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Abstract

We examine two very different approaches to formalising real computation, com-
monly referred to as “Computable Analysis” and “the BSS approach”. The main models
of computation underlying these approaches —bit computation (or Type-2 Effectivity)
and BSS, respectively— have also been put forward as appropriate foundations for scien-
tific computing. The two frameworks offer useful computability and complexity results
about problems whose underlying domain is an uncountable space (such as R or C).
Since typically the problems dealt with in physical sciences, applied mathematics, eco-
nomics, and engineering are also defined in uncountable domains, it is fitting that we
choose between these two approaches a foundational framework for scientific comput-
ing. However, the models are incompatible as to their results. What is more, the BSS
model is highly idealised and unrealistic; yet, it is the de facto implicit model in var-
ious areas of computational mathematics, with virtually no problems for the everyday
practice.

This paper serves three purposes. First, we attempt to delineate what the goal of
developing foundations for scientific computing exactly is. We distinguish between two
very different interpretations of that goal, and on the separate basis of each one, we
put forward answers about the appropriateness of each framework. Second, we provide
an account of the fruitfulness and wide use of BSS, despite its unrealistic assumptions.
Third, according to one of our proposed interpretations of the scope of foundations, the
target domain of both models is a certain mathematical structure (namely, floating-point
arithmetic). In a clear sense, then, we are using idealised models to study a purely math-
ematical structure (actually a class of such structures). The third purpose is to point out
and explain this intriguing (perhaps unique) phenomenon and attempt to make connec-
tions with the typical case of idealised models of empirical domains.
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1 Introduction
In a (2004) volume of the Notices of the AMS, an article titled “Computing over the Reals:
Where Turing Meets Newton” by L. Blum appeared, presenting an algebraic model of com-
putation for real-valued functions. The article was a summary of previous work by a group
of mathematicians, aiming to offer a foundation for scientific computing. Two years later,
another article, titled “Computing over the Reals: Foundations for Scientific Computing”
(2006) by M. Braverman and S. Cook, appeared in the same journal. As its title suggests, it
shared similar goals to the former work: to articulate a model of computation for real func-
tions, which can also offer a useful foundation for scientific computing. Nevertheless, the
two articles described models that are fundamentally incompatible.

Why is this important? It is almost a cliché to say that computers are nowadays used
in almost every scientific lab, and that their results are presumed trustworthy. Running of
simulations is a prominent use, but other uses are merely computations of approximate so-
lutions to differential equations that describe physical systems. Thus, the issue is of great
interest for theoretical, but even more so practical, reasons. From a theoretical perspective,
we need a mathematical framework within which we will be able to classify problems of the
computational sciences according to whether they are easy, hard, or impossible to compute.
More specifically, we need to be able to say whether a problem has any solutions that are in
principle computable (or whether we need to make do with approximate solutions), and if so,
what amount of computational resources these solutions require (typically expressed as the
needed amount of time and storage). From a practical perspective, we also need to be able to
compare the different methods (algorithms) available for solving (or approximating) a given
problem. This latter comparison is typically made on the basis of a method’s efficiency (and
accuracy, in the case of approximations), which translates into the method’s time cost (and
the error of its approximate output). It should be noted that an additional factor that may
further complicate this task is the inevitable rounding (and other types of) errors that arise
whenever any such methods are to be implemented in digital computers.

Now, one can ask why the well-developed theories of computability and computational
complexity, from mainstream computer science, do not suffice for the aforementioned goals.
The quick answer is that those theories are concerned with problems defined over countable,
discrete domains, such as the non-negative integers. On the other hand, physical sciences,
applied mathematics, economics, and engineering are typically concerned with problems de-
fined over uncountable, continuous domains, such as the real or the complex numbers. There-
fore, we need theories whose target domain is primarily computation of functions defined in
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uncountable spaces.
Unfortunately (but also interestingly), there is no universally accepted framework for

studying the computability and complexity of problems defined in uncountable spaces. In
fact, two very different traditions of computation have emerged, which have run a parallel,
non-intersecting course. Both traditions try to understand the nature of computation, to prove
novel results, and to offer foundations for scientific computing; however, they have developed
incompatible frameworks, in the sense that they characterise the same problems differently
with regard to their computability and complexity. The two frameworks are, namely, the
so-called BSS-model and Computable Analysis (CA) (aka ‘Type-2 Effectivity’ (TTE)), pre-
sented in the two articles mentioned in the beginning.

We briefly present the two approaches in section (2), along with examples of their in-
compatibility. In section (3), we discuss some informal considerations that might offer some
guidance on how to go about choosing between them. Perhaps, the approach that satisfies
more of our intuitive desiderata would be the one to accept. It turns out, though, that each
approach captures successfully certain desired properties, but also fails in some other aspects
that would intuitively be highly desirable.

We claimed that the whole issue is of practical interest also because it pertains to algo-
rithms that are to be executed by digital computers (e.g., in scientific labs). Nevertheless, a
mathematically designed algorithm is not flawlessly implemented by a machine, for in prac-
tice rounding errors are introduced, which may also accumulate. This is because generally
a real number cannot be represented in its entirety by a finite string of symbols, and hence
needs to be “truncated” to some finite approximation; the same goes for every output of an
operation on such numbers, which subsequently has to be rounded too.

The inevitable occurrence and accumulation of errors, then, owing to limitations of im-
plementation, puts us at a crossroads when it comes to developing foundations for scientific
computing. Should practical considerations, such as the accumulation of errors or the prop-
erties of different representations, be taken into account for the appropriateness of a theory
that provides the much-needed foundations, and, if so, to what extent? We claim that dif-
ferent ways of approaching this dilemma influence accordingly the choice between the rival
theories (TTE vs. BSS) of real computation. We thus distinguish between two possible inter-
pretations of what ‘foundations of scientific computing’ can be about. The first concerns the
development of a fundamental universal framework that regiments the notion of ‘effective
computation over uncountable spaces’, expanding its universally accepted counterpart for
computation over countable domains (i.e., Turing computability). The second interpretation
concerns the development of a framework for comparing and analysing algorithms that prac-
titioners develop with practical limitations of implementation in mind. That is, practitioners
know that today’s computers typically work with floating-point arithmetic (FPA). So, they of-
ten take this into account and focus on constructing and comparing algorithms that minimise
FPA round-offs. However, FPA is a mathematical structure with peculiar properties, and
very difficult to work with in practice. Therefore, analysing algorithmic costs and complex-
ity problems can be extremely cumbersome if one takes as one’s underlying framework the
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mathematical properties of FPA systems (let alone that many such properties vary according
to the particular representation format; see appendix). Thus, according to our second inter-
pretation, an appropriate ‘foundation for scientific computing’ would mean an easier, unified
model to work with, such that it would be general enough to serve as a foundation, but, at the
same time, specific enough to faithfully model FP algorithms. We elaborate on these matters
in section (4).

With these distinctions and clarifications in mind, we are subsequently able to explain, in
section (5), the following, apparently paradoxical, situation. The BSS framework is a highly
idealised and unrealistic model of computation, which assumes that the computing machine
can always compare and operate upon any two real numbers (even infinite irrationals) in just
one step. Of course, this is impossible in reality, since even just calculating an irrational num-
ber (e.g., π) in its entirety would require infinite time; let alone adding it to another infinite
number (e.g., e). Furthermore, real computers work with floating-point numbers, as already
said, which are rational and finite (see appendix). Therefore, BSS has been heavily criticised
by many researchers in computer science and mathematics, on the grounds of its unrealistic
assumptions. Nevertheless, it is successfully used as the implicit model in various areas of
mathematics, such as numerical analysis, computational geometry, information-based com-
plexity, and others. We investigate the apparently unexpected success of BSS, including exact
conditions for its appropriateness as a model of FP algorithms; when these conditions are not
met, Type-2 Effectivity (TTE) seems to be the only appropriate framework.

In sum, if the goal of developing foundations for scientific computing is construed in the
first way (a fundamental theoretical framework that also explicates ‘effective computation’),
we argue that computable analysis (CA) is the appropriate approach. But if the goal is to be
understood in the second way (with implementational considerations in mind), we argue for a
pragmatic approach to the problem of choice: the appropriateness of each model depends on
the nature of the particular problem at hand. BSS can be a more tractable and useful model for
“higher-level” analyses, whereas the bit-computation model (a practice-oriented formulation
of TTE) is preferable for more “fine-grained” analyses. These arguments are discussed in
section (6).

Finally, it may be observed that the proposed pragmatic approach is reminiscent of some
cases in empirical science, where we likewise use incompatible representations of a single
system, differently idealised and in accordance with contextual needs (e.g., a fluid may be
represented as continuous or as discrete, according to the desired level of analysis). In the
final section (7), we take this analogy further. We discuss some essential conditions that
reliable mathematical representations of physical systems generally ought to satisfy, and we
suggest that, although in our case we are concerned with the modelling of mathematical
systems (computations in FPA), the situation is still to a large extent analogous.
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2 The Different Approaches
To begin, we briefly examine the two approaches, CA and BSS.

2.1 Computable Analysis
Computable analysis, as a systematic attempt to pin down those parts of mathematical anal-
ysis that have a computational meaning (in the sense of being calculable by following a
mechanical method), appears as early as the parallel systematic development of ordinary
computability theory. Turing, in his seminal (1936) paper, was primarily concerned with
continuous mathematics and, more specifically, with the computable real numbers. The pa-
per begins:

The “computable” numbers may be described briefly as the real numbers whose
expressions as a decimal are calculable by finite means. (1936, 230; emphasis
added).

As a careful study of the paper shows, Turing was not really after describing the com-
putable integer-valued functions per se, despite the later typical textbook presentations of
his theory. Although he did provide a quick characterisation of such functions, this was just
a working definition, as an intermediate step towards defining the computable real-valued
functions (see, in particular, pp. 254-5 in 1936).
But even a few decades earlier, É. Borel had provided an informal characterisation of the
computable real numbers and functions as well:

We say that a number α is computable if, given a natural number n, we can obtain
a rational number that differs from α by at most 1

n .

[..]

I intentionally leave aside the practical length of operations, which can be shorter
or longer; the essential point is that each operation can be executed in finite time
with a safe method that is unambiguous. (Borel, 1912)1

It was after Turing’s work, though, that questions of computable results in real analysis
became an intensive area of research. The (independent) work of Grzegorczyk (1955) and
Lacombe (1955) gave rise to rich developments, and to slightly different approaches (based,
e.g., on recursive functions, embodied in Pour-El and Richards 1989, or on oracle Turing ma-
chines, embodied in Ko 1991). However, the earliest systematic studies in this area probably
go back to 1937-1939, in the work of Banach and Mazur, which, however, was published
several decades later (Mazur, 1963) because of WWII.2

1Quoted and translated in Avigad and Brattka (2014).
2See Avigad and Brattka (2014), for a wonderfully written history of the development of real computability.
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In its standardly accepted contemporary formulation, computable analysis extends the classi-
cal model of a Turing machine to the domain of the real numbers and functions. The standard
reference today is Weihrauch (2000). Friendlier and shorter expositions can be found in
Braverman and Cook (2006), Braverman (2005), and Brattka et al. (2008). For a brief expo-
sition of the theory and a philosophical discussion of its conceptual underpinnings, see Pégny
(2016).

