
The Indeterminacy of Computationa
Fresco, NirY, Copeland, B. Jack, and Wolf, Marty J.

	
Abstract. Do the dynamics of a physical system determine what function the system

computes? Except in special cases, the answer is no: it is often indeterminate what function a

given physical system computes. Accordingly, care should be taken when the question ‘What

does a particular neural system do?’ is answered by hypothesising that the system computes a

particular function. The phenomenon of the indeterminacy of computation has important

implications for the development of computational explanations of biological systems.

Additionally, the phenomenon lends some support to the idea that a single neural structure may

perform multiple cognitive functions, each subserved by a different computation. We provide

an overarching conceptual framework in order to further the philosophical debate on the nature

of computational indeterminacy and computational explanation.

1. Introduction

Computational explanations are common in the study of cognition. Researchers regularly

confront the question: ‘What does a particular brain region or neural structure do and how does

it do it?’. Answers often hypothesise that the region or structure computes some specific

function. However, as we shall show, it is often indeterminate what function (understood

broadly as a set of ordered pairs of elements) is computed by a given physical system—be it a

Boolean gate, a single neurone, or a brain region. There may be no fact of the matter as to

which of a number of different functions a specific physical system is computing.

	
a This is a pre-print of an article to be published in Synthese. The final version will be available here:
https://link.springer.com/journal/11229/online-first

Y Corresponding author: nfresco@bgu.ac.il

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/478917442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	 2	

This article clarifies and characterises the phenomenon of the indeterminacy of computation

(Sections 2, 3 and 4); and articulates a methodological implication for the computational study

of cognition, namely the need for an extra explanatory step. It also articulates a speculative

implication concerning plasticity in the brain, namely that computational indeterminacy

affords a mechanism for achieving neural plasticity. The first of these implications is the topic

of Subsection 5.1 and the second of Subsections 5.2 and 5.3. We give a brief introduction here.

The methodological implication concerns the structure of computational explanations of

biological systems. Suppose a scientist aims to explain the behaviour of an organism O; the

investigation progresses and the observational data suggest that function f is computed by a

neuronal structure N in O. It would, however, be hasty to conclude that the explanation of O’s

behaviour is that N computes f, since N might indeterminately compute f and another function

g. What is the scientist to do at this point?

An extra step, of one form or another, is required. One way forward would be to show that

it is in the nature of f that, if N computes f, then N computes f determinately. Below, we sketch

how this can be done in some discrete Boolean systems. However, it is also possible that the

nature of f does not rule out indeterminacy. At this point, the scientist who wishes to

hypothesise that the explanation of O’s behaviour is that N specifically computes f (and not

some other function) must cast around for additional relevant empirical features of the

situation—for example, the existence of adjacent neuronal structures with very specific

properties. The scientist’s aim will be to establish that these additional features rule out the

hypothesis that it is the computation of g, or some other function that is different from f, that

explains O’s behaviour. (While this additional investigation would undoubtedly require time

and effort, it might lead to significant new hypotheses and discoveries about the functions of

	 3	

adjacent structures.) We describe an example of such an investigation in Subsection 5.2,

namely work done by Gabbiani and his colleagues on the locust.

The speculative implication concerning plasticity in the brain is as follows. A physical

system that indeterminately computes a number of functions may be re-purposed to perform

any of a range of distinct tasks (cognitive, perceptual, or other), with each task exploiting a

different one of the computations that the system makes available. We speculate that the

indeterminacy phenomenon may be leveraged in this way by resource-constrained neural

systems. This hypothesis is responsive to, for example, Just and Varma’s claim that each

cortical area underpinning complex cognition can serve multiple cognitive purposes, thereby

alleviating the limited neural resources of the brain (2007, 154).

Next, we illustrate the phenomenon of indeterminacy by means of a simple Boolean gate G

with two input-channels and a single output-channel. G’s physical description is as shown in

Table 1.1 The concept of computational indeterminacy (although not the term) was present in

the work of electronic engineer Ralph Slutz in about 1950 (Copeland, in progress). Slutz gave

an example that is essentially similar to our gate G.

Input-channel 1 Input-channel 2 Output-channel

0.2–0.7 V 0.2–0.7 V 0.2–0.7 V

0.2–0.7 V 1.0–1.5 V 0.2–0.7 V

1.0–1.5 V 0.2–0.7 V 0.2–0.7 V

1.0–1.5 V 1.0–1.5 V 1.0–1.5 V

Table 1. Gate G’s output falls within the ranges shown in the 3rd column when its 2 inputs fall within the ranges

shown in the 1st and 2nd columns.

	
1 In Papayannopoulos et al. (in progress) it is argued that this indeterminacy arises from logico-mathematical
interpretation of physical (or, possibly, abstract) states.

	 4	

Gate G computes Boolean conjunction, since, if the voltage range 1.0–1.5 V corresponds to

True and 0.2–0.7 V to False, Table 1 becomes the standard truth-table for conjunction.

However, if the voltage range 0.2–0.7 V corresponds to True and 1.0–1.5 V to False, the gate

computes Boolean inclusive disjunction. This is a simple example of the indeterminacy of

computation. Later in this article, we generalise these considerations to non-Boolean systems.

Various forms and flavours of the phenomenon that we call the indeterminacy of

computation (Fresco et al. 2016) have been discussed by diverse authors—pre-eminently

Shagrir (2001, 2020)—and also (in chronological order) Dennett (1978, 2013), Block (1990),

Sorensen (1999), Bishop (2009), Sprevak (2010), Fresco (2015), Piccinini (2015), Coelho

Mollo (2017), and Dewhurst (2018). Some, for example Shagrir (2020), Bishop (2009) and

Sprevak (2010), appeal to semantic features of the system to render it determinate what

computation is being performed. However, these semantic features presuppose some theory of

representation, and the problem of clarifying the nature of representation is a vexed one.

For that reason, many have resisted analysing physical computation in terms of

representation (see, e.g., Dewhurst 2018; Fresco 2010; Miłkowski 2013; Piccinini 2015).

Dewhurst, for one, appeals to narrow physical properties of the system, such as its specific

input and output voltages, in order to avoid indeterminacy (2018). However, his proposal has

some implausible consequences—for instance, an electrical AND-gate and a hydraulic AND-

gate do not compute the same function (cf. Fresco & Miłkowski 2019).2 The problem persists

even when only electrical systems are considered: AND-gates operating within different

voltage ranges—say one operating in the 0–10 V range and another operating in the 50–100 V

range—do not compute the same function. Worse still, as we explain in Subsection 2.1,

	
2 For a critical assessment of Dewhurst’s proposal, see Coelho Mollo (2017). The latter introduces a distinction
between ‘computational equivalence’ and ‘equivalent insofar as computational individuation is concerned’.

	 5	

Dewhurst’s proposal entails the existence of AND-gates and OR-gates that compute the same

function.

The present approach differs from earlier work in several major respects. We emphasise

three. First, we do not regard indeterminacy as a problem, requiring a solution. Second,

indeterminacy, far from being pernicious, is potentially useful. Third, we supply a general

unified framework for describing and analysing the indeterminacy of computation. We develop

this new conceptual framework in Section 2, drawing on fundamental results in Boolean logic.

