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Abstract 

Recent research proposes that sensorimotor difficulties, such as those experienced by many autistic 

people, may arise from atypicalities in prediction. Accordingly, we examined the relationship between 

non-clinical autistic-like traits and sensorimotor prediction in the material-weight illusion, where prior 

expectations derived from material cues typically bias one’s perception and action. Specifically, 

prediction-related tendencies in perception of weight, gaze patterns and lifting actions were probed 

using a combination of self-report, eye-tracking, motion capture and force-based measures. No 

prediction-related associations between autistic-like traits and sensorimotor control emerged for any of 

these variables. Follow-up analyses, however, revealed that greater autistic-like traits were correlated 

with reduced adaptation of gaze with changes in environmental uncertainty. These findings challenge 

proposals of gross predictive atypicalities in people with autistic people, but suggest that the dynamic 

integration of prior information and environmental statistics may be related to autistic-like traits. Further 

research into this relationship is warranted in autistic populations, to assist the development of future 

movement-based coaching methods. 

Key Words: autism, movement, object lifting, weight illusion, grip force.
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Introduction 

Sensorimotor atypicalities are increasingly being viewed as ‘cardinal’ feature of Autism Spectrum 

Disorder (ASD), which impact on lifelong living proficiencies, social development, and quality of life 

(Fournier, Hass, Naik, Lodha, & Cauraugh, 2010; Gowen & Hamilton 2013). Indeed, movement-related 

difficulties are experienced by most autistic people (for review, see Gowen & Hamilton 2013), with 

postural abnormalities, sensory hypersensitivities, and impairments in skills requiring gross and/or fine 

motor co-ordination all commonplace (Fournier et al., 2010). While these features rarely necessitate 

medical treatment, they contribute to substantial practical, financial, and health-related hardships 

(Buescher, Cidav, Knapp, & Mandell, 2014; Pellicano, Dinsmore & Charman, 2014). For example, 

movement-based difficulties in autism may underpin reduced motivation and participation in physical 

activity (Leary & Hill, 1996; Scharoun, Wright, Robertson-Wilson, Fletcher, & Bryden, 2017). These 

difficulties also can precede, and even predict, various aptitudes in childhood and adult life (e.g., daily 

living skills, social skills, Jasmin et al., 2009; Brandwein et al., 2015). Consequently, research into the 

aetiology and management of these abilities is demanded both by academics (Gowen & Hamilton, 

2013) and the autism community (Pellicano et al., 2014). 

Emerging research suggests that these sensorimotor difficulties stem from atypical predictive 

processing, with autistic people proposed to utilise prior information less accurately and/or efficiently 

(Pellicano & Burr, 2012; Gomot & Wicker, 2012; Friston, Lawson & Frith, 2013; Sinha et al., 2014; 

Van de Cruys et al., 2014). Sensorimotor control involve complex, co-ordinated contributions from 

various distinct subcomponents (e.g. cognitive, visual, motor systems), which respond to ‘bottom-up’ 

(stimulus-driven) informational sources and internally-driven (‘top-down’) predictive models 

(Corbetta, Patel & Shulman, 2008; Land, 2009). Abnormalities in ‘top-down’ control can limit the 

performance and learning of goal-directed actions (Kording, Tenenbaum, & Shadmehr, 2007; Land, 

2009) and may exemplify a ‘shared endophenotype’ that underpins socio-behavioural difficulties in 

autism (e.g., social-communication deficits, repetitive behaviours and attention to detail; Pelicano & 

Burr, 2012; Sinha et al., 2014). Indeed, in motor control studies, autistic individuals show impaired 

postural adjustments in anticipation of changes in object load (Schmitz, Martineau, Barthélémy & 
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Assaiante, 2003) and inaccurate initial force outputs during precision-grip actions (Mosconi et al., 2015; 

Wang et al., 2015), effects which signal an increased reliance on ‘bottom-up’ (as opposed to ‘top-

down’) sensory information. Similarly, prediction-related differences emerge in cognition and visual 

processing, with autistic individuals demonstrating diminished ‘top-down’ gaze adaptation in double-

step saccade paradigms (Johnson, Rinehart, White, Millist, & Fielding, 2013; Mosconi et al., 2013) and 

abnormalities in prediction-related neural regions (e.g. the cerebellum, Frith, 2003). Such ‘top-down’ 

limitations lead to greater employment of ‘bottom-up’ attentional (e.g., proprioception, visual feedback; 

Haswell, Izawa, Dowell, Mostofsky & Shadmehr, 2009) and neurobiological systems (e.g., Soulières 

et al., 2009), while co-vary with movement-related difficulties in autism (Mosconi et al., 2013). 

However, feedforward atypicalities have not been consistently detected in research (Palmer, 

Lawson & Hohwy, 2017; Tewolde, Bishop & Manning, 2018). For example, autistic children exhibit 

typical rates of motor adaptation in various tasks that require, and depend on, broad abilities to utilise 

‘top-down’ internal models (Gidley-Larson, Bastian, Donchin, Shadmehr & Mostofsky, 2008), while 

prediction-related atypicalities in perception (e.g., global processing; Brosnan, Scott, Fox & Pye, 2004) 

do not inevitably transfer onto action or behaviour (Palmer et al., 2017). Similarly, the nature and 

severity of movement-related difficulties varies between individuals and empirical contexts (Green et 

al., 2002; Palmer et al., 2017). This has prompted suggestions that autism-related difficulties originate 

from finer, context-sensitive differences in the integration of predictive and environmental statistics 