The main problem facing us when we move from computing over the integers to comput-
ing over the reals has to do with representation. Representation is essential to computation,
since a computing agent (Turing machine or other) standardly manipulates symbols from
some symbolic system.3 Nevertheless, when we move to an uncountable domain, such as R,
we still have only countably many names available to denote uncountably many entities.

There are two possible ways to go about tackling this problem. The first would be to
consider instead of the whole domain R of real numbers just the subfield RC of computable
reals. In fact, that was both Borel’s and Turing’s approach.4 In this way, we deal with only
a countable space and the problem of representation is overcome by fixing an appropriate
coding scheme for Turing machines, and taking as a name for a computable real the code
number of the TM that produces it when starting on a blank tape. This approach led to
the Russian school of computability (also reflected in the Russian school of constructive
mathematics), represented in its most complete form in Aberth (1980).

The second possibility, which became the prominent practice in Europe and North Amer-
ica, is to consider R in its entirety. This is the approach we mainly consider in this paper
and which we hereafter mean by ‘Computable analysis’ (CA), following standard practice.
According to this approach, we use approximations as names for real numbers. More specif-
ically, a number is represented by an infinite sequence of digits, which the longer it is the
better it approximates the exact real value of the number. Informally then, a function is com-
putable if, given a “good” rational approximation of the input, there is a Turing program that
yields a “good” rational approximation of the output.

2.1.1 The model (aka ‘Type-2 Effectivity’ or ‘Bit-computation’)

In classical computability theory, Turing computation of a function f :⊆ Nn → N can be
formulated as computation of string functions f :⊆ (Σ∗)n→Σ∗, where Σ∗ is the set of all finite
words over a non-empty finite alphabet Σ. Similarly, here we consider a Turing machine5

3See, Papayannopoulos (2018, ch.4) for a detailed account of that view.
4“We say that a function is computable if its value is computable for any computable value of the variable.

In other words, if α is a computable number, one has to know how to compute the value of f (α) with precision
1
n for any n.” (Borel 1912, quote from Avigad and Brattka 2014; emphasis added).
And, also:
“We cannot define general computable functions of a real variable, since there is no general method of describing
a real number, but we can define a computable function of a computable variable.” (Turing, 1936, 254)

5Often referred to as a ‘Type-2 Turing Machine’, and the theory as ‘Type-2 Effectivity’ (abbrv. ‘TTE’).
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operating over strings which are the representations of real numbers. It is convenient to work
with dyadic rationals, from D = { a

2b : a ∈ Z,b ∈ N}, because they always have finite binary
expansions. Then, we can represent a real number x on the tape of the machine by a sequence
of dyadics ϕ(1),ϕ(2), ... approaching x, such that |x−ϕ(m)| 6 2−m (m ∈ N); for example,
1
2 ,

2
4 ,

3
8 ,

6
16 ,

11
32 , ... as a representation of the number 1

3 .
In the interest of brevity, we restrict ourselves to an informal presentation involving ora-

cle Turing machines, since a more formal treatment would require a lengthier discussion of
naming systems (e.g., by employing Cauchy sequences) and representation mappings. The
advantage of an oracle-based formulation is twofold: it avoids a treatment based on infinite
computations, since writing down the representation of a real number as a complete sequence
of dyadics would take infinitely long, and it also offers a natural way to separate the com-
plexity of computing the input x from the complexity of computing on x given as a parameter
(Braverman, 2005).

We equip the Turing machine with an oracle. An oracle is a kind of a “black box” that, at
any given step of the computation, can be queried by the TM to provide the value of a function
ϕ : N→ D, in one step. Assume a function f :⊆ R→ R and that we want to compute f (x),
for some x ∈ dom( f ). We denote by x̄ the input on the machine’s tape (i.e., the representation
of x), and by ȳ the output (the representation of f (x)). Therefore, x̄, ȳ refer to finite sequences
of dyadics.6

• We first tell the TM (as input) an integer n (context-dependent), such that the computed
output ȳ must be within the error 2−n; that is, | f (x)− ȳ|6 2−n.

• The machine M refers to the oracle to obtain x̄ = ϕ(m) such that |x− x̄|= |x−ϕ(m)|6
2−m. We allow unlimited questions from M to the oracle, and the parameter m may
depend on the answers to these questions.

• On input x̄, M writes ȳ on its output tape, after finitely many steps.

We will say that a function f :⊆ R→ R is TTE-computable (or CA-computable) if there
is an oracle Turing machine that can compute it in the way described above. General-
ization to multivariate functions f :⊆ Rk → R is straightforward, by allowing k oracles,
ϕ1(m),ϕ2(m), ...,ϕk(m) that can be queried with respect to m.

On the complexity side, the cost (running time) of M is the worst-case cost that a compu-
tation with M can take given a valid input and precision n.7

6For example, on an alphabet containing at least {0,1,#}, if x is 1
3 , x̄ could be a finite string of the form:

#b(
1
2
)#b(

2
4
)#b(

3
8
)#b(

6
16

)#...

where b(k) means the binary expansion of k.
7The above model is sometimes modified as follows. We assume that M has access, via its input tape,

to a rational sequence that rapidly converges to x. Furthermore, we require from the machine to produce not
only one rational approximation to f (x) with some precision n, but approximations for every n ∈ N; that is,
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2.2 The BSS Model
The BSS model is a model of computation not exclusively over continuous spaces, but over
any arbitrary field or ring R. If R is Z2 =< {0,1},+,×>, then the model becomes reduced
to classical computability theory. The standard reference is Blum et al. (1997), but briefer
expositions can also be found in Blum (2004), Smale (1990), and Cucker (1999).

The model is based on the notion of a machine M over R (where R is a commutative,
possibly ordered, ring or field). A finite-dimensional machine has an input and output space
associated with it, a two-way infinite tape with cells, and, similarly to Turing machines, a
read-write head. The machine’s program is a finite directed graph with five types of nodes,
linked by operations or next node mappings.

More specifically, the top node represents the input stage and the last node the output
stage. At each other stage, passage from a node to another is made either by means of a
rational computation or by means of a comparison step whose branches may lead to a new
node or a previous one. The last kind of node is a shift node, associated with shifting the head
one cell to the right or to the left. The machine computes a function f :⊆ Rk→ Rl , if on an
input x ∈ dom( f ) it outputs f (x) ∈ Rl . The inputs can be thought of as strings of elements
of R of the form: ...000x1x2x3..xk000... The machine decides a set A ⊂ Rk, if it computes a
characteristic function for it; for example, XA(x) = 1, if x ∈ A, and XA(x) = 0 otherwise. For
most cases in numerical analysis, the space R can be thought of as either R or C. See fig.1
for an example.

The model can additionally be extended to infinite-dimensional cases for computing func-
tions f :⊆ R∞→ R∞, where the underlying structures R∞ :=

⋃
n∈N∗ Rn. In this case, the two-

way infinite tape allows for inputs that are sequences of elements of R of arbitrary length.
For the purposes of this paper, it is adequate to restrict our focus to the finite-dimensional
case. In doing so, we can equivalently think of BSS-machines as a generalisation of Random
Access Machines from the natural numbers to real numbers (whence comes the often used,
alternative name ‘Real-RAM’ for the same model).

Within this framework, the authors prove several results about the decidability and com-
plexity of sets and problems over R and C (e.g., that the Mandelbrot set is undecidable over
R). But, as mentioned already, a crucial idealisation that Blum et al. employ is that the ma-
chine M is able to manipulate the exact value of any real number it is operating on. Real
numbers are viewed as unanalyzed entities in the algebra R, and algebraic operations and
comparisons are each counted as one unit of work; for instance, if R = R, it takes one step to
add, subtract, multiply, divide, and compare any two real numbers, even irrationals.

Regarding complexity considerations, the size S(x) of an input x ∈ Rk is S(x) = k. The

to produce a rational sequence that rapidly converges to f (x). We then get an extensionally equivalent model,
which dispenses with the extra input n. This modified model is in effect the one considered in Weihrauch (2000).
Note that in this modification, it is necessary that the output tape is one-way, so that although a computation
may need an infinite number of steps to be completed, we are nevertheless assured that after a finite number of
steps we have always available a correct first approximation of the output (hence the equivalence with the oracle
formulation).
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f (x)

r

xx1 x0

xn+1 = xn− f (x)
f ′(x)

(a)

( f ,x,ε)Input:

x← x− f (x)
f ′(x)Compute:

| f (x)|< ε?Decide:

xOutput:
yes

no

(b)

Figure 1: (a) Newton’s method for approximating a root of a real polynomial f (x). (b) A
simplified version of a BSS program for implementing the method (next and shift nodes are
omitted). Input and output spaces are both R. The set A⊂ R whose elements are those x for
which the machine halts after a number of steps, yielding an xi such that | f (x)|< ε , is often
called the ‘Halting set’ of the machine. Crucially, comparisons and arithmetical operations
are assumed computable in this model (in one step).

computational cost (the running time of the program) is defined as the number of operations,
comparisons, and movements —that is, as the number of nodes traversed from input to output
when the machine starts with input x. The cost is expressed as a function of the input size, k,
analogously to ordinary complexity theory, thus allowing for the definition of corresponding
complexity classes for real (or complex) number problems, such as the classes PR and NPR,
when R =R,C,Z2 (or any other field or ring). If R = Z2 (the ring of two elements), the input
has the form of a string consisting of n digits, and its size S(x) is the bit size of the string. In
this case, the computational cost reduces to the bit cost, and the theory becomes equivalent
to the classical complexity theory, which is based on Turing machines (e.g., we recover the
classical complexity classes: PZ2 = P, and NPZ2 = NP).

2.3 Incompatibility between the two main approaches
There is a precise sense in which the two main approaches are incompatible. Almost all of
the functions characterised as computable by BSS are non-computable by CA, and vice-versa
(see, also, Weihrauch 2000, ch.9).

More precisely, a major result in CA is the following:

Every computable function must be continuous.
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In other words, discontinuous functions are not computable (at least, near the discontinu-
ity points). This result has a proof under any particular formalisation of computable analysis
(be it in terms of Type-2 Turing machines, or recursive functions, or the topology of the com-
puted spaces, etc.), and it was even pointed out by Borel (1912) in his informal discussion
of computable functions.8 Intuitively, it holds because if we’re computing an approximation
to a value f (x), we want this approximation to be a good one for all points near x, since the
latter is also given by an approximation.

