MAUGHAN, P.C., MACFARLANE, N.G. and SWINTON, P.A. [2021]. The influence of season phase on multivariate load relationships in professional youth soccer. *Journal of sports sciences* [online], (accepted). To be made available from: https://doi.org/10.1080/02640414.2021.1993642

The influence of season phase on multivariate load relationships in professional youth soccer.

MAUGHAN, P.C., MACFARLANE, N.G. and SWINTON, P.A.

2021

This is an Accepted Manuscript of an article to be published by Taylor & Francis in the Journal of Sports Sciences.

This document was downloaded from https://openair.rgu.ac.uk

- 1 The Influence of Season Phase on Multivariate Load Relationships in
- 2 Professional Youth Soccer
- 3 Journal of Sports Sciences
- 4 Authors: Patrick C Maughan ^{a,b,c}, Niall G MacFarlane ^b, Paul A
- 5 Swinton ^c
- 6 ^a Aberdeen Football Club
- 7 Cormack Park
- 8 Kingswells
- 9 Aberdeen
- 10 AB15 8SP
- ^b University of Glasgow
- 12 College of Medical and Veterinary Life Sciences
- 13 Human Biology/Sports Science
- 14 West Medical Building
- 15 Glasgow
- 16 G12 8QQ
- 17 ^c Robert Gordon University
- 18 School of Health Sciences
- 19 Ishbel Gordon Building
- 20 Aberdeen
- 21 AB10 7QE
- 22

23 <u>Abstract</u>

24	The purpose of this research was to assess the relationships between
25	subjective and external measures of training load in professional
26	youth footballers, whilst accounting for the effect of the stage of the
27	season. Data for ratings of perceived exertion (RPE) and seven global
28	positioning systems (GPS) derived measures were collected from 20
29	players (age = 17.4 \pm 1.3 yrs, height = 178.0 \pm 8.1 cm, mass = 71.8 \pm
30	7.2 kg) across a 47-week season. The season was categorised by a
31	pre-season phase, and two competitive phases (Comp1, Comp2). The
32	structure of the data were investigated using principal component
33	analysis. An extraction criterion of component with eigenvalues ≥ 1.0
34	was used. Two components were retained for the pre-season period
35	explaining a cumulative variance of 77.1%. Single components were
36	retained for both Comp1 and Comp2 explaining 73.3% and 74.3% of
37	variance, respectively. Identification of single components may
38	suggest that measures are related and can be used interchangeably,
39	however these interpretations should be considered with caution. The
40	identification of multiple components in the pre-season phase
41	suggests that univariate measures may not be sufficient when
42	considering load experienced. These results suggest that factoring
43	load based on measures of volume and intensity should be
44	considered.
45	Keywords: Training load, monitoring, session-rpe, team sports,
46	workload
47	

48 Introduction

49	Soccer match play is characterised by frequent high intensity
50	accelerations, decelerations, and running ¹ . As such, soccer training
51	aims to prepare players for the physical demands of match play,
52	alongside developing technical, tactical and psychological
53	understanding. Due to the high physical demands involved, match
54	play and training to prepare soccer players can also present
55	substantive risk of injury ² . With the aim of improving performance,
56	and reducing the risk of injury, practitioners supporting professional
57	soccer players routinely monitor the physical load experienced by
58	players ³ . Whilst this route of investigation is common, it has been
59	suggested that current practices relating load monitoring with injury
60	are lacking in substantial evidence, possibly due to the shortcomings
61	of available univariate load metrics ⁴ Load and the subsequent
62	adaptations generated, can be characterised as being either
63	physiological or biomechanical ⁵ . Features of training load describing
64	the magnitude and amount of the physical work are considered the
65	external load ^{5,6} , whereas, features describing the resultant
66	physiological and biomechanical response are characterised as the
67	internal load ^{5,6} . Generally, practitioners monitor prescribed physical
68	work, which is represented by external load, alongside the players
69	response which is characterised as the internal load ^{5,6} . A central aim
70	of research is to accurately model relationships between external and
71	internal load to create more effective and responsive training stimuli
72	to enhance physical performance and its expression during match
73	play ⁷ .