(Lawson et al., 2014; Palmer et al., 2017), as opposed to generic attenuations in the use of prior 

expectations. Consequently, research must decipher which specific mechanisms are implicated in 

autism (Haker, Schneebeli, & Stephan, 2016). To do this, illusion-based paradigms offer notable value, 

as they can highlight ‘top-down’ influences on the processing of ambiguous sensory information 

(Geisler & Kersten, 2002; Brown & Friston, 2012). Interestingly, although autistic people do appear 

less susceptible to some perceptual illusions (e.g., Happé, 1996; Mitchell, Mottron, Soulieres, & Ropar, 

2010; Ropar & Mitchell, 2002), results are mixed and often complicated by heterogeneity in sampling 

characteristics (Van der Hallen, Evers, Brewaeys, Van den Noortgate & Wagemans, 2015). 
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To address these empirical inconsistencies and better separate autism-specific atypicalities from 

potential confounds (e.g., cognitive ability, symptom severity, development and comorbidities), recent 

research has explored how sensorimotor outcomes relate to autistic-like traits in general populations 

(Landry & Chouinard, 2016). Autistic-like traits are behavioural characteristics such as social 

imperviousness, directness in conversation, lack of imagination, affinity for solitude, and difficulty 

displaying emotions (Gernsbacher, Stevenson & Dern, 2017), which can be readily indexed using self-

report measures such as the Autism Spectrum Quotient (AQ: Baron-Cohen et al., 2001). Such autistic-

like traits vary continuously across the general population, with ASD proposed to reside at the extreme 

end of this continuum (Baron-Cohen et al., 2001; 2006; Ruzich et al., 2015). Consequently, empirical 

links between self-reported autistic-like traits and behavioural variables have enabled researchers to 

identify various cognitive, perceptual and social differences associated with autism (e.g., Almeida 

Dickinson, Maybery, Badcock & Badcock, 2012; Poljac, Poljac & Wagemans, 2012; Cooper, Simpson, 

Till, Simmons & Puzzo, 2013; Jameel, Vyas, Bellesi, Roberts & Channon, 2014). 

Interestingly, higher levels of autistic-like traits have been shown to relate to reduced illusory 

effects in some non-clinical studies (e.g., Chouinard, Noulty, Sperandio, & Landry, 2013; Chouinard, 

Unwin, Landry & Sperandio, 2016). Recently, from a sensorimotor perspective, Buckingham and 

colleagues (2016) explored links between autistic-like traits and predictive sensorimotor control during 

object lifting, using a Size-Weight Illusion (SWI) paradigm. In the SWI, small objects are experienced 

as feeling heavier more than larger ones of an equal mass (Charpentier 1891), an effect underpinned by 

the prior expectation that larger items tend to be heavier than smaller items (Buckingham, 2014). 

Interestingly, no relationship emerged between autistic-like traits and the magnitude of this illusion, 

challenging assumptions of broad autism-related atypicalities in prediction (e.g., Pellicano and Burr, 

2012). However, participants with higher levels of autistic-like traits showed reduced ‘top-down’ bias 

of movement, as indexed by differences in peak grip and load force rates between larger (heavy-

looking) and smaller (lighter-looking) objects. These findings suggest that, despite being equally 

susceptible to the perceptual SWI, high-trait individuals are less inclined to utilise prior information in 
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their motor programmes, a dissociation which has also been reported for the rubber-hand illusion 

(Palmer et al., 2013; 2015). 

The transferability of these results across movement-based contexts remains unclear, as 

observed relationships were weak (R2 = 0.06) and likely dependent on contextual factors. On one hand, 

‘top-down’ expectations of weight influence lifting forces when objects differ in material, shape and/or 

density (Gordon, Forssberg, Johansson & Westling, 1991; Grandy & Westwood, 2006; Buckingham, 

Cant & Goodale, 2009). Similarly, abilities to regulate grip forces are influential in various daily living 

skills, including those known to be impaired in autism (e.g., dressing and writing; Fuentes et al. 2009; 

Wang et al., 2015). Conversely though, Buckingham and colleagues’ (2016) results may not necessarily 

reflect gross attenuations in the use of prior information, as lifting actions are directed by various 

cognitive (e.g., expected weight; Johansson & Westling, 1988), attentional (e.g. vision; Gordon et al., 

1991) and haptic (e.g., density; Grandy & Westwood, 2006) mechanisms. Moreover, it is argued that 

something is unique about how volumetric features are processed in the brain (Saccone & Chouinard, 

2018), with the SWI underpinned by context-specific ‘top-down’ expectancies (i.e., predictions related 

to size-weight modelling; Buckingham & Goodale, 2013) and haptic cues (e.g., object density; 

Buckingham, 2014). As these processing tendencies are not entirely dependent on prior experience or 

knowledge (Saccone & Chouinard, 2018), further scrutiny into the observed effects is warranted. 

Therefore, we utilised a Material-Weight illusion (MWI) paradigm to better isolate associations 

between autistic-like traits and predictive sensorimotor control. Like the SWI, the MWI occurs when 

heavy-looking materials (e.g., granite) are perceived as feeling lighter, and lifted with greater initial 

force rates, than lighter-looking (e.g. polystyrene) items of the same mass (Wolfe 1898; Seashore 1899; 

