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Abstract. We investigate second-price sequential auctions of unit-demand bidders with time-variable
valuations under complete information. We describe how a bidder figures willingness to pay by calcu-
lating option values, and show that when bidders bid their option value, and a condition of consistency
is fulfilled, a subgame-perfect equilibrium is the result. With no constraints on valuations, equilibria
are not necessarily efficient, but we show that when bidder valuations satisfy a certain constraint, an
efficient equilibrium always exists. This result may be extended to a model with arrivals of bidders.
We show how the equilibrium allocation, bids, and bidder utilities are calculated in the general case.
We prove constructively that a pure subgame-perfect equilibrium always exists, and show how all
pure equilibria can be found by the method of option values

1 Introduction

This paper studies a setting where several identical items are sold sequentially via a second-price
auction to a set of bidders. In each round, a bidder may have a different value for the item, and
this value may change in arbitrary ways. This can capture, e.g., situations where the bidder is
absent in some periods (indicated by having zero value), situations with discount factors, etc.
Bidders may win at most a single item, and have complete information about the setting. This
scenario is common in many computational settings in which resources are allocated periodically.
For example, in Bitcoin, every 10 minutes a new block is mined and the transaction slots of this
block are allocated to the users. In cloud computing, computing resources are sold periodically.
And so on. In such settings, a bidder’s value for the item is often time-dependent, e.g., different
bidders have different arrival times, different departure times, different urgencies, and so on.
Bidder values may decrease to reflect a preference to get the item sooner rather than later, or
it may increase, e.g., when bidders value the flexibility to change their mind about needing the
item.

We investigate strategic behavior in these settings. Even in a complete-information setting,
when valuations change between rounds, it is unclear how a bidder should approach the bidding
decision and how much should be his maximal willingness to pay in the current round. A natural
approach that was suggested by Bernhardt and Scoones (1994) is the option-value approach:
a player recursively determines his resulting utility in future rounds assuming that he sits out
the current round (we term this the option utility). The player’s maximal willingness to pay in
the current round, the option value, is then his current value minus his option utility – paying
more than that will result in a utility lower than the utility he can obtain in future rounds. In a
sequential second-price auction, bids should apparently be the maximal willingness to pay, if the
logic from the one-round setting serves as a guide. In this paper we examine the various aspects
that stem from this strategic reasoning. In particular, we investigate several questions: How does
one find an option-value equilibrium? Does one always exist? Is it necessarily efficient, in the sense
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that the sum of winner values is maximal? In a single round, the classic answer to the last two
questions is yes. We seek a generalization to sequential auctions.

The problem is that the basic intuition, described above, cannot be implemented in a straight-
forward way. The option value is not well-defined since it depends on who wins the current auction
if the player sits out. But, if all bidders make option-value calculations to determine their bid, an
assumption about which bidder wins includes circular logic. This vicious circle will not be solved
by backward induction, as in every round we have a simultaneous-move game.

In Bernhardt and Scoones (1994), who discuss incomplete-information two-round second-price
auctions with unit demand, these complexities are circumvented by the adoption of an information
structure in which bidders are ex ante indifferent to who wins any round.

Our results answer all these questions. Our solution to the cyclic nature of option values is in
the concept of consistency: We start by assuming the highest (and second-highest) bidder, calcu-
late option values based on that assumption, and finally discard assumptions that are found to
be inconsistent, in the sense that the highest bidders are not who were assumed. As we show, as-
sumptions that survive this consistency test are subgame-perfect equilibria (SPE) of the sequential
auction.

We provide algorithms to calculate option-value bidding strategies, and to test them for con-
sistency. These bidding strategies are pure and Markovian (i.e., depend only on the remainder of
the sequential auction, regardless of how it was reached). Furthermore, we introduce the technique
of option-value matrices, which efficiently and exhaustively discovers all option-value equilibria in
a given valuation setting.

It is an intriguing empirical observation that option-value equilibria are often efficient, espe-
cially since, as we show, they not always are. We find a specific sufficient condition on bidders’
valuations, which we call “ordered differences”, for the existence of an efficient option-value SPE.

In the general case, these equilibria are not necessarily efficient, nor are they necessarily unique,
nor do they always exist, though we show that there always exists an SPE in pure, Markovian
strategies. Furthermore, we show that every pure SPE relies on option-value bidding, and our
aforementioned technique of option-value matrices can be used to discover all pure equilibria.

In single-round second-price auctions, it is well-known that bidding one’s value weakly domi-
nates every other bidding strategy, and so must be played by every rational player. In a sequential
second-price auction, this is untrue in the general case. Bidding one’s value (option value in this
case) remains a best response to any set of actions by other bidders, but it is not necessarily irra-
tional to bid differently. I.e., the option-value bid does not necessarily weakly dominate all other
bids.3 However, we conjecture that, under our ordered-differences condition, the only equilibrium
in weakly-undominated strategies is an option-value equilibrium.

Our emphasis on option-value bidding is justified by several considerations: First, as stated at
the end of Section 5.2, bidding the option value is always a best response to other bids, even when
not in equilibrium. Second, our construction of a pure equilibrium is derived from the option-value
matrix (Definition 2), thus showing that the concept and methodology developed in this paper
is highly relevant. Third, the logic behind option values comes naturally, and we believe that
because of this it should be investigated and better understood.

Complete-information auctions have been recognized as an important category of auctions
and have been justified many times. In their seminal paper on menu auctions, Bernheim and
Whinston (1986) say that the assumption of complete information is often a good approximation
and that in many settings “bidders are typically quite well informed about each others’ costs...”.

3 Unlike in the single-round auction, the option value depends on other bids and is not a constant. It therefore
does not amount to a weakly-undominated strategy, as such a strategy must be constant.
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This view is continued to be held and in the last decade we have seen a significant interest
in complete information auctions, see for example: Edelman et al. (2007), Varian and Harris
(2014), Caragiannis et al. (2015), Roughgarden et al. (2017) and Christodoulou et al. (2016). The
assumption of complete-information (a.k.a. the assumption of fully informed buyers) in various
models of sequential auctions has been previously made by, e.g., Dudey (1992), Krishna (1993),
Krishna (1999), Gale and Stegeman (2001) and Paes Leme et al. (2012). Narayan et al. (2019), in
a very recent study on the well-documented declining price anomaly in sequential auctions, justify
the assumption of complete information by remarking that “the restriction to full information is
extremely useful . . . [since] it allows one to focus on the strategic properties caused purely by the
sequential sales of items and not by a lack of information”.

In Bitcoin, all new transactions are stored in the so-called mempool, which is a distributed
shared repository viewable by all. A transaction contains its transaction fee in addition to all
other parameters including, e.g., the amount of funds to be transferred. Thus, users view most
relevant details on other users which is an approximation to the complete information assumption.
The transaction fees are, de facto, bids in a sequential auction which recurs approximately every
10 minutes. Miners naturally prioritize transactions with the highest fees. The transactions and
their respective bids remain in the mempool for all recurring auctions (block compositions) until
being included in a block (i.e., winning an auction). Moreover, Bitcoin’s bidding protocol could
be enhanced to allow transactions to specify different fees/bids for different time periods to allow
transactions to express urgencies, deadlines, delayed transactions, installments, as well as many
other temporal considerations. This will make the entire time sequence complete-information. Our
model and methodology could be useful to determine transaction payments in such a context.

Moreover, we argue and demonstrate that the notion of option values that we formalize in this
paper has an important role also for the analysis of incomplete information settings. Section 5
gives more details along with a formal model and some preliminary results.

To the best of our knowledge, the question of the existence of an efficient SPE in sequential
auctions with general time-variable values was not previously considered. Most of the literature
focuses on sequential auctions with incomplete information and stochastically-equivalent objects,
i.e., bidders do not know their values for future periods, and all values are i.i.d.. Engelbrecht-
Wiggans (1994) shows that in sequential auctions of a large-enough number of stochastically
equivalent objects, with bounded values, prices will, on average, have a downwards trend. Said
(2011) adds to the model the possibility of entry of new buyers, and the stochastic arrival of objects
for sale. These two papers rely on the notion of option-value bidding, and make it tractable by
the assumption of stochastic equivalence. Zeithammer (2006) conducts an empirical study that
incorporates knowledge of future values, with three levels of sophistication, the lowest of which
roughly corresponds to Engelbrecht-Wiggans (1994). In the highest level of sophistication, each
bidder actually knows their value for future objects up for sale. His empirical results confirm
that bidders engage in bidding sensitive to future values. The author, in his discussion, notes
that this departs from previous models of sequential auctions and concludes: “These findings
contribute to the auction theory literature and are relevant to bidders in sequential auctions on
eBay and elsewhere.” Earlier models usually assume constant values over time. For more details
and references, see Krishna (2009).