75	A range of technologies, variables, data processing and analysis
76	techniques are used when monitoring internal and external load.
77	Common approaches to monitor internal load include subjective
78	measurements such as the rating of perceived exertion (RPE) and
79	objective measurements including heart-rate (HR) based assessments
80	in the form of training impulse (TRIMP) and time spent in specific
81	HR zones ⁸ . Development of technologies such as global position
82	system (GPS) devices and accelerometers has increased the
83	availability of external load variables which are now common in
84	professional soccer ⁹ . Whilst advances in technology and greater
85	dissemination of research-based practices has made continuous load
86	monitoring an essential component of elite athlete support, the lack
87	of criterion measures of load has led practitioners to collect a range
88	of variables posing a challenge to clear interpretation of the data ¹⁰ .
89	Initial attempts to assess validity of outcomes or identify underlying
90	structures to reduce the dimensionality of data have been achieved by
91	comparing all measures against each other using correlation or
92	principal component approaches, respectively ¹⁰ . Research
93	investigating underlying structure has generally found that measures
94	representing either the internal or external load are strongly related to
95	each other ¹⁰ . However, research has also established that
96	relationships between load monitoring variables may be influenced
97	by different training modes ¹⁰⁻¹³ . Comparing research findings across
98	different sports suggests that potential changes in underlying
99	structure across different training modes may also be sport specific
100	^{11,12} . Previous research in rugby league showed significant effects of
101	training mode on relationships between internal and external load
102	measures ¹⁰ . Similar findings were found in a follow up study in

103	rugby league comparing relationships between load measures during
104	skills and conditioning focused training sessions ¹¹ . In contrast, a
105	recent analysis in professional youth soccer found no changes in
106	underlying structure when categorising training sessions based on
107	their proximity to match day (e.g., MD-1, MD-2) ¹² . In accordance
108	with previous research, the structure of load measures aligned
109	themselves along measures of volume and intensity ¹³ . It is plausible
110	that the contrasting results may be influenced by the specificity of the
111	training sessions, where mode of training is more clearly defined in
112	rugby league and sessions can be categorised for example as 'skills'
113	or 'conditioning' ¹¹ . Conversely in soccer training, there is often less
114	specificity and sessions are generally categorised based on their
115	proximity to match day creating greater within-session variability
116	and potentially masking more subtle changes in relationships ¹² .
117	Whilst preliminary evidence suggest that load relationships remain
117 118	Whilst preliminary evidence suggest that load relationships remain consistent across different training contexts in professional soccer,
118	consistent across different training contexts in professional soccer,
118 119	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research
118 119 120	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared
118 119 120 121	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared internal and external load in the English Premier League ¹⁴ . Malone
118 119 120 121 122	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared internal and external load in the English Premier League ¹⁴ . Malone et al. ¹⁴ reported no significant differences across the pre-season and
118 119 120 121 122 123	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared internal and external load in the English Premier League ¹⁴ . Malone et al. ¹⁴ reported no significant differences across the pre-season and in-season phases of training; however, it is worth noting that match
118 119 120 121 122 123 124	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared internal and external load in the English Premier League ¹⁴ . Malone et al. ¹⁴ reported no significant differences across the pre-season and in-season phases of training; however, it is worth noting that match play data was not included which may have the potential to influence
118 119 120 121 122 123 124 125	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared internal and external load in the English Premier League ¹⁴ . Malone et al. ¹⁴ reported no significant differences across the pre-season and in-season phases of training; however, it is worth noting that match play data was not included which may have the potential to influence overall load experienced, particularly during the in-season phase ¹⁴ .
 118 119 120 121 122 123 124 125 126 	consistent across different training contexts in professional soccer, less is known about the effect of stage of season. Previous research investigating training load in professional soccer has compared internal and external load in the English Premier League ¹⁴ . Malone et al. ¹⁴ reported no significant differences across the pre-season and in-season phases of training; however, it is worth noting that match play data was not included which may have the potential to influence overall load experienced, particularly during the in-season phase ¹⁴ . The aims of the different phases of the season are generally different,