Buckingham et al., 2009).  Importantly, these effects are not driven by size-based expectations or low-

level haptic cues (e.g., variations in centre of mass or density), but by prior expectations relating to 

material properties derived from prior experiences (Saccone & Chouinard, 2018). Consequently, in line 

with predictive theories of autism (Pellicano & Burr, 2012; Sinha et al., 2014) and previous illusory 

research (e.g., Chouinard et al., 2013), we hypothesised that the number of autistic-like traits an 

individual presents will negatively correlate with the magnitude of the perceptual MWI. 
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Beyond our examination of fingertip forces, we conducted a multi-modal assessment of 

sensorimotor control to explore whether any abnormalities are broad and transferable across processing 

domains (Pellicano & Burr, 2012), or whether they are underpinned by precise mechanisms (e.g., 

relating to environmental volatility, Lawson et al., 2017).   Specifically, to extend Buckingham and 

colleagues’ (2016) previous findings, we probed expectation-related changes in both lifting forces and 

velocities between light- (polystyrene) and heavy-looking (granite) materials. Here, attenuations in 

‘top-down’ control can be signalled via less-divergent lifting profiles (i.e., reduced expectation-based 

scaling of movement; Johansson & Westling, 1988) and prolonged preparatory movements phases, 

which facilitate proprioceptive (i.e., ‘bottom-up’) interpretations of object mass (Hamilton, Joyce, 

Flanagan, Frith, & Wolpert, 2007). We also measured visual search rate and gaze fixations, as longer 

fixations prior to skill execution reflect extended periods of ‘top-down’ cognitive processing (Vickers, 

1996) and increases in search rate (i.e., shorter, more-frequent fixations) signal more stimulus-driven 

attentional control (Williams et al., 2002; Corbetta et al., 2008). On the basis of the aforementioned 

theories (Pellicano & Burr, 2012; Sinha et al., 2014) and Buckingham and colleagues’ (2016) data, 

which posit that socio-behavioural and movement-based difficulties in autism are both underpinned by 

atypical predictive processing, we estimated that ‘top-down’ sensorimotor control would be correlated 

with self-reported autistic-like traits. Specifically, greater autistic-like traits were hypothesised to co-

vary with a reduced susceptibility to the perceptual MWI, attenuated expectation-based scaling of lifting 

force rate, prolonged preparatory movement kinematics, elevated visual search rates and shorter gaze 

fixations prior to skill execution. 

 

Methods 

Participants 

Ninety-two participants (47 males, 45 females; 23.10 ± 3.32 years) were recruited, the majority of whom 

(n = 83; 90%) were self-reported right-handers. All were naïve to the study aims and had normal or 

corrected-to-normal vision. Participants reporting any condition known to affect sensorimotor control, 

including ASD, were excluded. One individual with developmental co-ordination disorder and one with 
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prior injury was removed. The study received approval from the School of Sport and Health Sciences 

Ethics Committee (University of Exeter) and informed consent was obtained from all participants. 

Materials 

To measure autistic-like traits, participants completed the 50-item adult Autistic Quotient (AQ: Baron-

Cohen et al. 2001). The AQ assesses five sub-traits associated with ASD: attention to detail, attention 

switching, imagination, communication and social skills.  Participants self-reported on a 4-point Likert 

scale, signalling whether they “definitely agree”, “slightly agree”, “slightly disagree” or “definitely 

disagree” with fifty itemised statements assessing each subscale. Example statements include “I enjoy 

social occasions” (social skills), “I tend to notice details that others do not” (attentional switching) and 

“I am fascinated by dates” (attention to detail). The measure has proven reliable and valid for research 

use in general populations (Baron-Cohen et al., 2001; Woodbury-Smith et al. 2005), providing an 

overall score out of 50, whereby higher numbers reflect greater autistic tendencies. A score of 32 was 

proposed as a threshold above which seeking a diagnosis would be recommended for people who 

thought they might be autistic (Baron-Cohen et al., 2001). As such, to reduce the possibility of 

relationships being driven by clinically-related confounding factors (e.g., cognitive ability, symptom 

severity, development; Landry & Chouinard, 2016), participants who recorded above this value were 

excluded from statistical analysis after they had completed the study (as in Buckingham et al., 2016). 

Participants were then presented with three identically-sized (5 x 5 x 5 cm) cubes with different 

surface materials (Figure 1A), namely: granite (unaltered density: 2.6 g/cm3), corkwood (unaltered 

density: 0.25 g/cm3), and expanded polystyrene (unaltered density: 0.03 g/cm3). Specifically, 

polystyrene (i.e., light-looking) and granite (i.e., heavy-looking) were used to elicit the MWI, whereas 

corkwood was selected to provide a ‘control’ object which was markedly closer to its natural (i.e., 

expected) weight. Each of the surface materials were sealed around a hollow wooden box, filled with 

lead shot and putty to provide a weight of 230 grams. A clear adhesive was used to seal the surface 

material to its inner structure, thereby making the object appear completely made from its visible outer 

material. Care was taken to ensure that the centre of mass coincided with each object’s geometric centre. 
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A mount was positioned on each object’s top surface to facilitate lifting. Attached to this mount 

was an ATI Nano-17 Force transducer fitted within an aluminium and plastic handle (Figure 1B), which 

recorded forces in 3 dimensions at 500 Hz. Grip force was defined by forces orthogonal to the handle’s 

surface, whereas load forces were yielded from the vector sum of the remaining values. Four reflective 

markers were attached to the object handle to create a detectable rigid body, which was tracked at 120-

Hz by infrared cameras using motion capture technology (OptiTrack Flex13, NaturalPoint, Corvallis, 

Oregon). Four markers were also positioned on a ‘lifting glove’ (Figure 1B), which was worn on the 

dominant hand of participants to track hand movements1. Participants were fitted with a Pupil Labs 

mobile eye-tracking system (Pupil Labs, Sanderstrasse, Berlin, Germany; Kassner, Patera & Bulling, 

2014), a pair of lightweight glasses (34 g) which collates information from scene and infrared eye 

cameras to calculate gaze positions at 90 Hz (spatial accuracy of  ± 0.60° of visual angle; 0.08° 

precision). Prior to lifting procedures, the eye-tracking system was calibrated using the manufacturers 

built-in screen marker routine (Pupil Labs, 2016), which was presented upon a large LED screen (60.96 

cm; Dell Computer Corporation, Round Rock, Texas) that spanned the entire lifting workspace2. 