In computer science’s recent literature, Paes Leme et al. (2012) study the price of anarchy
of complete information sequential auctions when bidders have values for subsets of items. Inter
alia, they show that first-price sequential auctions have pure equilibria. We prove the existence
of pure and Markovian equilibria of second-price sequential auctions, and furthermore show how
to construct all such equilibria by calculating option values. We believe that our focus on Marko-
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vian strategies is important. Indeed, various counterexamples constructed in Paes Leme et al.
(2012) involve various punishment techniques (as is common in repeated games) that rely on
non-anonymity assumptions which are not so natural in online settings (which are our main moti-
vation). In accordance, the resulting equilibrium outcomes of such strategies do not seem typical
in our motivating online settings and applications. Another important difference from Paes Leme
et al. (2012) is our definition of unit-demand bidders. In their definition, a unit-demand bidder
that wins an item early on can continue to bid in subsequent auctions and (if winning) can gain
additional value in case these later items are more valuable to the bidder. In contrast, we assume
that once a bidder wins an item, all later items become worthless and therefore the bidder stops
participating in future auctions. We believe that our assumption is more relevant to the online
settings we consider as motivation. For example, someone who is interested in buying a ticket for
a show might prefer a Friday ticket over a Tuesday ticket, but once a Tuesday ticket is bought
and the show has been viewed, the value of a later ticket drops to a rewatch value, which is often
close to zero. The same is true for buying a flight ticket. Similarly, someone who is interested
in executing a program on the cloud, or submitting a transaction via Bitcoin, might prefer to
perform this tomorrow, but if an earlier slot is purchased and the program/transaction has been
completed, oftentimes it is not beneficial (or even possible) to repeat it the next day.

The rest of this paper is organized as follows. Section 2 describes our model. Section 3 discussed
the option-value bidding strategy. In Section 4 we state and prove our results on efficient alloca-
tions. In Section 5 we discuss ramifications for the incomplete-information case, and in Section 6
we offer concluding remarks. Long proofs are to be found in the Appendix.

2 Model

Setting There are n individual bidders, labeled 1, 2, . . . , n. Each bidder can win only one item,
one of which is auctioned in each of m sequential second-price auctions, which we also call rounds,
held in order 1, 2, . . . ,m.

Bidders may be absent in some of the rounds, in which case their value for the item in those
rounds is 0. If present, a bidder’s value is strictly positive. A bidder cannot be allocated a unit
when absent.

Negative bids are invalid, as are bids by a bidder whose value is 0 (a bid of zero can conceivably
win a round, but only if its bidder is present, i.e., has a positive value4). If no valid bid is submitted
in a round, no unit is allocated.

The bidders’ valuation of the item may vary over time. The n×m matrix

V =

v
1
1 . . . v

m
1

...
...

v1n . . . v
m
n


details the value vji of each bidder i in each round j. V is commonly known.

We assume that ties are broken deterministically and consistently. W.l.o.g. ties are broken in
favour of the bidder with the smallest label (row number). In other words, bidders are labeled in
accordance with the tie-breaking order. Other than changing the tie-breaking order, permuting
the order of rows in a game has no consequence. The columns are arranged chronologically, with
the earliest round first.

4 Some readers found this self-contradictory, but having a zero value is quite different from making a zero bid.
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Subgames Let I ⊆ [n] be a subset of bidders. Let j be a positive integer, and let V be a value
matrix. The subgame V j

I is a sequential auction with m − j + 1 rounds, if j ≤ m, or with no

rounds if j > m, in which every bidder i ∈ I participates, with valuation vji , . . . , v
m
i in each of the

rounds. The order of rows in the subgame is the order of labels (the order in V ). The valuation
matrix of the subgame is a sub-matrix of the main matrix, in which some of the rows and columns
are omitted, and is also labeled V j

I , i.e., we identify subgames with submatrices.
We use some shorthand notation: For a bidder k, I \ k is shorthand for I \ {k}. For a set of

bidders K, \K is shorthand for [n] \K. We can combine both shorthand notations: \k stands for
[n] \ {k}. Also, V j is shorthand for V j

[n], and V j
i for V j

{i}.

The main game, for example, is V 1
[n], or V for short. If bidder i is allocated a unit in the

first round, the remaining bidders continue playing the subgame V 2
[n]\i. This subgame is again a

sequential auction, whose valuation matrix, V 2
[n]\i, is V with row i and column 1 omitted. Note

that round numbers are retained in subgames, so that the first round of V 2
[n]\i is 2, not 1.

G(V ) is the set of all subgames of V .

Allocations and Matchings An allocation of the sequential auction is a vector in {0, 1, . . . , n}m,
A = (A1, A2, . . . , Am), where, for every j ∈ [m], Aj = 0 indicates that round j has no unit
allocated. Otherwise Aj is the bidder to which a unit is allocated in round j. An allocation is
feasible if

(i) No bidder is matched to a round with zero valuation, i.e., for every j ∈ [m], if Aj > 0,

vjAj
> 0.

(ii) Every bidder appears in it at most once, i.e., for every j 6= k, Aj 6= Ak, unless Aj = Ak = 0.
Every allocation corresponds to a partial or maximal matching of bidders to rounds, and
vice versa.

The social welfare of an allocation is the sum of values of allocated items, for the winning
bidders at the time won.

SW (A) :=
∑

j∈[m],Aj>0

vjAj
(1)

An efficient allocation is one whose social welfare is maximal. I.e., A is efficient, iff for every
allocation A′, SW (A) ≥ SW (A′). Clearly every game has an efficient allocation, but it may not
be unique.

An efficient allocation may be found by calculating a maximal weighted matching of bidders to
rounds, e.g., by the Hungarian Algorithm, which solves the problem in the order of [max(m,n)]3

steps.
We define the social welfare of a valuation matrix V , marked SW (V ), as the social welfare of

any efficient allocation. It follows that for every allocation A of V ,

SW (V ) ≥ SW (A)

Strategies and Equilibrium We consider Markovian strategies, as defined by Maskin and
Tirole (2001). In our context, this means that bidder i’s strategy is a function σi : G(V ) 7→ R,
depending only on the current subgame, regardless of how it was reached. This excludes, inter
alia, various forms of signalling and punishment strategies by bidders (as in, e.g., Paes Leme et al.
(2012) Appendix D).
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Given a profile of strategies, σ = (σ1, . . . , σn), and outcomes determined by the auction
allocation rule, every bidder i has utility uσi (U) = vji −Mj for every subgame U of V , if j is a
round in subgame U where i was allocated a unit, and Mj is the amount paid to win round j, or
0 if i wins no round.

Every bidder i maximizes his utility for the main game uσi (V ).

We seek a subgame-perfect equilibrium in Markovian strategies. A subgame-perfect equilib-
rium is a profile of strategies σ in which no bidder i, given the strategies of bidders other than
himself σ−i, can deviate from his strategy to improve his utility uσi (U) for any subgame U of V .

3 The Option-Value Bidding Strategy

3.1 Allocation Profiles

In this section we will define a profile of bidding strategies for the bidders. For this purpose, we
first define allocation profiles.

Definition 1. An allocation profile for V is a pair (A,S) of functions A,S : G(V ) 7→ {0, 1, . . . , n}
that specifies a tentative outcome of every possible bidding round. For each subgame U of V ,

– A(U) is the bidder with the highest valid bid in the first round of U , or 0 indicating there are
no valid bids.

– S(U) is the bidder with the second-highest valid bid in the first round of U , or 0 indicating
there are less than two valid bids.

Given an allocation profile P = (A,S) for V , we specify below (Algorithm 1) a complete
strategy profile that is induced by it, σP = (σP1 , . . . , σ

P
n ) for every bidder, in every subgame that

is reachable under P.

An allocation profile P = (A,S) is consistent if, under the induced strategy profile σP , for
every subgame U , A(U) is the highest bidder in the earliest round of U , if there is one, or is 0 if
there is none, and S(U) is the second-highest bidder in the earliest round of U , if there is one,
or is 0 if there is none.