130	development ¹⁴ . Given the contrasting aims of different stages of the
131	season, there is potential that the underlying structure described by
132	the multivariate relationships between load measures may also
133	change. As it is routine for practitioners to collect many load
134	variables without criterion, greater understanding of underlying
135	structure and the factors that can alter this will provide practitioners
136	with better context to monitor players throughout the season.
137	Therefore, the aim of the current study was to quantify and describe
138	the relationship between internal and external load variables across
139	phases of the season. Specifically, we aimed to assess the
140	relationship between sRPE and various external load measures
141	collected via GPS technology. To do this the study used analyses
142	methods previously used to assess the underlying structure of
143	relationships ¹⁰⁻¹³ .

145 <u>Methods</u>

146 Subjects

147 Data were collected from 20 male professional youth soccer players
--

- 148 (age 17.4 ± 1.3 yrs, height 178.0 ± 8.1 cm, mass 71.8 ± 7.2 kg). All
- 149 data were collected during the 2018/19 season. Data comprised
- 150 players from multiple positions, but data provided from goalkeepers
- 151 were removed. In accordance with previous research ¹⁴, data recorded
- 152 from a small selection of non-representative training sessions were
- 153 removed to limit the influence of outliers. Post-Match top-ups,
- 154 rehabilitation sessions, and non-pitch-based sessions such as
- resistance training were also excluded from the analysis. As the aim

- 156 of this study was to compare different phases of the season, the
- 157 winter break period was not included in the analyses.
- 158

159 <u>Design</u>

160	The present study employed a prospective design with data collection
161	across a 47-week season with Scottish professional youth soccer
162	players. The data collection periods comprised a 6-week pre-season
163	and two competitive phases lasting 20 weeks (Comp1) and 19 weeks
164	(Comp2), respectively. The competitive phases were split by a 2-
165	week winter break. Subjective measures of training load were
166	collected via RPE. Objective measures of training load were
167	collected via commercially available GPS units. Data were collected
168	for all training sessions and matches. Data collected and the
169	retrospective nature of the data analysis conformed to the University
170	of Glasgow research policies and were in accordance with the
171	Declaration of Helsinki.
172	

173 Methodology

174 RPE was collected, in isolation, approximately 30 minutes after each 175 training session using a commonly utilised modified BORG-CR10 scale ^{8,15} that had been used extensively with players previous to the 176 177 study. Each RPE score was multiplied by session duration to obtain subjective training load ¹⁶. Alongside this measurement of subjective 178 179 training load, objective external training load was also collected. 180 Players wore commercially available GPS units (Optimeye X4, Firmware version 7.27; Catapult Sports, Melbourne, Australia) 181

182	previously used in research conducted in team sports ^{11,17} . The units
183	include a GPS receiver and a triaxial accelerometer collecting data at
184	10 Hz and 100 Hz, respectively. Velocity and acceleration dwell
185	times were set at 0.6 and 0.4 s, respectively. As per previous
186	recommendations, each player wore the same device for each session
187	¹⁸ . Following training or matches, data were downloaded and
188	analysed via the Openfield software package (Software version 1.19,
189	Catapult Sports). Average satellite count was 10.6 ± 1.7 . The average
190	horizontal dilution of precision (HDOP) was 0.8 ± 0.2 . Variables
191	selected to quantify external load were total distance (m), PlayerLoad
192	(au), low intensity running (<14.4km.h ⁻¹ , m) high-speed running
193	distance (19.8 – 24.98 km.h ⁻¹ , m) sprinting distance (>24.98km.h ⁻¹ ,
194	m), accelerations (>2m.s ⁻² , count) and decelerations (> -2m.s ⁻² ,
195	count).