A consequence of this is that the following relations are all non CA-computable:

{(x,y) ∈ R2|x = y}, {(x,y) ∈ R2|x < y}, {(x,y) ∈ R2|x 6 y}

The equality relation, for example, is not computable, intuitively, because a TM with two
equal real numbers on its input tape(s) would not be able to decide within any finite number
of steps —i.e., after having read only a finite prefix of the inputs— that the two numbers are
equal and do not differ at some later digit, not yet reached by the machine’s head.9 Equiv-
alently, the corresponding function is not continuous. But if the two numbers are different,
a decision is possible. Differently put, the equality relation is (negatively) semi-decidable
(computably enumerable).10 Similarly, the total order relation is not generally computable;
however, it can be decided for two non-equal numbers. Formally, these results are proved
either by showing that the decidability of the above relations imply computability of the halt-
ing problem, or by topological reasoning based on the discontinuity of the corresponding
functions; for the latter, see, e.g., Weihrauch (2000) and Brattka et al. (2008).11

In the BSS/Real RAM approach, on the other hand, there’s no similar continuity require-
ment. That means that functions seemingly easy to define, such as step or floor/ceiling func-
tions, although not CA-computable, are BSS-computable.

Furthermore, since every non-trivial branching node in the program of a BSS machine in-
troduces a point of discontinuity,12 most BSS-computable functions are not CA-computable
(Weihrauch, 2000). Conversely, functions such as square roots or exponentials are not BSS-
computable, whereas they’re unproblematic in CA.13 This is intuitively the case because

8“A function cannot be computable, if it is not continuous at all computable values of the variable.” (Quoted
in Avigad and Brattka 2014)

9Two implicit assumptions here are that the same naming system is used for both inputs, and that the output
tape is one-way.

10This too was informally pointed out by Borel (1912): “The first problem in the theory of computable
numbers is the problem of equality of two such numbers. If two computable numbers are unequal, this can
obviously be noticed by computing both with sufficient precision, but in general it will not be known a priori.”
(Quoted in Avigad and Brattka 2014)

11If instead of the entire R, only the computable reals RC are considered, then the undecidability of equality
comes as a consequence of Rice’s theorem.

12Recall, for example, how the BSS-decidability of a set was defined in sec. 2.2, based on computing its
discontinuous characteristic function.

13Almost all commonly encountered continuous functions in analysis are CA-computable on an appropriate
domain, including, for example, polynomials, trigonometric functions, 1

x , ex, logx, n
√

x, |x|, etc., and composi-
tions thereof.
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generally all intermediate computations performed by a BSS machine are rational functions
of the inputs and built-in constants; that is, algebraic fractions with polynomials as numer-
ators and denominators.14 Of course, such functions can often be approximated by BSS-
computable functions; for example, there is some BSS-computable function f :⊆ R2 → R,
such that | f (x,ε)−

√
x|< ε for any x,ε > 0.15

All this creates a strong incompatibility between the two main approaches. How can we
go about choosing one over the other? Since we are talking about models that in a sense
purport to capture mathematical facts, one attempt might be to test both models against some
basic intuitions; that is, intuitions regarding what operations and functions should be com-
putable or not, and with what difficulty.

3 Intuitions
Whenever we are to choose a model of computation for modelling some particular domain
of computations, we have certain pre-theoretic intuitions that we want our chosen model to
satisfy. What are those intuitions in our case?

A first attempt might be that a theory of computability about a mathematical area should
try to characterise as ‘computable’ at least the fundamental operations used in the area (Gher-
ardi, 2008). The four basic arithmetical operations (±,×,÷) are generally computable in
both the BBS and computable analysis (CA) approaches. However, nth-roots are not BSS-
computable, as we saw, whereas they are unproblematic for CA. On the other hand, although
comparisons (>,<,≥,≤) and identity are not computable in CA, they are defined as com-
putable in BSS, something that seems desirable for any theory which regiments numerical
algorithms. This is because comparisons between real numbers, as elements of an ordered
set, are taken as basic and are built into many such algorithms (consider, as an example, a
classic bisection, root-finding method).

A further factor of consideration is what functions each model characterises as com-
putable. We have already pointed out that only continuous functions are CA-computable.
This is an inevitable consequence, necessary (actually constitutive) of any framework in
which computation is understood as an effective process over uncountable domains —that
is, it can in principle be simulated by pen and paper. Of course the uncomputability of the
equality relation stems from the same conceptual reasons.16 This is however an undesir-

14For a formal proof of the non BSS-computability of exponentials, see, e.g., Brattka (2000, 8). See also
Weihrauch (2000, 265) for the sketch of a similar proof. See Calvert et al. (2011), for various results of uncom-
putability in BSS, including transcendental and algebraic functions.

15For example, by using a machine implementing Newton’s method (fig.1), to approximate the zero of the
function f (x) = x−a2, and obtain

√
x ≈ a. Nevertheless, such approximate algorithms may turn out problem-

atic in case of compositions of functions, with a known desired output precision (e.g., f (x) =
√

5+
√

x, with
precision ε > 0), since we need to be able to find the required precision of the input based on ε (sec. 2.1.1). This
is more straightforward in bit-computation (see Braverman and Cook 2006, 322 for an example) than in BSS.

16Recall that Borel had arrived at the same conclusions mainly by informal reasoning (see, fn.8,10).
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able feature for the purposes of analysing numerical algorithms, full of comparisons, and
so it is avoided in BSS by fiat. Furthermore, as said already, transcendental functions —
such as exponential, logarithmic, and trigonometric ones— that cannot be locally expressible
as algebraic functions are not BSS-computable. Whenever a particular problem involves
such functions as parts of the investigated algorithms, their computability and fixed cost are
stipulated. Again, this might be problematic if someone is interested in capturing what is
effectively (un)computable in principle, by an idealised agent (machine or otherwise) follow-
ing a mechanical method; yet, it is fruitful for analysing algorithms. Another difference is
that any constant function f (x) = c (c ∈ R) is BSS-computable, since polynomials are BSS-
computable and a constant is trivially a polynomial (so just ignore the input x and output
c). This is conceptually suspicious from the point of view of effective computation, since
all real numbers but denumerably many are not computable by a Turing machine (there are
denumerably many TMs but uncountably many real numbers). Furthermore, it is possible
to construct a particular real number c such that computing it with arbitrary precision would
entail solving the Halting problem, which is accepted to be uncomputable by both traditions.

Another proposed criterion for evaluating a theory of computability might be how well
it matches our intuitive notions of ‘easy’, ‘hard’, and ‘impossible’ computation (Braverman,
2005). The usual arithmetic operations, for instance, should be characterised as ‘easy’ by
any model. Arguably, the same goes for every function found in a common calculator, such
as sinx. Also, problems that are known to be easy, hard, or impossible, in the discrete case
might be expected to fall under the same categories in the continuous case. For example,
the Travelling Salesman Problem, which is NP-complete in the discrete case, or other known
hard problems, such as the N-body problem or the Navier-Stokes equations, are expected to
be considered hard in the continuous case too (Braverman and Cook 2006; however, see the
forward by R. Karp in Blum et al. 1997). The fact that, for BSS, f (x) = c is always com-
putable for any c ∈ R in one step goes prima facie against the “criterion” we are discussing
here. In order for a machine to compute f (x) = c, for some c ∈ R, it is enough to ignore the
input x, and start computing approximations to c as described for example in Turing (1936).
Then, we would expect intuitively that computing (say) π would be more difficult than com-
puting (say) 1

4 . And, as said before, there are numbers c ∈ R that are even impossible to
compute. However, BSS does not distinguish between these cases, categorising any function
of the form f (x) = c as ‘easily computable’ (one-step operation), since a real number can
always be stored in a register, being just an element from R.

Finally, there is another intuitive aspect that is captured quite differently by the two ap-
proaches. The cost of a computational method is expressed in computer science and mathe-
matics as a function of the input size. In Turing machine models, including CA, the input size
is measured in bits (word size). This means that the total costs of particular operations, and
fully fledged algorithms, are dependent on the bit size of the input(s) size. Nevertheless, the
way modern-day machines implement algorithms does not involve any corresponding notion
of varying size of a real number (see appendix). So, for the purposes of comparing different
available algorithms for the same problem, and given that they are meant to be machine-
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implemented, it may be intuitively natural to focus the attention on the number of operations
and comparisons per se, as the dominant parameters of the total cost; at least in those cases
where the considered problem is not too sensitive to the initial data (well-conditioned prob-
lem).17 To make the point clearer, let us consider a well-conditioned problem.18 A slight
perturbation of the value of the input, say, from 1 to 1+(1

2)
n, would cause the input bit size

to grow from 1 to n+1 (Blum, 2004). For large n, this can lead the analysis astray, because
although the input size would change considerably, due to the small perturbation, the actual
complexity class should not change if the problem is well-conditioned. Thus, within the CA
framework we run a risk of getting misled, if such circumstances are not taken into account
when evaluating costs of algorithms and complexity classes of problems.

4 Towards a foundational framework
The point of the previous discussion is that neither of the two approaches satisfies all of our
pre-theoretic expectations about a computational model over the reals. Nevertheless, both
frameworks have been fruitful in terms of their results. Bit-computation is a natural exten-
sion of the original Turing model, and is grounded in plausible and intuitive assumptions,
such as those of Turing machines approximating the exact values of the computable reals by
writing/erasing symbols from a finite alphabet, etc. Thus, we think that CA appropriately reg-
iments the pre-theoretic idea of ‘effective computation’, as applies to continuous spaces.19,20

In a sense, this fact, by itself, anticipates the fecundity of this model. On the other hand,
the successful applicability of BSS to more than one mathematical area —despite the fact
that it is not a model concerned with explicating ‘effective computation’ per se, and given
that it is grounded in assumptions and idealisations that have been criticised as unnatural
and unrealistic21— begs for a philosophical explanation. In fact, besides numerical analysis,

17Although the motivation here is based on the properties of modern-day FPA implementations, interestingly,
Turing himself had also regarded as useful a similar cost measure, based on the number of operations. The
following quotation is from (1948) —the same paper where he also introduces the notion of condition number
(long before FPA was implemented in actual computers).

‘It is convenient to have a measure of the amount of work involved in a computing process, even
though a very crude one [..] We might, for instance, count the number of additions, subtractions,
multiplications, divisions, ...” (Turing, 1948, 288).

‘
18We explain what that means in sec.5.
19By ‘effective computation’ we mean computation performed by an idealised agent (machine or otherwise),

following a systematic method and having unlimited space and time. Such a computation should be in principle
simulable by pen-and-paper.

20We do not offer further arguments for that claim here, besides ascertaining that it is a generalised version
of classical Turing computability, which admittedly regiments ‘effectivity’. We refer, however, the unconvinced
reader to the discussion in Pégny (2016) for more conceptual arguments to that effect.

21See, for example, Weihrauch (2000, ch.9), for a standard criticism.
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BSS and similar models22 are also helpfully applied to computational geometry, information-
based complexity, and algebraic complexity. These all are fields concerned with algorithms,
and a good number of practitioners in them completely ignore foundational approaches to
algorithms in terms of Turing machine models, such as CA. Wozniakowski’s comment is
characteristic:23

Before we go on, we pause for a moment and ask why so many people are using
the real number model, and why there are so few complaints about this model. In
fact, with a little exaggeration, one can say that only some theoreticians are un-
happy with the real number model, whereas many practitioners do not experience
any problem with it. (Woźniakowski, 1999, 452)

What makes BSS –and the other similar models– so applicable? The question is even
more germane, if one accepts our interpretation that these models are not concerned with
regimenting the notion of ‘effective computation’ per se. We propose an account in the
following sections, but the argument involves two stages. The first is to distinguish different
possibilities about what the scope and meaning of ‘foundations for scientific computing’ can
be, and the second is to examine how each tradition responds to each such possibility. But
first, we take a look at what the mathematicians behind BSS themselves take their goal to be.
We think that interesting insights can be gained by this.

