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Abstract

It is often indeterminate what function a given computational system computes. This
phenomenon has been referred to as “computational indeterminacy” or “multiplicity of com-
putations”. In this paper, we argue that what has typically been considered and referred to
as the (unique) challenge of computational indeterminacy in fact subsumes two distinct
phenomena, which are typically bundled together and should be teased apart. One kind of
indeterminacy concerns a functional (or formal) characterization of the system’s relevant
behavior (briefly: how its physical states are grouped together and corresponded to abstract
states). Another kind concerns the manner in which the abstract (or computational) states
are interpreted (briefly: what function the system computes). We discuss the similarities
and differences between the two kinds of computational indeterminacy, their implications
for certain accounts of “computational individuation” in the literature, and their relevance
to different levels of description within the computational system. We also examine the in-
terrelationships between our proposed accounts of the two kinds of indeterminacy and the
main accounts of “computational implementation”.

1 Introduction
A variety of fields, from physics and chemistry to the cognitive and brain sciences, have begun
to import the language of computation and information processing to describe their studied
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systems. Interpreting certain physical systems as carrying out specific computations can provide
additional insights into a system’s behavior and organization. However, characterizing a system
computationally is generally a challenging task, even when the system’s physical behavior is
sufficiently known. This is because there may be more than one computational profile consistent
with the same, underlying physical behavior. In other words, some systems exhibit what is often
described as computational indeterminacy: a detailed description of the physical dynamics of
the (closed) system does not suffice to pin down a unique computational identity for it. To
determine such an identity, typically some external knowledge and hypotheses about the system
are invoked as well; perhaps parameters about its environment, its computational goals, the
semantic content of its computational states or others. This is a well-known phenomenon, of
course, and has been extensively discussed in the literature, under various different guises and
names.1

The aim of this paper is to show that what is typically considered and referred to as the
phenomenon of computational indeterminacy, in fact subsumes two separate phenomena that
should be distinguished. We present the two phenomena as two different kinds of indeterminacy
and attempt to show that their varied nature is owing to different inter-level relations pertaining
to the process of computationally individuating the system. One kind of (computational) inde-
terminacy arises at the level of formally or functionally characterizing the system, and another
kind arises at the level of interpreting what the computation is about (what is computed or, in
other terms, what the contents of the computational states are).

Computational individuation intertwines with computational implementation, in a way that
makes it difficult to give a nuanced account of the former without taking into consideration
accounts of the latter. In what follows, however, we will discuss the different kinds of (com-
putational) indeterminacy without presupposing any specific, nuanced views of ‘implementa-
tion’ and ‘computation’ in the philosophical literature. We will also examine how our proposed
accounts of the two kinds of indeterminacy relate to existing views on ‘implementation’ and
‘computation’, but take no specific stand on which view is preferable.2

Section 2 discusses the two kinds of indeterminacy in detail and examines aspects of the
relations between them and computational implementation. Section 3 explores the interrelation-
ships between the two indeterminacies, computational individuation and levels of organization

1Some examples of such names include ‘simultaneous implementation’ (Shagrir 2001, 2020, Fresco 2015,
Dewhurst 2018), ‘the ambiguity of representation’ (Maroney and Timpson, 2018), ‘indeterminacy of computa-
tion’ (Fresco et al., 2021), ’underdetermination of computation’ (Duwell, 2018), ‘multiple-computations theorem’
(Hemmo and Shenker, 2019), ‘multiplicity of computations’, and various others.

2In doing so, we may be seen as adopting the point of view of a scientist who employs computational character-
izations for her studied systems and who may or may not have a particular theory of implementation in mind. But
all the same, the scientist’s computational hypotheses bear important epistemic (and perhaps ontological) weight,
for they underpin an understanding of the system that is complementary to its physical description and yet not
reducible to it. Such non-reducibility arises, partly, exactly because the physical dynamics alone does not suffice to
uniquely determine some computational description.
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in computational systems. Section 4 concludes the paper.

2 Two kinds of (computational) indeterminacy
We start by briefly characterizing the two kinds of indeterminacy. Suppose that we are trying
to specify the computational profile of a certain physical system, such as a neuronal network
or an artifact, with known physical behavior. A first challenge concerns how to carve up the
physical state space of the system in order to correspond physical states to abstract ones. Such a
correspondence underlies descriptions of the functional organization of the system. Differently
put, the question concerns which physical processes should be grouped together into parts of
the same abstract/functional state. As we show in the next section, there are systems suscep-
tible to varied ways of grouping physical states together, such that there is no inherent reason
for preferring one way to another; consequently, some external restrictions may be required to
functionally characterize the system (e.g., contextual, mechanistic, semantic or other).