In Sections 3 and 5, we discuss in detail some implications of indeterminacy for philosophy of

mind and cognitive science, and in Section 4 we consider some potential objections to our

account. Then in Subsection 5.3 we introduce our Massive Multiple Specifiability Hypothesis,

which speculates that the brain makes use of indeterminacy to secure plasticity of neuronal

structures.

2. Conceptual Foundations: A Framework for Computational
Indeterminacy

In this section, we develop a new conceptual framework for describing the indeterminacy of

computation. Central to this framework is the concept we term multiple specifiability (we call

the framework the ‘MS-framework’). Multiple specifiability is a cousin of the well-known

concept of multiple realisability. We illustrate the MS-framework initially by means of Boolean

logic, and we explain the phenomenon of Boolean duality, which is a basis for indeterminacy

in discrete systems. Later in the article, we employ the MS-framework to describe and analyse

indeterminacy in a broader range of cases.

2.1 Grounding functions and multiple specifiability

Underlying the description of any given physical system S as a computational system is what

we call a grounding function.

	 6	

Definition 1. A grounding function of a physical computational system S is a listing of tuples

of physical inputs to S and physical outputs from S.

Grounding functions are functions from physical quantities to physical quantities (or from

tuples of physical quantities to tuples of physical quantities), as inputs and outputs are always

physical quantities. The system’s physical inputs and outputs might be, for example, analogue

voltages, numbers of water droplets, or light intensities. Grounding functions are typically

expressed as mathematical equations of some form, either linear equations or more complex

forms of equation. One and the same physical system may have a number of different

grounding functions, corresponding to different levels of ‘grain’, such as macroscopic,

microscopic, or quantum.

Notice that one is not free to specify a system’s grounding function(s) ad libitum, since one

is then on the high road to the implausible view that every physical system computes every

computable function. (For discussions of this view, see, e.g., Searle (1980), Putnam (1988),

Copeland (1996), Chalmers (1996), Piccinini (2012).) To select a grounding function is to

propose a scientific hypothesis concerning the system, and this will be subject to the usual

constraints governing scientific theorising. If S’s grounding function could be chosen

arbitrarily, then S could support the computation of any Turing-computable function—but

selection of the grounding function is never an arbitrary choice.

Table 1 provides an example of a grounding function, namely, gate G's grounding function,

at the level of grain and precision dictated by the type of voltmeter found in a standard electrical

laboratory.

	 7	

In describing Boolean gates such as G, electrical engineers typically employ a notation that

suppresses some detail: inputs and outputs are assigned simple labels, e.g., ‘1’ and ‘0’. We call

the result of re-expressing a grounding function in this way a labelling.

Definition 2. A labelling of a grounding function is a function resulting from consistently

assigning labels to the physical quantities in the grounding function.

A simple illustration of this definition is furnished by assigning labels to the voltages in G’s

grounding function in the following way: a voltage is labelled ‘1’ if and only if it is high (i.e.,

in the range 1.0–1.5 V in our example) and is labelled ‘0’ if and only if it is low (i.e., in the

range 0.2–0.7 V in our example). Assigning labels in this way produces the labelling g1:

{(0,0,0), (0,1,0), (1,0,0), (1,1,1)}. Labellings are a bridge between physical properties (e.g.,

voltages) and a mathematical system (e.g., Boolean logic). The labels we use in this article are

always symbolic entities (such as ‘1’, ‘0’, ‘T’, ‘TRUE’, ‘H’, ‘L’, ‘1.444’). The immense utility

of labellings lies in the fact that functions like g1 are multiply realisable: numerous physical

gates—of differing constructions and operating in very different voltage ranges—are described

by g1. Indeed, g1 may also describe a gate whose inputs and outputs are water pressures or light

intensities.

A more complicated example of a labelling is described in Subsection 4.4, where the states

in a certain system’s grounding function are assigned three distinct labels, depending on

whether a state’s magnitude is counted as low, medium, or high. In this case, a labelling of the

grounding function is a set of triples of three labels.

We turn next to what we call multiple specifiability, which is, in a sense, an inversion of the

well-known concept of multiple realisability. (In the following definition, we describe two

functions as logically non-equivalent if there exists an argument for which they produce

different values.)

	 8	

Definition 3. A physical system S (e.g., a digital gate) is multiply specifiable if it has a

grounding function that possesses at least two logically non-equivalent labellings (when using

the same labels).

Definition 3 is illustrated by gate G. The two labellings g1 and g2: {(0,0,0), (0,1,1), (1,0,1),

(1,1,1)} are inter-translatable by uniformly replacing ‘0’ by ‘1’ and ‘1’ by ‘0’. However, g1

and g2 are not logically equivalent, since g1 maps the truth-value pair (0, 1) to 0 while g2 maps

the same pair to 1. Thus, G is multiply specifiable. The upshot is that it is indeterminate what

G computes. Since neither g1 nor g2 is privileged as a description of G’s behaviour, it is

indeterminate whether G computes conjunction (g1) or inclusive disjunction (g2). The same is

true of any other physical system with labellings g1 and g2.

Our discussion of G generalises: for any multiply specifiable computational system (not

necessarily a system limited to two effective states), it is indeterminate what that system

computes. Nevertheless, multiple specifiability is by no means universal. Shortly we will

illustrate this in the Boolean realm. But first, we quickly review the well-known Boolean

concepts of duality and self-duality, as they are important for our discussion.

2.2. Boolean duality

Conjunction {(0,0,0), (0,1,0), (1,0,0), (1,1,1)} and inclusive disjunction {(0,0,0), (0,1,1),

(1,0,1), (1,1,1)} are examples of dual functions, as are exclusive disjunction {(0,0,0), (0,1,1),

(1,0,1), (1,1,0)} and logical equivalence {(0,0,1), (0,1,0), (1,0,0), (1,1,1)}. A Boolean function

g is here defined as the dual of a different Boolean function f if and only if uniformly

	 9	

exchanging 1s and 0s in f produces g, as in the two examples given above.3 [For a formal

definition of duality, see Crama and Hammer (2011, 13).]

Some Boolean functions have the special property that applying the above process of

exchanging truth-values simply produces the very same function. An example is Boolean

negation {(0,1), (1,0)}. Functions with this property are called self-duals.

Although multiple specifiability is very common in the Boolean realm, it is far from

universal. Multiple specifiability—and, therefore, indeterminacy—does not arise in the case

of circuits that compute self-dual functions. Any Boolean circuit built exclusively from

components that compute self-dual functions must itself compute a self-dual function4, and

thus is not multiply specifiable. Nevertheless, there are cases in which the inclusion of a single

multiply specifiable gate results in the overall circuit also being multiply specifiable.

We turn next to the relevance of our analysis for the study of cognition.

