

Citation for published version:
Davenport, JH & Pring, B 2021, Improvements to Quantum Search Techniques for Block-Ciphers,
with Applications to AES. in O Dunkelman, MJ Jacobson, Jr. & C O’Flynn (eds), Selected Areas in Cryptography
- 27th International Conference, 2020, Revised Selected Papers. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12804 LNCS, Springer
Science and Business Media Deutschland GmbH, Germany, pp. 360-384, 27th International Conference on
Selected Areas in Cryptography, SAC 2020, Virtual, Online, 21/10/20. https://doi.org/10.1007/978-3-030-81652-
0_14
DOI:
10.1007/978-3-030-81652-0_14

Publication date:
2021

Document Version
Peer reviewed version

Link to publication

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science.
The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-81652-0_14

Davenport, JH & Pring, B 2021, Improvements to Quantum Search Techniques for Block-Ciphers, with
Applications to AES. in O Dunkelman, MJ Jacobson, Jr. & C O’Flynn (eds), Selected Areas in Cryptography -
27th International Conference, 2020, Revised Selected Papers. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12804 LNCS, Springer
Science and Business Media Deutschland GmbH, Germany, pp. 360-384, 27th International Conference on
Selected Areas in Cryptography, SAC 2020, Virtual, Online, 21/10/20. https://doi.org/10.1007/978-3-030-81652-
0_14

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Oct. 2021

https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/978-3-030-81652-0_14
https://researchportal.bath.ac.uk/en/publications/improvements-to-quantum-search-techniques-for-blockciphers-withapplications-to-aes(bbf97eab-c10b-493e-9831-a1ca56d8ca60).html

Improvements to quantum search techniques for
block-ciphers, with applications to AES

James H. Davenport1 and Benjamin Pring2

1 Department of Computer Science, University of Bath, UK
masjhd@bath.ac.uk

2 Department of Mathematics and Statistics, University of South Florida, USA
benjamin.pring@gmail.com

Abstract. In this paper we demonstrate that the overheads (ancillae
qubits/time/number of gates) involved with implementing quantum or-
acles for a generic key-recovery attack against block-ciphers using quan-
tum search techniques can be reduced.
In particular, if we require r ≥ 1 plaintext-ciphertext pairs to uniquely
identify a user’s key, then using Grover’s quantum search algorithm for
cryptanalysis of block-ciphers as in [2, 9, 13, 18, 3] would require a quan-
tum circuit which requires effort (either Time × Space product or num-
ber of quantum gates) proportional to r. We demonstrate how we can
reduce this by a fine-grained approach to quantum amplitude amplifica-
tion [6, 17] and design of the required quantum oracles.
We furthermore demonstrate that this effort can be reduced to < r with
respect to cryptanalysis of AES-128/192/256 and provide full quantum
resource estimations for AES-128/192/256 with our methods, and code
in the Q# quantum programming language that extends the work of [13].

Keywords: quantum search, quantum cryptanalysis, AES, block ciphers

1 Introduction

The security of the Advanced Encryption Standard [23] (AES) relative to quan-
tum search techniques is both of independent interest with respect to examining
how we can best optimise quantum circuits and as a benchmark for which the
security of entries to the NIST Post Quantum Cryptography (PQC) standardi-
sation process [24, 25] are currently judged.

Grover’s quantum search algorithm [10] (see Theorem 3) is currently thought
by the cryptographic community to be the optimal method of attacking the full-
round AES [2, 4, 9, 13, 18, 25]. As well as an important problem in cryptanalysis,
AES can also act as a benchmark for new techniques in algorithm design.

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf.
Scripts and Q# code available: https://github.com/public-ket/reduced-aes

1

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://github.com/public-ket/reduced-aes

1.1 The key-search problem for block-ciphers

It is common knowledge that for any block-cipher with an encryption function
E : {0, 1}k×{0, 1}n −→ {0, 1}n (where {0, 1}k is the key-space and n is the block-
size), possession of a sufficient number of plaintext-ciphertext pairs is enough to
recover the user’s key by exhaustive search methods. Formally, these plaintext-
ciphertext pairs are the set{

(P1,C1), . . . , (Pr,Cr) ∈ {0, 1}n × {0, 1}n : E(K,Pi) = Ci

}
(1)

for some unknown user’s key K ∈ {0, 1}k. To immediately specialise this to AES,
we have that n = 128 and there exist three security levels for AES parameterised
by k ∈ {128, 192, 256} — we will respectively refer to these varieties as AES−k.
Recovering a user’s key can be accomplished by exhaustive search methods by
modelling the problem by a special boolean function χr : {0, 1}k −→ {0, 1}

χr(K) =

{
1 if

(
E(K,P1)

?
= C1

)
∧ · · · ∧

(
E(K,Pr)

?
= Cr

)
0 otherwise

(2)

so that we can simply evaluate χr upon elements of the domain {0, 1}k until we
find the unique element (the user’s key) that we are searching for. It is essential
that r is large enough, as otherwise this may not uniquely specify the key — for
a thorough treatment of this see Section 2.2 of [13], but intuitively it is useful to
consider that the problem guarantees there is one K ∈ {0, 1}k that was used to
generate the plaintext-ciphertext pairs and that E(· ,Pi) : {0, 1}k −→ {0, 1}n
(the encryption function with a fixed choice of plaintext Pi) is expected to act
a pseudorandom function. This last fact implies that we expect there to be
(2k − 1) · 2−rn ≈ 2k−rn keys which encrypt any r plaintexts to a fixed choice of
r ciphertexts, hence we must chose r such that the chance of obtaining such a
spurious key is negligible if we are performing a search via solely evaluating χr.

For AES-128 and AES-192 this implies that we must have r = 2 and for
AES-256 we must have r = 3. These can be reduced to r = 1 for AES-128 and
r = 2 for AES-256, if we are content with being able to correctly identify the
user’s key with probability 1

e ≈ 0.37 (see Section 2.3 of [13]).
Whilst a classical exhaustive search for the user’s key would require on av-

erage O(2k) classical evaluations of χr : {0, 1}k −→ {0, 1}, Grover’s quantum
search algorithm [10] gives us that if we implement χr : {0, 1}k −→ {0, 1} as a
quantum circuit then we need only execute this quantum circuit O

(
2k/2

)
times

and perform a quantum measurement to obtain the user’s key with high probabil-
ity. This quantum circuit is referred to as a quantum oracle and has a non-trivial
cost to implement [2, 9, 13, 18] and (as with a classical χr : {0, 1}k −→ {0, 1})
can be constructed out of r quantum circuits which each evaluate AES-k.

No matter the cost of these modular components, the total circuit-size for
both the classical and quantum search approach if we just exploit χr is then
dependent upon r. However, a different classical strategy is possible if we allow
for a slightly modified classical search routine — we test whether an element

2

x ∈ {0, 1}k satisfies χr(x) = 1 if and only if it has first passed a test whether
χ1(x) = 1 (a test of whether the first plaintext-ciphertext pair is satisfied). This
is easily implemented as a classical search procedure, requiring a circuit large
enough only to implement the encryption circuit E : {0, 1}k×{0, 1}n −→ {0, 1}n
if we compute E(x,Pi+1) if and only if E(x,Pi) was equal to Ci.

Whilst such a classical strategy means we still require on the order of O
(
2k
)

calls to χ1 (any element x ∈ {0, 1}k may be the user’s key), this technique
allows us to reduce the number of calls of χr and so reduce the overall cost
to implement the search procedure. Such a strategy requires a classical control
mechanism which is unavailable in quantum circuitry (which must be reversible).
However, the same strategy can be exploited by the Search with Two Oracles [17]
(STO) approach to quantum search, which relies upon the fact that we have a
well-defined relationship of subsets χ−1

r (1) ⊆ χ−1
1 (1) ⊆ {0, 1}k and provides

similar computational gains over Grover’s quantum search algorithm [10] as the
above classical strategy provides compared to brute-force classical search.

Our focus in this paper is in fitting the block-cipher search problem to take
advantage of the Search with Two Oracles methodology, ensuring that we use
specially designed quantum circuits (quantum oracles) that evaluate the func-
tions χ1,χr : {0, 1}k −→ {0, 1}, which allow us to make strictly positive gains in
both the Space-Time product and Gate count for performing quantum search.

Our results can be viewed as a quantum analog of classical techniques for
cryptanalysis of block-ciphers in [12] — our goal in this paper is to demonstrate
that we require far fewer qubits than previously thought to attack AES and that
many attacks in literature [2, 9, 13, 18, 3] have been overestimating the resources
required to attack block-ciphers via quantum search as they have concentrated on
the design of individual quantum circuits rather than algorithmic improvements.