We will show that if an allocation profile is consistent, its induced strategy profile is in
subgame-perfect equilibrium.

We provide algorithms to compute the bidding strategies for all bidders, and to determine
whether the allocation profile is consistent.

Utilities, Bids and Option Values Given an allocation profile P = (A,S), we define the
induced strategy profile σP , constructed by algorithms specified below in Algorithms 1 and 2. We
precede them by the following informal description, and follow with a simple 2-round, 2-bidder
example auction.

The strategy will be defined recursively, and along the way we will define the utility uPi (U),
and bid bPi (U) of bidder i in subgame U , induced by P. When the implied allocation profile is
unambiguous, we use the shorthand ui(U) and bi(U).

The basis for calculating bids and utilities for each bidder is the calculation of a bidder’s option
utility. The option utility of a bidder is the utility he expects to make, in what remains of the
sequential auction, had he, hypothetically, sat out the current round (by not submitting a valid
bid). A bidder i whose option utility at round j is ω would not rationally agree to pay more than
vji − ω, which we call his option value, to win the round, as his utility in such a case would then
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be < vji − (vji − ω) = ω, which is what he could get by not bidding in the current round. Note
that the option utility and option value of a bidder needs an assumption of who wins the current
round (and all future rounds) in the bidder’s hypothetical absence, so is well-defined only subject
to an allocation profile.

We define the induced strategy of a bidder (under the given allocation profile) to bid exactly
this option value, the maximal price he is willing to pay in the current round, in every round of
every subgame. In Algorithm 1, it is computed in step 3a for the proposed winning bidder (A(U)),
and in step 2b for every other bidder. We call such an induced strategy an option-value strategy,
and a subgame-perfect equilibrium in option-value strategies (all induced by the same allocation
profile) an option-value equilibrium. Note that, by their definition, option-value strategies and
equilibria are pure and Markovian.

Using the above logic, and the second-price auction mechanism of individual rounds, we get
the following recursive definition/algorithm of bids and utilities.

Algorithm 1 (Utilities and Bids) Parameters:

– U = V j
I : Subgame of main game V , whose first round bids and utilities are calculated.

– P = (A,S): The (candidate) allocation profile.
– I ⊆ [n]: Set of remaining bidders in the subgame.
– j > 0: The round number.

Returns:

– u(U) ≡ u(U ,P, I, j): Vector of bidder utilities in U .
– b(U) : Vector of bids in first round of U .

1. If j > m, set u(U) := {0}n, b(U) := {0}n and return.
2. For every i ∈ I \A(U)

(a) set ui(U) := ui(V
j+1
I\A(U),P, I \A(U), j + 1)

(b) set bi(U) := vji − ui(U)
3. If A(U) 6= 0

(a) set bA(U)(U) := vjA(U) − uA(U)(V
j+1
I\S(U),P, I \ S(U), j + 1)

(b) If S(U) = 0
i. set uA(U)(U) := vji

(c) else
i. set uA(U)(U) := vji − bS(U)(U)

There follows a recursive algorithm, for an a posteriori consistency check of the allocation
profile calculated by Algorithm 1 for subgame U . Invoking it to calculate C(V ,P, [n], 1) returns
the (true/false) consistency of allocation profile P for the main game V .

Algorithm 2 (Consistency) Parameters:

– U = V j
I : Subgame of main game V , whose first round bids and utilities are calculated.

– P = (A,S): The (candidate) allocation profile.
– I ⊆ [n]: Set of remaining bidders in the subgame.
– j > 0: The round number.

Returns:

– C(U ,P, I, j): True if allocation profile is consistent, false otherwise.
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1. If j > m, return true.

2. If A(U) 6= 0

(a) If S(U) 6= 0

i. if bS(U)(U) < maxi∈I\A(U) bi(U) return false
ii. if bA(U) < bS(U) or bS(U) < 0 return false

(b) else

i. if maxi∈I\A(U) bi(U) ≥ 0 return false
ii. if bA(U) < 0 return false

(c) if not C(V j+1
I\S(U),P, I \ S(U), j + 1) return false

3. else

(a) if maxi∈I bi(U) ≥ 0 return false

4. return C(V j+1
I\A(U),P, I \A(U), j + 1)

Example 1.

V =

(
2 6
1 4

)
Set A(V ) = 2, S(V ) = 0, A(V 2

[2]) = 1, S(V 2
[2]) = 2, and A(V 2

1 ) = 1, S(V 2
1 ) = 0.

The allocation profile for the single-round subgames (i.e., for V 2
[2] and V 2

1 ) is the outcome of
the standard second-price auction, which is trivially consistent. For the first round we calculate
bids by Algorithm 1:

b1(V ) = v11 − u1(V 2
1 ) = 2− 6 = −4

b2(V ) = v21 − u2(V 2
[2]) = v21 − u2(V 3

2 ) = 1− 0 = 1

The bidder utilities are

u1(V ) = u1(V
2
1 ) = v21 = 6 u2(V ) = v12 = 1

Since there is only one valid bid (2’s) in the first round, (A,S) is consistent. It induces the
efficient allocation (2, 1).

The bids are in equilibrium: Bidder 1 can change his bid to win round 1, and then his utility
will be v11 − b2(V ) = 1. But this is less than his current utility 6. Bidder 2 can avoid winning
round 1 by not submitting a valid bid. But then no unit will be allocated in round 1, and in round
2 he will lose to bidder 1 and get 0 utility.

3.2 Consistent Profiles Induce Equilibria

To recap, the definition of an option-value strategy requires an allocation profile, and a consistent
allocation profile induces bids that agree with its proposed allocation. Example 1 demonstrated
such a consistent allocation profile, in the context of a 2-player, 2-round auction. It was observed
that its induced bids form an SPE of the sequential auction. Our first main result states that this
is true in general, justifying the emphasis on consistency.

Theorem 1. Every consistent allocation profile induces an option-value bidding strategy profile
which is in subgame-perfect equilibrium, with non-negative utilities for all bidders, and vice versa.

Proof. See Appendix.
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3.3 On the Existence, Uniqueness and Efficiency of Equilibria

Since consistent profiles induce option-value strategies that, as Theorem 1 shows, are in (pure)
SPE, we ask

1. Is an option-value equilibrium of a sequential auction necessarily unique?
2. Is an option-value equilibrium necessarily efficient?
3. Is an efficient allocation necessarily an equilibrium?
4. Does every sequential auction have an option-value equilibrium?
5. Does every sequential auction have a pure equilibrium?

Our answer to questions 1-4 is: No, and we provide a counterexample for each. On the other
hand, the answer to question 5 is Yes, as we prove later.

Example 2.

V =

8 6 0
6 5 0
7 3 2


The unique efficient allocation SW (V ) = 8 + 5 + 2 = 15 is underlined.
It is easily verified that the uniquely-efficient allocation profile (A,S) is consistent. It is (omit-

ting the trivial last-round allocations)

A(V ) = 1 A(V 2
{1,2}) = 1 A(V 2

{2,3}) = 2

S(V ) = 3 S(V 2
{1,2}) = 2 S(V 2

{2,3}) = 3

inducing consistent first-round bids of (7, 2, 5) for bidders 1, 2, 3, respectively. This is an equilib-
rium.

However, another, inefficient equilibrium allocation (2, 1, 3) is induced by the following allo-
cation profile (A,S)

A(V ) = 2 A(V 2
{1,2}) = 1 A(V 2

{1,3}) = 1

S(V ) = 3 S(V 2
{1,2}) = 2 S(V 2

{1,3}) = 3

inducing first-round bids of (3, 6, 5) for bidders 1, 2, 3, respectively. Since all bids are consistent
with the allocation profile, they are in equilibrium, which is inefficient: The social welfare 6+6+2 =
14 is not maximal.

The above example shows that the equilibrium is not unique, and that there exist inefficient
equilibria. In the next example, the only efficient allocation is not in equilibrium, and the sole
option-value equilibrium is inefficient.

Example 3.

V =

9 1 9
4 1 7
3 1 8


The efficient allocation (1, 2, 3) is underlined, but it does not induce consistency. The induced

first-round bids, (0, 3,−5), are inconsistent with bidder 1 winning it. On the other hand, the
allocation (2, 3, 1) is consistent, inducing first-round bids of (0, 3, 2). This is the only option-value
equilibrium, and its social welfare, 4 + 1 + 9 = 14, is less than the maximal 9 + 1 + 8 = 18.
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Example 4. The following sequential auction has no option-value equilibrium, not even an ineffi-
cient one.

