of thermal expansion of the material; 

T(x) is temperature of the material as a function of position, x. 

 

𝑇1  

𝑇2  

𝑇0  

L 𝑥0  𝑥1  Figure 1. Diagram showing a non-linear temperature 

distribution in one dimension in which T0 represents standard 

temperature. 
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Consider the example illustrated in Figure 1, in which a non-linear thermal gradient is applied 

across a one-dimensional length L in the x axis, or L. 𝑇0 represents the standard metrology 

temperature of 20 ºC that we are trying to scale the length dimension against. At 𝑥1, there is a 

new temperature 𝑇1 and at 𝐿𝑥1 , a new temperature of 𝑇2. Along L is the temperature 

distribution function defining the curve. 

The compensated length can be given as: 

Equation 3 

𝐿 + 𝛥𝐿 = 𝐿[1 +  𝛼 ∫ 𝑇(𝑥)𝑑𝑥
𝑥1

𝑥0

 ] 

 

There are two main options of how to apply this to dimensional measurement data and the 

decision-making process is illustrated in Figure 2. Provided the temperature has been 

measured on a known structure, the following courses of action can be taken to transform the 

dimensions measurement data to compensate for thermal expansion: 

a) Use a function to scale measured coordinates as in the traditional method in place of 

uniform scale factor; 

b) Use the distribution functions as boundary conditions in subsequent finite element 

analyses, in which there are: 

i) Confounding mechanical interactions in an assembly which limit compensation 

accuracy; 

ii) Parts of significant scale made from different materials causing complex 

interactions (e.g. bimetallic effect) in an assembly. 
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Figure 2. A proposed decision-making process for how to perform spatiothermal 

scaling. 

 

2.2 Metrology Standards and Guidelines 

 

Standards and measurement guidelines are outlined and discussed here to provide 

background to the problem of temperature measurement in the context of dimensional 

measurement in industry. This is not intended as an exhaustive reference, and some 

individual companies will have their own internal practices driven by the needs of their 

customers and sectors. With some understanding of how scaling could be achieved, it would 

be useful to determine what the accepted and agreed methods are at present. 

 

2.2.1 Industrial Standards 

 

Industrial standards for measurement have been agreed and published. Standards in 

metrology are regularly updated and reviewed to better serve the needs of industry and reflect 

the state of the art as far as possible. Mature and widely adopted measurement technologies 

will often have their own standards. Some sectors publish more specific standards, with the 

aerospace sector being a notable example. 

The ISO standard specifying the standard reference temperature for all geometric dimensions 

on an object to be 20 °C is ISO 1:2016 [2]. ISO 10360-2 defines the acceptance and 

reverification tests for CMMs [5]. To reduce error arising from thermal effects, 

manufacturers are required to specify environmental conditions to determine the acceptance 

of installations. Periodic interim checks can be carried out on a CMM to ensure that the 

measurement system is still working as expected. Such interim checks can be carried out 

using specific artefacts, and it is recommended that the artefacts used closely match the CTE 

of commonly measured objects.  

Further guidance on the use of calibrated workpieces can be found in BS EN ISO 15530-

3:2011 [6]. This standard also provides a calculation for the uncertainty contribution 

attributable to thermal expansion based upon uniform scaling. Design of an artefact of similar 

material and dimensions is likely to be use in the development of systems to further develop 

thermal expansion for industry. Similarity requirements are specified in this standard, and 

dimensions of artefacts should be within 10% for calibrated workpieces larger than 250 mm. 

 

2.2.2 Guide to Uncertainty of Measurement (GUM) 

 

Measurement guidelines are generated primarily through national measurement institutes, 

committees and working groups in the metrology community. These are generally freely 

accessible and are often considered to be the authority in the absence of a relevant industrial 

standard. These guidelines are updated every few years to better reflect the state of the art. 

The Guide to Uncertainty of Measurement (GUM), is a document that was published as a 

means of providing guidance to those carrying out measurements and calibrations. GUM is 
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not technically a standard but can be said to be considered a de facto standard in cases that 

are not covered by international, or national standards.  

Two major points are made in the GUM [7] that highlight the importance of working towards 

the integration of thermal and dimensional measurement: 

“7.1.3 Numerous measurements are made every day in industry and commerce without any 

explicit report of uncertainty.” 

“3.3.2 In practice, there are many possible sources of uncertainty in a measurement, 

including: … d) inadequate knowledge of the effects of environmental conditions on the 

measurement or imperfect measurement of environmental conditions” 

The first point illustrates how uncertainty evaluation is often neglected, meaning that many 

measurements recorded do not give an indication of how close that measurement is likely to 

be to the True Value. Following this, it is stipulated that the instrument uncertainty can be 

inferred from the traceability of the calibration. The second point is particularly pertinent to 

this thesis, as part of that uncertainty evaluation must include some characterisation of the 

environment in which the measurement is taken. In terms of uncertainty evaluation, this 

shows that relying on the calibrated instrument alone does not give a complete indication of 

the uncertainty of all measurements taken outside of the standard environment. 

 

2.3 Thermal Compensation in Manufacturing 

 

Thermal compensation has been studied in many forms in manufacturing, as thermal effects 

have long been known to create challenges beyond metrology applications. Thermal 

compensation is most extensively and successfully applied for specific instruments and tools. 

Measurement instruments often have their own form of thermal compensation. Often this is a 

case of characterisation of errors at given temperatures and applying an offset to measured 

dimensions. Regression methods are commonly used as a straightforward means of 

characterising an instrument’s response to temperature changes.  

The ISO 230-3:230 standard defines a procedure for the determination of thermal effects on a 

machine tool [8]. Example diagrams in this standard provide some guidance as to where to 

position temperature sensors during the test procedure with the requirement of recording their 

actual positions alongside the results. The test also makes use of linear displacement sensors 

on the structure and provides guidance for testing their stability under thermal load. This is 

one of the more useful standards on thermal effects as there is more discussion of the problem 

and impact in the body and annexes of the document. In the literature, most of the attention in 

thermal compensation research has been focused upon conventional CNC machine tools that 

are used for milling, drilling, and turning operations [9, 10]. One of the observations from 

reviewing the literature is that the work on thermal compensation is very specific in scope, 

hence the focus on machine compensation. Comparatively, there are few papers that are 

concerned with product, or tooling thermal compensation, for example, although low or 

negative expansion materials continue to be of great interest [11]. The use of FEA to predict 

and compensate for thermal errors is well-established in CNC machining but continues to 

yield useful knowledge when combined with other methods [12, 13]. Increasing interest in 

additive manufacturing processes has driven a lot of research in spatiothermal modelling - 

much of this is FEA and CFD based [14, 15]. 
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2.4 Temperature Measurement Technologies 

 

The review of temperature measurement technologies in this section was previously 

published as part of a technology comparison for presentation at a conference, which was 

later extended into a review paper to highlight research opportunities [16, 17]. 

Common to all scaling approaches is a measure of length and temperature. Despite having 

some idea of the technologies available for dimensional measurement to cover length, there 

was a need to get a clearer idea of how temperature was measured. Understanding their mode 

of operation as well as their strengths and weaknesses offered some insight as to what the 

challenges are for thermal compensation – the compensation can be only as good as the 

temperature measurement. 

Reviewing the literature revealed tens of technologies, and many of them were unsuitable for 

this type of temperature measurement. Whilst each measurement task is different, on the 

scale of thousands of degrees that represents the ITS-90, the ones found in assembly 

environments span a relatively short range. The temperature measurement technologies that 

are the focus of this review were selected since they would be best suited to industrial 

temperature measurement, particularly in the range 0-50 ˚C, within an assembly environment. 

A truncated classification diagram based upon Childs’ definitions [18] can be seen in Figure 

3. Their primary classification is based upon how invasive the sensor is – contact, non-

contact, or somewhere in between. 

 

Figure 3 – Classification diagram showing seven key temperature measurement 

technologies for use in assembly environments [16] 
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2.4.1 Invasive Temperature Measurement 

 

Invasive sensors require physical thermal contact with the measurand in order to function. 

Thermal contact can be achieved either through surface adhesion of the sensor head to the 

surface of the object, or preferably: inserted into the object. 

 

2.4.1.1 Thermocouples 

 

Thermocouples are the most widely used temperature measurement type in industry, which is 

reflected in the body of literature published on the subject in general. Contributing to their 

popularity are the accepted standards for use, their relative accuracy over an extended 

measurement range and the comparatively low cost of the sensors. Over wide ranges, 

accuracies between of ±0.5 ˚C and ±2 ˚C are comfortably achievable while narrower 

measurement ranges can manage closer to 0.1 ˚C [18]. 

These thermoelectric devices employ the Seebeck Effect in dissimilar metal wires. A 

temperature difference from a reference junction can be calculated as long as the Seebeck 

coefficients of the wire materials are known [19]. This temperature gradient creates within 

the wires a net electromotive force between T0 and T1 expressed as voltage of the order of 

microvolts, which can be measured at the terminus connections T0 to determine the 

temperature. As a temperature gradient needs to be established to create a net voltage output 

signal, cold junctions are often used in the form of a fixed physical temperature or simulated 

electronically using cold junction compensation (CJC). 

As the largest contributor of thermocouple uncertainty, studies have focused on the 

inhomogeneity of specific material wires [20-24] as well as methods for its evaluation [20, 

25-27]. New quantitative methods for determining the contribution of inhomogeneity of 

thermocouples have been studied over a wide range of thermal gradients likely to be 

experienced in use and shown to be an improvement upon traditional depth immersion tests at 

fixed points for elemental thermocouples [28]. 

The self-validation of thermocouples has been studied for control applications in order to 

detect unusual sensor readings resulting from loss of power, open circuit and loss of contact 

faults [29]. This intelligent sensor then proceeds to give a best estimate reading. Individual 

sensors can be characterised and exhibit enhanced performance and fault detection through 

the use of internal memory and software [30]. 

Various types of thermocouples have been evaluated and compared in terms of their stability 

[31]. Comparisons between the stability and sensitivity of base and noble metal 

thermocouples have also been made [32]. Pure element thermocouples are more homogenous 

than alloyed thermocouples. The best base metal thermocouple over the -40-1200 °C range is 

the Nicrosil-Nisil or Type N while the best noble metal is the Pt/Pd thermocouple for 

measurements up to 1500 °C. Type S thermocouples from different manufacturers have been 

shown to exhibit slightly different thermoelectric characteristics, with a maximum difference 

at the Cu fixed-point of 1.95 °C [33]. 

A system has been developed for use in strong EM fields at ITER with 0.5 °C global 

accuracy [34]. Magnetic fields in particular also influence thermocouple sensors and studies 

have been carried out to establish the sensitivity of the sensor to these fields to account for 

this in uncertainty estimations [35]. 
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Improvements have been made in spatial resolution of surface temperature measurement 

compared to standard soldered Type K thermocouple using an electrochemically etched 

microtip [36]. Thin film thermocouples can also be deposited onto a surface and has been 

used in the measurement of heat generated in the friction between sliding surfaces [37]. 

Non-linearity of sensors can be an issue although one study showed it to be possible to 

correct for this using a neural network approach in Type K thermocouples [38]. Through the 

improvement of high temperature alloys and more intelligent electronics, industrial 

thermocouple measurements can be further enhanced [39]. 

 

2.4.1.2 Industrial Platinum Resistance Thermometers (IPRTs) 

 

Industrial platinum resistance thermometers (IPRTs) are resistance-based temperature 

sensors. Temperature can be measured extremely accurately by applying a small current to a 

length of platinum wire of known resistance. Temperature on the sensor will alter the 

resistance of the wire which can be compared against a reference resistor. Platinum is used 

due to the stability of the material and linear relationship between temperature and resistivity.  

IPRTs are the rugged cousins of the standard platinum resistance thermometers (SPRTs) used 

to define fixed points on the International Temperature Scale. SPRTs are capable of 

uncertainties of the order of milliKelvins [40], however are delicate instruments. IPRTs are 

designed to withstand the shock, vibration and contamination found in industry and can 

comfortably achieve ±0.01 - 0.2 °C [18]. Shortly after the introduction and adoption of the 

ITS-90, a capability assessment of IPRTs was carried out at a range of temperatures [41].   

IPRTs embody two main forms: wire wound and thin film. Wire wound IPRTs consist of a 

platinum wire wrapped around a ceramic core, whereas thin film IPRTs consist of a thin film 

of platinum deposited onto a ceramic substrate. Both types are typically encapsulated inside 

an insulating layer [42]. Thin film IPRTs can be lower cost devices as their construction lends 

itself readily to mass production, whilst being useful for surface measurements. Wire wound 

IPRTs tend to be more expensive for accurate probing. 

IPRTs are starting to find applications with low cost thin film devices where previously 

thermocouples would have been utilised and in 2013 one paper described an IPRT adaptation 

to measure stagnation temperature in gas turbines [43]. 

Hysteresis can form a significant contribution to the uncertainty of IPRTs, caused by the 

construction of the sensor, with thin films exhibiting higher levels than wire wound IPRTs 

due to thermally induced expansion and contraction [44] . Further confirmation that sensor 

hysteresis was construction-dependent was provided in another 2010 study [45]. The best 

Pt100 sensors exhibit hysteresis of the order of milliKelvins, whilst the worst were around 

20 mK [46]. IPRTs have been found to be sensitive to electromagnetic fluctuations [47]. 

For precise measurements at a small scale, IPRTs have been identified with performance 

characteristics comparable to that of the ITS-90 standard [48]. Investigations have been 

underway to develop a device, which can turn the IPRT into an intelligent sensor that 

contains calibration and sensor characteristics. This potentially offers reduced measurement 

uncertainty whilst being less expensive than resistance bridges used in laboratories [49].  
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 Thermal contact and sensor protection is important and work has been carried out in order to 

determine the best use of thermal insulation filler although this needs to be tested in a range 

of conditions for further validation [50].  

Methods have been developed for accurate, semi-automatic calibration on-site, resulting in 

reduced slow temperature drift and a reduction in calibration time [51]. The possibility of 

having self-testable IPRT sensors for improved long-term stability has been explored with the 

use of miniature fixed-point cells so the sensor can remain fixed without having to be 

removed for calibration. This approach was found to be good enough to monitor long-term 

sensor stability to 0.1 °C [52]. 

 

2.4.1.3 Negative Temperature Coefficient Thermistors (NTCs) 

 

Thermistors are made from semiconductor materials and their temperature-resistance 

relationship is characteristically non-linear [40], placing greater emphasis on the importance 

of calibration. Use of semiconductor materials means they can provide a far higher level of 

sensitivity [53] than other sensor types although regular calibration is necessary to avoid the 

effects of sensor drift. 

Schweiger argued in 2007 that a fast multichannel precision thermometer could be developed 

to rival PRTs using thermistors, provided there is adequate sensor selection and calibration 

[54]. In tests carried out in the range from -50–10 °C, deviations of less than 30 mK were 

observed. 

Apart from a bridge resistance circuit, a voltage divider can be used to resolve temperatures. 

Faced with non-linearity, this can be problematic however one solution is to determine the 

resistance of the voltage divider itself to capitalise on the thermistor's innate sensitivity to 

produce a high resolution thermometer [55]. 

An artificial neural network approach to sensor non-linearity was investigated in 2001 by 

Khan et al., which appeared to be an improvement upon linear regression methods [56]. In 

2008, it was suggested by Keskin, in reference to the 2001 article, that it needed to be 

repeated to reflect the correct form of the NTC characteristic equation to prove efficacy [57]. 

A promising new development allows for a thin film of graphene to be inkjet-printed onto a 

flexible polymer substrate and used as an NTC sensor; the response time of this thin film was 

shown to be an order of magnitude better than conventional NTCs [58].  

 

2.4.1.4 Fibre-optic Distributed Temperature Sensing (FDS or DTS) 

 

Fibre-optic Distributed Temperature Sensing (DTS) systems operate using the change in 

refractive index of an optical fibre at different temperatures and its resultant effect upon the 

collimated, monochromatic light that propagates along its path. DTS also finds application in 

the monitoring of power cables up to 30 km in length [59] and in pipeline monitoring for the 

oil and gas industry [60]. Around 0.1 °C resolution and less than ±1-2 °C can be achieved 

using DTS, however spatial resolution can suffer over long distances with 10 mm spatial 

resolution over 70 m being attainable [61]. 
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Fully distributed systems allow measurements to be taken at discrete spatial intervals along 

the fibre. Fully distributed systems encompass linear-backscattering, non-linear 

backscattering and non-linear forward scattering [62]. Attempts have been made to use the 

Rayleigh backscatter to correct for background effects in Raman based systems, with limited 

success. This is more a concern for harsh environments and over distances of 2 km so should 

be of less consequence in a factory context [63]. 

It was argued that Brillouin scattering theoretically offered a larger measurement range than 

an equivalent Raman system [64]. Over long distances up to 100 km, remote Raman 

amplification has proved useful in improving the performance of Brillouin based DTS by 

boosting the signal to noise ratio [65]. 

Other variables can influence the propagation of the optical wave in the fibre, which means 

that these systems can also measure strain, pressure, electrical and magnetic fields. 

Combining Raman-Brillouin scattering and multiwavelength Fabry-Perot lasers allows 

simultaneous strain and temperature measurements to be taken. A hybrid Raman-Brillouin 

approach delivered significant improvements in performance [65]. In 2011, one study 

reported that using Allan deviation analysis on a sophisticated Raman backscatter system 

resulted in noise and drift improvements with a resolution of around 0.05 °C [66]. 

For the factories of the future, strain measurement combined with temperature measurement 

would be particularly useful for monitoring tooling structures subject to thermal and 

gravitational loading.  

 

2.4.2 Semi-Invasive Temperature Measurement 

 

Semi-invasive sensor types are technically invasive types whose measurements can be 

interpreted non-invasively from a distance. Semi-invasive sensor types are often thermally 

active coatings that can be applied to the surface of the object to be measured.  

 

2.4.2.1 Thermochromic Liquid Crystals (TLCs) 

 

Thermochromic Liquid Crystals (TLCs) are liquid crystals whose optical properties change 

when subjected to different temperatures. Outside of the measurement range, the sensor will 

appear transparent, as the crystals are in an amorphous state. Within the measurement range, 

the sensor will display a range of colours known as the colour play, where the crystals will 

become more structured and reflect different wavelengths of light according to the 

temperature [67]. Each TLC typically operates over a narrow bandwidth however a variety of 

TLCs with overlapping measurement ranges can be used in concert. A review of TLCs was 

published in 2011 [68]. 

TLCs are especially useful for heat transfer studies, providing relatively economical 

temperature distributions. Solving the fin temperature equation is commonly carried out and 

it is also possible to include natural convection in the estimation of the heat transfer 

coefficient [69]. Turbulent heat transfer studies such as those applied to turbine blades that 

were carried out using TLCs were reviewed in 1995 [70].  
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Image analysis techniques have been used in conjunction with TLCs in order to measure the 

temperature distributions as well as heat transfer and thermal polarisation coefficients found 

in spacer-filled channels for membrane distillation with promising results [71]. 

Spin-crossover (SCO) materials have been successfully used to develop a TLC for use around 

room temperature, which could allow for sensing in different temperature regimes [72]. 

In 2011 it was shown that a TLC could be used in the calibration and verification of ultra-fast 

scanning calorimeters, with the suggested material for this application being 80CB [73]. 

2.4.2.2 Thermographic Phosphors 

 

Phosphor thermometry relies on the luminescence exhibited in phosphors when subjected to 

different temperatures over a sizeable range. Methods for phosphor thermometry vary. Time 

resolved phosphor thermometry measures the time for the phosphor to reach a critical 

intensity; frequency domain finds application in those measurements where the excitation is 

continuous and periodic. Time-integrated methods measure one absolute intensity or the ratio 

of a pair of intensities emitted from the phosphor [74].  

Material properties are fundamental to thermographic phosphors. Seven ceramics were 

characterised at once to contribute to and encourage further material studies [75]. Depending 

on the doping materials used, it is possible to create thermographic phosphors that can give 

an intensity ratio at two distinct wavelengths when illuminated by ultra-violet light, allowing 

for improved temperature distribution measurement [76].  

As coatings, measurements can be taken on curved surfaces, where the intensity ratio strategy 

is preferred to minimise possible viewing angle error [77]. 

Imaging of the wall temperature inside an optical engine can be achieved using lifetime 

analysis, which uses the intensity decay over time to resolve the temperature to produce 

"reasonable temperature maps" [78].  

Transient temperature measurements for combustion applications are common and a 

theoretical study of heat transfer by Atakan and Roskosch was carried out to inform 

experimentalists of practical measurement considerations [79]. For high frequency 

measurements, traditional models can present challenges to the experimenter and in 2007 a 

new, more effective model for transient measurement was published [80]. The use of 

thermographic phosphors in combustion applications was reviewed in 2010 [81].  

The selection of a measurement strategy should include a comparison for specific coatings. 