1.2 Outline of this paper
In Section 2 we review basic facts concerning quantum computation, quantum
search and the AES. In Section 3 we examine how the Search with Two Ora-
cles [17] (STO) technique can be used to improve upon generic Grover-based
attacks on generic block-ciphers. In Section 4 we examine what further gains we
can make when we consider attacks on AES, providing explicit quantum circuits
and resource estimates for this scenario. In Section 5 we give our conclusions.

1.3 Contributions
In this paper we make the following contributions

– We examine Algorithm 3 of [17] applied to cryptanalysis of AES, which sug-
gests underclocking inner nestings of amplitude amplification is beneficial.

– We examine how we can avoid unnecessary computation in designing a quan-
tum oracle for breaking AES in conjunction with these techniques.

– We provide a full quantum resource estimation of the resources required to
attack AES-128/192/256 with our methods using new circuits written in the
Q# quantum programming language, extending the work of [13].

3

2 Background
2.1 Quantum computation and quantum algorithms

Quantum states consisting of k-qubits can be modelled as vectors |ψ〉 ∈ C2k and
quantum algorithms as unitary matrices U ∈ C2k×2k (a matrix U ∈ C2k×2k is
unitary iff UU† = U†U = I, where † is the conjugate-transpose operator). In
the computational basis

{
|x〉 : x ∈ {0, 1}k

}
, a k-qubit quantum state can be

written (with αx ∈ C)

|ψ〉 =
∑

x∈{0,1}k

αx |x〉 where
∑

x∈{0,1}k

|αx|2 = 1 (3)

and measurement of an k-qubit quantum state in the computational basis will re-
sult in a bitstring x ∈ {0, 1}k with probability |αx|2. Notation-wise, the applica-
tion of quantum algorithms to quantum states will follow the matrix-interpretation
so that BA |ψ〉 denotes we apply the quantum algorithm A to the quantum state
|ψ〉 to compute A |ψ〉 and then apply the quantum algorithm B to the state A |ψ〉.

Quantum algorithms therefore consist of methods which increase the mag-
nitude of amplitudes associated with useful information. These quantum algo-
rithms may be approximated to a high degree of accuracy (or exactly synthesised,
assuming noise-free quantum computation) by constructing them out of quan-
tum gates which act upon small numbers of qubits (just as classical algorithms
are constructed out of bitwise operations). Many algorithms also use ancillae
qubits for working memory — these may either be clean (they begin and end in
the state |0 . . . 0〉) or dirty (they begin and end in the same unknown state).

The Clifford+T gate set is a universal quantum gate set [22], in that it is
both finite and we can approximate any quantum algorithm up to an arbitrary
degree of accuracy by using only gates from this set. It consists of a union
of a set which generates the Clifford group on n-qubits, typically taken to be
{H,S,∧1(X)} (the Hadamard, Phase and controlled-NOT gates) and {T}, a
singleton set containing the T-gate. This separation of resources is of potential
real-world importance as T-gates are conjectured [7] to require resources on the
order of a magnitude more than those than the Clifford gate set to implement.
We define our Clifford gate set as {X,Z,H,S,∧1(X)} — the X (NOT) gate,
the Z gate, the Hadamard gate, the phase gate and Controlled-NOT (CNOT)
gate. We also count measurements as a resource that can be used to implement
quantum circuits as in [13], but do not use them in our algorithmic design.

The actions of the S and T -gates will be unimportant for the purposes of this
paper, but we have that (for x ∈ {0, 1}) X |x〉 7→ |x⊕ 1〉, that Z |x〉 7→ (−1)x |x〉
and that the Hadamard gate maps H |x〉 7→ 1√

2
|0〉+ (−1)x√

2
|1〉.

The generalised ∧t(X) gate (the t-Controlled-NOT) for t ≥ 1 has the action

∧t(X) |x1 . . . xt〉 |xt+1〉 7→ |x1 . . . xt〉 |xt+1 ⊕ x1 ∧ · · · ∧ xt〉 (4)

where xi ∈ {0, 1}. We use a design [19] that has both a quantum circuit-depth
and circuit-size of O

(
k
)

quantum gates if we have O
(
k
)

dirty ancillae qubits. A
summary of costs for all quantum circuits we use can be found in Appendix B.

4

The quantum oracle is an important quantum subroutine in many quantum
search algorithms and its cost is our main concern in this paper.
Definition 1 (Quantum phase oracle). The quantum oracle Oχ defined by
the boolean function χ : {0, 1}k −→ {0, 1} is a quantum algorithm defined the
following action on the computational basis states

{
|x〉 : x ∈ {0, 1}k

}
Oχ |x〉 7→

{
− |x〉 if χ(x) = 1

|x〉 otherwise.
(5)

One method of implementing a quantum oracle is to contruct it out of quan-
tum evaluations for χ : {0, 1}k −→ {0, 1} and single-qubit gates.
Definition 2 (Quantum evaluation). Let f : {0, 1}k −→ {0, 1}m be any
function. The unitary Ef is a quantum evaluation of f if it implements the
mapping of k + w +m computational basis states (for x ∈ {0, 1}k)

Ef |x〉 |0w〉 |0m〉 7→ |g(x)〉 |f(x)〉 . (6)

where g(x) ∈ {0, 1}k+w is the end-state of all qubits not in the output register.
Quantum evaluations can naively be constructed via using the quantum gate

set {X,∧1(X),∧2(X)} (the X, CNOT and Toffoli gates), which allow us to
implement the corresponding universal boolean gate set {¬,⊕,∧} in a reversible
manner (as quantum algorithms correspond to unitary matrices, each operation
must possess a corresponding adjoint unless naive measurement is involved).

To implement the quantum phase oracle Oχ defined by χ : {0, 1}k −→ {0, 1},
we simply require a quantum evaluation Eχ and the use of a single Z gate. We
simply compute a quantum evaluation Eχ, use the Z gate on the register holding
|χ(x)〉 and execute the adjoint E†

χ to obtain the action of the quantum oracle Oχ

as given in (5), illustrated in (7) which is identical to (6) if we factor out |0w〉.

|x〉 |0w〉 |0〉
Eχ

7→ |g(x)〉 |χ(x)〉
Z

7→ (−1)χ(x) |g(x)〉 |χ(x)〉
E†
χ

7→ (−1)χ(x) |x〉 |0w〉 (7)
Cost metrics. We will be interested in the metrics of quantum circuit-depth
(number timesteps taken, where Clifford+T gates may be executed in paral-
lel), quantum circuit-size (number of Clifford+T gates executed) and quantum
circuit-width (the maximum number of quantum bits used). In terms of assign-
ing a cost to the quantum algorithm for purposes of cryptography, we will be
interested in two metrics — the G-metric, which is the quantum circuit-size of
the algorithm and the DW -metric, which is the product of the Depth × W idth
of the quantum circuit, a metric designed to capture the cost of quantum error-
correction on idle qubits. For details on these metrics we refer the reader to [14].

Cost notation. We will use the notation DA,SA,WA to represent the quan-
tum circuit-depth, quantum circuit-size and quantum circuit-width required to
implement an arbitrary quantum algorithm (or gate) A. We will usually discuss
the cost in terms of serial operations and use the notation CA when we can freely
substitute C (Cost) for either D (Depth) or S (Size) in the entire cost equation.

As an example, we have that COχ = CEχ + CE†
χ
+ CZ to implement the

quantum oracle Oχ via quantum evaluations Eχ as described above and in (7).

5

2.2 Quantum search via amplitude amplification

Definition 3 (Success probability of a quantum algorithm). Let A be
an arbitrary quantum algorithm acting upon n qubits. We say A has a success
probability of a ∈ [0, 1] relative to χ : {0, 1}k −→ {0, 1} if measurement of the
state A |0k〉 results in an x ∈ {0, 1}k such that χ(x) = 1 with probability a.