Once an abstract/functional organization is specified, there exists a second kind of indeter-
minacy that pertains to computational individuation. This concerns specifying what is computed
by the system; that is, interpreting either the content of the abstract/functional states or what the
physical states represent.3 For example, a given functional profile of a system can give rise to
more than one semantic interpretation of it. To see this, consider a physical system whose func-
tional profile is consistent with implementing some logic gate (say, an AND-gate). For certain
gates, by swapping the logic values that we take a certain voltage range to represent, we obtain
a different (but related) Boolean function, which is called the dual of the first gate (in our case,
an OR-gate). The choice between the two interpretations, then, is indeterminate, unless some
external restrictions are again provided.

Let us now turn to discuss each kind of indeterminacy in more detail and examine some
concrete examples.

2.1 Functional indeterminacy
Consider a physical system P , which is a tri-stable flip-detector. P works as follows: it emits
between 7–10 volts if it receives voltages between 7–10 volts from exactly one input channel, it
emits 0–3 volts if it receives between 0–3 volts from each input channel, and it emits between
4–6 volts in any other case. The behavior of P is summarized in table 1:

The next step is to abstract from these physical voltages and to present the mapping in terms
of three different types or sets, where A, B and C stand for variables of sets; see table 2, for

3We explain why we allow here a disjunction about what is interpreted (the physical or the abstract states) in
the next section.
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Input 1 (V) Input 2 (V) Output (V)

7–10 7–10 4–6

7–10 4–6 7–10

7–10 0–3 7–10

4–6 7–10 7–10

4–6 4–6 4–6

4–6 0–3 4–6

0–3 7–10 7–10

0–3 4–6 4–6

0–3 0–3 0–3

Table 1: Physical gate P: The gate maps voltages from two input channels, Input 1 and Input 2,
into one Output channel.

example.

Input 1 Input 2 Output
A A B

A B A

A C A

B A A

B B B

B C B

C A A

C B B

C C C

Table 2: The functional organization of P . The gate maps abstract types from two input chan-
nels, Input 1 and Input 2, into one Output channel.

What is the difference between tables 1 and 2? The important difference is that table 2
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abstracts from the physical properties (voltages) of table 1. Table 2 says that we have an input-
output mapping between three different types, but it is blind to the type of the physical properties
(e.g., voltages). The terms A, B, and C can be seen as variables of sets, any sets. Table 1 signifies
one way to implement (or realize) this functional mapping, namely, in voltages. But the mapping
of Table 2 could be implemented (“multiply realized”) by different voltages and even by other
physical properties. In this respect, we can say that table 2 describes the functional organization
(Putnam, 1967), or the medium-independent structure (Haugeland 1978; Piccinini 2015), or the
organizationally invariant or abstract causal structure (Chalmers, 2011) of P .

Now, there are further alternatives in grouping the voltages. For example, we could have
a coarser-grained grouping under which we put {0–3 volts; 4–6 volts} in one type and {7–10
volts} in another type. Abstracting from the physical properties, as before, we get the mapping
of table 3.

Input 1 Input 2 Output
A A B

A B A

B A B

B B B

Table 3: A coarser-grained abstraction from the physical gate P . The gate maps abstract types,
A and B.

We could also put {0–3 volts} in one type, B′, and {4–6 volts; 7–10 volts} in another type,
A′. Abstracting from the physical properties, we get table 4.

Input 1 Input 2 Output
A′ A′ A′

A′ B′ A′

B′ A′ A′

B′ B′ B′

Table 4: Yet another coarser-grained abstraction from the physical gate P . The gate maps
abstract types, A′ and B′.

What we have here is functional indeterminacy: the physical system P can be seen as having
(at least) three different functional profiles,4

4There are, of course, other combinations theoretically available, such as grouping {0–3 volts; 7–10 volts} as
one type and {4–6 volts} as another, or even the identical where all voltages are taken as one type, {0–3 volts; 4–6;
7–10 volts}.
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presented in tables 2-4 respectively.5

Let us be more precise about this claim. First, the functional (abstract) structures in our
example are simple input-output mappings. In general, the functional (abstract) structure may
also include the mediating (algorithmic) mechanism. Adding algorithms to the equation, how-
ever, does not minimize the potential of indeterminacy, since different input-output functions
are always associated with different algorithms. In other words, there is always at least as much
indeterminacy in algorithmic mappings as there is in input-output mappings, since a given input-
output mapping can be catered for by more than one algorithmic mapping. Second, the example
focuses on set-theoretic input-output functions, but the same goes for other abstract structures.6

In general, the phenomenon here is that a physical system can correspond to several different
formal structures.