3. The Significance of Indeterminacy for the Study of Cognition

Indeterminacy of computation extends to the cognitive realm. Neural ‘hardware’, where the

grounding function is expressed in terms of electrochemical signals (e.g., voltages) or

neurotransmitting chemicals (e.g., concentrations), may be indeterminately computing many

functions. In this section and in Section 5 we explain in detail how the indeterminacy

phenomenon may impinge on cognition, and how the computational brain may exploit it. We

first review the debate between the literalist (or realist) and non-literalist (or instrumentalist)

	
3 Typically, the requirement that f and g be different functions is not included when defining duality; we enter this
requirement here to simplify the following discussion.
4 This is a theorem, and it is provable by iterating the following inductive process in Boolean logic. Let �⃗� and �⃗� be
two strings of input variables, and let 𝑧 be a single input variable. If f(�⃗�, 𝑧) and g(�⃗�) are self-dual functions, then
f(𝑥, g(�⃗�)) is self-dual even when some of the variables amongst �⃗�, �⃗�, 𝑧 are not distinct. [For proof of this second
theorem, see Crama and Hammer (2011, 173–174).] Notice that our theorem gives a sufficient, but not a necessary,
condition for a complex Boolean function to be self-dual (there are self-dual functions some of whose components
are not self-dual).

	 10	

views of neural computation, arguing that the phenomenon of indeterminacy impacts

importantly upon computational cognitive theories (Subsection 3.1). Second, because neural

systems are typically viewed as continuous rather than discrete, we discuss the indeterminacy

of computation in continuous systems (Subsection 3.2).

We make two preliminary observations. First, this article takes no stand on whether the

computational paradigm in neuroscience is correct or profitable. There are certainly non-

computational approaches to understanding the brain, just as there are non-computational

approaches to understanding the functioning of other biological organs, such as the heart and

the liver. Precursors of non-computational approaches to understanding the brain were being

pursued by neuroscientists long before the work of Turing, McCulloch, Pitts, von Neumann,

and others ushered the computational paradigm into neuroscience. The form of our discussion

is this: if a neuroscientist adopts the computational paradigm, then they must confront the

indeterminacy of computation. (Likewise, computational approaches to understanding the

functioning of hearts and livers [e.g., Cvitanović et al. 2017] must also confront the

indeterminacy of computation.)

Second, we mention a possible response from computationalists to the explanation issue

which we consider inadequate, namely, that in light of the indeterminacy phenomenon, one

should simply aim to give explanations at a higher level of abstraction. Accordingly, rather

than an explanation at the Boolean-function level, one might explain the behaviour of a system

by saying simply that the system computes one or other of two dual functions. For example,

in the case of the duals AND and (inclusive) OR, the explanation would be simply that the

system computes either AND or OR. Call this the con-dis explanation. The con-dis explanation

is still predictive of the system’s behaviour, but it is important to note that it is not as

informative as the conjunction hypothesis or the disjunction hypothesis in isolation. As our

	 11	

case study in Subsection 5.2 will illustrate, to rest with an explanation like con-dis would be

to curtail the empirical enquiry prematurely: more can be done.

3.1 Computational literalism versus computational non-literalism

In the introduction to his classic book Biophysics of Computation, Koch stated that ‘[t]he brain

computes’ is ‘accepted as a truism by the majority of neuroscientists’ (1999, 1). Already in

the 1960s, retinal ganglion cells in cats were described as adding, i.e., computing: ‘[S]ignals

from photoreceptors in both the centre and surround summating regions of an X-cell receptive

field add linearly before they affect the discharge of the ganglion cell’ (Enroth-Cugell &

Robson, 1966, 545). More recent examples abound. Primary visual cortex (V1) cells in

monkeys are described as computing a sum: ‘[V1] cells compute a linear sum of the responses

of lateral geniculate nucleus … neurons’ (Carandini & Heeger, 1994, 1333). The locust’s

LGMD neurone is described as computing in the course of generating escape behaviours

(Gabbiani et al., 2002), an example we discuss in more detail in Subsection 5.2.

On the Kochian view, the brain literally computes: computation is not merely a metaphor

for describing the brain’s activity. According to this literalist view, the brain receives sensory

inputs, encodes them into various biophysical variables (e.g., neuronal firing rates), and then

computes over these variables. Some would say that Koch is overstating matters in his claim

that this view is widely accepted in the neurosciences. There is, in fact, controversy about

whether computational neuroscience is committed to the literalist view that the brain is an

implemented computational system (Fresco, 2014). There is also considerable controversy

about whether neural systems compute at all in any robust sense, and, indeed, about what it

even means to say that a neural system computes. (According to Piccinini and Bahar, neural

computation is neither digital nor analogue, but sui generis (2013).) In view of such

fundamental disagreements, we will discuss the distinction between literal and non-literal

	 12	

computational explanations in the cognitive sciences a little further, and also the relation of

the indeterminacy phenomenon to literal and non-literal computational explanations.

In a statement of literalism, neuroscientists Carandini and Heeger asserted that although ‘it

is unlikely that a single mechanistic explanation will hold across all systems and species’,

nevertheless ‘what seems to be common is not necessarily the biophysical mechanism but

rather the computation’ (2012, 58). In their view, the brain, in solving different cognitive

problems, relies on a set of canonical neural computations that repeat across brain regions and

modalities. Another vivid statement of computational literalism is provided by neuroscientists

Knill and Pouget, who hypothesise: ‘The brain represents information probabilistically, by

coding and computing with probability density functions’ (2004, 713). The debate about

computational literalism is ongoing in the cognitive sciences, and it is by no means clear which

side, literalism or non-literalism, will emerge as victorious.

The distinction between computational literalism and computational non-literalism is also

evident in the field of cognitive modelling. [As Busemeyer and Diederich reported, ‘More than

80% of the articles appearing in major theoretical journals of cognitive science involve

cognitive modeling’ (2010, 1).] Many computational cognitive models—but certainly not all—

are intended to be understood non-literally: they aim to predict brain function without

commitment to the neural reality of computational mechanisms.

Regardless of whether computational explanations or models take a literalist or non-

literalist form, the indeterminacy of computation may arise. It is clear that on the literalist view,

indeterminacy can arise in brain computations, given arguments that will follow (Subsections

3.2, 4.2, 4.3, 5.1 and 5.2). The case of non-literalism subdivides. A non-literalist may locate

the computations employed in the model entirely within the model; for such a non-literalist,

computational neuroscience is no more about computations in the brain than computational

	 13	

cosmology is about computations in galaxies. On the other hand, a non-literalist may regard

computation in the brain as a useful fiction, and here the indeterminacy of computation still

intrudes. Whether we are working inside or outside an in-the-fiction operator, the same

considerations apply. For example, suppose it is part of the fiction that the cerebellum consists

of Boolean circuits of the type described in Section 2. In this particular fiction, a labelling of

the grounding function of these cerebellar circuits is {(0,0,0), (0,1,0), (1,0,0), (1,1,1)}. For the

reasons given in Section 2, it is indeterminate, in the instrumentalist’s fiction, whether these

circuits compute conjunction or (inclusive) disjunction. Thus, the non-literalist, just as much

as the literalist, is confronted by the need for an extra explanatory step, as explained in Section

1 (and see further Subsection 5.1).5

Indeterminacy, like inconsistency, cannot be trivially accommodated by non-literalism. The

existence of inconsistencies within the scope of an in-the-fiction operator is widely

acknowledged to be a serious problem in the semantics of fiction, and the problem has

generated a large technical literature (e.g., Badura and Berto 2019; Frigg 2010; Lewis 1978,

1983). There is certainly no easy fix. The non-literalist cannot, for example, simply stipulate

which part of a contradiction within a fiction is true in the fiction and which is false (Lewis

1983, Proudfoot 2006). The non-literalist needs to carry out some challenging theoretical work

to accommodate the possibility of inconsistency within the fiction. Similarly, indeterminacy

within the scope of an in-the-fiction operator is an important and difficult problem. In the case

of an indeterminate computation, the non-literalist cannot simply stipulate which of the

	
5 Someone might suggest that any description in Boolean terms of a specific circuit in the brain, such as that the
neural circuit in question performs conjunction, is from an external point of view, whereas intrinsically the circuit
simply grows and behaves subject to the relevant laws of biochemistry and electrodynamics. If any computationalist
agrees with such a suggestion, then presumably they must be a non-literalist — and if they favour, say, a
conjunction-based description of the circuit, then, just as much as the literalist, they need to provide a reason for
preferring this description to one couched in terms of the dual function, inclusive disjunction. See further Subsection
5.1.