Quantum amplitude amplification is a quantum subroutine that exploits the
success probability of a given quantum algorithm A relative to a boolean function
χ : {0, 1}k −→ {0, 1} and can be used to increase this success probability by
performing an iterative loop where the quantum algorithm A (and A†) interact
with a quantum oracles (see Definition 1) Oχ defined by χ : {0, 1}k −→ {0, 1} .
Theorem 1 (Quantum amplitude amplification [6]). Let A be any quan-
tum algorithm (with adjoint A†) which has a success probability of a ∈ [0, 1]
relative to the boolean function χ : {0, 1}k −→ {0, 1}. Then there exists a quan-
tum algorithm Q(A,Oχ, t) =

(
A†Ok̄AOχ

)tA that succeeds with probability

a(k) = sin2
((

2t+ 1
)
· arcsin

√
a
)

(8)

relative to χ : {0, 1}k −→ {0, 1}, where Ok̄ is the quantum oracle defined by the
boolean function k̄ : {0, 1}k −→ {0, 1} where k̄(x) = 1 iff x 6= 0k.

Amplitude amplification costs CQ(A,Oχ,t) = t ·
(
COχ + COk̄

+ CA + CA†
)
+ CA.

Theorem 2 (Optimal number of amplitude amplification iterations [5]).
Let the success probability of A relative to χ : {0, 1}k −→ {0, 1} be a ∈ [0, 1].
The quantum algorithm Q(A,Oχ, t) where t =

⌊
π

4·arcsin
√
a

⌋
has a success proba-

bility of at least max
{
1− a, a

}
.

A simple application of Theorem 1 and Theorem 2 is Grover’s algorithm [10].
Theorem 3 (Grover’s algorithm [10]). Let χ : {0, 1}k −→ {0, 1} and the
quantity M = |χ−1(1)| be known. Then an element x ∈ {0, 1}k with the property
that χ(x) = 1 can be found with probability ≥ {1− M

2k
, M
2k
} and a cost

≤ π

4

√
2k

M
·
(
2 · CH⊗k + COχ

+ COk̄

)
+ CH⊗k . (9)

Proof: We use Theorem 1 with A = H⊗k. As

H⊗k |0k〉 7→ 1

2k/2

∑
x∈{0,1}k

|x〉 (10)

we have a probability of success of a =M ·
(

1
2k/2

)2
= M

2k
relative to χ.

Applying Lemma 2 (using x ≤ arcsinx)then gives us that we require a total

of t =
⌊

π

4 arcsin
√

M

2k

⌋
≤ π

4 ·
√

2k

M iterations of H⊗kOk̄H
⊗kOχ and one of H⊗k. □

6

As H⊗k is simply the application of k H gates in parallel, we have that the
quantum circuit-depth is DH⊗k = 1, whilst the quantum circuit-size is SH⊗k =
k. Implementing Ok̄ requires DOk̄

= D∧k−1(X) + 2DX = D∧k−1(X) + 2 and
SOk̄

= S∧k−1(X) + 2(k · SX + SH) = S∧k−1(X) + 2k + 2.
As the cost COχ

(either quantum circuit-depth or quantum circuit-size) of Oχ

is usually Õ
(
nd

)
for d > 1, the cost of the quantum oracle Oχ usually dominates

the cost
(
2 · CH⊗k + COχ

+ COk̄

)
of each Grover iteration in cost Equation (9).

However, in quantum amplitude amplification we may choose a different,
more expensive quantum algorithm for A which yields a better cost-to-success
probability ratio than a choice of A = H⊗k. We follow this strategy to lower the
overall cost of the quantum search procedure compared to simply using Grover’s
algorithm. This is a technique suggested by Kimmel et al. [17] in the Search
with Two Oracles (STO) method, which exploits two quantum oracles — one of
which is relatively cheap to implemement Oγ which marks both the M items
we are searching for as well as a number of false-positives and one of which is
expensive Oχ to implement but exactly identifies the M items we search for.

The number of queries we require will remain on the order of O
(√

2k

M

)
, but

relative to the cheaper oracle Oγ . The expensive oracle Oχ is the same one we
would use in Grover’s algorithm and it will still be called, but the overall cost
of the entire search procedure will be on the order of O

(√
2k

M · COγ

)
instead

of the cost O
(√

2k

M · COχ

)
that a naive use of Grover’s algorithm would imply.

Critically, this approach will have a positive impact on all metrics if we design
Oγ and Oχ such that we balance their costs with the number of false-positives.

2.3 Cryptanalysis of blockciphers via search and the AES

Block-ciphers are built out of keyed-pseudorandom permutations of the form
E : {0, 1}k × {0, 1}n −→ {0, 1}n where n is the size of the message-space and
k is the size of the key-space. Given any K ∈ {0, 1}k, this defines a pseudoran-
dom permutation EK : {0, 1}n −→ {0, 1}n that can be used in various modes of
operation [15]. In order for these modes of operation to be secure in the cryp-
tographic sense for a security parameter λ ∈ N, it is neccessary (though not
sufficient) that for any valid choice of K ∈ {0, 1}k we have that if an unknown
K ∈ {0, 1}k produces the pair (P ,C) ∈ {0, 1}n × {0, 1}n such that EK(P) = C
then it requires at least 2λ operations to recover the unknown key K.

If we have r unique plaintext-ciphertext pairs
{
(P1,C1), . . . , (Pr,Cr)

}
where

Pi,Ci ∈ {0, 1}n and E(K,Pi) = Ci for some unknown and fixed K ∈ {0, 1}k,
the boolean search indicator function χ : {0, 1}k −→ {0, 1} for K can be defined

χr(x) 7→
(
E(x,P1)

?
= Cr

)
∧ · · · ∧

(
E(x,Pr)

?
= Cr

)
. (11)

For a fixed and unknown key K ∈ {0, 1}k, a single plaintext-ciphertext pair
(P ,C) ∈ {0, 1}n×{0, 1}n such that EK(P) = C may not uniquely determine K

7

with high probability. The required number (r) of plaintext-ciphertext pairs to
uniquely specify the key is the cipher’s known-plaintext unicity distance [21].

For intuitive purposes, we have if we take a random element x ∈ {0, 1}k then
the probability that it satisfies each of the r · n binary constraints (r checks
whether EK(Pi) == Ci) is 2−rn. As we are guaranteed a single K ∈ {0, 1}k that
satisfies this condition, we expect

(
2k − 1

)
· 2−rn ≈ 2k−rn other keys that satisfy

these r plaintext-ciphertext pairs. We therefore need r > k
n to ensure (with high

probability) that there are no other spurious keys in the search-space.
Recent work [16, 18, 14] determines this is r = 2 for k = 128, 192 and r = 3

for k = 256. The Advanced Encryption Standard [23] (AES) is one of the most
commonly used block-ciphers today [11] and has been standardised for the cases
of λ = 128, 192, 256. We refer to these as AES-k (where k ∈ {128, 192, 256})
or simply AES if we discuss the general algorithm. It consists of a series of
mostly similar rounds of substitutions and permutations on an internal state
register which begins as the plaintext P ∈ {0, 1}n and ends in the ciphertext
C ∈ {0, 1}n. Definition 4 captures both the full AES-k for k ∈ {128, 192, 256}
which respectively run for N = 10, 12, 14 rounds and the reduced-round version.

Definition 4 (Reduced-round AES). Let k ∈ {128, 192, 256} and N ∈ N.
We use the notation AESk,N : {0, 1}k × {0, 1}128 −→ {0, 1}128 to denote the
function defined by a circuit that implements N rounds of AES-k. The canonical
full-round implementations of AES-k are AES128,10, AES192,12 and AES256,14.

This circuit takes a key K ∈ {0, 1}k and a plaintext P ∈ {0, 1}128 and outputs
a ciphertext C ∈ {0, 1}128 via the following procedure, where for X ∈ {0, 1}8w
where w ∈ N and i = 0, . . . ,w − 1 we have that X[i] indicates the ith byte of X
and X[i : j] for i < j indicates bytes i to j (including byte j) of X.

1. Set the state B := P ∈ {0, 1}128 (16 bytes), the plaintext to be encrypted.
2. KeyExpansion: K ∈ {0, 1}k (k/8 bytes) is expanded to KE (16(N + 1) bytes)
3. AddRoundKey: B := B ⊕KE [0 : 7]
4. For rounds i = 1, . . . ,N − 1:

1. SubBytes : An S-box (an 8-bit permutation) is applied bytewise to B.
2. ShiftRows : The byte indices of B are swapped via a fixed permutation.
3. MixColumns : An invertible linear transformation is applied to each

block of 4 bytes B[4j : 4j + 3] for j = 0, 1, 2, 3.
4. AddRoundKey: B := B ⊕KE [8i : 8i+ 7]

5. For round N :
1. SubBytes : An S-box (an 8-bit permutation) is bytewise to B.
2. ShiftRows : The byte indices of B are swapped via a fixed permutation.
3. AddRoundKey: B := B ⊕KE [8 : 8i+ 7]

6. Output the ciphertext C := B ∈ {0, 1}128 (16 bytes).

For AES, the MixColumns stage is linear map on over F32×32
2 and can be im-

plemented as a quantum circuit via ∧1(X) gates. As the ShiftRows stage is a
fixed permutation, it can be implemented via relabelling the qubits [9]. The Key-
Expansion stage and the SubBytes stages involve S-boxes. In classical circuits,
S-boxes can be implemented via a look-up table but this is impractical on a

8

quantum computer — a common strategy is to implement the S-box as a func-
tion. The S-box requires the use of T-gates (an expensive quantum resource) to
implement and so (as in [4]) the number of S-boxes required by an attack can
be taken to be a measure of the complexity.