Calibration procedures were repeated upon any displacement of gaze cameras. A chin-rest was attached 

to the table to restrict head movements and a manual clapper board concealed objects before trials. 

 

Figure 1. The expanded polystyrene, corkwood and granite objects lifted by participants (A) and the 

experimental set-up during a lifting trial (B). 
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Procedure 

Participants first completed the AQ before undertaking the lifting protocol, consisting of five baseline 

lifts and twenty-four subsequent trials. Participants were seated throughout these trials, with their head 

positioned upon the chin-rest, and were instructed to start with their dominant hand positioned to the 

side of the object. Each object was placed quietly in front of participants and concealed behind a closed 

clapper board until the onset of each trial, so that there was no prior indication of their properties. Upon 

a computer-generated auditory tone, the manual clapper board was opened to reveal an object, and 

participants reached out to grasp the lifting handle with their thumb and forefinger of their dominant 

hand. Participants were instructed to vertically lift the object in a ‘smooth, controlled and confident 

manner’ at a self-selected speed, before holding it steady ‘a few centimetres above the table’. Upon a 

second auditory tone (+4s after trial onset), they were required to gently place the object back in its 

starting position, before verbally reporting a numerical judgement about how heavy it felt. Apart from 

the condition that larger numbers should represent higher weights, no constraints or ranges were placed 

on this measure so as to minimise biases associated with ratio scaling (Zwislocki & Goodman, 1980). 

Instructions of these standardised procedures were given ahead of the lifting protocol. 

Thereafter, the corkwood object was lifted five times, with participants informed that the object would 

not change during these baseline lifts. No procedural errors were displayed by participants during 

baseline lifts 3-5, suggesting that they were all familiar with the task requirements. Subsequent MWI 

trials consisted of lifting each object 8 times, presenting a total of 24 lifts. The object used in each trial 

was determined from a completely randomised order, which was newly formulated for each participant 

to account for any potential order effects on weight perception (Maiello, Paulun, Klein & Fleming, 

2018). Upon completion of all procedures, participants were verbally debriefed. 

Data Analysis 

Perceived Heaviness Scores: Self-ratings for each lift were normalised to a z-score distribution to 

provide a measure of perceived heaviness. To quantify the magnitude of the experienced MWI, average 
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values for the heavier-looking (granite) objects were subtracted from those of the lighter-looking 

(expanded polystyrene) objects (as in Buckingham et al., 2009; 2016). 

Force Data: Extracted data from the force transducers were processed and analysed using a custom 

algorithm in MATLAB. Data were first smoothed using a 14-Hz dual-pass Butterworth filter, with 

forces perpendicular to the surface of the handle defined as grip force and resultant vectors of the 

tangential forces interpreted as load force (all as in Buckingham et al., 2009; 2016). To determine rates 

of change, data were differentiated with a 5-point central difference equation, with the maximum values 

on the initial lift for each trial determining peak grip (pGFR) and load (pLFR) force rates. Force rates 

from the first lift, as opposed to averages from all trials, were analysed, as lifting forces adapt rapidly 

over repeated lifts (Flanagan & Beltzner, 2000; Buckingham et al., 2009). To provide an index of 

prediction-led motor bias, grip (pGFRdiff) and load (pLFRdiff) force rates utilised in the first lift of the 

polystyrene object were subtracted from those of the granite object. Here, values from the first lift, as 

opposed to averages from across all lifts, were analysed, as differences in lifting forces diminish rapidly 

over repeated lifts (Flanagan & Beltzner, 2000; Buckingham et al., 2009)3. For these index scores, 

greater values would signify greater utility of feedforward information at a motor level. 

Kinematic Data: Positional data for each rigid body were smoothed using a dual-pass, zero-phase lag 

Butterworth filter at 10-Hz (the ‘optimum’ cut-off frequency reported for upper-limb movement control 

research; Franks, Sanderson & Van Donkelaar, 1990). Hand and object velocity were calculated from 

the average position of their respected rigid bodies. We then segmented trials into four distinct phases: 

Reach, Grasp, Transport and Hold (as in Lavoie et al., 2018). The reach phase started when hand 

velocity first exceeded 50 mm/s for three consecutive frames (Eastough & Edwards, 2007) and 

concluded upon the onset of grip force (i.e., the Grasp phase). The Lift phase was then determined from 

the first timepoint whereby both Hand and Object velocity exceeded 50 mm/s. Finally, the Hold phase 

was derived from the timepoint where the object reached its maximum vertical position (endpoint of 

Lift phase) until the onset of the second auditory tone (trial completion). Total movement time was 

calculated from the onset of Reach to the offset of the Hold phase. The duration of each phase was 

recorded for baseline lifts and for the first lift of each MWI-inducing object. Furthermore, maximum 
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velocity of the hand during reach (MRV) and lift (MLV) phases was recorded, as were the timepoints 

where this occurred (as a % of total movement time). 