	 14	

competing functions is to be privileged in the fiction—given that other statements in the fiction

entail the existence of indeterminacy in the fiction (in the way described above). Again, the

non-literalist is required to undertake some challenging theoretical work in order to

accommodate indeterminacy.

To highlight the moral of this subsection: all realist computational cognitive theories and

models, and all computational cognitive models taking the fictionalist stance just outlined, are

potentially affected by the indeterminacy phenomenon. This impact is overall positive, as we

explain in Subsections 5.2 and 5.3.

3.2 Indeterminacy in continuous systems

The systems we have discussed so far, such as gate G, produce ‘stepped’ output (e.g., G’s

output lies either in the range 0.2–0.7 V or a ‘step up’ in the range 1.0–1.5 V). The systems’

inputs are also stepped. Other systems of interest, such as neurones, have outputs and inputs

that are not stepped but vary more smoothly. These are called continuous systems. Continuous

systems are also subject to computational indeterminacy.

 To illustrate this claim, we consider a black box: the box has two input-channels and one

output-channel. These channels carry continuous physical quantities g, h, and l (e.g.,

voltages). Schematically, the equation describing the box’s relevant physical behaviour (the

grounding function) is:

 g(g,h) = l,

where l is carried by the output-channel, and g and h, respectively, by the input-channels.

A labelling of the box’s grounding function employs labels for arbitrarily small adjacent

segments of the box’s inputs and outputs. Conveniently, decimal numerals may be used as the

labels (the more significant figures there are in the numerals, the smaller the segments

considered). gL is a labelling of the box’s grounding function employing a (positive) decimal

	 15	

numeral running to, say, four decimal places as a label for each segment of g, and each segment

of h and l. We write this function as gL(i,j) = x.

Suppose further investigation of the box’s behaviour reveals that x = i + j (i.e., numeral x

denotes the number resulting from adding the number denoted by i to the number denoted by

j). That is to say, the grounding function can be relabelled, producing gL', by replacing the

labels of segments of output by labels consisting of ‘+’ flanked by the labels of the

corresponding segments of the two inputs. We write this new function: gL'(i,j) = i + j.

There is yet another way of labelling the grounding function, producing gL''(i,j) = i ´ j. This

is because the addition of logarithms amounts to the multiplication of the corresponding anti-

logarithms (exponents). If the decimals labelling the input segments are logarithms, then the

box multiplies two numbers; the product is the antilog of the corresponding output segment’s

label.

Since gL' and gL'' are non-equivalent labellings of gL, it follows by Def. 2 that the black box

is multiply specifiable.6

When the black box is considered in isolation, there is no reason to prefer either description,

gL' or gL'', over the other: the box is multiply specifiable and it is indeterminate which

computation is performed. If anything in the encompassing system settles whether the inputs

and outputs are logarithms, this lies beyond the black box. (Notice that this indeterminacy,

which is akin to the AND/OR case above, has nothing to do with the fact that, in continuous

systems, different inputs may be so close to one another that it is difficult or impossible to

distinguish the exact function that the system is computing.)

	
6 The requirement in Def. 3 that the same labels must be used is satisfied, since ´ may be expressed equivalently in
terms of repeated addition.

	 16	

This hypothetical example illustrates that multiple specifiability arises also in continuous

systems. Real neural systems also may exhibit multiple specifiability. Like our black box, the

soma of the LGMD neurone is multiply specifiable. According to one specification, the LGMD

soma adds, and according to the other, the soma multiplies: it multiplies by adding logarithms.

We will return to this interesting example in Subsection 5.2.

The indeterminacy of computation is, then, by no means limited to Boolean and other

discrete systems.

4 Anticipating Some Objections

In this section, we consider four very different objections to our analysis thus far. The first is

that the computation performed by our hypothetical black box is actually not indeterminate.

The second objection suggests that neural systems are not vulnerable to computational

indeterminacy, since they operate in noisy, stochastic environments. The third maintains that

computational indeterminacy is confined to relatively small, and perhaps uninteresting,

systems. The fourth considers a new case of computational indeterminacy, discussed in Shagrir

(2020)—the objection is that this is a different kind of indeterminacy, not covered by the

allegedly general framework introduced in Section 2.

4.1 Is there really indeterminacy in the black box?

A possible objection to the discussion in Subsection 3.2 is that the black box is far from

analogous to gate G and does not exhibit indeterminacy. The box computes only addition (the

objection goes): whatever physical magnitudes the box receives as inputs, it simply sums them

up; for example, inputs of 1 V and 2 V produce 3 V as output.

This objection, however, confuses the physical accumulation of voltages with addition over

the numbers. Moreover, it misses the point. The box is able to perform both computations: it

	 17	

adds and it multiplies. As we have seen, the grounding function certainly can be labelled in

such a way that the box computes addition; but the grounding function can equally be labelled

so that the box computes multiplication.

4.2 Noise

Another potential objection to our claim that computational theories of cognition are impacted

by the phenomenon of indeterminacy runs as follows. Neural systems operate in noisy,

stochastic environments on continuous quantities, which may be grossly distorted by saturation

and threshold non-linearities. Indeterminacy does not arise in noisy biological systems since—

according to the objection—noise somehow cancels indeterminacy out.

Our response is threefold. First, indeterminacy of computation may exist in systems that

operate on continuous quantities, as previously argued. Second, single neurones that

compute—possibly nonlinear—threshold functions on potentially thousands of inputs may still

be classified fundamentally as interconnected Boolean units that either fire or not, depending

on whether some threshold has been exceeded. This accords with the all-or-none principle of

neuronal firing, which states that action potentials produced in a neurone all reach the same

maximum value: they are either produced as a whole or not at all.

Third, indeterminacy is not cancelled out by noise. Noise can in fact lead to a form of

indeterminacy even more radical than that discussed here. In the case of gate G, for example,

it is at least determinate how many input-channels there are, but for a system existing in a noisy

real-world environment, even that much may not be determinate. As Dennett pointed out, the

straightforward physical facts do not determine whether impinging variables such as ‘changes

in temperature or relative humidity, or sudden accelerations’ count as signal or interference,

i.e., signal or noise (Dennett 1978, 258). In the case of an artefact, he said, what ‘counts as

interference, and what as a physical change “read” as input by the machine is relative to the

	 18	

designer’s choice’ (ibid). However, in the case of brains (or smaller neuronal structures) there

is ‘no Designer to interview, no blueprint to consult’ (Dennett 1978, 261). Dennett concluded

that one ‘complicated chunk of the world’ can be many different Turing machines at once.