The lifetime and intensity ratio approaches were compared for one phosphor: Mg4FGeO6:Mn, 

where the former was found to be the preferred choice in accuracy and precision [74]. 

Thermal barrier coatings can incorporate thermographic phosphors to allow for embedded 

temperature sensing although further development is required to allow optical access to the 

surfaces [82]. 

A comprehensive review of thermographic phosphors for surface temperature measurement 

including film preparation, measurement strategies and associated uncertainties was 

published by Brübach in 2013 [83]. 
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2.4.3 Non-Invasive Temperature Measurement 

 

Non-invasive temperature measurement sensors make no physical thermal contact with the 

measurand. 

 

2.4.3.1 Infrared Radiation Thermometry 

 

Infrared Radiation thermometry measures the energy radiated from the surface of the 

measurand. The energy radiated from the surface depends upon the emissivity of the surface 

to be measured. Emissivity is a dimensionless ratio that is used to describe the amount of 

radiation absorbed by, and reflected from, the surface of a body. Due to the number of 

variables, emissivity is the largest source of uncertainty in this type of measurement but can 

be managed to some extent using a uniform coating of a known emissivity. Commercially 

available devices generally take one of three forms: single point sensors, line scanners and 

thermal imaging cameras. Single point sensors can be calibrated to achieve around ±1-2 °C 

accuracy, whereas the line scanners [84] and cameras will deliver around ±2-3 °C. 

The emissivity of a surface can change as the temperature is being monitored as temperature 

is another variable of emissivity. A promising development is a system that can measure 

emissivity and temperature simultaneously to correct for emissivity changes [85]. 

Various emissivity models based on surface roughness have been classified. One study 

compared emissivity modelling approaches and validated experimentally using various 

surface roughness values of Al 7075 aluminium alloys [86]. 

The Traceability in Radiation Thermometry (TRIRAT) project was undertaken to improve 

industrial temperature measurement. This project resulted in a new robust instrument with the 

performance of a standard thermometer, measuring in the range from -50 °C up to 1000 °C 

[87]. 

IR temperature measurement is particularly useful for non-invasive measurement of higher 

temperature processes. Welding has benefitted from the use of this technology, and it is 

possible to combine IR with thermocouples to better model weld pool thermal cycles during 

laser welding, for example [88]. Temperature distributions during chip formation in the 

machining of titanium have also been measured in this way [89]. 

The building sector spawned a handheld system for the creation of 3D thermal models for use 

in the energy auditing of buildings [90]. Using two or more mounted IR cameras, 3D 

temperature maps can be created [91].  

Wireless IR thermometers with a narrow field of view appear promising for outdoor 

measurements where large ambient temperature fluctuations are present [92, 93]. 
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2.4.4 Temperature Measurement Comparison 

 

The data presented in Table 2 [16] compares the temperature sensing capability of each of the 

temperature measurement technologies reviewed in terms of their characteristics. 

Specifications of temperature measurement technologies will vary, so this table provides 

more of a general guide to their relative merits.  

 

Table 2. Table comparing the six temperature measurement technologies. 

Technology Sensor 

Type 

Uncertainty 

(± °C unless 

percentage of 

reading given) 

Resolution 

(˚C) 

Source Possible 

Applications 

Thermocouples Invasive 0.1-0.5 0.01-0.1 [18] Model 

development; 

embedded into 

tooling; air 

temperature; 

product 

monitoring 

IPRTs Invasive 0.01 0.001 [94] Model 

development; 

embedded into 

tooling; air 

temperature; 

product 

monitoring 

NTCs Invasive 0.01 0.01 [53] Model 

development; 

embedded into 

tooling; air 

temperature 

FDS Invasive 1 0.1 [61] Model 

development; 

embedded into 

tooling; 

integrated into 

product 

TLCs Semi-

invasive 

0.1-2 1 [70] Model 

development; 

applied to 

tooling 

Thermographi

c Phosphors 

Semi-

invasive 

1% 1 [83] Model 

development; 

applied to 

tooling 

IR Radiation 

Thermometry 

Non-

invasive 

1-3 0.1 [18, 

84] 

Model 

development; 

tooling 

monitoring; 

product 

monitoring 
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2.5 Measurement Planning 

 

Literature pertaining to measurement planning is reviewed in this section for both 

dimensional measurement and temperature measurement. Including dimensional 

measurement planning in this section this provides background to the problem, provides a 

basis for contrast to the state of the art in temperature measurement planning, and because it 

will have to be used to produce spatiothermal measurement plans. Temperature measurement 

planning is included as a separate section from sensor network design. Many of the learning 

from sensor network design is transferable to temperature measurement specifically but is not 

necessarily limited to the measurement of only temperature.  

 

2.5.1 Dimensional Measurement Planning 

 

Dimensional measurement planning is relatively mature compared to temperature 

measurement planning. The method used to measure the dimensions of an object has a 

significant impact upon the resulting measurement uncertainty. Measurement processes are in 

addition heavily dependent upon measurement planning for both reproducibility and 

traceability to international measurement standards. 

Computer aided inspection planning (CAIP) is a research area that has grown significantly as 

more demands are placed upon quality and speed of production. Initially, the majority of 

CAIP focused on the application to CMM inspection as this is commonly used in industry. 

CMM inspection can be a source of bottlenecks depending on the production environment. 

Planning and programming of CMM inspection is a highly skilled job that takes time and 

expertise. Computational optimisation of inspection continues to be a major area of research 

to support metrologists. Looking at inspection from a quality perspective, a lot of work has 

been done to optimise for quality throughout production [95].  

Computational methods are increasingly being used in the planning of measurement using 

optical systems such as laser tracker networks [96-98]. This approach usually considers an 

uncertainty model, and photogrammetry and structured light projection are other technologies 

that have used uncertainty modelling to facilitate traceable inspection planning [99]. 

Inspection planning can be carried out automatically, and several software packages exist to 

generate measurement plans and programs. Model based definition (MBD) is often used as 

one of the enabling technologies for this, as the MBD contains CAD geometry, as well as 

other technical information required for production such as geometric dimensioning and 

tolerancing (GD&T). The extra data in the MBD is machine readable, so with knowledge of 

the design specification as well as the geometry, software can make use of rules to generate 

probing strategies and output inspection plans. MBD driven CAIP has a number of associated 

challenges to overcome such as in interoperability and standardisation, and work has been 

done to address some of these issues for the Model Based Enterprise (MBE) [100, 101]. This 

is potentially a supporting technology that could be applied to temperature measurement 

planning, but this does not appear to have been done as yet. 
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Due to the distances covered in some large-scale applications, autonomous inspection 

systems are increasingly being developed to carry out inspections. CAIP provides a means to 

quickly plan inspection and remove some of the time-consuming path-planning required to 

inspect large structures [102]. Large volume metrology has typically focused on the 

dimensional aspects of measurement planning, and not so much on the thermal error 

contributions, so there is an opportunity to expand on the existing work in this area.  
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2.5.2 Temperature Measurement Planning and Sensor Network Design 

 

“Temperature measurement planning” is a term that is relatively difficult to find in the 

literature, but research has been carried out in this area using different terminology. 

Temperature measurement planning as a term is used throughout this thesis as there are clear 

parallels in the preparation required before both types of measurement. 

The objective of temperature measurement that is of most interest to this thesis is ultimately 

the temperature of structures so that thermal expansion can be inferred. This could be 

acquired from embedded or surface sensors, depending on the object being measured – this 

could also be invasive or non-invasive.  

Measurement of ambient air temperature is very common in general [103]. Ambient air 

temperature measurements are useful in optical metrology for the prediction of error due to 

refractive index changes. The temperature of air and other fluids are often studied because 

they have an impact upon living things that are sensitive to changes such as crops in 

agriculture [104]. These measurements often contribute to the building of thermal models, 

and validation of CFD simulations [105]. Oceanography is another field that has a significant 

interest in spatial temperature distributions in a challenging environment [106]. 

Research in the field of heating, ventilation, and air conditioning (HVAC) has studied the 

temperature distribution of a range of environments and applications. Thermal stratification 

describes an environment in which temperature gradients operate vertically, meaning 

temperature increases with height. Often, work has focused on understanding thermal 

comfort for people working in these environments [3, 107], or for improving energy 

efficiency [108], for example. It has been found that large spaces with high ceilings suffer 

from a high degree of thermal stratification, with guidebooks advising that large halls are 

likely to exhibit a thermal gradient of around 1 °C/m [109].  

The aerospace, marine, and automotive sectors are particularly affected as this is often where 

large products are assembled. Thermal expansion error frequently affects measurements in 

assembly due to the temperature distributions and variations in these large spaces [110]. 

Nath et al looked specifically at Bayesian calibration for spatially varying parameters and 

optimisation of sensor positions to support this calibration [111]. It is important to note that 

the primary motivation for this research was for the structural health monitoring of concrete 

structures. One of the interesting aspects of this paper is that is addresses inhomogeneity in 

concrete, so is necessarily complex and stochastic, as opposed to deterministic. This was 

applied to temperature distributions in concrete. Reproduction of the temperature field 

performed well computationally, and these results were validated to some extent in 

experimental trials. Optimised sensor locations were compared to uniform grid, with 

randomly positioned configurations serving as experimental controls. Using this method for 

spatial analysis showed promise, however the only optimisation was on position, not the 

number of sensors required. Solving the optimisation was also found to be computationally 

expensive, although this point can be overlooked to some extent at this stage of development. 

Time variance wasn't included in the optimisation, and there is the suggestion that extending 

this method to include time could be more complex than this may initially sound, at which 

point computing efficiency would become more of a concern.  

The requirements for measuring structural temperature in solids and measuring ambient air 

temperature are quite different, with some similarities. The temperature in a structure placed 
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in an environment with stable air temperature will be stable. As air temperature becomes 

more variable, the structure’s temperature will be quite different as not all of the heat will be 

transferred between the air and the structure. The NPL Good Practice Guide, Introduction to 

Temperature Measurement considers surface measurement, where embedding a sensor is not 

possible. Maximising the surface contact to increase heat transfer is key to reducing the error 

of surface temperature measurements [103]. 

 

2.6 Spatial Interpolation Methods 

 

Reconstruction of temperature fields from sparse temperature sensor data requires some 

method of interpolation. Interpolation is a subset of the wider area of the study known as 

Approximation Theory, in which simplified functions can be used in lieu of more 

complicated functions. Approximate functions naturally produce residual errors as they do 

not perfectly match the original function. These errors are calculated to measure the 

performance, compare, and establish the limitations of a resulting approximate function 

[112]. 

Interpolation can be defined as, “The computation of points or values between ones that are 

known or tabulated using the surrounding points or values” [113]. Various methods exist for 

filling these gaps in datasets, and such methods have found application in various fields. In 

particular, the interest is on spatial interpolation methods that produce simplified functions in 

scalar fields. This section presents a brief overview of spatial interpolation methods, and a 

coarse selection of useful methods, some of which are discussed in more detail. 

Several review papers have been published on spatial interpolation methods in different 

disciplines [114]. Comparative studies have been carried out on spatial interpolation methods 

using sample data sets to determine which methods would be preferred. These comparisons 

are to some extent application-specific - it would be difficult to use specifically applied 

methods as evidence to make general statements about interpolation methods. Looking at 

these comparisons with some perspective, and context as to how close each application is to 

the problem, it becomes easier to get a feel for which methods might work. Care is taken to 

avoid declaring or referencing the existence of a ‘best’ method. Several methods could 

produce an acceptable result for a specific application, but the optimal method may be 

different depending upon the dataset.  

Li attempted to review comparative studies for spatial interpolation in the environmental 

sciences [115]. This provides a useful perspective of the landscape of spatial interpolation 

methods, and highlights more commonly used methods. There does appear to be a bias 

towards these common methods, meaning they are subsequently overrepresented in 

comparative studies. This is useful, as it shows these methods are de facto standards - it 

betrays a consensus that any novel method should be compared to them. In the case of novel 

methods, these do sometimes outperform the more popular methods, but are less widely used 

and therefore rarely represented in comparative studies. Over a long period of time this effect 

would hopefully converge towards generally better performing methods, but this is a 

limitation of this type of study. Many of the methods appear to be variations of some core 

methods.  



38 

 

The context of the problem is important to consider in the selection of the most appropriate 

interpolation method. The reconstruction of temperature fields could be posed as a 1D, 2D, or 

3D problem. Ideally, the 3D scalar field case is the one that is of most interest, but useful 

results could come from lower dimensional approximations in many cases. As dimensionality 

increases, the number of options available for interpolation decrease. Another consideration 

is computational expense, as higher dimensional solutions will usually take more time than 

lower dimensional solutions.  

 

2.6.1 Linear Interpolation 

 

Linear interpolation involves the fitting of a continuous straight line through two or more 

discrete data points. The fitted line then allows values to be predicted within the limits of the 

first and final points. Linear interpolation is the most straightforward of interpolation 

methods and is widely used. In some cases, a linear interpolation can provide a good 

approximation of a temperature distribution.  

Linear interpolation forms the basis of the finite element method. Between any two nodes on 

a finite element mesh, a linear interpolation is carried out in order to produce continuous 

results from a solution.  

 

2.6.2 Polynomial Interpolation 

 

Polynomial interpolation introduces curve fitting, allowing the approximation to potentially 

outperform straight lines using a polynomial function. Polynomial functions are described in 

terms of their degree, or order, which is determined by the largest power in the polynomial.  

To some extent, higher order polynomial functions can produce approximations with 

relatively low residuals, however there can be problems with over fitting of the model to the 

data points. High order polynomials can produce some extremely large and unhelpful values 

if not properly applied - examples of this can be seen in section 4.4.4. 

 

2.6.3 Kriging 

 

Kriging is one of the more commonly used interpolation methods. It is a statistical 

interpolation method and can be used to address various types of problem [116]. Kriging 

allows unknown data points using known data points, distributed in space, to be estimated. 

Known points do not need to be regularly distributed for this to work, although density and 

local point distances influence usefulness of estimation. 

Bohling’s Kriging material [117] points to Goovaerts’ explanation [118], in which he pointed 

out that Kriging is usually some flavour of the basic linear estimator, with different 

assumptions. The basic linear estimator is described by Equation 4.   
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Equation 4 

𝑍∗(𝒖) − µ(𝒖) = ∑ 𝜆𝛼[𝑍(𝒖𝛼) − µ(𝒖𝛼)

𝑛(𝒖)

𝛼=1

] 

 

Where: 

Z(u) is the variable of interest, the random field; 

µ(u) is the trend component, the expected mean of Z(u); 

u is the location vector for the estimation point; 

n(u) is the number of local data points used to estimate; 

z(uα) is the datum for estimation location u; 

λα(u) is the kriging weight assigned to datum. 

In this case, the function Z(u) could be a temperature distribution, in which the temperature, 

here Z, varies with position, u. The main spatial difference is that the position is described 

using a Euclidian vector relative to a datum, z(uα), instead of a Cartesian coordinate relative 

to the origin. 

In ordinary kriging (OK), the assumption is that the mean is only locally constant, rather than 

globally constant as in simple kriging. The result is a simplified model [119] : 

Equation 5 

𝑍(𝒖) =  µ(𝒖) + 𝑅(𝒖) 

 

Where: R(u) is the residual error component. 

Cokriging is kriging with additional variables, in which the estimation is embodied in 

multiple models. Ordinary cokriging (OCK) makes the same assumption about local rather 

than global means, but instead for the two variables. Two-variable cokriging models could be 

expressed as: 

Equation 6 

𝑍(𝒖)1 =  µ1(𝒖) + 𝑅1(𝒖) 

𝑍(𝒖)2 =  µ2(𝒖) + 𝑅2(𝒖) 

 

As there are additional variables to consider, there is a greater degree of estimation required. 

More estimation can mean that the computation required is greater but can increase the 

uncertainty of the estimation. There may be occasions where the extra variable confers less of 

a benefit than expected due to this added uncertainty. 
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2.7 Research Gaps and Opportunities 

 

Reviewing the literature showed that there were some opportunities for work to be done in 

temperature measurement to support thermal compensation of dimensional measurements. 

Much new work on temperature measurement sensor development appears to be focused on 

the extreme ends of the temperature scale, and less on more everyday temperatures as there 

are significant traceability challenges [120]. Invention is required in order to engineer a 

sensor that can survive such extremes, but also to carry out measurements with an acceptable 

level of uncertainty. The temperature measurement technologies available can comfortably be 

used to measure within the temperature range of an assembly environment, however, which is 

much less hostile. The key difference is that the temperature differences are more subtle, so 

more sensitive temperature sensors can reduce the sensor contribution to uncertainty. 

Dimensional measurement planning and computer aided inspection and planning (CAIP) are 

well-established areas of research, in which a lot has been done to improve the execution of 

dimensional measurement. When the term “temperature measurement planning” is used, it 

becomes more challenging to find examples of research in this area. Most of the work on 

temperature measurement planning is carried out outside of manufacturing engineering 

research, and subsequently has a different set of terminology that is used. Geospatial climate 

research [121] and oceanography are two examples in which temperature sensor network 

design is applied.  

The comparison of dimensional and temperature measurement as entities should be fair to 

make, just as the comparison of any of the SI units. What was interesting to observe was the 

very different approach of the two communities, or at least, how the two communities could 

be perceived when looking at the literature. It is possible that the differences between 

dimensional measurement and temperature measurement are driven by the relative influence 

of end users in industry and academia. 

In manufacturing, for example, if the thermal history of a part could be measured upon 

receipt from a supplier there might be a marked difference in the approach to temperature 

measurement to be more closely aligned to dimensional measurement. Product conformances 

are defined by geometry and dimensions, so dimensional measurement is necessarily 

highlighted. Products are built by processes, within which temperature is a parameter. Many 

processes are proprietary, so accessibility of this learning is made difficult. 

The difference in the approaches warrants further work, as going forward the trend in 

manufacturing is towards the use of significantly more sensors to monitor a variety of 

quantities. In many ways, if temperature measurement is to be deployed with the same level 

of maturity as dimensional measurement, then much of the work that is found in CAIP needs 

to be repositioned. Care was deliberately taken to not say repeated: many studies have been 

carried out for temperature sensor networks and sensor networks in general. It appears that 

there are comprehensive standards for common sensor types to be manufactured, but very 

little guidance can be found on how to use these sensors. What is missing is a planning tool 

that can be used in manufacturing, and a metrological framework that supports the symbiotic 

measurement of interacting quantities.  

In the next chapter, the results of experimental work are presented. These experiments 

provided valuable experience in learning more about the problem of thermal expansion in the 

laboratory and in the factory. Experimentation with real structures required that they be made 

to expand in the otherwise relatively stable conditions of the laboratory. How would thermal 
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compensation work in practice? What kinds of temperature variation can be observed in an 

assembly environment? And how significant a role should temperature measurement 

planning play in real world applications?  
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2.8 Chapter 2 – Summary 

 

Chapter 2 provided: 

• An overview of the approaches to scaling for thermal expansion and when they are 

likely to be used. 

• Discussion of relevant guides and standards – none of which currently provide 

information to answer the question of how best to measure temperature for thermal 

compensation. 

• Examples of thermal compensation research applied to manufacturing. 

• A review of temperature measurement technologies. 

• Examples of measurement planning and comparison between temperature and 

dimensional metrology. 

• An overview of methods for the interpolation of temperature distributions. 

 

Contributions: 

The contributions to knowledge from this chapter are: 

• Identification of gaps in the research relating to the planning of temperature 

measurement. 

o Work has been done to develop sensor technology. 

o Work has been done to plan for temperature measurement in individual 

scenarios. 

o Work has not been done to define a set method for temperature measurement 

planning. 

 

The sensors are available to measure temperature to a high 

standard, but currently there is no agreement or guidance on 

how best to use them in practice, particularly for thermal 

compensation.  
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3 Experimentation in Temperature Measurement and Thermal Compensation 

 

This section summarises the results of experimentation that has taken place in laboratory and 

industrial settings. Experimental work is presented to provide background to the problem and 

see the role of temperature measurement planning. The experiments presented provided key 

learning in the following areas which can be used to create a temperature measurement 

planning strategy: 

• Practical experience in the measurement of dimensions and temperature; 

• Methods for CAD simplification; 

• Computational modelling of thermal expansion; 

• Data acquisition; 

• Analysis of simulation data and methods for its comparison to measured data; 

• Temperature characterisation of loosely controlled and uncontrolled industrial 

environments. 

Testing of thermal expansion and the development of a workflow for its compensation was 

aided by the introduction of heating in order to create more extreme, localised effects so they 

could be easily measured beyond the uncertainty of measurement as much as possible. 

Taking this approach meant that within the laboratory environment, thermal gradients could 

be introduced synthetically in an environment that is ordinarily much less variable. Methods 

for introducing heating to structures are presented in this section, with brief notes on their 

advantages and limitations.  