196 <u>Statistical Analysis</u>

Following previously described procedures ¹² we carried out a 197 198 correlation analysis before performing principal component analysis 199 (PCA) on each stage of season. Where data were missing, they were 200 treated as missing at random and imputed using the MICE package in the R statistical environment (version 4.0.3; R Foundation for 201 Statistical Computing, Vienna, Austria.) ¹⁹. Relationships between 202 all load variables were quantified during each stage of season using 203 204 Pearson's product moment correlation. Following this, data were 205 prepared for PCA by firstly visually inspecting the correlation matrix to assess the factorability of the dataset ²⁰. The suitability of data 206 were then assessed using the Kaiser-Meyer-Olkin (KMO) measure of 207 sampling adequacy, and the Bartlett test of sphericity ²¹. KMO (~chi 208

209	square) values were 0.76 (5187.241), 0.84 (16931.8), and 0.83
210	(16078.5) for Pre-Season, Comp1 and Comp2, respectively. All tests
211	of sphericity were significant (p<0.001). A KMO value of 0.5 or
212	above has previously been identified as a suitable result to perform
213	PCA ^{22,23} and has been used in similar research ^{11,12} . PCA was carried
214	out using the 'prcomp' function of the R stats package (v3.6.2) $^{\rm 24}$ and
215	the 'principal' function of the psych package (v2.0.12) 25 . Principal
216	components with an eigenvalue ≥ 1.0 were retained for extraction ²³ .
217	When two or more principal components were retained based on their
218	eigenvalue, varimax rotation was performed. For each retained
219	principal component, only the original load variables with a principal
220	component loading of >0.7 were retained 22 .

221 <u>Results</u>

222	There were 3207 individual recordings included in the analysis
223	comprising 695 individual MD recording and 2512 individual
224	training session recording. Distribution of the mean loads during
225	each phase of the season are presented in Table 1. Correlations
226	including 95% confidence intervals for each phase of season are
227	presented in Figure 1. Total distance, PlayerLoad and low-intensity
228	running showed very-large correlations (r \ge 0.77) across all phases of
229	the season. High-speed running distance showed moderate to very-
230	large correlations ($0.39 \le r \le 0.70$), whilst sprinting distance showed
231	moderate correlations across the season ($0.32 \le r \le 0.45$). Finally,
232	accelerations showed large correlations across all phases (r \ge 0.52),
233	whilst decelerations showed large to very-large correlations (0.54 \leq r
234	≥ 0.75).

235	Results of the PCA are presented in Tables 2 and 3. Two principal
236	components were identified for pre-season whilst one component
237	was identified for each competitive phase. Variance explained and
238	loadings are presented for the pre-season phase following varimax
239	rotation. The components explained 77.1% of the variance for the
240	pre-season phase. The un-rotated principal components for Comp1
241	and Comp 2 explained 73.3% and 74.3% of the variance,
242	respectively. The heaviest component loadings for Comp1 and
243	Comp2 were total distance (Comp1 = 0.96 , Comp2 = 0.95),
244	PlayerLoad (Comp1 = 0.94 , Comp2 = 0.95) and low intensity
245	running (Comp1 = 0.93, Comp2 = 0.93).
246	
247	*****Insert Tables 1,2 and 3 about here****
248	
249	*****Insert Figure 1 about here****
250	
251	Discussion
252	The primary finding of this study was the identification of multiple
253	components during the pre-season period, and conversely the
254	identification of a single component within both competitive phases.
255	This finding suggests in the pre-season phase univariate assessments
256	of load may be insufficient when characterising the load experienced

- 257 by players. ^{11,12} Conversely, the identification of a single component
- 258 with relatively similar loadings across all variables obtained during

both competitive phases suggest that load measures may be usedinterchangeably.