Gaze Data: Visual fixations were extracted from gaze data using Pupil Player software (Pupil Labs, 

2016). Fixations were defined as a gaze that remained on a location (within 1° visual angle) for a 

minimum of 120 ms, with the total number and average duration of fixations recorded. To quantify 

visual search rate, the number of fixations were divided by the average fixation duration. To index ‘top-

down’ control, we calculated the Quiet Eye (QE) duration, which represents the final fixation or tracking 

gaze before the initiation of a planned motor response (Vickers, 1996). This was operationalised as the 

final fixation or tracking gaze directed to any single location in the workspace within 3° of visual angle 

(of the normalized position of the fixation's centroid) for a minimum of 100 ms prior to the onset of the 

lift phase. These variables were assessed for baseline trials and for the first lift of each MWI object. 

Longer QE durations signify greater ‘top-down’ processing (Vine, Moore & Wilson, 2014), whereas 

higher search rates are indicative of more stimulus-driven attention (Corbetta et al., 2008). 

Eye-Hand Integration: To index the integration between gaze and kinematic outcomes, cross-

correlational analysis (based on Chattington, Wilson, Ashford, & Marple-Horvat, 2007) explored 

corresponding signals for the changes in the vertical component of eye and hand movement. Firstly, 

positional hand data were resampled at 90 Hz, via interpolation, and gaze data were smoothed using a 

dual-pass, zero-phase lag Butterworth filter at 45-Hz (i.e., a low-pass cutoff deemed appropriate for 

detecting saccadic eye movements; Bahill, Brockenbrough & Troost, 1981). Thereafter, the two signals 

were manually synchronised for time, using detectable landmarks in the motion-capture and eye-

tracking footage. Specifically, the frame denoting the onset of the reach movement was visually 

detected in the raw gaze data, before being aligned with the corresponding frame in the motion capture 

data (i.e., where hand velocity first exceeds 50 mm/s for three consecutive frames). As the synchronised 

signals followed notably comparable profiles during the grasp, lift and hold movements (see Appendix 

1), data was then segmented from the start of the grasp phase (i.e., the timepoint corresponding to the 

onset of grip force) to the offset of the hold phase (i.e., the timepoint where the ‘object’ rigid body 

reached its maximum vertical position). The resulting cross-correlogram identified the peak covariation 
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of the two signals (i.e., peak R) and the ‘lag’ (converted into time) for when this peak covariation 

occurred. This ‘lag’ measure quantified the degree to which one signal may lead another, with lower 

(i.e., more negative values) signifying that eye movements were preceding the hand to a greater extent 

in a more feedforward manner. This provided further insight into whether systems are integrated in a 

‘top-down’ or ‘bottom-up’ manner (Chattington et al., 2007). 

Preliminary Analysis: Patterns of missing and complete values were identified for all data and the 

probability of these patterns diverging from randomness was estimated using Little’s MCAR test. To 

assist missing value analysis, Cronbach’s alpha coefficients assessed the reliability of AQ subscales. 

Outliers were inspected for all variables and, where detected, removed from their respected analysis (as 

recommended by Osbourne, 2013). Here, univariate outliers were identified as values > 3.29 SD above 

or below the mean (p < .001) and multivariate outliers ascertained by extreme Mahalanobis distances 

(p < .001; Tabachnick & Fidell, 2007). Participants with >10% of data identified as ‘missing’ or 

‘outliers’ were excluded from analysis. For all variables, normality of data was examined from z-scores 

for skewness and kurtosis, while assumptions relating to linearity, homoscedasticity and 

multicollinearity were inspected from correlation matrices and scatterplots of residuals (Garson, 2012). 

Statistical Analysis:  To assess whether participants experienced the MWI, and showed prediction-

related motor patterns, separate 3 (polystyrene, corkwood, granite) x 8 (trials 1-8) repeated measures 

ANOVAs were conducted, with pGFR, pLFR and heaviness scores entered as dependent variables. 

Planned t-tests using the Bonferroni correction probed significant effects, with effect sizes calculated 

using partial-eta squared (ηp2). Pearson’s correlation examined relationships between AQ scores, 

perceptual MWI index scores and prediction-related measures of force (pGFRdiff, pLFRdiff), 

movement (grasp phase duration, MRV, MLV and time to maximum velocity) gaze (search rate, QE 

duration) and eye-hand ‘lag’. Statistical analysis was performed using SPSS 25.0 for Windows (SPSS 

Inc., Chicago, IL), with significance accepted for all tests at p < 0.05 and data presented ± SD. 

 

Results 

Preliminary Analyses 
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Incomplete cases were inferred as missing completely at random on the basis of Little’s MCAR test (p 

> .05), while Cronbach’s alpha coefficients indicated that AQ subscales were highly-reliable (α >.70; 

Nunnaly, 1978). Consequently, missing AQ items (0.04%) were replaced using scale mean imputation 

and participants (n = 4) with >10% of incomplete data were excluded from analysis. Three further 

participants were excluded due to “clinically significant” AQ scores (>32) affording a final sample of 

83. Remaining AQ scores ranged from 5-32 (Mean: 15.98 ± 6.60) and are thus comparable to 

Buckingham and colleagues’ (2016) previous dataset (Mean: 15.41 ± 6.09). For sensorimotor outcomes, 

six participants were removed from force analysis (remaining n = 77), due to equipment malfunction 

and/or outlier analysis, while four participants were removed from kinematic analysis (remaining n = 

79) and twenty from gaze analysis (remaining n = 63) due to poor data quality. There were no statistical 

violations relating to normality, homoscedasticity and linearity observed on the remaining data. 

Mauchly’s test indicted that pGFR and pLFR violated assumptions of sphericity (p < .05) and the 

Greenhouse-Geisser correction was applied. No further modification or exclusion of variables was 

necessary. None of the perceptual or sensorimotor variables were significantly different between 

genders (all p  > .12) or left- and right-handers (p’s > .15; as in Buckingham, Ranger & Goodale,  2012).  