4.3 Complexity and indeterminacy

One might perhaps think that the probability of indeterminacy decreases as the size of a

computational system grows, giving rise to the objection that the phenomenon of

indeterminacy is limited to relatively small computational systems of no great interest.

The short answer to this objection is that whether a computational system is subject to

indeterminacy depends not on its size but on which function(s) it computes. In the Boolean

case, at least, indeterminacy—far from becoming rarer—becomes increasingly common as

functions with ever larger numbers of inputs are considered. This is expressed in the following

theorem.

Theorem 1. The probability that a Boolean function with n inputs is self-dual is pn, where

pn = 2
!!"#

2!!" .

The theorem follows from the fact that there are 2!!

Boolean functions on n variables but

2!!"#self-dual Boolean functions on n variables.7 To illustrate the impact of the difference

between the terms 2!!

and 2!!"#, consider the probability p5 that a five-input Boolean function

is not self-dual (recall that non self-dual Boolean functions give rise to indeterminacy). That

probability is 1 − !$
%

!$&
 » 0.99.

We certainly have not shown in general that the probability of indeterminacy increases with

the number of a function’s inputs. However, we have shown this in the Boolean case, thus

	
7 See, e.g., Crama and Hammer (2011, 173–174); the fact just stated is a corollary of their Theorem 4.14.

	 19	

shifting the burden of proof onto any objector who wishes to maintain that, nevertheless, there

are functions of interest to cognitive scientists for which this is not the case.

Pressure on the objector increases if one considers, not only Boolean functions per se, but

also circuits that compute them. McCulloch and Pitts (1943) made the assumption that the

brain is essentially a Boolean system. Let us follow them in that assumption for a moment and

look at its consequences for the objection being considered. We may assume that the number

of input-channels into a Boolean neuronal structure is indicative at least of the order of

magnitude of the number of inputs into the structure’s grounding function, and so is indicative

of the order of magnitude of the number of inputs into the Boolean function or functions that

the structure computes. The fact that a typical neurone has several thousand inputs—coupled

with the assumption just stated—indicates that the a priori probability of a many-neurone

structure being multiply specifiable is generally high in a McCulloch-Pitts type of model.

The availability of an analogue of Theorem 1 for circuits, rather than functions, would place

further pressure on the objection under consideration. However, the step from functions to

circuits is by no means a straightforward one, since, for any function, there are many different

circuits that compute it. (To give a trivial example, if circuit C computes function f, then circuit

CNN also computes f, where CNN represents the result of attaching two negators serially to

the output-channel of C at which the values of f appear.) Moreover, some circuits compute

many different functions. For instance, Turing showed that there exists a circuit consisting

only of NAND gates that implements ‘a universal [Turing] machine with a given storage

capacity’ (1948, 422). This ‘semi-universal’ circuit can compute every Boolean function that

is able to be computed without exceeding the given storage capacity.

In order to prove an analogue of Theorem 1 involving circuits, we focus on a constrained

subset of Boolean circuits, which we call characteristic circuits. c is a characteristic circuit for

	 20	

a Boolean function f if, and only if, (i) c computes f, and (ii) c computes no other functions

except logical equivalents of f and the dual of every function computed by c. Every Boolean

function has at least one characteristic circuit. We say that a collection of characteristic circuits

is n-complete if, and only if, (i) every circuit in the collection computes some Boolean function

on n variables, and (ii) every Boolean function on n variables is computed by exactly one of

the circuits in the collection.

Theorem 2. For every n-complete collection of characteristic circuits, the probability that

any circuit from the collection is multiply specifiable is πn, where πn = 1 −

(2
!!"#

2!!"# +	2!!"#"#().

This is because the size of any n-complete collection of characteristic circuits Cn is 2!!"# +

	2!!"#"#,	while the number of circuits in Cn that compute self-dual functions—that is, the

number of circuits in Cn that are not multiply specifiable—is 2!!"# .

Clearly πn, the probability of indeterminacy, increases as n, the number of inputs, grows. Of

course, we have not shown this for all collections of circuits, and not even for all collections of

Boolean circuits. Nevertheless, this result again places the burden of proof upon anyone who

suggests that there are classes of functions of interest to cognitive scientists where the

probability of the occurrence of indeterminacy decreases as n grows.

4.4 Another kind of computational indeterminacy?

According to this objection, the theoretical framework set out in Section 2 is incomplete. There

is, the objection maintains, a further kind of computational indeterminacy, related to but

different from the computational indeterminacy described in Section 2, and this new kind of

computational indeterminacy is not accommodated by the MS-framework. The indeterminacy

	 21	

in question results from grouping the same physical properties of a system differently. The

example we will use to illustrate this idea is adapted from Shagrir (2020).

S is a two-input-channel, single-output-channel system, whose valid inputs and outputs fall

within three voltage ranges: (1–3 V), (3–5 V), and (6–10 V). S outputs a voltage in the high

range (6–10 V) when it receives input of two voltages also in the high range; and it outputs

a voltage in the low range (1–3 V) when it receives two voltages in the low range; and under

all other input conditions it outputs a voltage in the mid range (3–5 V). S is a three-state

system, in the sense that it responds differentially to voltages in three different ranges.

S’s grounding function can be labelled as follows (where ‘L’ labels voltages in the low

range, ‘M’ in the mid range, and ‘H’ in the high range) k: {(L,L,L), (L,M,M), (L,H,M),

(M,L,M), (M,M,M), (M,H,M), (H,L,M), (H,M,M), (H,H,H)}. Now, k can be relabelled in

two non-equivalent ways. First, k¢: {(0,0,0), (0,1,1), (1,0,1), (1,1,1)} is also a labelling, where

‘0’ labels voltages in the low range and ‘1’ labels voltages in either the mid range or the high

range (duplicate triples are omitted). This is (inclusive) disjunction. Second, if ‘1’ labels

voltages in the high range and ‘0’ labels voltages in the low and mid ranges, k¢¢: {(0,0,0),

(0,1,0), (1,0,0), (1,1,1)} is another labelling (again duplicate triples are omitted). This is

conjunction.

Since the two labellings k¢ and k¢¢ are non-equivalent, and there is no reason to favour one

over the other, S indeterminately computes two different Boolean functions, conjunction and

(inclusive) disjunction. However, this indeterminacy does arise from the multiple

specifiability of S. (S is multiply specifiable since its grounding function possesses at least

two logically non-equivalent labellings employing the same labels, as required by Def 3.) S’s

indeterminacy, then, is describable within the MS-framework (we have just done so).

	 22	

The interesting question of whether S’s indeterminacy is, or is not, of a different kind from

G’s remains open, though. S’s indeterminacy results from grouping the voltage ranges

differently. In k¢, the mid and high ranges are grouped together, whereas in k¢¢ it is the low

and mid ranges that are grouped together. Under each grouping, S is a two-state system, but

a different two-state system in each case. We will not pursue the same-or-different question

here. The issue of whether this really is a new kind of indeterminacy is considered by

Papayannopoulos et al. (in progress), Fresco (forthcoming) and Copeland (in progress). Our

response to the objection is simply that, even if this is a distinct kind of computational

indeterminacy, it can be accommodated in the MS-framework.