S S S S S S S S S S S S S S S S

MixColumns MixColumns MixColumns MixColumns

Fig. 1: The structure of an AES round for rounds 1, . . . ,N − 1 where the 16
bytes of the internal state are represented by individual rectangles and time is
represented by moving down the diagram. The SubBytes round is represented
by the application of S-boxes (squares labelled by S), the ShiftRows operation is
a bytewise permutation and represented by the relabelling of bytes, the MixCol-
umn operation is represented by the labelled 4-byte operation. The AddRound
operation is represented by ⊕ and represents we are XORing the relevant bytes
from a register holding the correct portion of the expanded key. Round N is
almost identical, but for the exclusion of the MixColumns operation.

3 Exploiting the Search with Two Oracles technique

In this section we consider the Search with Two Oracles [17] (STO) technique
and how we can exploit it in the context of attacking generic block-ciphers.

Definition 5 (The Search with Two Oracles (STO) problem [17]).
Let the quantum oracles Oχ and Oγ be defined by χ, γ : {0, 1}k −→ {0, 1} where
we have χ−1(1) ⊆ γ−1(1) ⊆ {0, 1}k. We denote M = |χ−1(1)| and S = |γ−1(1)|.
The STO problem is to find an element x ∈ {0, 1}k such that χ(x) = 1.

The Search with Two Oracles problem as given in Definition 5 is a natural
extension of the unstructured search problem that Grover’s algorithm [17] solves
(where we only possess the quantum oracle Oχ and knowledge of M = |χ−1(1)|).

Grover’s algorithm can be considered a quantum analog of a classical brute-
force search, where we exhaustively sample x ∈ {0, 1}k until we find an element
where χ(x) = 1. If the quantum and classical oracles are of the same complexity,

9

then this classical analog has an expected cost of O
(

2k

M · COχ

)
whilst Grover’s

algorithm has O
(√

2k

M · COχ

)
. The STO method also has a classical analog.

If we consider the classical case where χ : {0, 1}k −→ {0, 1} is expensive
to implement and γ : {0, 1}k −→ {0, 1} is relatively cheap, then we can do
better if we use a filtering or sieving technique, whereby we exhaustively sample
elements x ∈ {0, 1}k, compute γ(x) and then test whether χ(x) = 1 if and only
if γ(x) = 1. The complexity is therefore O

(
2k

M ·COγ
+ S

M ·COχ

)
as we still need

to make O
(

2k

M

)
samples of elements x ∈ {0, 1}k to find an element that satisfies

χ(x) = 1, but can expect S
2k

of these elements to pass the test γ(x) = 1. We
have substituted making expensive tests with χ for making cheap tests with γ.

The simple quantum analog of the above is the Search with Two Oracles tech-
nique [17] where we first define an initial algorithm using quantum amplitude
amplification (see Theorem 1) with the cheap quantum oracle Oγ and the quan-
tum algorithm chosen to be A := H⊗k (the Hadamard transform on k-qubits —
see proof of Theorem 3) to increase the probability of measuring an element such
that γ(x) = 1 from 1

2k
to approximately 1. We call this algorithm B and note

that its cost (see Theorems 1 and 2) will be on the order of CB ≈ π
4

√
2k

S · COγ .
As χ−1(1) ⊆ γ−1(1), we therefore have that the probability of executing

B and measuring an element such that χ(x) = 1 is M
S and can therefore use

quantum amplitude amplification in conjunction with the expensive quantum
oracle Oχ to create a new quantum algorithm D that produces an element x ∈
{0, 1}k such that χ(x) = 1 with probability ≈ 1. Using Theorems 1 and 2 again,
we have that

CD ≈ π

4
·
√

S

M
·
(
COχ

+ 2 · CB
)
=
π

4
·
√

S

M
· COχ

+
π2

8
·
√

2k

M
· COγ

(12)

in terms of calls to the quantum oracles Oγ and Oχ.
This is identical to the quantum filtering techniques in [4] — the total num-

ber of queries has remained asymptotically O
(√

2k

M

)
, but they have been shifted

from calls to the quantum oracle Oχ to calls to the oracle Oγ . Kimmel et al. [17]
additionally provide a “hybrid” method that interpolates between Grover’s al-
gorithm and the above method which is slightly more efficient, in that it reduces
the constant π2

8 term in front of COγ to a value closer to π
4 . The idea is that we

can reduce the number of amplitude amplification iterations in the algorithm B
if we compensate by increasing the number of amplitude amplification iterations
in the outer algorithm D. This approach is also noted in [1] (Lemma 9) and
could additionally be used to improve the results of [4], which rely upon a large
number of nested applications of amplitude amplification.

10

Theorem 4 (A STO solution (adapted from Algorithm 3 of [17])).
Let χ, γ : {0, 1}k −→ {0, 1} be such that χ−1(x) ⊆ γ−1(1) ⊆ {0, 1}k and the
quantities M = |γ−1(1)| and S = |γ−1(1)| are exactly known.

Let 0 ≤ t ≤
⌊

π
4

√
2k

S

⌋
be an integer and b(t) = sin2

(
(2t+ 1) · arcsin

√
S
2k

)
.

Then the quantum algorithm C(t) = Q
(
B(t),Oχ,

⌊
S

b(t)·M

⌋)
where we define

B(t) = Q(H⊗k,Oγ , t) (using the notation for quantum amplitude amplification
in Theorem 1) has a success probability relative to χ of at least 1− M

S .
The cost of C(t) in terms of oracle calls is ≤ π

4 ·
√

S
b(t)·M ·

(
COχ + 2 · t · COγ

)
.

Proof: We define an initial quantum algorithm B(t) to be an instance of
amplitude amplification (see Theorem 1) using the choice of A = H⊗k (the
Hadamard transform on k-qubits — see proof of Theorem 3) and the quantum
oracle Oγ . The algorithm B(t) therefore has a cost of

CB(t) = t ·
(
COγ

+ COk̄

)
+

(
2t+ 1

)
· CH⊗k ≈ t · COγ

(13)

and has a success probability relative to γ of b(t) = sin2
(
(2t+1) ·arcsin

(√
S
2k

))
and a success probability relative to χ of b(t)·M

S as we have a probability of b(t)
of measuring one of the S items that satisfy γ(x) = 1 and each of these has a
probability of M

S of satisfying χ(x) = 1.
We can therefore define a quantum algorithm C(t) via amplitude amplifica-

tion that uses B(t) as our initial quantum algorithm and the quantum oracle
Oχ to boost the probability of measuring an element x ∈ {0, 1}k that satisfies
χ(x) = 1 from b(t)·M

S to at least 1 − b(t)·M
S ≥ 1 − M

S by Theorem 2. We denote
this algorithm C(t), as it is parameterised by the t used in B(t). The cost of C(t)
is exactly

CC(t) =

⌊
π

4

√
S

b(t) ·M

⌋
·
(
COχ

+ COk̄

)
+
(
2 ·

⌊
π

4

√
S

b(t) ·M

⌋
+ 1

)
· CB(t) (14)

which in terms of oracle calls is

≤ π

4
·

√
S

b(t) ·M
·
(
COχ + 2 · t · COγ

)
. (15)

□
To see the use of using Theorem 4 compared to the first STO approach described
in Section 3, it helps to view the cost using a small angle approximation sinx ≈ x,
which gives us the cost

CC(t) ≤
π

4

√
2k

M

1

2t+ 1
· COχ

+
π

4

√
2k

M

2t

2t+ 1
· COγ

(16)

11

which approximates the cost of the algorithm for t � π
4

√
2k

S and demonstrates
the overall behaviour as we vary the parameter t — the cost contribution of COγ

remains approximately static whilst the cost contribution of Cχ decreases. As
we have seen from Equation (12), when t ≈ π

4

√
N
S , we have a constant of π2

8

in front of the COγ
term and we know that when t = 0 that the algorithm is

simply Grover’s algorithm. Theorem 4 and the discussion around it is simply a
rephrasing of the results from [17] in language designed to provide intuition.