Primary Analysis 

Perceptual MWI: ANOVA revealed a robust MWI was induced (Figure 2A), with effects of material 

on perceived heaviness evident (F(2, 162) = 59.57, p < .001, ηp2 = .42). Average scores for the polystyrene 

object were greater than corkwood values (t(82) = 5.42, p < .001), which, in turn, were significantly 

greater than those reported for the granite object  (t(82) = 5.38, p < .001). Surprisingly, a ‘material-by-

trial’ interaction also emerged (F(10.91, 883.43) = 3.54, p < .001, ηp2 = .04), with the magnitude of the 

illusion greater on the initial lift of each object (Figure 2A). Nevertheless, differences between materials 

were present during both initial (F(2, 164) = 59.59, p < .001, ηp2 = .40) and final (F(2,164) = 24.05, p <.001, 

ηp2 = .23) trials, suggesting that the MWI remained over the protocol. However, no significant 

associations between AQ scores and the magnitude of this effect emerged (R = .11; p = .34; Figure 3A), 

indicating that autistic-like traits are unrelated to one’s experience of this perceptual illusion. 
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Figure 2. Trial-by-trial averages (± SEM) for normalised perceived heaviness ratings (A), peak grip 

force rate (pGRF; B) and peak load force rate (pLFR; C) across all trials. 

Sensorimotor Control: ANOVA revealed significant effects of object material on pGFR (F(2,148) = 

35.298, p < .001, ηp2 = .32) and pLFR (F(2,144) = 18.09, p < .001, ηp2 = .20). As displayed in Figure 2, 

fingertip forces were lower on the first trial when lifting the polystyrene box compared to when lifting 

the corkwood (pGFR: mean difference = 3.76 ± 8.05 N/s; t(76) = 4.10, p < .001; pLFR: mean difference 

= 2.18 ± 4.01 N/s; t(77) = 4.81, p < .001) and granite (pGFR: mean difference = 10.04 ± 14.10 N/s; t(77) 

= 6.29, p < .001; pLFR: mean difference = 3.31 ± 5.73 N/s; t(76) = 5.06, p < .001) objects. Similarly grip 

forces used to lift the granite box were significantly greater than those used to grip the corkwood one  

(pGFR: mean difference = 6.25 ± 12.33 N/s; t(76) = 4.45, p < .001), although pLFR were not significantly 
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different between these objects (t(76) = 1.05, p = .05). As expected, prediction-led biases in fingertip 

forces reduced over the lifting protocol (Figure 2), suggesting that sensorimotor adaptation occurred. 

Therefore, this force data indicated that material-related weight expectancies biased motor control, 

particularly on the initial lifts of each object. However, pGFRdiff and pLFRdiff values were not 

significantly related to AQ scores (both p > .15; Figure 3), suggesting that this generic predictive bias 

of motor control is not linked to autistic tendencies. Furthermore, no significant relationships emerged 

between AQ scores and any gaze or kinematic indicators of predictive control (all p > .12). 

  

Figure 3. Scatter plots highlighting associations between AQ scores and the magnitude of the SWI (A), 

pGFRdiff (B) and pLFRdiff (C). No significant relationships emerged (all p > .05).  
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Exploratory Analysis 

Naturally, effective predictive control of perception and action is dependent on accurate representations 

of environmental statistics (Friston, 2005; Bastos et al., 2012), with ‘bottom-up’ attentional systems 

activated when uncertainty about one’s beliefs is high (Yu & Dayan, 2003). However, recent theory 

(e.g., Lawson et al., 2014; 2017; Palmer et al., 2017) suggests that feedforward atypicalities in autism 

may arise from abnormalities in such processing. Therefore, given the null associations observed 

between autistic-like traits and broad indices of predictive control, we explored finer mechanisms 

relating to the context-sensitive integration of prior information and environmental statistics. 

Specifically, we indexed the degree to which AQ scores co-vary with uncertainty-related adjustments 

in gaze control, through subtracting average search rates in the final three baseline trials (i.e., where 

object properties were familiar and the likelihood of unexpected outcomes were minimal) from the first 

lift of each MWI object (i.e., where probabilistic and environmental statistics were uncertain) 3. 

As expected, search rate increased between baseline and MWI lifts (t(62) = 4.24, p < .001), an 

effect driven by shorter fixation durations (average change: -0.07 ± 0.13 s) which indicated that ‘bottom-

up’ attentional systems were generally activated in uncertain trials (Figure 4A). Interestingly though, 

these context-sensitive increases (i.e., differences in search rate between baseline and high-uncertainty 

trials) were negatively correlated with AQ scores (R = -.32, p = .01), with more pronounced changes in 

low- compared to high-trait participants (Figure 4B). This suggests that the utility of ‘top-down’ 

information was less flexible in those with greater autistic-like traits (Lawson et al, 2017). 

Finally, given the possibility that some autistic-like traits may be more closely related to 

predictive processing than others, we explored relationships between individual AQ subscales and each 

of the sensorimotor outcomes included in the primary analysis (see Appendix 2 for Table). In line with 

our main findings, no associations emerged for any of force, kinematic, gaze or perceptual variables 

(all p > .08), reinforcing observations that broad sensorimotor prediction is unrelated to autistic-like 

traits in the context of the MWI. Eye-hand ‘lag’ was observed to weakly correlate with ‘attention to 

detail’ (R = .26, p = .045) and ‘attention switching’ (R = .28, p = .03) subscales though, suggesting that 

there may be an association between visuomotor integration and autistic-like attentional traits.  
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Figure 4. A: Changes in search rate (± SEM) from Baseline (lifts 3-5) to uncertain (Initial MWI lifts 

for each object) lifts, B: scatter plot highlighting the relationship between AQ scores and the magnitude 

of these changes. *Denotes significant difference (p < .05). 
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autistic-like traits and most classical illusions (Chouinard et al., 2016). In particular, our results indicate 

that the null perceptual effects observed by Buckingham and colleagues (2016) in the SWI were not 

specific to size processing mechanisms, and hold true across a range of prior expectations. 