5 Indeterminacy and Computational Explanation in Neuroscience

In this section, we discuss the impact of the indeterminacy of computation on computational

explanation in cognitive science. Subsection 5.1 outlines the problem. Subsection 5.2 describes

a detailed case study: the lobula giant movement detector (LGMD) neurone of the locust. In

Subsection 5.3, we propose a speculative hypothesis about massive multiple specifiability in

the brain.

5.1 On the (in)completeness of computational explanation

Here we return to the issue of the extra explanatory step, broached in Section 1. To illustrate

the difficulty, suppose S is multiply specifiable, as computing the function f and as computing

a different function g. Why is the hypothesis that S is computing f preferable to the hypothesis

that S is computing g? When a computational-level explanation identifies S as computing f

rather than g, some good reason for preferring f is needed. In the absence of such a reason, the

computational explanation is incomplete.

	 23	

Computational explanations of the behaviour of simple two-input-channel McCulloch-Pitts

style neurones with a labelling g1 (or g2) can be couched in terms of either conjunction or

(inclusive) disjunction (see Subsection 2.1). There are likely to be multiple alternative

explanations of a Boolean neurone’s behaviour when the neurone has a large number of input-

channels (and neurones in the brain may have thousands of input-channels). A scientist who

favours one of these multiple explanations over the others needs a reason for doing so—and in

producing this reason, the scientist clearly must cast the net beyond those aspects of the

neurone’s behaviour that are consistent with each and every one of its multiple specifications.

The explanation must look beyond the neurone’s immediate input–output behaviour, since this

behaviour is what is expressed by the grounding function—and, ex hypothesi, the grounding

function can be labelled in different ways, so producing the multiple specifiability and

indeterminacy that leads to the multiple explanations.

Studies of the locust’s LGMD neurone illustrate how this may be done in a complex,

biologically realistic situation, as we will explain.

5.2 More on the LGMD neurone

In this section, we argue that the same kind of indeterminacy arising in the hypothetical black

box (Subsection 3.2) also arises within a single neurone: the LGMD neurone. This neurone

was first implicated in looming detection in 1977 (Schlotterer, 1977). The LGMD neurone is

believed to track the kinematics of objects approaching on a collision course with the locust

(Jones & Gabbiani, 2012). Its peak firing rate signals when the approaching object’s subtended

size reaches a specific angular threshold on the locust’s retina, and this typically initiates the

locust’s escape behaviour.8

	
8 Gabbiani and his colleagues explain that the LGMD neurone fires throughout object approach with a rate that
increases as the object grows larger, peaks, and eventually decays as collision becomes imminent. The neurone,

	 24	

 We focus here on the multiple specifiabilty of the LGMD soma—or, more precisely, of

what we call the neurone’s merge zone. The merge zone is where the neurone’s three dendritic

subfields effectively merge (see Fig. 1). (In vertebrates, the soma is typically close to the spike

initiation zone and is directly between the dendrites and axon. However, this is not the case in

the locust neurone, where the soma itself is not on the electrical path of signalling, but on a

side branch. For the sake of simplicity, we ignore the neuroanatomical details concerning

where the actual processing of inputs into the LGMD neurone takes place and assume that it

occurs at the merge zone.) The grounding function of the LGMD’s merge zone is describable

in terms of the intrinsic properties of the cell’s membrane. As with the black box in Subsection

3.2, the grounding function may be labelled as simple addition (specifically, the addition of

the approaching object’s angular size θ, which is the inhibitory input, and its velocity ψ, which

is the excitatory input); and the grounding function may also be labelled as multiplication (of

θ by ψ).

	
arguably, computes the time at which a specific threshold angle is reached during object approach. For the peak
firing rate and subsequent escape behaviours occur at a fixed delay (attributed to neuronal processing time) after
the object has reached a constant angular size on the retina.

	 25	

Figure 1. Computation in the locust’s LGMD neurone. When faced with a looming stimulus simulating

an object approaching on a collision course, excitatory inputs are received that are proportional to the object’s

angular velocity raised to a power of 2 to 3. The inhibitory inputs are approximately proportional to the square

of the object’s angular size. In this biophysical model, the excitatory signal undergoes a logarithmic

compression in the excitatory dendritic subfield, while the effect of the inhibitory inputs on the mean resting

membrane potential (Vm) results in a sigmoidal (nearly linear) dependence on angular size. The sum of these

signals in the merge zone (the juncture immediately above the ‘+’ sign) is then exponentiated in the axonal

spike initiation zone, resulting in an output relationship that signals an angular threshold size through its firing

rate peak. (The figure is reprinted from Jones and Gabbiani (2012, fig. 8) with permission from Gabbiani.

Permission from the Journal of Neuroscience is pending.)

Gabbiani et al. initially considered two competing hypotheses about what the LGMD

neurone in toto (not just the merge zone) computes in the specified context (stationary collision

avoidance): namely, addition versus multiplication. However, they gathered extensive

empirical data that favours the second alternative over the first, saying ‘[a]dditive

	 26	

combinations of [θ and ψ] could not fit experimental firing rate profiles’ (Gabbiani et al., 2002,

321). The results of their investigations of the multiplication hypothesis9 were reported in a

string of publications (e.g., Gabbiani et al., 2002; Gabbiani et al., 1999; Jones & Gabbiani,

2012). This research is a paradigmatic example of resolving a case of underdetermination of

theory by data: competing hypotheses concerning a single neurone’s computation were

evaluated experimentally by means of a highly resourceful search for additional data. 10

Their main reason for favouring that specific version of the multiplication hypothesis is as

follows. Gabbiani et al. claim that the collected data ‘support the hypothesis that …

multiplication is achieved within the [LGMD] neuron through addition of [θ and ψ]

transformed logarithmically, followed by an approximate exponentiation’ (Jones & Gabbiani,

2012, 4923–4924). They identified empirically what we will call an upstream mechanism and

a downstream mechanism whose presence constitutes strong evidence for the multiplication

hypothesis. (The terms ‘upstream’ and ‘downstream’ are used here relative to the direction of

information flow through the computing system; a downstream mechanism is situated

subsequent to the system’s output-channels, and an upstream mechanism is situated prior to

the system’s input-channels.)

In detail, the upstream and downstream mechanisms are localised within the LGMD

neurone’s dendrites and its axonal spike initiation zone. The former consists of inhibitory and

excitatory dendritic subfields (see Fig. 1). Gabbiani and his colleagues report that the

presynaptic inputs are logarithmically transformed within the dendritic subfields before being

processed at the merge zone (assuming that it is indeed the merge zone that carries out the

processing), and then exponentially transformed at the axonal spike initiation zone into the

	
9 This particular version of the multiplication hypothesis is one of three they considered. They first advanced the
multiplication hypothesis back in the 1990s (Hatsopoulos et al., 1995).
10 Computational neuroscientists are typically well-aware of the fact that whatever specific function they focus on,
the function will generally be underdetermined by the available empirical data (see, e.g., Gabbiani 1995).