Fig. 2: The cost of attacking AES-128 using our methods, where our algorithm is
parameterised by the choice of an integer t ∈ Z≥0 such that 0 ≤ t ≤ π

4 · 210. The
red dashed line on the bottom denotes a theoretical lower-bound for the cost of
the search procedure, where we only count calls to the cheap oracle Oγ .

Theorem 4 deals with the case where we have perfect knowledge of the value
S = |γ−1(1)| and M = |χ−1(1)|. The success probability of Theorem 4 will
change if we cannot reliably predict the ratios M

S and S
2k

. For the block-cipher
key recovery problem (see Section 2.3 and Equation (11) we have that M = 1
with near certainty if we choose r (the number of plaintext-ciphertext pairs) to
be large enough. This is based upon the assumption that if we choose a random
key x ∈ {0, 1}k then each bit of an encrypted n-bit plaintext has an equal chance
of being 0 or 1. The value of S = |γ−1(1)| is dependent upon exactly how we
choose to define γ : {0, 1}k −→ {0, 1}. We will design γ such that γ(x) = 1 iff
l specific bytes of the encrypted plaintext match the ciphertext. Crucially, this
means that we only have to compute these l specific bytes of the encryption.

12

3.1 Oracle design patterns for attacking block-ciphers with STO

We first consider how the quantum oracle Oχ (the expensive oracle) can be
constructed. We recall the discussion in Section 2.3 and Equation (11) — to
ensure that M = |χ−1(1)| = 1, we wish to choose r large enough so that the key
is uniquely specified (with high probability) by testing whether the condition
χ(x) =

(
E(x,P1)

?
= C1

)
∧ · · · ∧

(
E(x,Pr)

?
= Cr

)
holds for a key x ∈ {0, 1}k.

Each of these form an individual test and we must construct a quantum oracle
that implements both these individual tests and which outputs the logical AND
of these tests. This structure is captured by the following definition.

Definition 6 (Constraint-based decomposition of a boolean function).
We say that χ : {0, 1}k −→ {0, 1} has a constraint-based decomposition if there
exist nontrivial χ1, . . . ,χr : {0, 1}k −→ {0, 1} such that

χ(x) = χ1(x) ∧ · · · ∧ χr(x). (17)

We can therefore define χ1, . . . ,χr : {0, 1}k −→ {0, 1} to be the individual
tests for whether E(x,Pi)

?
= Ci. We can consider a parallel construction (as

is used in most Grover-based quantum attacks on AES [9, 18, 13, 4, 3]) which
uses additional qubits to save quantum circuit-depth or a serial construction as
used in [2] (see also [26] for a similar construction) which uses fewer qubits at
the cost of both quantum circuit-size and quantum circuit-depth. These trade-
offs are given in Table 1. We later demonstrate that the STO method allows
us to achieve a quantum circuit-depth similar to that of Grover’s algorithm
using Oχ implemented via the parallel strategy, whilst maintaining a quantum
circuit-width identical to Grover’s algorithm using Oχ implemented via the serial
strategy and requiring a smaller quantum circuit-size than either. These lead to
a strictly smaller cost in both the G-metric and the DW -metric.

Theorem 5 (The cost of Oχ for constraint-based χ : {0, 1}k −→ {0, 1}).
Let the boolean function χ : {0, 1}k −→ {0, 1} possess a non-trivial constraint-
based decomposition χ1, . . . ,χr : {0, 1}k −→ {0, 1} and Eχ1 , . . . , Eχr be quantum
evaluations (see Definition (2)) for χ1, . . . ,χr. Then Oχ requires the resources

Metric Parallel strategy Serial strategy

Size
r∑

i=1

(SEχi
+ SE†

χi

) + 2k(r − 1) · S∧1(X) + S∧r−1(Z) 2
r−1∑
i=1

(SEχi
+ SE†

χi

) + SEχr
+ SE†

χr
+ S∧r−1(Z)

Depth max{DEχi
+DE†

χi

}ri=1 + 2⌈log2 r⌉ ·D∧1(X) +D∧r−1(Z) 2
r−1∑
i=1

(DEχi
+DE†

χi

) +DEχr
+DE†

χr
+D∧r−1(Z)

Width max
{ r∑

i=1

WEχi
,

r∑
i=1

WE†
χi

}
max{WEχ1

, . . . ,WEχr
,WE†

χ1
, . . . ,WE†

χr
}+ r − 1

Table 1: Costs for several design patterns for implementation of Oχ.

13

Proof: Parallel strategy. In this scenario (which first appears in [9]), the
register |x〉 (where x ∈ {0, 1}k) is copied to r − 1 other registers. This can
be implemented using ∧1(X) gates for a circuit-size of (r − 1) · S∧1(X) and a
circuit-depth of dlog2 re ·D∧1(X) steps.

The quantum evaluations Eχ1
, . . . , Eχr

are then executed in parallel, leaving
the computational basis state in the form |x〉 |g1(x)〉 |χ1(x)〉 . . . |gr(x)〉 |χr(x)〉.
A single ∧r−1(Z) gate can then be applied to the r qubits holding |χ1(x)〉 . . . |χr(x)〉,
with one of them being the target. By the action of ∧r−1(Z), the conditional
phase inversion is performed if and only if χ1(x) = · · · = χr(x) = 1.

| x ⟩ / • Eχ1(x) E†
χ1(x)

• / | x ⟩
|0w⟩ / / |0w⟩
| 0 ⟩ • / | 0 ⟩
|0n⟩ / ⊕x • Eχ2(x) E†

χ2(x)

• ⊕x / |0n⟩
|0w⟩ / / |0w⟩
| 0 ⟩ • | 0 ⟩
|0n⟩ / ⊕x Eχ3(x) E†

χ3(x)

⊕x / |0n⟩
|0w⟩ / / |0w⟩
| 0 ⟩ Z | 0 ⟩

Fig. 3: A parallel design pattern for Oχ, where χ(x) = χ1(x) ∧ · · · ∧ χ3(x).

After this is performed, the ancilla qubits are restored to their original state
by executing E†

χ1
, . . . , E†

χr
and the copies of the state |x〉 removed.

Serial strategy. This design was first studied with respect to AES-128 in [2]
and a similar pattern used in [26]. For i = 1, . . . , r − 1 we compute |χi(x)〉 via
the quantum evaluation Eχi

, copy the result to a clean qubit and then execute
E†
χi

to ensure the ancilla qubits are clean. We can then execute Eχr and will be
left with |x〉 |gr(x)〉 |χ1(x)〉 . . . |χr−1(x)〉 |χr(x)〉, so can apply a single ∧r−1(Z)
gate to the final r qubits to implement the conditional phase inversion.

| x ⟩ / Eχ1(x) E†
χ1(x)

Eχ2(x) E†
χ2(x)

Eχ3(x) E†
χ3(x)

Eχ2(x) E†
χ2(x)

Eχ1(x) E†
χ1(x)

| x ⟩
|0w⟩ / | 0 ⟩
| 0 ⟩ • • • • • | 0⟩
| 0 ⟩ / • | 0 ⟩
| 0 ⟩ / Z | 0 ⟩

Fig. 4: A serial design pattern for Oχ where χ(x) = χ1(x) ∧ · · · ∧ χ3(x).

We then must restore the computational basis state to |x〉 |0 . . . 0〉, which re-
quires executing adjoint E†

χr
and then uncomputing the stored values of |χi(x)〉

in the same way they were originally computed. □

We will later choose the serial oracle design to implement our expensive
oracle Oχ, as we wish to conserve qubits and the additional circuit-size/circuit-
depth will be negated by use of the STO methodology. We could use the parallel
oracle as our expensive oracle, but there is essentially no benefit to this in terms
of quantum circuit-depth and circuit-size whilst it requires additional qubits to
implement.

14

4 New quantum circuits and resource estimates for AES

In this section we consider the cost of attacking the Advanced Encryption Stan-
dard with our methods. As we are instantiating the methods described in Section
3 with a concrete example, it is natural that there is more structure to be ex-
ploited — we demonstrate how to exploit this structure by offering modified
circuits which allow us to reduce the cost of Oγ (the cheap oracle) for use with
the Search with Two Oracles methods described in Section 3. The expensive
oracle Oχ will remain a serial-oracle design pattern as described in Section 3.1
that tests whether all r encrypted plaintexts exactly match the r ciphertexts.