4.1 BSS and similar models as idealised representations
A stated goal of this model is to offer a foundation of scientific computing, by examining the
notion of ‘computation’ itself. Blum et al. (1997, 22) write: “There is a sense in which this
work is a study of the laws of computation”. And they continue:

[W]e write not from the point of view of the engineer who looks for a good
algorithm [..] The perspective is more like that of a physicist, trying to under-
stand the laws of scientific computation. Idealizations are appropriate, but such
idealizations should carry basic truths. (Blum et al. 1997, 22; emphasis added)

Now, as this paper aims to point out, this foundational pursuit, besides presenting an
interest on its own, also provides a distinct example of employing idealisations to mathemat-
ically describe a domain which is in fact mathematical, viz. the “laws of computation”.24 A

22Other similar models are the Real-RAM and Real Number model. In fact, all these three models are
practically equivalent, and the difference is mostly terminological. The former term is typically found in the
computational geometry literature, whereas the latter typically in information-based complexity.

23Wozniakowski, coming from the area of information-based complexity, uses the term ‘real number model’.
24One could retort here that ordinary complexity theory is grounded in idealisations as well, apparent in the

asymptotic formalism describing costs and complexity classes. I think, however, that this would be a mistaken
take on this practice, and that asymptotic results should rather be understood as approximations. There is a
conceptual difference between approximations and idealisations, but a discussion of it would be beyond the
scope of this paper. For illuminating clarifications, one can see Norton (2012).
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BSS-machine, for example, is assumed able to store and manipulate exact real values. But
how can we know that such an idealisation does carry some of the “basic truths” that Blum
et al. (1997) are asking for? After all, most of the criticism against this model, as already
discussed, has focused on this very assumption. Interestingly, even the authors themselves
admit some hesitation in adopting such an idealisation. We ask for the reader’s indulgence in
quoting such a lengthy excerpt as the following, but we think that many interesting points for
the upcoming discussion are contained in it.

[W]e are led to expanding the theoretical model of the machine to allow real
numbers as inputs. There has been great hesitation to do this because of the
digital nature of the computer. Here we might learn a lesson from the history
of science. At the time of Newton, scientists assumed that the world was atom-
istic [..] Newton accepted that picture according to which all matter is composed
of indivisible particles, a finite number in each bounded region. On the other
hand, Newton’s mathematics was continuous as was Euclid’s. [..] It was a sub-
stantial problem for Newton to reconcile the discrete world with the continuous
mathematics. The resolution was produced by analyzing the effect of replacing
an object (e.g., the earth) by a finite number of particles, then making a better
approximation with a larger number of particles. In the limit, the mathematics
becomes continuous. [..]

Now our suggestion is that the modern digital computer could be idealized in the
same way that Newton idealized his discrete universe. The machine numbers are
rational numbers, finite in number, but they fill up a bounded set of real numbers
(e.g., between −1000 and 1000) sufficiently densely that viewing the computer
as manipulating real numbers is a reasonable idealization, at least in a number
of contexts.

Moreover, if one regards computer-graphical output [..] and asks to describe the
machine that made these pictures, one is driven to the idealization of machines
that work on real or complex numbers in order to give a coherent explanation
of these pictures. For a wide variety of scientific computations the continuous
mathematics that the machine is simulating is the correct vehicle for analyzing
the operation of the machine itself.

These reasonings give some justification for taking as a model for scientific com-
putation a machine model that accepts real numbers as inputs. Of course a great
many issues such as round-off error must be dealt with. Moreover the ultimate
justification is: does the model developed this way give new insights and under-
standing to the use of the big machines? To attempt to show this is a major goal
of our work. (Blum et al. 1997, 23-24; emphasis added)

From the above it seems that the authors themselves consider two modes of justifica-
tion for the idealisations underlying their approach. One is based on theoretical reasoning
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focused on the target (modelled) domain; in particular, properties of the actual (“modern dig-
ital”) computers that perform scientific computations. The other is grounded in pragmatic
considerations; mainly, the ultimate fruitfulness of the model at hand, in terms of the under-
standing and results gained. Since the latter is rather an internal mathematical criterion, we
believe that the verdict on its fulfilment is up to the mathematical community itself. Here,
our concern is with the former criterion, which is little discussed by the authors themselves;
that is, to what extent, and by virtue of what, the chosen idealisations are appropriate for
the domain at hand. This is important because it pertains to the fundamental issue of how
strictly false models can provide reliable results and capture faithfully aspects of the domain
under study. But first we need to clarify what the domain exactly is in the case of scientific
computing. We discuss this in the following section, 4.2.

A second interesting issue, arising from the above quotation, is the analogy the authors
draw with empirical science and the use of idealised representations therein. The authors
keep the analogy minimal; in effect, the only similarity they point out between the two cases
is the usefulness of idealisations. However, I submit that the analogy can go further. This is
the topic of section 7.

4.2 What is even meant by ‘foundations for scientific computing’?
What does it mean to develop foundations for scientific computing? I suggest that there are
two ways of understanding this goal. One way is to aim at a framework within which we can
prove fundamental results about what can ultimately and in principle be computed by a com-
puter, machine, or idealised agent, following an effective procedure and given enough space
and time. The tradition of computable analysis, based on the groundwork laid by Turing’s
(1936) work, and continued in the works of Lacombe (1955), Mazur (1963), Grzegorczyk
(1955), Pour-El and Richards (1989), and Weihrauch (2000), is in accordance with such a
goal. Then, to the extent that such a framework is so fundamental as to be an accepted expli-
cation of the informal notion of ‘effective computation’, any results proven within it about the
(un)computability of certain problems and functions would be transferred —via some kind
of extended Uncountable Church-Turing thesis25— to what digital conventional computers
(and idealised agents) can do as well.26 This would definitely be considered as a foundation
of computing then, and would exhibit a degree of robustness and implementation-invariance
analogous to the one enjoyed by classical computability and complexity theories, which are
also model/implementation-independent.27 And a fortiori it would provide a foundational
framework for the narrower domain of application that is referred to as ‘scientific computing’
by the modern-day mathematicians, scientists, and engineers.

25Similarly to the classical case of discrete computability theory.
26We ignore conceptual complications arising from the possibility of hypercomputers, or other non-

conventional forms of computing here.
27Their reliance on Turing machine formalisms is presumably harmless, for a tacit assumption is the validity

of the Church-Turing thesis.
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On the other hand, another possible route —another interpretation of the discussed goal,
that is— would be to pay special attention to what modern-day practitioners mean by ‘sci-
entific computing’. We will not attempt a complete (or even incomplete!) definition of the
term here but some general characterisation. To this end, it may be useful to look at David
Keyes’s entry ‘Computational science’ in The Princeton Companion to Applied Mathematics
(Higham et al., 2015). In the ‘Definitions’ section of the entry, Keyes writes:

[S]cientific computing is the study of techniques in the intersection of many
discipline-specific fields of computational science. Computational chemistry,
computational physics, computational biology, computational finance, and all of
the flavors of computational engineering (chemical, civil, electrical, mechanical,
etc.) depend on a common set of techniques connecting the conceptualization of
a system to its realization on a computational platform. These techniques—such
as representing continuous governing equations with a discrete set of basis func-
tions, encoding this representation for digital hardware, integrating or solving
the discrete system, estimating the error in the result, adapting the computational
approximation, [..]— span diverse applications from science and engineering and
are the elements of scientific computing. (336; emphasis added)

By ‘computational science’, in the above quote, Keyes means “the systematic study of the
structure and behavior of natural and human-engineered systems accomplished by computa-
tional means” (335). The interesting aspect here is that under this understanding of the term,
the fact that any computing technique is to be represented in and performed by digital com-
puters is taken into account from the outset, during the development stage (see the emphasised
parts).28 Thus, this second interpretation of the scope of ‘foundations for scientific comput-
ing’ concerns developing a practical framework within which we are able to mathematically
analyse and compare computational methods, in advance, and under the (tacit) assumption
that they are meant to be implemented by modern-day digital machines.29 The consequence
of this is that definitions and other means of regimenting informal notions, within this frame-
work, need be responsible to the actual capacities and limitations of real computers. This
is not to say that any such foundational framework should be built upon assumptions about
very specific features of computer design and architecture, such as, say, whether a binary or
a ternary number representation is implemented by the machine, or whether single or double
precision FPA is used.30 Although even the mere consideration of the programming language
influences the exact form of a computation, any such model would be so specific and cum-
bersome as to be practically useless and easily outdated. Nevertheless, a degree of attention

28As a historical aside, it seems that the seminal articles initiating the field of scientific computing, by means
of introducing thorough discussions of computer errors, were von Neumann and Goldstine (1947), and Turing
(1948).

29Such a framework would also need to provide an appropriate formal definition of ‘algorithm’, for in or-
der to prove lower bounds of computational costs (and thereby characterise complexity classes), we need to
generalise over all possible algorithms.

30Thanks to an anonymous referee for pressing on this point.
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to some essential features (e.g., that computers use rational numbers of fixed bit size, and
thereby introduce representational and round-off errors) is necessary, for if such features are
not taken into account they can render the theoretical model far too idealised with respect to
the target domain. Of course, as in any case of modelling, what to consider and what to leave
out is anything but a trivial matter.

Importantly, arguments that seem to imply this second understanding of the search for
foundations are found in papers from both traditions of computation. For example, the long
quotation by Blum et al. (1997) (sec. 4.1) shows that the authors do consider properties and
capabilities of modern computers as a yardstick by which to evaluate their model’s fecundity.
Additionally, one can also see Blum (2004), Cucker (1999), Novak (1995), Smale (1997),
and other papers of the same tradition for discussions —and extensions of the BSS model—
concerned with treatment of round-off errors.31 Additionally, although computable analysis,
in the spirit of works cited in the beginning of this section, has not been concerned with
implementational issues,32 the formulation of this approach as an additional candidate for
a foundational framework for scientific computing in Braverman and Cook (2006) likewise
involves arguments that regard modern computational practice as a yardstick of success or
failure.33 For example: “A weakness of the BSS approach as a model of scientific computing
is that uncomputability results do not correspond to computing practice in the case R = R.”
(319; added emphasis). And later:

In the bit model there is a nice definition of decidability (bit-computability) for
bounded subsets [.. T]he idea is that the set is bit-computable if some computer
program can draw it on a computer screen. [..]