Third, there exist different sorts of functional indeterminacy. Underlying all of these is that
we group together physical features of the system and then abstract from them. On one sub-
species of functional indeterminacy, we can group physical properties that occur in different
times and spaces within the system.7 On another subspecies of functional indeterminacy, we
can group different properties of the system, in one case (say) voltages and in another case (say)
temperatures, even if they occur in the same time and space. In the case of indeterminacy de-
scribed here, which is perhaps the most interesting of the functional type, we group together
the very same physical properties (e.g., voltages) that occur in the same time and space. In the
examples above, we group the same physical properties, namely voltages, in different ways.

A mapping from the physical system P to each of the abstract structures above is often
seen as underpinning an implementation (or realization) relation. Given the extensive discus-
sion in the literature about the relation between implementation and indeterminacy, a question
now arises: is functional indeterminacy a case of computational indeterminacy?8 The answer
depends crucially on one’s view on the former relation —i.e., between implementation and
indeterminacy— and people have supplied very different answers. Putnam (1988) and Searle
(1992) famously advance triviality results that, when taken to the extreme, state that every phys-
ical system implements every functional or abstract structure (formalism). On their view, this

5See Hemmo and Shenker (2019, 95-96) for a variant example of a physical system that exhibits the same kind
of indeterminacy.

6For a different example that does not involve a set-theoretic input-output function, see the discussion in sec.2.2.
Furthermore, there can arguably be different levels of abstraction even within the abstract realm itself, as it becomes
apparent from the distinction between ‘algorithms’ and ‘programs’ (the latter being rather more concrete); see, e.g.,
Turner (2021) for a discussion.

7For example, within a large neuron we can group differently various local physical transformations at different
parts (dendrites, soma, spike initiation zone, etc.) and obtain different —equally legitimate— abstract structures.

8An analogous question arises with respect to the second kind of indeterminacy as well; we address that issue
in sec.2.2.
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result amounts to radical computational indeterminacy; namely, that every physical system com-
putes every Turing-computable function (unlimited pancomputationalism). Many others suggest
that the implementation relation goes far beyond the simple homomorphic mapping assumed by
Putnam and Searle. Chalmers (1996, 2011, 2012), for one, suggests that there are further, causal,
modal and other constraints on the implementation relation that block radical computational in-
determinacy. In the example above, the different mappings satisfy the additional constraints and
nonetheless lead to functional indeterminacy. Thus, Chalmers admits that there always exists
computational indeterminacy to some extent, in the sense that some physical systems perform
more than one computation; however, he does not think that this is an alarming problem to be
resolved.

Unlike Chalmers, proponents of the mechanistic account of computation aim to single out
the computational structure of the system. According to some of them, the missing ingredi-
ent in Chalmers’s account of implementation/computation is a teleological function. The claim
is that the computational structure of the system is a certain abstract structure that is a stable
contribution to the goal of the system. Other abstract structures do not have the same contribu-
tion.9 Coelho Mollo (2019) and Dewhurst (2018) think that the relevant structure is the basic
one (table 2),10 whereas Piccinini (2015) argues that the computational structure can vary across
contexts; it depends on the kind of interaction between the system and its close environment.
Fresco and Miłkowski (2019) agree with Piccinini that computation is context-dependent, but
offer a different account of the nature of the system-environment interaction. Pragmatists sug-
gest that the feature that singles out the relevant computation depends on the explanatory aims
of the scientists (Egan 2012, Rescorla 2014, Matthews and Dresner 2017). Proponents of the
semantic account suggest that the missing ingredient is the content of the physical states (e.g.,
Sprevak 2010). Shagrir (2001, 2020), who also adopts a semantic view, further distinguishes
between the notions of ‘implementation’ and ‘computation’: implementation is non-semantic
whereas computation is content-dependent. According to Shagrir, the system P implements all
the abstract structures above (hence his use of the term ‘simultaneous implementation’), but it
typically computes only one of the functions, the determining factor for which is content.

Another way to describe functional indeterminacy is in terms of computational vehicles (Rescorla
2014, Shea 2018). For present purposes, we take computational vehicles to be abstract causal
structures that are implemented in some physical substance. On this assumption then, tables
2-4 present three different potential computational vehicles that are implemented by P . One
debate about these vehicles is whether they are also actual vehicles (Putnam 1988, Searle 1992,
Chalmers 2011) or whether only one of these structures serves as a computational vehicle in a

9The goal of the system is often seen in terms of what the system was designed to do or has been used for. The
latter are further characterized in evolutionary (Millikan, 1984), learnability (Dretske, 1988), dispositional (Maley
and Piccinini, 2017), or other terms.

10Dewhurst’s proposal is couched purely in terms of ’physical structures’.
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Input 1 Input 2 Output
T T T

T F T

F T T

F F F

Table 5: The physical system P implements
the OR function when interpreting type A′ (or
4–10 volts) as indicating the truth-value T and
type B′ (or 0–3 volts) as indicating the truth-
value F .