	 27	

LGMD neurone’s firing output.11 The upstream structure—the dendritic subfields—performs

logarithmic compression on inputs to the LGMD, and the downstream structure—the axonal

spike initiation zone—performs exponentiation on the membrane potential output.

Notice, however, that even once the underdetermination (of theory by data) is mitigated by

means of the further empirical investigation just described, the indeterminacy (of computation

in the merge zone) remains. The effect of the upstream and downstream structures is that one

of the two functions computed by the LGMD merge zone is selected while the other is, so to

speak, passed by. One of the functions—multiplication, in the case of collision aversion—is

‘tapped off’ the merge zone by the upstream–downstream milieu.

Might the other function (addition) conceivably be tapped off under different

circumstances? In collision aversion, the inputs become related to angular size and velocity

presynaptically to the LGMD. However, it is certainly conceivable that in some other context

(i.e., other than collision aversion in stationary mode) the LGMD neurone may—as in the case

of the hypothetical black box—perform simple addition of its inputs. Other computations occur

throughout the locust's visual system, both pre- and post-synaptically to the LGMD neurone.

In a different visual task, say in response to receding objects, the inputs may become related

to the relevant visual properties differently. In such a context, addition, rather than

multiplication, could be tapped off the merge zone.

Moreover, according to computational literalism, all this holds whether or not some external

observer has actually introduced labellings of the grounding function. Mechanisms in the

milieu of the locust’s visual system could have been tapping off one or another—or both—of

the available functions for millennia prior to the arrival of human theorists and their labels.

	
11 For the sake of accuracy, we note that the inhibitory input (unlike the excitatory input, which was reported to be
logarithmically compressed) was reported to be more subtly transformed, specifically, sigmoidally transformed
(Jones & Gabbiani, 2012, 4931).

	 28	

Here, then, is a general methodology for addressing questions of the type raised in

Subsection 5.1. When there exist competing computational explanations of some neurone’s (or

neural circuit’s) behaviour, researchers may discriminate empirically between them by

searching for relevant upstream-downstream structures. This could be done in the way

illustrated by Gabbiani et al.’s ongoing investigation of how the LGMD neurone implements

multiplication. If an upstream–downstream milieu is identified that taps off one of the multiple

functions, f, then the f-involving explanation is preferable. Once all relevant upstream–

downstream structures have been identified, the computational explanation of the behaviour

of the neurone (or circuit) may be regarded as complete.12 The search for these upstream–

downstream structures may lead to important new discoveries.13

5.3 Indeterminacy and plasticity

The indeterminacy of computation may play an important role in the plasticity of various

neural structures in the brain. It may be exploited by the brain when limited computational

	
12 At this point, a philosophical problem arises (see Shagrir 2020). Assuming that the upstream–downstream
structures that have been identified are computational, the argument about indeterminacy can be reapplied to these
structures. If it is indeterminate what these structures are computing, then it is indeterminate what the original
neurone is computing. There are various ways in which this attempt to reapply the indeterminacy argument to the
wider system may fail. For example, it will fail if the relevant upstream–downstream structures are not themselves
computational in nature, or if the entire system consisting of the target system (e.g., a circuit, a neurone, or a merge
zone) and its surrounding upstream–downstream milieu has the property of self-duality (extended appropriately to
the neural context). In those cases where the argument can be validly reapplied, the search for upstream–
downstream structures will arguably yield a relative result, rather than an absolute one. The isolation of a suitable
milieu M surrounding the target system S may make it possible to say that relative to M’s computing f, S is
computing g. It is conceivable that, in some empirical situations, such statements of relative computability are the
best that researchers can hope to establish.
13 Piccinini (2015, 16, 43) seems to appeal to what he calls the ‘narrow context’ of a computational system in order
to determine what computation is being performed in that context. Our proposal might perhaps be regarded as a
detailed working out of Piccinini’s schematic suggestion. However, our proposal is in fact compatible with both
semantic individuation of computation (e.g., Sprevak (2010) or Shagrir (2020)) and mechanistic individuation of
computation (Piccinini 2015). Moreover, it is important to note that there are also key differences between our
account and Piccinini’s. For example, Piccinini seems to suggest that appealing to the system’s narrow context
eliminates the indeterminacy, while our suggestion is that appealing to the upstream–downstream milieu does not
eliminate the indeterminacy of the LGMD merge zone’s computation. A second upstream–downstream structure
might simultaneously tap off a different computation from the merge zone. Another important difference is that
Piccinini—unlike us—believes that, in ‘naturally occurring’ mechanisms, different tasks are usually ‘subserved by
a different process within the mechanism’ (ibid, 16). See Fresco (forthcoming) for an alternative, wide mechanistic
strategy of computational individuation.

	 29	

resources are a constraining factor. The brain seems to (re)configure itself adaptively in

response to varying processing demands. ‘[A] given neuronal structure can perform multiple

functions that depend on the areas with which it interacts’ (Price & Friston, 2005, 262).

Multiple purposes served by a single structure may include, for example, regulatory, cognitive,

and affective tasks (Menon & Uddin, 2010). ‘[R]ather than developing new structures de novo,

resource constraints and efficiency considerations dictate that whenever possible neural …

resources should have been reused and redeployed in support of any newly emerging cognitive

capacities’ (Anderson, 2014, 7). Evolutionary considerations also seem to point in this

direction: the evolution of more complex brains from simpler ones is a process favourable to

the deployment of existing neural structures to support new purposes.

The indeterminacy of computation might be an important ingredient in the re-deployment

of existing structures. We advance the following speculative hypothesis (our aim is simply to

articulate a fascinating hypothesis, not to advance empirical evidence for it).

The Massive Multiple Specifiability (MMS) Hypothesis. A multiply specifiable neural

structure can be used to serve a range of different purposes (within the cognitive, perceptual,

affective, and regulatory domains, for instance) by exploiting the different computations

performed by the structure; and this may occur extensively throughout the brain.

Coupling the MMS hypothesis with the foregoing picture of different computations being

tapped off a single neural structure gives the following possible sketch of how such plasticity

might be achieved. The structure is situated in two or more distinct upstream–downstream

milieux: each upstream–downstream milieu serves to tap off one of the computations that the

structure is performing. How the upstream–downstream mechanisms are themselves controlled

is, at this stage, a matter for pure speculation. An upstream–downstream mechanism might remain

	 30	

quiescent until triggered by a specific event. Conceivably, the triggering event might toggle

between the upstream–downstream mechanisms, switching one on and the others off.

Alternatively, the upstream–downstream mechanisms might always be active, in which case the

computations are tapped off concurrently, rather than sequentially. Via the postulated upstream–

downstream mechanisms and their controlling mechanisms, the single neural structure is

efficiently utilised to serve different biological purposes.

 An investigation of the MMS hypothesis would form a fascinating new research programme

in computational neuroscience. It probably would not be easy—Gabbiani’s investigation of a

single neurone has taken more than 20 years. Any results from the MMS hypothesis, positive or

negative, are likely to be hard won. Nevertheless, multiple specifiability and the indeterminacy of

computation provide an intriguing new theoretical angle on findings concerning neural plasticity.