4.1 Refinements to the quantum oracle Oγ specific to AES

Our goal is to create a classical function γ : {0, 1}k −→ {0, 1} that correctly iden-
tifies the unique key we are searching for, along with a predictable number of
false-positives. Using γ as a guide, we can then easily convert it into a reversible
circuit if we possess the modular quantum circuits for reversible S-boxes, Mix-
Columns and KeyExpansion steps, using the approach provided in [13], whereby
the state at the end of each round is stored in a quantum register and the Key-
Expansion is computed in-place on the key-space register.

We can define γ : {0, 1}k −→ {0, 1} by the function which takes a fixed
plaintext, computes the encryption of this plaintext under the key x ∈ {0, 1}k
and compares if j bytes of the encrypted plaintext are equal to j bytes of the
ciphertext, meaning we compare l = 8j bits of the encrypted plaintext with the
known ciphertext. As the state consists of 16 bytes and these are operated on at
an individual level by S-boxes and AddRoundKey operations at the byte level
and by MixColumns operations in sequences of 4 bytes (words), this means that
we can select the j output bytes we are interested in and simply compute the
gates required in the circuit to output these bytes and need not compute gates
solely involved with outputting the 16− j bytes we are not checking.

As the MixColumns operation acts on words (a word is 4 bytes), this is the
limiting factor in this approach as MixColumns diffuses the bytes together. The
fact that there is no MixColumns operation on the final round of AES will allow
us to remove approximately one more round of computation from the circuit
than we could otherwise and where the MixColumns operation is only required
to output a single byte (as opposed to the usual four) we can vastly reduce the
cost of implementing these specific MixColumns operations.

This strategy is more intuitively demonstrated if we consider the final three
rounds of a classical circuit for AES in Figure 5, which is simply three versions
of Figure 1 stacked together, with the MixColumns operations removed for the
final round. Specifically, we if choose j = 4 bytes so that they correspond to
the output of a single MixColumns operations in round N − 1 then we need
only compute 4 S-boxes in round N of AES which lead out of this MixColumns
operation and 4 S-boxes which lead into this MixColumns operation. This means
that we need only execute 8 out of the 32 S-boxes in the final two rounds of AES.

15

S S S S S S S S S S S S S S S S

MixColumns MixColumns MixColumns MixColumns

S S S S S S S S S S S S S S S SS S S S S S S S S S S S

MixColumns MixColumns MixColumns MixColumns

S S S S S S S S S S S S S S S SS S S S S S S S S S S S

Fig. 5: The final three rounds of N -round AES-{128, 192, 256}. Each rectangular
block represents a byte whilst each ⊕ represents the application of AddRound-
Key to that specific byte (with the round key being computed off-diagram).
Operations we need not compute to compute 4 chosen bytes are in gray.

There are further savings to be made as each of the MixColumns operations
in round N − 2 takes in four bytes and outputs one byte. This means that we
can reduce the cost of implementing these specific MixColumns operations.

16

4.2 On the probability of success and introducing false-positives

The function γ : {0, 1}k −→ {0, 1} is defined by

γ(x) 7→

{
1 if E(x,P1) is equal to C1 in byte positions 0, 7, 10, 13

0 otherwise.
(18)

From the discussion in Section 2.3 we have that for S = |γ−1(x)|, we have
E[S] = 1 + (2k − 1) · 2−32 ≈ 2k−32 for k � 32. We want to bound S so that we
can reliably predict the probability ranges involved with amplitude amplification.

We could simply rely upon the Chernoff-bound [8] for large k, but we provide
a novel method to allow our method to work with small k ≥ 50 that improves our
results when we consider the NIST submission conditions [25] on the maximum
allowable quantum circuit-depth of MAXDEPTH= 40, 64, 96.

The observation is relatively simple and we believe will have applications in
other search-based algorithms where there is uncertainty involved with the size
of intermediate search-spaces and we play off between the cost of the quantum
oracle and the size of the search-space. We can introduce an additional known
number of possible false-positives into the search-space for a negligible additional
cost, which will dominate the number of false-positives defined by γ. Instead of
γ : {0, 1}k −→ {0, 1} and S = |γ−1(1)| as above, we use γ̂ : {0, 1}k −→ {0, 1}
and Ŝ = |γ̂−1(1)| where

γ̂(x) 7→ γ(x) ∨
(
x = 0r‖y for some y ∈ {0, 1}k−r

)
(19)

The function γ̂ : {0, 1}k −→ {0, 1} has the property that 2k−r ≤ Ŝ ≤ 2k−r + S
as there are exactly 2k−r elements x ∈ {0, 1}k that begin with 0r. Hence if
S � 2k−r, the variance in S will introduce a negligible error in predicting Ŝ.

The function γ̂ can be implemented classically for the cost of evaluating γ(x),
a bitstring comparison on r bits and a logical OR operation. In terms of quantum
circuitry, we can implement a quantum evaluation Eγ̂ for an additional negligible
cost over that required to implement Eγ as we can write out |x1 ∧ · · · ∧ xr〉 using
a single ∧r(X) gate, compute |γ(x)〉 using the quantum evaluation Eγ and then
compute |γ̂(x)〉 = |γ(x)⊕

(
x̄1 ∧ · · · ∧ x̄r

)
⊕
(
γ(x) ∧ x̄1 ∧ · · · ∧ x̄r

)
〉 in a clean

qubit, relying upon the logical identity A ∨ B ≡ A ⊕ B ⊕
(
A ∧ B

)
. The gate

∧r(X) can be computed in parallel to Eγ and does not increase the depth of the
circuit. This is a negligible additional cost if r � k and γ is non-trivial.

The Chernoff-bound [8] gives us Pr
(
S ≥ 2 · 2k−32

)
≤ exp

(
− 2k−32

3

)
≤ 2−100

for k ≥ 50, hence we simply assume that this bound holds. If we choose r = 20,
then we have that 2k−20 ≤ Ŝ ≤ 2k−20+2k−31, hence if we assume that Ŝ = 2k−20,
then the error in approximating both Ŝ

2k
and 1

Ŝ
will be ≤ 0.0005 for k ≥ 50.

This is sufficient for the STO method to succeed with a probability of at least
1− 2−20 ≥ 99.9999% for k ≥ 50, which is sufficient for our purposes.

17

4.3 On the level of inner amplification

With our assumptions that M = 1 and Ŝ = 2k−20 and a search space of size
N = 2k we recall that the cost Equation (12) for using the STO technique (see

Theorem 4) can be tuned given the parameter 0 ≤ t ≤

⌊
π

4 arcsin
√

2k−20

2k

⌋
≤ π

4 ·2
10.

The original STO algorithm (see Algorithm 3 of [17]) uses gives the optimal value
of t (assuming exact amplitude amplification [6], which is used as they assume
perfect knowledge of |γ−1(1)|) via solving the sum tan

(
ϕ+

√
S
N

)
= ϕ+

COχ

COγ

√
S
N .

This is rather unwieldy and we rely upon a computational approach, noting
that the cost equation for STO (Equation (12)) is convex on the range we are
interested in (if we relax the floor functions). We can therefore use standard 1-
dimensional minimisation techniques, but given that 0 ≤ t ≤ 210, we can easily
find an optimal value of t via brute force search.

4.4 Reducing the cost of partial MixColumns

As first noted in [9], the MixColumns operation acting on each word of 4 bytes
can be viewed an invertible linear map over F32×32

2 and hence be implemented
in-place on the input qubits via using ∧1(X) gates to implement an LUP de-
composition of this linear map. The paper [13] offers a version of the design
of [20] requiring 1108 ∧1(X) gates (277 gates per word) with a depth of 111
(known as IP standing as it acts in-place) and a low-depth version of this same
primitive (known as OOP as it acts out-of-place) via computing the output of
the MixColumns operation out-of-place on clean qubits, using 1248 ∧1(X) gates
(312 ∧1(X) gates each word) with a depth of 22.

We were able to implement the MixColumns operations in round N−2 of our
circuit (see Figure 5) which consists of a linear map F8×32

2 applied to each word by
viewing each of the 8 output wires per word as a linear sum over F2[x1, . . . ,x32],
where variables represent input wires. In this way, we identified a unique variable
(input wire) that occurs in each sum (output wire) and used these 8 input wires
as our output wires (which simply requires a logical relabelling of these qubits).
The other variables in these sums were then be added to these output wires
via ∧1(X) gates and after hand optimising these circuits we obtained that the
MixColumns operation in round N − 2 could be implemented using just 152
∧1(X) gates (38 ∧1(X) gates per word) with a depth of 6.