As a rough guide: the ambient temperature of the laboratory in which some of these 

experiments have been executed was often close to standard (approximately 20 ±1 °C). More 

extreme periods occurred where the temperature was casually observed to exhibit around 

18 °C in cold, wintry weather, to up to around 22 °C in hot, summer weather. Lessons were 

also learned about the relative comfort level experienced within this small range of ambient 

temperatures. 

The work presented in this section was previously presented at the Digital Enterprise 

Technology 2016 conference, and later published as a special edition journal article [122]. 

 

3.1 Experimental Measurement Scenario 

 

3.1.1 Frame structure 

 

The experimental measurand took the form of a cuboidal frame structure. Each of the 12 

beam members were made from aluminium 6063 45 mm extruded profile by MiniTec and 

were fastened with proprietary PowerLock fasters. The frame was 2 m in length, and 1 m 

height and depth. These dimensions and material choice allowed for experiments to be 

carried out at the lab scale whilst providing maximum thermal expansion. 

Supporting this frame were 4 ball transfer units, which sat at the four bottom corners of the 

frame. Each of the ball transfer units rested upon flat plates adhered to the floor, which 

allowed the frame to expand more smoothly. One ball transfer unit was nested in a hole 

drilled into one of the plates in order to provide a translational constraint. To reset the frame 

position repeatably, and to provide constraint for yaw rotation of the frame, a fiducial post 
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was fixed to the floor for the frame to rest against. A photograph of the frame from the 

photogrammetry can be seen in Figure 4. 

3.1.2 Heating method 

 

At normal ambient temperature the laboratory environment was relatively stable, varying less 

than a degree at various positions on the frame. Heating of the structure was performed using 

a DeLonghi HVA3222 fan heater. Convective heating is the primary heat source in industrial 

environments and the fan heater allowed for exaggerated heating in order to significantly 

observe thermal expansion beyond the uncertainty of the measurement technique. The heater 

was placed outside of the frame next to the bottom corner, facing inwards. The heater had 

two heating power levels providing 1 kW and 2.2 kW [123]. 

 

3.1.3 Measurement  

 

3.1.3.1 Photogrammetry 

 

An Aicon DPA photogrammetry system [124] was used for these measurements. a modified 

Nikon 3dx digital single lens reflex (DSLR) camera equipped with a 28 mm Nikkor prime 

lens. Image transfer was achieved quickly using a local Wi-Fi connection to a laptop 

computer. Proprietary software called Aicon 3D Studio is used for these measurements and 

some analysis of measurement data. 14-bit ANCO coded targets were fixed to the surface of 

the structure. 

An example of the output of deformation analysis in Aicon 3D Studio can be seen in Figure 

4. The photogrammetry scale bars, data acquisition system and the heater can be seen around 

the frame structure.  
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Figure 4. An example image showing deformation analysis of coded targets in Aicon 

Studio superimposed onto the greyscale photograph of the frame structure. 

200 to 250 images were captured at a range of elevations and orientations around the 

structure per measurement. Roughly 10 vantage points were used in standing and crouching 

positions, with 8 ladder positions allowing for improved vertical vantage points. The 

photogrammetry is captured in Figure 5 and Figure 6. Each of the green dots in the images 

represent a coded target, white lines are scale bars, and the white boxes represent camera 

positions. It took 15-20 minutes to capture all of the required photographs.  
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Figure 5. Screenshot from Aicon 3D Studio showing the side view of the frame structure 

photogrammetry.  

 

 

Figure 6. Screenshot from Aicon 3D Studio showing the top view of the frame structure 

photogrammetry. 
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Temperature Measurement 

 

Type T thermocouples and class A platinum resistance temperature detectors (RTDs) were 

used throughout the experiments to measure surface temperature on the frame. Thermal 

imaging was also carried out to characterise the temperature distribution of the frame when 

heated by the fan heater, which can be seen in Figure. 7 showing the magnitude, and highly 

localized nature of the heating.  

An FLIR handheld infrared (IR) thermal imaging camera with an absolute accuracy claimed 

by the manufacturer to be ± 2 °C [125] was used. The sensitivity of the camera is stated as 

<0.045 °C meaning that the camera is particularly useful in a qualitative capacity for sensor 

positioning. 

The colour in the image is automatically scaled to be between 20 and the maximum 

temperature in the scene. On the higher heater setting, the spot temperature at the crosshair 

was ~36 °C, significantly higher than the value measured for the lower setting of ~27 °C. The 

absolute quantities are less useful than the relative quantities observed. 

Invasive sensor positions were assigned and can be seen in Figure. 9. Sensor density around 

the heated corner was increased to capture some of the complexity of the localized 

temperature distribution.  Ambient temperature was recorded using a thermocouple (TC0). 

RTD sensors are more accurate than thermocouples and therefore were used around the 

heated corner to increase the density in this area. A further twelve thermocouples covered the 

frame. The temperature sensors were attached to the surface of the structure using self-

adhesive, insulating contact pads as shown in Figure 8 to ensure temperature is measured 

from the surface and not the air. Thermal paste was applied to the surface in preparation to 

improve thermal contact between the surface and the sensor. An extra layer of tape was 

applied to secure the sesnors throughout the experiments. 

Figure. 7 - Example thermal images of a) H2P1 and b) H1P2 

a) b) 

z 50 mm z 50 mm 
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Figure 8. Diagram showing the adhesion of a welded tip thermocouple to a surface. 

 

3.1.4 Computational Thermal Compensation 

 

3.1.4.1 Geometry  

 

Simplified CAD geometry was created for the frame to allow for the simulation to run 

quickly. Chamfers, fillets and other small details were removed from the geometry.  

Performing this simplification in the geometry more than halved the simulation run time. 

Speed of simulation would be important for metrology processes in manufacturing. Figure. 9 

shows a rendering of the frame and temperature sensor positions are labelled, where TC0-12 

are thermocouples and RTD0-3 are thin film platinum resistance thermometers. 

 

  

Thermocouple wire 

Tape 

Surface 
Thermal paste 

Welded tip 
Insulated pad 
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3.1.4.2 Simulation – Finite Element Analysis (FEA) 

 

FEA was used to simulate the thermal expansion under heating. A one-way coupled system 

was used here in which a thermal analysis is performed to find the full temperature 

distribution. The results are then passed to the structural analysis, which produces 

displacement results for each node on the geometry. Relatively coarse meshing is used for 

both phases of the FEA simulation, again to improve the simulation processing time. 

3.1.4.3 FEA Thermal Analysis 

 

Over the maximum measurement period the temperature varied by less than 0.1ºC. As the 

temperature variation over this period was relatively small, a steady state thermal analysis 

was carried out. Average temperature for the period of the dimensional measurement were 

applied from each sensor at the corresponding FEA coordinates. The initial temperature 

parameter was set to be the average ambient measurement. Thermal analysis used only a 

conduction model to calculate temperature at unspecified nodes. 

 

3.1.4.4 FEA Structural Analysis 

 

Using the thermal analysis solution, a static structural analysis was performed. Movement of 

the frame was constrained to match the experiment. The frame is supported using a 

displacement constraint in the vertical direction, with the horizontal movement unconstrained 

Figure. 9 - Schematic of sensor positions on frame, where TC1 is the fixed 

corner and RTD0 is the heated corner 

z 1 m 
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for three of the points of contact. The ball transfer unit that was constrained in the experiment 

was similarly constrained in all directions. Displacement solutions along the X, Y and Z axes 

were calculated for each node in the simulation. 

3.1.4.5 Target-node Matching 

 

Closely matching the coordinate systems of the measurement and the simulation allowed the 

nearest nodes from the FE mesh to be matched to each photogrammetry target. Measured 

coordinates were used in a Euclidean nearest neighbour search of the mesh node location 

data. The corresponding displacement results for the nearest node were used for each 

photogrammetry target. 

 

3.1.5 Comparison of Scaling Methods 

 

In addition to simulation, there is also extensive use of temperature measurement in this 

methodology.  Temperature is usually only measured using instrument weather stations 

unless there is a specific need for enhanced capability, or if the environment is particularly 

challenging.   

Traditional scaling takes a single scaling factor calculated by multiplying the difference from 

standard temperature by the CTE and adding 1 as shown in equation 1. Multiplying this 

scaling factor by the original length, L0, produces the new length, L1. 

Equation 7 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 = 1 + (𝑑𝑇 × 𝐶𝑇𝐸)   

Equation 8 

𝑳𝟏 = 𝑺𝒄𝒂𝒍𝒊𝒏𝒈 𝑭𝒂𝒄𝒕𝒐𝒓 × 𝑳𝟎      

To separate the benefits of temperature measurement and simulation, the thermal expansion 

should be calculated for the following: 

1) Traditional scaling - minimal temperature measurement, uniform scaling 

a) Mean ambient temperature at the instrument 

b) Mean temperature between maximum and minimum 

c) Worst case scenario using maximum temperature 

 

2) Traditional scaling - full temperature measurement, uniform scaling 

a) Mean temperature of all sensors 

b) Median temperature of all sensors 

 

3) Hybrid Metrology - all sensor temperatures and positions used, with nodal displacements 

from finite element analysis used to predict localised expansion.  
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3.1.6 Results and Discussion 

 

Measurement of the structure was performed using the photogrammetry system and 

deformation analysis was carried out using the Aicon 3D studio software. The reference 

measurement H0Px was compared to its heated counterpart HxPx. Both sets of measurement 

data were initially aligned using a best fit of the measured targets. All of the data was aligned 

to the coordinate system using targets around and relative to the fixed corner, as this was the 

most mechanically and thermally stable part of the structure. The software then performed a 

deformation analysis, which calculates the displacement of the targets in the X, Y and Z 

directions. Figure. 10 shows the regions of interest, with the points measured in each region 

as well as the heater positions. 

The RMS error was given by Aicon 3D Studio for each of the points to be roughly 20 µm on 

average. The analysis showed the mean total deformation (X, Y, and Z combined) observed 

on the targets across the whole structure was of the order of hundreds of micrometres, which 

was to be expected as there was significant heating on the structure by design. This meant 

that the deformation was an order greater than the RMS of the measured points, so there was 

confidence that the deformation could be separated from the measurement error. 

 

Figure. 10 - Illustration of the points measured at the numbered regions of interest with 

fixed point and heater positions 
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3.1.6.1 Scenario 1 – H2P1 

 

Temperatures in this scenario around the frame are shown in Table 3. Maximum temperature 

was more than 26 °C above standard temperature.  

Table 3. Temperatures measured around frame from thermocouples and RTDs. 

Sensor ID Temperature (°C) 

TC0 20.56 

TC1 20.73 

TC2 20.74 

TC3 31.78 

TC4 40.45 

TC5 21.3 

TC6 21.34 

TC7 22.52 

TC8 23.23 

TC9 21.31 

TC10 21.43 

TC11 21.56 

TC12 36.74 

RTD0 46.78 

RTD1 26.23 

RTD2 22.47 

RTD3 27.37 

 

For the traditional scaling techniques, the temperatures used can be seen in Table 4. 

Table 4. Temperatures and scale factors used for each scaling method. 

Method ID Method Temperature 

(°C) 

ΔT from 

standard 

(°C) 

Scale Factor 

1a Ambient 20.56 0.56 1.000013 

1b Mean Max-Min 33.67 13.67 1.000320 

1c Max 46.78 26.78 1.000627 

2a Mean All 26.27 6.27 1.000147 

2b Median All 22.47 2.47 1.000058 
 

 

For clarity, the results have been presented for the four 2m long beams (Figure. 11) and 1m 

inter-regional distances for the whole frame (Figure. 12). Using methods 1a, 1b and 1c results 

in low agreement to the measured results.  

Figure. 12 shows the ability of method 3 to scale for localised expansion is generally 

advantageous. Table 5 shows that the Hybrid method has a marginally lower mean difference 

to the measurement results over the various distances compared to other methods. 
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Table 5 - Absolute mean differences from the heated measurement for each method for 

1 m and 2 m distances in H2P1. 

Method ID Method 1m mean difference 

(mm) 

2m mean 

difference (mm) 

1a Ambient 0.128 0.198 

1b Mean Max-Min 0.242 0.515 

1c Max 0.515 1.109 

2a Mean All 0.127 0.202 

2b Median All 0.122 0.198 

3 Hybrid 0.082 0.179 

 

 

Figure. 11- Column chart showing thermal expansion in 2 m beams for all methods 

compared to the measured value 
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Figure. 12- Column chart showing thermal expansion between numbered regions for all 

methods compared to the measured value in purple. 

3.1.6.2 Scenario 2 – H1P2 

 

Temperatures in this scenario around the frame are shown in Table 6 and are less extreme 

than the first scenario. Maximum temperature was in excess of 12 °C above standard 

temperature.  

Table 6. Temperatures measured in H1P2 from thermocouples and RTDs. 

Sensor ID Max Temperature 

(°C) 

TC0 22.51 

TC1 20.2 

TC2 20.84 

TC3 23.65 

TC4 30 

TC5 20.56 

TC6 21.57 

TC7 20.87 

TC8 21.31 

TC9 21.55 

TC10 20.8 

TC11 24.06 

TC12 29.14 

RTD0 32.34 
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RTD1 27.3 

RTD2 21.53 

RTD3 23.68 

Scaling factors for this scenario can be seen in Table 7. Once again there are a wide range of 

possible scaling factors due to the localised heating. 

 

Table 7. Temperatures and scale factors used for each of the traditional scaling 

methods. 

Method ID Method Temperature 

(°C) 

ΔT from 

standard 

(°C) 

Scaling 

Factor 

1a Ambient 22.51 2.51 1.000059 

1b Mean Max-Min 26.27 6.27 1.000147 

1c Max 32.34 12.34 1.000289 

2a Mean All 23.64 3.64 1.000085 

2b Median All 21.57 1.57 1.000037 

 

In Figure. 13 and Figure. 14, we can again see that the Hybrid metrology method appears to 

agree a little more closely with the heated measurements. 

 

Figure. 13 - Column chart showing thermal expansion of all methods compared to 

measured value 
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Figure. 14 - Column chart showing thermal expansion in 1m beams for all methods 

compared to the measured value 

The mean magnitude of difference between the measured results for each of the scaling 

methods is given in Table 8. Ideal scaling would represent a mean difference tending towards 

zero, and in this case, the Hybrid method generally outperforms than the traditional scaling 

methods with a mean value of 0.066 mm. 

 

Table 8. Mean absolute difference in thermal expansion of all methods from the 

measured value. 

Method ID Method 1 m mean 

difference (mm) 

2 m mean 

difference (mm) 

1a Ambient 0.082 0.099 

1b Mean (Max-Min) 0.107 0.244 

1c Max 0.202 0.520 

2a Mean (All) 0.085 0.125 

2b Median (All) 0.083 0.078 

3 Hybrid 0.066 0.061 

 

The Hybrid method can be said to have produced marginally better results than the uniform 

scaling methods. As the FEA carried out was highly simplified, these results although modest 

are promising. Various factors can be improved from this initial study within the simulation 

to make a far more significant impact to the results. A contraction appeared to be observed 

between regions, but in reality, this was regions getting closer together due to bending of the 

structure. The buckling of the beams can be better characterised to provide a more accurate 

view of the displacements. 
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Finer, more tailored meshing can also be used on more complex geometry. A transient 

analysis can be used rather than steady state. The contacts between the beams can also be 

refined as these are modelled as being more stiff connections than is necessary. Similarly, the 

stiffness of the beams themselves can be characterised experimentally. Once the finite 

element model is fully calibrated in this way, the results will become a function of the time 

spent in setting up the FEA. This is acceptable due to the modular nature of the Hybrid 

metrology approach, where specialists in CAD, FEA and metrology can contribute separately 

in the initial setup. Ultimately, the major significant finding was the importance of 

temperature measurement as a far more pronounced difference can be seen from using a full 

complement of temperature measurement as opposed to one or two sensors. 

 

3.1.6.3 Major Findings 

 

This study has outlined and shown the application of a straightforward methodology for two 

things, the first being temperature measurement for dimensional metrology, which is 

currently often only carried out on the ambient temperature at the instrument. Finite element 

simulation of displacement allows for compensation of coordinates that would not be possible 

using current linear scaling methods, due to the presence of highly localized heating. 

Two challenging measurement scenarios have experimentally showed that even a highly 

simplified FEA was able to modestly outperform the traditional scaling methods with both 

minimal and full temperature measurement. 

Thermal compensation is only as effective as the measurement of temperature. Sparsely 

measured temperature is limited in value and important thermal effects can easily be missed. 

Temperature measurement is a major contributor to improvement in thermal compensation 

and can be further improved with simulation.  
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3.2 Chapter 3 – Summary 

 

Chapter 3 provided: 

• Results of initial laboratory-based experiments in which thermal expansion was 

observed in a simplified structure. 

• Results that suggest using FEA based simulation using multiple sensors can provide 

more realistic thermal expansion than assuming a uniform temperature distribution as 

is currently often done in practice. 

 

Contributions: 

• Experimental work to show method of FEA driven thermal compensation. 

• Discussion of challenges in thermal compensation efforts. 

 

Measured dimensions are temperature-dependent, so there is a 

clear need to understand and agree upon how best to measure 

temperature - it could be measured in a variety of ways.  
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4 Temperature Measurement Planning 

 

Experiments had revealed more information about thermal compensation could work in the 

laboratory, but how does this look in industry? How would a metrologist go from having a 

specific measurement challenge through to a temperature measurement plan? And then, how 

would people use this in operations? 

 

4.1 Industrial Assembly Jig Temperature Measurement 

 

This thermal study focuses upon an industrial assembly, integration and test (AIT) 

environment in which the temperature was controlled to within 5 °C in order to improve the 

measurement uncertainty, and subsequently improve the quality of assembled products.  

Two ambient temperature sensors were in operation at either end of the AIT environment, 

and a thermostat controlled the heating and cooling of the environment. 

The aims were to: 

• Verify the localised performance of the temperature control; 

• Characterise the periodic variation that is existent within the AIT environment; 

• Measure thermal gradients between the bottom and top of large jig tooling structures 

used in assembly. 

4.1.1 The Assembly, Integration and Test (AIT) Environment 

 

The jig tooling structures used to assemble the products are numbered from 1-6. Jig 2 was the 

main jig structure that was measured dimensionally, using photogrammetry and will have 

much more comprehensive temperature measurement than the other jigs. 

 

4.1.2 Temperature Measurement 

 

4.1.2.1 Thermocouple and RTD Acquisition - Jig 2  

 

Most of the dimensional and thermal measurement was carried out on Jig 2. This jig was not 

being used for assembly at the time of the study, which meant many more sensors could be 

placed around the structure without impeding assembly operations. Details of the jig could 

not be shared, but a highly simplified diagram is provided in Figure 15 to give some idea of 

their shape. 
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Figure 15. Simplified CAD representation of the assembly jigs with approximate sensor 

positions. 

As the jig structure was very large at over 4 °m tall meaning many sensors were ideally 

required to characterise the temperature profile of the structure. 20 sensors were available in 

total, however due to the practical difficulties of setting up wired sensors around a large 

structure, one of the thermocouple sensors was damaged and therefore could not be used. In 

total, 19 channels of temperature data were acquired via an 8-slot National Instrument 

Compact DAQ chassis, which was connected to a laptop running Windows 7 and Signal 

Express via USB.  

Of the 19 sensors, 4 channels were 3 metre thin film platinum resistance temperature 

detectors (RTDs), which have a measurement uncertainty of better than ±0.1 °C. The RTDs 

were connected to the DAQ using a National Instruments 100Ω RTD, 24-bit analogue input 

module (NI-9217). 

The remaining 15 sensors were 5 °m T-type thermocouples (TCs) with a measurement 

uncertainty of around ±0.5 °C. The thermocouples were connected to a National Instruments 

high-accuracy, 16 channel isothermal thermocouple input module (NI-9214). The 24-bit 

analogue to digital converter allows for 0.02 °C measurement sensitivity. The isothermal 

terminal block allows for electronic cold-junction compensation for each of the 

thermocouples. 

Thermocouple 

– visible 

Thermocouple – 

obscured 

RTD 
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As can be seen in Figure 15, the approach to temperature sensor positioning was to spread the 

sensors evenly, and have the more accurate Pt100 sensors distributed vertically to give a good 

representation of the temperature gradient at the front. 

 

4.1.2.2 Wireless Thermocouple Data Loggers 

 

Jigs 1, 3, 4, 5 and 6 were all monitored using wireless data loggers placed at the top and at 

bottom of each jig. This measurement was designed to give a general idea of the temperature 

change over time in the AIT environment and to discover the thermal gradient from the 

bottom to the top of each jig. 

The wireless data loggers were each equipped with two K-Type thermocouple sensors, 

positioned 1 m apart at the same height. The K-type thermocouples used with the wireless 

data loggers are generally of a lower cost than the T-type thermocouples used with the DAQ. 