Previous research in professional rugby league ^{10,11} and in 261 professional soccer ¹² has reported that multiple measures are 262 263 required to capture the variance across different training themes 264 when expressed as training mode, or relative to match day. In each of 265 these studies, two or more components were identified following 266 PCA. To our knowledge this is first assessment of this relationship 267 when considering the phase of the season. In the present study the 268 pre-season stage produced two components and following varimax 269 rotation, the component loadings could be described as representative of either training volume or intensity ¹². In the present study, PCA 270 271 carried out on pre-season data produced two principal components 272 which represented 77.11% of the cumulative variance. The highest 273 rotated component loadings for component one were sRPE (0.85), 274 total distance (0.9), PlayerLoad (0.91) and low-intensity running 275 (0.94). For rotated component two, the highest loadings were high-276 speed running (0.79), sprinting (0.87) and acceleration (0.57). Studies 277 in rugby league have shown that variables generally align based on categories of internal or external training load ^{10,11}. In the present 278 279 study we only included sRPE as a measure of subjective internal 280 load. This may have influenced our findings, however, there does 281 still seem to be some relationship between measures which may 282 provide similar information regarding either volume or intensity of 283 training or match play.

Whilst our analysis produced multiple principal components wheninvestigating the pre-season phase, we only identified one component

286	when analysing both competitive phases. This would suggest that all
287	load variables fit into one theoretical factor, and could, theoretically,
288	be used interchangeably ¹⁰ . It is worth noting that this may be due to
289	the method we selected for defining how many components would be
290	retained for rotation. A recent review concerning the use of PCA in
291	sport found that 62.2% of the studies analysed retained factors for
292	rotation if they had an eigenvalue >1 26 . Other methods, such as
293	visual analysis of an eigenvalue scree plot whereby the 'elbow' of the
294	data would be identified ²⁰ , may have led to retention of two principal
295	components for competitive phase data. Had we included a second
296	factor in both analyses then the results would have been comparable
297	to our presented pre-season data (Table 2). Retention of two factors
298	for Comp1 would have resulted in two principal components which
299	would have explained 84.6% of the variance. Rotated component
300	loadings would also have corresponded with our pre-season findings.
301	Factor loadings for the first rotated component would have been
302	0.88, 0.9, 0.88 and 0.94 for sRPE, total distance, PlayerLoad and
303	low-intensity running, respectively. The second rotated component
304	would again have been best represented by high-speed running
305	(0.77), sprinting (0.93) , accelerations (0.63) and additionally
306	decelerations (0.61). Similarly, for Comp2, retention of two factors
307	would have results in a cumulative variance explained of 84.4%.
308	Rotated component loadings would also have been similar to pre-
309	season findings. Component 1 would have been best represented by
310	sRPE (0.88), total distance (0.91), PlayerLoad (0.92), and low-
311	intensity running (0.94). Component 2 would again have been best
312	represented by high-speed running (0.68) and sprinting (0.94) .
313	Interestingly loadings for accelerations and decelerations were

314	slightly lower than may have been presented for Comp1 with values
315	of 0.47 and 0.58 respectively. Clearly the method selected by
316	practitioners for retaining factors will effect results, with the most
317	popular method used currently in practice being the Kaiser criteria
318	(eigenvalue >1) 20 .
319	The findings from the present study alongside previous work ¹²
320	demonstrates that sRPE is representative of a measure of volume.
321	Previous research has shown that both RPE and sRPE are
322	significantly related to several external load and intensity measures
323	^{27,28} . When analysing youth soccer players, the strongest within-
324	individual correlations between sRPE and various external load
325	measures were found for duration ($r = 0.767$), distance ($r = 0.699$)
326	and distance in acceleration (r = 0.696) 28 . Using generalized
327	estimating equation (GEE) models, it was found that PlayerLoad,
328	high-speed distance and distance in acceleration were the strongest
329	contributory variables when estimating sRPE ²⁸ . However, in our
330	present study it is worth noting the strong component loadings of
331	acceleration and deceleration within the first rotated component of
332	each analyses, which may suggest that subjective perception of
333	effort, may also be strongly related to measures of acceleration and
334	deceleration, but not high-speed running or sprinting.
335	The findings of the present study further evidence that measures of
336	sRPE appears to provide information regarding load volume, rather
337	than intensity. Practitioners should consider this when analysing this
338	measure to represent the load experienced by athletes. Whilst our
339	analysis shows that this relationship is not consistent across stages of
340	the season, this is likely due to retention criteria applied. Therefore,