4.5 Quantum resource estimates via Q#

We used the Microsoft quantum programming language Q# to implement our
circuits, basing them on those made available by the authors of [9] which in-
cludes basic circuits such as MixColumns, S-boxes and functions to implement
rounds of AES, as well as utilities to perform quantum resource estimations. In
particular, we designed a new MixColumns operation following the principles in
Section 4.4 and created three new rounds — Antepenultimate, Penultimate and

18

FinalRound to implement the reduction of the circuit. We tested our circuits
using random inputs with the Q# Toffoli simulator against the reference imple-
mentation for both the full circuit and MixColumns component. Our quantum
resource estimations were averaged over 20 cost simulations of each component.
We provide the oracle costs we computed in Table 5 (see Appendix B).

Source G-cost DW -cost #Depth #Qubits #Success%
AES-128 [13] (r = 1) 282.42 285.81 275.11 1665 1

e
≈ 0.37

AES-128 [13] (r = 2) 283.42 286.81 275.11 3329 ≈ 1
AES-128 (This paper) 282.25 285.75 275.05 1667 ≈ 1
AES-192 [13] (r = 2) 2115.58 2119.14 2107.19 3969 ≈ 1
AES-192 (This paper) 2114.44 2118.04 2107.08 1987 ≈ 1

AES-256 [13] (r = 2) 2147.88 2151.54 2139.37 4609 1
e
≈ 0.37

AES-256 [13] (r = 3) 2148.47 2152.11 2139.36 6913 ≈ 1
AES-256 (This paper) 2146.77 2150.42 2139.38 2307 ≈ 1

Table 2: Our techniques applied to cryptanalysis of AES-128/192/256.
A natural question is how these results impact upon the NIST security levels

with respect to the MAXDEPTH parameter (a maximum allowable quantum
circuit depth for any quantum algorithm used in cryptanalysis of NIST submis-
sions). The MAXDEPTH parameter can be taken to be MAXDEPTH= 240, 264

or 296 and previous work [13] has made significant work in reducing this over
the initial guidelines. Our techniques can also be used in this scenario, but un-
less multiple plaintext-ciphertext pairs are involved (which only occurs in the
MAXDEPTH= 296 scenario for applying Grover to AES) we do not see a signif-
icant reduction, though we have strict gains in all cases, as can be seen in Table
3 below.

NIST G-cost for MAXDEPTH (log2)
Security level Source 240 264 296

1 AES-128
[25, 9] 130.0 106.0 87.5

[13] 117.1 93.1 83.4
This paper 116.9 92.9 82.3

3 AES-192
[25] 193.0 169.0 137.0
[13] 181.1 157.1 126.1

This paper 180.9 156.9 125.0

5 AES-256
[25] 258.0 234.0 202.0
[13] 245.5 221.5 190.5

This paper 245.3 221.3 189.3

Table 3: The effect of our techniques on the MAXDEPTH cryptanalysis scenario.
As [13] notes, the NIST estimates did not take into the special-case of AES-128
with MAXDEPTH= 296 and we have substituted the original result of [9].

19

5 Conclusions

We have demonstrated that there is no advantage in using the parallel quantum
oracle construction compared to the serial quantum oracle construction for the
well-known Grover-based attack on block-ciphers. Our techniques have shown
that it is a strictly advantageous technique for use with cryptanalysis of AES, as
we use fewer qubits and have lower costs in the G-cost and DW-cost models. Our
message is that the known plaintext-unicity distance (the number r of plaintext-
ciphertexts pairs we use) of the block-cipher need not affect the cost of the
quantum search procedure, that we may only require as many qubits as are
required to implement one quantum circuit evaluation of a block-cipher and that
small gains can be made outside of the black-box model via designing reduced
quantum circuits for specific block-ciphers that only test whether a small number
of bits of the encrypted plaintext match the ciphertext.

Our improvements in using the serial oracle design with the STO technique
are generic in the black-box model and should be considered in any quantum
resource estimation of a block-cipher where Grover is used. Future improvements
on the modular quantum circuit components of AES (such as KeyExpansion,
MixColumns or the design of the S-box) or design principles for a single quantum
circuit that implements AES will further improve upon our concrete estimates,
much as they would for a simple Grover-based attack with a parallel oracle.

Qubits are expected to be an expensive resource, no matter how they are
implemented, and techniques such as these demonstrate that quantum crypt-
analysis may be slightly cheaper than previously thought. We stress that our
results impact upon the concrete cost of attacking AES via quantum search
techniques but do not impact upon the query complexity, hence assuming that
AES-k requires π

4 · 2k/2 quantum gates to break remains the safest option for
choosing cryptographic parameters.

Acknowledgements. The authors kindly thank the reviewers for their con-
structive feedback and for pointing out the resource estimation bug in Q# (see
Appendix 6). Benjamin Pring was funded during the development of this re-
search by EPRSC grant EP/M50645X/1, National Science Foundation grant
183980, NIST grant 60NANB17D184, a Seed grant of the Florida Center for Cy-
bersecurity and a USF proposal enhancement grant. An early version of these
results were first announced at the International Workshop on Coding and Cryp-
tography 2019. The authors would like to thank Orr Dunkelman for providing a
reference to [12].
References

[1] Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: 44th Annual
IEEE Symposium on Foundations of Comp. Sci. Proc. pp. 200–209. IEEE (2003)

[2] Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Information Processing 17(5), 112 (Mar 2018)

[3] Anand, R., Maitra, A., Mukhopadhyay, S.: Grover on SIMON. arXiv:2004.10686
(2020)

20

[4] Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Transactions on Symmetric Cryptology pp. 55–93 (2019)

[5] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
arXiv quant-ph/9605034 (1996)

[6] Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

[7] Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
Towards practical large-scale quantum computation. Physical Review A 86(3),
032324 (2012)

[8] Goemans, M.: 18.310 lecture notes (February 2015), http://math.mit.edu/
~goemans/18310S15/chernoff-notes.pdf

[9] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s
algorithm to AES: quantum resource estimates. In: International Workshop on
Post-Quantum Cryptography. pp. 29–43. Springer (2016)

[10] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
of the 28th annual ACM symp. on Theory of computing. pp. 212–219. ACM (1996)

[11] Helme, S.: Top 1 million analysis - march 2020 (Mar 2020), https://scotthelme.
co.uk/top-1-million-analysis-march-2020/

[12] Huang, J., Lai, X.: What is the effective key length for a block cipher: an attack
on every practical block cipher. Science China Information Sciences 57(7), 1–11
(2014)

[13] Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles
for quantum key search on aes and lowmc. In: Canteaut, A., Ishai, Y. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2020. pp. 280–310. Springer International
Publishing, Cham (2020)

[14] Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the ram model: Claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
– CRYPTO 2019. pp. 32–61. Springer International Publishing, Cham (2019)

[15] Katz, J., Lindell, Y.: Introduction to modern cryptography. CRC press (2014)
[16] Kim, P., Han, D., Jeong, K.C.: Time–space complexity of quantum search algo-

rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Infor-
mation Processing 17(12), 339 (2018)

[17] Kimmel, S., Yen-Yu Lin, C., Han-Hsuan, L.: Oracles with costs. 10th Conference
on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2015, May 20-22, 2015, Brussels, Belgium 44 (2015)

[18] Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. Cryptology ePrint Archive, Report 2019/854 (2019),
https://eprint.iacr.org/2019/854

[19] Maslov, D.: Advantages of using relative-phase Toffoli gates with an application
to multiple control Toffoli optimization. Physical Review A 93(2), 022311 (2016)

[20] Maximov, A.: AES mixcolumn with 92 xor gates. IACR Cryptol. ePrint Arch.
2019, 833 (2019)

[21] Menezes, A.J., Katz, J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied
cryptography (1996)

[22] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2010)

[23] NIST: 197: Advanced encryption standard (AES). Federal information processing
standards publication 197(441), 0311 (2001)

[24] NIST: NIST project for Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography (2016), ac-
cessed: 07/10/2018

21

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://scotthelme.co.uk/top-1-million-analysis-march-2020/
https://scotthelme.co.uk/top-1-million-analysis-march-2020/
https://eprint.iacr.org/2019/854
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[25] NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process. (2016)

[26] Schwabe, P., Westerbaan, B.: Solving binary MQ with Grover’s algorithm. In:
SPACE 2016. pp. 303–322. Springer (2016)

6 Code and disclaimer

A reviewer kindly pointed out to the authors that there was a bug in the Q#
quantum resource estimator3 which resulted in outputting a quantum circuit
depth and width for which there is no guarantee that both can be simultaneously
realised. This has subsequently been fixed, but there are other issues4 which may
affect the quantum resource estimation routines. Our Q# quantum resource
estimates agree with our theoretical gains and our code5 can easily be checked
and run at a later date to confirm these results hold. The unit tests — and
thus the correctness of the modified quantum circuits for AES we constructed
— are unaffected. In order to produce a version of our results that is invariant
with respect to Q#, we perform an abstract quantum resource estimation in
terms of quantum circuits which implement S-boxes as suggested in [4] and a
quantum evaluation for an AES circuit that simply requires double the number
of S-boxes as a classical circuit for AES to capture the fact that the circuit must
be reversible.