Furthermore, and again contrary to our initial hypotheses, no broad-scale abnormalities in ‘top-

down’ control of action were detected in high-trait individuals. Specifically, the extent to which 

prediction influenced motor patterns and gaze behaviours was unrelated to AQ scores, despite previous 

findings that high-trait individuals utilise prior information differently in lifting motor programmes 

(Buckingham et al., 2016). Instead, participants generally displayed classic lifting profiles, irrespective 

of their AQ scores, whereby heavy-looking items were lifted with higher force rates than lighter-looking 

ones (Figures 2B-C; Gordon et al., 1991; Flanagan & Beltzner, 2000). Although seemingly 

contradictive of various sensorimotor research (e.g., Mosconi et al., 2013; Buckingham et al., 2016), 

this corresponds with a meaningful body of clinical evidence which has shown broad prediction-

dependent capabilities to be typical in autistic people (Mostofsky, Bunoski, Morton, Goldberg & 

Bastian., 2004; Gidley-Larson et al., 2008; Ego et al., 2016; Tewolde et al., 2018). Findings also align 

with recent evidence that autistic and neurotypical individuals attend to similar information when 

presented with visual illusions (Chouinard, Royals, Landry & Sperandio, 2018). Consequently, in 

contrast to broad predictive accounts of autism (e.g., Pellicano & Burr, 2012; Sinha et al., 2014), our 

data indicates links between sensorimotor prediction and autistic-like traits may not be due to any 

generic processing abnormalities, but rather due to context-sensitive ‘high-level’ mechanisms. 

Recent theories propose that autistic-like traits may relate to finer mechanisms involved in the 

context-sensitive adjustment of ‘top-down’ and ‘bottom-up’ control systems (Lawson et al., 2014; 2017; 

Palmer et al., 2017). These contemporary accounts argue that prediction-related atypicalities may arise 

from implicit tendencies to misinterpret the uncertainty of an environment, with perception and action 

resting on internal representations of volatility (Friston, 2005; Bastos et al., 2012). Typically, under 

more volatile conditions, less predictive attentional patterns emerge (Vossel et al., 2013), as evident in 

our data, where search-rate generally increased between baseline and uncertain trials (Figure 4A). This 

suppression of ‘top-down’ control is often adaptive, as prior expectations are less reliable in uncertain 
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environments (Brown & Friston, 2012), and resultant elevations in neural gain facilitate learning (Burge 

et al., 2008; Kording et al., 2007). Interestingly though, context-sensitive changes in search rate were 

reduced in high-trait participants (Figure 4B), suggesting that the dynamic integration of prior 

information and environmental statistics may be decreased in these individuals. Although novel, such 

data is consistent with perceptual research, where high-trait participants showed reduced distinction 

between low- and high-volatility conditions (Lawson et al., 2017). They also correspond with recent 

observations in the rubber hand illusion, where participants with greater autistic-like traits displayed 

reduced uncertainty-related slowing of movement, despite experiencing typical perceptual effects 

(Palmer et al., 2013; 2015). Taken together, these results support proposals that predictive atypicalities 

in autism may stem from misrepresentations of environmental uncertainty (Lawson et al., 2014; 2017). 

These contemporary explanations account for why feedforward differences are shown in some, but 

not all empirical paradigms, as environmental statistics will naturally vary. For example, it is plausible 

that context-sensitive representations of uncertainty differed in the present MWI study from 

Buckingham and colleagues’ (2016) SWI protocol, where the congruity between expected and actual 

weight will have differed. Furthermore, given the “finer”, “context-sensitive” predictive processes 

implicated by these theoretical frameworks (Palmer et al., 2017; p.521), quantifiable differences in 

sensorimotor control are unlikely to transfer across SWI and MWI lifting paradigms, as they are 

underpinned by different mechanisms (Buckingham, 2014; Saccone & Chouinard, 2018). Nevertheless, 

various autism-related movement difficulties can be explained by heightened perceptions of volatility, 

with motor skill performance (Land, 2009) and adaptation (Burge et al., 2008) both impaired by 

contextually-inappropriate weightings of ‘top-down’ and ‘bottom-up’ control. Therefore, given the 

growing evidence for these explanations, research should explore the effects of environmental volatility 

on sensorimotor control in autism. The use of weight-based illusions to further this understanding 

remains profitable, as they facilitate holistic exploration of sensorimotor control in a manner that is not 

contingent upon communicative or motivational competencies (Fisk & Goodale 1989). 

Currently, our findings must be interpreted with caution in the context of clinical populations 

(Gregory & Plaisted-Grant, 2013), with inferences essentially indirect at this stage (Skewes, Jegindø & 
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Gebauer, 2015). Although trait-based approaches are advocated in recent research (Chouinard et al., 

2013), motor impairments are more prevalent and/or severe in clinical populations (Green et al., 2002) 

and may thus differ in aetiology. Further research is consequently required to examine whether results 

hold in individuals with clinically-diagnosed ASD, to assist in the development of evidence-based 

practical interventions that are warranted by autistic stakeholders and representative organisations 

(Pellicano et al., 2014; Myers & Johnson, 2007). Indeed, it is argued that greater scrutiny into 

prediction-related mechanisms, such as those discussed in here, could present numerous avenues for 

prospective diagnostic and treatment programmes (see Haker et al., 2016 for detailed discussion). 