practitioners should consider the stage of the season, and the physicalgoals of that phase, when assessing load measurements.

The findings of the present study should be interpreted given the 343 344 following limitations of the research. The categorisation method used in the present study comprised three levels for analysis and a logical 345 346 comparison between a pre-season phase, and two competitive phases. However, future analysis may wish to investigate shorter mesocycle 347 periods within the competitive period, for example 6-week blocks, to 348 349 provide a more in-depth comparison across the season. Additionally, 350 the present study did not attempt to differentiate structure of load 351 variables across different categories of players of players. Further 352 differentiation in terms of partitioning within and between variance 353 in structure, or potential differences across for example starters, non-354 starters, or fringe players, may also provide additional insight to the 355 proposed relationships. Additionally, the present study only included 356 one subjective measure of internal load due to player adherence with 357 objective methods, such as heart-rate based measures. Further insight 358 to objective measures of internal load may provide useful insight 359 regarding previously observed relationships between internal and external measures of load ¹⁰. 360

361

This study provides further evidence that univariate measures may not be sufficient when measuring the load experienced by players and that this limitation may be influenced by factors such as the stage of the season. These results, alongside previous results, would suggest that factoring load based on measures of volume and intensity would be appropriate. Whilst analyses of both competitive phases of the

368	season identified only one principal component, which would suggest
369	that variables may be used interchangeably during this period, it is
370	worth noting that the criteria selected for retaining factors plays a key
371	role in this process. As previously suggested, the dose-response
372	relationship with changes in fitness, or injury occurrence, for these
373	combined load measures should be a future aim of analyses.
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	References
387	
388 389 390 391	 Whitehead S, Till K, Weaving D, Jones B. The use of microtechnology to quantify the peak match demands of the football codes: a systematic review. <i>Sports Med.</i> 2018;48(11):2549-2575.