Input A Input B Output

F F F

F T F

T F F

T T T

Table 6: The physical system P implements
the AND function when interpreting type A′

(or 4–10 volts) as indicating the truth-value
F and type B′ (or 0–3 volts) as indicating the
truth-value T .

given context (as most others think). Those who hold the latter view debate about the missing
determining factor; namely, the factor that determines which of the abstract, causal structure is
the computational structure of the system. Coelho Mollo (2019) and Dewhurst (2018) claim that
it is the same basic structure (table 2) all along; semanticists claim that it is content; Piccinini
claims that these are contextual, yet non-semantic factors, and so on.

2.2 Interpretative indeterminacy
A different sort of indeterminacy arises from the interpretation given to the physical/abstract
states of the system. Consider table 4, for example. If we interpret type A′ (or 4–10 volts)
as indicating the truth-value T , and we interpret type B′ (or 0–3 volts) as indicating the truth-
value F , the system may be said to perform the logical function OR (table 5). However, if we
interpret the (same) type A′ as indicating the truth-value F , and we interpret the (same) type B′

as indicating the truth-value T , the system may be said to perform the logical function AND
(table 6).

Note that from a functional point of view, there is no difference between tables 5 and 6. The
OR/AND difference surfaces when we interpret the same physical/functional structure in differ-
ent ways. We, thus, call this kind of indeterminacy interpretative indeterminacy. Functional and
interpretative indeterminacies, then, are different in some respects. Functional indeterminacy is
related to different functional (abstract) structures, whereas interpretative indeterminacy is re-
lated to different interpretations of the same functional (abstract) structure.

Interpretative indeterminacy may extend beyond Boolean functions to functions in discrete
and continuous mathematics; for example, addition and multiplication over the real numbers
(Fresco et al., 2021). Let us consider an example. Suppose that a physical system has a deter-
mined functional structure that is interpreted as implementing addition. That is, the set-theoretic
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function from the inputs to the output of the system can be expressed as an addition of the form:

Input1 + Input2 = Output

It is obvious that the system can be interpreted as implementing addition. Nevertheless, it is
not the only possible interpretation. Consider the case where we interpret the inputs and output
through the correspondence: x 7→ ax (a 6= 1). The output is, then, interpreted as the product of
the inputs, and the same system can be seen as implementing multiplication. Table 7 shows an
example, based on the correspondence: x 7→ 2x.

Input 1 Input 2 Output

0 0 0

0 1 1

1 1 2

1 2 3

2 3 5

-5 4 -1

Input 1 Input 2 Output

1 1 1

1 2 2

2 2 4

2 4 8

4 8 32

1/32 16 1/2

Table 7: An example of interpretive indeterminacy. An adder (left table) can be used as a
multiplier (right table) under a different interpretation of the same inputs-output relation of a
given system. The two interpretations are related through the mapping x 7→ 2x (where x the
values of the left table).

This kind of indeterminacy applies to other pairs of operations as well; for example, subtrac-
tion and division, exponentiation and multiplication, root extraction and division. Interestingly,
these are not only theoretical examples with no practical relevance. In fact, some of them have
been exploited in practice. For instance, it is interpretative indeterminacy that has underlain the
practicality and extensive use of slide rules (through the inverse mapping x 7→ loga x). In the
simplest type of slide rules for example, while the physical transformations amount to adding
the inputs (corresponded to physical lengths on the instrument), the interpreted operation is
multiplication (since the lengths are graduated in a logarithmic scale).

It is important to stress again that this is not another facet of functional indeterminacy. The
different operations stem from a different semantic interpretation of the same physical types
(e.g., of some system similar to those in tables 1 and 8) or the same functional organization of
some physical system (e.g., of a kind similar to tables 2 or 9).11

11This disjunctive statement depends on whether one holds that the domain of the interpretation relation is
directly the physical states or some intermediate abstract structure, as discussed above.
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Functional and interpretative indeterminacies can be found together in some systems. Let
us consider an example. Assume a physical system Q that is again a tri-stable flip-detector,
like system P above. The system looks like a black box to us, but suppose that by means of
appropriate measurements we obtain the input/output profile that is summarized in table 8.

Input 2 (V) Input 2 (V) Output (V)

0.8–0.9 0.8–0.9 0.64–0.81

0.8–0.9 0.4–0.5 0.32–0.45

0.8–0.9 0–0.2 0–0.18

0.4–0.5 0.8–0.9 0.32–0.45

0.4–0.5 0.4–0.5 0.16–0.25

0.4–0.5 0–0.2 0–0.1

0–0.2 0.8–0.9 0–0.18

0–0.2 0.4–0.5 0–0.1

0–0.2 0–0.2 0–0.04

Table 8: Physical system Q: The system maps voltages from two input channels, Input 1 and
Input 2, into one Output channel.