V =


16 8 8
9 3 2
12 10 0
16 16 13


To prove this, we first define the option-value matrix.

Definition 2 (Option-Value Matrix). Assume some bidding equilibrium (not necessarily an
option-value one) for all proper subgames of V , so that every bidder has a well-defined option
utility and option value for every possible outcome of the first round of V .

The option-value matrix ω(V ) of V with n bidders, is the n×n matrix, where the element in
row i, column j, ωji is v1i − ui(V 2

\j), where i 6= j (ωii is undefined).

It is easily verified that in all second-round subgames V 2
\i, i ∈ [4], the efficient allocation

induces the unique option-value equilibrium, which determines a unique option utility for all
bidders. Using this fact, the option-value matrix for V is5

ω(V ) =


− 8 10 10
9 − 9 9
7 12 − 5
5 10 3 −


Lemma 1. Given an option-value matrix ω(V ) = {ωij}, an allocation profile with A(V ) = i and

S(V ) = j is consistent (and so induces an option-value equilibrium) iff ωij is the largest entry in

column i, and it is smaller than ωji (subject to the tie-breaking rule for bidders, i.e., rows).

Proof. Fix the stated first-round allocation profile. Then the column i entries are the induced bids
under this allocation profile (see Algorithm 1) for every bidder except i, while ωij is i’s induced
bid. The lemma states the condition for these induced bids to be consistent with the allocation
profile (i’s bid is highest and j’s bid is second-highest). ut

No allocation profile of V is consistent. To see this, it is enough to inspect the highest element
of each column of ω(V ) (in bold), and verify that it is not smaller than the element in the
symmetric position across the main diagonal. E.g., ω4

1 > ω1
4. This gives the negative answer to

Question 4.

Nevertheless, first-round bids of (8, 9, 12, 3) are in equilibrium, albeit not an option-value one,
since bidder 1’s option value is 10, not 8. In general, a pure, but not necessarily an option-value
equilibrium always exists.

Remark 1. The following Theorem 2 is essentially Paes Leme et al. (2012)’s Theorem 2.1, where it
is stated for first-price auctions. A pure second-price equilibrium is easily derived from a pure first-
price equilibrium. They non-constructively show that an ascending price auction must terminate
at a pure equilibrium. Narayan et al. (2019) give a constructive version of the proof. Our proof
explicitly uses the notion of option values, resulting in a very simple constructive proof. By
Example 2, showing that equilibria are not unique, the two proofs do not necessarily demonstrate
the same equilibrium.

5 For example, ω1
3 = v13 − u3

 3 2
10 0
16 13

 = 12 − 5 = 7
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Theorem 2. Every sequential auction has an equilibrium in pure strategies.

Proof. We prove by induction on m, the number of rounds. For m = 1, bidding one’s value is
a pure equilibrium. Assume the theorem for up to m − 1 rounds. Assume a strategy profile for
all bidders, not necessarily an option-value one, that induces a pure equilibrium in all subgames
of up to m − 1 rounds, so that all such subgames have a well-defined equilibrium value for all
bidders.

Construct the option-value matrix ω(V ) = {ωji }, as defined in Definition 2. Let ωji at row i,
column j be the highest value in ω(V ), subject to the tie-breaking rule for bidders, i.e., rows.
Then complete the strategy profile by setting the first-round bids for all players as follows: i bids
ωji , j bids ωij , and all other bidders bid any value < ωij .

We show that these bids are in equilibrium:

For bidder i, suppose first that ωji ≥ 0. Since his option value is not negative, he cannot

gain by deviating and not winning the round. Alternatively, if ωji < 0, all bidders make negative,
invalid bids, and no unit is allocated. Bidder i can change the outcome by bidding 0 or more, but
since his option value is negative, this is not to his advantage.

Every bidder k 6= i cannot gain by deviating, since his option value ωik ≤ ωji is insufficient to
win the round. ut

4 Efficient Allocations

In this section we shall consider profiles inducing efficient allocations. We define tie breaking that
renders one of them, called the orderly efficient allocations, unique.6

Definition 3. An early efficient allocation is an efficient allocation in which rounds are allocated
as early as possible for efficient allocations. I.e., if A is an early efficient allocation, A′ an efficient
allocation, j a round, and A and A′ have the same rounds unallocated before round j, then if
A′ allocates a unit in round j, so does A. E.g., if (1, 2, 0), (1, 0, 2) and (0, 1, 2) are efficient
allocations, only (1, 2, 0) is early.

An orderly efficient allocation is an early allocation in which, in all cases where the order of
allocation of bidders can be permuted and remain efficient, the smaller label is allocated first. E.g.,
if both (1, 2) and (2, 1) are efficient allocations, only (1, 2) is orderly. Every subgame has a unique
orderly efficient allocation.

With these definitions, there is a unique allocation profile that induces an orderly efficient
allocation. We call it the orderly allocation profile.

Definition 4. Given a game V , a orderly allocation profile is an allocation profile E = (A,S)
such that for every subgame V j

I with I ⊆ [n], j ∈ [m]

– i := A(V j
I ) is matched to round j in the orderly efficient allocation of V j

I .

– If i > 0, S(V j
I ) is matched to round j in the orderly efficient allocation of V j

I\i.

We shall show that, under some restrictions on the valuations, orderly allocation profiles are
consistent. It will follow, by Theorem 1, that orderly allocation profiles induce bidding strategies
that are in subgame-perfect equilibrium.

6 This definition is relevant only if there exist multiple efficient allocations. In the generic case, where there exists
a unique efficient allocation, that allocation is, ipso facto, orderly.
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Ordered differences We adopt an assumption on the valuations, called ordered differences,
which, when satisfied, will enable us to reach results that are not true in the general case. For
simplicity and brevity, assume at least as many bidders as rounds (n ≥ m). Assume w.l.o.g. that
every round has an allocation, since if n ≥ m an unallocated round occurs only if no bidder is
present in it, in which case the round can be deleted without materially changing the auction.

Briefly, the ordered-differences condition assumes an order satisfied by bidder valuation dif-
ferences from one round to the next. As bidder labels are arbitrary, the condition also assumes
bidders are numbered so that these differences are non-increasing with the bidder labels 1, . . . , n.
Specifically, let E = (E1, . . . , Em) be the orderly efficient allocation of V . V fulfils the ordered-
differences condition if the valuations satisfy

Criterion 1 (Ordered-Differences) For every round j < m, and bidders g, h ∈ [n] where
g < h, and g ≤ Ej,

vjg − vj+1
g ≥ vjh − v

j+1
h

Example 5. For example, a valuation matrix that fulfils ordered-differences is

V =



11 0 6 0 2
15 5 11 6 9
0 9 15 10 13
0 2 9 5 8
0 0 17 13 16
0 3 11 7 10
0 0 11 7 11
0 11 20 16 20


Its orderly efficient allocation, E = (2, 3, 5, 7, 8), is underlined. Above, we marked in bold all

elements vji for which i ≤ Ej . These are the elements on or above a boundary defined by E.

The condition, in words, states that V = {vji } is divided into top and bottom parts by an
allocation boundary i ≤ Ej . The order of round difference in valuations of the bidders match the
label order, with differences above the boundary ordered by label, while differences below the
boundary are smaller than differences above the boundary, but have no particular order among
themselves. For example, Example 2 does not fulfil ordered differences, because 7− 3 = v13 − v23 >
v11 − v21 = 8− 6. However, if v13 is changed to 5, it would be an ordered-differences matrix.

The ordered-differences condition holds, for example

– For constant valuations.

– For every two-round sequential auction. (Label the bidders by the order of valuation differ-
ences).

– For uniformly-discounted valuations (i.e., where there exists δ ≥ 0 such that vji = δj−1v1i for
every i ∈ [n], j ∈ [m]).

– Every ordered-differences valuation matrix, that is modified to include arrival of bidders (we
say that bidder i arrives in round j iff vji > 0 but vki = 0 for every k < j), subject to a
restriction that every bidder i ∈ [m] arrives before (left of) the allocation boundary. (Since
allocated bidders are necessarily present when allocated, this only restricts the time of arrival
of unallocated bidders).

We can now formulate our result for ordered differences:
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Theorem 3. Given V satisfying the ordered-differences condition, its orderly allocation profile
E = (A,S) is consistent.