These K-type thermocouples have a measurement uncertainty of around ±1 °C at the room 

temperature range. The measurement resolution of the sensors and the data logger is ±0.1 °C. 

For practicality, surface temperature measurements were made of the jig structures. A more 

accurate reading of the jig structure could be obtained through embedding the sensors, 

although this was not possible in this case. As a result, the air flow within the AIT 

environment is likely to have influenced the measurements taken using this method. Using 

adhesive insulating pads to cover the sensors was one way in which this effect was mitigated 

and to improve thermal contact between the structure and the sensor. Extra tape was used to 

secure the sensors over the top of the insulating pads for added security as the AIT area was 

still fully operational. 

 

4.1.3 Main Assembly Jig 2 Temperature Profile 

 

Measurements were taken on Jig 2 throughout the course of the week, which can be seen in 

Figure 16 and Figure 17. These graphs show the temperature measurements over time from 

the four RTD sensors which served as a more accurate reference. 

Over the course of the working week, particularly in Figure 16 it would appear that the 

temperature profile follows a fairly regular pattern. It would be advantageous to collect more 

data over a longer time period to better characterise the environment. This information can 

then be used predict the most stable times when dimensional measurements could be taken. 

Figure 16 shows there is a clear and predictable thermal gradient present on the jig of circa 

1 °C which appears to reduce slightly in the cooler periods. Whilst a thermal gradient of this 

magnitude is relatively good, this will nonetheless have a slight impact on the uncertainty of 

dimensional measurements taken of the whole structure. 

Some temperature spikes can be seen in the data, which have arisen as a result of a person 

making contact or working closely to the sensor at the time. This highlights the need for 

temperature sensors to be well insulated and protected from extraneous disturbances. In, 

Figure 17, the yellow trace of TC1 shows excessive noise during a period of several hours. 

The spikes bounding the noise suggests that the thermocouple had been knocked loose at 

some point where the first temperature spike is and later replaced where the second spike is. 
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Again, this shows the need for the development for more practical methods of temperature 

measurement in working jigs. 

 

 

Figure 16 - Graph showing the temperature on Jig 2 over time showing measurements 

from 4 RTD sensors and the average temperature 

 

Figure 17 - Graph showing the temperature on Jig 2 over time showing measurements 

from 15 thermocouple (T type) sensors and the mean temperature 

4.1.4 AIT Temperature Profile 

 

Each of the jigs around the AIT environment where also measured at the top and bottom. 

Figure 79 to Figure 93 show the temperature change over time, and summarised in Figure 18. 

The agreement between TC1 and TC2 in each case is generally quite close, usually 0.1 to 

0.2 °C. 

At the top of the jig, the temperature generally seems to be up to 1 °C higher and can be seen 

to fluctuate more than the bottom of the jig. This is likely to be due to the AIT environment 

as there are several ventilation units mounted on the ceiling that help to regulate the air flow 

and temperature. 
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Looking at all of the jigs, the lowest mean temperatures recorded were on jig 6 (Bottom), 

with the highest temperatures recorded being Jig 1 (Top). The disparity in temperatures 

between these two extremes appears to reach a maximum of circa 1.5 °C. 

As with Jig 2, the other jigs appear to follow a predictable pattern, which again will be useful 

to study with dimensional metrology planning in mind. 

 

 

Figure 18 - Graph showing the mean temperature on all jigs over time at the bottom 

and top of the jigs 

 

4.2 Temperature Measurement Planning Strategy 

 

This section proposes a general temperature measurement strategy, from a high-level 

perspective. The various steps of this strategy are illustrated in Figure 19, and the succeeding 

sections add further detail on how each of the steps can be realised. 
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Figure 19. Diagram defining an overall strategy for temperature measurement 

planning. 
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Dimensional measurement requirements should be the starting point for producing any such 

temperature measurement plan. This could be conceivably be extended to any form of 

requirements arising from the application: in this case, dimensional measurement, but could 

just as easily be process requirements. The environment in which the temperature would need 

to be measured should first undergo some form of characterisation. Characterisation at this 

stage would be concerned with general trends in temperature, practical constraints imposed 

by the physical environment, and any sources of uncertainty likely to confound measurement 

in this space. Based on this survey, a first attempt at a temperature measurement plan can be 

made.  

The temperature measurement plan must capture sensor selection, how they will be deployed, 

and how they will be used to acquire data. Costs of the temperature measurement 

instrumentation and the maintenance thereof should be estimated as well as possible at this 

stage. These costs can be optimised according to the requirements, and budgetary constraints.  

Following the plan, the necessary equipment must then be procured and integrated into its 

working environment. With the necessary hardware in place, there should be a practical setup 

phase. In this phase the temperature sensor network and subsequent interpolations and 

simulations are validated for use. Dimensional measurements can be taken with a higher-

than-normal frequency at this stage, to which thermal expansion simulation can be compared. 

Agreement between dimensional measurement and simulation results are the performance 

metric for this validation. Adjustments can be made to the temperature measurement plan to 

improve its capability for accurately measuring temperature distributions and ultimate 

computational prediction of thermal expansion.  

Subject to observation of adequate performance, the temperature measurement plan can be 

approved and enacted. Continuous improvement activities can support the now live 

temperature measurement plan. 

 

4.3 Environmental Survey 

 

The environmental survey is intended to be carried out as part of the set-up of the temperature 

sensor network and to serve as the foundation of the temperature measurement plan. This is 

intended to be a characterisation of the environment. At this stage the number of sensors used 

will be far higher than the number of sensors that are normally used. The methodology for the 

environmental survey is not discussed in detail in this work, as the main interest is in what 

happens after this stage. 

Positioning of sensors for the environmental survey will be in the form of a naïve sensor 

network in which no a priori knowledge of the environment in used. It is envisaged that 

invasive sensors be numerous and positioned with equal spacing. A less dense version of this 

is later used to provide a control against which the performance of the optimised temperature 

sensor network can be compared. 

Non-invasive and semi-invasive technologies can also be used at this stage. Thermography 

using IR radiation and coatings can provide qualitative descriptions of the temperature 

distribution. Depending upon uncertainty constraints, quantitative thermography can be 

carried out. Where there is doubt about the uncertainty of a technology acting in this capacity, 

this can be corrected using invasive sensors being used within the image to provide a 

correction. 
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4.4 Methodology 

 

This section describes how the computational testing of the temperature measurement sensor 

networks was carried out using a Python script. ANSYS software has been used for FEA in 

order to produce results for thermal expansion to form a basis for comparison. Description of 

the functionality of many of these scripts has been included in this section. The focus for this 

work is to test a range of sensor networks quickly for a range of scenarios. Automation of the 

simulation was important for repeatable and efficient running of experiments. Python was 

identified as one of the programming languages that facilitates this type of automation, as 

well as being a good language for prototyping. Some experimentation with MATLAB, 

LabVIEW, and R was carried out which was ultimately translated and absorbed into the 

Python script that came to be known as Therminator. 

The overall methodology for how the temperature measurement plan is generated can be seen 

in Figure 20. A virtual temperature distribution is created and applied to a CAD model. FEA 

is then used for this case to determine the reference thermal expansion, which serves as the 

‘goal’ for future reproductions. An initial temperature sensor network is defined by the 

number and type of sensors, their uncertainty, and their respective coordinate positions. This 

sensor network is used to take virtual measurements of the spatiothermal artefact, with or 

without uncertainty. Uncertainty in this case is artificially generated using normally 

distributed pseudo-random values defined by a given standard deviation and mean.  

With a set of virtual measurements, a reconstruction of the temperature distribution can be 

made. Reconstruction uses virtual sensor data alongside some form of interpolation, and FEA 

produces a final calculation of thermal expansion as measured. Comparing the thermal 

expansion results from both the reference and reproduced temperature distributions can 

provide a measure of how well the sensor network positions have performed. Optimisation of 

these positions can be iteratively carried out to produce a temperature distribution that is 

closer to the reference. Users can then use learning from testing different sensor network 

configurations to specify a temperature measurement plan. The temperature measurement 

plan is not created using this script as this would ultimately be the generation of a technical 

document authored according to the needs of industry. 

This methodology is the core contribution of this thesis as there isn’t a tool that has yet been 

created to fully address this problem from beginning to end. In particular, the virtual 

measurement, reproduction, and optimisation steps are the most challenging, and provide the 

most opportunity for impact. Beyond the creation of the tool, there is a lot of learning that can 

be generated around specific temperature measurement strategies. Use of the tool can help 

those in manufacturing better understand uncertainty of dimensional measurement, 

temperature measurement, and how they interact. Having an understanding of how conditions 

change over time can provide further flexibility to adapt to new environments, whilst still 

maintaining a consistent, reproducible, and traceable approach to measurement. 
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Figure 20. Diagram showing the methodology for creating a temperature measurement 

plan. 
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4.4.1 Test Script Functionality 

 

Table 9 provides a description of each of the classes used in script forming the temperature 

measurement planning tool in order to provide an overview of the functionality. Each of the 

classes contains methods (functions defined within classes) that carry out each of the required 

operations. 

Table 9. Table describing the classes used in the Python script used for testing 

temperature sensor networks. 

Class Name Description 

Experiment Initialises experiment run by setting up folders and reading 

the parameter file. 

SpatialGrid Defines the grid of points used to generate the temperature 

distribution for a given volume to bound the CAD model 

of the part or assembly. 

TempDistFunction Generates a temperature distribution from the parameter 

file, which can be used as a nominal ‘true value’ 

temperature distribution, against which reconstructions 

from sparse measurements can be compared. 

Figures Plots figures in both 2D and 3D, which can be used to 

visualise temperature distributions (generated, and 

reconstructed) as well as errors within the volume at each 

point on the grid. 

ThermalBypass Makes use of analytical means of interpolation to 

circumvent the need to perform thermal FEA. 

FEThermal Edits a template input file for thermal FEA and runs the 

simulation automatically in batch mode. 

FEStructural Edits a template input file for structural FEA and runs the 

simulation automatically in batch mode 

SensorNetwork Defines fixed ‘naïve’ temperature sensor networks which 

can be used as a basis for comparison to bespoke and 

optimised temperature sensor networks. 

SensorNetworkInfo Reads temperature sensor network information from file 

for use in virtual measurements. 

VirtualMeasurement Performs a virtual measurement based upon coordinates 

and uncertainties of temperature sensors within the 

network. 

Reconstruction Reconstructs the full temperature distribution from sparse 

points given by the virtual measurement using the defined 

sensor network. Methods include polynomial regression 

and ordinary kriging. 

Results Calculates error in reconstruction of temperature 

distribution and error in simulated displacement from FEA. 

Produces a final table of results for comparison of sensor 

networks. 
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4.4.2 Virtual Spatiothermal Environment 

 

Testing temperature measurement plans can be achieved through the creation of a virtual 

spatiothermal environment. A virtual spatiothermal environment in this case is defined as a 

volume with a defined temperature distribution, in which a CAD model can be positioned. 

The distribution as it is applied to the CAD model can then define a nominal reference 

temperature distribution on the object. This reference temperature distribution then serves as 

a virtual ‘true value’ representation. Creation of a virtual reference enables two things: 

1. Reference values for thermal expansion can be calculated, to which the 

reconstructions from virtual measurements can be compared; 

2. Potential sensor positions can be used to take virtual temperature measurements. 

These virtual temperature measurements can be used to try to reproduce the reference 

temperature distribution. 
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4.4.3 Generation of Virtual Temperature Distributions 

 

A script for generating virtual temperature distributions was written using the Python 

programming language. The process for using the script is illustrated in the flowchart 

presented in Figure 21. 

Start

End

Temperature 

distribution generation 

method?

Fitting a 

Temperature 

Distribution 

Function

Define Temperature 

Distribution 

Function

Input coordinates 

into Temperature 

Distribution 

Function

Generate equally 

spaced coordinate 

grid

Write temperature 

distribution array

Select temperature 

distribution resolution

From temperature 

distribution array

Manually defined 

function

 

Figure 21. Flowchart of the process for generating a temperature distribution. 



71 

 

The beginning of this script defines the size of the volume to be described by the virtual 

temperature distribution in terms of minimum and maximum values in the x, y, and z axes. A 

grid of equidistant points in space can be generated with the number of points required. Two 

examples of grids have been created using coarse (5x5x5 points), and fine grids (50x50x50 

points) in Figure 22 and Figure 23 respectively. It is possible to control the point spacing in x, 

y, and z individually, so a finer grid in just the vertical z direction could  

be specified, for example.

 

A temperature distribution function is required to find the temperature at each of the 3D 

points. The user can manually define a temperature distribution function, as will be done for 

Figure 22. Temperature distribution generated using a 50x50x50 grid. 

Figure 23. Temperature distribution generated using a 5x5x5 grid. 
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the testing of sensor positions. Similarly, this can be achieved by applying a function derived 

from a curve fitting exercise, for which another script has been written. The temperature 

distribution function can simply use the z direction as a variable, for example, or for more 

complex distributions all three axes can be included. The resulting 4D array is reshaped for 

use as a 2D array, which can be used for further actions including defining boundary 

conditions. A colour mapped plot like that shown in Figure 23 can also be generated for 

visualisation purposes, in which colours are used to describe relative temperature at each 

point. The distribution was generated using the deliberately complicated polynomial 

temperature function: 

Equation 9 

𝑇 = (7.489 × 10−20) 𝑧5  − (3.816 × 10−15) 𝑧4 + (6.973 × 10−11) 𝑧3  
− (5.426 × 10−7)𝑧2  + (0.001754)𝑧 +  16.27 + ( 5 ×  10−5)𝑥 
+ (2.5 × 10−5)𝑦 + (4 ×  10−9)𝑦2 

 

4.4.4 Reconstruction of Temperature Distributions 

 

One-dimensional temperature distribution functions can be created through the curve fitting 

of temperature measurement data. Curve fitting can be carried out in Python from a .csv file 

of temperature and position data. A flowchart of the script used can be seen in Figure 24.  
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Figure 24. Flowchart of the process for creating a temperature distribution function 

from sensor data. 

 

Temperature gradients in assembly environments are often most pronounced with change in 

height, so a non-linear temperature gradient is used here as an example. Table 10 contains 

temperatures at different heights in mm to give an example of a measured temperature 

distribution on a large structure. 

 

Table 10. Table showing examples of temperature at different heights measured on a 

large, 17 m tall structure. 

Height (mm) Temperature (°C) 

0 16.1 

500 17.3 

1000 17.6 

1500 17.8 

2000 18 

5000 18.1 

9000 18.3 

13000 19.4 
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17000 19.5 

 

Using the script, the data was plotted using a scatter plot, and a curve fitted to the points. 

Figure 25, Figure 26 and Figure 27 show how the data was described as a function using 1st, 

3rd and 5th degree polynomials respectively. Adjusting the curve fitting method to reduce the 

value of the residuals. As shown in the fitting, there are larger residuals for the 1st and 3rd 

degree polynomials. Using a quintic provides the lowest residuals, but the decrease in 

temperature is an example of overfitting. Adding a 6th term results in a maximum temperature 

within these limits at around 15 m of almost 23 °C, before returning down to 19.5 °C at 17 m. 

A 7th term produces an even more erroneous temperature at 15 m where it plummets below -

30 °C. Higher order polynomials can undoubtedly cause problems and other methods for 

modelling temperature distributions were considered due to this limitation. 

 

Figure 25. Graph showing the temperature distribution function using a line of best fit. 
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Figure 26. Graph showing the temperature distribution function using a cubic fit. 

 

Figure 27. Graph showing the temperature distribution function using a quintic fit, and 

the apparent overfitting observed when using higher order polynomials. 
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4.4.5 Using a Temperature Distribution as FEA Boundary Condition 

 

The flowchart in Figure 28 shows how the virtual temperature distribution can be used as part 

of FEA in order to produce a spatiothermal artefact.  

FEA input file templates are generated which can be edited or rather reproduced including the 

new boundary conditions. The template input file can be written manually or can be 

generated through the ANSYS software. ANSYS Workbench was used to create the input file 

in this case due to its more intuitive user interface compared to the ANSYS APDL interface. 

Temperatures from the virtual temperature distribution are used to write a series of 

commands, in which the nodal coordinates are used to define temperatures. The Python script 

reads the input file template and creates a new file. The beginning of the template up to a set 

point is read and copied to the new file. At the point at which the commands need to be 

inserted, these are copied to the new file. Then the end of the file is read and subsequently 

copied. Finally, an adjustment is made to the resulting input file to remove any blank lines as 

ANSYS interprets blank lines as being a break point. The same actions are repeated for the 

structural input file. ANSYS has a product launcher, which can generate a command line for 

batch execution of simulations. The Python script has included this so that the FEA 

simulation can be run automatically from a specific input file. 

Results are generated by ANSYS itself using post processing commands that are present 

within the initially generated input file templates. Resulting output files come in the form of 

CSV files in the working directory, which subsequent Python scripts can then read into 

NumPy arrays for further operations. 
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Figure 28. Flowchart showing the use of the script to produce structural displacement 

results when thermal FEA is included. 
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The thermal analysis can alternatively be avoided entirely, which is the method of 

experimentation presented here. As the temperature distribution is generated from a function 

to provide a nominal reference, the thermal analysis adds little extra value. The method for 

the use of thermal analysis is presented in order to describe how this might be used in cases 

where more sophisticated thermal models have been created. The modular design of the script 

and the methodology means that specialists can be engaged at each stage, as would be the 

case in industry. 

In cases in which CFD has been used to create a spatiothermal model of temperature 

distribution, the points can be directly imported in place of the generated temperature 

distribution as an array. The script can then avoid thermal FEA or interpolation entirely, and 

structural FEA will become the primary focus. 

 

4.4.6 Analytical Interpolation of Temperature Distributions 

 

Reconstruction of temperature distributions has been carried out using the following 

methods:  

1. Polynomial regression; 

2. Ordinary Kriging. 

The polynomial regression method is performed using separate curve fitting in the X, Y, and 

Z axes. This separation is useful in cases in which the temperature is being measured along 

one of the axes due to known variation, which is typically the Z (vertical) axis. 

Ordinary Kriging has been described in section 2.6.3, and has been used to provide an 

alternative approach to polynomial regression. The inclusion of Kriging means that not only 

is a temperature distribution interpolated in 3D, but a variogram is produced. The variogram 

provides a statistical measure of confidence in the prediction of the interpolation for each of 

the points. Having a variogram means that these confidence levels can potentially be used as 

the basis for temperature sensor positioning optimisation. 

 

4.4.7 Sensor Network Definition 

 

Definition of sensor networks has been achieved in the script using hard coded sensor 

networks, and there is also a method to import designed sensor networks from CSV files. The 

CSV contains information on: 

• Sensor ID number; 

• X, Y, and Z coordinate positions; 

• Type of sensor; 

• Sensor calibrated uncertainty; 

• Dynamic or fixed - whether they can change coordinate position for optimisation 

purposes. 
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Definition of uncertainty has been given based upon reasonable values for sensor types. For 

the purposes of the experiments, thermocouples have been used in all cases as these sensors 

are widely used in industry, standardised, and low cost. 
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4.4.8 Spatiothermal Scenarios 

 

Representation of a range of spatiothermal scenarios is another important aspect of properly 

testing the algorithm. To make the tests useful and representative without being exhaustive, it 

was decided that the main variables that needed to be included were: 

• Maximum temperature differential; 

• Type of distribution; 

• Number of varying dimensions. 

The maximum temperature differential will determine the net thermal expansion. As has been 

discussed in the literature, and observed in measurements, realistic thermal gradients are 

likely to be several degrees at any given time. The magnitude of the distributions becomes 

important when temperature sensor uncertainty is included in the simulations. Reproduction 

of temperature distributions with smaller temperature differentials would be more sensitive to 

temperature sensor uncertainty than larger ones.  

The type of temperature distribution is the most important variable to include as this will 

have the largest effect on the optimal sensor positions. Type of distribution and number of 

varying dimensions are closely related. Linear and non-linear thermal gradients certainly 

need to be tested but could yield quite different temperature distributions. 

More complex distributions could be included but at this stage would not be useful. 

Temperature distributions in assembly environments generally are not likely to have such a 

high degree of complexity. Some manufacturing environments will have far more complex 

temperature distributions due to the range of active heat sources present. A similar 

temperature measurement planning approach could be applied to more complex cases in 

future work. 

To test the generation of temperature distributions using the tool, some different types of 

spatiothermal scenarios were generated. This showed some of the ways in which the tool 

could be used for experimentation and provided some concept of the magnitude of the 

coefficients that need to be used to produce temperature distributions that look realistic. Some 

examples of linear and non-linear thermal gradients, alongside the coefficients used to 

generate them. 