How can we go about characterizing system Q computationally? Naturally, we can proceed
as before (system P) and determine some functional organization, by abstracting from the phys-
ical voltages. Table 9 provides such a functional organization in terms of three type variables,
A, B and C. Then by grouping B and C together (i.e., from 0 to 0.5V) and keeping A separate
(0.5–0.9V), we get the coarser-grained mapping of table 10. Table 10 is interpretatively indeter-
minate, similar to tables 3 and 4. Different interpretations of A and B as True or False give rise
to either an AND or an OR.

Nevertheless, the physical behavior from table 8 admits, at the same time, of a very different
abstract characterization from the one given in table 9. Observe that the mapping relating the
physical inputs and outputs is also consistent with a multiplication description:

Vout =V1 ·V2
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Input 1 Input 2 Output
A A A
A B B
A C C
B A B
B B C
B C C
C A C
C B C
C C C

Table 9: The functional organization of Q. The gate maps abstract types from two input chan-
nels, Input 1 and Input 2, into one Output channel. The typing in this table is A: 0.5–0.9V, B:
0.3–0.5V, C: 0–0.3V.

Input 1 Input 2 Output
A A A
A B B
B A B
B B B

Table 10: A coarser-grained abstraction from the physical gateQ. The gate maps abstract types,
A and B based on the typing A: 0.5–0.9V, B: 0–0.5V.

This, then, gives rise to an alternative abstract/functional structure expressed by:12

Output = Input1 · Input2

Accordingly, system Q can be interpreted as computing a multiplication function. But, in line
with our previous example of interpretative indeterminacy in table 7, the system could also be
interpreted as carrying out addition, via the correspondence x 7→ loga x, for some a 6= 1.

It is interesting to note that functional indeterminacy in this example stems from groupings
of physical properties at different levels of granularity. The functional profile of a multiplication
operation arises from a more fine-grained carving of the physical state space than that of the
AND/OR operation. On the other hand, the two different functional profiles of tables 3 and 4
stem from variant groupings that exist at the same level of granularity.

12So far, this is functional indeterminacy, since it remains at the level of different possible functional organiza-
tions.
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It is not always easy to distinguish between functional and interpretative indeterminacies.
A reason for this is that performing a computation often involves both functional and interpre-
tative relations. Consider table 3 again. If we interpret type A (or 7–10 volts) as indicating the
truth-value T , and we interpret type B (or 0–6 volts) as indicating the truth-value F , the system
may be said to perform the logical function XOR. The system can now be seen as computing
XOR (based on table 3) and OR (based on table 4). By interchanging the truth values, T and F ,
the system can be seen as computing XOR and AND (based on the same tables respectively).
Is this a functional or interpretative indeterminacy? The answer is that there is a functional dif-
ference here, since the functional types that underlie the two logical functions, XOR, on the one
hand, and OR/AND, on the other, are different. Still, this functional indeterminacy allows for
interpretative indeterminacy. The same functional type that underlies OR can be re-interpreted
as AND (the same holds for a re-interpretation of the functional type that underlies XOR as
NXOR). This does not mean that every re-interpretation is allowed though. As Fresco et al.
(2021) note, AND and OR are dual functions in the sense that one can swap the T for F and
vice versa. XOR and OR, however, are not dual functions. OR cannot be attained from XOR by
switching truth-values. The XOR/OR (or XOR/AND) indeterminacy here is of the functional
sort.

Further properties of interpretative indeterminacy

In examining interpretative indeterminacy even further, it is instructive to regard ‘interpretation’
mathematically —as a mapping relation from a domain to a range. What are exactly the domain
and range of the interpretation, then? Let us consider the domain component first. One can
think about the interpreted states as physical, abstract, or neutral (as in the Davidsonian tradi-
tion in which states and events are individuated without respect to their descriptions/properties).
Choosing physical types —e.g., some fixed voltage range— might seem more fitting in the con-
text of the computational neuroscientific practice, where we often take the nervous system to
be a physical system whose physical magnitudes encode, carry information about, or represent
certain things. Choosing abstract types might be more fitting in the context of logic and com-
putability theory, where we interpret the formal structure (e.g., strings) of (say) a Turing machine
as representing (say) numbers. It, thus, makes sense to think of the physical system as imple-
menting a formal/functional structure, which, in turn can be interpreted as representing another
structure. We remain neutral on this matter, here.