[..] In the rest of the paper we concentrate on the bit model, because we believe
that this is the most accurate abstraction of how computers are used to solve
problems over the reals. (319-320; emphasis added)

So, assuming our second (practice-oriented) interpretation of what developing founda-
tions for scientific computing amounts to, what kinds of computations performed by modern-
day computers should be considered and modelled? First, we need to distinguish between
two different ways in which computers are employed in scientific computing. The first has to
do with symbolic computations. The mathematical underpinning of this practice is computer
algebra; an area of research concerned with the development, analysis, and implementation
of algebraic algorithms. The second major use of computers, within scientific computing, is
numerical computations, and the underlying mathematical area is numerical analysis; con-
cerned with the development of numerical algorithms (e.g., the Newton method illustrated in

31One can also see the concern with implementational issues reflected in how the research in the fields of
numerical analysis, computational geometry, and information-based complexity have changed through the last
decades and become much more implementation-focused. Textbook presentations make this turn apparent too.

32For example, there is no discussion of representation or round-off errors in Weihrauch (2000).
33We are always referring to this particular formulation whenever we use the term ‘bit-computability’ in this

paper.
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fig.1). The former area studies computations with symbols representing mathematical con-
cepts, such as polynomials, algebraic numbers, trigonometric functions, integrals, and so on.
In contrast, the latter area studies numerical calculations focused, for example, on solving
(sytems of) equations, data interpolation, optimisation problems etc.34 Algebraic algorithms
generally receive as their inputs formulas or symbolic expressions of numbers, and the same
holds for their outputs. Therefore, their outputs are not approximations of numbers, and
their computations –in contrast with numerical computations– are exact and not subject to
errors. Put differently, a symbolic algebra system manipulates mathematical expressions an-
alytically, in a similar fashion to how a student would solve a calculus problem by pen and
paper. To give an example of the differences between the two kinds of computing, suppose
we are solving a system of two equations. Whereas the output of a numerical method might
be, say, (−0.5773502...,0.25), the output of the corresponding symbolic computation would
yield (−

√
3

3 , 1
4 ). As another toy example, a symbolic computation of π

4 + π

6 would return 5π

12
as output, while a numeric computation would return 1.3090...

With this distinction in mind, we can return to the last question. It seems safe to assume
that the quest for foundations of scientific computing, at least in the way pursued by both
traditions and advocated in the two papers of Blum (2004) and Braverman and Cook (2006),
primarily focuses on numerical computations. This should not be a surprising claim. From
the outset, the foundational study of computation has been concerned with computability of
numbers and functions. Borel (1912) and Turing (1936) (and others later) were concerned
with computable real numbers and functions; Church (1936), Gödel, Herbrand and Kleene
were concerned with number-theoretic (partial) recursive functions. Both traditions discussed
here are concerned with computation of real numbers and functions as well. For that reason,
we will also restrict our attention, for the rest of the paper, to numerical computations.

To conclude the (rather long) discussion of this and the previous section: the way we in-
terpret the goal of developing foundations for scientific computing matters, for it ultimately
determines what the target domain of our models is. Accordingly, identifying the target do-
main bears on which properties of that domain have to be considered in our formal model
and which can safely be abstracted away and idealised. But, as we have already said, this
is not always a straightforward task (in the apt words of F. Cucker (1999, 106), “models of
computation are not sold in hardware stores”).

We have put forward two possible interpretations of this goal. For the purposes of the next
section, which are to formulate an account of the success of BSS, we will assume the second
proposed interpretation: that is, any foundational framework should be answerable to actual

34The distinction is in reality not as clear-cut as presented here. For example, computer algebra involves
representations of numbers as well. Perhaps, the most broadly known computer algebra systems today are
MATHEMATICA and MAPLE, whereas MATLAB is perhaps the most well-known environment for numerical
calculations. Of course, many more such systems exist, and recently many of them are enhanced with packages
that allow them to cross boundaries and perform both kinds of computations (MATLAB being a recent case in
point.)
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practice and have as an implicit assumption the intended machine-implementability of the
developed algorithms. Within this context then, what properties of the target system should
be considered? Perhaps the most important such property is that actual computers store and
work with finite representations of real numbers, which are of fixed size; namely, floating-
point numbers (cf., also, Blum et al.’s quotation, on p.15).35 This property does influence the
way mathematicians design numerical algorithms, and bears on the actual costs of machine
computations. Another property is that the majority of problems in the actual practice of
scientific computing cannot be solved exactly, and the developed numerical algorithms are
such that they approximate the exact solutions up to some predetermined accuracy, ε > 0, by
means of iterating certain steps (cf., Newton’s method, fig.1).

In the next section (5), we delve into how all these features are captured or neglected in
BSS and bit-computation models.

We note in passing that we do not attempt in this paper a definite answer to the question
of what the correct interpretation of the goal of scientific computing is. Rather, we assess
the appropriateness of each model conditionally on what the goals may be taken to be by the
mathematical community itself.

5 Why BSS turns out to be so successful as a model of machine-
computations

BSS (or Real-RAM) analyses computations between values that are assumed (i) real, (ii)
exact, (iii) able to be added, subtracted, multiplied, divided, and compared at unit cost.36

Nonetheless, given that this and similar models are actually successful, this might seem to fly
in the face of the fact that today’s digital computers, almost universally, implement numerical
computations with floating-point arithmetic (FPA). This is because floating-point computa-
tions are between values that are (i) rational, (ii) rounded and of finite precision, (iii) added,
subtracted, multiplied, divided, and compared at some fixed cost.37

For comparison, we also mention that bit-computations (within CA) are between values
that are (i) rational (ii) of arbitrary precision (iii) added, subtracted, multiplied, and divided
(but not compared) at a cost that is dependent on the size of the operands and the desired
precision. We summarise these features in table 1.

In what follows, we will be examining all these three features separately, in order to
understand under what circumstances BSS is reliable, despite seemingly unrealistic idealisa-
tions.

The first difference between BSS and FPA —i.e., that the computed numbers are real in the

35Symbolic algorithms, on the other hand, are not implemented in floating-point arithmetic.
36Hereafter, we consider BSS computations over R = R.
37This may seem even more surprising, given some of this arithmetic’s bizarre properties, mentioned in the

appendix.
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Model Values Precision Operations and costs

BSS Real Infinite, exact
Addition, subtraction, multiplication,
division, comparison, at unit cost

FPA Rational Finite, limited
Addition, subtraction, multiplication,
division, comparison, at fixed cost

Bit-comp. Rational Finite, arbitrary
Addition, subtraction, multiplication,
division (no comparison), at cost
dependent on the size of the operands

Table 1: Comparison between the two models and floating-point arithmetic

former, though rational in the latter— can be theoretically “alleviated” as follows. Floating-
point numbers are most commonly defined as integers multiplied by positive or negative pow-
ers of 2. This means that all FP numbers represented this way are dyadic rationals; that is,
elements of D= { a

2b : a ∈ Z,b ∈N}. The set D enjoys some properties that make it very con-
venient for computational models. It is closed under addition, subtraction and multiplication.
It is also dense in R; that is, for any real number r, any neighbourhood of r contains at least
one dyadic rational in it. Furthermore, any real r can be approximated by a dyadic of the form
b2kxc/2k with arbitrary precision. Finally, the dyadic rationals are precisely those numbers
whose binary expansion is finite. Interestingly, some operations between dyadics can be per-
formed exactly, even in FPA, under certain circumstances (e.g., when there’s no underflow).
For example, dyadic rationals can be added or divided by two without round-off, a prop-
erty that can make a bisection algorithm have much fewer round-off errors (Woźniakowski,
1999). Of course, some formalisations of bit-computation models also employ dyadic ra-
tionals to represent reals (see, e.g., Braverman 2005), and so they exploit the merits of this
system as well.

The second contrast between BSS and FPA —namely, the precision of the numbers being
computed upon— is the one that makes the success of BSS in modelling FPA most remark-
able. In the course of an FPA computation, there are representation and round-off errors that
may accumulate. Nevertheless, most researchers in scientific computing do not experience
significant difference between the two models in most (but not all) cases. Can we identify
reasons that account for the fact that BSS can reliably model FPA computations, despite that
it abstracts away from representation and round-off errors and idealises FP numbers as reals?
The discussions in Woźniakowski (1999) and Cucker (1999) can be helpful for the question
at hand.38

38Woźniakowski’s discussion is about the use of the Real Number model in information-based complexity,
but his results bear on the context of our discussion as well. We heavily draw upon his discussion, and Cucker’s
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Woźniakowski posits two conditions that should be met in order for BSS/Real-RAM to
be a reliable model with respect to real-world computations. The first is that the machine-
algorithm we intend to model via BSS is a stable one. What is meant by that? More often
than not, we do not have access to exact data, but only to approximations within some error
bounds; often due to limitations on measurement precision. Furthermore, just by inputting
the initial data we typically introduce additional representation errors. If we assume, after this
point, exact computations without any round-off errors, then that means that we can consider
the output of the computation as an exact result (since there are no in-between introduced
errors) of a slightly perturbed problem (since only the input was slightly changed). However,
in reality, FPA computations introduce intermediate round-offs as well. Intuitively then, the
stability assumption is that the (FPA-)algorithm, overall, does not magnify the initial small
errors. Put differently, a stable algorithm is one that “returns results that are about as accurate
as the problem and the resources available allow” (Corless and Fillion, 2013, 29). This idea
is expressed schematically in fig.2. A precise definition of “stability”, though, depends on
the specific problem under consideration.

Now, assuming stable FPA algorithms, we can reliably use BSS to analyse their costs and
obtain lower bounds for characterising complexity classes.39 This is mainly because of two
reasons. First, a lower bound, obtained by BSS for idealised machines with no round-offs,
would be a lower bound for a machine with round-offs as well. Finding in BSS that a problem
cannot be solved with less than, e.g., Ω(n2) operations in BSS, allows us to safely assume
that in the presence of round-offs there would not exist an algorithm with cost, say, O(n).40

The second reason is that in both BSS and FPA the cost of a particular operation does not
depend on the bit size of operands. We return to this point at the end of this section.

We said that our stable algorithm solves (almost exactly) a slightly perturbed problem;
that is, a problem with slightly perturbed initial data. We need in general to be able to measure
how much the result of the output is affected by the perturbations of the input. This sensitivity
of the solution to small changes in the data is called the ‘conditioning’ of the problem and a
measure of that is the condition number, µ(x), of the particular problem. A problem that is not
too sensitive to initial perturbations (small µ(x)) is said to be well-conditioned. A problem

(1999), in what follows.
39We remind the reader that the cost of a numerical algorithm, in general, is measured by the sum cost of

all particular operation costs, expressed as a function of some input size n, in asymptotic form. If we take the
worst-case cost for any particular algorithm that solves a particular problem, and then the minimum algorithmic
cost (of known and unknown algorithms), then we can identify this cost with the complexity of the problem.
We note in passing here the unfortunate fact about the lack of standard terminology in the literature, which
can cause confusion. Many practitioners use the term ‘complexity’ both for algorithms and problems. Others,
distinguish between saying that an algorithm has a time complexity, whereas a problem belongs in a complexity
class. Whatever the terminology one may adopt, one should always bear in mind that there is conceptual
difference between the two cases. Here, we choose to talk about the ‘cost’ of an algorithm, and the ‘complexity’
of a problem.