Proof. See Appendix.

It follows, by Theorem 1

Corollary 1. Every sequential auction with ordered-differences valuations has an option-value
equilibrium, inducing an efficient allocation.

The principal ordered-differences condition places an additional requirement.

Criterion 2 (Principal Ordered-Differences) A principal ordered-differences valuation is an
ordered-differences valuation whose orderly efficient allocation allocates a unit to every bidder
∈ [m].

The allocation boundary of a principal ordered-differences valuation is simply the major di-
agonal v11 to vmm. Example 5 is an ordered-differences valuation that is not principal. Note that all
constant and uniformly-discounted valuation matrices have principal ordered differences.

If the ordered-differences valuation is also principal, we can say more: The orderly efficient
allocation is now the unique option-value equilibrium. It follows that, under other tie-breaking
rules, all option-value equilibria are essentially the same (the social welfare and payments are the
same, and any differences in allocation are due only to different tie breaking).

Theorem 4. Given V satisfying the principal ordered-differences condition, the option-value
equilibrium induced by the orderly allocation profile is the unique option-value equilibrium.

Proof. See Appendix.

Corollary 2. Given V satisfying the principal ordered-differences condition, the unique option-
value equilibrium is equivalent to the option-value equilibria under other tie-breaking orders, in
the sense that all subgames are won by equal bids, and pay equal amounts.

Furthermore, we conjecture that the unique option-value equilibrium is the only one that is not
weakly-dominated, thus making it, like the single-round second-price auction, the only outcome
that is reached by rational bidders. Like Paes Leme et al. (2012), our definition of a strategy that
is weakly-undominated is a strategy that cannot be eliminated by any sequence of elimination of
strategies.

Conjecture 1 Given V satisfying the principal ordered-differences condition, all equilibria in
weakly-undominated strategies have the same outcome as the option-value outcome, in the sense
that all subgames are won by the same bidder, who pays the same amount.

5 Incomplete-Information Sequential Auctions

5.1 Outline

We now briefly consider incomplete-information sequential auctions, and show how our consider-
ations for complete-information auctions generalize to incomplete information.

A natural, but faulty generalization, would be to define option utilities, and option values, as
expectations of their complete-information counterparts over the bidder’s information set (under
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some generalized consistency restriction), and have the bidders bid their thus-defined option
values. In fact, as we will show, there is no reason for expectations of option values to form a
bidding equilibrium. Conditions for equilibrium indeed involve all the complete-information option
values of the bidder’s information set, but are more complex than mere averaging of expectations.

In this section, we aim to show the correct generalization to incomplete information. While it
is surely interesting to investigate this further, this would go beyond the scope of this paper.

For simplicity and brevity, we consider auctions where

1. Bidders know their current and future values.
2. All bidders know which bidder, if any, was allocated in each previous round.
3. There are two rounds (m = 2).
4. There is a finite number of bidder valuations with non-zero probability.7

We seek bidding strategies that are in perfect Bayesian equilibrium (PBE), which means that
bidders hold consistent beliefs and are sequentially rational in every round of the sequential
auction. By limiting the number of rounds to two, we restrict the problem to finding the first-
round bidding strategy. This is because, as is well-known, in the second and last round, the sole
weakly-undominated strategy is to bid one’s current value, regardless of beliefs.

5.2 Model and Analysis

The type of bidder i is the vector of his valuations for all rounds, denoted vi := (v1i , . . . , v
m
i ),

where vji ∈ R≥0 is bidder i’s valuation in round j.
The type matrix V is an n× 2 matrix in which row i is bidder i’s type.

V =

v
1
1 v

2
1

...
...

v1n v
2
n


Let Ω ⊆ R2n

≥0 be a finite set of all type matrices with non-zero prior probability.
There is a commonly-known probability function P on the elements and subsets of Ω, where∑
w∈Ω P (w) = P (Ω) = 1.
For every bidder i, Ωi(vi) is the set of all type matrices in Ω which agree with i’s type, i.e.,

Ωi(vi) := {w ∈ Ω|wi = vi}.
A strategy profile σ = (σ1, . . . , σn) specifies the strategy of each bidder i ∈ [n]. A strategy

of bidder i ∈ [n], σi, specifies the bid bi(U ;vi) in every sub-auction U when the bidder’s type is
vi. In practice, only bi(V ;vi), the first-round bid, needs to be determined, since the equilibrium
second-round strategy is to bid one’s value.

Consider now the first-round bids. Suppose we are given bids by each player, and we are tasked
with confirming or denying that these bids are in equilibrium. In an equilibrium, for every bidder
i, given bids by other bidders, his utility expectation with every other bid b does not exceed his
utility expectation in with the suggested equilibrium bid.

Define Gi(b;vi) as the set of all type matrices in bidder i’s information set (that is, Ωi(vi))
which he wins by bidding b in the first round, when all other bidders bid their equilibrium bids.
Then Gi(b;vi) ⊆ Ωi(vi) and b < b′ entails Gi(b;vi) ⊆ Gi(b′;vi).
7 Relaxing these restrictions would require, respectively (1) defining bidder types differently, and replacing bidder

values with expectations; (2) replacing values with their expectation in some formulas; (3) implementing sequen-
tial rationality by updating beliefs and information sets from round to round, and (4) defining a probability
measure for the valuation probability space and replacing several sums by integrals.
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For every type matrix w, bidder i’s alternate winner is the bidder that is allocated if i does
not participate, or is 0 if no bidder is allocated. Mi(w) is i’s payment if he wins the first round
of w.8 By the second-price auction allocation rule, these are

AWi(w) := 1maxk∈[n]\i bk(V ;wk)≥0 arg max
k∈[n]\i

bk(V ;wk)

Mi(w) := 1AWi(w)6=0bAWi(w)(V ;wAWi(w))

Givenw and i, assuming i does not participate in the first round, and goes on to win the second
round, he will pay the second-round bid (= value) of some other bidder s := arg maxk∈[n]\{i,AWi(w)}w

2
k.

Bidder i’s option utility and option value, marked OUi(w) and OVi(w) respectively, are defined

OUi(w) := max(w2
i − w2

s , 0)

OVi(w) := w1
i −OUi(w)

The following theorem characterizes bidding equilibria.

Theorem 5. Let an incomplete-information sequential auction be given by type matrix V , set of
type matrices Ω and probability function P . Then a first-round bidding strategy given by bi(V ;vi)
for each i ∈ [n] is in equilibrium iff, for every bid b by every bidder i with every type vi

MUi(bi(V ;vi)) ≥MUi(b)

where

MUi(b) :=
∑

w∈Gi(b;vi)

{
OVi(w)−Mi(w)

}
P (w) (2)

Proof. Define Ui(b) to be bidder i’s utility from bidding b. Then (noting that vi = wi in all
relevant information sets):

Ui(b) =
∑

w∈Gi(b;vi)

{
v1i −Mi(w)

}
P (w) +

∑
w∈Ωi(vi)\Gi(b;vi)

OUi(w)P (w)

=
∑

w∈Ωi(vi)

OUi(w)P (w) +
∑

w∈Gi(b;vi)

{
v1i −Mi(w)

}
P (w)−

∑
w∈Gi(b;vi)

OUi(w)P (w)

=
∑

w∈Ωi(vi)

OUi(w)P (w) +
∑

w∈Gi(b;vi)

{
OVi(w)−Mi(w)

}
P (w) (3)

Now, as the first term of (3) does not depend on b, the equilibrium bid bi(V ;vi) maximizes
the second term, which equals MUi(b). The theorem follows. ut

Note that MUi(b) depends on b only via the information set Gi(b;vi), and so is a step function
for a finite set of type matrices. For negative b, MUi(b) = 0, as Gi(b;vi) is empty.

Note also that for b > v1i , MUi(b) ≤ MUi(v
1
i ), with equality only if Gi(b;vi) = Gi(v

1
i ;vi), so

it is never necessary to bid more than one’s value. This is because OVi(w) ≤ w1
i = v1i always,

while for every w ∈ Gi(b;vi) \Gi(v1i ;vi), Mi(w) > v1i .
In the complete-information case, Ω is a singleton set {w}, and Gi(b;vi) is non-empty for

every b > Mi(w), in which case MUi(b) is positive iff OVi(w) > Mi(w). Therefore bidding the

8 We use the notation 1z, instead of the Iverson bracket, for an expression whose value is 1 if condition z is true,
and 0 if false.
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option value in complete-information valuations always achieves optimal utility. This is true even
when the equilibrium is not an option-value equilibrium.