When considering the range component of the interpretation relation, things might get even
more complicated. In general, a physical computing system can be interpreted as encoding
(representing) anything. It can represent physical entities in its proximal or distal environment,
and even within the system itself. It can be interpreted as representing entities in counterfac-
tual scenarios (e.g., unicorns). It can be interpreted as representing entities in mathematical or
logical universes, and so on. Which content is relevant to interpretative indeterminacy? One
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could think that any change in content would lead to interpretative indeterminacy. But, in fact,
in the examples of interpretative indeterminacy that are found in the literature the ranges of the
interpretations are limited to universes that are populated by formal, mathematical, logical or
other abstract entities, such as numbers, sets, or truth-values (as in tables 5 and 6). Egan (1995)
refers to this type of content as mathematical content; Shagrir (2001) calls it formal content.13

What is the relation between interpretative indeterminacy and computational indeterminacy?
This depends on one’s views about computational individuation. Most scholars admit that inter-
pretative indeterminacy reflects computational indeterminacy; they debate on whether these in-
determinacies further reflect that computational individuation is affected by content (e.g., Spre-
vak 2010) or not (e.g., Fresco and Miłkowski 2019, Fresco et al.). Others, however, think that
interpretative indeterminacy does not reflect computational indeterminacy. According to the lat-
ter view, the interpretative indeterminacy is at the level of (formal) semantics which has not to
do with computational individuation.14

Are there any restrictions on the interpretation function? Consider first the case where the
domain of interpretation is directly the relevant physical states or quantities. Then allowing un-
constrained interpretations can give rise to objet trouvé computations; that is, relatively simple
physical systems can be seen as solving very hard or even uncomputable problems.15 If, on the
other hand, the domain of interpretation is abstract states or (strings of) symbols, then again un-
constrained interpretations can give rise to unintended (“deviant”) computations; for example,
relatively simple (universal) Turing machines can be seen as easily computing hard or even un-
computable problems.16 In any case, we will not attempt here to draw a line between admissible
and deviant interpretations (be they interpretations of physical or abstract states), but we will
note that without such a line we get some radical interpretative indeterminacies.

13Burge (1986) and others claim that specific content is an essential element of the computational structure, and
hence every difference in content makes also a computational difference (but see Egan 1995, who argues against this
view). We do not make this assumption. Interpretative indeterminacy is associated with the claim that a difference
in mathematical content makes a computational difference, and, thus, changing the mathematical content of the
same functional structure will alter the computational identity of the system.

14Coelho Mollo, for example, claims that the “individuation by logical function ... may well rely on wide func-
tions or semantic properties” (2018, 3492). Dewhurst claims that “both Shagrir and Sprevak are correct when they
point out that the logical status of a gate is indeterminate prior to the attribution or identification of its representa-
tional content” (2018, 107). They both insist, however, that this individuation scheme is not computational.

15See, e.g., the discussions in Aaronson (2013, 10.6) and Maroney and Timpson (2018). The label “objet trouvé
computation” is borrowed from the latter.

16For some examples of Turing machines solving non-Turing computable problems, see the discussions in
Shapiro (1982), Rescorla (2007), Copeland and Proudfoot (2010), Shapiro (2017) and Quinon (2018). For an
example of a symbolic (deviant) interpretation that gives rise to a machine computing very easily a hard primality
test, see Stalnaker (1999, 261).
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What is the difference between interpretation and implementation? Both can be seen as
a homomorphic mapping from the physical system to some target (range).17 However, the tar-
get of implementation is restricted to formal domains, whereas the target of interpretation might
also be some other, non-formal, domains, as we have already said. Another difference, on which
most scholars would agree, is that interpretation and content require more than a mapping rela-
tion; it is thought that an interpretation (‘representation’) is the (teleological) function to have
this mapping (or ‘tracking’).18According to this view, a mapping relation from a physical to a
formal structure can be an implementation but not an interpretation. The implementation relation
would make an interpretation relation when the physical magnitudes have the teleological func-
tion to track or stand-for the target’s formal entities. These claims are controversial, however.
If one thinks that interpretation is no more than a homomorphic, pattern-preserving, relation, or
that implementation itself requires representation, then the two notions are rather similar, if not
identical (for further discussion, see, e.g., Dresner 2010).

To sum up, we characterized and distinguished between two kinds of computational inde-
terminacy. One kind is a functional indeterminacy, which has to do with different groupings of
physical properties into different abstract structures. The other kind of indeterminacy has to do
with the interpretation (most would say the formal content) of the physical/abstract states of the
system.