40See, e.g., Cucker (1999, sec.3). Extensions of the BSS model, allowing for machines with round-off errors,
have also been proposed; see, e.g., Cucker and Smale (1999). Here, we only deal with exact BSS machines.
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x

x+∆x

ϕ(x)

ϕ(x+∆x)

Figure 2: A stable algorithm, on perturbed input (x+∆x) and in the presence of round-off
errors, solves a slightly perturbed problem ϕ(x+∆x).

with large µ(x) is ill-conditioned.41 Conditioning is important in our context, because it
affects complexity. This intuitively makes sense, of course: a problem which is very sensitive
to input errors would require much more precision in its input (hence, more resources) in
order to obtain useful results. Conversely, we would desire a measure of loss of precision of
the output (relative error), given the loss of precision of the input.

An illuminating, classic example of how conditioning affects the discussion is solving a
linear system of n equations Ax = b, where A is an n× n invertible real matrix, and b ∈ Rn.
The input here is b and the output is x. Letting b+∆b be the perturbed input, and x+∆x the
perturbed output, the problem becomes:

A(x+∆x) = (b+∆b)

In this particular case, the condition number κ of the problem depends on properties of A,
and is defined as:

κ(A) =‖ A ‖‖ A−1 ‖

where ‖ A ‖ is the operator norm of A:42

‖ A ‖= max
‖x‖=1

‖ A(x) ‖

From the above, it can be quickly shown that the condition number links in a direct manner
the relative output error to the input relative error:43

‖ ∆x ‖
‖ x ‖

6 κ(A)
‖ ∆b ‖
‖ b ‖

(1)

41It is important to keep in mind the distinction that ‘stability’ is a property of an algorithm, whereas ‘condi-
tioning’ is a property of the problem. If a problem is ill-conditioned, a stable algorithm is not enough to save the
situation; the computation error will be large. But if a problem is well-conditioned, then all stable algorithms
will give results with small errors.

42The operator norm of a (matrix) linear operator expresses the largest value by which the operator A
stretches the vector x. In this case, it is the square root of the largest eigenvalue of the symmetric matrix
AT A. The definition of the condition number of the problem Ax = b is due to Turing (1948).

43The derivation is quick and straightforward; see, e.g., Cucker (1999, 114).
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x
ϕ(x)

ϕ̂(x)

Figure 3: A change of perspective, where we consider the exact solution of a close problem
ϕ̂(x).

If A has errors too, a similar but longer formula can be shown to connect κ(A) with the
relative errors as well (see, Cucker 1999).

From the above, it can be seen that κ(A) provides the worst-case estimate of relative error
of x as a function of the relative error of b. If we take the base-2 logarithm of both sides
of eq.(5), and recall that the number of bits needed to represent a number n is blog2 nc+ 1,
we see that log2 κ(A) expresses a worst-case estimate for the loss of precision in solving the
problem (Cucker, 1999; Blum, 2004). This shows again that conditioning matters. It also
indicates that the base-2 logarithm of the condition number can provide a better-suited pa-
rameter than bit-word size for problem instances over R (Blum, 2004, 19), and remedy some
of the potentially problematic cases discussed at the end of sec.3 (p.13).

Nevertheless, mathematical problems like the system above, which admit of exact solutions,
are not typical in scientific computing. As already mentioned (sec.4.2), more often than not,
the encountered problems are such that they admit of only approximate solutions, typically
by means of iterative algorithms, and up to some predetermined acceptable error ε (context-
dependent). Furthermore, in practice, round-off errors appear too. This complicates things
a little, but a helping hand is lent by backward error analysis. We only give the gist here.44

The idea involves a slight change of perspective, according to which, instead of regarding
the computed solution as an approximate solution to our original problem ϕ (with error ε),
we instead regard it as an exact solution to a close problem ϕ̂ (fig.3). We can then look for
some perturbed input which would have the same effect on the output; that is, we seek some
backward error ∆x, such that ϕ̂(x) = ϕ(x+∆x) (fig.4).

x ϕ(x)

ϕ̂(x) = ϕ(x+∆x)
x+∆x

Figure 4: Schematic representation of backward error analysis. The absolute backward error
is ∆x and the absolute forward error is ε = ϕ̂(x)−ϕ(x) (in norm).

A great benefit of this method is that by finding an appropriate backward error, we in
44For a thorough introduction to backward analysis, one can see, e.g., Corless and Fillion (2013).
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effect subsume all kinds of errors in the actual computation (measurement, representation,
round-off, etc.) under the, intentionally assumed, backward error itself. Furthermore, this
single error in the close problem, ϕ̂ , is treated as merely a perturbation of the initial data.
Thus, not only is the analysis facilitated by dealing with only a single kind of error, but, quite
importantly, we can draw on results and techniques from the rich area of perturbation theory.

Now, since in most applications we know in advance a tolerable ε , dependent on the
context,45 we are mainly interested in knowing whether the actual computational forward
error is going to exceed ε or not. The strength of this approach is that if we know how well-
conditioned the problem is, and if we can estimate a bound for the backward error, then we
obtain a bound for the forward error as well. More precisely, in the general case of a problem
with condition number µ(x), the following general inequality holds (Cucker, 1999):

‖ ϕ(x)− ϕ̂(x) ‖
‖ ϕ(x) ‖

. µ(x)
‖ ∆x ‖
‖ x ‖

(2)

That is, the relative forward error is approximately bounded by the relative backward
error multiplied by the condition number. Note that both the actual backward and forward
error depend on properties of the algorithm as well as on properties of the particular FPA
system.

The upshot of it all is that the conditioning of the problem at hand bears significantly on
the output errors. Furthermore, in the ubiquitous case of iterative algorithms that are meant to
approximate a solution up to a predetermined ε , the cost of such algorithms also may depend
on the input size and ε itself (contrary to the exact cases, where it depends solely on the input
size). As a result, the cost of an iterative algorithm depends on the condition of the inputs as
well. Since space limitations do not allow a discussion of relevant examples here, the reader
is referred to Cucker (1999, sec.8) and Smale (1997), for several examples of problems and
precise results, where costs depend both on condition and ε . For a complexity theory of
problems over R, the study of conditioning, then, becomes essential.

We are now ready to return back to the two conditions posed by Woźniakowski (1999) in
order for BSS to be a reliable model for real-world computations, implemented by FPA algo-
rithms. Recall that the first condition was that we model a stable algorithm.

Consider the general case of a problem with condition µ(x) that is not solved exactly, but
for which we have a stable algorithm that approximates the solution within some error bound
ε . Assume also that this algorithm is to be implemented in an FPA system with round-off
unit u. Woźniakowski’s second condition relates these parameters via the following relation
(1999, 455):

C ·u ·µ(x)6 ε (3)

45Typically, within the interval [10−8,10−2] for most applications (Woźniakowski, 1999).
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The additional parameter C, called the accumulation constant of round-off errors, ex-
presses the accumulation of round-off errors due to the algorithm; it is often a polynomial
in the number of inputs, and is expected to be of low degree, since the algorithm is assumed
stable.46 The unit round-off, u, depends on the parameters of the particular system of FPA
used (single or double precision, size of significand, etc.; see appendix).

So, whenever (3) and stability hold, we can expect that the total errors of the actual com-
putation will not exceed the accepted error ε . The FPA implementation of the algorithm is
stable, thereby yielding a small forward error. As Woźniakowski says, this error is bounded
by C ·u · µ(x).47 Therefore, as long as (3) is satisfied, the error is also bounded by ε , which
is the approximation assumed in BSS. Thus, the actual error in FPA is kept within the BSS
ε-approximation, thereby rendering our result in the latter faithful to the FPA output.

Finally, going back to table 1 and the comparison between BSS, FPA, and bit-computation,
the third important characteristic is the cost of the operations. In this respect, BSS is closer to
actual FPA computations than the bit-computation model. This is because in both cases the
cost of operations is fixed; that is, it is not dependent on the size of the operands. So one only
needs to replace the unit costs calculated in BSS with the actual fixed costs of operation in
FPA. This is a big difference with Turing-machine–based models, such as bit-computation,
where the size of operands matters. Since costs of algorithms are expressed as functions of
input sizes, in the case of a Turing machine (with an oracle), the input includes the desired
precision n of the output, which though may affect the input bit size (dependent on m; see,
sec.2.1.1). This is not the case in BSS, where although ε may also be part of the input and
affect the computing costs (p.25), it does not however affect the size of the input itself.

5.1 When the idealisations fail
What happens when (3) is not satisfied? One way to deal with that is to increase the precision
of FPA; that is, to reduce u. But if the problem is not well-conditioned, then (3) might not be
satisfied still. In that case, a more “fine-structured” model is necessary. The bit-computation
model will be the appropriate framework then, since its results are more sensitive to the
available accuracy of the approximation to the initial data. Of course, all this presupposes
that the problems of conditioning discussed in sec.3 (p.13) have been taken into account.

For more on how cost and complexity are analysed in bit-computation, one can see
Braverman (2005), Ko (1991), or Weihrauch (2000).

46See, Woźniakowski (1999).
47To see this, consider eq.(2), and recall that the backward relative error in this case comprises the relative

error due to FP rounding (bounded by u; eq.(5) in the appendix) and the relative error due to the stable algorithm
itself (bounded by C).
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6 Which foundational framework then?
The proposal of this paper, as discussed in sec.4.2, is that the answer to this question de-
pends on how one understands the term “foundations for scientific computing”; in a sense,
on whether one puts the emphasis on the ’computing’ or on the ‘scientific’ part.

If the quest is for a theoretical framework that allows for rigorous results about what el-
ements and functions of continuous spaces can in principle be computed, and how easily,
then the appropriate framework is that provided by computable analysis. Such a framework
regiments the informal notion of ‘effective computation’ as regards uncountable spaces. An
extended form of the Church-Turing thesis can be accepted (for lack of a better name, let us
call it the ‘Uncountable Church-Turing Thesis’, UCTT), which explicates the informal idea
of effectively computable functions over uncountable domains by extensionally identifying
them with functions computable by a Type-2 Turing machine (under admissible representa-
tions). By UCTT, then, such a framework a fortiori delimits what scientific computers can do
and with what difficulty. That is, TTE can be regarded as the fundamental theory of comput-
ing. Nevertheless, for common applications, this fundamentality comes with a cost; that of
studying costs (pardon the pun) and lower/upper bounds for common-or-garden algorithms
and problems arising in the computational sciences.