An example incomplete information auction, with its equilibrium bidding strategy, is provided
in the Appendix.

5.3 Discussion

Much remains to be done here, but it would take us far beyond the scope of our paper. For
example, how to find the bidding equilibrium in the first place? Best response dynamics may

work, i.e., start with a hypothesis, say, b(V ; ·) =

0|0
0|0
0|0

 and then calculate optimal bids for each

bidder, round robin, replacing them in the hypothesis, until a fixed point is reached. There is no
guarantee that such a procedure will converge, though.

It is also noteworthy that, in the example, the bidding equilibrium for the incomplete-information
auction is also an equilibrium for each constituent complete-information w ∈ Ω. We are not aware
of any reason why this should be so. But since it is, and since in each w the equilibrium is also
efficient (in the main part of the paper we noted that two-round auctions always have an efficient
equilibrium), the incomplete-information auction is ex post efficient.

6 Discussion

6.1 Conclusion

We analyzed sequential auctions with time-varying valuations, including arrival of bidders, in a
context where bidders have complete information. There always exists a pure bidding subgame-
perfect equilibrium, and one based on option values iff there exists a consistent allocation profile.
We showed how to compute such bidding strategies.

For general valuations, we show via examples that sequential auctions are not necessarily
efficient, and can have multiple equilibria. However, when the ordered-differences condition is
satisfied, an efficient equilibrium always exists.

We showed the path to generalize our work to incomplete information.

6.2 Future Work

Our work suggests several interesting directions for further investigation.
Many settings that do not satisfy the ordered-differences condition have efficient equilibrium

allocations, and the challenge is to formulate less-demanding sufficient conditions on the valuation
for efficiency, or even to formulate sufficient and necessary conditions. Generalizing our results to
sequential first-price and other auctions seems attainable. The possible inefficiency of equilibrium
allocations raises the question of bounding the price of anarchy.

For incomplete information, many open questions remain, some of which were discussed in
Section 5.3.
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A Proof of Theorem 1

Proof. From allocation profile to equilibrium, we prove this by backward induction. Assume that
the induced strategy profile for all subgames of V are in subgame-perfect equilibrium, and all
utilities are non-negative. To complete the backward induction, we need only prove that if the bids
b1(V ), . . . , bn(V ) are consistent with A(V ) and S(V ), then no bidder can change his first-round
bid to his advantage, and all bidders have non-negative utilities.

Let i ∈ [n] be a bidder. There are two cases:

– i = A(V ): The bidder wins the current round, so can deviate by not winning it. In this case,
his utility will be, by definition, his option utility. Since he bids his option value, his option
utility is ω = v1i − bi(V ). But this is not more than his current utility ui(V ), because

• If S(V ) 6= 0, ui(V ) = v1i − bS(V )(V ) ≥ v1i − bi(V ), because i makes the highest bid.
• If S(V ) = 0, ui(V ) = v1i ≥ v1i − bi(V ), because i’s bid is non-negative.

Since by the induction hypothesis, ω is non-negative, ui(V ) ≥ ω is non-negative.
– i 6= A(V ): The bidder does not win the current round, so can deviate by making a winning bid.

His current utility is his option utility, which, as he bids his option value, is ui(V ) = v1i −bi(V ).
If he changes his bid to win the current round

• If A(V ) 6= 0, he will pay bA(V ), but then his utility will be v1i −bA(V ) ≤ v1i −bi(V ) = ui(V ).
• If A(V ) = 0, he will pay 0, but then his utility will be v1i < v1i − bi(V ) = ui(V ), because

if there is no winner, we must have bi(V ) < 0.

Since ui(V ) is the bidder’s option utility, it is, by the induction hypothesis, non-negative.

In all cases, a deviation does not improve utility, and the bidder utility is non-negative.
In the other direction, suppose we have option-value bidding strategies for a sequential second-

price auction, that are in subgame-perfect equilibrium. It is trivial to construct an allocation profile
from these bids, by setting, in each subgame U , A(U) to be the highest bidder, and S(U) to be the
second-highest bidder. We then have an induced allocation profile P = (A,S). As we have shown,
by construction this allocation profile uniquely leads to a bidding strategy profile by Algorithm
1. Therefore, if our bidding strategy is in equilibrium, it must be the same as that induced by P,
which, by the same token, is consistent. ut

B Lemmas

We use the following lemmas in proofs. The first lemma considers the effect of removing a row or
column on the efficient allocation.

Lemma 2. Let A be the orderly efficient allocation of V and i a bidder in [n], A′ the orderly
efficient allocation of V\i, and A∗ the orderly efficient allocation of V 2. Then (i) At most one
bidder from A is not in A′: i if i ∈ A. (ii) At most one bidder from A is not in A∗: A1 if A1 > 0.

Proof. (i) Consider the following round-deletion procedure. (E.g., let i = 2, A = (1, 2, 3),A′ =
(3, 5, 4)). If i is not allocated in A, procedure terminates. Otherwise, let Ak = i. (k = 2 in
the example). Delete round k from both allocations. Let i′ := A′k. (i′ = 5 in the example). If
i′ is not allocated in A, procedure terminates (as in the example). Otherwise, say i′ = Ak′ ,
delete round k′ from both allocations, and repeat. This procedure necessarily stops, and the
bidders deleted from the allocations differ by at most one (bidder i). The procedure never
deletes an unallocated round from A. Furthermore, the remaining undeleted bidders in each
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allocation have no bidder in common with the deleted bidders in both allocations. ((1, 3) and
(3, 4) are undeleted in the example, while 2 and 5 are deleted). Therefore, the bidders in
the undeleted rounds may be swapped between allocations without disturbing feasibility. (In
the example, creating allocations (1, 5, 3) and (3, 2, 4)). It follows that the undeleted rounds
must be identical in the allocations. Otherwise, one of them cannot be an orderly efficient
allocation, as it can be improved by the swapping. This proves the claim.

(ii) By item (i) of the lemma, the orderly efficient allocation of V 2 and V 2
\A1

differ by at most

one bidder: A1. But the latter is (A2, . . . , Am), which also differs from A by at most one
bidder, A1 again. This proves the claim.

ut

The following is a useful inequality about efficient allocations, regardless of bidding strategies.

Lemma 3. Let bidder i ∈ [n] be the round-k bidder in an efficient allocation A of a subgame V j
I ,

where j ∈ [m], k ∈ {j, . . . ,m} and I ⊆ [n]. Let K := I \ {Aj , . . . , Ak−1} be the remaining bidders
at round k. Then

SW (V k
K)− SW (V k

K\i) ≥ SW (V j
I )− SW (V j

I\i)

Proof. (Ak, . . . , Am) must be an efficient allocation of V k
K , because if there is an allocation with

greater social welfare, it could improve the social welfare of A by replacing the round k to m
allocations, contradicting the assumption that A is efficient. So we have

SW (V j
I )− SW (V k

K) =
∑

j≤l<k,Al>0

vlAl

Let A′ be an efficient allocation of V k
K\i. Then (Aj , . . . , Ak−1, A

′
k, . . . , A

′
m) is a feasible allocation

of V j
I\i, so its social welfare is not higher than SW (V j

I\i). But this social welfare is [SW (V j
I ) −

SW (V k
K)] + SW (V k

K\i). The lemma follows. ut

The following lemma lays ground for the main result.

Lemma 4. Let V fulfil the ordered-differences condition, and let E be its orderly efficient allo-
cation. Let U = V j

I be a subgame, and let A be its orderly efficient allocation.