Linear thermal gradients represent the most straightforward cases, so they are useful in 

developing the planning tool and to illustrate the methodology. Figure 29 and Figure 30 

illustrate a temperature distribution designed to produce thermal expansion and contraction 

varying linearly with height between 19.4 °C to 20.9 °C from a 1.2 °C per metre gradient. In 

these figures, light blue shading denotes the area between the temperature and standard 

temperature, representing contribution to thermal contraction. Conversely, the areas shaded in 

light pink denote the portion of the temperature field that is above standard, which 

contributes to thermal expansion. 
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Figure 29. Graph showing 1-dimensional linear temperature variation along the Z axis. 

 

Figure 30. 3D colour plot showing the linear 1-dimensional temperature distribution 

within a volume of 1 cubic metre. 
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4.4.8.1 Non-linear Thermal Gradients 

 

Non-linear thermal gradients are of greater interest in this work as they are arguably more 

realistic than a perfectly linear temperature gradient. There is also more sensitivity to 

positioning of sensors in order to reproduce the temperature distribution. Some examples are 

presented here, although the exact magnitude of these gradients is tailored to accommodate 

the range of sizes of CAD models. Scenarios in which temperature varies only according to 

height in the Z axis are considered first, before progressing to non-linear variation with both 

vertical and horizontal positions. 

Figure 31 shows an example of a temperature distribution below standard temperature to 

create thermal contraction in which temperature varies non-linearly as height increases. A 

starting temperature of 15 °C was used to generate this temperature distribution and increased 

using the fractional exponent cry Z
0.5, where cr = 100. Figure 32 shows the associated 3D 

colour plot of this temperature distribution. This type of distribution has been observed in 

large volume environments during colder months in which the ground is cold, but heating 

keeps the space at a more comfortable operating temperature. This means that the thermal 

gradient is more pronounced closer to the ground. 

 

Figure 31. Graph showing 1-dimensional non-linear temperature variation along the Z 

axis, below standard temperature. 
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Figure 32. 3D colour plot showing the associated non-linear 1-dimensional temperature 

distribution around a volume of 1 cubic metre. 

In Figure 33 and Figure 34 the graphs show the same idea was applied in two dimensions. 

Here three coefficients were defined to produce the final generated temperature distribution 

pictured in Figure 35. The starting temperature was 18.9 °C, and varied as a quadratic with 

coefficient 0.002 in X. In Z, the temperature varied with a fractional exponent as in the 

previous example, cr Z
0.5, where cr = 110.

 

Figure 33. Graph showing non-linear temperature variation along the X axis with 

regions of contraction and expansion relative to standard temperature (green). 
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Figure 34. Graph showing non-linear temperature variation along the Z axis regions of 

contraction and expansion relative to standard (green). 

 

Figure 35. 3D colour plot showing the associated non-linear 2-dimensional temperature 

distribution around a volume of 1 cubic metre. 
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4.5 Ideas for Identifying Sensor Positions 

 

Non-standard temperature distributions need to be approached from two perspectives in the 

steady state case. First of these is the temperature distribution function i.e. how the point-wise 

temperature is different around the volume described as a function. The second is to get a 

useful picture of the entire artefact. The temperature will not be measured at all positions, so 

the question of how coverage can be maximised for geometry becomes important.  

In the linear and non-linear gradient cases operating principally along one axis (e.g. a vertical 

gradient with approximate uniformity with change in height, T∝ Δh), the impact of limited 

coverage will be less significant than in more complex temperature distributions. In more 

complex temperature fields, the coverage of temperature sensor networks becomes more 

important. 

From what is known of ambient temperature distributions, it appears that the more common 

case is that temperature distributions are most likely to show a vertical temperature gradient, 

which is often non-linear but can in some cases be approximately linear. Indeed, applying a 

linear approximation will still yield a more realistic result than scaling a non-uniformly 

expanding artefact uniformly. On this basis, the measurement of a characteristic temperature 

distribution should take priority over sensor network coverage. This is allowable because the 

naive environmental survey should have provided sufficient coverage to capture as much of 

the artefact and measurement envelope as possible to identify points of interest. Coverage 

will be discussed in more depth later - whilst being considered the secondary process of 

sensor allocation, it is nonetheless still very important. 

If the starting point is to characterise temperature distribution reproducibly, let us revisit the 

notion of measurement as communication. From previous experiments in thermal expansion 

prediction, capturing the full range of the temperatures is important. The additional 

information provides further detail about the function, which is useful for non-linear 

distributions where the distribution forms a curve. 

How can this be put into practice? The virtual spatiothermal artefact contains a nominal 

temperature distribution derived from the naive environmental survey. Exporting this 

temperature distribution, we can then run a straightforward statistical analysis to find the 

temperature values for each of the summary points. The spatiothermal artefact also contains 

coordinate data. Using the summary points, the positions of interest can be found by 

searching for the nearest values and indexing the coordinates associated against these 

temperature values. The resulting coordinates represent a reduced set of the positions at 

which temperature is to be measured. This process lends itself to reproducibility whilst still 

allowing for a modicum of flexibility in practice. One of the other advantages to this 

approach is that any outliers are identified, meaning that expansion is not calculated based 

upon very extreme values. In some cases where erroneous extreme values occur during finite 

element analysis, this approach should act as a filter. 

Consider the example of a familiar object: a table. In this example, it is known that there is a 

non-linear vertical temperature gradient driving thermal expansion in the four stainless steel 

legs. Having found the box-plot summary points, all of the temperature sensors could be lined 

up one leg of the four-legged table. This may be a tempting way to approach this 

measurement because the temperature distribution is quite uniform at a specific height and 

having only one leg covered by sensors is more practical. On the other hand, this is only 
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theoretically the case and leans too heavily on having an accurate model of the table in its 

environment. From a metrology standpoint it would be preferable to maximise the coverage; 

if the same number of sensors is used the sensor network would be more effective if they 

were spread around the four legs of the table. Coverage is also extremely important in 

transient cases. Although an environmental survey has been carried out, the confidence in this 

survey data as an accurate reflection of the environment will deteriorate with time. This 

means that even in a static model, time (with the temperature variance it brings) cannot be 

wholly neglected. In a sense, it could be argued that the box-plot summary as opposed to a 

basic maximum-minimum approach confers better coverage to the network; not just owing to 

the fact that it represents a network with more sensors, but because the sensor positions are 

chosen as being representative of the distribution it aims to describe. 

This leads to the discussion of how temperature sensor coverage optimisation is achieved. 

Sensor network design studies have focused on sensor network coverage optimisation. The 

coverage problem that is being solved here is quite different to many others because it has 

more than one quantity operating. Thermal expansion is driven by temperature, but also by 

length itself. A beam of 10 m in length will expand ten times more than a beam of 1 m in 

length. If they are both present in the same assembly, this will be significant to the ability to 

predict expansion for the entire artefact. Given this disparity of scale, it would make sense to 

allocate sensors so that the number of sensors is proportional to length. Tolerances are 

similarly likely to be proportionally larger at this scale, depending on the application. 

Ideas have been outlined here about the positioning of temperature sensors. These ideas were 

generated based upon measurements and experiments. Communication of temperature 

distributions was also considered in order to foster reproducibility. These ideas must be tested 

on the virtual spatiothermal artefact using finite element analysis to see if these discrete 

sensor positions can be used to recreate the original temperature distribution. This simulation-

based testing needs to be broken down into phases for the various types of distribution and 

compared. As with many ideas generated up-front, they could be incorrect. There is an 

argument for carrying out experiments in a less prescriptive manner to determine whether 

some of these ideas will naturally come to the fore through iterative optimisation. 

Each method needs to be defined and resulting temperature distributions from each test can 

then be used in a static structural analysis. The deformation resulting from the nominal 

spatiothermal artefact will serve as a benchmark against which each method is measured. To 

ensure that these are not isolated cases, the spatiothermal artefact will need to be altered 

numerically, insomuch as it will retain the same type of distribution but the actual 

temperatures within that distribution will be altered. An initial proof of concept example is 

provided to illustrate the process before moving to different virtual spatiothermal artefacts. 

 

4.6 Considerations for Specifying Sensor Networks 

 

This section discusses the requirements of the sensor positioning algorithm and asks key 

questions about where sensors are likely to be placed based on knowledge of the problem. 

General approaches to answering these questions, and the means of testing the solution are 

proposed, with the results of these tests presented in section 5. 

In defining the sensor network positions, there are to be both fixed and optimised points. 

Fixed spatial positions will represent points that can be defined without knowledge of the 

temperature distribution. Spatial positions of interest can be derived from knowledge of best 



87 

 

practice for dimensional measurement. Similarly, fixed thermal positions are informed by 

knowledge of the temperature distribution to define the working temperature range through 

measurement of extreme regions. 

Optimisation of sensor positions will aim to increase spatial coverage and increase thermal 

distribution coverage. Thermal optimisation will be determined through the characterisation 

of the temperature distribution, so that non-linearities can be reproduced with acceptable 

accuracy, with a minimal number of sensors. This makes temperature measurement planning 

more straightforward in the sense that only a subset of the positions needs to be optimised. 

Full automation is not necessary for the sensor positioning process. For the fixed points to be 

measured for example, depending upon the geometry and accessibility it would be useful to 

have human input. Automation is useful, however, in optimising and in the testing of 

optimised positions. 

Fixed spatial positions can be informed by the position of the following spatial 

characteristics, for example: 

• Instrument; 

• Scale bars; 

• Measurement envelope extremities; 

• Datum features; 

Many instruments have their own temperature sensors as discussed previously, so these can 

be easily included. Scale bars are calibrated to a known length, but are not immune to thermal 

expansion, meaning the temperature should be measured. Capturing the extremities of the 

measurement envelope such as the vertices of a cuboidal structure will allow for thermal 

gradients to be identified. Datum features are used to define datum systems, which other 

dimensions are defined in reference to. Measuring temperature of the datum features can give 

a clearer idea of the thermal stability of the datum system. 

Instrument temperatures are not of interest for computational experiments as they are usually 

acquired but will form part of the wider temperature measurement plan. 

Fixed thermal positions are informed by the position of the following temperature distribution 

characteristics: 

• Maximum and minimum absolute temperature region; 

• Maximum and minimum temperature variation region (transient). 

These fixed thermal positions inform the absolute temperature range. Knowledge of the full 

range of temperatures is useful as this allows for an evaluation of the maximum uncertainty 

due to thermal expansion within the measurement envelope. Unlike the spatial fixed points, 

these points should be checked periodically to ensure that they are representative of the 

maximum and minimum temperatures. The variation of temperature should also be measured, 

by identifying regions that are most variable, and most stable.  

Thinking more practically, using the absolute maxima and minima could increase uncertainty 

arising from poor thermal contact. Consider for example a 1 m bar that is vertically 

supported. The maximum temperature might be at the very top, and the minimum might be at 

the very bottom. Placing temperature sensors at these edges would likely mean that the 

measurement being taken is less indicative of the part temperature and reflects more closely 

the ambient temperature at those edges. All types of surface temperature measurement suffer 

from these issues, in the best of circumstance. It may in some cases be more useful to specify 
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positions that are near to the maximum or minimum, within a spatial range. For the 1 m bar, 

this could be the maximum position multiplied by 0.9, for example, as a means of filtering 

out these edge effects. 

One of the more interesting questions to answer for these fixed thermal points is: in a varying 

temperature field, how are the maximum and minimum temperatures selected, given that the 

positions at which these occur could change over time? 

Optimised positions can appear anywhere within defined regions and otherwise constrained 

by practical limitations. These measurements are taken to better characterise the temperature 

distribution, particularly in the case of more complex temperature fields. A more faithful 

reproduction of the temperature distribution means a more accurate simulation of thermal 

expansion. 

1) Establish fixed spatial positions; 

2) Establish fixed thermal positions; 

3) Calculate optimised static thermal positions; 

4) Calculate optimised transient thermal positions; 

At each stage, the temperature sensor network design needed to be tested in order to provide 

some level of evidence that the ds used in the algorithm regarding sensor positioning are 

valid.
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Figure 36. Diagram showing various contributing factors to planning an optimal sensor 

network. 

The positions of the sensor network, defined for dimensionally inferred and temperature 

distribution inferred positions, need to be integrated into a single sensor network 

specification. Dimensional measurement plans for tactile CMM inspection, for example, 

contain points that need to be probed on the part. Similarly, the sensor network needs to 

contain enough information that the sensor network can be integrated into the assembly 

environment to be as close as possible to the planned network. In cases where practical issues 

arise, such as the accessibility of a feature by a temperature sensor, the plan may contain 

instructions for successful integration. 

Final sensor network specifications should also contain some traceability of the temperature 

measurement planning process. Parameter files, simulation information and results of error 

mapping can be included to improve the communication of the temperature measurement 

plan. The approach has been discussed, but will still contain a level of human judgement, so 

the traceability and communication of sensor network design rationale is imperative. 

Now that some functionality is in place, a formal methodology for testing the performance of 

sensor networks needs to be defined and used for a range of scenarios. At this point a lot of 

ideas have been offered, but so too has a tool, and it is in using the tool that the real learning 

will be done. 
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4.7 Chapter 4 – Summary 

 

Chapter 4 provided: 

• A proposed overall strategy for organisations to plan temperature measurement. 

• A description of the temperature measurement planning tool and its functionality. 

• Suggestions for types of temperature distribution to consider in computational 

experiments. 

• General discussion for how sensor positions may be identified and specified in the 

context of an assembly environment. 

 

Contributions: 

• Measurement of temperature distribution complexity in industry. 

• Creation of a novel computer-aided temperature measurement planning test bed 

supported by FEA. 

 

There are many considerations for temperature measurement 

planning, so a tool has been created to test and compare sensor 

network designs.  
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5 Sensor Network Performance Testing 

 

What makes a good sensor network and more importantly, how can this be virtually 

validated? Referring to the methodology defined in Chapter 4, Chapter 5 aims to run through 

each of the functional steps to ensure the planning tool can test a given temperature sensor 

network. The optimisation step repeats the first four steps, so can be added later, once some 

experience has been gained in using the tool. 

 

Figure 37. Temperature measurement planning methodology, highlighting the key 

activities in Chapter 5. 

Before moving to more complex geometry, a straightforward cuboidal geometry is used for 

performance testing, which is depicted in Figure 38. The better the methodology and results 

can be understood by removing object complexity, the more confidence and understanding 

can be had about the most significant variables. 

Many of the results presented in this chapter have been published as a conference paper 

[126]. 
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Figure 38. Rendering of the cuboidal beam geometry. 

 

5.1 Naïve Sensor Network Experimental Controls 

 

The immediate reaction for a rational person when presented with a document in excess of 

100 pages on temperature measurement planning should probably be to procure a lot of 

sensors and distribute them evenly. Such pragmatism serves as a useful experimental control 

in evaluating the performance of an optimised temperature sensor network. Naïve so-called, 

as this type of network assumes no prior knowledge of the spatial or thermal character of the 

environment. 

10 m 

1 m 
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The number of sensors in the naïve sensor network experimental controls vary according to 

base 2. 20 = 1 represents a single temperature sensor, as is often the case where temperature is 

measured in dimensional measurement. 2 sensors can describe a 1D linear thermal gradient; 4 

can describe a 2D thermal gradient; 8 can be positioned at each of the 8 vertices of the 

measurement envelope bounding box; 16 can provide vertices as well as midpoint 

temperature measurements; and 32 provides further coverage. Data acquisition devices 

usually also have a base 2 number of temperature sensor channels, as with other electronic 

devices. 

The positions used for these sensors can also be used as points that are used to give nodal 

displacement results for each simulation. Solutions are given graphically to supplement the 

sparse control point results. 
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5.2 Generated Temperature Distribution Parameters 

 

To test how well the naïve networks performed, a battery of tests was needed. Some 

temperature distributions were thought to be easier to measure and reproduce than others, so 

there needed to be a range of levels of complexity. The assumption was made that linear 

temperature distributions are less complex than non-linear temperature distributions. While 

thermal gradients are often most pronounced vertically (Z Axis), having thermal gradients in 

more than one dimension would also add complexity. Table 11 shows the coefficients used to 

generate each of the 21 reference temperature distributions for testing. Images showing each 

of these temperature distributions can be found in Appendix B – Naïve Network Test 

Temperature Distributions. 

 

Table 11. Coefficients used to generate 21 distinct temperature distributions used for 

testing with varying degrees of complexity. 

 

 

 

 

 

 

ID Coefficients 

X Axis Y Axis Z Axis 

a1 a2 a3 b1 b2 b3 c0 c1 c2 c3 

1 0 0 0 0 0 0 18 0.5 0 0 

2 0.5 0 0 0 0 0 18 0.5 0 0 

3 0 0.005 0 0 0 0 18 0.5 0 0 

4 0 0 0.000005 0 0 0 18 0.5 0 0 

5 0 0 0 0.5 0 0 18 0.5 0 0 

6 0 0 0 0 0.005 0 18 0.5 0 0 

7 0 0 0 0 0 0.000005 18 0.5 0 0 

8 0 0 0 0 0 0 18 0.5 0.00001 0 

9 0.5 0 0 0 0 0 18 0.5 0.00001 0 

10 0 0.005 0 0 0 0 18 0.5 0.00001 0 

11 0 0 0.000005 0 0 0 18 0.5 0.00001 0 

12 0 0 0 0.5 0 0 18 0.5 0.00001 0 

13 0 0 0 0 0.005 0 18 0.5 0.00001 0 

14 0 0 0 0 0 0.000005 18 0.5 0.00001 0 

15 0 0 0 0 0 0 18 0.5 0.00001 0.00000001 

16 0.5 0 0 0 0 0 18 0.5 0.00001 0.00000001 

17 0 0.005 0 0 0 0 18 0.5 0.00001 0.00000001 

18 0 0 0.000005 0 0 0 18 0.5 0.00001 0.00000001 

19 0 0 0 0.5 0 0 18 0.5 0.00001 0.00000001 

20 0 0 0 0 0.005 0 18 0.5 0.00001 0.00000001 

21 0 0 0 0 0 0.000005 18 0.5 0.00001 0.00000001 
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5.3 Virtual Measurement without Uncertainty 

 

Despite being a significant contributor to dimensional measurement uncertainty, the business 

case for integrating and maintaining many sensors must be considered. Each enterprise has a 

limited number of resources and at some point, the addition of sensors exhibits diminishing 

returns. If a metrologist needs to measure temperature to improve the uncertainty of their 

dimensional measurement, how can they do as much as possible with what is available to 

them? 

In order to provide a basis for comparison, the naïve networks were tested to determine their 

capability in reconstructing the nominal temperature distributions (see section 5.1). Four 

naïve networks have been trialled with different numbers of sensors, using two reconstruction 

methods: polynomial regression and kriging. 

Table 12 gives the mean standard deviation in X, Y, and Z for each of the naïve networks, 

which comprise 4, 8, 16, and 32 sensors. A linear (1st order) polynomial regression fitting  

was carried out to interpolate between the measured temperatures. In this case, no 

randomisation was added to provide uncertainty in the sensor readings. As the dimensions in 

X and Y were similar, so too were the results. In general, the results appeared to improve 

most dramatically between 4 and 8 sensors. The standard deviation in this case was larger for 

32 sensors, however this is likely due to overfitting. 16 sensors produced the lowest standard 

deviation in Z, and this again is likely due to fitting. The improvements in X and Y were 

observed to be much the same for 8-32 sensors. A higher order polynomial would be 

preferable in many cases, and such reconstructions would need to be tailored to the 

environment. 

 

Table 12. Results of naïve sensor network performance without uncertainty using 1st 

order polynomial reconstruction. 

   Standard Deviation of 

Reconstruction Error (mm) 

Temperature (°C) 

 

Number 

of 

Sensors 

Reconstruction 

Method 

Order X  Y Z Standard 

Deviation 

Error  

RMS 

Error  

32 Polynomial 1st 0.012 0.012 0.158 1.02 6.67 

16 Polynomial 1st 0.013 0.013 0.087 1.02 8.10 

8 Polynomial 1st 0.015 0.015 0.108 1.03 12.30 

4 Polynomial 1st 0.070 0.058 0.431 8.14 212.52 
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Kriging was used as an alternative method of reconstruction. Recalling Equation 4, 

Equation 10 

𝑍∗(𝒖) − µ(𝒖) = ∑ 𝜆𝛼[𝑍(𝒖𝛼) − µ(𝒖𝛼)

𝑛(𝒖)

𝛼=1

] 

 

Where: 

Z(u) is the variable of interest, the random field; 

µ(u) is the trend component, the expected mean of Z(u); 

u is the location vector for the estimation point; 

n(u) is the number of local data points used to estimate; 

z(uα) is the datum for estimation location u; 

λα(u) is the kriging weight assigned to datum. 

Tthe function Z(u) describes temperature distribution, in which the temperature, here Z, 

varies with position, u, relative to a datum, z(uα). The mean, µ(u), is the mean temperature of 

the temperature distribution – the usefulness of this trend component may be more 

appropriate for some distributions than others and so should be tested for specific 

applications. 