Though it must be emphasised that our study provides only a tentative starting point in this research 

development, it is hoped that future work will be directed towards helping autistic people “manage 

themselves with whatever difficulties they have” (Pellicano et al., 2014; p.6).  

It must also be noted that the simplistic nature of our motor task may limit the validity of ‘eye-

hand’ measures. As the goal of each trial was to assess object weight, deviations in ‘top-down’ and 

‘bottom-up’ mechanisms were difficult to detect, with the objects providing an informational source for 

both attentional systems. Thus unsurprisingly, ‘eye-hand’ lag times (0.23 ± .09) were temporally closer 

than those previously observed (e.g., Lavoie et al., 2018), as gaze tended to follow the object in a manner 

that aids perception of weight (Hamilton et al., 2007). Interestingly, sub-trait analysis (Appendix 2) 

suggested that this integration of visuomotor systems may be related to autistic-like attentional traits. 

This exploratory link evidently requires further empirical scrutiny, with heightened perceptions of 

volatility proposed to disrupt the ‘connectivity’ of neurobiological systems (Friston et al., 2013). More 

sophisticated eye-hand analysis is warranted during tasks with an external goal (e.g., Lavoie et al., 

2018), where eye movements typically precede those of the hand in an empirically-quantifiable fashion 

(Chattington et al., 2007). Such enquiry could improve our understanding of how sensory domains 

might be related in autism (Robertson & Baron-Cohen, 2017).  

Overall, our findings suggest that sensorimotor atypicalties in people with greater autistic 

tendencies do not originate from domain-general processing impairments, but rather from specific 

differences in the utility of predictive control. Participants with greater autistic-like traits appeared 
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equally susceptible to predictive biases elicited by the MWI at multiple sensorimotor levels. However, 

these individuals showed reduced context-sensitive adjustments in gaze control under uncertain 

conditions, supporting links between autistic-like traits and inflexible representations of environmental 

volatility. Research is required to further our mechanistic understanding of these effects and enable the 

development of effective evidence-based strategies for the autism community. 
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Footnotes 

1. Although there were initial concerns over whether these reflective markers would artificially 

disrupt participants’ gaze during trials, raw data indicated that participants rarely, if ever fixated 

on these features. Such observations are reinforced by a recent object interaction study (Lavoie 

et al., 2018), where identical motion capture and gaze registration systems showed that 

participants rarely fixate on ‘marked’ anatomical regions (e.g., the hand) and instead focus on 

task-relevant cues (e.g., the objects, prospective lifting paths). Therefore, we are confident that 

this issue did not confound our gaze data. 

2. Pilot gaze positional data showed minimal variance in the z-axis (i.e., depth), with attention 

almost entirely deployed towards the current and future object position (as in Johansson, 

Westling, Backstrom, & Flanagan, 2001). As participants were only instructed to move the 

object in the vertical plane, no corrections were deemed necessary to account for the altered 

geometry of the 3-dimensional workspace. Instead, the calibration screen monitor was placed 

exactly at the location of the ‘lifting platform’, so that gaze could be specifically calibrated in 

relation to the expected visual workspace. 

3. This rapid trial-by-trial adaptation is not shown in relation to the perceptual MWI, where 

erroneous perceptions of heaviness remain unchanged throughout extended protocols 

(Buckingham et al., 2009). 

4. Search rate, as opposed to QE duration, was selected as our index of gaze control, as there was 

greater between-subject variance (i.e., individual differences) in this measure at baseline. 

Furthermore, the index measure was hypothesised to encapsulate the context-sensitive 

activation of ‘bottom-up’ attentional systems that emerge in uncertain environments (Yu & 

Dayan, 2003; Vossel et al., 2013).
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Appendix 1: Time-synchronised signals of the vertical component of eye and hand movements 

during a baseline lifting trial. Data taken from a single participant’s (ID: 38) first baseline lift. Time 

adjusted relative to grasp phase onset.  

 

Note: Following grasp phase onset (time = 0), positional signals follow comparable vertical profiles, 

with hand movements slightly ‘leading’ changes in gaze position (Peak R = 0.60; ‘Lag’ = 0.11).
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Appendix 2: Exploratory Analysis.  

 

Supplementary Table 1. Bivariate correlations between sensorimotor outcomes and sub-traits 

assessed in the 50-item Autistic Quotient. 

 AQ Subscales 

 
Social Skills 

Attention 

Switching 

Attention to 

Detail Communication Imagination 

MWI Magnitude 0.21 0.13 -0.06 0.14 0.04 

pGFRdiff 0.06 0.17 0.09 0.08 0.13 

pLFRdiff 0.01 0.06 0.07 0.16 0.15 

Grasp Time -0.11 -0.11 -0.16 -0.20 -0.01 

MRV 0.05 0.04 -0.10 -0.06 -0.05 

MLV 0.19 0.01 0.16 0.18 -0.02 

Time to MRV -0.04 0.06 0.04 0.10 -0.12 

Time to MLV -0.14 -0.14 0.04 -0.06 0.03 

Search Rate 0.07 0.15 -0.13 0.11 -0.09 

QE duration -0.01 -0.08 0.14 -0.15 0.02 

Eye-Hand ‘lag’ 0.04 0.26* 0.28* 0.05 0.03 

AQ: Autistic Quotient; MWI: Material-Weight Illusion; pGFRdiff: difference in grip force rate; pLFRdiff: 

difference in load force rate; MRV: maximum reach velocity; MLV: maximum lift velocity; QE: quiet eye;  
*
 p < .05 

 