6. Conclusion

The first part of this article provided a new conceptual framework, the multiple specifiability

framework, characterising the phenomenon of the indeterminacy of computation—a

phenomenon that is prevalent in Boolean systems but by no means limited to them.

 We spelled out two major implications of indeterminacy for the study of cognition. First,

there is the issue of the extra explanatory step. Researchers will need to take indeterminacy

into account when framing computational explanations of both biological and artificial

systems. Moreover, we suggested that hypothesising the existence of indeterminacy in a given

neural structure may prove a valuable heuristic for investigating the role of structures

peripheral to the given structure.

 Second, there is the issue of neural plasticity. The brain may put the phenomenon of

indeterminacy to good use. If the brain—as it reconfigures itself adaptively in response to

growing processing demands and limited computational resources—pursues a strategy of

	 31	

plasticity, then this may lead to numerous multiply-specifiable neuronal structures each

serving more than one cognitive (or regulatory or affective) purpose, and doing so by means

of simultaneously computing a number of different functions.

 The strategy of achieving plasticity via indeterminacy may also prove useful in

engineering artificial cognitive systems.

Acknowledgements

Many people have contributed to this paper through lively discussions and invaluable comments on earlier versions. We
thank them, and several anonymous referees. This research was partly supported by the Israel Science Foundation Grant
386/20 to the first author, and a stipendiary fellowship from the Kreitman School of Advanced Graduate Studies at Ben-
Gurion University of the Negev.

References

• Anderson, M. L. (2014). After phrenology: neural reuse and the interactive brain. The

MIT Press.

• Badura, C., & Berto, F. (2019). Truth in Fiction, Impossible Worlds, and Belief Revision.

Australasian Journal of Philosophy, 97(1), 178–193.

• Bishop, J. M. (2009). A cognitive computation fallacy? Cognition, computations and

panpsychism. Cognitive Computation, 1(3), 221–233.

• Block, N. (1990). Can the Mind Change the World? In G. Boolos (Ed.), Meaning and

method: essays in honor of Hilary Putnam (137–170). Cambridge University Press.

• Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Sage.

• Carandini, M., & Heeger, D. J. (1994). Summation and division by neurons in primate

visual cortex. Science, 264(5163), 1333–1336.

• Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation.

Nature Reviews Neuroscience, 13(1), 51–62.

	 32	

• Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese,

108(3), 309–333.

• Coelho Mollo, D. (2017). Functional individuation, mechanistic implementation: the

proper way of seeing the mechanistic view of concrete computation. Synthese. 195(8),

3477-3497.

• Copeland, B. J. (in progress). Computational Levels and the Indeterminacy of

Computation.

• Crama, Y., & Hammer, P. L. (2011). Boolean functions: theory, algorithms, and

applications. Cambridge University Press.

• Cvitanović, T., Reichert, M. C., Moškon, M., Mraz, M., Lammert, F., & Rozman, D.

(2017). Large-scale computational models of liver metabolism: how far from the clinics?:

Cvitanović et al. Hepatology, 66(4), 1323–1334.

• Dennett, D. C. (1978). Brainstorms: philosophical essays on mind and psychology. The

MIT Press.

• Dennett, D. C. (2013). Intuition pumps and other tools for thinking. W.W. Norton &

Company.

• Dewhurst, J. (2018). Individuation without Representation. The British Journal for the

Philosophy of Science, 69(1), 103–116.

• Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion

cells of the cat. The Journal of Physiology, 187(3), 517–552.

• Fresco, N. (2010). Explaining Computation Without Semantics: Keeping it Simple.

Minds and Machines, 20(2), 165–181.

• Fresco, N. (2014). Physical computation and cognitive science (Vol. 12). Springer.

	 33	

• Fresco, N. (2015). Objective Computation Versus Subjective Computation. Erkenntnis,

80(5), 1031–1053.

• Fresco, N. (forthcoming). How Context can Determine the Identity of Physical

Computation. In M. Hemmo, S. Ioannidis, O. Shenker, and G. Vishne (Eds.), Levels of

Reality in Science and Philosophy.

• Fresco, N, Wolf, M. J, & Copeland, B. J. 2016. On The Indeterminacy of Computation.

The Annual Meeting of the International Association for Computing and Philosophy,

University of Ferrara, Italy.

• Frigg, R. (2010). Models and fiction. Synthese, 172(2), 251–268.

• Gabbiani, F., Krapp, H. G., Koch, C., & Laurent, G. (2002). Multiplicative computation

in a visual neuron sensitive to looming. Nature, 420(6913), 320–324.

• Gabbiani, F., Krapp, H. G., & Laurent, G. (1999). Computation of Object Approach by a

Wide-Field, Motion-Sensitive Neuron. Journal of Neuroscience, 19(3), 1122–1141.

• Hatsopoulos, N., Gabbiani, F., & Laurent, G. (1995). Elementary Computation of Object

Approach by a Wide-Field Visual Neuron. Science, 270(5238), 1000–1003.

• Jones, P. W., & Gabbiani, F. (2012). Logarithmic Compression of Sensory Signals within

the Dendritic Tree of a Collision-Sensitive Neuron. Journal of Neuroscience, 32(14),

4923–4934.

• Knill, D. C., and Pouget, A. (2004). The Bayesian Brain: The Role of Uncertainty in

Neural Coding and Computation. Trends in Neurosciences, 27(12), 712–719.

• Koch, C. (1999). Biophysics of computation: information processing in single neurons.

Oxford University Press.

• Lewis, D. (1978). Truth in Fiction. American Philosophical Quarterly, 15(1), 37–46.

	 34	

• Lewis, D. (1983). Postscripts to “Truth in Fiction.” In Philosophical Papers Volume I (pp.

276–280). Oxford University Press.

• McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

• Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network

model of insula function. Brain Structure and Function, 214(5–6), 655–667.

• Papayannopoulos, P., Fresco, N. & Shagrir, O. (in progress). On Two Different Kinds of

Computational Indeterminacy.

• Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford University

Press.

• Piccinini, G., & Bahar, S. (2013). Neural Computation and the Computational Theory of

Cognition. Cognitive Science, 37(3), 453–488.

• Price, C. J., & Friston, K. J. (2005). Functional ontologies for cognition: The systematic

definition of structure and function. Cognitive Neuropsychology, 22(3–4), 262–275.

• Proudfoot, D. (2006). Possible worlds semantics and fiction. Journal of Philosophical

Logic, 35(1), 9-40.

• Putnam, H. (1988). Representation and reality. The MIT Press.

• Shagrir, O. (2001). Content, computation and externalism. Mind, 110(438), 369–400.

• Shagrir, O. (2020). In defense of the semantic view of computation. Synthese, 197(9), 4083–

4108.

• Sorensen, R. A. (1999). Mirror Notation: Symbol Manipulation without Inscription

Manipulation. Journal of Philosophical Logic, 28(2), 141–164.

• Sprevak, M. (2010). Computation, individuation, and the received view on

representation. Studies in History and Philosophy of Science Part A, 41(3), 260–270.

	 35	

• Turing, A. M. (1948). Intelligent Machinery. In B. J. Copeland (Ed.), (2004) The

Essential Turing (pp. 410–432). Oxford University Press.