1. The first bidder allocated in A, Aj, is the lowest-label bidder i in A with i ≤ Ej, if there are
any.

2. If |I| ≥ n− j + 1, the bidders in A are allocated in order of their labels.

Proof. 1. Let the lowest-label bidder in A be g = As and assume g ≤ Ej . Suppose the first
bidder allocated in A, h := Aj does not have the lowest label in A. Now as g < h and g ≤ Ej ,
by the ordered-differences criterion

vjg − vsg =

s−1∑
k=j

[vkg − vk+1
g ] ≥

s−1∑
k=j

[vkh − vk+1
h ] = vjh − v

s
h

⇒ vsg + vjh ≤ v
j
g + vsh

This contradicts the orderly efficiency of A. Therefore g = Aj is the lowest-label bidder in A.
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2. Applying the first item of this lemma to V , E1 = min{E1, . . . , Em}. In particular, E1 < E2.
Similarly, successively applying the first item to V 2

\E1
,V 3
\{E1,E2}, . . ., in which E2, E3, . . . are

first allocated, we conclude E1 < E2 < . . . < Em. Therefore, for every j ∈ [m], Ej ≥ j.
There are Ej bidders in [n] with label ≤ Ej , and in subgame V j

I at least Ej − (j − 1) such
bidders remain. Now Ej − (j − 1) ≥ j − (j − 1) ≥ 1, so at least one such bidder remains.
Therefore, by the previous item, the first item allocated is the lowest-label bidder. Since the
second item (Aj+1) is the first allocated in the orderly efficient allocation of V j+1

I\Aj
, it is the

second-lowest bidder in A, and so on. So the bidders in A are in ascending order of label.

ut

C Proof of Theorem 3

We shall prove the theorem by proving the following, stronger proposition by induction on the
number of rounds m.

Proposition 1. Given V satisfying the ordered-differences condition, and an orderly allocation
profile E = (A,S)

1. E is consistent.

2. For every subgame V j
I with |I| ≥ n − j + 1, let A′ be its orderly efficient allocation. In

the strategy profile induced by E, the utility of every bidder is at least the “contribution” his
presence made to the social welfare of the subgame, with equality if i is allocated first or is
unallocated. I.e., for every i ∈ [n], j ∈ [m] and I ⊆ [n] s.t. |I| ≥ n− j + 1

ui(V
j
I ) = SW (V j

I )− SW (V j
I\i) i = A(V j

I ) ∨ i /∈ A′ (4)

ui(V
j
I ) ≥ SW (V j

I )− SW (V j
I\i) i 6= A(V j

I ) ∧ i ∈ A′ (5)

Proof. Our induction hypothesis is that the proposition is true for up to m− 1 rounds. We shall
prove the induction step that it is true for m rounds. But first, we demonstrate the induction base
m = 1.

C.1 Proof of Induction Base

For m = 1, we have a single second-bid auction round. By Algorithm 1 b1i = v1i for every i ∈ [n],
so the outcome is the result of a second-round auction of the bidders’ values. The winner has the
highest value and the second highest-bid is by the second-highest value, so this is consistent with
the efficient allocation.

The only subgame is V itself. Now every bidder i 6= A(V ) has zero utility. In this case
SW (V ) = SW (V\i) = v1A(V ). Therefore ui(V ) = SW (V )− SW (V\i), as claimed. For i = A(V ),
utility is i’s value, less the amount he pays, which is the second-highest bid, or 0 if there is no
such other bid. Since SW (V ) = v1i and SW (V\i) = v1S(V ) when S(V ) > 0, while otherwise

SW (V\i) = 0, we again have

ui(V ) = SW (V )− SW (V\i)

as claimed.
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C.2 Induction Step

Since the induction hypothesis applies to all proper subgames, to complete the proof, it is enough
to prove the proposition for V . Let E be the orderly efficient allocation of V .

Proof of 1

– If A(V ) = 0, for consistency we need to show that there are no valid bids, i.e., that all
first-round option values are negative.
Assume not, and that for some bidder i, bi(V ) ≥ 0.

0 ≤ bi(V )

= v1i − ui(V 2)

≤ v1i − SW (V 2) + SW (V 2
\i)

With the last equality following from (4), (5) and the induction hypothesis. But SW (V 2) =
SW (V ). It follows that

v1i + SW (V 2
\i) ≥ SW (V )

The left-hand side is the social welfare of an alternative allocation of V , so the inequality
cannot be strict, as it would have better-than-maximal social welfare. Equality is also not
possible, since it displays an earlier efficient allocation than induced by E . A contradiction.

– A(V ) > 0. Let i := A(V ). Then i = E1.

Lemma 5. Let k ∈ {0} ∪ [n] \ i, and let E′ be the orderly efficient allocation of V 2
\k. Then,

E1 is either the first bidder allocated in E′, or is not allocated in E′.

Proof. By Lemma 4, i = E1 is the lowest-label bidder in E. Consider first the subgame V 1
\k,

and let its orderly efficient allocation be E∗. If k /∈ E, E and E∗ are identical. Otherwise, by
Lemma 2, E and E∗ differ by at most one bidder, which is necessarily k. In either case i is
also the lowest-label bidder in E∗.
Now by Lemma 2, E∗ and E′ differ by at most one bidder. If it is i, i is not allocated in E′.
Otherwise, being the lowest-label bidder in E∗, it is also the lowest-label bidder in E′. By
Lemma 4, the first unit allocated in E′ is the lowest-label bidder ≤ E2, if there is one. By
Lemma 4 again, i = E1 < E2, so i is the first unit allocated in E′. ut

• S(V ) = 0. Then consistency requires that i makes the only valid bid.
By Lemma 5 (for k = 0) and the induction hypothesis, (4) applies to i in subgame V 2,
i.e., ui(V

2) = SW (V 2)− SW (V 2
\i). Therefore

bi(V ) = v1i − ui(V 2)

= v1i −
[
SW (V 2)− SW (V 2

\i)
]

=
[
v1i + SW (V 2

\i)
]
− SW (V 2)

= SW (V )− SW (V 2) ≥ 0

With the last inequality following from the fact that V 2 is a submatrix of V .
From S(V ) = 0 we infer that there is no efficient allocation of V 1

\i that allocates a unit in

the first round. Hence, reiterating the proof of the case A(V ) = 0 above, no bidder other
than i makes a valid bid.
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• S(V ) > 0. Let s := S(V ). For consistency, we need to show that i’s bid is highest, and s’s
second highest, and that both are valid bids.

i’s bid, by Algorithm 1, is

bi(V ) = v1i − ui(V 2
\s)

By Lemma 5 (for k = s) and the induction hypothesis, (4) applies to i in subgame V 2
\s ,

i.e.,

ui(V
2
\s) = SW (V 2

\s)− SW (V 2
\{i,s})

Therefore

bi(V ) = v1i − SW (V 2
\s) + SW (V 2

\{i,s}) (6)

For every other bidder k 6= i, suppose first that k ∈ E, say k = El. Then by Algorithm 1

bk(V ) = v1k − uk(V l
\{E1,...,El−1})

By the induction hypothesis and (4) (remember k = El)

bk(V ) = v1k − SW (V l
\{E1,...,El−1}) + SW (V l

\{E1,...,El}) (7)

Let E′ be the orderly efficient allocation of V 2
\{i,k}. By Lemma 2, every bidder ∈ E \ {i, k}

is in E′. If l > 2 this includes E2, in which case, by Lemma 4, E′2 = E2. Similarly, by
induction E′3 = E3, . . . , E

′
l−1 = El−1. I.e.,

SW (V 2
\{i,k}) = [v2E2

+ . . .+ vl−1El−1
] + SW (V l

\{E1,...,El})

= [SW (V )− v1i − SW (V l
\{E1,...,El−1})] + SW (V l

\{E1,...,El})

= SW (V )− v1i + bk(V )− v1k

The last equality following from (7). Rewrite this

bk(V ) = v1k + SW (V 2
\{i,k})− SW (V ) + v1i (8)

So far we considered the case k ∈ E. Alternatively, if k /∈ E, we have bk(V ) = v1k and
SW (V 2

\{i,k}) = SW (V 2
\i) = SW (V ) − v1i , so (8) holds for this case too, and so for every

k 6= i.

Now, by Definition 1 for the alternate winner s = S(V ), for every k 6= i

SW (V 1
\i) = v1s + SW (V 2

\{i,s}) ≥ v
1
k + SW (V 2

\{i,k}) (9)

We conclude from (8) and (9) that bs(V ) ≥ bk(V ), for every bidder k other than i.

It remains to be shown that bi(V ) ≥ bs(V ) ≥ 0. From Algorithm 1, (5) and the induction
hypothesis,

bs(V ) = v1s − us(V 2
\i) ≤ v

1
s − SW (V 2

\i) + SW (V 2
\{i,s}) (10)
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From (6) and (10)

bi(V )− bs(V ) ≥
[
v1i − SW (V 2

\s) + SW (V 2
\{i,s})

]
−
[
v1s − SW (V 2

\i) + SW (V 2
\{i,s})

]
=
[
v1i + SW (V 2

\i)
]
−
[
v1s + SW (V 2

\s)
]

= SW (V )−
[
v1s + SW (V 2

\s)
]

≥ 0

Because v1s + SW (V 2
\s) is the social welfare of an alternate allocation of V , which by

definition does not exceed SW (V ).

