

Citation for published version:
Accattoli, B & Guerrieri, G 2019, 'Abstract Machines for Open Call-by-Value', Science of Computer
Programming, vol. 184, 102275. https://doi.org/10.1016/j.scico.2019.03.002

DOI:
10.1016/j.scico.2019.03.002

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Oct. 2021

https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1016/j.scico.2019.03.002
https://researchportal.bath.ac.uk/en/publications/abstract-machines-for-open-callbyvalue(72e5c4c5-73e2-4bad-89a8-67743b0da60e).html

Abstract Machines for Open Call-by-ValueI

Beniamino Accattolia, Giulio Guerrierib,∗

aINRIA, UMR 7161, LIX, École Polytechnique, Palaiseau, France
bUniversity of Bath, Department of Computer Science, Bath, United Kingdom

Abstract

The theory of the call-by-value λ-calculus relies on weak evaluation and closed
terms, that are natural hypotheses in the study of programming languages. To
model proof assistants, however, strong evaluation and open terms are required.
Open call-by-value is the intermediate setting of weak evaluation with (possibly)
open terms, on top of which Grégoire and Leroy designed one of the abstract
machines of Coq. This paper provides a theory of abstract machines for the
fireball calculus, the simplest presentation of open call-by-value.

The literature contains machines that are either simple but inefficient, as they
have an exponential overhead, or efficient but heavy, as they rely on a labelling
of environments and a technical optimization. We introduce a machine that is
simple and efficient : it does not use labels and it implements the fireball calculus
within a bilinear overhead. Moreover, we provide a new fine understanding
of how different optimizations impact on the complexity of the overhead, and
evidence that the time cost model we work with is minimal.

Keywords: lambda-calculus, call-by-value, abstract machine, weak evaluation,
cost model, complexity, fireball, size explosion, open term, implementation

This work is part of a wider research effort, the COCA HOLA project
https://sites.google.com/site/beniaminoaccattoli/coca-hola.

1. Introduction

The λ-calculus is the computational model behind functional programming
languages and proof assistants. Its elegant definition is based on just one macro-5

step computational rule, β-reduction, and does not rest on any notion of machine
or automaton. Compilers and proof assistants however are concrete tools that
implement the λ-calculus in some way—a problem clearly arises. There is a huge
gap between the abstract mathematical setting of the calculus and the technical

IThis is a revised and extended version of [1].
∗Corresponding author
Email addresses: beniamino.accattoli@inria.fr (Beniamino Accattoli),

g.guerrieri@bath.ac.uk (Giulio Guerrieri)

Preprint submitted to Science of Computer Programming September 26, 2019

https://sites.google.com/site/beniaminoaccattoli/coca-hola

intricacies of an actual implementation. This is why the issue of implementation10

is studied via intermediate abstract machines, that are implementation schemes
with micro-step operations and without too many concrete details.

Closed and strong λ-calculus. Functional programming languages are based on
a simplified form of λ-calculus, that we like to call closed λ-calculus, with two
important restrictions. First, evaluation is weak, i.e. it does not evaluate function15

bodies (until their formal parameters are replaced by actual arguments, if any).
Second, terms are closed, that is, they have no free variables. The theory of the
closed λ-calculus is much simpler than the general one (e.g., see p. 4).

Proof assistants based on the λ-calculus usually require the power of the full
theory. Evaluation is then strong, i.e. without the two above restrictions, and20

the distinction between open and closed terms no longer makes sense, because
evaluation has to deal with the issues of open terms even if terms are closed,
when it enters function bodies. We refer to this setting as the strong λ-calculus.

Historically, the study of strong and closed λ-calculi have followed orthogonal
approaches. Theoretical studies rather dealt with the strong λ-calculus, and it is25

only since the seminal work of Abramsky and Ong [2] that theoreticians started
to take the closed case seriously. Dually, practical studies mostly ignored strong
evaluation, with the notable exception of Crégut [3] and some recent work [4, 5, 6].
Strong evaluation is however essential in the implementation of proof assistants
or higher-order logic programming, typically for type-checking with dependent30

types as in the Edinburgh Logical Framework [7] or the Calculus of Constructions
[8], and for unification in simply typed frameworks like λ-Prolog [9].

Open call-by-value. In recent work [10], we advocated the relevance of the
open λ-calculus, a framework in between the closed and the strong ones, where
evaluation is weak but terms may be open. Its key property is that the strong35

case can be described as the iteration of the open one into function bodies. The
same cannot be done with the closed λ-calculus because—as already pointed
out—entering function bodies requires to deal with (locally) open terms.

The open λ-calculus did not emerge before because most theoretical studies
focus on the call-by-name strong λ-calculus, and in call-by-name the open/closed40

distinction does not play an important role. Such a distinction, instead, is
delicate for call-by-value (CbV for short) evaluation,1 where Plotkin’s original
operational semantics [11] is not adequate for open terms. We discussed this issue
at length in [10], where four extensions of Plotkin’s semantics to (possibly) open
terms are compared and shown to be equivalent. That paper then introduces45

the expression Open Call-by-Value (shortened Open CbV) to refer to them as a
whole, as well as Closed CbV and Strong CbV to concisely refer to the closed
and strong CbV λ-calculi.

1In CbV evaluation, a function’s arguments are evaluated before being passed to the
function, so that β-redexes can fire only when their arguments are values, i.e. abstractions or
variables. The idea of CbV evaluation is that only values can be duplicated or discarded.

2

The fireball calculus. The simplest presentation of Open CbV (see Prop. 1-2
in Sect. 2) is the fireball calculus λfire, obtained from the CbV λ-calculus by50

generalizing values into fireballs. Dynamically, β-redexes can fire only when the
argument is a fireball (fireball is a pun on fire-able). Fireballs extend values
by adding inert terms, which are terms of (recursive) form xf1 . . . fn, where
the fi’s are fireballs. Inert terms are always open, and so fireballs are simply
abstractions in Closed CbV—notably, then, on closed terms λfire coincides with55

Plotkin’s (Closed) CbV λ-calculus.
The fireball calculus was introduced without a name by Paolini and Ronchi

Della Rocca [12, 13], then rediscovered independently first by Grégoire and Leroy
[14], and then by Accattoli and Sacerdoti Coen [15], who also named it.

Coq by (open) levels. In 2002, Grégoire and Leroy used the fireball calculus to60

improve the implementation of the Coq proof assistant [14]. They implemented
Strong CbV by factoring such a task through Open CbV. They design an abstract
machine for the fireball calculus—that in our paper is called Open GLAM (see
Sect. 4 for details)—and then iterate it to evaluate Strong CbV by (open) levels :
the Open GLAM is first executed at top level (that is, out of all abstractions), and65

then re-launched recursively under abstractions. Their study is itself formalized
in Coq, but it lacks an estimation of the efficiency of the machine. It turns out
that the Open GLAM is inefficient, to the point of being unreasonable.

In order to continue our story some basic facts about cost models and abstract
machines have to be recalled (see [16] for a gentle tutorial, and [17] for a more70

general perspective about reasonable cost models for the λ-calculus).

Interlude 1: size explosion. In λ-calculi, the number of β-steps is the natural
candidate as a time cost model. However, it is well-known that λ-calculi suffer
from a degeneracy called size explosion: there are families of terms whose size
is linear in n, that evaluate in n β-steps, and whose result has size exponential75

in n. So, the number of β-steps does not seem to be a reasonable cost model,
because it does not even account for the time to write down the result of a
computation—the macro-step character of β-reduction seems to forbid to count
1 for each β-step. This problem affects all λ-calculi and all evaluation strategies.

Interlude 2: reasonable cost models and abstract machines. Despite size explosion,80

surprisingly, for many strategies the number of β-steps is a reasonable time cost
model, so that each single β-step can be seen as an elementary computation
step and counted as 1 in such a model. There is no contradiction: λ-calculi
can be simulated in alternative formalisms employing some form of sharing,
such as abstract machines. These settings manage a compact representation85

of terms (in particular, of the result of evaluation) via micro-step operations,
avoiding size explosion. Showing that a certain λ-calculus is reasonable is
usually done by simulating it with a reasonable abstract machine, i.e. a machine
implementable on a random access machine with asymptotic overhead polynomial
in two parameters: the number of β-steps in the calculus and the size of the90

3

initial term. If the overhead is bilinear (i.e. linear in both these parameters),
the machine (and the calculus it implements) is efficient.

The design of a reasonable abstract machine depends very much on the kind
of λ-calculus to be implemented, as different calculi admit different forms of size
explosion and/or require more sophisticated forms of sharing. For strategies in95

the closed λ-calculus it is enough to use the ordinary technology for abstract
machines, as first shown by Blelloch and Greiner [18] (1995), and then by Sands,
Gustavsson, and Moran [19] (2002), and, with other techniques, by combining
the results of Dal Lago and Martini [20] and [21] (2009).

Let us point out some details. Ordinary abstract machines (AM) for Closed
CbV provide reasonable implementations (up to sharing) on random access
machines (RAM) with a bilinear overhead (that is, linear in the number of
β-steps and in the size of the initial term, so these implementations are actually
efficient). The situation can be depicted as follows:

Closed CbV RAM

AM

bilinear

bilinear bilinear
(1)

With an attentive choice of the data structures it is also possible to be logarithmic100

in the size of the initial term, as recently shown by Accattoli and Barras [22].
The case of the strong λ-calculus is subtler and a more sophisticated sharing is

necessary, as shown by Accattoli and Dal Lago [23]. The topic of our paper is the
study of reasonable abstract machines for the intermediate case of Open CbV.

Fireball is reasonable. Accattoli and Sacerdoti Coen [15] studied Open CbV from105

the point of view of time cost models. Their work provides three contributions:

1. Open size explosion: they show that Open CbV is subtler than Closed
CbV by exhibiting a form of size explosion that is not possible in Closed
CbV, making Open CbV closer to Strong CbV rather than to Closed CbV.
Essentially, this means that ordinary abstract machines for Open CbV do
not provide reasonable implementations. For Grégoire and Leroy’s Open
GLAM the following diagram holds:

Open CbV/λfire RAM

Open GLAM

exponential

bilinear exponential (2)

2. Fireballs are reasonable: they show that the number of β-steps in λfire is
nonetheless a reasonable time cost model by exhibiting a refined abstract
machine, called GLAMOUr, that they prove to be reasonable;

3. And even efficient : they also optimize the GLAMOUr into the Unchaining

4

GLAMOUr, with a bilinear overhead, recasting diagram (1) in Open CbV:

Open CbV/λfire RAM

Unchaining
GLAMOUr

bilinear

bilinear bilinear (3)

This is an optimal solution. The speed-up shown by Accattoli and Barras110

[22] (lowering the dependence on the size of the initial term to logarithmic)
is specific to the evaluation of closed terms and does not lift to open terms.

The fine art of implementing Open CbV. Here we introduce two new abstract
machines, the Easy GLAMOUr (in Sect. 5-6) and the Fast GLAMOUr (in
Sect. 7), that are proved to be correct implementations of Open CbV (more115

precisely, of the right-to-left evaluation strategy in λfire, defined in Sect. 2) with
a polynomial and bilinear overhead, respectively. Our study refines the results
of Accattoli and Sacerdoti Coen [15] along four axes:

1. Simpler machines: both the GLAMOUr and the Unchaining GLAMOUr
of [15] are sophisticated machines relying on a labeling of terms. The120

unchaining optimization of the second machine is also quite heavy. Both
the Easy GLAMOUr and the Fast GLAMOUr, instead, do not need labels
and the Fast GLAMOUr is bilinear without the unchaining optimization.

2. Simpler analyses: the correctness and complexity analyses of the (Un-
chaining) GLAMOUr are developed in [15] thanks to an informative but125

complex decomposition via explicit substitutions, by means of the distilla-
tion methodology [24]. Here, instead, we decode the Easy GLAMOUr and
the Fast GLAMOUr directly to the fireball calculus, that turns out to be
much simpler. Moreover, the complexity analysis of the Fast GLAMOUr,
surprisingly, turns out to be straightforward.130

3. Modular decomposition of the overhead : we provide a fine analysis of
how different optimizations impact on the complexity of the overhead of
abstract machines for Open CbV, and how they can be modularly composed,
with modular effects on the overhead. In particular, we show that an
optimization considered essential in [15], namely substituting abstractions135

on-demand, is not mandatory for reasonable machines—the Easy GLA-
MOUr does not implement it and yet it is reasonable.

4. Understanding Strong CbV : we avoid—on purpose—the study of Strong
CbV, and yet our study provides insights into the complexity of imple-
menting it, independently of how it is defined. We show, indeed, that140

substituting abstractions on-demand can be avoided only as long as one
stays inside Open CbV, whereas it is mandatory for Strong CbV. Substi-
tuting abstractions on-demand is an optimization introduced by Accattoli
and Dal Lago [23] and currently no proof assistant implements it. Said
differently, our work shows that the technology currently in use in proof145

assistants is, at least theoretically, unreasonable.

5

Summing up, our work does not improve the known bound on the asymptotic
overhead of abstract machines for Open CbV, as the one obtained in [15] is already
optimal. Our contributions instead are a simplification and a finer understanding
of the subtleties of implementing Open CbV: we introduce simpler but still150

reasonable (and in some cases even efficient, as in [15]) abstract machines whose
complexity analyses are elementary, and we carry a new modular view of how
different optimizations impact on the (asymptotic) complexity of the overhead.
In particular, while [15] shows that Open CbV is subtler than Closed CbV, here
we show that Open CbV is simpler than Strong CbV, and that defining Strong155

CbV as iterated Open CbV, as done by Grégoire and Leroy [14], may introduce
an explosion of the overhead, if done naively.

This journal paper is a revised and extended version of [1]. The additions
with respect to [1] are:

• Proofs : detailed proofs of all claims (except for some ones already proved in160

the literature). Some proofs that are straightforward or trivially obtained
from very similar ones in the body of this paper are moved to Appendix B.

• Related machines: definitions and explanations of the abstract machines
closely related to the new ones, namely the simple but unreasonable one
by Grégoire and Leroy [14], reformulated according to our conventions165

and named Open GLAM (in Sect. 4), and the reasonable but complex
ones by Accattoli and Sacerdoti Coen [15], namely the GLAMOUr and
the Unchaining GLAMOUr (in Sect. 9).

• Examples and insights: we provide more examples of machine executions
together with refined explanations and insights. In particular, we stress170

the commutation between evaluation and the substitution of inert terms as
the key abstract property leading to reasonable machines for Open CbV.

• Minimality of the cost model : formal evidence that the number of steps
in the fireball calculus λfire is a minimal time cost model (in Sect. 10).
Technically speaking we do not prove minimality—that would require a175

proof of the non-existence of asymptotically faster implementations, and
it is not even clear how one could prove it. Nonetheless, our rigorous
examples show that a more parsimonious cost model would require some
radically stronger implementation technology.

At the end of the paper, Appendix A contains a glossary of rewriting theory180

and the explanation of some notations.

2. The Fireball Calculus λfire & Open Size Explosion

In this section we introduce the fireball calculus λfire, the presentation of
Open CbV we work with in this paper, and show the example of size explosion
particular to the open setting. We studied alternative presentations of Open185

CbV in [10, 25].

6

Terms t, u, s, r ::= x | λx.t | tu
Fireballs f, f ′, f ′′ ::= λx.t | i

Inert Terms i, i′, i′′ ::= x | if
Evaluation Contexts C ::= 〈·〉 | tC | Ct
Rule at Top Level Contextual closure

(λx.t)(λy.u) 7→βλ t{x�λy.u} C〈t〉 →βλ C〈u〉 if t 7→βλ u
(λx.t)i 7→βi t{x�i} C〈t〉 →βi C〈u〉 if t 7→βi u

Reduction →βf :=→βλ ∪ →βi

Table 1: The fireball calculus λfire.

The fireball calculus. The fireball calculus λfire is defined in Table 1. The idea
is that the values of the CbV λ-calculus — i.e. abstractions λx.t and variables
x, y, z . . .— are generalized to fireballs, by extending variables to more general
inert terms. Actually fireballs (noted f, f ′, . . .) and inert terms (noted i, i′, . . .)190

are defined by mutual induction (in Table 1). For instance, λx.y is a fireball as
an abstraction, while x, y(λx.x), xy, and (z(λx.x))(zz)(λy.(zy)) are fireballs as
inert terms. All and only the terms of the form xf1 . . . fn (where n ≥ 0 and all
the fi’s are fireballs) are inert. The main feature of inert terms is that they are
open (with a free “head variable”), normal (with respect to weak evaluation, see195

below), and when plugged in a context they cannot create a redex (in particular,
they are not abstractions), hence the name2.

Application is left-associative, so tur stands for the term (tu)r. Terms are
always identified up to α-equivalence and the set of free variables of a term t is
denoted by fv(t): we say that t is closed if fv(t) = ∅, otherwise t is open. We200

use t{x�u} for the term obtained by the capture-avoiding substitution of u for
each free occurrence of the variable x in t.

To define evaluation in λfire, we use evaluation contexts (noted C), i.e. terms
with exactly one occurrence of the hole 〈·〉, an additional place-holder. We use
C〈t〉 for the term obtained by replacing the hole 〈·〉 in the context C with the205

term t.
Evaluation is given by (non-deterministic) call-by-fireball β-reduction →βf :

the β-rule can fire, lighting the argument, only if the argument is a fireball
(fireball is a catchier version of fire-able term). We actually distinguish two sub-
rules: one that lights abstractions, noted 7→βλ , and one that lights inert terms,210

noted 7→βi (see Table 1). Reductions →βλ and →βi are just the closure of the
root-steps 7→βλ and 7→βi , respectively, under evaluation contexts C. Reduction
→βf is defined as the union of →βλ and →βi , or equivalently, as the closure of
the root-step 7→βf = 7→βλ ∪ 7→βi under evaluation contexts. Note that, according

2In the literature there is a similar notion, neutral term, notably in Girard’s version of
reducibility candidates [26] where it denotes a term that is not an abstraction. However, the
expression neutral often (e.g. see [5]) refers to terms that furthermore are (strongly) β-normal.
Inert terms are yet another notion (non-abstractions that are weakly β-normal, that is, there
can be β-redexes under abstractions), which is why we avoid calling them neutral. In Grégoire
and Leroy [14], inert terms are called accumulators, and fireballs are simply called values.

7

to the definition of evaluation contexts C, evaluation is weak (i.e. it does not215

reduce under abstractions).

Main properties of the calculus. A famous key property of Closed CbV (whose
evaluation is →βλ restricted to closed terms) is harmony : given a closed term t,
either it diverges or it evaluates to an abstraction, i.e. t is βλ-normal if and only
if t is an abstraction. The fireball calculus λfire satisfies an analogous property in220

the open setting by replacing abstractions with fireballs (Prop. 1.1). Moreover,
the fireball calculus is a conservative extension of Closed CbV: on closed terms
it collapses on Closed CbV (Prop. 1.2). No other presentation of Open CbV has
these good properties, which together with its simplicity are the reason to adopt
it as the best presentation of Open CbV in order to study its implementations.225

Proposition 1 (Distinctive properties of λfire). Let t be a term.

1. Open harmony: t is βf -normal if and only if t is a fireball.

2. Conservative open extension: t→βf u if and only if t→βλ u, for t closed.

Proof. 1. (⇒) Proof by induction on t. If t is a variable or an abstraction
then t is a fireball. Otherwise t = us for some terms u and s; since t is230

βf -normal, then u and s are βf -normal, and u is not an abstraction or s is
not a fireball; by i.h., u and s are fireballs; summing up, u is an inert term
(because it is a fireball that is not an abstraction) and s is a fireball, thus
t = us is an inert term and so a fireball.

(⇐) By hypothesis, t is an abstraction or an inert term. If t is an abstraction,235

it is βf -normal since →βf does not reduce under λ’s. Otherwise t is inert,
and we prove by induction on the definition of inert term that t is βf -normal.