Using Kriging as a means of interpolation in this case gave improved results relative to the 

use of a 1st order polynomial regression. The Kriging in X produced a mean standard 

deviation roughly twice that of Y. The Kriging results were noticeably more consistent and 

can be seen in Table 13. In general, an order of magnitude improvement could be seen in the 

mean standard deviation in Z for Kriging, compared to the 1st order polynomial regression. 

The results for Kriging for 4 sensors significantly outperformed regression for 32 sensors and 

improved with further sensors. In cases in which there would be a preference for fewer 

sensors and a confidence that the environment was relatively stable, 8 sensors would perform 

adequately. 

 

Table 13. Results of naive sensor network performance using Kriging reconstruction. 

  Standard Deviation of 

Reconstruction Error (mm) 

Temperature (°C) 

Number of 

Sensors 

Reconstruction 

Method 

X Y Z Standard 

Deviation 

Error 

RMS 

Error 

32 Kriging 0.017 0.008 0.035 1.20 3.42 

16 Kriging 0.017 0.008 0.032 1.24 3.13 

8 Kriging 0.016 0.006 0.029 1.17 2.05 

4 Kriging 0.018 0.009 0.047 1.40 4.77 
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5.4 Polynomial Reconstruction – 1st to 5th Order 

 

To provide a more comprehensive comparison of polynomial regression-based reconstruction 

to Kriging, the naïve networks have been tested from 1st order to 5th order polynomials. The 

results of these tests are summarised in Table 14. 32 sensors have been used for each of the 

polynomial reconstructions for this test, to control the number of variables. In general, the 

performance of the reconstruction appears to peak at 3rd order polynomials. Higher order 

polynomials tend to create predictions that are improbable. Notable are the results for the 4th 

and 5th order polynomial reconstructions, as these appear to generate significantly higher 

errors, particularly in the X direction. Many of the generated temperature distributions are 

non-linear, so it makes sense that orders beyond the 1st are explored. With all of these results 

comes the reminder that more than one temperature reading is usually taken in practice at 

present. Any readings taken are often not used for part compensation, but instead for 

instrument compensation (if used at all). 

 

Table 14. Results of naive sensor network performance comparing 1st to 5th order 

polynomial reconstruction. 
   

Standard Deviation of 

Reconstruction Error (mm) 

Temperature (°C) 

Number 

of 

Sensors 

Reconstruction 

Method 

Order X Y Z Standard 

Deviation 

Error 

RMS 

Error 

 

32 Polynomial 1st 0.012 0.012 0.079 1.02 6.67 

32 Polynomial 2nd 0.010 0.008 0.050 0.73 3.82 

32 Polynomial 3rd 0.008 0.007 0.048 0.42 3.06 

32 Polynomial 4th 0.037 0.009 0.052 0.91 4.14 

32 Polynomial 5th 0.046 0.009 0.052 0.99 4.24 
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5.5 Single Sample Measurement with Pseudo-random Uncertainty 

 

The tests were repeated, this time with normally distributed pseudo-random uncertainties. A 

single sample measurement was taken, which served as a worst-case scenario that simulated a 

static snapshot of the temperature distribution on the sensor network. 

A 1st order polynomial regression was used to reconstruct the distribution from the sensor 

network measurements, and the results can be seen in Table 15. The most notable result is 

that significant changes in individual sensor uncertainty made a less impactful difference to 

the standard deviations in X, Y, and Z than might be expected. This adds to the argument that 

broader coverage of temperature measurement from multiple sensors in dimensional 

measurement tasks is likely to lead to improvements. The difference in the cost of sensors can 

be significant across this uncertainty range, and the provision of expensive low uncertainty 

sensors appears to be less important than how the measurement data is subsequently used. 

Table 15. Results of naive sensor network performance using 1st order polynomial 

reconstruction, based upon single sample virtual measurement including uncertainty. 

    Standard Deviation of 

Reconstruction Error (mm) 

Number 

of 

Sensors 

Reconstruction 

Method 

Order Uncertainty X  Y  Z  

4 Polynomial 1 2 0.075 0.063 0.465 

4 Polynomial 1 1 0.072 0.060 0.442 

4 Polynomial 1 0.5 0.070 0.058 0.428 

4 Polynomial 1 0.1 0.070 0.058 0.431 

8 Polynomial 1 2 0.018 0.017 0.126 

8 Polynomial 1 1 0.017 0.016 0.119 

8 Polynomial 1 0.5 0.016 0.015 0.111 

8 Polynomial 1 0.1 0.015 0.015 0.108 

16 Polynomial 1 2 0.015 0.015 0.104 

16 Polynomial 1 1 0.013 0.013 0.088 

16 Polynomial 1 0.5 0.013 0.012 0.085 

16 Polynomial 1 0.1 0.013 0.012 0.085 

32 Polynomial 1 2 0.012 0.011 0.080 

32 Polynomial 1 1 0.013 0.013 0.087 

32 Polynomial 1 0.5 0.012 0.012 0.079 

32 Polynomial 1 0.1 0.012 0.012 0.079   
 Mean 0.028 0.025 0.182 
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The Kriging method created greater impact, and again was more consistent across the 

networks (see Table 16). It appears that the network improves more significantly with lower 

uncertainty sensors than for the first order polynomial. This is to be expected, since the 

results of the first order polynomial is likely to be dominated by fitting error. In some cases, 

the standard deviation in Z approximately halved from U = 2 °C to U = 0.1 °C. 

 

Table 16. Results of naive sensor network performance with Kriging reconstruction, 

based upon single sample virtual measurement including uncertainty. 

   Standard Deviation of Reconstruction 

Error (mm) 

Number 

of 

Sensors 

Reconstruction 

Method 

Uncertainty  X Y Z 

4 Kriging 2 0.020 0.012 0.066 

4 Kriging 1 0.019 0.009 0.051 

4 Kriging 0.5 0.019 0.009 0.049 

4 Kriging 0.1 0.018 0.009 0.047 

8 Kriging 2 0.019 0.012 0.072 

8 Kriging 1 0.017 0.008 0.039 

8 Kriging 0.5 0.017 0.007 0.037 

8 Kriging 0.1 0.016 0.006 0.028 

16 Kriging 2 0.020 0.012 0.068 

16 Kriging 1 0.018 0.009 0.037 

16 Kriging 0.5 0.018 0.009 0.042 

16 Kriging 0.1 0.017 0.008 0.034 

32 Kriging 2 0.020 0.011 0.066 

32 Kriging 1 0.018 0.009 0.048 

32 Kriging 0.5 0.018 0.009 0.043 

32 Kriging 0.1 0.017 0.008 0.037   
Mean 0.018 0.009 0.048 
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5.6 10 Sample Measurement with Pseudo-random Uncertainty 

 

10 samples with pseudo-random uncertainty were then used in place of single sample 

‘instantaneous’ measurements across each of the naïve networks. The mean of the ten 

generated samples were subsequently used in the reconstruction using both polynomial 

regression and Kriging.  

Table 17 shows the polynomial regression results. The majority are first order polynomials, 

with one 32 sensor 3rd order polynomial regression and U = 0.1 °C for reference: in theory 

the best naïve network settings from previous sections. The main result from these tests was 

that the use of 10 samples served to further reduce the effect of reducing individual sensor 

uncertainty. The benefit from using U = 2 °C to U = 0.1 °C sensors appeared to be very 

slight, further raising questions about the value of investing in low uncertainty sensors, 

without first considering their spatial positioning, and subsequent spatiothermal 

reconstruction. 

Table 17. Results of naive sensor network performance with polynomial reconstruction, 

based upon 10 sample virtual measurement including uncertainty. The equivalent 

values for the 3rd order polynomial is provided at end bottom for reference. 

    Standard Deviation of 

Reconstruction Error (mm) 

Number 

of 

Sensors 

Reconstruction 

Method 

Order Uncertainty X  Y  Z  

4 Polynomial 1 2 0.085 0.058 0.431 

4 Polynomial 1 1 0.075 0.059 0.434 

4 Polynomial 1 0.5 0.072 0.058 0.432 

4 Polynomial 1 0.1 0.070 0.058 0.431 

8 Polynomial 1 2 0.025 0.015 0.110 

8 Polynomial 1 1 0.018 0.015 0.107 

8 Polynomial 1 0.5 0.017 0.015 0.109 

8 Polynomial 1 0.1 0.015 0.015 0.108 

16 Polynomial 1 2 0.020 0.013 0.086 

16 Polynomial 1 1 0.015 0.013 0.087 

16 Polynomial 1 0.5 0.014 0.013 0.087 

16 Polynomial 1 0.1 0.013 0.013 0.087 

32 Polynomial 1 2 0.016 0.012 0.081 

32 Polynomial 1 1 0.014 0.012 0.078 

32 Polynomial 1 0.5 0.013 0.012 0.079 

32 Polynomial 1 0.1 0.012 0.012 0.079    
Mean 0.031 0.024 0.177        

32 Polynomial 3 0.1 0.009 0.008 0.050 
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The same test was carried out using the Kriging reconstruction method, and the results are 

presented in Table 18. Mean standard deviation across each of the temperature distributions 

was most improved with uncertainty in the X direction, as in the polynomial reconstructions. 

The standard deviation in Y and Z did not improve appreciably with sensor uncertainty. 

Reconstruction through Kriging in general outperforms the 3rd order polynomial regression 

with lowest uncertainty. 

Table 18. Results of naive sensor network performance with Kriging reconstruction, 

based upon 10 sample virtual measurement including uncertainty. 

   Standard Deviation of Reconstruction 

Error (mm) 

Number 

of 

Sensors 

Reconstruction 

Method 

Uncertainty X  Y  Z  

4 Kriging 2 0.037 0.009 0.047 

4 Kriging 1 0.025 0.009 0.046 

4 Kriging 0.5 0.019 0.009 0.048 

4 Kriging 0.1 0.018 0.009 0.048 

8 Kriging 2 0.025 0.007 0.030 

8 Kriging 1 0.018 0.006 0.028 

8 Kriging 0.5 0.017 0.007 0.029 

8 Kriging 0.1 0.016 0.006 0.029 

16 Kriging 2 0.023 0.009 0.035 

16 Kriging 1 0.020 0.008 0.032 

16 Kriging 0.5 0.018 0.008 0.033 

16 Kriging 0.1 0.017 0.008 0.032 

32 Kriging 2 0.025 0.009 0.035 

32 Kriging 1 0.022 0.008 0.036 

32 Kriging 0.5 0.019 0.008 0.036 

32 Kriging 0.1 0.017 0.008 0.036   
Mean 0.021 0.008 0.036 

 

 

5.7 Vertical Positioning Error Monte Carlo Simulation 

 

How can the dimensional measurement error due to sensor positioning error be calculated? 

For each temperature sensor network that is generated, the sensitivity of temperature sensor 

position can be calculated statistically. In this case, what is meant by sensor position 

sensitivity is to what extent the positioning of temperature sensors away from their nominally 

prescribed position have on overall temperature distribution reproduction. Definition of this 

can help in the definition of tolerances for how precisely temperature sensors need to be 

positioned during set up and integration. Positioning a temperature sensor a millimetre away 

from its nominal position is unlikely to make an impact in measurement of ambient 

temperature. If, however, a temperature sensor was positioned a millimetre away from its 
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nominal position during the measurement of a weld melt pool then sensitivity to this variation 

would be much higher.  

Assigning variation to sensors in a sensor network and running a Monte Carlo simulation can 

provide an estimate of how sensitive the temperature field reproduction is to positional 

variation of sensors. This method would require the selection of a range of suitable values for 

how much each of the temperature sensor positions is likely to vary. A reasonable starting 

point over several metres, for example, might be for a sensor to be positioned against a flat 

surface within ± 50 mm (at a confidence interval of 2 standard deviations, k=2) of the vertical 

position in the Z axis by a human operator. This informs the parameters of the Monte Carlo 

simulation. The Monte Carlo simulation uses the given variation to produce a distribution of 

simulated points around the nominal sensor position. For each case, the temperature 

distribution can be reproduced, and the error between the nominal and the Monte Carlo 

simulation can be calculated. After multiple iterations, it is possible to build the distribution 

of errors between the nominal and the Monte Carlo reproduction of the temperature field to 

provide the uncertainty due to temperature sensor position, which represents how sensitive 

the network is to positional variation. The same method can be used for both temperature and 

dimensional measurement uncertainty due to temperature sensor positioning. 

A Monte Carlo simulation was carried out in which each of the vertical (Z) positions was 

varied by a pseudorandom number. The sensor network had 32 sensors, and both third order 

polynomial and Kriging were used as reconstruction methods. In this test, 100 iterations were 

carried out and a full set of results produced for the 100 unique temperature sensor networks. 

Each of the positioning errors (1 mm, 10 mm, 25 mm, 50 mm, and 100 mm) were entered as 

a normal distribution with the nominal position as the mean, and the positioning error as the 

standard deviation.  

In order to make sure the sensor positions were valid and not positioned beyond the bounding 

box of the part, the boundaries were used as limits, and the half of the distributions that 

would have otherwise been invalid were, in effect, layered on top of the valid half of the 

distribution. Temperature sensor positions that were nominally beyond the boundary could 

fluctuate in both positive and negative directions. 

Results of the Monte Carlo Simulation are presented in Table 19 and Table 20, with a graph 

of the results in Z given in Figure 39. The mean of the 100 values for standard deviation of 

the error in Z were taken and used to provide a general comparison of each of the sensor 

network specifications. The effect of the positioning error was negligible in the polynomial 

case, in which the reconstruction was likely dominated by fitting error. The effect of 

positioning error was most noticeable in the Kriging Reconstruction. The difference between 

1 mm, 10 mm appears to be small on the graph, but in effect would be difficult to achieve in 

practice over this distance. This would also make the ratio of the sensor positioning tolerance 

to the actual footprint of the sensor be quite large. At 25 mm there was a slight increase in the 

effect of the positioning error, and there was a more marked increase at 50 mm. The worst 

result was 100 mm, which gave a comparable result to the polynomial reconstruction.  

One of the aspects of the reconstruction method that differs, is the effect of the positioning 

error in X and Y. The polynomial reconstruction is far less sensitive to effects occurring in X 

and Y, and these remain stable throughout. For the Kriging reconstruction at larger 
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positioning errors (i.e. 50 mm and 100 mm), the positioning error has a larger effect on X and 

Y reconstruction error. 

An allowable positioning error of between 10 mm and 25 mm would be ideal, as 1 mm is 

unlikely to provide benefits relative to the time taken to carefully position. It seems that 

positioning error does in fact make a difference, and its effect can be calculated using the 

temperature measurement planning tool. This can then be used to provide clear specifications 

on a temperature measurement plan. In practice, an experiment could be carried out testing 

the repeatability of sensor placement to ensure that this is achievable. Having some way to 

enable measurement of sensor coordinates would be beneficial to reducing sensor positioning 

error. 

 

Table 19. Results of naive sensor network performance Monte Carlo simulation with 

vertical positioning error, and polynomial reconstruction. 
    

Mean of Standard Deviation of 

Reconstruction Error (mm) 

Number 

of Sensors 

Iterations Positionin

g Error in 

Z (mm) 

Reconstructio

n Method 

X Y Z 

32 100 1 Polynomial 0.028 0.025 0.164 

32 100 10 Polynomial 0.028 0.025 0.164 

32 100 25 Polynomial 0.028 0.025 0.164 

32 100 50 Polynomial 0.028 0.025 0.164 

32 100 100 Polynomial 0.028 0.025 0.165 

 

Table 20. Results of naive sensor network performance Monte Carlo simulation with 

vertical positioning error, and Kriging reconstruction. 
    

Mean of Standard Deviation of 

Reconstruction Error (mm) 

Number 

of 

Sensors 

Iterations Positionin

g Error in 

Z (mm) 

Reconstructio

n Method 

X Y Z 

32 100 1 Kriging 0.024 0.028 0.119 

32 100 10 Kriging 0.024 0.028 0.119 

32 100 25 Kriging 0.025 0.028 0.122 

32 100 50 Kriging 0.029 0.031 0.142 

32 100 100 Kriging 0.039 0.034 0.162 
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Figure 39. Comparison of results of naive sensor network performance Monte Carlo 

simulation with vertical positioning error for Polynomial and Kriging reconstruction. 

 

5.8 Sequential Sensor Removal 

 

One method to test the sensitivity of the sensors in a network is to define an ‘ideal’ 

temperature sensor network, and iteratively remove sensors from the network to see how the 

performance alters. Sensitivity in this case is defined as the contribution of an individual 

sensor to the performance of a specific sensor network, as opposed to the physical sensitivity 

of the individual sensor to small variations in temperature.  

• Define sensor network; 

• Remove sensor 1; 

• Determine sensor network performance; 

• Replace sensor 1; 

• Remove sensor 2; 

• Repeat for n sensors. 

The performance of networks with a single removed sensor was compared to the baseline 

performance of the full sensor network. This was carried out with both the polynomial and 

Kriging methods of reconstruction. The third order polynomial case was used, and the 

sensors measured nominal temperatures at given positions. Three naïve networks were tested 

of 8, 16, and 32 sensors.  
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5.8.1 Naïve 8-Sensor Network with Sequential Removal 

 

Results of the sensor removal performance test for 8 sensors can be seen in Figure 40 and 

Figure 41. As there are fewer sensors in total, it was expected that each sensor removed 

would have a large effect on the network performance as a whole – in this case the standard 

deviation of the error in Z was used. On reflection, using displacement was useful in the 

sense that it gives the results some context and shows the full workflow in action for 

completeness. On the other hand, having to do FEA for every single run meant that these 

experiments took a lot longer than needed compared to focusing on temperature 

reconstruction error, which ultimately is what is driving the displacement error. 

The full network baseline is somewhere near the middle, and resembles a line of best fit when 

presented in this way, which shows that whilst the performance of the network often gets 

worse as sensors are removed, there are some cases in which the performance is improved 

when individual sensors are removed.  

 

 

Figure 40. Results of naïve 8-sensor network performance as sensors removed with 

polynomial reconstruction. 

Comparing both reconstruction methods in Figure 40 and Figure 41, polynomial 

reconstruction is significantly more sensitive to the removal of individual sensors than 

Kriging. Kriging also performs significantly better when using this metric. In cases where the 

temperature distribution varies a lot spatially over time, it would be best to use Kriging to 

reconstruct the temperature distribution. Similarly, it would be useful to use Kriging as a 

reconstruction method if there are fewer regions that temperature sensors can safely and 

practicably be positioned. 
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Figure 41. Results of naïve 8-sensor network performance as sensors removed with 

Kriging reconstruction. 

 

5.8.2 Naïve 16-Sensor Network with Sequential Removal 

 

At 16 sensors, the performance of the full sensor network improves for both reconstruction 

methods when compared to 8 sensors, as can be seen in Figure 42 and Figure 43. Sensitivity 

to sensor removal shows a marked decline compared to 8 sensors for both reconstruction 

methods. In all cases, it seems that the removal of Sensor 8 appears to improve the 

reconstruction of the temperature distribution – Sensor 1 also seems to create problems. It 

may suggest that the sensor network positions need to be further optimised.  
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Figure 42. Results of naïve 16-sensor network performance as sensors removed with 

polynomial reconstruction. 

 

Figure 43. Results of naïve 16-sensor network performance as sensors removed with 

Kriging reconstruction. 
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5.8.3 Naïve 32 Sensor Network with Sequential Removal 

 

Removing sensors from the 32-sensor network revealed similar trends for both the 

polynomial and Kriging reconstruction methods, as shown in Figure 44 and Figure 45. With 

polynomial reconstruction, there was again a significant improvement over the 16-sensor 

network. For Kriging, however, the overall performance of the sensor network got worse 

when 32 sensors were used rather than 16. 

 

 

Figure 44. Results of naïve 32 sensor network performance as sensors removed with 

polynomial reconstruction 

 

The way that sensors have been added to the network in the case means that there are 

discernible ‘clusters’ in the results. The first 8 sensors, for example, defined sensors at each 

of the vertices of the measurement volume, while the second group of 8 sensors added 

sensors at intermediate mid points in the Z-axis. Looking at the sensor network in terms of 

these ‘clusters’ as annotated with dash-dot boxes, it appears that the first and third sensor 

clusters added are more impactful than the second and fourth clusters. The third sensor 

cluster is in fact related to the first cluster, in the sense that they occupy positions at the top 

and bottom of the measurement volume, but instead are positioned at the mid-points rather 

than the vertices. 

The Kriging sensitivity to removal has reduced further, to the point where removal of a 

sensor makes very little difference. Now that clusters have been identified in the polynomial 

reconstruction results, it is clear now that the same clusters exist in the Kriging network. The 

final 8 sensors added to the network appear to deliver the most impact to the network, as 
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shown in Figure 45. It seems there is a limit to the performance of the Kriging reconstruction 

method when using this magnitude of number of sensors. 

 

 

Figure 45. Results of naïve 32 sensor network performance as sensors removed with 

Kriging reconstruction. 