On the other hand, if the quest is for a framework that is from the outset practice oriented,
under the tacit assumption that modern-day scientific computing is performed by digital com-
puters (using FPA), the answer to the problem of choice that we put forward here is a prag-
matic one.48 The discussion in the previous section shows that BSS is better-suited for mod-
elling FPA algorithms and their costs, at least under “standard conditions”. Whereas CA can
be regarded as the fundamental theory of computation, BSS can be regarded as a theory at a
higher level of abstraction, convenient for certain purposes. In addition, BSS also captures
something of the way mathematicians think of algorithms at the initial stages of their develop-
ment: they initially assume that the algorithms operate over exact real numbers (e.g., Gauss
elimination, bisection algorithms, etc.) without presupposing some specific representation

48To put the contrast between the two interpretations in a different, maybe clearer, way: consider the pos-
sibility that usable quantum computers are finally developed and put to commercial use. Then, of their many
initial applications, scientific computing is expected to be a prominent one (e.g., simulating quantum systems).
A foundational framework for scientific computing in the first sense, then, would subsume this subfield too.
Since, quantum computers do not go beyond Turing computability limits, (un)computability and complexity
results proven in the context of Type-2 Effectivity will be relevant to quantum scientific computations as well.
On the other hand, a foundational framework in the second sense would be rather irrelevant for quantum scien-
tific computations, since the latter may not employ anything similar to FPA, or exhibit round-offs arising from
digital representation (it remains to see what they will actually be using, and what their round-offs will look
like).
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scheme.49 This approach makes the first, coarse comparison between different algorithms
(in terms of costs) easier. After leaving out the most costly ones, a more fine-grained com-
parison, taking into account round-offs and other errors follows. Thus, it can be said that
the implicit model of computation —which defines what steps are primitive, and what thus
counts as an algorithm— is, at the first stage, something along the lines of BSS/Real-RAM.
But as long as the conditions of stability and eq.(3) also hold, BSS is pertinent to all stages,
due to increased mathematical tractability. The “highly unrealistic” idealisations of BSS is
the price to pay for manageable analyses.

Now, if our particular problem demands analyses of a finer structure, either because par-
ticular applications require smaller ε , or because the problem at hand is too sensitive to
perturbations in the initial data, then bit-computation is the model to go with. Here, the
difficulty of cost analyses of typical (e.g., iterative) algorithms is the price to pay for more
realistic assumptions. Nevertheless, the use of bit-computation to analyse any algorithm and
problem encountered in scientific computing (and not only ill-conditioned ones), although
possible in principle (Woźniakowski, 1999), would be rather inefficient and unmotivated, for
the everyday practitioner.

7 An analogy with scientific representation
Our proposed solution to the dispute over the proper way to found scientific computing over
the reals, in terms of fundamental and higher-level models, is suggestive of analogous situa-
tions of modelling in empirical science.

There is extensive discussion in philosophy of science about idealised models and “incon-
sistent” scientific representations in cases where we employ different, or even incompatible,
descriptions of certain systems. To give a much-cited example,50 in fluid dynamics we often
mathematically represent water as a continuous medium (by means of, e.g., the Euler or the
Navier-Stokes equations). Nevertheless, we know that water is in fact discrete, consisting of
molecules, and we do represent it as such within other contexts (e.g., in a QM or chemistry
class). Arguably, then, the choice of the appropriate representation turns on pragmatic con-
siderations, related to how much one is willing to make a trade-off between manageability

49As a toy example, consider the high school algorithm for finding the roots of the quadratic ax2+bx+c= 0:

x =
−b±

√
b2−4ac

2a
(4)

In developing an algorithm like this, there is no initial assumption to the effect that a,b, and c are rational, or
floating-point numbers, or Cauchy sequences of rationals, etc. The algorithm is thought of as if it’s operating
over the exact reals, as elements of the field R. Representational concerns arise at a later stage. (After all,
when Newton, Gauss, et al. developed their methods, there were no digital computers around.) For a detailed
discussion of this practice, and its implications for the conceptualisation of ‘algorithm’ in logic and mathematics,
see, Papayannopoulos (2018, ch.2-3).

50See, e.g., Maddy (1997, 1992) and Pincock (2012, 2014).
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of calculations and accuracy of representation, according to the needs of the specific appli-
cation. Strictly false representations are used even though no scientist would really hold that
the continuous representation of water is actually true.

The proposal is then that a similar case can be made for the rival approaches to real com-
putability. And I submit that the particular issue of the foundations of scientific computing is
also an interesting case even for discussions about unrealistic models in the context of empir-
ical science, for it provides a unique example in which both the model and the target domain
are mathematical; thereby showing that unrealistic idealisations can be appropriate even for
modelling aspects of mathematics itself.51

In the last part of this paper, we attempt to take the analogy between the two cases even
further and pin down some assumptions that in a sense are common to both instances of
modelling.

7.1 Idealisations in scientific representation and the principle of regu-
larity

Scientific representation involves mathematical models that are meant to describe the state
and evolution of certain physical systems in time. Such models predict experimental out-
comes, which are to be obtained and/or tested by means of experimental apparatus and mea-
surements. The continuous mathematics, in which these models are often couched, expresses
relations between real values which correspond to the magnitudes of physical properties. In
the theory then, knowledge of physical quantities is assumed exact. In practice, we never have
exact knowledge either of the state of the physical system or of the experimental apparatus;
only approximate knowledge within some error is available to us, no matter how meticulously
we try to eliminate errors of any kind. This means that a mathematical description is by its
nature already an idealised picture of what we know about a target system.

A consequence of this discrepancy between mathematical representation and physical
reality is the following. In order for the former to be of some applicability to concrete cases,
it needs to be sufficiently insensitive to the fact that no perfect information is ever possible
for the physical state at hand. For example, a solution to a differential equation that would
be so sensitive to the input data as to yield considerably different outcomes whenever —
even arbitrarily small— variations in the data occur, would be of no help for numerical

51There is a precise sense in which FPA is a mathematical structure; i.e., has an underlying set F endowed
with specific operations and functions. See the appendix for a very brief exposition.
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predictions.52 Courant and Hilbert (1962) describe this specific condition as one of the three
requirements that a mathematical problem should satisfy in order to be a “properly posed”
problem for physical reality.53

[A] mathematical problem cannot be considered as realistically corresponding to
physical phenomena unless a variation of the given data in a sufficiently small
range leads to an arbitrary small change in the solution. This requirement of “sta-
bility” is not only essential for meaningful problems in mathematical1 physics,
but also for approximation methods. (Courant and Hilbert, 1962, 227)

52What could such an equation look like? A typical example is the two-dimensional Laplace equation:
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0. Given determinate boundary conditions along the the y-axis, u(0,y) and ∂u

∂x (0,x), a unique

solution u(x,y) can be obtained. More specifically, if we let: u(0,y) = 0 and ∂u
∂x (0,y) = gn(y) =

sin(ny)
n , the

unique solution for the nth problem (n = 1,2,3, ..), is:

u(x,y) =
1

2n2 (e
nx− e−nx)sin(ny)

The initial data u(0,y) and ∂u
∂x (0,x) = gn(y) can be kept in this case arbitrarily close to zero while n grows very

large. Assume a determinate x ( 6= 0); say, x = 1. The solution becomes:

u(1,y) =
1

2n2 (e
n− e−n)sin(ny)

In this sort of situation, then, the solution can become extremely large —by means of increasing n as much as
we want, thereby exploding the term en

n — while at the same time keeping |gn(y)| = | sin(ny)
n | < ε for any ε > 0

and any y (and even assuming u(0,y) = 0). This means that no matter how accurate a measurement of the data
could be, if we don’t know the exact value of ∂u

∂x (0,y), it is impossible to approximate the solution u(1,y) to any
degree of accuracy. This is an example of an ill-posed problem, and it’s far worse than a chaotic system. In the
words of J. Hadamard:

”[..T]he mere replacing of the value zero for [gn(y)] by the (however small) value [ sin(ny)
n ] changes

the solution not by very small but by very great quantities. Everything takes place, physically
speaking, as if the knowledge of [the initial] data would not determine the unknown function.
This shows how very differently things behave in this case and in those which correspond to
physical questions. If a physical phenomenon were to be dependent on such an analytical prob-
lem as [the one here] it would appear to us as being governed by pure chance.. (Hadamard, 1923,
38)

By the word ‘knowledge’ in this quote, Hadamard refers to experimental knowledge, within a certain approxi-
mation. In his analysis of the problem, he defines different orders of continuity, and pinpoints the source of this
problem to the fact that the solution u(x,y) of the problem is not continuous in the data u(0,y) and gn(y) of any
order at all.

I took this example from Myrvold (1995). It is originally due to Hadamard (1923), and was later discussed in
Courant and Hilbert (1962) too, in the context of characterising well-posed problems in mathematical physics.
As Myrvold notices, the construction by Pour-El and Richards (1981) of the well-known Turing-uncomputable
solution of the wave equation with computable initial data, exploits the same fact that underlies Hadamard’s
example; namely, that the solution is not continuously dependent on the initial data.

53The other two are that a solution exists and is uniquely determined. Courant and Hilbert present
Hadamard’s example as well, as a case of an ill-posed problem.
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What Courant and Hilbert mean by the ‘requirement of stability’ here,54 Tisza (1963), in
a similar vein, refers to as ‘the principle of regularity’:

Experiment provides us with the values of continuous variables within a certain
accuracy. However, the analysis of mathematical physics would be extremely
cumbersome and lose much of its precision if the finite width of continuous pa-
rameters corresponding to empirical quantities were to be observed at every step.
In actual practice, the segments of finite widths are sharpened into definite points
of the continuum for the purposes of the analysis. However, the results obtained
have no physical meaning unless they are sufficiently insensitive to the actual
unsharpness of the continuous parameters.

Mathematical solutions satisfying this requirement will be called regular. [..]
The requirement that mathematical solutions be regular in order to have a phys-
ical meaning will prove to be of great importance and deserves to be called a
principle, the principle of regularity. (1963, 159; emphasis in original)

As it is discussed in Myrvold (1994, 1995), the point of this principle (and of Courant and
Hilbert’s “stability”) is not to provide some a priori reasoning to the effect that no physical
systems exhibit discontinuous dependence on initial conditions or that ‘nature does not make
jumps’.55 Rather, the point is that “even if natura facit saltum, the quantities about which we
can make reliable quantitative predictions will be found in the regions where Nature refrains
from leaping” (1995, 39; emphasis added). In passing, we note that even Poincaré, in (1902),
had formulated some qualitative requirements of a similar flavour.56

We think that the above considerations —which unfortunately have gone rather unnoticed
in contemporary debates about scientific representation— offer some insights into under-
standing why, in the general case,57 approximate and/or idealised models may be reliable.
In a successful mathematical representation, the points of the continuum as resulted from
the “sharpening” of the error intervals into definite points (as Tisza puts it) are insensitive

54We think that the context here does not allow for misinterpretation between the sense of ‘stability’ in
C&H’s quote (which refers to a problem) and the sense of ‘numerical stability’ used earlier, which is a property
of algorithms.

55Courant and Hilbert, for example, mention non-linear systems and quantum theory as cases in which
studied problems reflect real phenomena, even though they are not properly-posed in the above sense.

56”[T]here are those [hypotheses] that are quite natural and without which we could hardly do. It is difficult
not to suppose that the influence of very distant bodies is quite negligible, that small movements obey a linear
law, that the effect is a continuous function of the cause. [..] All these hypotheses form, so to speak, the common
foundation of all theories in mathematical physics.” (Poincaré, 1902, 524; emphasis added).