202	2	Patarson L. Jungo A. Chamiak I. Craf Daumann T. Duarak I
392	2.	Peterson L, Junge A, Chomiak J, Graf-Baumann T, Dvorak J.
393		Incidence of football injuries and complaints in different age
394 395		groups and skill-level groups. <i>AM J Sports Med.</i> 2000;28(5_suppl):51-57.
395	3.	Drew MK, Finch CF. The relationship between training load
390 397	5.	and injury, illness and soreness: a systematic and literature
398		review. Sports Med. 2016;46(6):861-883.
399	4.	Kalkhoven JT, Watsford ML, Coutts AJ, Edwards WB,
400	4.	Impellizzeri FM. Training load and injury: causal pathways
400		and future directions. <i>Sports Med.</i> 2021:1-14.
401	5.	Vanrenterghem J, Nedergaard NJ, Robinson MA, Drust B.
402	Э.	Training load monitoring in team sports: a novel framework
403		separating physiological and biomechanical load-adaptation
404		pathways. Sports Med. 2017;47(11):2135-2142.
405	6.	Impellizzeri FM, Marcora SM, Coutts AJ. Internal and
400	0.	external training load: 15 years on. Int J Sports Physiol
407		Perform. 2019;14(2):270-273.
409	7.	Halson SL. Monitoring training load to understand fatigue in
410	7.	athletes. Sports Med. 2014;44(2):139-147.
411	8.	Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM.
412	0.	Use of RPE-based training load in soccer. <i>Med Sci Sports</i>
413		<i>Exerc.</i> 2004;36(6):1042-1047.
414	9.	Akenhead R, Nassis GP. Training load and player monitoring
415		in high-level football: current practice and perceptions. Int J
416		Sports Physiol Perform. 2016;11(5):587-593.
417	10.	Weaving D, Marshall P, Earle K, Nevill A, Abt G. Combining
418		internal-and external-training-load measures in professional
419		rugby league. Int J Sports Physiol Perform. 2014;9(6):905-
420		912.
421	11.	Weaving D, Jones B, Marshall P, Till K, Abt G. Multiple
422		measures are needed to quantify training loads in
423		professional rugby league. Int J Sports Med.
424		2017;38(10):735-740.
425	12.	Maughan P, Swinton P, MacFarlane N. Relationships
426		between training load variables in professional youth
427		football players. Int J Sports Med. 2021;42(7):624-629.
428	13.	Maughan PC, MacFarlane NG, Swinton PA. Relationship
429		Between Subjective and External Training Load Variables in
430		Youth Soccer Players. Int J Sports Physiol Perform.
431		2021;1(aop):1-7.
432	14.	Malone JJ, Di Michele R, Morgans R, Burgess D, Morton JP,
433		Drust B. Seasonal training-load quantification in elite English
434		premier league soccer players. Int J Sports Physiol Perform.
435		2015;10(4):489-497.
436	15.	Foster C, Hector LL, Welsh R, Schrager M, Green MA, Snyder
437		AC. Effects of specific versus cross-training on running
438		performance. Eur J Appl Physiol Occup Physiol.
439		1995;70(4):367-372.
440	16.	Foster C, Florhaug JA, Franklin J, et al. A new approach to
441		monitoring exercise training. J Strength Cond Res.
442		2001;15(1):109-115.

443	17.	Jones RN, Greig M, Mawéné Y, Barrow J, Page RM. The
444		influence of short-term fixture congestion on position
445		specific match running performance and external loading
446		patterns in English professional soccer. J Sports Sci.
447		2019;37(12):1338-1346.
448	18.	Scott MT, Scott TJ, Kelly VG. The validity and reliability of
449		global positioning systems in team sport: a brief review. J
450		Strength Cond Res. 2016;30(5):1470-1490.
451	19.	Buuren Sv, Groothuis-Oudshoorn K. mice: Multivariate
452		imputation by chained equations in R. J Stat Softw. 2010:1-
453		68.
454	20.	Tabachnick BG, Fidell LS, Ullman JB. Using multivariate
455		statistics. Vol 5: Pearson Boston, MA; 2007.
456	21.	Bartlett MS. A note on the multiplying factors for various χ^2
457		approximations. J R Stat Soc. 1954;16(2):296-298.
458	22.	Hair JF, Black WC, Babin BJ, Anderson RE, Tatham R.
459		Multivariate data analysis . Uppersaddle River. NJ: Pearson
460		Prentice Hall; 2006.
461	23.	Kaiser HF. The application of electronic computers to factor
462	-	analysis. Educ Psychol Meas. 1960;20(1):141-151.
463	24.	Team RC. R: A language and environment for statistical
464		computing. 2013.
465	25.	Revelle W, Revelle MW. Package 'psych'. The comprehensive
466		R archive network. 2015;337:338.
467	26.	Rojas-Valverde D, Pino-Ortega J, Gómez-Carmona CD, Rico-
468		González M. A Systematic Review of Methods and Criteria
469		Standard Proposal for the Use of Principal Component
470		Analysis in Team's Sports Science. Int J Environ Res Public
471		Health. 2020;17(23):8712.
472	27.	Gaudino P, Iaia FM, Strudwick AJ, et al. Factors influencing
473	_/ .	perception of effort (session rating of perceived exertion)
474		during elite soccer training. Int J Sports Physiol Perform.
475		2015;10(7):860-864.
476	28.	Marynowicz J, Kikut K, Lango M, Horna D, Andrzejewski M.
477		Relationship Between the Session-RPE and External
478		Measures of Training Load in Youth Soccer Training. J
479		Strength Cond Res. 2020;34(10):2800-2804.
480		
481		
.01		
482		
483		
484		
485		