  



110 

 

5.9 Chapter 5 – Summary 

 

Chapter 5 provided: 

• Generation of naive temperature sensor networks to compare against, which are 

based upon arbitrary spacing. 

• Description of the different temperature distributions used with increasing 

complexity. 

• Computational experiments that show how temperature sensor network performance 

can be estimated and compared. 

• Comparison of: 

o Number of sensors; 

o Reconstruction methods; 

o Effect of sensor uncertainty; 

o Effect of removal of individual sensors.  

 

Contributions: 

• Estimation of temperature sensor network performance; 

• Estimation of thermal expansion contribution to measurement error; 

 

The temperature measurement planning tool can be used to 

estimate temperature sensor network performance for a range of 

defined scenarios, including consideration of sensor uncertainty. 
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6 Case Study: Barrel Section Assembly 

 

Assembly: the final challenge. Now that the tool can run a battery of tests to determine sensor 

network performance, do the tests hold up to more complex representative geometry? And 

what can we learn from their application? This chapter seeks to answer these questions and 

get more in-depth learning about how the tool can be used for industrial applications for 

planning temperature sensor networks.  

In addition to the tests done in the previous chapter, optimisation has been included in 

Chapter 6 to iteratively compare different types of sensor network and go beyond manual 

definitions. The main activities in this chapter from the methodology can be seen in Figure 

46. The previous results also focused on variations on the steady state case, but a lot could be 

learned by generating a temperature distribution and varying this over time. Each new case 

brings new lessons, which challenges the up-front approach to defining sensor networks 

based upon rules. Are there any rules or are all measurement tasks completely unique? It was 

decided that it would be more beneficial to explore, rather than prescribe. 

The majority of this chapter has been submitted to be published in a journal article at the time 

of writing [127]. 
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Figure 46. Temperature measurement planning methodology, highlighting activities in 

Chapter 6 to introduce optimisation. 

6.1 Generated Temperature Distribution 

 

A specific measurement scenario has been selected as a case study, using far more complex 

geometry but at a smaller scale. The assembly of barrel sections is a 1.6 m tall structure made 

of aluminium 6061 alloy is comprised of 40 parts. The temperature distribution was fixed to 

illustrate how the temperature sensor network planning tool could be used for a given scenario. 

 

The following function was used to generate the temperature distribution from -400 to 400 mm 

in x and y, and -800 to 800 mm in the z axis. 

 

Equation 11 

𝑇 =  18 + (3 × 10−7)𝑥3 + 0.5𝑦 + (3 × 1013)𝑦4 + 1.3𝑧 − (3 × 10−13)𝑧5 

As can be seen in Error! Reference source not found., the thermal gradient is particularly e

vident in the Z axis, followed by the Y and X axes respectively. The temperature differences 

are subtle, but in line with what might be observed in a factory environment. The average 
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temperature of the structure in this scenario is below standard 20°C, so there is a net 

contraction. 

  

 

  

Figure 47. Colour plot of the generated temperature distribution for 

the case study. 
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Temperature (°C) 

Figure 48. Generated temperature distribution as applied to the barrel section 

assembly as boundary conditions. 
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6.2 Finite Element Model 
 

The finite element analysis performed on the structure was rudimentary to provide a very rapid 

calculation of thermal expansion over the structure. A static structural analysis was set up, and 

the temperature boundary conditions were updated automatically using the planning tool, based 

upon the generated temperature distribution. 135411 nodes were used in the model, and the 

structure was supported at the base. Gravity was not applied in this case so as not to dominate 

the effects of thermal deformation. All the displacements appear relative to the global 

coordinate system whose origin is in the centre of the structure as illustrated in Figure 49. 

Figure 50 shows the simulated contraction of the structure under the applied, temperature 

distribution below standard temperature. 
 

  

Figure 49. Screenshot showing the undeformed barrel section assembly in 

ANSYS APDL FEA environment 
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Figure 50. Colour plot showing static structural results and thermal 

contraction in mm after the generated temperature distribution is applied. 

 

6.3 Number of Sensors 
 

Determination of the optimal number of sensors was carried out initially as more sensors are 

not necessarily better for performance and have a cost implication. Each of the sensor networks 

was a subset of the 32-sensor naïve network shown in Figure 52.  
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Figure 51. Plot showing 16 sensor naïve network positions in context of the 

temperature distribution as applied to the structure. 
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Figure 52. Plot showing additional positions used in the 32-sensor network in X 

and Y from the top view of the structure. 

 

 

During these tests the same reconstruction methods of polynomial and Kriging were used. In 

this case, Kriging was outperformed by polynomial fitting for all cases except 4 sensors. For 

8, 16, and 32 sensors, polynomial reconstruction was comparatively good. The best results 

appeared to come in general from 16 sensors, but as can be seen in Figure 53 and Figure 54 the 

results showed diminishing returns after 8 sensors. At this stage, the 16-sensor network was 

selected for further testing and optimisation. 
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Figure 53. Comparison of temperature distribution reconstruction using 

different numbers of sensors 

 

Figure 54. Comparison of vertical displacement when using different numbers 

of sensors for reconstruction 

 

6.4 Sensors with Simulated Uncertainty 

 

There is no such thing as a perfect measurement and all measurements have inherent 

uncertainty. To simulate this, pseudo-randomness was introduced to the virtual measurements 

using a normal distribution. Uncertainties were applied to individual sensors of 0, 0.5, 1, and 
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2 °C during the virtual measurements. As it is good practice to repeat measurements several 

times to reduce the effects of random error, the simulation generated 10 virtual measurement 

samples and the mean average was taken to be used for reconstruction. The objective was to 

compare the individual uncertainty to the standard deviation of the error in the reconstructed 

temperature distribution. In this case, this produced the results that can be seen in Figure 55. 

The results for the higher uncertainty sensors was not as proportional as might be expected. An 

uncertainty of 0.1 °C was shown to produce the lowest reconstruction error as expected, but 

the different between the 0.1 °C and the 0.5 °C or 1 °C is not that large – in some cases other 

factors such as cost may be able to inform this decision, depending upon the requirements of 

the product and the required thermal compensation performance. To achieve the best results 

going forward the 0.1 °C uncertainty sensors were selected for further optimisation. 

 

In each scenario the first-degree polynomial reconstruction outperformed the Kriging 

reconstruction. In Figure 55 and Figure 56, the reconstruction methods track fairly closely 

when 8 and 16 sensors are used. In Figure 57, the difference between the two reconstruction 

methods diverges as sensor uncertainty increases. It is thought that the tendency of Kriging 

towards local autocorrelation is contributing to this effect. In Kriging, measurements taken near 

to each other are more likely to agree. In this case this could be described using the analogy of 

a group of people taking measurements of a bolt diameter using a micrometer. Instead of totally 

trusting their own measurement, they’re being influenced by their neighbours’ measurements. 

The more this happens as nearby sensors are added, the more the error propagates through the 

group, further increasing the overall sensor network error. Once the pseudo-random sensor 

error is increased, this effect amplifies even further so that when one measurement sample has 

a lot of error, the error compounds. 
 

 

Figure 55. Comparison of temperature distribution reconstruction methods 

using repeated measurements from the 8-sensor naïve network with pseudo-

random uncertainty applied. 
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Figure 56. Comparison of temperature distribution reconstruction methods 

using repeated measurements from 16-sensor naïve network with pseudo-

random uncertainty applied. 

 

Figure 57. Comparison of temperature distribution reconstruction methods 

using repeated measurements from 32 sensor naïve network with pseudo-

random uncertainty applied. 
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6.5 Position Optimisation 

 

6.5.1 Random Search 
 

Optimising the position of the sensor networks was carried out using the random search 

method. At this point, the exploratory approach was favoured to provide more learning as there 

weren’t any heuristics that had been generated and proven to work. Each iteration of the 

optimisation represented a different configuration, so as the number of iterations increased, the 

greater the number of possible configurations can be explored.  

 

The 16-sensor naïve network is based on the only heuristics that have so far been used, which 

are to: optimise coverage at the boundaries of the assembly; and to spread them at regular 

intervals. Knowing the temperature at the boundaries of the assembly is a reasonable heuristic 

to keep based upon interpolation being preferable to extrapolation. Regularly spaced sensors 

however should be challenged since the temperature distribution may not be regular, and 

different geometries will have different coverage requirements. 

 

Eight of the positions that measure the temperature at the boundaries at the top and bottom 

were retained as fixed points. For the optimisation, the other 8 points were designated as 

dynamic points, that can change position after each iteration. To better understand the 

dominating vertical thermal gradient, the 8 dynamic sensors were constrained to move up and 

down in a uniform distribution ±125 mm from their initial position as defined in the 16-sensor 

naïve network: 4 sensors at 266.67 mm and 4 sensors at -266.67 mm. A diagram showing the 

initial positions of the sensors on the structure with the temperature distribution can be seen in 

Figure 58. Over the random search of 250 iterations, the positions occupied by the dynamic 

sensors can be seen in Figure 59. At each iteration, standard deviation error and RMS metrics 

were captured. The error in reconstruction is used to show how accurately the temperature 

sensor configuration measures the temperature distribution compared to the reference 

distribution. At this stage no FEA was carried out as the FEA provides the structural 

displacements, and the optimisation focused on the temperature distribution. 
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Figure 58. Diagram showing the positions of sensors in the 16-sensor network and 

highlighting the 8 dynamic sensors in the middle that were used in the optimisation. 

 

 

6.5.2 Reference Optimisation – No Uncertainty 

 

Running the optimisation without uncertainty provided some insights about which positions 

are most likely to produce more favourable results without the element of good fortune. A top 

ten sensor configurations list can be seen in Figure 60, which runs left to right in order of best 

to worst performance. From this figure it is clear that having the sensors at different heights is 

favourable. The separation distance between the top set of sensors also appears to be more 

consistent than the bottom sensors, which appear to be more variable and more able to tolerate 

a larger sensor spread. One way to compare the sensors was to see whether their position 
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correlates to any of the performance metrics, as shown in Figure 61. Weak correlation can be 

observed between the polynomial reconstruction, most notably on four of the sensors (9, 11, 

13, and 15), which may mean these are the sensors driving the results most. Kriging 

reconstruction appears to have no, or extremely weak correlation to sensor height, which could 

be useful for certain applications. 
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Figure 59. Scatter plot showing the random search positions of the 8 dynamic 

sensors over 250 iterations. 

 

 

 

Figure 60. Column chart showing the positions that produced the top 10 results 

in the random search optimisation.  
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Figure 61. Comparison of sensor position correlation to sensor network 

performance metrics. The standard deviation error and the RMS error of the 

reconstructed temperature distribution are relative to the reference. 

 

6.5.3 Reconstruction Comparison 
 

The results up to this point have presented the first-degree polynomial and the OK 

reconstruction methods, but the other degree polynomial reconstructions have also been tested. 

Comparing the reconstructions reveals that the most consistent results in this case come from 

the first-degree polynomial reconstruction. This is also the most straightforward to implement 

for measurement operators as it can easily be checked, so is preferable and should be the 

reconstruction method of choice. OK leads to larger and more variable errors in this 

application.  

 

The performance of OK was somewhat disappointing, as on the battery of tests carried out in 

Chapter 5, OK performed better than polynomial fitting in general. The geometry in question 

is an important factor. The cuboidal beam used in Chapter 5 had a 1:10 aspect ratio, compared 

to ~ 1:4 for the barrel sections. Kriging has some characteristics that may explain its limitations 

here. Kriging’s tendency towards spatial autocorrelation assumes that near points are like 

points, which means that temperature gradients could be smoothed out more than in reality. 

Equation 5 (Section 2.6.3) describes OK and shows one of the terms, µ(u), represents the mean 

value, which is used as part of the estimate. In some distributions the average temperature will 

be useful and misleading in others. On the other hand, as can be seen in this Chapter, is that 

polynomial reconstruction is more sensitive to sensor positioning, but in Chapter 5, only fixed 

naïve networks were tested. 
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Figure 62. Scatter plot comparing reconstruction methods over 250 iterations 

 

 

6.5.4 Optimal Network Performance 
 

After determining the optimal sensor network for 16 0.1 °C sensors using a first-degree 

polynomial reconstruction, the positions were recorded and used for further performance 

testing. The optimal sensor positions can be found in Table 21. 
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Table 21. Optimal sensor heights 

Sensor ID Z Position (mm) 

9 -259.76 

10 -314.15 

11 -300.39 

12 -351.40 

13 266.78 

14 

 

291.09 

15 359.99 

16 

 

 

341.46 

 

The sensor network should exhibit low error, repeatably. The RMS error was captured over 

250 iterations and can be seen in the histogram in Figure 63. 

 

 

Figure 63. Histogram of optimal sensor network performance over 250 repeats 

 

When the temperature distribution is reconstructed using this sensor network, the resulting 

errors on the barrel section assembly’s temperature distribution can be seen in Figure 64. The 

errors on the interactive plot appear to be within ±0.08 C. 
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Figure 64. Colour plot showing the temperature distribution reconstruction 

error across the barrel section assembly for the optimal sensor network 

 

6.5.5 Individual Sensor Influence 
 

In everyday operation there may be times when individual sensors must be removed or fail. 

The temperature sensor position planning tool facilitates the running of such what-if scenarios 

against the usual metrics to determine which sensors are most critical in the network. As can 

be seen in Figure 65, the full sensor network with no sensors removed can provide an RMS 

error of below 0.04 °C, which increases significantly when individual sensors are removed 
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from the network. The first 8 sensors – which were fixed during optimisation – appear to be 

most critical to the network, with RMS rising to around 0.1 °C when they are removed. The 

other sensors exhibit around half the impact of the fixed sensors and are more variable in their 

contribution. Here it can be seen that 12 and 15 have the greatest impact of the dynamic sensors 

when removed. Results for standard deviation are closely correlated to RMS and can be seen 

in Figure 66. 
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Figure 65. Column chart comparing the RMS error of the reconstruction when 

each of the individual sensors are removed (red) to the reference full network 

performance (green). 
 

 

Figure 66. Column chart comparing the standard deviation error of the 

reconstruction when each of the individual sensors are removed (red) to the 

reference full network performance (green). 

 

Prescribing a sensor network specification necessarily needs tolerances in order to realise 

simulated performance, whilst also being achievable in practice. Technically it may be possible 

to position sensors very accurately within 1 mm, but this would add significant time and cost 

to the operation. Three temperature sensor positioning errors were tested to determine what 

might be reasonable positional tolerances for operators to achieve in a production environment: 
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±10, 25, and 50 mm. As these are intended to be random errors, they are generated using a 

normal distribution about the original position. The boundaries were limited, so that they 

cannot go beyond the bounding box, but can approach it. The results of the positioning error 

experiment can be seen in Figure 67. As would be the case in practice, positioning errors have 

been applied to all of the sensors in the network, including positions that were fixed for the 

purposes of the optimisation. The histograms on the left provide a visual comparison to 

illustrate how the shape of the distribution of results changes with positioning error. 

 

At the lowest positioning error of 10 mm it is clearly the most repeatable of the three tolerances 

as expected. The interesting result here related back to the fixed points that were shown to 

make a relatively large impact on the overall sensor network. When these positions were 

allowed to move, they produced better results than the previous optimal sensor network and 

returning consistently lower RMS error values. This is useful and actionable knowledge, which 

in turn will lead to the specification of a sensor network that performs much better than a sensor 

network that has been specified without testing. 
 

 

Figure 67. Scatter plot comparing the RMS error of the reconstruction when 

sensor positioning error is simulated with associated histograms for qualitative 

comparison. 

 

6.6 Transient Analysis 

 

How can the performance of a given sensor network designed in a steady state condition be 

predicted for temperature variation over time? Understanding a representative static 

temperature distribution is the first stage of temperature sensor network design. Many 

environments will tend to display similar looking temperature distributions in qualitative 

terms, despite being different absolute temperatures. This is usually because spaces will often 
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contain the same heat sources and sinks, and the geometry of the volume will remain largely 

constant.  

A large amount of temperature variation occurs over time and can add a significant amount of 

complexity. In this case, rather than optimising for transience, the optimal temperature sensor 

network based on a representative static has been tested to see how well it performs over 

time. 

6.6.1 Transient Temperature Distribution 

 

A transient temperature distribution was generated using a cosine wave formula that changed 

two of the static temperature distribution coefficients over time. The c0 coefficient (during 

static analysis, c0 = 18) was used to change the constant temperature value over time, and the 

c1 coefficient (during static analysis, c1 = 1.3) was used to alter the linear vertical gradient 

over time. Measurements taken over several days of large structures in assembly 

environments inspired the decision to have oscillating base temperature and changing thermal 

gradients. Figure 68 shows the temperature distribution over a 24-hour period. The peak 

temperature occurs around 13:00, and at that time the thermal gradient is also most 

pronounced. Based on knowledge from previous tests, distributions with larger thermal 

gradients tend to be more difficult to reproduce. 

 

 

Figure 68. Generated reference temperature distribution over a 24-hour period, 

showing the temperature at the top, middle, and bottom at x, y = (-400, -400). 

 

800 mm 0 mm -800 mm z = 
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6.6.2 Transient Performance Test without Uncertainty 

 

Initial tests were carried out to provide a reference for how well the sensor network performs 

at each time of day without the presence of temperature sensor uncertainty. Results for the 

temperature distribution reconstruction can be seen in Figure 69 and Figure 70. The 

performance of the temperature sensor network is negatively correlated with the complexity 

of the temperature distribution over time. The effect of complexity is more powerful than the 

relationship between the conditions for which the temperature sensor network was optimised. 

Despite the sensor network being optimised in conditions more representative of the morning, 

which is relatively warm, the network applied to colder conditions with a smaller thermal 

gradient produce better results, nonetheless. There is again a marked different between the 

performance of OK reconstruction and linear fitting. The linear polynomial fit has much 

lower standard deviation and RMS, whilst also being relatively stable over time. 

 

Figure 69. Scatter plot comparing the standard deviation error in temperature of the 

sensor network with polynomial and kriging reconstruction over 24 hours. 
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Figure 70. Scatter plot comparing the RMS error in temperature of the sensor network 

with polynomial and kriging reconstruction over 24 hours. 

 

6.6.3 Transient Performance Test with 0.1 °C Sensor Uncertainty 

 

Sensor uncertainty of 0.1 °C as selected earlier was applied using pseudorandom numbers for 

a more realistic test. The results of the temperature reproduction can be seen in Figure 71 and 

Figure 72, and show the same general trends as the reference test without uncertainty. The 

effect of the applied sensor uncertainty can be seen in the residual error between the points 

and the fitted curves.  

 

Figure 71. Scatter plot comparing the standard deviation error in temperature of the 

sensor network with polynomial and kriging reconstruction over 24 hours with 0.1 °C 

sensor uncertainty. 

 



136 

 

 

Figure 72. Scatter plot comparing the RMS error in temperature of the sensor network 

with polynomial and kriging reconstruction over 24 hours with 0.1 °C sensor 

uncertainty. 

Figure 73 provides a better view of the linear fitting reconstruction results. The characteristic 

‘hump’ in performance can be seen more clearly to match the changing temperature 

distribution. 

 

Figure 73. Scatter plot showing the RMS error in temperature of the sensor network 

with linear polynomial reconstruction over 24 hours with 0.1 °C sensor uncertainty. 



137 

 

Ultimately, his application is all about compensation of thermal effects for dimensional 

measurement, and the performance must also be considered in terms of how closely it can 

capture changes in geometry. Results for standard deviation in X, Y, and Z are presented in 

Figure 74, Figure 75, and Figure 76 respectively. The results for displacement in general 

following the same trends over time, except the X displacement standard error appears to 

exhibit some form of drift with performance being slightly worse towards the end of the 24 

hours. Figure 77 shows RMS error values of the order of nanometres for both reconstruction 

methods. 

 

 

Figure 74. Scatter plot comparing the standard deviation error in X for linear 

polynomial and OK reconstruction over 24 hours, with 0.1 °C sensor uncertainty. 
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Figure 75. Scatter plot comparing the standard deviation error in Y for linear 

polynomial and OK reconstruction over 24 hours, with 0.1 °C sensor uncertainty. 

 

 

Figure 76. Scatter plot comparing the standard deviation error in Z for linear 

polynomial and OK reconstruction over 24 hours, with 0.1 °C sensor uncertainty. 
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Figure 77. Scatter plot comparing the RMS error in Z for linear polynomial and OK 

reconstruction over 24 hours, with 0.1 °C sensor uncertainty. 
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6.7 Major Findings 
 

 

The results of this case study experiment were encouraging. Provided the sensor network 

could realise its simulated performance in the physical world, confidence in performing 

measurements under challenging conditions outside of a metrology laboratory would be high. 

A reduction in the contribution of thermal effects acting on the object was found to be less 

than one or two micrometres on a structure that is 1.8 m tall. Taking this approach would 

provide a far greater level of performance than that which could be achieved using one 

sensor, uniform scaling, and indiscriminate sensor positioning. 