• If t is a variable, then t is obviously βf -normal.

• If t = i(λx.u) then i is βf -normal by i.h., and λx.u is βf -normal as
we have just shown; also, i is not an abstraction, so t is βf -normal.240

• Finally, if t = ii′ then i and i′ are βf -normal by i.h., moreover i is not
an abstraction, hence t is βf -normal.

2. (⇒) The idea of the proof is that inert terms are always open, thus closed
fireballs are simply abstractions. Formally, the proof is by induction on
the definition of t→βf u. Cases:245

• Step at the root, i.e. t = (λx.s)f 7→βf s{x�f} = u. Since t is closed,
then f is closed and hence cannot be an inert term, so f is a (closed)
abstraction and thus t = (λx.s)f 7→βλ s{x�f} = u.

• Application left, i.e. t = sr →βf s
′r = u with s →βf s

′. Since t is
closed, s is so and hence s→βλ s

′ by i.h.; therefore, t = sr →βλ s
′r = u.250

• Application right, i.e. t = rs→βf rs
′ = u with s→βf s

′. Analogous
to the previous case.

8

(⇐) By definition, →βλ ⊆→βf (recall that an abstraction is a fireball).

The rewriting rules of λfire have also many good operational properties that
we studied in [10], summarized in the following claim (proved in [10, Prop. 3]).255

Proposition 2 (Operational properties of λfire, [10]). The reduction →βf is
quasi-diamond. If there is a βf -normalizing derivation from a term t, then t
cannot βf -diverge and all βf -normalizing derivations d from t have the same length
|d|βf , the same number |d|βλ of βλ-steps, and the same number |d|βi of βi-steps.

Right-to-left evaluation. As expected from a calculus, evaluation →βf in λfire is260

non-deterministic, because in applications there is no fixed order to evaluate
the left or right subterm. Abstract machines however implement deterministic
strategies. We then fix a deterministic strategy (which fires βf -redexes from
right to left and is the one implemented by the machines of the next sections).
By Prop. 2, the choice of the strategy does not impact either on existence of265

a result (any strategy normalizes, if there is a normal form), or on the result
itself (uniqueness of the normal form) or on the number of steps to reach it. It
does impact however on the design of the machine, which selects βf -redexes from
right to left.

The right-to-left evaluation strategy →rβf is defined by closing the root-step
7→βf = 7→βλ ∪ 7→βi in Table 1 under right contexts R, a special kind of evaluation
context defined by:

Right Contexts R ::= 〈·〉 | tR | Rf

(so, →rβf (→βf). The next lemma ensures that our definition is correct. We270

say that (λx.u)f is a βf -redex (resp. rβf -redex) in t if t = C〈(λx.u)f〉 (resp. t =
R〈(λx.u)f〉) for some evaluation (resp. right) context C (resp. R). Clearly, t is
βf -normal (resp. rβf -normal) if and only if t has no βf -redex (resp. rβf -redex).

Lemma 1 (Properties of →rβf). Let t be a term.

1. Completeness: t has a βf -redex if and only if t has an rβf -redex.275

2. Determinism: t has at most one rβf -redex.

Proof. 1. (⇐) Immediate, since →rβf ⊆→βf .

(⇒) Let C be the evaluation context of the rightmost βf -redex in t, i.e.
t = C〈(λx.r)f〉 and if t = C ′〈(λx′.r′)f ′〉 for some C ′ 6= C then the hole in
C is “more on the right” than in C ′. We show that C is a right context,280

by induction on C. Cases:

(a) Empty, i.e. C = 〈·〉. Then clearly C is a right context.

(b) Application right, i.e. t = us and C = uC ′. As the rightmost βf -redex
in t is in s, then C ′ is a right context by i.h., and so C is a right
context.285

9

(c) Application left, i.e. t = us and C = C ′s. As the rightmost βf -redex
in t is in u, then C ′ is a right context by i.h., while s is βf -normal and
so a fireball by open harmony (Prop. 1.1). Thus, C is a right context.

2. By induction on t. By completeness of →rβf (Point 1), open harmony
(Prop. 1.1) holds for →rβf : a term is rβf -normal (i.e. has no rβf -redexes)290

if and only if it is a fireball. We use this fact implicitly in the following
case analysis. If t is a variable or an abstraction, then t is a fireball.

Let t be an application, i.e. t = us. By i.h., there are two cases for s:

(a) s has exactly one rβf -redex. Then t has an rβf -redex, because u〈·〉 is
a right context. Moreover, no rβf -redex in t can lie in u, and t itself is295

not a rβf -redex, since by open harmony (Prop. 1.1) s is not a fireball
and so 〈·〉s is not a right context. Thus, t has exactly one rβf -redex.

(b) s has no rβf -redexes. By i.h., there are two cases for u:

i. u has exactly one rβf -redex. Then t has an rβf -redex, because
〈·〉s is a right context as s is a fireball. Uniqueness follows from300

the fact that s has no rβf -redexes and u is not an abstraction.

ii. u has no rβf -redexes. So, u is a fireball. There are two sub-cases:

• u is an abstraction λx.r. Then t = (λx.r)s is an rβf -redex,
because s is a fireball. Also, there are no other rβf -redexes,
as right contexts do not enter abstractions and s is a fireball.305

• u is an inert term. Since s is a fireball, t is so (as inert) and
hence t has no rβf -redexes.

Example 1. Let t := (λz.z(yz))λx.x with z 6= y. Then, t→rβf (λx.x)(y λx.x)
→rβf y λx.x, where the final term y λx.x is a fireball (and βf -normal), since it is
an inert term.310

Right-to-left vs. left-to-right. In implementing Open CbV, an asymmetry between
right-to-left and left-to-right evaluations arises.

In Closed CbV, the two strategies require slightly different but essentially
identical abstract machines. The reason is that in the closed case βλ-redexes are
symmetric: both the left and right subterms are abstractions, and abstractions315

are recognized in constant time by looking only at the topmost constructor.
Switching to the open case, the left-to-right strategy becomes a bit trickier to

implement. Indeed, βf -redexes are asymmetric, since the right subterm may be
an inert term—inert terms have a more complex structure than abstractions, and
they are not recognisable in constant time. Consequently, a left-to-right machine320

checks the easy part first and the complex second, needing a backtracking phase
after the complex check to come back to the original redex. This mechanism is
akin to that of machines for strong evaluation such as the Strong MAM in [5].
The right-to-left machine instead does the complex part first, and so it does not
need to backtrack—this simplicity is why we work with the right-to-left strategy.325

10

Open size explosion. Fireballs are delicate, they can easily explode. The simplest
instance of open size explosion (not existing in Closed CbV) is a variation over
the famous looping term ω := (λx.xx)(λx.xx)→βλ ω →βλ In ω there is an
infinite sequence of duplications. In the size exploding family there is a sequence
of n nested duplications. We define two families, the family {tn}n∈N of size
exploding terms and the family {in}n∈N of results of evaluating {tn}n∈N:

t0 := y tn+1 := (λx.xx)tn i0 := y in+1 := inin.

The size |t| of a term t is defined inductively as expected (roughly, it counts
the number of symbols in t; more precisely, it counts the number of nodes in the
tree representation of t): |x| := 1 and |λx.t| := |t|+ 1 and |tu| := |t|+ |u|+ 1.

Proposition 3 (Open size explosion, [15]). Let n ∈ N. Then tn →n
βi

in,
moreover |tn| = O(n), |in| = Ω(2n), and in is an inert term (and so βf -normal).330

Proof. By induction on n. The base case is trivial. Inductive case: tn+1 =
(λx.xx)tn →n

βi
(λx.xx)in →βi inin = in+1, where the first sequence is obtained

by the i.h. Clearly in+1 is inert, and the bounds on the sizes are immediate.

Circumventing open size explosion. Abstract machines implementing the sub-
stitution of inert terms, such as the one described by Grégoire and Leroy [14]335

(discussed here in Sect. 4, where it is called Open GLAM) are unreasonable
because for the term tn of the size exploding family in Prop. 3 they compute
the full result in, whose size is exponential in n. The various GLAMOUr
machines of the next sections are instead reasonable because they avoid the
substitution of inert terms, that is justified by the fact that evaluating and340

substituting inert terms are operations that commute, as Prop. 4 below shows.
In order to prove that, we need the next two technical lemmas.

Lemma 2 (Fireballs are closed under substitution and anti-substitution of inert
terms). Let t be a term and i be an inert term. Proof in Appendix,

p. 48

1. t{x�i} is an abstraction if and only if t is an abstraction;345

2. t{x�i} is an inert term if and only if t is an inert term;

3. t{x�i} is a fireball if and only if t is a fireball.

Proof. Point 1 is trivial. Point 3 is an immediate consequence of Points 1-2.
Concerning Point 2, the left-to-right direction (⇒) is proved by a simple

induction on the inert structure of t{x�i}. Conversely, the right-to-left direction350

(⇐) is proved by a simple induction on the inert structure of t.

Lemma 3 (Substitution of inert terms does not create βf -redexes). Let t, u be Proof in Appendix,
p. 49terms and i be an inert term. There is a term s such that:

1. if t{x�i} →βλ u then t→βλ s and s{x�i} = u;

2. if t{x�i} →βi u then t→βi s and s{x�i} = u.355

11

Proof. By induction on the definition of t{x�i} →βf u (i.e. on the evaluation
context closing the root redex).

We can now prove that evaluation and substitution of inert terms commute.
Said differently, substitution of inert terms can always be postponed and hence
safely avoided.360

Proposition 4 (Inert substitutions and evaluation commute). Let t, u be terms
and i be an inert term. Then, t→βf u if and only if t{x�i} →βf u{x�i}. More
precisely:

1. Inert substitutions do not erase βf -redexes: If t→βf u then t{x�i} →βf

u{x�i}.365

2. Inert substitutions do not create βf -redexes: If t{x�i} →βf u then there
is a term t′ such that t→βf t

′ and u = t′{x�i}.

Proof. Prop. 4.2 is exactly Lemma 3, since →βf =→βλ ∪ →βi .
Prop. 4.1 is proved by induction on the definition of t→βf u. Cases:

• Step at the root :370

1. Abstraction step, i.e. t = (λy.s)r 7→βλ s{y�r} = u where r is an
abstraction (assume without loss of generality y /∈ fv(i)∪ {x}). Since
r{x�i} is an abstraction (Lemma 2.1), t{x�i} = (λy.s{x�i})r{x�i}
7→βλ s{x�i}{y�r{x�i}} = s{y�r}{x�i} = u{x�i}.

2. Inert step, i.e. t = (λy.s)i′ 7→βi s{y�i′} = u where i′ is inert. We can375

suppose without loss of generality that y /∈ fv(i) ∪ {x}. According to
Lemma 2.2, i′{x�i} is inert. So, t{x�i} = (λy.s{x�i})i′{x�i} 7→βi

s{x�i}{y�i′{x�i}} = s{y�i′}{x�i} = u{x�i}.

• Application right, i.e. t = rs→βf rs
′ = u with s→βf s

′. By i.h., s{x�i}
→βf s

′{x�i}, so t{x�i} = r{x�i}s{x�i} →βf r{x�i}s′{x�i} = u{x�i}.380

• Application left, i.e. t = sr→βf s
′r = u with s →βf s

′. Analogous to the
application right case, just switch right and left.

Prop. 4 states that substitution of inert terms for variables cannot create or
erase βf -redexes, which is why it can be avoided. This property is distinctive of
inert terms (hence their name). With general terms (or even fireballs) instead of385

inert ones, evaluation and substitution do not commute, that is both points of
Prop. 4 do not hold. Point 2 is false because substitution can create βf -redexes,
as in (xy){x�λz.z} = (λz.z)y; Point 1 is false because substitution can erase
βf -redexes, as in ((λx.z)(xx)){x�δ} = (λx.z)(δδ) where δ := λy.yy.3

3As well-known in the theory of λ-calculus, Prop. 4 with ordinary (i.e. call-by-name)
β-reduction →β instead of →βf and general terms instead of inert ones holds only in Point 1.

12

Variables and inert terms. Variables can be seen both as values and inert terms.390

Here we consider them as inert terms, because for abstract machines it is practical
to see values as being only abstractions. The substitution of general inert terms
causes open size explosion, but of course the substitution of variables is harmless.
And whether variables are substituted or not is one of the parameters that will
play a role in our study of abstract machines, in the following sections.395

3. Abstract Machines, Implementations, and Complexity Analyses

In this section we introduce general notions about abstract machines, given
with respect to a generic machine M and a generic strategy → on λ-terms. Then
we give an abstract notion of implementation and sufficient conditions for it.
Finally, we provide a general recipe for complexity analyses.400

Abstract machines glossary.

• An abstract machine M is given by states, noted s, and transitions between
them, noted M; the reflexive-transitive closure of M is noted ∗M;

• A state is given by the code under evaluation plus some data structures,
which can be seen as lists of items (the cons operator for such lists is405

denoted by :);

• The code under evaluation, as well as the other pieces of code scattered
in the data structures, are λ-terms not considered modulo α-equivalence;
they are overlined, to stress the different treatment of α-equivalence; the
size |t| of a code t is exactly the size |t| of any term t α-equivalent to t;410

• A code t is well-named if, for every sub-code λx.u of t, the variable x may
occur only in u (if at all);

• A state is initial if its code is well-named and its data structures are empty
(an empty list of items is denoted by ε);

• Therefore, there is a bijection ·◦ (up to α-equivalence) between λ-terms415

and initial states, called compilation, sending a λ-term t to the initial state
t◦ on a well-named code α-equivalent to t;

• An execution is a finite (possibly empty) sequence of transitions t◦0
∗
M s

from an initial state t◦0 obtained by compiling an (initial) λ-term t0;

• A state s is reachable if there is an execution t◦0
∗
M s, for some λ-term t0;420

• A state s is final if it is reachable and no transitions apply to s;

• A machine comes with a decoding map · from states to λ-terms that on
initial states is the inverse (up to α-equivalence) of compilation, i.e. t◦ = t
for any λ-term t, and so (s)◦ = s for any initial state s (as it is of the form
s = t◦);425

13

• Transitions of a machine M are divided into β-transitions, noted β , which
are meant to be mapped to β-reduction steps by the decoding, while the
remaining overhead transitions, noted o, are mapped to equalities;

• We use |ρ| for the length (i.e. number of transitions) of an execution ρ,
and |ρ|β for the number of β-transitions in ρ.430

Implementations. Any machine has to be proven to implement correctly the
strategy in the λ-calculus for which it is conceived. Our notion of implementation,
tuned towards complexity analyses, claims a perfect match between the number of
β-steps of the strategy and the number of β-transitions of the machine execution.

Definition 1 (Machine implementation). An abstract machine M implements435

a strategy → on λ-terms via a decoding · when, for every λ-term t, the following
hold:

1. Executions to derivations: for any M-execution ρ : t◦ ∗M s there exists a
→-derivation d : t→∗ s.

2. Derivations to executions: for every →-derivation d : t→∗ u there exists a440

M-execution ρ : t◦ ∗M s such that s = u.

3. β-matching : in both previous points the number |ρ|β of β-transitions in ρ
is exactly the length |d| of d, i.e. |d| = |ρ|β .

Sufficient condition for implementations. The proofs that some machine im-
plements a strategy tend to follow always the same structure, based on a few445

abstract properties collected here into the notion of implementation system.

Definition 2 (Implementation system). An abstract machine M, a strategy →,
and a decoding · form an implementation system if the following conditions hold:

1. β-projection: s β s
′ implies s→ s′, for every reachable state s;

2. Overhead transparency : s o s
′ implies s = s′, for every reachable state s;450

3. Overhead termination: o terminates, starting from every reachable state;

4. Determinism: both M and → are deterministic;

5. Halt : M final states decode to →-normal terms.

Now we prove the implementation theorem (Thm. 1), stating that the con-
ditions required to an implementation system (Def. 2) indeed imply that the455

machine implements the strategy via the decoding (in the sense of Def. 1).
The executions-to-derivations part of the implementation theorem is easy to

prove, essentially β-projection and overhead transparency allow us to project
a single transition onto one or none →-steps, and the projection of executions
onto derivations is obtained as a simple induction.460

14

The derivations-to-executions part is a bit more delicate, instead, because the
simulation of→-steps into the machine has to be done up to overhead transitions.
The following lemma shows how the conditions for implementation systems allow
us to do that. Interestingly, all five conditions of Def. 2 are used in the proof.

Lemma 4 (One-step simulation). Let M, →, and · be a machine, a strategy,465

and a decoding forming an implementation system. For any reachable state s of
M, if s→ u then there is a state s′ of M such that s ∗o β s

′ and s′ = u.

Proof. For any reachable state s of M, let nfo(s) be the normal form of s with
respect to o: such a state exists and is unique because overhead transitions
terminate (Point 3) and M is deterministic (Point 4). Since o is mapped on470

identities (Point 2), one has nfo(s) = s. As s is not →-normal by hypothesis, the

halt property (Point 5) entails that nfo(s) is not final, therefore s ∗o nfo(s) β s
′

for some state s′, and thus s = nfo(s)→ s′ by β-projection (Point 1). According

to the determinism of → (Point 4), one obtains s′ = u.

The one-step simulation (Lemma 4) can be extended to the simulation of475

derivations into the machine by an easy induction on the length of the derivation.

Theorem 1 (Sufficient condition for implementations). Let (M,→, ·) be an
implementation system. Then, M implements → via ·.

Proof. According to Def. 1, given a λ-term t, we have to show that:

(i) Executions to derivations with β-matching : for any M-execution ρ : t◦ ∗M s480

there exists a →-derivation d : t→∗ s such that |d| = |ρ|β .

(ii) Derivations to executions with β-matching : for any→-derivation d : t→∗ u
there exists a M-execution ρ : t◦ ∗M s such that s = u and |d| = |ρ|β .

Proof of Point (i). By induction on |ρ|β ∈ N.
If |ρ|β = 0 then ρ : t◦ ∗o s and hence t◦ = s by overhead transparency485

(Point 2 of Def. 2). Moreover, t = t◦ since decoding is the inverse of compilation
on initial states, therefore we are done by taking the empty (i.e. without steps)
derivation d with starting (and end) term t.

Suppose |ρ|β > 0: then, ρ : t◦ ∗M s is the concatenation of an execution
ρ′ : t◦ ∗M s′ followed by an execution ρ′′ : s′ β s

′′ ∗o s. By i.h. applied to ρ′,490

there exists a derivation d′ : t→∗ s′ with |ρ′|β = |d′|. By β-projection (Point 1
of Def. 2) and overhead transparency (Point 2 of Def. 2) applied to ρ′′, one has
d′′ : s′ → s′′ = s. Therefore, the derivation d defined as the concatenation of d′

and d′′ is such that d : t→∗ s and |d| = |d′|+ |d′′| = |ρ′|β + 1 = |ρ|β .

Proof of Point (ii). By induction on |d| ∈ N.495

If |d| = 0 then t = u. Since decoding is the inverse of compilation on initial
states, one has t◦ = t. We are done by taking the empty (i.e. without transitions)
execution ρ with initial (and end) state t◦.

Suppose |d| > 0: so, d : t→∗ u is the concatenation of a derivation d′ : t→∗ u′
followed by the step u′ → u. By i.h., there exists a M-execution ρ′ : t◦ ∗M s′ such500

15

that s′ = u′ and |d′| = |ρ′|β . According to the one-step simulation (Lemma 4,
since s′ → u and (M,→, ·) is an implementation system), there is a state s of M
such that s′ ∗o β s and s = u. Therefore, the execution ρ : t◦ ∗M s′ ∗o β s
is such that |ρ|β = |ρ′|β + 1 = |d′|+ 1 = |d|.

The proof of Thm. 1 is a clean and abstract generalization of the concrete505

reasoning used in [24, 15, 6, 16] for specific abstract machines and strategies,
and it is a contribution of this work.