Substituting s = k in (8) and using (9)

bs(V ) = v1s + SW (V 2
\{i,s})− SW (V ) + v1i

= SW (V 1
\i)− SW (V ) + v1i (11)

As SW (V ) = v1i + SW (V 2
\i) and V 2

\i is a submatrix of V 1
\i, we conclude from (11)

bs(V ) = SW (V 1
\i)− SW (V 2

\i) ≥ 0

Proof of 2 For the induction step, we need only prove that, for every every bidder k ∈ [n]

uk(V ) ≥ SW (V )− SW (V\k) (12)

with equality for k = A(V ) and for bidders k unallocated in E.

Let i = A(V ). For every bidder k except i, uk(V ) = uk(V
2
\i). By (5) and the induction

hypothesis

uk(V
2
\i) ≥ SW (V 2

\i)− SW (V 2
\{i,k})

and (12) follows by Lemma 3. If k is unallocated in E, uk(V ) = 0. Also SW (V ) = SW (V\k). So
(12) holds with equality.

It remains to prove for i.

When S(V ) = 0: By the definition of S(V ), there is no efficient allocation of V 1
\i with a

first-round allocation, i.e., SW (V 1
\i) = SW (V 2

\i). But

SW (V ) = v1i + SW (V 2
\i)

Therefore

ui(V ) = v1i = SW (V )− SW (V 2
\i) = SW (V )− SW (V 1

\i)

As claimed.

If s = S(V ) > 0, then using (11)

ui(V ) = v1i − bs(V ) = SW (V )− SW (V 1
\i)

as claimed.

ut
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D Proof of Theorem 4

Proof. Corollary 1 guarantees an option-value equilibrium induced by the orderly allocation pro-
file, so we must prove that there are no other option-value equilibria. We prove the theorem by
induction on the number of rounds. It is trivial for one round. Assume it true for up to m − 1
rounds. We shall complete the induction by proving it for m rounds.

Let (A,S) be an allocation profile of V which is consistent, therefore inducing an option-value
equilibrium. By the induction hypothesis, (A,S) induces the orderly efficient allocation in all
proper subgames of V , leaving only A(V ) and S(V ) to be determined. The orderly allocation
profile has A(V ) = 1, by Lemma 4. So, to prove uniqueness, we must show that A(V ) 6= 1 is not
consistent.

Construct the option-value matrix ω(V ) = {ωki }, as defined in Definition 2. We show that for
every column k s.t. 2 ≤ k ≤ n, ωk1 is maximal, i.e., ωk1 ≥ ωki for every i ∈ [n], i 6= k. Because,
consider the subgame V\k. By Lemma 2, its orderly efficient allocation differs by at most one
bidder from the orderly efficient allocation of V . I.e., it contains all bidders in [m] \ k, including
1. By Lemma 4, bidder 1 is allocated in the first round. I.e.,

SW (V\k) = v11 + SW (V 2
\{1,k})

Now

ωk1 − ωki =
[
v11 − u1(V 2

\k)
]
−
[
v1i − ui(V 2

\k)
]

If bidder 1 is in the orderly efficient allocation of V 2
\k, by Lemma 4 it must be allocated in its

first round. Therefore by Proposition 1 (4) u1(V
2
\k) = SW (V 2

\k)− SW (V 2
\{1,k}). By Proposition 1

(5) ui(V
2
\k) ≥ SW (V 2

\k)− SW (V 2
\{i,k}). Substituting

ωk1 − ωki ≥
[
v11 − SW (V 2

\k) + SW (V 2
\{1,k})

]
−
[
v1i − SW (V 2

\k) + SW (V 2
\{i,k})

]
=
[
v11 + SW (V 2

\{1,k})
]
−
[
v1i + SW (V 2

\{i,k})
]

= SW (V\k)−
[
v1i + SW (V 2

\{i,k})
]

≥ 0

since v1i + SW (V 2
\{i,k}) is the social welfare of particular allocation of V\k.

We conclude that if A(V ) = k 6= 1, bidder 1 is the second-highest bidder, i.e., S(V ) = 1, and
the winner k bids ω1

k. To be consistent (and therefore in equilibrium), we must have ω1
k > ωk1 . But

ωk1 − ω1
k ≥

[
v11 − SW (V 2

\k) + SW (V 2
\{1,k})

]
−
[
v1k − SW (V 2

\1) + SW (V 2
\{1,k})

]
=
[
v11 − SW (V 2

\k)
]
−
[
v1k − SW (V 2

\1)
]

= SW (V )−
[
v1k + SW (V 2

\k)
]

≥ 0

Therefore the sole option-value equilibrium is for A(V ) = 1. ut
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E Example of Incomplete-Information Sequential Auction for Section 5

Example 6. There are three bidders and two rounds. Every bidder has two types, each occurring
with marginal probability 1/2. Every bidder’s valuations are independent of the other bidders.

Bidder 1’s first type is (4, 0) and second, (5, 0).
Bidder 2’s first type is (9, 2) and second, (4, 4).
Bidder 3’s first type is (8, 6) and second, (4, 0).
I.e.,

Ω =

{4 0
9 2
8 6

 ,

4 0
9 2
4 0

 ,

4 0
4 4
8 6

 ,

4 0
4 4
4 0

 ,

5 0
9 2
8 6

 ,

5 0
9 2
4 0

 ,

5 0
4 4
8 6

 ,

5 0
4 4
4 0

}

with P (K) = |K|
8 for every K ⊆ Ω.

In a slight abuse of notation (1st type value | 2nd type value), which we shall also use later,
denote this

V =

4|5 0|0
9|4 2|4
8|4 6|0


We seek bidding strategies in perfect Bayesian equilibrium. In the last round, all bidders

weakly-dominant strategy is to bid their value. What should they bid in the first round?
We shall verify that the following bidding strategies are in equilibrium.

b(V ; ·) =

4|5
8|2
6|4


E.g., bidder 2 bids 8 when his type is (9, 2).
The alternate winners and payments for each bidder, and for each type matrix (in correspond-

ing order to the order of Ω):

AW (·) =

{2
3
2

 ,

2
1
2

 ,

3
3
1

 ,

3
1
1

 ,

2
3
2

 ,

2
1
2

 ,

3
3
1

 ,

3
1
1

}

M(·) =

{8
6
8

 ,

8
4
8

 ,

6
6
4

 ,

4
4
4

 ,

8
6
8

 ,

8
5
8

 ,

6
6
5

 ,

4
5
5

}
The option values for each bidder, and for each type matrix (in corresponding order to the

order of Ω):

OV (·) =

{4
7
2

 ,

4
7
4

 ,

4
0
6

 ,

4
0
4

 ,

5
7
2

 ,

5
7
4

 ,

5
0
6

 ,

5
0
4

}

So

OV (·)−M(·) =

{−4
1
−6

 ,

−4
3
−4

 ,

−2
−6
2

 ,

 0
−4
0

 ,

−3
1
−6

 ,

−3
2
−4

 ,

−1
−6
1

 ,

 1
−5
−1

}
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Note that the minimum bid that wins bidder 1 any type matrices is 4, while bidders 2 and 3
must bid above 4 (due to tie-breaking rules) to win any type matrices.

Therefore, for v1 = (4, 0), the only step is MU1(4) = 0 (as noted, there is no need to check
b > v11). Similarly for v1 = (5, 0), the only step below v1i is MU1(4) = 1/8, so b1(V ) = (4|5) is
confirmed as optimal.

For v2 = (9, 2), note that OV (·) −M(·) is positive for all type matrices in the relevant
information set Ω2(v2). A bid of 8 wins all of them, and so is optimal. For v2 = (4, 4), there are
no steps ≤ v12, so any bid in [0, 4] is optimal. So b2(V ) = (8|2) is confirmed as optimal.

For v3 = (8, 6), the steps are MU2(4 + ε) = 2/8, MU2(5 + ε) = 2/8 + 1/8 = 3/8, and there
are no other steps ≤ v13. For v3 = (4, 0), there are no steps ≤ v13, so b3(V ) = (6, 4) is confirmed
as optimal.
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