We close this section by straightening out a final piece of business. We do not claim that both
kinds of indeterminacy arise for every system. First, there may be systems that exhibit functional
but not interpretative indeterminacy. For example, it is conceivable that there may exist (say)
tri-stable systems that give rise to more than one different functional profile, such that each
of them can nonetheless be interpreted by the same, self-dual Boolean function.19 Due to the
self-duality of the interpreted function, then, the system can only be functionally indeterminate.
Second, there can be systems that exhibit interpretative but not functional indeterminacy. For
example, a logic gate bought from an electronic store or built with vacuum tubes may be used
as an AND-gate in a toy circuit (if the existence of a signal in the input/output channels is
interpreted as truth-value T ) or as an OR-gate (if the existence of a signal in the input/output
channels is interpreted as truth-value F). At the same time, it is conceivable that the dynamical
behavior of the gate is such that a preferred functional profile can be singled out without the need
for external (contextual) restrictions, other than the physics of the system itself. Thus, there can
be systems that exhibit both, only one, or neither kind of the computational indeterminacies into
examination here.

17At least, according on the view that the domain of the interpretation comprises directly the physical types and
not some intermediate abstract/functional structure.

18See, e.g., Shea (2018) and Morgan and Piccinini (2018).
19A self-dual Boolean function is one that remains the same when interchanging its True and False values.

Differently put, a self-dual function is equivalent to its dual one.
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We turn next to discuss how the two different kinds of indeterminacy bear on the relation
between levels and computation.

3 Levels of description and the two kinds of indeterminacy
The relationship between computation and levels of description is a complex one, as it de-
pends on one’s view about levels and on one’s views about computation (for a review see Elber-
Dorozko and Shagrir 2018). On one familiar tri-level explanatory framework, it is best to ac-
count for the behavior of a complex computing system in terms of three levels of description.20

According to this framework, the first, higher level is a semantic (Pylyshyn, 1984), knowledge
(Newell, 1980, 1982), or intentional (Dennett, 1971) level.21 This top level has to do with the
content (or interpretation) of the system’s states. The second, intermediate functional (or symbol
or syntactic, or design22) level provides an abstract, more formal, description of the structure of
the system, specifically of the relations and the transition dynamics (algorithms) over the states,
which encode information. The third, bottom physical (or implementational) level specifies how
the entire system is realized in physical or biological structures. Many authors identify the com-
putational level with the symbolic level (Pylyshyn 1984, Fodor 1994, Chalmers 2011);23 others
with the semantic and symbolic levels (Block, 1986).24 Although practically all interlocutors in
the debate agree that each level constrains and is constrained by other levels, it is controversial
to what extent each level is autonomous.

At first glance, we can easily locate the functional and interpretative indeterminacies within
this overall picture of levels. Functional indeterminacy emerges when entities at some physical
level25 are typed together at a higher level of functional organization. This step does not require

20We note that the term ‘levels of description’ does not imply that such levels are not ontological. Quite the
contrary, most authors take it that these descriptions express real properties of (real) processes and events (the
exception is Dennett 1971, who is less committal with respect to the intentional level). Other familiar frameworks
of levels are in terms of levels of organization (Churchland and Sejnowski, 1992) and levels of mechanisms (Craver,
2007), where both approaches understand inter-level relations as part-whole relations.

21Most authors cited above have in mind a cognitive system.
22Newell (1982) terms the second level ‘symbolic’. Note that both Newell and Pylyshyn (who uses the term

‘syntactic’) have in mind “classical” digital systems. Dennett uses the term ‘design’.
23We can include here the mechanists, who characterize computational properties as medium-independent (e.g.,

Piccinini 2015 and Coelho Mollo 2018, 2019).
24Marr (1982) tri-level picture is an interesting case. He terms the top-level as the computational level, and the

second level as the algorithmic level. Some interpreters of Marr say that his top level specifies in formal terms the
input-output function, whereas the algorithmic level specifies, in abstract terms, the mediating mechanism (Egan
1995, Ramsey 2007). They thus think that his computational plus algorithmic levels are similar to the symbol level.
Others think that Marr’s top (computational) level includes semantic elements (see Bechtel and Shagrir 2015 for a
review of these interpretations).

25This does not have to be a physical level in some fundamental sense, such as a physical description stemming
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interpretation in the sense used above. Interpretative indeterminacy emerges when entities at
either the physical or the higher functional organization level are assigned some semantic con-
tent. Assuming for a moment that the interpretation is assigned to abstract (functional) types,
then the two indeterminacies can be seen as composing an inter-level hierarchy: functional in-
determinacy emerges in moving from the physical to the functional level, and interpretative
indeterminacy emerges further up, in moving from the functional to the semantic level.