Parameters for complexity analyses. Let M be an abstract machine implementig
a strategy → via a decoding · (Def. 1). By the derivations-to-executions part of
the implementation (Point 2 in Def. 1), given a derivation d : t0 →n u there is510

a shortest execution ρ : t◦0
∗
M s such that s = u. Determining the complexity

of a machine M amounts to bound the asymptotic complexity of a concrete
implementation of ρ on a random access machine (RAM) as a function of two
parameters:

1. Input : the size |t0| of the initial term t0 of the derivation d;515

2. β-steps/transitions: the length n = |d| of the derivation d, that coincides
with the number |ρ|β of β-transitions in ρ by the β-matching requirement
for implementations (Point 3 in Def. 1).

A machine is reasonable if its complexity is polynomial in |t0| and |ρ|β , and it is
efficient if it is linear in both parameters. So, a strategy is reasonable (resp. effi-520

cient) if there is a reasonable (resp. efficient) machine implementing it. In Sect. 5-6
we study a reasonable machine implementing right-to-left evaluation→rβf in λfire,
thus showing that it is a reasonable strategy. In Sect. 7 we optimize the machine to
make it efficient. By Prop. 2, this implies that every strategy in λfire is efficient.

Recipe for complexity analyses. In a machine M, overhead transitions o are525

further separated into two classes:

1. Substitution transitions s: they are in charge of the substitution process;

2. Commutative transitions c: they are in charge of searching for the next
β or substitution redex to reduce.

Then, the estimation of the complexity of a machine is done in three steps:530

1. Number of transitions: bounding the length |ρ| of the execution ρ, by
bounding the number of its overhead transitions. Both the number |ρ|c of
commutative transitions and the number |ρ|s of substitution transitions
are—separately—bounded using the size |t0| of the input t0 and the number
|ρ|β of β-transitions in ρ. For some machines, the bound on |ρ|s turns out535

to depend only on |ρ|β .

16

2. Cost of single transitions : bounding the cost of concretely implementing a
single transition of M. Here it is necessary to go beyond the abstract level,
making some (high-level) assumption about how code and data structures
are concretely represented. Commutative transitions are designed on540

purpose to have constant cost. Each substitution transition has a cost linear
in the size of the initial term thanks to an invariant (to be proved) ensuring
that only subterms of the initial term are duplicated and substituted along
an execution. Each β-transition has a cost constant or linear in the input.

3. Complexity of the overhead : obtaining the total bound by composing the545

first two points, that is, by taking the number of each kind of transition
times the cost of implementing it, and summing over all kinds of transitions.

(Linear) logical reading. Our partitioning of transitions into β, substitution, and
commutative ones admits a proof-theoretical view, as machine transitions can be
seen as cut-elimination steps [27, 24]. Substitution and β transitions correspond550

to principal cases in cut-elimination. Moreover, in linear logic the β-transition
corresponds to the multiplicative case while the substitution transition to the
exponential one. See [24] for more details.

4. Open GLAM

In this section we quickly recall the Open GLAM from Accattoli and Sacerdoti555

Coen [15], i.e. the core (up to syntactic sugar) of the abstract machine introduced
by Grégoire and Leroy [14] to improve the implementation of Coq. The Open
GLAM is the natural—and yet näıve—way to implement the right-to-left strategy
→rβf of the fireball calculus λfire.

As we will see, the Open GLAM is an unreasonable implementation of the560

fireball calculus, because its overhead is exponential in the number of βf -steps—
essentially, it does not circumvent open size explosion (Prop. 3). For this reason,
we omit a formal study of the properties of the Open GLAM, preserving our
technical energies for the reasonable machines of the next sections. We present it
anyway, to help the reader become familiar with abstract machines, and because565

the other machines have the same data structures as the Open GLAM and
transitions that are obtained by simple tweaks of the Open GLAM.

The name Open GLAM comes from the Leroy Abstract Machine (LAM),
a similar machine implementing Closed CbV introduced in [24]. The adjective
Open is due to the fact that the machine handles also open terms. The G in570

GLAM instead is due to the use of global (rather than local) environments.

Data structures. The machines in this paper are unusual in two respects.
First and more importantly, they use a single global environment instead

of local environments and closures. Global environments are used in a few
papers [28, 19, 29, 24, 15, 5, 6] and induce simpler, more abstract machines575

where α-equivalence is pushed to the meta-level (the operation t
α

in the sub-
stitution transition s for the machines in Tables 3–5, 8–9). This on-the-fly

17

Data structures Decoding & Unfolding
Stack item φ, ψ ::= λx.u@ε | x@π

Stack π ::= ε | φ : π

Environment E ::= ε | [x�φ] :E

Dump D ::= ε | D : t♦π

State s := (D, t, π,E)

ε := 〈·〉 t

→

ε := t t

→

[x�φ]E := t{x�φ}
→

E

φ : π := 〈〈·〉φ〉π 〈·〉

→

E := 〈·〉 (Ct)

→

E := C
→

Et
→

E (tC)

→

E := t

→

EC

→

E

t@π := 〈t〉π Rs := D〈π〉

→

E

D : t♦π := D〈〈t〈·〉〉π〉 s := D〈〈t〉π〉
→

E = Rs〈t

→

E〉
where s = (D, t, π,E)

Table 2: (On the left) Data-structures for the Open GLAM (Table 3) and the machines of the
GLAMOUr family (Tables 4–9): items φ, stacks π, dumps D, global environments E, states s.
(On the right) Unfolding t↓E and decoding · (stacks are decoded to contexts in postfix notation
for plugging, i.e. we write 〈t〉π rather than π〈t〉).

α-renaming is harmless with respect to complexity analyses. For a thorough
comparison of different approaches to environments and of how they impact on
the implementation complexity, see Accattoli and Barras [22].580

Second, argument stacks contain pairs of a code and a stack, to implement
some of the machine transitions in constant time, namely the commutative ones.

The configuration in a given time of the Open GLAM (and of the machines
in the GLAMOUr family) is stored in a state, formally defined in Table 2 as a
quadruple s = (D, t, π,E) of the following data structures:585

• Code t: a term not considered up to α-equivalence, this is why t is overlined.

• Argument stack π: a list containing the arguments of the current code.
Note that stack items φ are pairs of the form x@π or λx.u@ε. These pairs
allow us to implement some of the transitions in constant time. The pair
x@π′ (where π′ is in turn an argument stack) codes the inert term 〈x〉π′590

(defined in Table 2—the decoding · is explained below) obtained by putting
x in the context obtained by decoding π′. The pair λx.u@ε (where ε is the
empty stack) is used to inject abstractions into pairs, so that items φ can
be uniformly seen as pairs t@π of a code t and a stack π.

• Dump D: a second stack that, together with the argument stack π, is used595

to walk through the code and search for the next redex to reduce. The
dump is extended (on the right) with an entry t♦π every time evaluation
enters the right subterm u of an application tu; the entry saves the left
part t of the application and the current stack π, to restore them when
the evaluation of u is over. The dump D and the stack π decode to a right600

context.

• Global environment E: a list of explicit (i.e. delayed) substitutions storing
the β-redexes encountered so far. It is used to implement micro-step
evaluation (substitution for one variable occurrence at a time). We write
E(x) = ⊥ if E has no entries of the form [x�φ]. Often [x�φ]E stands for605

[x�φ] :E, and by abuse of notation we confuse cons and concatenation.
Note that the body φ of any environment entry [x�φ] is a stack item, not
a code.

18

Dump Code Stack Global Env. Dump Code Stack Global Env.

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t λx.u@ε : π E
D : t♦π x π′ E c3 D t x@π′ : π E

if E(x) = ⊥
D λx.t φ :π E β D t π [x�φ]E
D x π E[x�φ]E′ s D φα π E[x�φ]E′

Table 3: Transitions of the Open GLAM. In the substitution transition s, φ
α is any well-

named code α-equivalent to φ such that its bound variables are fresh with respect to those in

D, π and E[x�φ]E′.

Transitions. The Open GLAM has one β-transition whereas overhead transitions
are divided up into substitution and commutative transitions, see Table 3.610

• β-transition β : it morally fires the rβf -redex corresponding to (λx.t)φ,
except that it puts a new delayed substitution [x�φ] in the environment
instead of doing the meta-level substitution t{x�φ} of the argument φ for
the (free) occurrences of the variable x in the body t of the abstraction.

• Substitution transition s: it substitutes the variable occurrence under615

evaluation with an (α-renamed copy of a) code from the environment. It is
a micro-step (i.e. linear, in the sense of one occurrence at a time) variant
of meta-level substitution. It is invisible on λfire: the decoding produces
the term obtained by meta-level substitution, so the micro work done by
 s cannot be observed at the coarser granularity of λfire. Note that s is620

triggered whenever the current code is a variable bound in the environment
to any item φ: as φ is a pair code–stack, s must decode φ too (see below).

• Commutative transitions c: they locate and expose the next rβf -redex
according to the right-to-left strategy, by rearranging the data structures.
They are invisible on the calculus. The transition c1 forces evaluation to625

be right-to-left on applications tu: the machine processes first the right
subterm u, saving the left sub-term t on the dump along with its current
stack π. The role of c2 and c3 is to backtrack to the entry on top of
the dump. When the right subterm, i.e. the pair u@π′ of current code and
stack, is finally in normal form, it is pushed on the stack and the machine630

backtracks. Condition E(x) = ⊥ (which means that the variable x is not
bound) in c3 is how the Open GLAM handles open terms.

Note the absence of garbage collection: it is here simply ignored, or, more
precisely, it is encapsulated at the meta-level, in the decoding function ·. It is
well-known that this is harmless for the study of time complexity.635

Compiling and decoding. A term t is compiled to the machine initial state
t◦ = (ε, t, ε, ε), where t is a well-named code α-equivalent to t. Conversely,
every machine state s = (D, t, π,E) decodes to a term s (see the right part of
Table 2), having the shape Rs〈t

→

E〉, where t

→

E is the λ-term (called unfolding)

19

obtained by recursively substituting—at the meta-level—the entries of the global640

environment E on t, and Rs is a right context, obtained by decoding the stack
π and the dump D and then applying the unfolding

→

E . To improve readability,
stacks are decoded to contexts in postfix notation for plugging, i.e. we write 〈t〉π
rather than π〈t〉 because π is a context that puts arguments in front of t. Note
that t◦ = t for any term.645

Unreasonable implementation. The Open GLAM implements (in the sense of
Def. 2) the right-to-left evaluation →rβf of the fireball calculus λfire, via the
decoding ·, as shown in [15]. That work also shows that the Open GLAM is
unreasonable since it is affected by the open size explosion problem (Prop. 3).

Example 2. To have a glimpse of how the Open GLAM works, we show its
execution on one of the terms (for n = 2) of the open size exploding family of
Prop. 3, namely t2 :=(λx1.x1x1)t1 = (λx1.x1x1)((λx0.x0x0)y)→2

βi
(yy)(yy)=: i2.

Dump Code Stack Global Environment
ε (λx1.x1x1)t1 ε ε c1

λx1.x1x1♦ε (λx0.x0x0)y ε ε c1

λx1.x1x1♦ε : λx0.x0x0♦ε y ε ε c3

λx1.x1x1♦ε λx0.x0x0 y@ε ε β

λx1.x1x1♦ε x0x0 ε [x0�y@ε] c1

λx1.x1x1♦ε : x0♦ε x0 ε [x0�y@ε] s

λx1.x1x1♦ε : x0♦ε y ε [x0�y@ε] c3

λx1.x1x1♦ε x0 y@ε [x0�y@ε] s

λx1.x1x1♦ε y y@ε [x0�y@ε] c3

ε λx1.x1x1 y@(y@ε) [x0�y@ε] β

ε x1x1 ε [x1�y@(y@ε)] : [x0�y@ε] c1

x1♦ε x1 ε [x1�y@(y@ε)] : [x0�y@ε] s

x1♦ε yy ε [x1�y@(y@ε)] : [x0�y@ε] c1

x1♦ε : y♦ε y ε [x1�y@(y@ε)] : [x0�y@ε] c3

x1♦ε y y@ε [x1�y@(y@ε)] : [x0�y@ε] c3

ε x1 y@(y@ε) [x1�y@(y@ε)] : [x0�y@ε] s

ε yy y@(y@ε) [x1�y@(y@ε)] : [x0�y@ε] c1

y♦y@(y@ε) y ε [x1�y@(y@ε)] : [x0�y@ε] c3

ε y (y@ε) : (y@(y@ε)) [x1�y@(y@ε)] : [x0�y@ε]

The initial state is the compilation of the term t2, the final state decodes to the650

term i2 := (yy)(yy), and the two β-transitions in the execution correspond to
the two βi-steps in the derivation considered in Prop. 3. Each β-transition is
followed by two substitution transitions (amid commutative ones): the first two
substitutions replace a variable occurrence with i0 = y, a term of size 21− 1 = 1;
while the second two substitutions replace a variable occurrence with i1 = yy, a655

term of size 22 − 1 = 3. Note that yy is not a subterm of the initial term t2.
Let us now consider the execution ρn starting on the generic term tn in the

size exploding family of Prop. 3, and explain why it is unreasonable. It turns
out that the length of ρn is polynomial in the size of the initial term and in
the number of β-transitions, so the problem is not at the level of the number of660

transitions taken by the machine. Size explosion indeed happens at the level of
the cost of single transitions, and precisely at the level of subterms duplicated

20

Dump Code Stack Global Env. Dump Code Stack Global Env.

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t (λx.u@ε) :π E
D : t♦π x π′ E c3 D t (x@π′) :π E

if E(x) = ⊥ or E(x) = y@π′′

D λx.t φ :π E β D t π [x�φ]E
D x π E[x�λy.u@ε]E′ s D (λy.u)α π E[x�λy.u@ε]E′

Table 4: Transitions of the Easy GLAMOUr. In the substitution transition s, (λy.u)α is
any well-named code α-equivalent to λy.u such that its bound variables are fresh with respect
to those in D, π and E[x�λy.u@ε]E′.

by transition s. As the example suggests, ρn at some point duplicates twice
in−1, which has size 2n − 1. So, the cost of single substitution steps becomes
exponential. Let us stress it once again: in−1 is not a subterm of the initial665

term—the reasonable machines of the next sections avoid size explosion, and the
deep reason behind this is that they only duplicate subterms of the initial term.

5. Easy GLAMOUr

In this section we introduce the Easy GLAMOUr, a simplified version of the
GLAMOUr machine from [15] (the GLAMOUr is recalled in Sect. 9): unlike the670

latter, the Easy GLAMOUr does not need any labeling of codes to provide a
reasonable implementation of the right-to-left evaluation →rβf of λfire.

Background. GLAMOUr stands for Useful (i.e. optimized to be reasonable)
Open (reducing also open terms) Global (using a single global environment)
Leroy Abstract Machine (LAM). In [15] the study of the GLAMOUr was done675

according to the distillation approach of [24], i.e. by decoding the machine
towards a λ-calculus with explicit substitutions. Here we do not follow the
distillation approach, we decode directly to λfire, which is simpler.

Machine components. The data structures (items φ, stacks π, dumps D, global
environments E, states s) used by the Easy GLAMOUr are exactly the same as680

the ones for the Open GLAM, formally defined in Table 2 on p. 18. We write
E(x) = φ if E = E′[x�φ]E′′—this functional notation for environments makes
sense thanks to the invariants of forthcoming Lemma 5.1.

Transitions. The Easy GLAMOUr is defined in Table 4. Its transitions are just
slight variations over those of the Open GLAM (c1 , c2 and β are identical),685

and the discussion in Sect. 4 about their functioning is still valid. In particular,
garbage collection and open terms are handled in the same way, that is, there is no
garbage collection and open variables are handled by condition E(x) = ⊥ in c3 .

The only—crucial—difference with respect to the Open GLAM is that the
Easy GLAMOUr substitutes abstractions but not inert terms, because their690

substitution can cause open size explosion (see Prop. 3). This difference is
encapsulated in the useful side-conditions E(x) = y@π′′ for c3 and E(x) =

21

λy.u@ε for s. Removing the useful side-conditions one recovers the Open
GLAM, which is unreasonable as seen in Sect. 4. Note that the Easy GLAMOUr
avoids the substitution of all inert terms, even when these are simple variables.695

As already mentioned, this fact will be relevant in the next sections.

Avoiding the substitution of inert terms. Let us provide an abstract view of why
the Easy GLAMOUr is a reasonable abstract machine. We showed that evalua-
tion and substitution of inert terms commute in λfire (Prop. 4). Consequently,
substitutions of inert terms can safely be postponed. Now, recall that abstract700

machines compute compact representation of results, where compactness is the
sharing of subterms provided by the environment. Substituting inert terms at the
end would diminish the level of compactness of the result, and would reintroduce
size-explosion. Rather than postpone it, then, we simply avoid the substitution
of inert terms. It is an acceptable solution, because results have to be taken705

as compact anyway. Another way of seeing the postponement/avoidance of
substituting inert terms, is that it is rather encapsulated in the decoding.

Compiling, decoding, and invariants. A term t is compiled to the initial state
t◦ = (ε, t, ε, ε), where t is a well-named code α-equivalent to t: this is the starting
state for an Easy GLAMOUr execution simulating the right-to-left evaluation in710

λfire of t. Conversely, every machine state s decodes to a term s via the same
decoding function · defined for the Open GLAM (see the right part of Table 2).
Clearly, t◦ = t for any term t, and so (s)◦ = s for any initial state s (as it is of
the form s = t◦).

Example 3. To have a glimpse of how the Easy GLAMOUr works, we show how
it implements the derivation t := (λz.z(yz))λx.x→2

rβf
y λx.x of Ex. 1 (p. 10):

Dump Code Stack Global Environment
ε (λz.z(yz))λx.x ε ε c1

λz.z(yz)♦ε λx.x ε ε c2

ε λz.z(yz) λx.x@ε ε β

ε z(yz) ε [z�λx.x@ε] c1

z♦ε yz ε [z�λx.x@ε] c1

z♦ε : y♦ε z ε [z�λx.x@ε] s

z♦ε : y♦ε λx′.x′ ε [z�λx.x@ε] c2

z♦ε y λx′.x′@ε [z�λx.x@ε] c3

ε z y@(λx′.x′@ε) [z�λx.x@ε] s

ε λx′′.x′′ y@(λx′.x′@ε) [z�λx.x@ε] β

ε x′′ ε [x′′�y@(λx′.x′@ε)] : [z�λx.x@ε]

Note that the initial state is the compilation of the term t, the final state decodes715

to the term y λx.x, and the two β-transitions in the execution correspond to the
two rβf -steps in the derivation considered in Ex. 1.

Example 4. Let us see how the Easy GLAMOUr implements the size-exploding
derivation t2 := (λx1.x1x1)t1 = (λx1.x1x1)((λx0.x0x0)y)→2

βi
(yy)(yy) =: i2 of

22

Prop. 3 (for n = 2), which we also considered for the Open GLAM in Ex. 2:

Dump Code Stack Global Environment
ε (λx1.x1x1)t1 ε ε c1

λx1.x1x1♦ε (λx0.x0x0)y ε ε c1

λx1.x1x1♦ε : λx0.x0x0♦ε y ε ε c3

λx1.x1x1♦ε λx0.x0x0 y@ε ε β

λx1.x1x1♦ε x0x0 ε [x0�y@ε] c1

λx1.x1x1♦ε : x0♦ε x0 ε [x0�y@ε] c3

λx1.x1x1♦ε x0 x0@ε [x0�y@ε] c3

ε λx1.x1x1 x0@(x0@ε) [x0�y@ε] β

ε x1x1 ε [x1�x0@(x0@ε)] : [x0�y@ε] c1

x1♦ε x1 ε [x1�x0@(x0@ε)] : [x0�y@ε] c3

ε x1 x1@ε [x1�x0@(x0@ε)] : [x0�y@ε]

Note that the initial state is the compilation of the term t2, the final state
decodes to the term i2 := (yy)(yy), and the two β-transitions in the execution
correspond to the two βi-steps in the derivation considered in Prop. 3720

Comparing with the execution of the Open GLAM implementing the same
derivation (Ex. 2), the two executions have different final states, and yet they de-
code to the same term—the Easy GLAMOUr produces more compact final states.
Since the Easy GLAMOUr does not substitute inert terms, the final state in the
Easy GLAMOUr is reached without performing any substitution transition. This725

is how the size explosion problem that affects the Open GLAM is circumvented.