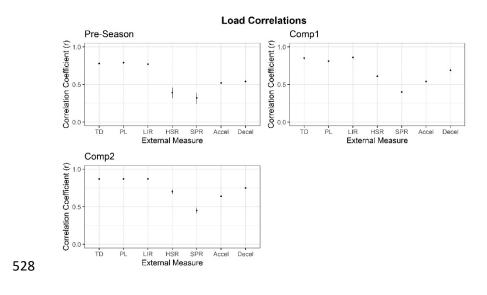
486	

	Duration	sRPE (au)	Total Distance	PlayerLoad	LIR (m)	HSR (m)	Sprinting	Accel	Decel
	(mins)		(m)	(au)			(m)	(count)	(count)
Pre-Season	57.8 ± 17.8	360 ± 191	4861 ± 2175	525 ± 220	3929 ± 1610	213 ± 246	37.1 ± 58.3	20.7 ± 12.2	14.5 ± 9.57
Comp1	64 ± 19.7	369 ± 200	5361 ± 2444	594 ± 251	4495 ± 1857	186 ± 181	46.9 ± 73.7	23.0 ± 11.5	16.5 ± 9.98
Comp2	60.3 ± 21.3	357 ± 215	5263 ± 2717	565 ± 275	4356 ± 2055	194 ± 185	48 ± 65	22.2 ± 11.4	16.3 ± 10.3

Table 1 – Mean (\pm SD) duration and load measures across phase of season. LIR, Low intensity running; HSR, High speed running; Accel, Accelerations; Decel, Decelerations

	Pre-Season		
	Principal		
	Component		
	1	2	
Eigenvalue	5.11	1.06	
% of Variance	63.9	13.21	
Cumulative Variance	63.9	77.11	
%			
	Rotated Component		
	1	2	
% of Variance	51.14	77.11	
Rotated	Compon	ent Loadings	
	1	2	
sRPE	0.85	0.18	
Total Distance	0.9	0.32	
PlayerLoad	0.91	0.31	
LI.Running	0.94	0.18	
Running	0.26	0.79	
Sprinting	0.16	0.87	
Accelerations	0.53	0.57	
Decelerations	0.69	0.33	

495 Table 2 – PCA results for Pre-Season phase. This includes the


496 eigenvalue, and % of variance explained. LIR, low intensity

497 running; HSR, high speed running; Accel, accelerations; Decel,

- 498 decelerations

	Comp1	Comp2	
	Principal Component		
	1	1	
Eigenvalue	5.86	5.95	
% of Variance	73.25	74.32	
	Componen	t Loadings	
	1	1	
sRPE	0.86	0.91	
Total Distance	0.96	0.95	
PlayerLoad	0.94	0.95	
LIR	0.93	0.93	
HSR	0.84	0.85	
Sprinting	0.67	0.64	
Accel	0.74	0.73	
Decel	0.88	0.88	

511 512 513 514 515 516	Table 3 – PCA results for Comp1 & Comp2. This includes the eigenvalue, and % of variance explained. As these phases did not meet retention criteria for further components, only the unrotated values for the first principal component are presented. LIR, low intensity running; HSR, high speed running; Accel, accelerations; Decel, decelerations
517	
518	
519	
520	
521	
522	
523	
524	
525	

529 Figure 1 - Pearson's product moment correlations between sRPE

- and all external load measures (error bars represent 95% CI). TD,
- 531 Total Distance; PL, PlayerLoad; LIR, low intensity running; HSR,
- 532 running; SPR, sprinting; Accel, accelerations; Decel, decelerations.