But, in fact, the functional and interpretative indeterminacies show that, when put in the con-
text of computational individuation, the relations between levels are more complex. Consider
functional indeterminacy first. The question, at this level, is which of the functional profiles of
the physical system constitutes its computational profile (i.e., its computational identity). Some
claim that all of them do (e.g., Chalmers 2011, Lee 2021). Lee (2021), for one, claims that
multiple, hierarchical levels (narrow functional, wide functional, and semantic) may inform dif-
ferent kinds of computational individuation. Thus, the individuation of computation depends on
both the nature of the physical system concerned and our epistemic preferences. Others claim
that the most basic functional profile of the physical system constitutes its computational iden-
tity (e.g., Coelho Mollo 2018). Some argue that contextual clues have to be resorted to in order
to pin down the computational profile. Among this last group, there are those who character-
ize the contextual clues in further functional terms (e.g., Piccinini 2015, Fresco and Miłkowski
2019). Nevertheless, there are also others who argue that the relevant computational profile is
determined by semantic content (notably, Sprevak 2010, and Shagrir 2020). Finally, there are
also some who insist that just the implementing physical properties suffice for computational
indeterminacy —that is, without appealing to the system’s functional profile at all (e.g., De-
whurst 2018). We thus observe that on various different views of computational individuation,
the distinction between the physical, functional and semantic levels is not clear-cut at all.

We conclude this section by raising two pressing questions about interpretative indetermi-
nacy. The first concerns the domain of the interpretation relation when the interpreted system is
a computing system. If the domain consists of entities at the physical (rather than the functional)
level, then the two kinds of indeterminacy cannot be seen as composing an inter-level hierarchy,
as mentioned above. Even if we grant that the relations between the physical, functional and se-
mantic levels themselves are hierarchical —although, as we have just described, computational
individuation tips the scales against an inter-level picture like this—, the two indeterminacies
can be seen as being rather orthogonal. This is because each kind of computational indeter-
minacy involves inter-level relations between the physical and some higher level; and yet the
higher level is a different one for each of the two kinds of indeterminacy. As a result, if the
domain of the interpretation relation pertains directly to entities at the physical level and, even
more, the inter-level relations are not hierarchical, then a fortiori the two indeterminacies are not
hierarchical either.

from some fundamental theory of physics (e.g., quantum mechanics). It only needs to concern physical entities and
descriptions (e.g., input-output functions) at some level of analysis.
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The second question is conditional: if there is more than one possible interpretation, which
one is relevant to the computational profile of the physical system? Some claim that none of
the available interpretations is —e.g., Coelho Mollo 2018, Dewhurst 2018— thereby preserving
the distinction between the functional (computational) and semantic levels. Others, however,
claim that the determining factors are the same functional clues that are relevant to removing
functional indeterminacies (Piccinini 2015, Fresco and Miłkowski 2019), and, yet, others argue
that the determining factors are the same semantic clues that are relevant to removing functional
indeterminacies (Sprevak 2010, Shagrir 2020). Lastly, Hemmo and Shenker (2019) argue that
a solution to any indeterminacies is ultimately to be provided by the fundamental physics of
the system under consideration: “The view we put forward here, as a solution to the multiple-
computations problem ... is in the framework of a reductive physicalist identity theory of mind”
(p.104). They thus take it that the picture of levels —in the sense of different ontological levels—
is misguided, and offer instead a picture along the lines of “flat physicalism”.26

Once again, then, quite a few views on computational individuation imply that the relation
between the two kinds of indeterminacy and the separation between the physical, functional and
semantic levels is not straightforward. That being said, the fact remains that in pointing out that
the challenge of computational indeterminacy involves two different (inter-level) dimensions we
gain a better understanding of the many contours of individuating a computing system on the
basis of different levels of description.

4 Concluding remarks
We distinguished between two kinds of indeterminacy that are directly related to natural com-
putation and computational individuation; a functional indeterminacy and an interpretative in-
determinacy. In pointing out that what has traditionally been regarded as a unified challenge
is actually two separate phenomena —each of a different underlying nature, a finer-grained
perspective on the challenges posed by the interrelationships between computational individu-
ation, implementation, and levels of organization is gained. Furthermore, we have attempted
to indicate that the two kinds of indeterminacy, taken at their limits, can be seen as underlying
two important, unrelated thus far, problems in philosophy of computation: triviality arguments
and deviant encodings. The former can be seen as a limiting case of functional indeterminacy,
whereas the latter can be seen as a limiting case of interpretative indeterminacy.27 Finally, we
have examined how the different kinds of indeterminacy relate to different description levels of

26See Shenker (2017).
27To take these kinds of indeterminacy at their limits means here to consider them without any additional con-

strains on the extent to which they underpin computational individuation; that is, to consider functional indeter-
minacy unconstrained by any modal, counterfactual, causal (or other) parameters, and to consider interpretative
indeterminacy unconstrained by any semantic, computational, representational (or other) parameters.
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computational systems. The upshot of our discussion is that the fine-grained structure of this
relation does not admit of some straightforward account, insofar as it is unmediated by a precise
account of computational individuation. Thus, the road to pinning down how the different in-
determinacies bear on the inter-level relations within computational systems passes through the
straits of developing a satisfactory theory of computational individuation.
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