The study of the Easy GLAMOUr machine relies on the following invariants.

Lemma 5 (Easy GLAMOUr qualitative invariants). Let s = (D, t, π,E) be a Proof in Appendix,
p. 50reachable state of an Easy GLAMOUr execution. Then:

1. Name:730

(a) Explicit substitution: if E = E′[x�φ]E′′ then the variable x is fresh
with respect to φ and E′′;

(b) Abstraction: if λx.u is a subterm of D, t, π or E, then the variable x
may occur only in u.

2. Fireball item: for every item φ in π, in E or in any stack in D, one has735

that φ and φ

→

E are inert terms if φ = x@π′, and abstractions otherwise.

3. Contextual decoding: Rs = D〈π〉

→

E is a right context.

Proof. Easy induction on the length of the execution ending in the state s.

The fireball item invariant (Lemma 5.2) entails that there is no reachable
state whose environment has the form E = E0[y�x@π]E′[x�λz.t@ε]E′′, because740

otherwise the unfolding x@π

→

E = 〈λz.(t

→

E)〉(π

→

E) of the item x@π in E would
not be an inert term. Moreover, by the name invariant for explicit substitutions
(Lemma 5.1a), the environment of any reachable state must be of the form
[x1�φ1] . . . [xn�φn] where n ≥ 0 and variables x1, . . . , xn are pairwise distinct.

23

Implementation theorem. The invariants above are used to prove the implemen-745

tation theorem for the Easy GLAMOUr (Thm. 2 below) by showing that the
hypotheses of Thm. 1 hold, namely that the Easy GLAMOUr forms an implemen-
tation system with respect to right-to-left evaluation→rβf in the fireball calculus,
via the decoding ·. More precisely, we employ the invariants to prove the next
lemma, which states that the Easy GLAMOUr transitions project on the fireball750

calculus λfire (i.e. Points 1-2 of Def. 2 are fulfilled). Note that substitution (s)
and commutative (c1,2,3) transitions are considered as overhead transitions.

Lemma 6 (Easy GLAMOUr β-projection and overhead transparency). Let s
be a reachable state of an Easy GLAMOUr execution.

1. β-projection: if s β s
′ then s→rβf s

′;755

2. Overhead transparency: if s s,c1,2,3 s
′ then s = s′.4

Proof. Let us check all the transitions, listed according to their order in Table 4:

1. s = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s′. Then

s = D〈〈tu〉π〉

→

E = D : t♦π〈u〉

→

E = D : t♦π〈〈u〉ε〉

→

E = s′ .

2. s = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s′. Then

s = D : t♦π〈〈λx.u〉ε〉

→

E = D〈〈t(〈λx.u〉ε)〉π〉

→

E = D〈〈t〉λx.u@ε :π〉

→

E = s′.

3. s = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) : π,E) = s′ where E(x) = ⊥ or
E(x) = y@π′′. Then

s = D : t♦π〈〈x〉π′〉

→

E = D〈〈t(〈x〉π′)〉π〉

→

E = D〈〈t〉(x@π′) : π〉

→

E = s′ .

4. s = (D,λx.t, φ : π,E) β (D, t, π, [x�φ]E) = s′. Then

s = D〈〈λx.t〉φ : π〉

→

E = D〈〈(λx.t)φ〉π〉

→

E →rβf

D〈〈t{x�φ}〉π〉

→

E = D〈〈t〉π〉{x�φ}

→

E = D〈〈t〉π〉

→

[x�φ]E = s′

where the rβf -step takes place because φ is a fireball by the fireball item
invariant (Lemma 5.2), and D〈π〉

→

E is a right context by the contextual
decoding invariant (Lemma 5.3). Moreover, the meta-level substitution760

{x�φ} can be extruded (in the equality step after→rβf) without renaming
x, as x does not occur in D or π by the name invariant (Lemma 5.1b).

5. s = (D,x, π,E) s (D, (λy.u)α, π, E) = s′ where E = E1[x�λy.u@ε]E2.
Then, by Lemma 5.1a,

s = D〈〈x〉π〉

→

E = D

→

E〈〈x

→

E〉π

→

E〉 = D

→

E〈〈λy.u

→

E〉π

→

E〉
= D〈〈λy.u〉π〉

→

E = s′ .

4Given two transitions r1 and r2 for a machine M, we set r1,r2 := r1 ∪ r2 (also
denoted by r1,2 or simply r). Thus, in this case s,c1,2,3 = s ∪ c1 ∪ c2 ∪ c3 .

24

We also need a lemma about the halt condition for an implementation system
(Point 5 of Def. 2).

Lemma 7 (Easy GLAMOUr halt). Let s be a reachable final state of an Easy765

GLAMOUr execution. Then s is a fireball, i.e. it is βf -normal.

Proof. An immediate inspection of the transitions shows that in a final state
the code cannot be an application and the dump is necessarily empty. In fact, a
final state s has one of the following two shapes:

1. Top-level unapplied abstraction, i.e. s = (ε, λx.t, ε, E). Then s = (λx.t)

→

E770

= λx.(t

→

E), which is an abstraction and so a fireball.

2. Top-level inert term with free head, i.e. s = (ε, x, π, E) with E(x) = ⊥ or
E(x) = y@π′. By the fireball item invariant (Lemma 5.2), there are two
subcases:

(a) E(x) = ⊥. Then s = (〈x〉π)

→
E = 〈x

→

E〉(π

→

E) = 〈x〉(π

→

E) is inert775

because φ

→

E is a fireball for every item φ in π, according to the fireball
item invariant (Lemma 5.2);

(b) E(x) = y@π′. Then s = (〈x〉π)

→

E = 〈x

→

E〉(π

→

E) = 〈y@π′

→

E〉(π

→

E)
is inert because φ

→
E is a fireball for every item φ in π and y@π′

→

E is
inert, according to the fireball item invariant (Lemma 5.2).780

Finally, we obtain the implementation theorem for the Easy GLAMOUr.

Theorem 2 (Easy GLAMOUr implementation). The Easy GLAMOUr imple-
ments right-to-left evaluation →rβf in λfire (via the decoding ·).

Proof. According to Thm. 1, it is enough to show that the Easy GLAMOUr, the
right-to-left evaluation →rβf and the decoding · form an implementation system,785

i.e. that the five conditions in Def. 2 hold. By Lemma 6, Points 1-2 (β-projection
and overhead transparency) of Def. 2 are fulfilled. By Lemma 7, also Point 5
(halt) of Def. 2 holds, since →rβf ⊆→βf . Let us prove Points 3-4 of Def. 2.

3. Overhead termination: termination of transitions s,c1,2,3 is given by the
forthcoming Lemma 9 and Lemma 10, which are postponed because they790

actually give precise complexity bounds, not just termination.

4. Determinism: the Easy GLAMOUr machine is deterministic, as it can be
seen by an easy inspection of the transitions (see Table 4). Lemma 1.2
proves that →rβf is deterministic.

6. Complexity Analysis of the Easy GLAMOUr795

The analysis of the Easy GLAMOUr is done according to the recipe given at
the end of Sect. 3. The result (see Thm. 3 below) is that the Easy GLAMOUr is
linear in the number |ρ|β of β-steps/transitions and quadratic in the size |t0| of

25

the initial term t0, i.e. the overhead of implementing an execution ρ on a RAM
has complexity O((1 + |ρ|β) · |t0|2).800

The analysis relies on a quantitative invariant, the crucial subterm invariant,
ensuring that s duplicates only subterms of the initial term, so that the cost of
duplications is connected to one of the two parameters for complexity analyses.
The statement of the subterm invariant is about abstractions, not duplications,
but note that abstractions are the only terms duplicated by the Easy GLAMOUr,805

according to the substitution transition s in Table 4.

Lemma 8 (Subterm invariant). Let ρ : t◦0
∗ (D, t, π,E) be an Easy GLAMOUr

execution. Every subterm λx.u of D, t, π or E is a subterm of t0.

Proof. First, a clarification about subterms: for us, u is a subterm of t0 if it is
one up to variable names, both free and bound (the distinction between term810

and code is then irrelevant). More precisely: let t– be t in which all variables
(including those appearing in binders) are replaced by a fixed symbol ∗. So, we
define u as a subterm of t whenever u– is a subterm of t– in the usual sense. The
key property ensured by this definition is that the size |u| of u is bounded by |t|.

Now, the proof is by induction on the length |ρ| of the execution ρ. In the815

initial state the invariant trivially holds. For a non-empty execution the proof is
by a simple case analysis on the last transition, always relying on the i.h.

Remark. The unreasonable Open GLAM seen in Sect. 4 does satisfy the subterm
invariant as it is stated above (i.e. about abstractions), but it duplicates also inert
terms (indeed, in the transition s in Table 3, φ can decode to an abstraction or820

an inert term), and not all inert terms in its reachable states are subterms of the
initial term. In this sense, already pointed out in Ex. 2, the Open GLAM does
not satisfy the subterm invariant — morally, this is what makes it unreasonable.

Intuition about complexity bounds. Given an execution ρ : t◦0
∗ s, the number

|ρ|s of substitution transitions s in ρ depends on both parameters for complexity825

analyses, the number |ρ|β of β-transitions in ρ and the size |t0| of the initial term.
Dependence on |ρ|β is standard, and appears in every machine [18, 19, 24, 15, 5,
6]—sometimes it is quadratic, here it is linear, in Sect. 7 we come back to this
point. Dependence on |t0| is also always present, but usually only for the cost
of a single s transition, since only subterms of t0 are duplicated, as ensured830

by the subterm invariant (Lemma 8). For the Easy GLAMOUr, instead, also
the number |ρ|s of s transitions depends on |t0|: this is a side-effect of dealing
with open terms. Since both the cost and the number of s transitions depend
linearly on |t0|, the overall contribution of s transitions to the overhead in an
implementation of ρ on RAM depends quadratically on |t0|.835

The family of terms below shows the quadratic dependence on |t0| in isolation
(i.e., with no dependence on |ρ|β). Let rn := λx.(. . . ((y x)x) . . .)x︸ ︷︷ ︸

n

and consider:

un := rnrn = (λx.(. . . ((y

n︷ ︸︸ ︷
x)x) . . .)x)rn →βλ (. . . ((y

n︷ ︸︸ ︷
rn)rn) . . .)rn . (4)

26

Forgetting about commutative transitions, the Easy GLAMOUr would evalu-
ate un with one β-transition β and n substitution transitions s, each one
duplicating rn, whose size (as well as the size of the initial term un) is linear in n.840

The number |ρ|c of commutative transitions c, roughly, is linear in the
amount of code involved in the execution ρ. More precisely, one has to count
the code out of abstractions or that is exposed when a β-transition removes an
abstraction and then the machine evaluates its body. This amount is bounded by
the initial code plus the code exposed by β-transitions, which in turn is bounded845

by the number of β-transitions times the size of the initial term. The number of
commutative transitions is then O((1+ |ρ|β) · |t0|). As each one has constant cost,
this is also a bound on their overall cost in an implementation of ρ on RAM.

Number of Transitions 1: substitution vs. β transitions. The number |ρ|s of
substitution transitions in an execution ρ : t◦0

∗ s is proven (Lemma 9 below)
to be bilinear, i.e. linear in |t0| and |ρ|β , by means of a measure | · |free always
bounded by the size | · | of the code, i.e. such that 0 ≤ |t|free ≤ |t| for any code t.
The free size | · |free of a code counts the number of (free) variable occurrences
that are not under abstractions. It is defined and extended to states as follows:

|x|free := 1 |tu|free := |t|free + |u|free

|λy.u|free := 0 |(D, t, π,E)|free := |t|free +
∑
u♦π′∈D |u|free.

Lemma 9 (Bilinear number of substitution transitions). Let ρ : t◦0
∗ s be an

Easy GLAMOUr execution. Then, |ρ|s ≤ |ρ|s + |s|free ≤ (1 + |ρ|β) · |t0|.850

Proof. First, |ρ|s ≤ |ρ|s + |s|free because |s|free ≥ 0. We prove that |ρ|s + |s|free ≤
(1 + |ρ|β) · |t0| by induction on |ρ|. If |ρ| = 0 then t◦0 = s and |ρ|β = 0 = |ρ|s,
so the statement becomes |t0|free ≤ |t0| = |t0| that is always true. Otherwise
σ : t◦0

∗ s′ and ρ extends σ with s′ s. By i.h., |σ|s + |s′|free ≤ (1 + |σ|β) · |t0|.
Cases (the notation refers to the transitions of the machine, in Table 4):855

• the last transition is a substitution transition. The inequality |ρ|s + |s|free ≤
(1 + |ρ|β) · |t0| follows from the i.h. and the fact that |ρ|s = |σ|s + 1,
|ρ|β = |σ|β and |s|free = |s′|free − 1, where the last equality holds because
the dump does not change and the code changes from a variable (of measure
1) to an abstraction (of measure 0);860

• the last transition is a β-transition. Then:

|ρ|s + |s|free = |ρ|s + |t|free +
∑
u♦π′∈D |u|free

= |ρ|s + |t|free + |λx.t|free +
∑
u♦π′∈D |u|free (|λx.t|free = 0)

= |ρ|s + |s′|free + |t|free (def. of |s′|free)

≤ |ρ|s + |s′|free + |t| (|t|free ≤ |t|)
≤ |ρ|s + |s′|free + |t0| (Lemma 8)

= |σ|s + |s′|free + |t0| (|ρ|s = |σ|s)
≤ (1 + |σ|β) · |t0|+ |t0| (i.h.)

= |ρ|β · |t0|+ |t0| = (1 + |ρ|β) · |t0| (|ρ|β = |σ|β + 1);

27

• the last transition is a commutative transition. The inequality |ρ|s+|s|free ≤
(1+|ρ|β)·|t0|. follows from the i.h. and the fact that |ρ|s = |σ|s, |ρ|β = |σ|β
and either |s|free = |s′|free (when the last transitions is c1 or c2) or
|s|free = |s′|free − 1 (when the last transition is c3).

Number of transitions 2: commutative vs. β transitions. The bound on the865

number |ρ|c of commutative transitions in an execution ρ : t◦0
∗ s is obtained

by means of a (different) measure | · |c of codes and states. The bound is bilinear
in |ρ|β and |t0|: this analysis improves the one in [1], where the bound was linear
in |ρ|β and quadratic in |t0|.

The commutative size | · |c of codes and states is defined as follows:

|x|c := 1 |λy.u|c := 1

|tu|c := |t|c + |u|c + 1 |(D, t, π,E)|c := |t|c +
∑
u♦π′∈D |u|c .

Note that 1 ≤ |t|c ≤ |t| for every code t. As in the case of |s|free, the definition870

of |s|c for a state s takes into account only the current code and the left code of
each item in the dump.

Lemma 10 (Bilinear number of commutative transitions). Let ρ : t◦0
∗ s be

an Easy GLAMOUr execution. Then, |ρ|c ≤ |ρ|c + |s|c ≤ (1 + |ρ|β) · |t0|.

Proof. First, note that |ρ|c ≤ |ρ|c+ |s|c since |s|c ≥ 0. We prove that |ρ|c+ |s|c ≤875

(1 + |ρ|β) · |t0| by induction on the length |ρ| of the execution ρ.
Base case (empty execution, i.e. |ρ| = 0): t◦0 = s and |ρ|c = 0 = |ρ|β , so the

property collapses on the tautology |t0| ≤ |t0|.
Inductive case (|ρ| > 0): let s′ s be the last transition of ρ and let σ be

the prefix of ρ ending on s′. By the i.h. applied to σ, |σ|c + |s′|c ≤ (1+ |σ|β) · |t0|.880

We now prove that the statement holds by analyzing the various cases of s′ s
and showing that the inequality holds also after the transition:

• Commutative transitions c1 : the rule splits the code tu (of size |t|c+|u|c+
1) between the dump and the code. Thus |s|c = |s′|c−1, while |ρ|c = |σ|c+1
and |ρ|β = |σ|β . So, |ρ|c+|s|c = |σ|c+|s′|c ≤ (1+|σ|β)·|t0| = (1+|ρ|β)·|t0|.885

• Commutative transitions c2,3 : these rules consume the current code that
is a variable or an abstraction (of commutative size 1), so |s|c = |s′|c − 1.
Since |ρ|c = |σ|c + 1 and |ρ|β = |σ|β , it follows that—as in the previous
case—neither the lhs nor the rhs changes, hence the inequality is preserved.

• β-transition β : it modifies the current code by replacing an abstraction890

λx.t (of commutative size 1) with its body t (of commutative size ≥ 1).
Then, |s|c = |s′|c+|t|c−1 ≤ |s′|c+|t|. By the subterm invariant (Lemma 8),
t is a subterm of t0, hence |t| ≤ |t0| and so |s|c ≤ |s′|c + |t0|. Since
|ρ|c = |σ|c and |ρ|β = |σ|β + 1, one has |ρ|c + |s|c ≤ |σ|c + |s′|c + |t0| ≤
(1 + |σ|β) · |t0|+ |t0| = (1 + |ρ|β) · |t0|.895

28

• Substitution transition s: in the current code, it replaces a variable with
an abstraction (both of commutative size 1), so |s|c = |s′|c and neither
the lhs nor the rhs changes (as |ρ|c = |σ|c and |ρ|β = |σ|β). Thus, the
inequality is preserved.

Cost of single transitions. We need to make some hypotheses on how the Easy900

GLAMOUr is going to be itself implemented on a random access machine (RAM):

1. Codes, stacks, variable (occurrences) and environment entries : abstractions
and applications are constructors with pointers to subterms; similarly, a
pair t@π or t♦π is a constructor with pointers to the code t and the stack π.
A stack is a singly linked list. A variable is a memory location, a variable905

occurrence is a reference to it, and an environment entry [x�φ] is the fact
that the location associated with x contains φ.

2. Random access to global environments : the environment E can be accessed
in O(1) (in the transition s) by just following the reference given by the
variable occurrence under evaluation, with no need to access E sequentially,910

thus ignoring its list structure (used only to ease the definition of decoding).

With these hypotheses it is clear that each β and commutative transition can
be implemented in O(1), since it only accesses the head of a list and redirects
some pointers. Each substitution transition needs to copy a code from the
environment (the renaming t

α
) and can be implemented in O(|t0|), since the915

code to copy is a subterm of the input t0 by the subterm invariant (Lemma 8)
and the environment can be accessed in O(1).

These hypotheses are realistic, as they are verified for instance by some of
the OCaml implementations of abstract machines in Accattoli and Barras [22].

Summing up. By putting together the bounds on the number of transitions with920

the cost of single transitions we obtain the complexity of the Easy GLAMOUr,
i.e. the overhead when it is implemented on RAM.

Theorem 3 (Easy GLAMOUr overhead bound). Let ρ : t◦0
∗ s be an Easy

GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) · |t0|2),
i.e. linear in the number |ρ|β of β-transitions (aka the length of the derivation925

d : t0 →∗rβf s implemented by ρ) and quadratic in the size of the initial term t0.

Proof. The cost of implementing ρ is the sum of the costs of implementing its β,
substitution and commutative transitions on RAM:

1. β-transition β : each one costs O(1) and so all together they cost O(|ρ|β).

2. Substitution transition s: by Lemma 9 we have |ρ|s ≤ (1 + |ρ|β) · |t0|, i.e.930

the number of substitution transitions is bilinear in |ρ|β and |t0|. By the
subterm invariant (Lemma 8), each substitution transition costs at most

O(|t0|), and so their full cost is O((1 + |ρ|β) · |t0|2).