S-box count S-box depth Width
AES-128 Grover (r = 2) 73.3 68.0 12.0
AES-128 (ours) 72.1 68.0 11.0
AES-192 Grover (r = 2) 105.5 100.2 12.2
AES-192 (ours) 104.3 100.2 11.2
AES-256 138.3 132.5 12.9
AES-256 (ours) 136.6 132.5 11.3

Table 4: Abstract circuit-statistics to compare our attack with a Grover-based
approach costed in number of quantum circuits for S-boxes. All values are given
in log2 and we assume 40 ancilla qubits per S-box as in [4].

3 see https://github.com/microsoft/qsharp-runtime/issues/192
4 see https://github.com/microsoft/qsharp-runtime/issues/419
5 Available at: https://github.com/public-ket/reduced-aes

22

https://github.com/microsoft/qsharp-runtime/issues/192
https://github.com/microsoft/qsharp-runtime/issues/419
https://github.com/public-ket/reduced-aes

A Error bounds for amplitude amplification

The following theorem is simply a computational method of checking error-
bounds with regards to amplitude amplification and is derived in a similar man-
ner to the results from [5], which assumes the initial success probability of A
relative to χ : {0, 1}k −→ {0, 1} is known exactly. The case where a = a− = a+
is exactly the result from [5]. We use these results in our scripts.
Theorem 6 (Error bounds for amplitude amplification (adapted from [5])).
Let A have a success probability of a ∈ [a−, a+] relative to χ : {0, 1}k −→ {0, 1}.

Let t =
⌊

π
4·arcsin

√
a

⌋
for any a ∈ [a−, a+], then if

arcsin
√
a+ + (2t+ 1) · (arcsin√a+ − arcsin

√
a−) ≤

π

2
(20)

then Q
(
A,Oχ, t

)
succeeds relative to χ : {0, 1}k −→ {0, 1} with probability

≥ cos2
(
(arcsin

√
a+ + (2t+ 1) · (arcsin√a+ − arcsin

√
a−))

)
. (21)

Proof: In the following, θ+ = arcsin
√
a+, θ− = arcsin

√
a− and θa = arcsin

√
a.

Let t̂ = π
4θa

− 1
2 and t = bt̂e =

⌊
π

4θa

⌋
. By choice of k we have that∣∣∣(2t̂+ 1

)
θa −

(
2t+ 1

)
θa

∣∣∣ ≤ θ+ (22)

and furthermore we know that for θ− ≤ θ ≤ θ+∣∣∣(2t+ 1
)
θa −

(
2t+ 1

)
θ
∣∣∣ ≤ (

2t+ 1
)(
θ+ − θ−

)
. (23)

Noting that
(
2t̂+ 1

)
θa = π

2 and applying the triangle inequality then gives us

0 ≤
∣∣∣π
2
−
(
2t+ 1

)
θ
)∣∣∣ ≤ θ+ +

(
2t+ 1

)(
θ+ − θ−

)
≤ π

2
(24)

hence we can apply sine to this inequality to obtain

0 ≤ sin2
(π
2
−
(
2t+ 1

)
θ
))

≤ sin2
(
θ+ +

(
2t+ 1

)(
θ+ − θ−

))
≤ 1 (25)

Finally, we reverse the inequality, add 1 to each component and use the facts
sin

(
π
2 − x

)
= cos(x) and 1− sin2(x) = cos2(x) to obtain

1 ≥ sin2
((

2t+ 1
)
θ
))

≥ cos2
(
θ+ +

(
2t+ 1

)(
θ+ − θ−

))
≥ 0 (26)

The result follows as sin2
((

2t + 1
)
θ
))

is the probability of success of for the
amplitude amplification procedure Q(A,Oχ, t) where t = b π

4θa
c. □

When a ∈ [a−, a+] and (2t+ 1) · arcsin√a+ ≤ π
2 can use the simple bound

sin
2
(
(2t + 1) · arcsin√

a−

)
≤ sin

2
(
(2t + 1) · arcsin

√
a
)

≤ sin
2
(
(2t + 1) · arcsin√

a+

)
(27)

23

B Oracle costs

We highlight the difference in costs briefly for the case of AES-256, for which
our cheap quantum oracle which compares only 32 bits of the ciphertext requires
≈ 200 fewer qubits and 0.91 of the gates as does the standard implementation
of the oracle designed by [13] for use with Grover’s algorithm. This is to be
expected, as we theoretically save just under 1.5 rounds of computation and for
AES-256, which has 14 rounds, we have that 12.5

14 ≈ 0.89. The serial oracle, on
the other hand is approximately 5

3 the cost of the Grover oracle designed to use
r = 3 plaintext-ciphertext pairs, which again agrees with the additional cost
born by using the serial oracle instead of the parallel approach.

Oracle type/MixColumns r/bits compared # ∧1 (X) #1qCliff #T #M T-depth full depth width
AES-128 (IP) [13] 1/128 292313 84428 54908 13727 121 2816 1665
AES-128 (OOP) [13] 1/128 294863 84488 54908 13727 121 2086 2817
AES-128 (IP) (this paper) 1/32 255195 73597 47996 12255 121 2656 1466
AES-128 (OOP) (this paper) 1/32 257254 73655 47996 12255 121 2079 2394
AES-128 (IP) [13] 2/256 585051 169184 109820 27455 121 2815 3329
AES-128 (OOP) [13] 2/256 589643 168288 109820 27455 121 2096 5633
AES-128 (IP) (serial [13]) 2/256 876637 252156 164728 41182 363 8434 1667
AES-128 (OOP) (serial [13]) 2/256 884202 252167 164728 41182 361 6231 2819
Oracle type/MixColumns r/bits compared # ∧1 (X) #1qCliff #T #M T-depth full depth width
AES-192 (IP) [13] 1/128 329697 94316 61436 15359 120 2978 1985
AES-192 (OOP) [13] 1/128 332665 94092 61436 15359 120 1879 3393
AES-192 (IP) (this paper) 1/32 292649 83624 54524 13887 114 2716 1786
AES-192 (OOP) (this paper) 1/32 295230 83606 54524 13887 114 1825 2970
AES-192 (IP) [13] 2/256 659727 188520 122876 30719 120 2981 3969
AES-192 (OOP) [13] 2/256 665899 188544 122876 30719 120 1890 6785
AES-192 (IP) (serial [13]) 2/256 988939 282120 184312 46078 360 8783 1987
AES-192 (OOP) (serial [13]) 2/256 998188 282139 184312 46078 360 5614 2295
Oracle type/MixColumns r/bits compared # ∧1 (X) #1qCliff #T #M T-depth full depth width
AES-256 (IP) [13] 1/128 404139 116286 75580 18895 126 3353 2305
AES-256 (OOP) [13] 1/128 407667 116062 75580 18895 126 1951 3969
AES-256 (IP) (this paper) 1/32 366912 105236 68668 17423 126 3118 2106
AES-256 (OOP) (this paper) 1/32 370090 105292 68668 17423 126 1923 3546
AES-256 (IP) [13]) 3/384 1212905 347766 226748 56687 126 3347 6913
AES-256 (OOP) [13] 3/384 1223087 346290 226748 56687 126 1956 11905
AES-256 (IP) serial [13]) 3/384 2019323 578562 377908 94477 610 16386 2309
AES-256 (OOP) serial [13]) 3/384 2037796 578183 377908 94477 608 9440 3973

Table 5: A comparison of the original oracles from [13] for use with Grover’s
algorithm and the cheap/expensive variants we use in this paper that are based
upon the code from [13] with our modified circuits. For comparative purposes,
we created a serial oracle from the quantum AES evaluation circuits of [13].

24

	Improvements to quantum search techniques for block-ciphers, with applications to AES