 

This case study generated some key learning:  

1. The positioning of the sensors within the measurement volume and the method of 

reconstructing the temperature field is often more important for driving 

improvements than the capability of the individual sensors.  

2. There is a need to plan where to place the sensors within the measurement volume 

so that they provide data to allow the ambient temperature field to be identified.  

3. If the placement is to be optimised then some measure of performance is required.  

4. Two means of interpolating the ambient field have been investigated: polynomial 

fitting and Kriging. The selection of a reconstruction method is task-specific and 

should be tested for proposed applications. Testing out other configurations and 

scenarios may lead to Kriging in fact performing better. 

5. Temperature sensor networks are more sensitive to changes at the spatial boundary 

and these appear to be most critical for accurate reconstruction. 

6. More detailed heuristics can be generated using this approach for intermediate 

sensors. In the case of the barrel section assembly it was found that asymmetric 

sensor heights produced better results, for example. 
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6.8 Chapter 6 – Summary 

 

Chapter 6 provided: 

• A specific measurement challenge with representative geometry and temperature 

distribution. 

• Results for how well the temperature sensor network performed. 

• Comparison of: 

o Number of sensors; 

o Reconstruction methods; 

o Effect of sensor uncertainty; 

o Effect of removal of individual sensors.  

• Results of a random search optimisation to allow the tool to explore which 

configurations might work best for this specific scenario. 

• Results for the temperature sensor network performance when presented with a time-

varying temperature distribution. 

 

Contributions: 

• Estimation of temperature sensor network performance for a given assembly; 

• Estimation of thermal expansion contribution to measurement error for a given 

assembly; 

• Optimisation of temperature sensor networks for a given scenario; 

• Time dependent performance testing of temperature sensor networks over full 

thermal cycle. 

 

The temperature measurement planning tool can be used to 

estimate temperature sensor network performance on an 

assembly, including the impact of variation over time.  
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7 Conclusions and Future Work 

 

7.1 Conclusions 

 

At the beginning of the thesis, the question was raised:  

How can a temperature measurement planning process be 

created to produce better outcomes for thermal compensation? 

In each of the chapters of this thesis the question of how best to plan temperature 

measurement has been considered. The problem of thermal effects was explored as this was 

known to be impactful to dimensional metrology. As a long-standing problem, it needed to be 

properly broken down in order to identify opportunities for improvement.  

The following contributions have been made: 

• Definition of a temperature measurement planning methodology; 

• Computer-aided temperature measurement planning test bed supported by FEA; 

• Estimation of temperature sensor network performance; 

• Estimation of thermal expansion contribution to measurement error; 

• Optimisation of temperature sensor networks for a given scenario; 

• Time dependent performance testing of temperature sensor networks over full thermal 

cycle. 

 A review of the literature fulfilled the first objective of the thesis in Chapter 2. This revealed 

a range of capable temperature measurement technologies with standardisation that focuses 

primarily on the manufacture of sensors. There were very few consistent approaches to how 

to use temperature sensors to produce the best results. The problem of modelling thermal 

effects in large volumes has been considered in a range of fields, for a variety of applications. 

Planning the measurement of dimensions is well-established in manufacturing, particularly 

for CMMs, although work has been done at larger scales. There was found to be a clear 

opportunity to use some of the learning from dimensional measurement planning and apply 

this to temperature in order to then further support dimensional measurement through 

modelling thermal expansion. 

Experience of thermal expansion was gained in the laboratory and in assembly environments 

and presented in Chapter 3. The measurement of temperature could have been carried out in a 

variety of ways and it was thought that how the temperature was measured and interpreted 

could have lead to significant differences in the simulated thermal expansion. The overall 

method was promising and highlighted very clearly the limitations of uniform scaling in more 

complex environments. A more sophisticated approach should be applied to temperature 

measurement to compensate for thermal expansion in order to provide more traceability of 

the measurement process.  

In Chapter 4, ideas, and considerations were formed into a methodology that forms the 

primary contribution of this thesis. The core capabilities of the temperature measurement 
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planning tool, and areas where knowledge was generated are highlighted in Figure 78. This 

methodology became a computational tool that allowed for the testing of different 

temperature sensor networks through scripting. Chapters 5 and 6 developed the tool further 

and showed how it could ultimately be used for specific scenarios. The selection of a 

reconstruction method is one example of a task-specific consideration and methods should be 

tested for each proposed application.  

 

Figure 78. Diagram showing the temperature measurement planning process that has 

been created, with most significant contributions to knowledge highlighted in blue. 

Absolute temperature changes over time, and temperature distribution also often changes in 

complexity. The positioning of the sensors within the measurement volume and the method 

of reconstructing the temperature field is often more important for driving improvements than 

the capability of the individual sensors. There is a need to plan where to place the sensors 

within the measurement volume so that the temperature field can be reconstructed. 

Optimisation of sensor positions was considered in Chapter 6. Temperature sensor networks 

are more sensitive to changes at the spatial boundary and these appear to be most critical for 

accurate reconstruction. 

It is worth noting that beyond thermal effects, several challenges exist which are more related 

to culture and process: temperature often not being recorded during dimensional 
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measurement, for example. A large portion of performance improvements come from not 

making assumptions such as: uniform expansion, and isothermal temperature. With these 

fundaments in place, there wasn’t a test bed for temperature sensor network planning and 

guidance was hard to find. The temperature measurement planning tool provided a means to 

quickly test temperature sensor networks and estimate how temperature translates to 

dimensional error.  

Defining a temperature measurement methodology means that there can be some level of 

agreement. Where there is not total agreement, there is process traceability to justify why 

decisions were made. Compensation of thermal expansion error in dimensional measurement 

has its own complexities and sources of uncertainty, so it makes sense to go to the source and 

focus efforts on reducing temperature measurement error. In an era when sensor networks are 

increasingly ubiquitous, being able to properly understand the rationale behind their design 

and characterise their limitations is of real value. 

 

7.2 Future Work 

 

Various avenues could be explored in the future that can make use of the learning from this 

thesis. The first is that the tool lends itself to extension - modular design means that more 

sophisticated simulation, reconstruction, and optimisation can be used as new measurement 

challenges are introduced. Integration with dimensional measurement planning will provide 

further enhancements. The model-based enterprise technologies that have so far been used to 

improve inspection planning can eventually include improve temperature measurement 

planning in much the same way. 

Accurate values for CTE would also provide significant improvements in scaling for thermal 

compensation. Due to the variation between batches, techniques for measuring the CTE of a 

specific instance of a part in-situ would be preferable. 

One of the more practical aspects to consider for this problem in future work would be in the 

physical sensor network set up. The sensor network integration problem would consider 

sensor accessibility and wiring around the product, its tooling, and the factory space. This 

type of planning could be carried out in the process development stage and may have some 

influence on the final sensor positions. Large volume scanning and immersive technologies 

have a potential part to play to improve how the computational testing emulates the physical 

space. 

A natural progression of the temperature sensor network optimisation would be to create a 

cost model so that the sensor network design can be evaluated in terms of costs and benefits. 

The number of sensors in a temperature sensor network needs to be considered in terms of the 

value that each sensor adds to the measurement. Whilst temperature sensors off the shelf are 

relatively inexpensive, particularly compared to the cost of dimensional measurement 

systems, costs quickly accumulate. Capital costs of individual sensors might be small but will 

cost significantly more in maintaining up-to-date calibration certificates. Data acquisition 

systems can carry significant capital costs and will also require some maintenance. One of the 

use cases of the temperature measurement planning tool is the comparison of sensor networks 

made up of different sensor types. 
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Progression through the paradigms of increasingly digital processes will see more tools that 

make use of multiple physical quantities at different scales and using a range of simulation 

methods. More and more decisions will be made using these systems, so it is important to 

keep in mind the methods to quantify the uncertainty of the data being used to make such 

predictions.  
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Appendix A – Individual AIT Jig Temperatures 

 

7.7.1.1 Jig 1 

 

Figure 79 - Graph showing the temperature on Jig 1 (Bottom) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 

 

Figure 80 - Graph showing the temperature on Jig 1 (Top) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 
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Figure 81 - Graph showing the mean average temperature on Jig 1 over time at the 

bottom and top of the jig 

7.7.1.2 Jig 3 

 

 

Figure 82 - Graph showing the temperature on Jig 3 (Bottom) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 
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Figure 83 - Graph showing the temperature on Jig 3 (Top) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 

 

Figure 84 - Graph showing the mean average temperature on Jig 3 over time at the 

bottom and top of the jig 

 

7.7.1.3 Jig 4 
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Figure 85 - Graph showing the temperature on Jig 4 (Bottom) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 

 

Figure 86 - Graph showing the temperature on Jig 4 (Top) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 
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Figure 87 - Graph showing the mean average temperature on Jig 4 over time at the 

bottom and top of the jig 

7.7.1.4 Jig 5 

 

 

Figure 88 - Graph showing the temperature on Jig 5 (Bottom) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 
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Figure 89 - Graph showing the temperature on Jig 5 (Top) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 

 

Figure 90 - Graph showing the mean average temperature on Jig 5 over time at the 

bottom and top of the jig 

7.7.1.5 Jig 6 
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Figure 91 - Graph showing the temperature on Jig 6 (Bottom) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 

 

Figure 92 - Graph showing the temperature on Jig 6 (Top) over time showing 

measurements from two thermocouple (K-type) sensors and the mean average 
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Figure 93 - Graph showing the mean average temperature on Jig 6 over time at the 

bottom and top of the jig 
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Appendix B – Naïve Network Test Temperature Distributions 

 

Figure 94 – Naïve network test temperature distribution, ID: 001 

 

Figure 95 - Naïve network test temperature distribution, ID: 002 
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Figure 96 - Naïve network test temperature distribution, ID: 003 

 

Figure 97 – Naïve network test temperature distribution, ID: 004 
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Figure 98 – Naïve network test temperature distribution, ID: 005 

 

Figure 99 – Naïve network test temperature distribution, ID: 006 
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Figure 100 – Naïve network test temperature distribution, ID: 007 

 

Figure 101 – Naïve network test temperature distribution, ID: 008 
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Figure 102 – Naïve network test temperature distribution, ID: 009 
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Figure 103 – Naïve network test temperature distribution, ID: 010 

Figure 104 – Naïve network test temperature distribution, ID: 011 



170 

 

 

Figure 105 – Naïve network test temperature distribution, ID: 012 

 

Figure 106 – Naïve network test temperature distribution, ID: 013 
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Figure 107 – Naïve network test temperature distribution, ID: 014 

 

Figure 108 – Naïve network test temperature distribution, ID: 015 



172 

 

 

Figure 109 – Naïve network test temperature distribution, ID: 016 

 

Figure 110 – Naïve network test temperature distribution, ID: 017 
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Figure 111 – Naïve network test temperature distribution, ID: 018 

 

Figure 112 – Naïve network test temperature distribution, ID: 019 
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Figure 113 – Naïve network test temperature distribution, ID: 020 

 

Figure 114 - Naïve network test temperature distribution, ID: 021 
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Appendix C - Sensor Removal Results Tables 

 

Table 22. Results of naïve 8 sensor network performance as sensors removed with 

polynomial reconstruction. 
 

Standard Deviation of 

Reconstruction Error 

(mm) 

Full Network Baseline 

 
Standard Deviation 

of Reconstruction 

Error (mm) 

Order X Y Z Sensor 

Removed 

X Y Z 

3rd 0.031 0.034 0.239 1 0.342 0.029 0.153 

3rd 0.031 0.034 0.239 2 0.344 0.048 0.314 

3rd 0.031 0.034 0.239 3 0.186 0.052 0.376 

3rd 0.031 0.034 0.239 4 0.183 0.040 0.284 

3rd 0.031 0.034 0.239 5 0.182 0.033 0.226 

3rd 0.031 0.034 0.239 6 0.184 0.044 0.318 

3rd 0.031 0.034 0.239 7 0.343 0.042 0.258 

3rd 0.031 0.034 0.239 8 0.342 0.025 0.112 

 

 

Table 23. Results of naïve 8 sensor network performance as sensors removed with 

Kriging reconstruction. 

Standard Deviation of 

Reconstruction Error 

(mm) 

Full Network 

Baseline 

 
Standard Deviation of 

Reconstruction Error (mm) 

X Y Z Sensor 

Removed 

X Y Z 

0.018 0.023 0.126 1 0.025 0.025 0.136 

0.018 0.023 0.126 2 0.022 0.024 0.134 

0.018 0.023 0.126 3 0.021 0.024 0.130 

0.018 0.023 0.126 4 0.020 0.023 0.128 

0.018 0.023 0.126 5 0.022 0.023 0.118 

0.018 0.023 0.126 6 0.024 0.023 0.121 

0.018 0.023 0.126 7 0.019 0.024 0.126 

0.018 0.023 0.126 8 0.020 0.024 0.127 
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Table 24. Results of naïve 16 sensor network performance as sensors removed with 

polynomial reconstruction. 
 

Standard Deviation 

of Reconstruction 

Error (mm) 

Full Network 

Baseline 

 
Standard Deviation of 

Reconstruction Error 

(mm) 

Order X Y Z Sensor 

Removed 

X Y Z 

3rd 0.028 0.031 0.206 1 0.124 0.027 0.160 

3rd 0.028 0.031 0.206 2 0.126 0.035 0.223 

3rd 0.028 0.031 0.206 3 0.108 0.040 0.273 

3rd 0.028 0.031 0.206 4 0.106 0.034 0.220 

3rd 0.028 0.031 0.206 5 0.060 0.031 0.211 

3rd 0.028 0.031 0.206 6 0.061 0.034 0.238 

3rd 0.028 0.031 0.206 7 0.173 0.033 0.217 

3rd 0.028 0.031 0.206 8 0.172 0.023 0.131 

3rd 0.028 0.031 0.206 9 0.097 0.030 0.195 

3rd 0.028 0.031 0.206 10 0.098 0.036 0.243 

3rd 0.028 0.031 0.206 11 0.036 0.030 0.190 

3rd 0.028 0.031 0.206 12 0.037 0.032 0.202 

3rd 0.028 0.031 0.206 13 0.040 0.033 0.227 

3rd 0.028 0.031 0.206 14 0.041 0.035 0.240 

3rd 0.028 0.031 0.206 15 0.052 0.031 0.192 

3rd 0.028 0.031 0.206 16 0.050 0.028 0.169 
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Table 25. Results of naïve 16 sensor network performance as sensors removed with 

Kriging reconstruction. 

Standard Deviation of 

Reconstruction Error (mm) 

Full Network Baseline 

 
Standard Deviation of 

Reconstruction Error 

(mm) 

X Y Z Sensor 

Removed 

X Y Z 

0.021 0.025 0.088 1 0.029 0.027 0.087 

0.021 0.025 0.088 2 0.026 0.027 0.088 

0.021 0.025 0.088 3 0.022 0.025 0.088 

0.021 0.025 0.088 4 0.021 0.025 0.088 

0.021 0.025 0.088 5 0.023 0.025 0.090 

0.021 0.025 0.088 6 0.025 0.025 0.089 

0.021 0.025 0.088 7 0.023 0.025 0.086 

0.021 0.025 0.088 8 0.024 0.025 0.084 

0.021 0.025 0.088 9 0.024 0.025 0.079 

0.021 0.025 0.088 10 0.022 0.025 0.080 

0.021 0.025 0.088 11 0.025 0.025 0.094 

0.021 0.025 0.088 12 0.027 0.025 0.092 

0.021 0.025 0.088 13 0.024 0.024 0.083 

0.021 0.025 0.088 14 0.022 0.024 0.085 

0.021 0.025 0.088 15 0.022 0.026 0.090 

0.021 0.025 0.088 16 0.022 0.026 0.090 
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Table 26. Results of naïve 32 sensor network performance as sensors removed with 

polynomial reconstruction. 
 

Standard Deviation 

of Reconstruction 

Error (mm) 

Full Network 

Baseline 

 
Standard Deviation of 

Reconstruction Error 

(mm) 

Order X Y Z Sensor 

Removed 

X Y Z 

3rd 0.028 0.025 0.164 1 0.072 0.018 0.091 

3rd 0.028 0.025 0.164 2 0.084 0.023 0.143 

3rd 0.028 0.025 0.164 3 0.102 0.037 0.260 

3rd 0.028 0.025 0.164 4 0.060 0.031 0.209 

3rd 0.028 0.025 0.164 5 0.030 0.023 0.152 

3rd 0.028 0.025 0.164 6 0.047 0.025 0.172 

3rd 0.028 0.025 0.164 7 0.150 0.032 0.223 

3rd 0.028 0.025 0.164 8 0.095 0.022 0.140 

3rd 0.028 0.025 0.164 9 0.052 0.020 0.119 

3rd 0.028 0.025 0.164 10 0.068 0.024 0.158 

3rd 0.028 0.025 0.164 11 0.024 0.024 0.150 

3rd 0.028 0.025 0.164 12 0.033 0.024 0.156 

3rd 0.028 0.025 0.164 13 0.025 0.025 0.169 

3rd 0.028 0.025 0.164 14 0.035 0.026 0.177 

3rd 0.028 0.025 0.164 15 0.059 0.026 0.171 

3rd 0.028 0.025 0.164 16 0.029 0.023 0.147 

3rd 0.028 0.025 0.164 17 0.051 0.028 0.191 

3rd 0.028 0.025 0.164 18 0.039 0.027 0.193 

3rd 0.028 0.025 0.164 19 0.028 0.016 0.071 

3rd 0.028 0.025 0.164 20 0.026 0.027 0.168 

3rd 0.028 0.025 0.164 21 0.068 0.027 0.168 

3rd 0.028 0.025 0.164 22 0.082 0.032 0.215 

3rd 0.028 0.025 0.164 23 0.104 0.023 0.147 

3rd 0.028 0.025 0.164 24 0.060 0.017 0.092 

3rd 0.028 0.025 0.164 25 0.045 0.028 0.195 

3rd 0.028 0.025 0.164 26 0.065 0.030 0.204 

3rd 0.028 0.025 0.164 27 0.048 0.026 0.169 

3rd 0.028 0.025 0.164 28 0.032 0.025 0.166 

3rd 0.028 0.025 0.164 29 0.034 0.027 0.188 

3rd 0.028 0.025 0.164 30 0.025 0.024 0.162 

3rd 0.028 0.025 0.164 31 0.021 0.022 0.130 

3rd 0.028 0.025 0.164 32 0.031 0.025 0.166 
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Table 27. Results of naïve 32 sensor network performance as sensors removed with 

Kriging reconstruction 

Standard Deviation of 

Reconstruction Error 

(mm) 

Full Network 

Baseline 

 
Standard Deviation of 

Reconstruction Error (mm) 

X Y Z Sensor 

Removed 

X Y Z 

0.024 0.028 0.119 1 0.024 0.028 0.119 

0.024 0.028 0.119 2 0.024 0.028 0.119 

0.024 0.028 0.119 3 0.024 0.028 0.119 

0.024 0.028 0.119 4 0.024 0.028 0.119 

0.024 0.028 0.119 5 0.025 0.028 0.120 

0.024 0.028 0.119 6 0.026 0.028 0.120 

0.024 0.028 0.119 7 0.024 0.028 0.119 

0.024 0.028 0.119 8 0.025 0.027 0.118 

0.024 0.028 0.119 9 0.024 0.027 0.121 

0.024 0.028 0.119 10 0.025 0.027 0.120 

0.024 0.028 0.119 11 0.026 0.028 0.123 

0.024 0.028 0.119 12 0.028 0.028 0.122 

0.024 0.028 0.119 13 0.025 0.028 0.121 

0.024 0.028 0.119 14 0.025 0.028 0.121 

0.024 0.028 0.119 15 0.025 0.028 0.122 

0.024 0.028 0.119 16 0.026 0.028 0.121 

0.024 0.028 0.119 17 0.024 0.028 0.119 

0.024 0.028 0.119 18 0.025 0.028 0.120 

0.024 0.028 0.119 19 0.024 0.028 0.119 

0.024 0.028 0.119 20 0.024 0.028 0.119 

0.024 0.028 0.119 21 0.028 0.028 0.118 

0.024 0.028 0.119 22 0.026 0.028 0.119 

0.024 0.028 0.119 23 0.024 0.027 0.119 

0.024 0.028 0.119 24 0.024 0.028 0.119 

0.024 0.028 0.119 25 0.024 0.027 0.121 

0.024 0.028 0.119 26 0.030 0.028 0.113 

0.024 0.028 0.119 27 0.032 0.028 0.110 

0.024 0.028 0.119 28 0.025 0.028 0.122 

0.024 0.028 0.119 29 0.025 0.028 0.121 

0.024 0.028 0.119 30 0.030 0.026 0.112 

0.024 0.028 0.119 31 0.025 0.028 0.121 

0.024 0.028 0.119 32 0.028 0.026 0.115 

 

 

 