3. Commutative transitions c: by Lemma 10 we have |ρ|c ≤ (1 + |ρ|β) · |t0|.
Since each commutative transition evidently takes constant time, the whole935

cost of the commutative transitions is bounded by O((1 + |ρ|β) · |t0|).

29

7. Fast GLAMOUr

In this section we optimize the Easy GLAMOUr, obtaining a machine, the
Fast GLAMOUr, whose dependence on the size of the initial term is linear,
instead of quadratic, providing a bilinear—thus optimal—overhead (see Thm. 5940

below and compare it with Thm. 3 on the Easy GLAMOUr). We invite the
reader to go back to derivation (4) on page 26, where the quadratic dependence
was explained: in that example the substitutions of rn do not create βf -redexes,
and so they are useless. The Fast GLAMOUr avoids these useless substitutions
and it implements the example with no substitutions at all.945

Optimization: abstractions on-demand. The difference between the Easy GLA-
MOUr and the machines in [15] (to be surveyed in Sect. 9) is that, whenever
the former encounters a variable occurrence x bound to an abstraction λy.t in
the environment, it replaces x with λy.t, while the latter are more parsimonious.
They implement an optimization that we call substituting abstractions on-demand :950

x is replaced by λy.t only if this is useful to obtain a β-redex, that is, only if the
argument stack is non-empty. The Fast GLAMOUr, defined in Table 5, upgrades
the Easy GLAMOUr with substitutions of abstractions on-demand—note the
new side-condition for c3 and the non-empty stack in s.

Abstractions on-demand and the substitution of variables. The new optimization955

however has a consequence. To explain it, let us recall the role of another
optimization, no substitution of variables. In the Easy GLAMOUr, abstractions
are at depth 1 in the environment: there cannot be chains of renamings —
i.e. of substitutions of variables for variables — ending in abstractions (such as
[x�y@ε][y�z@ε][z�λz′.t@ε]). This property implies that the overhead is linear960

in |ρ|β and it is induced by the fact that variables cannot be substituted (for
variables). If variables can be substituted then the overhead becomes quadratic
in |ρ|β—this is what happens in the GLAMOUr machine in [15] (see Sect. 9).
The relationship between substituting variables and a linear/quadratic overhead
is studied in-depth by Accattoli and Sacerdoti Coen [30].965

Now, because the Fast GLAMOUr substitutes abstractions on-demand, vari-
able occurrences that are not applied are not substituted by abstractions. The
question becomes what to do when the code is an abstraction λx.t and the top of
the stack argument φ is a simple variable occurrence φ = y@ε (potentially bound
to an abstraction in the environment E) because if one admits that [x�y@ε] is970

added to E then the depth of abstractions in the environment may be arbitrary
and so the dependence on |ρ|β may be quadratic, as in the GLAMOUr.

There are two possible solutions to this issue. The complex one, given by
the Unchaining GLAMOUr in [15], is to add labels and a further unchaining
optimization (that is overviewed in Sect. 9). The simple one explored here is975

to resort to compacting β-transitions. The technique consists in splitting the
β-transition in two, handling this situation with a new rule that renames x as y
in the code t without touching the environment—this is exactly what the Fast
GLAMOUr does with β1

and β2
. The consequence is that abstractions stay

at depth 1 in E, and so the overhead is indeed bilinear.980

30

Dump Code Stack Global Env. Dump Code Stack Global Env.

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t (λx.u@ε) :π E
D : t♦π x π′ E c3 D t (x@π′) :π E

if E(x) = ⊥ or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε)

D λx.t (y@ε) :π E β1
D t{x�y} π E

D λx.t φ : π E β2
D t π [x�φ]E

if φ 6= y@ε

D x φ : π E[x�λy.u@ε]E′ s D (λy.u)α φ : π E[x�λy.u@ε]E′

Table 5: Transitions of the Fast GLAMOUr. In the transition s, (λy.u)α is any well-named
code α-equivalent to λy.u such that its bound variables are fresh with respect to those in D, π
and E[x�λy.u@ε]E′. Data-structures, unfolding and decoding are defined as in Table 2.

The simple solution is taken from Sands, Gustavsson, and Moran [19], where
they use it on a call-by-name machine. Actually, it repeatedly appears in the
literature on abstract machines even well before [19], often with reference to
space consumption and space leaks, for instance in Wand [31], Friedman et al.
[32], and Sestoft [33]. Sands, Gustavsson, and Moran were however the first to985

show that compacting βs have an effect on the time complexity of executions.

Fast GLAMOUr. The machine is in Table 5—note the two kinds of β-transitions.
Data-structures, compilation, and decoding are as for the Easy GLAMOUr.

Example 5. Let us now show how the derivation t := (λz.z(yz))λx.x →2
rβf

y λx.x of Ex. 1 is implemented by the Fast GLAMOUr. The execution is similar
to that of the Easy GLAMOUr in Ex. 3, since they implement the same derivation
and hence have the same initial state. In particular, the first five transitions in
the Fast GLAMOUr (omitted here) are the same as in the Easy GLAMOUr (see
Ex. 3 and replace β with β2). Then, the Fast GLAMOUr executes:

Dump Code Stack Global Environment
z♦ε : y♦ε z ε [z�λx.x@ε] c3

z♦ε y z@ε [z�λx.x@ε] c3

ε z y@(z@ε) [z�λx.x@ε] s

ε λx′′.x′′ y@(z@ε) [z�λx.x@ε] β2

ε x′′ ε [x′′�y@(z@ε)] : [z�λx.x@ε]

The Fast GLAMOUr executes only one substitution transition (the Easy GLA-
MOUr takes two) since the replacement of z with λx.x from the environment is on-990

demand (i.e. useful to obtain a β-redex) only for the first occurrence of z in z(yz).

For the Fast GLAMOUr we proceed like for the Easy GLAMOUr in Sect. 5:
we use invariants to prove that the Fast GLAMOUr implements right-to-left
evaluation →rβf of the fireball calculus (via the decoding ·). The differences are
minimal with respect to statements and proofs for the Easy GLAMOUr, (detailed995

proofs are in Appendix B.3 for the sake of completeness). In particular, the
Fast GLAMOUr satisfies the same qualitative invariants as the Easy GLAMOUr
(Lemma 5) except for the fireball item, which is slightly different.

31

Lemma 11 (Fast GLAMOUr qualitative invariants). Let s = (D, t, π,E) be a Proof in Appendix,
p. 52reachable state of a Fast GLAMOUr execution. Then:1000

1. Name:

(a) Explicit substitution: if E = E′[x�φ]E′′ then the variable x is fresh
with respect to φ and E′′;

(b) Abstraction: if λx.u is a subterm of D, t, π, or E, then the variable
x may occur only in u.1005

2. Fireball item: for every item φ in π, in E or in any stack in D, one has
that φ and φ

→

E are: inert terms if φ = x@π′ and either E(x) = ⊥ or
E(x) = y@π′′; abstractions otherwise.

3. Contextual decoding: Rs = D〈π〉

→

E is a right context.

Proof. Easy induction on the length of the execution ending in the state s.1010

Analogously to the Easy GLAMOUr, the invariants above are used to prove
the implementation theorem for the Fast GLAMOUr (Thm. 4) by showing that
the hypotheses of Thm. 1 hold, namely that the Fast GLAMOUr forms an
implementation system (Def. 2) with respect to right-to-left evaluation →rβf in
the fireball calculus λfire, via the decoding ·.1015

First, we show (Lemma 12) that the two conditions about the projection of
Fast GLAMOUr transitions on the fireball calculus (i.e. Points 1-2 of Def. 2) are
fulfilled. Its proof is analogous to the corresponding lemma for the Easy GLA-
MOUr (Lemma 6). Substitution (s) and commutative (c1,2,3) transitions are
considered as overhead transitions, while the β transitions are β1 and β2 .1020

Lemma 12 (Fast GLAMOUr β-projection and overhead transparency). Let s Proof in Appendix,
p. 55be a reachable state of a Fast GLAMOUr execution.

1. Overhead Transparency: if s s,c1,2,3 s
′ then s = s′;

2. β-Projection: if s β1,2 s
′ then s→rβf s

′.

The next lemma deals with the halt condition for an implementation system1025

(Point 5 of Def. 2). It is proved similarly to the corresponding lemma for the
Easy GLAMOUr (Lemma 7).

Lemma 13 (Fast GLAMOUr halt). Let s be a reachable final state of a Fast Proof in Appendix,
p. 56GLAMOUr execution. Then s is a fireball, i.e. it is βf -normal.

We can now prove the implementation theorem for the Fast GLAMOUr.1030

Theorem 4 (Fast GLAMOUr implementation). The Fast GLAMOUr imple-
ments right-to-left evaluation →rβf in λfire (via the decoding ·).

Proof. According to Thm. 1, it is enough to show that the Fast GLAMOUr, the
right-to-left evaluation →rβf and the decoding · form an implementation system,
i.e. that the five conditions in Def. 2 hold. By Lemma 12, Points 1-2 (β-projection1035

and overhead transparency) of Def. 2 are fulfilled. By Lemma 13, also Point 5
(halt) of Def. 2 holds, since →rβf ⊆→βf . Let us prove Points 3-4 of Def. 2.

32

3. Overhead termination: Termination of transitions s,c1,2,3 is given by
the forthcoming Lemma 14, which is postponed because it actually gives
precise complexity bounds, not just termination.1040

4. Determinism: The Fast GLAMOUr machine is deterministic, as can be
seen by an easy inspection of the transitions (see Table 5). Lemma 1.2
proves that →rβf is deterministic.

Complexity analysis. What changes with respect to the Easy GLAMOUr is the
complexity analysis which, surprisingly, is simpler. The Fast GLAMOUr has the1045

same subterm invariant as the Easy GLAMOUr (Lemma 8, just replace “Easy
GLAMOUr” with “Fast GLAMOUr” in the statement), the proof is analogous.

We focus on the number of overhead transitions of a Fast GLAMOUr execution
ρ, expressed as a function of the number |ρ|β of β-transitions and the size |t0| of
the initial term t0 (Lemma 14). The substitution vs. β transitions part is simply1050

trivial: since abstractions are substituted only on-demand, it is easy to show that
the number |ρ|s of substitution transitions is simply bounded by |ρ|β , without
any dependence on |t0| (differently from the Easy GLAMOUr, see Lemma 9).

For the commutative vs. β transitions part, the same measure and the same
reasoning of the Easy GLAMOUr seen in Lemma 10 provide the same bound on1055

the number |ρ|c of commutative transitions, namely |ρ|c ≤ (1 + |ρ|β) · |t0|.

Lemma 14 (Number of overhead transitions). Let ρ : t◦0
∗ s be a Fast GLA-

MOUr execution. Then,

1. Substitution vs. β transitions: |ρ|s ≤ |ρ|β.

2. Commutative vs. β transitions: |ρ|c ≤ (1 + |ρ|β) · |t0|.1060

Proof. 1. Substitution vs. β transitions: since abstractions are substituted
only on-demand, every substitution transition that is not the last transition
is immediately followed by a β-transition. Therefore, in an execution ρ
there can be at most one substitution transition not followed by a β-
transition, and so |ρ|s ≤ |ρ|β + 1. The +1 can be easily removed: ρ1065

must have a β2 transition before the first substitution one, otherwise the
environment is empty and no substitution is possible; thus |ρ|s ≤ |ρ|β .

2. Commutative vs. β transitions: the bound |ρ|c ≤ (1 + |ρ|β) · |t0|, which is
the same as in the Easy GLAMOUr, is obtained in exactly the same way
as in the proof of Lemma 10, by using the commutative size | · |c for states1070

defined in Sect. 6. The differences in the proof are minimal:

• Transitions c1 and c2 : no difference, because they are exactly the
same transitions as in the Easy GLAMOUr.

• Transition c3 : the transition has a side-condition more than the
corresponding transition in the Easy GLAMOUr. Then it is a sub-case,1075

and so the bound obviously hold.

33

• Transition β1 : the novelty of the transition is the renaming of the
code, but it leaves the size, and thus the inequality, unchanged.

• Transition β2 : a special case of β in the Easy GLAMOUr.

• Transition s: a special case of s in the Easy GLAMOUr.1080

Cost of single transitions and global overhead. For the cost of single transitions,
note that c1 , c2 , c3 and β2

have (evidently) cost O(1) while s and β1

have cost O(|t0|) by the subterm invariant. Therefore, we can conclude with:

Theorem 5 (Fast GLAMOUr bilinear overhead). Let ρ : t◦0
∗ s be a Fast

GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) · |t0|),1085

i.e. linear in both the number |ρ|β of β-transitions (aka the length of the derivation
d : t0 →∗rβf s implemented by ρ) and the size of the initial term t0.

Proof. The cost of implementing ρ is the sum of the costs of implementing its β,
substitution and commutative transitions on RAM:

1. β-transitions β1
and β2

: each transition β1
costs O(|t0|) because the1090

code has to be renamed and by the subterm invariant (Lemma 8 for the Fast
GLAMOUr) the size of the code is bounded by |t0|. Each transition β2

instead takes constant time. In the worst case, β-transitions all together
cost O(|ρ|β · |t0|).

2. Substitution transition s: by Lemma 14, we have |ρ|s ≤ |ρ|β . By the1095

subterm invariant (Lemma 8 for the Fast GLAMOUr), each substitution
transition costs at most O(|t0|), and so their full cost is O(|ρ|β · |t0|).

3. Commutative transitions c: by Lemma 14, |ρ|c ≤ (1 + |ρ|β) · |t0|. Since
every commutative transition evidently takes constant time, the whole cost
of the commutative transitions is bounded by O((1 + |ρ|β) · |t0|).1100

8. A Further Refinement: Renaming on β

In this section we sketch the renaming on β optimisation, that moves part of
the complexity of the substitution transition to the β-transition. Its effect on
the Easy GLAMOUr is relevant, as it makes its overhead bilinear, while on the
Fast GLAMOUr it is somewhat negligible, as it provides a small improvement1105

but it does not change the overall complexity of the machine.
Renaming on β is already at work in e.g. Sands et al. [19], and Danvy and

Zerny [29] where however it has no impact on the complexity of the machines, as
they deal with closed calculi. We discovered the relevance of this optimisation in
the open setting after our paper was submitted, in a joint work with Condoluci1110

and Sacerdoti Coen [34], building on the present one, which is why we present it
as an additional optimisation.

Let us point out that renaming on β does not turn substituting abstractions on-
demand—the optimisation of the Fast GLAMOUr—into a useless optimisation:
in Sect. 11 we show that substituting abstractions on-demand is mandatory for1115

a reasonable implementation of Strong CbV.

34

Dump Code Stack Global Env. Dump Code Stack Global Env.

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t (λx.u@ε) :π E
D : t♦π x π′ E c3 D t (x@π′) :π E

if E(x) = ⊥ or E(x) = y@π′′

D λx.t φ :π E β D t{x�y} π [y�φ]E
D x π E[x�λy.u@ε]E′ s D λy.u π E[x�λy.u@ε]E′

Table 6: Transitions of the BE GLAMOUr. The variable y in the right-hand side of β transition
 β is fresh with respect to the variables in D, φ, π, and E.

The BE GLAMOUr. Table 6 presents the BE GLAMOUr, a minor variant of the
Easy GLAMOUr (BE comes from renaming on Beta Easy). The only difference
is that the α-renaming now happens on the β-transition β and no longer on
the substitution transition s. It is the body t of the abstraction in the code1120

that is α-renamed, and—to avoid name clashes—it is enough to rename only
the abstracted variable x with a fresh one y, without α-renaming all the bound
variables in the body t.

The machine has the same subterm invariant as the Easy GLAMOUr, which
is why the change is harmless: the code t of a reachable state is a subterm of the1125

initial term t0, whose size then bounds the cost of the new renaming operation
t{x�y}, exactly as in the case of α-renaming on the substitution transition.

Moving the renaming operation has the following effects on the complexity
analysis, for an execution ρ of initial term t0:

1. β-transition β : now each one costs |t0| by the subterm invariant, so their1130

global cost is O(|ρ|β · |t0|), that is higher than in the Easy GLAMOUr and
yet bilinear;

2. Substitution transition s: the number |ρ|s of substitution transitions is
unchanged with respect to the Easy GLAMOUr (|ρ|s ≤ (1 + |ρ|β) · |t0|),
i.e. it is bilinear in |ρ|β and |t0|. The cost of each such transition however1135

now is constant, because the copy of the code from the environment can
be done by simply copying a pointer, since renaming is no longer needed.
Therefore, the global cost of substitutions lowers to O((1 + |ρ|β) · |t0|).

3. Commutative transitions c1,2,3 : nothing changes, the reasoning for the
Easy GLAMOUr still applies, so the number |ρ|c of commutative transitions1140

is bilinear in |ρ|β and |t0|, and the cost of each such transition is constant.
Therefore, their global cost is bilinear, i.e. O((1 + |ρ|β) · |t0|.

The complexity of the BE GLAMOUr is then bilinear, i.e. O((1 + |ρ|β) · |t0|).

The BEST GLAMOUr. Renaming on β can also be applied to the Fast GLA-
MOUr, obtaining the BEST GLAMOUr (renaming on BEta faST GLAMOUr),1145

whose transitions are in Table 7. The optimisation lowers the global cost of
substitution transitions to O(|ρ|β) (since |ρ|s ≤ |ρ|β as in the Fast GLAMOUr,
but there is no α-renaming) while that one of β-transitions becomes O(|ρ|β · |t0|)

35

Dump Code Stack Global Env. Dump Code Stack Global Env.

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t (λx.u@ε) :π E
D : t♦π x π′ E c3 D t (x@π′) :π E

if E(x) = ⊥ or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε)

D λx.t (y@ε) :π E β1
D t{x�y} π E

D λx.t φ : π E β2
D t{x�y} π [y�φ]E

if φ 6= y@ε

D x φ : π E[x�λy.u@ε]E′ s D λy.u φ : π E[x�λy.u@ε]E′

Table 7: Transitions of the BEST GLAMOUr. The variable y in the right-hand side of β
transition β2 is fresh with respect to the variables in D, φ, π, and E.

Dump Code Stack Global Env. Dump Code Stack Global Env.

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t (λx.u@ε)λ : π E
D : t♦π x π′ E c3 D t (x@π′)i : π E

if E(x) = ⊥ or E(x) = (y@π′′)i

D : t♦π x ε E[x�φλ]E′ c4 D t (x@ε)λ : π E[x�φλ]E′

D λx.t φ` :π E β D t π [x�φ`]E
D x φ` :π E[x�ψλ]E′ s D (ψ)α φ` :π E[x�ψλ]E′

Table 8: Transitions of the GLAMOUr. In the substitution transition s, (ψ)α is any well-
named code α-equivalent to ψ such that its bound variables are fresh with respect to those in

D, φ` :π and E[x�ψλ]E′.

(for the same reason as for the BE GLAMOUr). On the whole, the complexity
of the BEST GLAMOUr is still bilinear, more precisely O((1 + |ρ|β) · |t0|) (as in1150

the Fast / BE GLAMOUr), because of commutative transitions that are identical
to the Fast GLAMOUr and hence have the same global cost. The difference
between the Fast and the BEST GLAMOUr is minimal, renaming on β however
renames only one variable and only when needed, while renaming on substitutions
renames all the variables in the body of the abstraction and in an eager way,1155

and so the BEST GLAMOUr is slightly better.

9. GLAMOUr and Unchaining GLAMOUr

In this section we quickly recall the GLAMOUr and Unchaining GLAMOUr
from Accattoli and Sacerdoti Coen [15], to explain the differences with respect
to the Easy GLAMOUr and the Fast GLAMOUr. We are somewhat going to1160

provide an alternative explanation to the issues that have been discussed at the
beginning of Sect. 7, to introduce the Fast GLAMOUr.