57Again, the aim of this discussion is not to delimit what meaningful representations in empirical science
are. As Courant and Hilbert (1962, 230) say, there exist not well-posed problems whose study however can be
of physical significance (a classic example might be the inverse heat equation). Still, however, for the purposes
of this paper, we think it adequate to restrict attention to the success of idealised models that are concerned with
well-posed problems.
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to the actual “unsharpness” of the experimentally obtained parameters. Hence, any theoret-
ical definite point of the representation will be a good approximation for all actual values
within a neighbourhood around it. Small variations within the neighbourhood do not ren-
der the theoretical point of the model too far removed from the actual one; it will still be a
good approximation.58 As long as these conditions hold, then, we can make sense of fruit-
ful scientific representations that seem even highly idealised. Considering, for instance, the
gravitational force at some far distance from a point mass (F(m,r) = GMm

r2 ), instead of a
mass with dimensions, gives a “sharpened” result that is still within the neighbourhood of
the actual “unsharpened” value for the physical 3D object, and furthermore a good approx-
imation for any distance r since the problem is well-posed (in the earlier Courant-Hilbert
sense). Of course, what precisely makes a ‘neighbourhood’ (or ‘far distance’, in this ex-
ample) is context-dependent, and varies with the intended scale of analysis (how coarse- or
fine-grained we need it to be). Clearly, the same account applies to cases where we use
continuous models to study purely discrete phenomena, such as continuous parameters and
functions for populations of species.

We suggest that the cases in which BSS is a successful model can be seen as analogous;
even though both model and target domain are now mathematical.59 When BSS (or Real-
RAM) is used to analyse the cost of specific algorithms (and, based on that, the complexity
of certain problems), it can be seen as an idealised representation of an FPA computation by a
digital computer. If we are using BSS to model a stable FPA algorithm for a well-conditioned
problem, implemented with small unit round-off u (i.e., the two Woźniakowski conditions),
then ex hypothesi we are modelling a system that solves a close problem to the theoretical one
and with good approximation (the target system “does not make jumps”, so to speak). Due to
eq.(3), each FP (output) value is bounded by ε , which is the radius of the BSS (output) value
neighbourhood, meaning that, in a sense, the BSS output has a “continuous dependence” on
the FPA output. (If we image a mapping between the two outputs, the image of variations in
the FPA output will be within any variation ε in the BSS output.)

On the other hand, assume we are using BSS to model the computation of the solution
to some problem which critically depends on the initial data (the target system does make
jumps, that is), such as the following function:

f (x) :=


1 x ∈Q
0 x /∈Q but x2 ∈Q
div otherwise

58Or if, like Poincaré (1902), one is comfortable with cause-effect terminology, the “effect” depends contin-
uously on the “cause” (see, fn.56).

59For example, the floating-point numbers can be seen as the “analogue” of experimental values. The latter
are always measured with some error, which corresponds to the representation error of floating-point numbers,
since in both cases a real value gets approximated and represented by a rational one. Round-off errors can be
considered to corresponded to propagation of errors in experimental physics; that is, uncertainties in derived
quantities caused by initial uncertainties in the experimentally measured quantities.
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This function is computable in BSS. Hence, our BSS representation of this computation by
a BSS-machine, although mathematically correct60, does not realistically correspond to any
computational phenomena (paraphrasing Courant and Hilbert here) —or does not have any
computational meaning (paraphrasing Tisza)— since no realistic physically computing ma-
chine (or idealised human agent)61 can effectively compute such a function (it is Turing-
uncomputable).

8 Final Remarks
We examined two rival models of computation, which, among others goals, aim to offer
foundations for scientific computing. We put forward two different ways of interpreting such
a pursuit, each one having different implications for the question of what exactly the target
domain of such models should be. Based on our proposal, we discussed the appropriateness
of each model with respect to each particular interpretation. This was the first goal of this
paper.62

Adjudicating on the appropriateness of rival idealised models with respect to a certain
target domain requires —besides clarifying what the target domain exactly is— a closer in-
vestigation into the conceptual underpinnings of the employed idealisations in each model.
The idealisations used in the Turing machine model (e.g., unlimited, or sometimes even infi-
nite, tape) have been well-discussed in the philosophical literature already. Our second goal,
then, was to account for the fruitfulness and justification of the —more controversial and
more criticised— idealisations in BSS, given that this model has been around, in an equiva-
lent form, since the early ’80s.63

In examining the controversy around the choice of the appropriate real computability
model, one comes to see that although the modelled domain in this case is actually mathemat-
ical, one can nonetheless identify interesting similarities to idealised modelling of physical
domains. As a third main goal of this work, then, we attempted to pinpoint common condi-
tions that can be seen as underlying a great variety of idealised-though-reliable mathematical
representations, either within empirical science or within mathematics itself.

60In analogy with the Hadamard example, in fn.52, which too is mathematically correct.
61Assuming the validity of UCTT and ignoring the possibility of hypercomputation.
62We also hoped to achieve a further, indirect goal: that of drawing attention to a debate that has long been

going on within the mathematics and computer science communities, yet remains, by and large, unnoticed by
the philosophical community.

63To the author’s knowledge, the earliest explicit description of this model was in Preparata and Shamos
(1985), under the name ‘Real-RAM’ (though, according to the Wikipedia entry “Real-RAM”, the model was
originally formulated in 1978 in Shamos’s PhD thesis).
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Appendix: Floating-point arithmetic
Physical computing requires ways of representing the entities operated upon. When you
are computing on a napkin the generous tip you should leave with your restaurant bill, you
typically represent the added numbers in decimal notation. If you are trying to solve (perhaps
on the same napkin) a physics problem with larger numbers (e.g., Avogadro’s number), you
might employ scientific notation, in powers of 10, as it is convenient for computing only with
the significant figures. Accordingly, digital, silicon-based computing requires representation
of numbers in some convenient system. Many possible systems exist (see, e.g., chapter 4 in
Knuth 1997), but in modern computers, the near ubiquitous representation system is Floating-
Point Arithmetic (FPA).

By ‘representation’, in this context, we mean a mapping δ :⊆ R→ Σ∗ from a set of
numbers (e.g., the reals, R = R) to a set of finite strings Σ∗ over a finite alphabet Σ. A
possible string from Σ∗ can be of the form: dndn−1...d1d0 (di ∈ Σ). Additionally, it can also
allow for decimal points, and be of the form:

dndn−1...d1d0.d−1d−2...d−p+1d−p

In floating-point arithmetic, numbers are represented in a way that is structurally reminis-
cent of scientific notation; that is, in the form:

significand×baseexponent

For example, assuming base 10, the number 152853.5047, can be represented in the above
form as 1.528535047× 105. Also, if the base is fixed and known in advance, then there is
no need to include a representation of it as part of the actual FP string used by the system.
The representation of the number, then, can comprise just two parts: the significand and the
exponent (for example: 1.528535047|5).

More precisely, then, an n-bit FP word consists of two parts: a k-bit word, the significand (aka
mantissa, or coefficient), representing a signed rational number, and an l-bit word (k+ l = n),
the exponent (aka characteristic, or scale), representing a signed integer.

In concrete applications, there are two main ways of representing a positive or negative
number, either in the significand or in the exponent. The first is to use a designated bit to
denote the sign and the remaining available bits for the magnitude. The second is to use all
the available bits for the magnitude, and add a bias.

The most widely used system of FPA today is the IEEE-754 standard. This standard requires
that the significand is normalised as a number of the form (Corless and Fillion, 2013)

±1.d−1d−2...d−p+1d−p

That is, there is one bit used for the sign and the rest for the magnitude. However, since
the first digit is always 1, it can be implied and hidden, and hence all the bits (except the

34



0 0 0 0 01 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

exponent (8 bits) fraction (23 bits)
sign

(1 bit)

Figure 5: Single-precision (32-bit) floating-point representation (base 2) of the number
0.15625, in accordance with the IEEE-754 standard. The first bit signifies the sign of the
significand, the next 8 bits are assigned to the representation of the exponent, and the last 23
bits are assigned to the fractional part of the significand.

one for the sign) can be used for the fractional part of the number. For the exponent, on the
other hand, the standard requires a biased representation. Furthermore, IEEE-754 defines five
formats, in terms of precision, the most common of which are single precision (32-bit) and
double precision (64-bit).

To make things clearer, we present in figure 5 a 32-bit example. In this precision format,
the exponent can be either an 8-bit signed integer from −128 to 127, or an 8-bit unsigned
integer from 0 to 255 (i.e., biased); IEEE-754 requires the latter.

An important concept, with respect to the particular system, is the unit round-off, u. It is
meant to express an upper bound on the relative error due to the representation and round-off
errors of the particular FP system. A related term is the machine epsilon, ε . Unfortunately,
there are no standard definitions of these ubiquitous terms, and approaches vary, even be-
tween the numerical analysis and the numerical software literature. In the former tradition,
the two terms are often used interchangeably to refer to the maximum relative error due to
the particular FP representation. In the latter, ε is defined as the difference between 1 and the
next larger floating-point number (equivalently, the spacing of floating-point numbers when
the exponent is zero; see, e.g., Corless and Fillion 2013, 805). In this case, the unit round-off
is defined as ε/2, where rounding to the nearest is assumed. In any case, u is meant as the
maximum relative error due to FP representation (and round-offs).

It is clear that only countably many reals can be represented exactly by means of floating-
point systems. The finite set F of floating-point numbers is the set of all numbers that have an
exact floating-point representation. More precisely, for some set Σ∗f l of floating-point words,
and some floating-point representation mapping δ f l :⊆ R→ Σ∗f l ,

F= {x ∈ R | δ f l(x) = s, s ∈ Σ
∗
f l}

Let fl(x)∈F be the floating-point number to which some real number x∈R is rounded. Then,
the following holds for the unit round-off, u (0 < u < 1):

|fl(x)− x|
|x|

6 u (5)
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The exact operation fl :⊂ R→ F is determined by the particular FPA system employed.

In the body of this paper, we have repeatedly asserted that the considered models of com-
putation are meant to model FPA as a mathematical structure. We obtain such a structure
by endowing the set F with (counterparts of) the basic arithmetic operations (±,×,÷), along
with some additional ones related to rounding, such as fl(x). The resulted structure exhibits
peculiar mathematical properties. For instance, addition is generally not associative or dis-
tributive, the set F is not closed under addition, and it is neither a field, nor a ring or a group.
These (and other) bizarre properties mainly occur due to the accumulation of representation
and round-off errors. However, the exact mathematical properties depend on the specific rep-
resentation format used. Therefore, significant effort has been put into developing satisfactory
formats, in which the implementations of the above operations are precisely specified, and
the accumulation of round-offs and representation errors are held at a minimum. The IEEE-
754 standard, with double (64-bit) precision, guarantees many desirable properties, whence
its popularity. It is exactly these messy details and cumbersome practicalities that make the
majority of numerical analysts, and other practitioners, turn to easier models, such as BSS
and Real-RAM.64
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