9.1. GLAMOUr

The machine is in Table 8. The basic ideas are that the GLAMOUr:

1. never substitutes inert terms that are not variables, and so it is reasonable;1165

36

2. substitutes variables (for variables), so its overhead is quadratic in the
number |ρ|β of β transitions, as outlined on p. 30;

3. substitutes abstractions on demand, and so its overhead is linear in the
size |t0| of the initial term;

4. relies on labels (explained below), to implement Points 1 and 3; labels are1170

needed because of Point 2.

The complexity of the GLAMOUr is then O((1 + |ρ|2β) · |t0|).

Labels. The key point is understanding how the labeling works. Every stack
item φ (as usual, stack items are also the bodies of environment entries) has
a label ` ∈ {λ, i} indicating whether its unfolded decoding φ

→

E relative to the1175

global environment E (see the definitions in Table 2) is an abstraction (case
` = λ) or an inert term (case ` = i). This property is of course guaranteed to be
one of the invariants of the machine (for reachable states).

Labels are needed because environment entries can contain variables, i.e. stack
items of the form φ = y@ε. Let us first focus on the need for labels, and postpone1180

for a moment the explanation of why environment entries contain variables.

The need for labels. The issue comes from the fact that not every variable has
to be replaced by what is in the environment, because inert terms shall not be
substituted and abstraction shall be substituted only on demand (i.e. when the
stack is non-empty—note the stack φ` :π in transition s). When the current1185

code is a variable x, looking at the entry [x�φ] (if any) in the environment E is
not enough to know whether x will end up being replaced by an inert term or
by an abstraction, because φ may be a variable, and so to retrieve the needed
information one needs to keep exploring the environment, potentially following a
chain of variables until an abstraction or an inert term is found. Labels allow us1190

to keep this information local, circumventing the exploration of the environment.

Why environment entries contain variables. It is a side effect of substituting
abstractions on demand. Note transition c4 : when the variable x to be
substituted by (something that will become) an abstraction is not applied (i.e.
the stack is empty) and so the substitution is not needed on that occurrence1195

of x, the machine backtracks and puts (x@ε)λ on the stack, which might then
be pushed onto the environment by a subsequent β transition. If, instead,
abstractions are substituted whenever, the problem disappears, and one obtains
the Easy GLAMOUr of Sect. 5; the complexity of the overhead however changes:
the dependence on the initial term then becomes quadratic.1200

9.2. Unchaining GLAMOUr

The Unchaining GLAMOUr machine is in Table 9. It is exactly as the GLA-
MOUr but for the substitution rule s, that is replaced by a more sophisticated
unchaining mechanism given by the new three rules s1 , c5 , and s2 . These
rules dynamically shorten the chains of variables entries in the environment E.1205

37

Dump Heap Code Stack Global Env. Dump Heap Code Stack Global Env.

D ε tu π E c1 D : t♦π ε u ε E
D : t♦π ε λx.u ε E c2 D ε t (λx.u@ε)λ : π E
D : t♦π ε x π′ E c3 D ε t (x@π′)i : π E

if E(x) = ⊥ or E(x) = (y@π′′)i

D : t♦π ε x ε E[x�φλ]E′ c4 D ε t (x@ε)λ : π E[x�φλ]E′

D ε λx.t φ` :π E β D ε t π [x�φ`]E

D ε x φ` :π E[x�(λz.u@ε)λ]E′ s1 D ε (λz.u)α φ` :π E[x�(λz.u@ε)λ]E′

D H x φ` :π E[x�(y@ε)λ]E′ c5 D H :x y φ` :π E[x�(y@ε)λ]E′

D H :y x φ` :π E• s2 D H y φ` :π E◦

Table 9: Transitions of the Unchaining GLAMOUr. In the substitution transition s1 , (λx.u)α

is any well-named code α-equivalent to λx.u such that its bound variables are fresh with
respect to those in D, φ` :π and E[x�(λx.u@ε)λ]E′. In the substitution transition s2 , E• =
E′[y�(x@ε)λ]E′′[x�(λz.u@ε)λ]E′′′ and E◦ = E′[y�((λz.u)α@ε)λ]E′′[x�(λz.u@ε)λ]E′′′

where (λz.u)α is any code α-equivalent to λz.u that preserves the well-naming of the machine.

A new data structure is also required, the heap H, to keep track of the already
visited part of the chain of variable replacements under exploration, and then
properly backtrack once an abstraction entry has been found. Compared to
the GLAMOUr, the unchaining mechanism lowers the overhead to be linear
also in the number |ρ|β of β-transitions. So, the complexity of the Unchaining1210

GLAMOUr is O((1 + |ρ|β) · |t0|), the same as the Fast GLAMOUr.

Eager and lazy handling of the chains. Let us postpone for a moment the
precise explanation of the transitions and rather provide an abstract view of the
unchaining mechanism. The difference between the Fast and the Unchaining
GLAMOUr is that the former handles variable replacement chains eagerly (see1215

transition β1
in Table 5) while the latter does it lazily.

The compacting mechanism of the Fast GLAMOUr, indeed, avoids altogether
creating variable replacement chains, by performing a substitution whenever
the argument is a variable. Relative inefficiency is due to substitutions that go
through the current code even when the variable to rename in fact never occur.1220

The unchaining mechanism of the Unchaining GLAMOUr, instead, allows
for the creation of chains, but the first time that a chain has to be followed the
chain itself is unchained, guaranteeing that it will not be followed again. So
chains are compacted by need. An easy amortized analysis (in [15], not here)
shows that the unchaining work is reasonable.1225

One of the contributions of our work is to show that the compacting approach
of the Fast GLAMOUr is in fact much easier to define and analyze than the
unchaining approach. Complexity-wise, however, they are equivalent.

Unchaining variable chains. Let us explain how the unchaining mechanism
works. Suppose that the current code is a variable x, that the stack is non empty,1230

and that the environment contains an entry [x�φλ], so that the substitution of
an abstraction on-demand has to be done. Thus the machine follows the chain
of variable replacements in the environment E starting from x, until it finds an
abstraction item (λz.u@ε)λ. Then it backtracks and simultaneously unchains

38

the chain, by substituting (a copy of) λz.u on every entry of the chain, and1235

finally also on x, as required.
Let us have a look at the transitions in Table 9. Suppose the environment

associates x with a variable item (z@ε)λ. Then,

1. Chain exploration: the environment is explored, by following the chain of
variable replacements starting from x, via transition c5 . Concretely, x1240

is pushed on the heap H, and the machine jumps evaluating the item, by
making y the current code. The machine keeps repeating this process until
it finds a variable bound to an abstraction item.

2. Unchaining while substituting and backtracking : the current variable x is
associated with an abstraction item (λz.u@ε)λ and now the backtracking1245

starts. Two cases:

(a) The heap is non-empty : this is were the unchaining happen, via
transition s2 . Given a heap H : y, the environment has the form
E• = E′[y�(x@ε)λ]E′′[x�(λz.u@ε)λ]E′′′. The machine substitutes
the abstraction on [y�(x@ε)λ], producing the environment E◦ =1250

E′[y�((λz.u)α@ε)λ]E′′[x�(λz.u@ε)λ]E′′′ and unchaining x from y.
The machines also pops y from the heap, to keep backtracking the
chain exploration previously done by c5 .

(b) The heap is empty : this is the base case, that may also happen if
x from the start was associated with an abstraction entry, and not1255

a variable one. Then the current code x is simply replaced by an
appropriate renaming (λz.u)α of (λz.u@ε), via transition s1 , as in
the other machines. Nothing happens to the environment.

10. On the Minimality of the Cost Model

In the previous sections we had a close look at the overhead of various1260

machines implementing the fireball calculus λfire. These machines have all been
measured with respect to the same cost model, that is, the number of fireball
steps →βf .

Here we change focus, trying to understand whether it is possible to go one
step further, and switch to a more parsimonious and still natural cost model1265

for Open CbV. The idea—inspired by the fact that evaluation and substitution
of inert terms commute (Prop. 4)—is to ignore steps substituting inert terms
(→βi) and only count steps substituting abstractions (→βλ). We do not have a
definite answer, but we provide evidence that such a change is far from being
straightforward.1270

Do inert steps cost 1 or 0?. The polynomial complexity of GLAMOUr machines
shows that the number of fireball steps →βf is a reasonable time cost model
for Open CbV. This roughly means that the cost of an inert step →βi can be
taken as 1, even if in Open CbV inert steps may cause size explosion (Prop. 3).

39

Concretely, in a reasonable implementation of Open CbV (such as all the machines1275

in the GLAMOUr family presented here and in [15]) this is obtained by never
substituting inert terms that are not variables, thus handling a βi-step (at least
when the argument of the redex is a non-variable inert term) in constant time. It
is then natural to wonder whether the cost of an inert step can actually be taken
as 0, or if they are in fact computationally relevant for complexity analyses. Said1280

differently, can inert steps be seen as administrative work akin to commutative
steps? Is their cost dominated by the number of abstraction steps →βλ?

Here we provide evidence that the cost of an inert step is 1, not 0, i.e. it is
relevant and cannot be considered as administrative work, despite its constant
cost. Namely, we show a inert length exploding family, that is, a family of terms1285

that evaluates in a linear number of βλ-steps followed by an exponential number
of βi-steps. Therefore, abstraction steps do not dominate inert steps, and it
seems that the number of βλ-steps is not a reasonable cost model for Open CbV.

Beware: we do not prove that one cannot count 0 the cost of a βi-step,
as in principle there might be an evaluation algorithm avoiding the potential1290

exponential number of inert steps. Nonetheless, the family shows that such an
algorithm, if any, is non-trivial and has to rely on some new insight to manage
polynomially the exponential blow-up of inert redexes.

Inert length explosion. We build our family of terms in two steps, first identifying
a family {un}n∈N that evaluates in Ω(2n) βi-steps to normal form, and then1295

building a family {sn}n∈N where each sn evaluates in O(n) βλ-steps to un.

Step 1: exponentially many βi-steps. Let i be an inert term. Consider the
following three families of terms (the tn’s and the un’s are mutually recursive):

t0 := I = λx.x u0 := t0i r0 := i

tn+1 := λz.(yunun) with z /∈ fv(un) ∪ {y} un+1 := tn+1i rn+1 := yrnrn .

Proposition 5 (Exponentially many βi-steps). For all n ∈ N, un →2n+1−1
βi

rn
and rn is an inert term (and hence βf -normal).

Proof. By induction on n. For the base case (n = 0), we have u0 = (λx.x)i→βi

i = r0 where r0 = i is inert and 20+1 − 1 = 1. For the inductive case, the i.h.

says that un →2n+1−1
βi

rn and rn is inert, hence rn+1 = yrnrn is inert and

un+1 = (λz.(yunun))i→βi yunun →2n+1−1
βi

yunrn →2n+1−1
βi

yrnrn = rn+1.

Therefore, un+1 →1+2(2n+1−1)
βi

rn+1 with 1 + 2(2n+1 − 1) = 2n+2 − 1.

Step 2: linearly many βλ-steps. Define (with x 6= y):

s0 := I = λx.x sn+1 := (λx.λz.(y(xi)(xi)))sn with z /∈ fv(i) ∪ {x, y}.

Proposition 6 (Linearly many βλ-steps). For all n ∈ N, sn →n
βλ
tn and so1300

sni→n
βλ
tni = un.

40

Proof. By induction on n. For the base case (n = 0), we have s0 = t0 by
definition. In the inductive case (sn →n

βλ
tn by i.h.), since all the tn’s are

abstractions, we have

sn+1 →n
βλ

(λx.λz.(y(xi)(xi)))tn →βλ λz.(y(tni)(tni)) = λz.(yunun) = tn+1.

Corollary 1 (Inert length explosion). For all n ∈ N, sni→n
βλ
→2n+1−1
βi

rn.

Proof. Composing Prop. 5 and Prop. 6.

Inert length explosion and size of the initial term. The inert length exploding
family shows an explosion of βi-steps (where the argument of each fired βi-redex1305

is an arbitrary inert term i) with respect to one of the two parameters for
complexity analyses, the number of βλ-steps. In fact, there is an explosion of
βi-steps also with respect to the other parameter, the size of the initial term: an
easy induction indeed shows that the size of the initial term sni is linear in n.

11. Pitfalls of Strong Call-by-Value1310

We carefully avoided the definition of Strong CbV, which is a tricky setting
with no (reasonable) implementations in the literature. Nonetheless, our results
on implementing Open CbV provide some insight into the cost of implementing
Strong CbV—overviewed in this section—independently of its exact definition.

Abstractions on-demand: Open CbV is simpler than Strong CbV. We explained
in Sect. 4 that Grégoire and Leroy’s abstract machine for Coq as described
in [14] is unreasonable. Its actual implementation, on the contrary, does not
substitute non-variable inert terms, so it is reasonable for Open CbV. None
of the versions, however, substitutes abstractions only on-demand (nor, to our
knowledge, does any other implementation), despite the fact that it is a necessary
optimization in order to have a reasonable implementation of Strong CbV, as we
now show. Consider the following size exploding family {snI}n>0 (with I := λz.z
and x 6= y), from [16]:

s1 := λx.λy.(yxx) sn+1 := λx.(sn(λy.(yxx))) r0 := I rn+1 := λy.(yrnrn)

Proposition 7 (Abstraction size explosion). Let n > 0. Then snI →n
βλ

rn.1315

Moreover, |snI| = O(n), |rn| = Ω(2n), snI and rn are closed, and rn is normal.

Proof. To obtain a simple inductive proof of snI →n
βλ
rn, we prove by induction

on n a more general statement: snrm →n
βλ
rn+m for all n > 0 and m ≥ 0 (in

particular, for m = 0 we have snI →n
βλ
rn). Note that rm is an abstraction for

all m ≥ 0.1320

• Base case (n = 1): s1rm = (λx.λy.(yxx))rm →βλ λy.(yrmrm) = rm+1.

• Inductive case: sn+1rm = (λx.sn(λy.(yxx)))rm →βλ sn(λy.(yrmrm)) =
snrm+1 →n

βλ
rn+m+1, where snrm+1 →n

βλ
rn+m+1 by i.h.

41

The proof of the other points of the statement is immediate.

The family {snI}n>0 is interesting because it is an example of size explosion1325

for Closed, Open and Strong CbV: in all these settings the family inevitably
explodes (moreover it is in continuation-passing style and it is typable with
simple types). Indeed, any kind of evaluation of snI produces 2n non-applied
copies of I (in rn). In Strong CbV (where CbV evaluation is unrestricted) all
derivations from snI to its normal form rn have the same length n (and are1330

permutatively equivalent); so, a machine for Strong CbV substituting abstractions
whenever (thus not only on-demand) must have an exponential overhead, due
to 2n substitutions transitions. If evaluation is weak (i.e. it does not go under
abstraction, like in Closed and Open CbV) a derivation from snI to its normal
form rn still exists — the only possible one, its length is n— and each term in1335

it is closed. Since the substitutions of abstractions (exponential in number)
required by the (weak or strong) evaluation of {snI}n∈N are all substitutions
under non-applied abstractions, closed and open machines never do them anyway:
this is the reason why machines for Closed and Open CbV can be reasonable
even if they substitute abstractions whenever.1340

The danger of iterating Open CbV naively. The size exploding example in Prop. 7
also shows that iterating reasonable machines for Open CbV is subtle, as it may
induce unreasonable machines for Strong CbV, if done naively. Evaluating Strong
CbV by iterating the Easy / BE GLAMOUr (which do substitute abstractions
whenever, not only on-demand), indeed, induces an exponential overhead, while1345

iterating the Fast / BEST GLAMOUr (which does substitute abstractions only
on-demand) provides an efficient implementation: substituting abstractions
on-demand is mandatory to get reasonable implementations of Strong CbV by
iterating the reasonable implementations of Open CbV we studied here.

12. Conclusions1350

Let us sum up the lessons learned about abstract machines for Open CbV.

Modular overhead. The overhead of implementing Open CbV is measured with
respect to the size |t0| of the initial term t0 and the number n of β-steps. We
showed that its complexity depends crucially on three choices about substitution.

The first choice is whether to substitute inert terms that are not variables. If1355

they are substituted, as in Grégoire and Leroy’s machine [14]—here called Open
GLAM—then the overhead is exponential in |t0| because of open size explosion
(Prop. 3), and the implementation is then unreasonable.

It turns out, however, that evaluation and substitution of inert terms commute
(Prop. 4), and so it is possible to evaluate without ever substituting inert terms1360

that are not variables. If they are not substituted, as in the machines of the
GLAMOUr family, then the overhead becomes polynomial and we get reasonable
implementations of Open CbV.

42

The two other parameters are whether to substitute variables, and whether
abstractions are substituted whenever or only on-demand, and they give rise to1365

the following table of machines and reasonable overheads:

Sub of Abs Whenever Sub of Abs On-Demand

Sub of Variables Slow GLAMOUr GLAMOUr
O((1 + n2) · |t0|2) O((1 + n2) · |t0|)

No Sub of Variables Easy GLAMOUr Fast / Unchaining GLAMOUr
O((1 + n) · |t0|2) O((1 + n) · |t0|)

The Slow GLAMOUr has been omitted because it is slow and involved, as it
requires the labeling mechanism of the (Unchaining) GLAMOUr (see Sect. 9).
It is somewhat surprising that the Fast GLAMOUr presented here has the best1370

overhead and it is also the easiest to analyze.
Last, the quadratic dependence on the size |t0| of the initial term when

abstractions are substituted whenever (left column) can be removed by a further
optimisation, here called renaming on β. It does not impact on the right column:
the biliniear overhead of the Fast/Unchaining GLAMOUr is optimal.1375

Minimality of the cost model. Since the substitution of inert terms can be
avoided, it is natural to wonder whether one should count at all β-steps whose
argument is an inert term. We provided evidence that inert steps should be
counted, because they can be exponentially more than the number of non-inert
steps. Our evidence is not a proof, it is just a tricky example showing that an1380

implementation reasonable in the number of non-inert steps has to rely on some
new implementation technology that, at present, seems to be out of reach.

Pitfalls of Strong CbV. Last, our fine study of how to implement Open CbV in a
reasonable way provides insights into how to implement Strong CbV. In particular,
we showed that substituting abstraction on-demand is mandatory for reasonable1385

implementations of Strong CbV, even if it is optional for Open CbV. Consequently,
seeing Strong CbV as iterated Open CbV is subtle complexity-wise: iterating
a reasonable machine for Open CbV may indeed provide only an unreasonable
implementation of Strong CbV (if abstractions are substituted whenever).

Acknowledgements. This work has been partially funded by the ANR JCJC grant1390

COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1
“Typed Lambda-Calculi with Sharing and Unsharing”.

The authors are grateful to Claudio Sacerdoti Coen and Andrea Condoluci
for valuable discussions, in particular about the renaming on β.

References1395

[1] B. Accattoli, G. Guerrieri, Implementing Open Call-by-Value, in: Funda-
mentals of Software Engineering (FSEN 2017), Vol. 10522 of Lecture Notes in
Computer Science, 2017, pp. 1–19. doi:10.1007/978-3-319-68972-2_1.

43

http://dx.doi.org/10.1007/978-3-319-68972-2_1

[2] S. Abramsky, C. L. Ong, Full Abstraction in the Lazy Lambda Calculus,
Information and Computation 105 (2) (1993) 159–267. doi:10.1006/inco.1400

1993.1044.

[3] P. Crégut, An Abstract Machine for Lambda-Terms Normalization, in:
LISP and Functional Programming, 1990, pp. 333–340. doi:10.1145/

91556.91681.

[4] Á. Garćıa-Pérez, P. Nogueira, J. J. Moreno-Navarro, Deriving the full-1405

reducing Krivine machine from the small-step operational semantics of
normal order, in: Principles and Practice of Declarative Programming
(PPDP ’13), 2013, pp. 85–96. doi:10.1145/2505879.2505887.

[5] B. Accattoli, P. Barenbaum, D. Mazza, A Strong Distillery, in: Programming
Languages and Systems (APLAS ’15), Vol. 9458 of Lecture Notes in Com-1410

puter Science, 2015, pp. 231–250. doi:10.1007/978-3-319-26529-2_13.

[6] B. Accattoli, The Useful MAM, a Reasonable Implementation of the Strong
λ-Calculus, in: Logic, Language, Information, and Computation (WoLLIC
2016), Vol. 9803 of Lecture Notes in Computer Science, 2016, pp. 1–21.
doi:10.1007/978-3-662-52921-8_1.1415

[7] R. Harper, F. Honsell, G. D. Plotkin, A framework for defining logics, in:
Logic in Computer Science (LICS ’87), 1987, pp. 194–204.

[8] T. Coquand, G. P. Huet, The Calculus of Constructions, Information
and Computation 76 (2/3) (1988) 95–120. doi:10.1016/0890-5401(88)

90005-3.1420

[9] G. Nadathur, D. Miller, An Overview of Lambda-Prolog, in: Logic Pro-
gramming (ICLP/SLP 1988), 1988, pp. 810–827.

[10] B. Accattoli, G. Guerrieri, Open Call-by-Value, in: Programming Languages
and Systems (APLAS 2016), Vol. 10017 of Lecture Notes in Computer
Science, 2016, pp. 206–226. doi:10.1007/978-3-319-47958-3_12.1425

[11] G. D. Plotkin, Call-by-Name, Call-by-Value and the lambda-Calculus,
Theoretical Computer Science 1 (2) (1975) 125–159. doi:10.1016/

0304-3975(75)90017-1.

[12] L. Paolini, S. Ronchi Della Rocca, Call-by-value Solvability, RAIRO -
Theoretical Informatics and Applications 33 (6) (1999) 507–534. doi:1430

10.1051/ita:1999130.

[13] S. Ronchi Della Rocca, L. Paolini, The Parametric λ-Calculus – A Meta-
model for Computation, Texts in Theoretical Computer Science. An EATCS
Series, Springer, 2004. doi:10.1007/978-3-662-10394-4.

[14] B. Grégoire, X. Leroy, A compiled implementation of strong reduction, in:1435

International Conference on Functional Programming (ICFP ’02), 2002, pp.
235–246. doi:10.1145/581478.581501.

44

http://dx.doi.org/10.1006/inco.1993.1044
http://dx.doi.org/10.1006/inco.1993.1044
http://dx.doi.org/10.1006/inco.1993.1044
http://dx.doi.org/10.1145/91556.91681
http://dx.doi.org/10.1145/91556.91681
http://dx.doi.org/10.1145/91556.91681
http://dx.doi.org/10.1145/2505879.2505887
http://dx.doi.org/10.1007/978-3-319-26529-2_13
http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1007/978-3-662-10394-4
http://dx.doi.org/10.1145/581478.581501

[15] B. Accattoli, C. Sacerdoti Coen, On the Relative Usefulness of Fireballs,
in: Logic in Computer Science (LICS 2015), 2015, pp. 141–155. doi:

10.1109/LICS.2015.23.1440

[16] B. Accattoli, The Complexity of Abstract Machines, in: Rewriting Tech-
niques for Program Transformations and Evaluation (WPTE 2016, invited
paper), Vol. 235 of EPTCS, 2017, pp. 1–15. doi:10.4204/EPTCS.235.1.

[17] B. Accattoli, (In)Efficiency and Reasonable Cost Models, Electronic Notes
in Theoretical Computer Science 338 (2018) 23–43. doi:10.1016/j.entcs.1445

2018.10.003.

[18] G. E. Blelloch, J. Greiner, A Provable Time and Space Efficient Implemen-
tation of NESL, in: International Conference on Functional Programming
(ICFP 1996), 1996, pp. 213–225. doi:10.1145/232627.232650.

[19] D. Sands, J. Gustavsson, A. Moran, Lambda Calculi and Linear Speedups,1450

in: The Essence of Computation, Complexity, Analysis, Transformation.
Essays Dedicated to Neil D. Jones, Vol. 2566 of Lecture Notes in Computer
Science, 2002, pp. 60–84. doi:10.1007/3-540-36377-7_4.

[20] U. Dal Lago, S. Martini, On Constructor Rewrite Systems and the Lambda-
Calculus, in: Automata, Languages and Programming (ICALP 2009), Vol.1455

5556 of Lecture Notes in Computer Science, 2009, pp. 163–174. doi:

10.1007/978-3-642-02930-1_14.

[21] U. Dal Lago, S. Martini, Derivational Complexity Is an Invariant Cost Model,
in: Foundational and Practical Aspects of Resource Analysis (FOPARA
2009), Vol. 6324 of Lecture Notes in Computer Science, 2009, pp. 100–113.1460

doi:10.1007/978-3-642-15331-0_7.

[22] B. Accattoli, B. Barras, Environments and the complexity of abstract
machines, in: Principles and Practice of Declarative Programming (PPDP
2017), 2017, pp. 4–16. doi:10.1145/3131851.3131855.

[23] B. Accattoli, U. Dal Lago, Beta Reduction is Invariant, Indeed, in: Computer1465

Science Logic and Logic in Computer Science (CSL-LICS 2014), 2014, pp.
8:1–8:10. doi:10.1145/2603088.2603105.

[24] B. Accattoli, P. Barenbaum, D. Mazza, Distilling abstract machines, in:
International Conference on Functional programming (ICFP 2014), 2014,
pp. 363–376. doi:10.1145/2628136.2628154.1470

[25] B. Accattoli, G. Guerrieri, Types of fireballs, in: Programming Languages
and Systems - 16th Asian Symposium (APLAS 2018), Vol. 11275 of Lecture
Notes in Computer Science, Springer, 2018, pp. 45–66. doi:10.1007/

978-3-030-02768-1_3.

[26] J.-Y. Girard, P. Taylor, Y. Lafont, Proofs and types, Vol. 7 of Cambridge1475

Tracts in Theoretical Computer Science, Cambridge University Press, 1989.

45

http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.4204/EPTCS.235.1
http://dx.doi.org/10.1016/j.entcs.2018.10.003
http://dx.doi.org/10.1016/j.entcs.2018.10.003
http://dx.doi.org/10.1016/j.entcs.2018.10.003
http://dx.doi.org/10.1145/232627.232650
http://dx.doi.org/10.1007/3-540-36377-7_4
http://dx.doi.org/10.1007/978-3-642-02930-1_14
http://dx.doi.org/10.1007/978-3-642-02930-1_14
http://dx.doi.org/10.1007/978-3-642-02930-1_14
http://dx.doi.org/10.1007/978-3-642-15331-0_7
http://dx.doi.org/10.1145/3131851.3131855
http://dx.doi.org/10.1145/2603088.2603105
http://dx.doi.org/10.1145/2628136.2628154
http://dx.doi.org/10.1007/978-3-030-02768-1_3
http://dx.doi.org/10.1007/978-3-030-02768-1_3
http://dx.doi.org/10.1007/978-3-030-02768-1_3

[27] Z. M. Ariola, A. Bohannon, A. Sabry, Sequent calculi and abstract machines,
ACM Transactions on Programming Languages and Systems 31 (4) (2009)
13:1–13:48. doi:10.1145/1516507.1516508.

[28] M. Fernández, N. Siafakas, New Developments in Environment Machines,1480

Electronic Notes in Theoretical Computer Science 237 (2009) 57–73. doi:
10.1016/j.entcs.2009.03.035.

[29] O. Danvy, I. Zerny, A synthetic operational account of call-by-need evalua-
tion, in: Principles and Practice of Declarative Programming (PPDP ’13),
2013, pp. 97–108. doi:10.1145/2505879.2505898.1485

[30] B. Accattoli, C. Sacerdoti Coen, On the Value of Variables, Information
and Computation 255 (2017) 224–242. doi:10.1016/j.ic.2017.01.003.

[31] M. Wand, On the correctness of the Krivine machine, Higher-Order
and Symbolic Computation 20 (3) (2007) 231–235. doi:10.1007/

s10990-007-9019-8.1490

[32] D. P. Friedman, A. Ghuloum, J. G. Siek, O. L. Winebarger, Improving
the lazy Krivine machine, Higher-Order and Symbolic Computation 20 (3)
(2007) 271–293. doi:10.1007/s10990-007-9014-0.

[33] P. Sestoft, Deriving a Lazy Abstract Machine, Journal of Functional Pro-
gramming 7 (3) (1997) 231–264.1495

[34] B. Accattoli, A. Condoluci, G. Guerrieri, C. Sacerdoti Coen, Crumbling
Abstract Machines, unpublished manuscript (2019).

[35] Terese, Term Rewriting Systems, Vol. 55 of Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 2003.

[36] H. P. Barendregt, The Lambda Calculus – Its Syntax and Semantics, Vol.1500

103 of Studies in Logic and the Foundations of Mathematics, North-Holland,
1984.

46

http://dx.doi.org/10.1145/1516507.1516508
http://dx.doi.org/10.1016/j.entcs.2009.03.035
http://dx.doi.org/10.1016/j.entcs.2009.03.035
http://dx.doi.org/10.1016/j.entcs.2009.03.035
http://dx.doi.org/10.1145/2505879.2505898
http://dx.doi.org/10.1016/j.ic.2017.01.003
http://dx.doi.org/10.1007/s10990-007-9019-8
http://dx.doi.org/10.1007/s10990-007-9019-8
http://dx.doi.org/10.1007/s10990-007-9019-8
http://dx.doi.org/10.1007/s10990-007-9014-0

Technical Appendix
Appendix A. Rewrite Theory: Definitions, Notations, Basic Results

Given a binary relation →r on a set I, the reflexive-transitive (resp. reflexive;1505

transitive; reflexive-transitive and symmetric) closure of →r is denoted by →∗
(resp. →=

r ; →+
r ; 'r). The transpose of →r is denoted by r←. A (r-)derivation

d from t to u, denoted by d : t→∗r u, is a finite sequence (ti)0≤i≤n of elements
of I (with n ∈ N) such that t = t0, u = tn and ti →r ti+1 for all 0 ≤ i < n (in
particular, t = u for n = 0); we then say that n (also denoted by |d|r or |d|) is1510

the number of r-steps, or the length, of d. We write t→n
r u if there is d : t→∗r u

with |d| = n. If→r =→r1 ∪ →r2 with→r1 ∩ →r2 = ∅, the number |d|rk of rk-steps
(for k ∈ {1, 2}) in a r-derivation d = (ti)0≤i≤n is the number of ti’s in d such
that ti →rk ti+1. We say that:

• t ∈ I is r-normal or a r-normal form if t 6→r u for all u ∈ I; u ∈ I is a1515

r-normal form of t if u is r-normal and t→∗r u;

• t ∈ I is r-normalizable if t →∗r u for some r-normal u ∈ I; t r-diverges if
there is an infinite sequence (ti)i∈N such that t0 = t and ti →r ti+1 for all
i ∈ N, otherwise t is strongly r-normalizable;

• a r-derivation d : t→∗r u is (r-)normalizing if u is r-normal;1520

• →r is strongly normalizing (or terminates) if every t ∈ I is strongly r-
normalizable;

• →r is deterministic if, for all t, u, s ∈ I, s r← t→r u implies u = s; →r is
quasi-diamond if, for all t, u, s ∈I such that s r← t→r u and u 6= s, there
is r ∈ I such that s→r r r← u; →r is confluent if →∗r is quasi-diamond.1525

Let →r1 and →r2 be binary relations on a set I. Composition of relations is
denoted by juxtaposition: for instance, t →r1→r2 u means that there is s ∈ I
such that t →r1 s →r2 u. We say that →r1 and →r2 strongly commute if, for
any t, u, s ∈ I such that u r1← t →r2 s, one has u 6= s and there is r ∈ I
such that u →r2 r r1← s. Note that if →r1 and →r2 strongly commute and1530

→=→r1 ∪ →r2 , then for any derivation d : t →∗ u the sizes |d|r1 and |d|r2 are
uniquely determined.

The next proposition collects some basic and well-known results of rewriting
theory, we use them implicitly in the paper.

Proposition 8 ([35]). Let →r be a binary relation on a set I.1535

1. If →r is confluent then:

(a) every r-normalizable term has a unique r-normal form;

(b) for all t, u ∈ I, t 'r u if and only if there is s ∈ I such that t →∗r
s ∗r← u.

47

2. If →r is quasi-diamond then →r is confluent and, for any t ∈ I:1540

(a) all normalizing r-derivations from t have the same length;

(b) t is strongly r-normalizable if and only if t is r-normalizable.

The rewriting theory of the fireball calculus λfire is very well behaved: for
instance, the reductions →βi , →βλ and →βf (which are weak, i.e. do not reduce
under abstractions) are quasi-diamond. Other good operational properties of1545

λfire are summarized in Prop. 2 on p. 9. Its proof rests on the following more
informative version of the Hindley–Rosen Lemma [36, Proposition 3.3.5.(i)]:

Lemma 15 (Strong Hindley–Rosen). Let →r =→r1 ∪ →r2 be a binary relation
on a set I, where →r1 and →r2 are quasi-diamond and strongly commute. Then,
→r is quasi-diamond and, for any t ∈ I and any normalizing r-derivations d and1550

e from t, one has |d|r = |e|r, |d|r1 = |e|r1 and |d|r2 = |e|r2 .

The proof of Lemma 15 is just a more accurate reading of the proof in [36,
Proposition 3.3.5.(i)].

Appendix B. Omitted Proofs

For the sake of completeness, we collect here some proofs of minor lemmas1555

stated in the main text. These proofs are not included in the body of the
paper because they are straightforward or trivially obtained by very similar ones
already present in the main text.

Appendix B.1. Proofs of Section 2 (The fireball calculus)

Circumventing open size explosion. To prove that the substitution of inert1560

terms can be avoided (commutation of evaluation and substitution of inert
terms, Prop. 4) we need two auxiliary lemmas about substitution, fireballs, and
reductions.

Lemma 2 (Fireballs are closed under substitution and anti-substitution of inert
terms). Let t be a term and i be an inert term. Stated at p. 111565

1. t{x�i} is an abstraction if and only if t is an abstraction;

2. t{x�i} is an inert term if and only if t is an inert term;

3. t{x�i} is a fireball if and only if t is a fireball.

Proof.

1. If t{x�i} = λy.s then t is neither a variable nor an application, otherwise1570

t{x�i} would be, respectively, an inert term or an application, and not an
abstraction. Therefore, t is an abstraction.

Conversely, if t = λy.s then we can suppose without loss of generality that
y /∈ fv(i) ∪ {x} and so t{x�i} = λy.(s{x�i}), which is an abstraction.

48

2. (⇒): By induction on the inert structure of t{x�i}. Cases:1575

• Variable, i.e. t{x�i} = y (possibly x = y). Then t is neither an appli-
cation nor an abstraction, otherwise t{x�i} would be, respectively,
an application or an abstraction. Therefore, t is a variable and hence
an inert term.

• Compound Inert, i.e. t{x�i} = i′f . Then t is not an abstraction,1580

otherwise t{x�i} would be an abstraction and not an inert term. If
t is a variable then it is inert. Otherwise it is an application t = us,
and hence u{x�i} = i′ and s{x�i} = f ; by i.h., u is an inert term;
according to the definition of fireball, there are two subcases for f :

(a) f is an abstraction; then by Point 1 s is an abstraction;1585

(b) f is an inert term; then by i.h. s is an inert term.

In both subcases s is a fireball, and so t = us is an inert term.

(⇐): By induction on the inert structure of t. Cases:

• Variable, i.e. either t = x or t = y 6= x: in the first subcase t{x�i} = i,
in the second subcase t{x�i} = y; in both subcases t{x�i} is an inert1590

term.

• Compound Inert, i.e. t = i′f . Then t{x�i} = i′{x�i}f{x�i}. By
i.h., i′{x�i} is an inert term. Concerning f , there are two subcases,
according to the definition of fireball:

(a) f is an abstraction; then by Point 1 f{x�i} is an abstraction;1595

(b) f is an inert term; then by i.h. f{x�i} is an inert term.

In both subcases f{x�i} is a fireball, and hence t{x�i} = i′{x�i}f{x�i}
is an inert term.

3. Immediate consequence of Lemmas 2.1-2, since every fireball is either an
abstraction or an inert term.1600

Lemma 3 (Substitution of inert terms does not create βf -redexes). Let t, u be Stated at p. 11

terms and i be an inert term. There is a term s such that:

1. if t{x�i} →βλ u then t→βλ s and s{x�i} = u;

2. if t{x�i} →βi u then t→βi s and s{x�i} = u.

Proof. Since →βf =→βλ ∪ →βi , we prove simultaneously both points, by induc-1605

tion on the definition of t{x�i} →βf u (i.e. by induction on the evaluation
context closing the fired βf -redex). Cases:

• Step at the root , i.e. t{x�i} := (λy.r′)q′ 7→βf r′{y�q′} =: u. Since t
is not a fireball (otherwise, by Lemma 2.3, t{x�i} would be a fireball
and hence βf -normal, according to Prop. 1.1), it has the form t = pq1610

with p{x�i} = λy.r′ and q{x�i} = q′. By Lemma 2.1, p = λy.r with
r′ = r{x�i} (we can suppose without loss of generality that y /∈ fv(i)∪{x}).
There are two subcases:

49

1. Abstraction step, i.e. t{x�i} = (λy.r′)q′ 7→βλ r′{y�q′} = u. By
Lemma 2.1, q is an abstraction, as q′ = q{x�i} is an abstraction.1615

Then, t = (λy.r)q 7→βλ r{y�q} and s := r{x�q} verifies the claim,
since s{x�i} = (r{y�q}){x�i} = r{x�i}{y�q{x�i}} = u.

2. Inert step, i.e. t{x�i} = (λy.r′)q′ 7→βi r
′{y�q′} = u. Analogous to

the abstraction subcase, just replace abstraction with inert term, the
use of Lemma 2.1 with the use of Lemma 2.2, and 7→βλ with 7→βi .1620

• Application left, i.e. t{x�i} := r′q′ →βf p
′q′ =: u with r′ →βf p

′. Since
t is not a fireball (otherwise, by Lemma 2.3, t{x�i} would be a fireball
and hence βf -normal, according to Prop. 1.1), it has the form t = rq with
r{x�i} = r′ and q{x�i} = q′. There are two subcases (for r′ →βf p

′):

1. Abstraction step, i.e. r{x�i} →βλ p
′. By i.h. there is a term p such1625

that p′ = p{x�i} and r →βλ p. Then s := pq satisfies the statement, as
t = rq →βλ pq = s and s{x�i} = (pq){x�i} = p{x�i}q{x�i} = u.

2. Inert step, i.e. r{x�i} →βi p
′. Analogous to the abstraction subcase,

just replace →βλ with →βi .

• Application right, i.e. t{x�i} := q′r′ →βf q′p′ =: u with r′ →βf p′.1630

Analogous to the previous case, just swap left and right.

Appendix B.2. Proofs of Section 5 (Easy GLAMOUr)

In order to prove that the Easy GLAMOUr implements the right-to-left
strategy in the fireball calculus (Thm. 2), we use the following qualitative
invariants of the Easy GLAMOUr.1635

Lemma 5 (Easy GLAMOUr invariants). Let s = (D, t, π,E) be a reachable Stated at p. 23

state of an Easy GLAMOUr execution. Then:

1. Name:

a. Explicit substitution: if E = E′[x�φ]E′′ then the variable x is fresh with
respect to φ and E′′;1640

b. Abstraction: if λx.u is a subterm of D, t, π or E, then the variable x
may occur only in u.

2. Fireball item: for every item φ in π, in E or in any stack in D, one has that
φ and φ

→

E are inert terms if φ = x@π′, and abstractions otherwise.

3. Contextual decoding: Rs = D〈π〉

→

E is a right context.1645

Proof. By induction on the length of the execution leading to the reachable state
s. In an initial state all the invariants trivially hold. For a non-empty execution,
the proof for each invariant is by case analysis on the last transition, using the
i.h.

1. Name. Cases:1650

i. s′ = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s. Both points follow
immediately from the i.h.

50

ii. s′ = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s. Both
points follow from the i.h.

iii. s′ = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) : π,E) = s with E(x) = ⊥1655

or E(x) = y@π′′. Both points follow immediately from the i.h.

iv. s′ = (D,λx.t, φ : π,E) β (D, t, π, [x�φ]E) = s. Point 1a for the
new entry [x�φ] in the environment of s follows from the i.h. for
Point 1b, for the other entries from the i.h. for Point 1a. Point 1b
follows from its i.h.1660

v. s′= (D,x, π,E) s (D, (λy.u)α, π, E) = s with E=E1[x�λy.u@ε]E2.
Point 1a follows from its i.h.; Point 1b for the new code of s is
guaranteed by the α-renaming operation (λy.u)α, the rest follows
from its i.h.

2. Fireball item. Cases:1665

(a) s′ = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s. The invariant follows
directly from the i.h. (as the stack π of the entry t♦π in the dump of
s is the stack of s′).

(b) s′ = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s. For
the item λx.u@ε, we have that λx.u@ε = λx.u and λx.u@ε

→

E =1670

(λx.u)

→

E = λx.(u

→

E) are abstractions (the last equality holds by
Lemma 5.1b). For all other items in s, the invariant follows from the
i.h. (as the tail π of the stack of s is the stack of the entry t♦π in the
dump of s′).

(c) s′ = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) : π,E) = s with E(x) = ⊥1675

or E(x) = y@π′′. For the item x@π′, we have that x@π′ = 〈x〉π′ is
inert because, by i.h., ψ is a fireball for every item ψ in π′. As for
x@π′

→

E , there are two subcases:

i. E(x) = y@π′′ i.e. E := E1[x�y@π′′]E2. By Lemma 5.1a, ev-
ery entry in E binds a different variable, and x and the vari-1680

ables bound in E1 are fresh with respect to y@π′′, so x

→

E =
x

→

E1[x�y@π′′]E2
= x{x�y@π′′}

→

E2
= y@π′′

→

E2
= y@π′′

→

E , which
by i.h. is inert. The i.h. also says that ψ

→

E is a fireball for every
item ψ in π′. Thus, x@π′

→

E = 〈x

→

E〉(π′

→

E) = 〈y@π′′

→

E〉(π′

→

E)
is inert.1685

ii. E(x) = ⊥. Similar to the previous case. By hypothesis, we have
x

→

E = x. As before, by i.h. ψ

→

E is a fireball for every item ψ in
π′. So, x@π′

→

E = 〈x

→

E〉(π′

→

E) = 〈x〉(π′

→

E) is an inert term.

For all other items in s the invariant follows from the i.h. (as the
remaining stack π of s is in the entry t♦π in the dump of s′).1690

(d) s′ = (D,λx.t, φ : π,E) β (D, t, π, [x�φ]E) = s. By Lemma 5.1b, x
may occur only in t. Thus the substitution

→

[x�φ]E acts exactly as

→

E

on every item in s; therefore, the invariant follows from the i.h. for
every item in s (as the item φ in the new entry in the environment of
s is in the stack of s′).1695

51

(e) s′= (D,x, π,E) s (D, (λy.u)α, π, E) = s with E=E1[x�λy.u@ε]E2.
The invariant follows directly from the i.h. (as the code (λy.u)α of s
is the only component that changes from s′).

3. Contextual decoding. Cases: (we use the fact that, given two contexts C
and C ′, the composition C〈C ′〉—obtained from C by replacing its hole1700

with C ′—is a right context iff C and C ′ are so; the proofs of both directions
are easy inductions)

(a) s′ = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s. By i.h., Rs′ =
D〈π〉

→

E is a right context, as well as u
→

E〈·〉. Then their compo-
sition (D〈π〉

→

E)〈u

→

E〈·〉〉 = D〈〈u〈·〉〉π〉
→

E = Rs is a right context.1705

(b) s′ = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s. By i.h.,
Rs′ = D : t♦π

→

E = D〈〈t〈·〉〉π〉
→

E = (D〈π〉

→

E)〈t

→

E〈·〉〉 is a right con-
text, which implies that D〈π〉

→
E is one such context. So, Rs =

D〈(λx.u@ε) : π〉

→

E = D〈〈〈·〉λx.u〉π〉

→

E = (D〈π〉

→

E)〈〈·〉λx.(u

→

E)〉 is
a right context because it is the composition of right contexts, in that1710

λx.(u

→

E) is a fireball.

(c) s′ = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) : π,E) = s with E(x) = ⊥
or E(x) = y@π′′. By i.h., Rs′ = D : t♦π〈π′〉

→

E = D〈〈〈t〉π′〉π〉

→

E =
(D〈π〉

→

E)〈t〈π′〉
→

E〉 is a right context, which implies that D〈π〉

→

E

is one such context as well. Therefore, Rs = D〈(x@π′) : π〉

→

E =1715

D〈〈〈·〉x@π′〉π〉

→

E = (D〈π〉

→

E)〈〈·〉x@π′

→

E〉 is a right context because
it is the composition of right contexts, given that x@π′

→

E is a fireball
by Lemma 5.2.

(d) s′ = (D,λx.t, φ : π,E) β (D, t, π, [x�φ]E) = s. By i.h., Rs′ =
D〈φ : π〉

→

E = D〈〈〈·〉φ〉π〉

→

E = (D〈π〉

→

E)〈〈·〉φ

→

E〉 is a right context,1720

which implies that D〈π〉

→

E is one such context as well. Now, Rs =
D〈π〉

→

[x�φ]E = D〈π〉

→

E = D〈〈〈·〉φ〉π〉

→

E because by Lemma 5.1b x

may occur only in t, and so the substitution

→

[x�φ]E acts on every
code in D and π exactly as

→

E .

(e) s′ = (D,x, π,E[x�λy.u@ε]E′) s (D, (λy.u)α, π, E[x�λy.u@ε]E′)1725

= s. The invariant follows from the i.h. because Rs′ = Rs, as the
only component that changes is the current code.

Appendix B.3. Proofs of Section 7 (Fast GLAMOUr)

In order to prove that the Fast GLAMOUr implements the right-to-left
strategy in the fireball calculus (Thm. 4), we proceed like for the Easy GLA-1730

MOUr: first we prove the invariants, and then we use them to prove that the Fast
GLAMOUr forms an implementation system (Def. 2) with respect to right-to-left
evaluation →rβf in the fireball calculus (via the decoding). The differences are
minimal, but we include detailed proofs for the sake of completeness.

Lemma 11 (Fast GLAMOUr invariants). Let s = (D, t, π,E) be a reachable Stated at p. 321735

state of a Fast GLAMOUr execution. Then:

52

1. Name:

(a) Explicit substitution: if E = E′[x�φ]E′′ then the variable x is fresh
with respect to φ and E′′;

(b) Abstraction: if λx.u is a subterm of D, t, π, or E, then the variable1740

x may occur only in u.

2. Fireball item: for every item φ in π, in E or in any stack in D, one has
that φ and φ

→

E are: inert terms if φ = x@π′ and either E(x) = ⊥ or
E(x) = y@π′′; abstractions otherwise.

3. Contextual decoding: Rs = D〈π〉

→

E is a right context.1745

Proof. By induction on the length of the execution leading to the reachable state
s. In an initial state all the invariants trivially hold. For a non-empty execution,
the proof for each invariant is by case analysis on the last transition, using the
i.h.

1. Name. Cases:1750

i. s′ = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s. Both points follow
immediately from the i.h.

ii. s′ = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s. Both
points follow immediately from the i.h.

iii. s′ = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) :π,E) = s with E(x) = ⊥1755

or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε). Both points follow
immediately from the i.h.

iv. s′ = (D,λx.t, y@ε : π,E) β1
(D, t{x�y}, π, E) = s. Both points

follow immediately from the i.h.

v. s′ = (D,λx.t, φ : π,E) β2
(D, t, π, [x�φ]E) = s with φ 6= y@ε.1760

Point 1a for the new entry [x�φ] in the environment of s follows from
the i.h. for Point 1b, for the other entries from the i.h. for Point 1a.
Point 1b follows from its i.h.

vi. s′ = (D,x, φ : π,E) s (D, (λy.u)α, φ : π,E) = s where E =
E1[x�λy.u@ε]E2. Point 1a follows from its i.h.; Point 1b for the1765

new code of s is guaranteed by the α-renaming operation (λy.u)α,
the rest follows from its i.h.

2. Fireball item. Cases:

(a) s′ = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s. The invariant follows
directly from the i.h. (as the stack π of the entry t♦π in the dump of1770

s is the stack of s′).

(b) s′ = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s. For
the item λx.u@ε, we have that λx.u@ε = λx.u and λx.u@ε

→

E =
(λx.u)

→

E = λx.(u

→

E) are abstractions (the last equality holds by

53

Lemma 11.??). For all other items in s, the invariant follows from1775

the i.h. (as the tail π of the stack of s is the stack of the entry t♦π
in the dump of s′).

(c) s′ = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) : π,E) = s with E(x) = ⊥
or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε). For the item x@π′,
we have that x@π′ = 〈x〉π′ is an inert term because, by i.h., ψ is a1780

fireball for every item ψ in π′. Concerning x@π′
→

E , there are three
subcases:

i. E(x) = y@π′′ i.e. E := E1[x�y@π′′]E2. By Lemma 11.1a,
every entry in E binds a different variable, and x and the vari-
ables bound in E1 are fresh with respect to y@π′′, so x

→

E =1785

x

→

E1[x�y@π′′]E2
= x{x�y@π′′}
→

E2 = y@π′′

→

E2 = y@π′′

→

E , which
by i.h. is inert. The i.h. also says that ψ

→

E is a fireball for every
item ψ in π′. Thus, x@π′

→
E = 〈x

→

E〉(π′

→

E) = 〈y@π′′

→

E〉(π′

→

E)
is inert.

ii. E(x) = ⊥. Similar to the previous case. By hypothesis, we have1790

x

→

E = x. As before, by i.h. ψ

→

E is a fireball for every item ψ in
π′. So, x@π′

→
E = 〈x

→

E〉(π′

→

E) = 〈x〉(π′

→

E) is an inert term.

iii. E(x) = λy.u@ε (i.e. E = E1[x�λy.u@ε]E2) and π′ = ε. Then
x@π′ = x is an inert term. By Lemma 11.1a, every entry in E
binds a different variable, and x and the variables bound in E1 are1795

fresh with respect to λy.u@ε, so x@π′

→

E = x

→

E1[x�λy.u@ε]E2
=

x{x�λy.u@ε}

→

E2 = λy.u@ε

→

E2 = (by Lemma 11.1b) (λy.u)

→

E =
λy.(u

→

E) is an abstraction.

For all other items in s the invariant follows from the i.h. (as the tail
π of the stack of s is the stack of the entry t♦π in the dump of s′).1800

(d) s′ = (D,λx.t, (y@ε) : π,E) β1
(D, t{x�y}, π, E) = s. For all items

in s, the invariant follows directly from the i.h. (as they are items in
s′ as well).

(e) s′ = (D,λx.t, φ : π,E) β2 (D, t, π, [x�φ]E) = s with φ 6= y@ε. By
Lemma 11.1b, x may occur only in t. Thus the substitution

→

[x�φ]E1805

acts exactly as

→

E on every item in s; therefore, the invariant follows
from the i.h. for every item in s (as the item φ in the new entry in
the environment of s is in the stack of s′).

(f) s′ = (D,x, φ : π,E) s (D, (λy.u)α, φ : π,E) = s where E =
E1[x�λy.u@ε]E2. The invariant follows directly from the i.h. (as the1810

code (λy.u)α of s is the only component that changes from s′).

3. Contextual decoding. Cases:

(a) s′ = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s. By i.h., Rs′ =
D〈π〉

→

E is a right context, as well as u

→

E〈·〉. Then their compo-
sition (D〈π〉

→

E)〈u

→

E〈·〉〉 = D〈〈u〈·〉〉π〉

→

E = Rs is a right context.1815

54

(b) s′ = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s. By i.h.,
Rs′ = D : t♦π

→

E = D〈〈t〈·〉〉π〉

→

E = (D〈π〉

→

E)〈t

→

E〈·〉〉 is a right
context, that implies that D〈π〉

→

E is one such context. So, Rs′ =
D〈(λx.u@ε) : π〉

→

E = D〈〈〈·〉λx.u〉π〉

→

E = (D〈π〉

→

E)〈〈·〉λx.(u
→

E〉) is
a right context because it is the composition of right contexts, in that1820

λx.(u

→

E) is a fireball.

(c) s′ = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) :π,E) = s with E(x) = ⊥
or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε). By i.h., Rs′ =
D : t♦π〈π′〉

→

E = D〈〈t〈π′〉〉π〉

→

E = (D〈π〉

→

E)〈t〈π′〉

→

E〉 is a right con-
text, which implies that D〈π〉

→

E is one such context as well. Then1825

Rs = D〈(x@π′) : π〉

→

E = D〈〈〈·〉x@π′〉π〉
→

E = (D〈π〉

→

E)〈〈·〉x@π′

→

E〉
is a right context because it is the composition of right contexts, given
that x@π′

→

E is a fireball by Lemma 11.2.

(d) s′ = (D,λx.t, (y@ε) : π,E) β1
(D, t{x�y}, π, E) = s. By i.h.,

Rs′ = D〈(y@ε) :π〉

→

E = D〈〈〈·〉y〉π〉

→

E = (D〈π〉

→

E)〈〈·〉y

→

E〉 is a right1830

context, which implies that Rs = D〈π〉

→

E is one such context as well.

(e) s′ = (D,λx.t, φ : π,E) β2
(D, t, π, [x�φ]E) = s with φ 6= y@π′.

By i.h., Rs′ = D〈φ : π〉

→

E = D〈〈〈·〉φ〉π〉

→

E = (D〈π〉

→

E)〈〈·〉φ

→

E〉 is a
right context, which implies that D〈π〉

→

E is one such context as well.
Now, Rs = D〈π〉

→

[x�φ]E = D〈π〉

→

E because by Lemma 11.1b x may1835

occur only in t, and so the substitution

→

[x�φ]E acts on every code in
D and π exactly as

→

E .

(f) s′ = (D,x, φ : π,E) s (D, (λy.u)α, φ : π,E) = s where E =
E1[x�λy.u@ε]E2. The invariant follows from the i.h. because Rs′ =
Rs, as the only component that changes is the current code.1840

Lemma 12 (Fast GLAMOUr β-projection and overhead transparency). Let s Stated at p. 32

be a reachable state of a Fast GLAMOUr execution.

1. Overhead Transparency: if s s,c1,2,3 s
′ then s = s′;

2. β-Projection: if s β1,2 s
′ then s→rβf s

′.

Proof. Transitions:1845

1. s = (D, tu, π,E) c1 (D : t♦π, u, ε, E) = s′. Then

s = D〈〈tu〉π〉

→

E = D : t♦π〈u〉

→

E = D : t♦π〈〈u〉ε〉

→

E = s′ .

2. s = (D : t♦π, λx.u, ε, E) c2 (D, t, (λx.u@ε) : π,E) = s′. Then

s = D : t♦π〈〈λx.u〉ε〉

→

E = D〈〈t(〈λx.u〉ε)〉π〉

→

E = D〈〈t〉λx.u@ε :π〉

→

E = s′.

3. s = (D : t♦π, x, π′, E) c3 (D, t, (x@π′) : π,E) = s′ with E(x) = ⊥ or
E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε). Then

s = D : t♦π〈〈x〉π′〉

→

E = D〈〈t(〈x〉π′)〉π〉

→

E = D〈〈t〉(x@π′) : π〉

→

E = s′ .

55

4. s = (D,λx.t, (y@ε) : π,E) β1 (D, t{x�y}, π, E) = s′. Then

s = D〈〈λx.t〉(y@ε) :π〉

→

E = D〈〈(λx.t)y〉π〉

→

E →rβf D〈〈t{x�y}〉π〉
→

E = s′

where the rewriting step takes place because D〈π〉

→

E is a right context by
Lemma 11.3.

5. s = (D,λx.t, φ : π,E) β2
(D, t, π, [x�φ]E) = s′ with φ 6= y@ε. Then

s = D〈〈λx.t〉φ : π〉

→

E = D〈〈(λx.t)φ〉π〉

→

E

→rβf D〈〈t{x�φ}〉π〉

→

E = D〈〈t〉π〉{x�φ}

→

E = D〈〈t〉π〉

→

[x�φ]E = s′

where the rβf -step takes place because φ is a fireball by the fireball item
invariant (Lemma 11.2), and D〈π〉

→

E is a right context by the contextual
decoding invariant (Lemma 11.3). Moreover, the meta-level substitution1850

{x�φ} can be extruded (in the equality after →rβf) without renaming x,
as x does not occur in D or π by the name invariant (Lemma 11.1b).

6. s = (D,x, φ :π,E) s (D, (λy.u)α, φ :π,E) = s′ with E=E1[x�λy.u@ε]E2.
Then, by Lemma 11.1a,

s = D〈〈x〉φ : π〉
→

E = D

→

E〈〈x

→

E〉φ : π

→

E〉 = D

→

E〈〈λy.u

→

E〉φ : π

→

E〉
= D〈〈λy.u〉φ : π〉

→
E = s′ .

Lemma 13 (Fast GLAMOUr halt). Let s be a reachable final state of a Fast Stated at p. 32

GLAMOUr execution. Then s is a fireball, i.e. it is βf -normal.

Proof. An immediate inspection of the transitions shows that in a final state the1855

code cannot be an application and the dump is necessarily empty. In fact, final
states have one of the following three shapes:

1. Top-level unapplied abstraction, i.e. s = (ε, λx.t, ε, E). Then s = (λx.t)

→

E

= λx.(t

→

E), which is an abstraction and so fireball.

2. Top-level free variable, i.e. s = (ε, x, ε, E) (note that, differently from the1860

Easy GLAMOUr, it might be E(x) 6= ⊥). We claim that s = x

→

E is a
fireball. Suppose not: then, the only possibility to have x

→

E different from
a fireball would be that an item φ in E is such that φ

→

E is not a fireball,
but this is impossible by the fireball item invariant (Lemma 11.2).

3. Top-level compound inert term, i.e. s = (ε, x, φ :π,E) with E(x) 6= λy.t@ε.1865

Subcases:

(a) E(x) = ⊥. Then s = (〈x〉π)

→

E = 〈x

→

E〉(π

→

E) = 〈x〉(π

→

E). By the
fireball item invariant (Lemma 11.2), φ

→

E is a fireball for every item
φ in π, so 〈x〉(π

→

E) is an inert term and hence a fireball.

(b) E(x) = y@π′. Then s = (〈x〉π)

→

E = 〈x

→

E〉(π

→

E) = 〈y@π′

→

E〉(π

→

E).1870

By the fireball item invariant (Lemma 11.2), y@π′

→

E is inert and
φ

→

E is a fireball for every item φ in π, so 〈y@π′

→

E〉(π

→

E) is inert and
hence a fireball.

56

	Introduction
	The Fireball Calculus & Open Size Explosion
	Abstract Machines, Implementations, and Complexity Analyses
	Open GLAM
	Easy GLAMOUr
	Complexity Analysis of the Easy GLAMOUr
	Fast GLAMOUr
	A Further Refinement: Renaming on beta
	GLAMOUr and Unchaining GLAMOUr
	GLAMOUr
	Unchaining GLAMOUr

	On the Minimality of the Cost Model
	Pitfalls of Strong Call-by-Value
	Conclusions
	References
	Technical Appendix
	Rewrite Theory: Definitions, Notations, Basic Results
	Omitted Proofs
	Proofs of Section 2 (The fireball calculus)
	Proofs of Section 5 (Easy GLAMOUr)
	Proofs of Section 7 (Fast GLAMOUr)

