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1. Introduction

Classical mechanics is the physical theory with which we are most familiar, the
one we �rst encounter in school. Philosophers tend to regard classical mechanics
as metaphysically unproblematic. At �rst glance, it does appear straightforward:
the theory is fundamentally about particles, with intrinsic features like mass,1 that
move around in three-dimensional space in response to various forces, which
arise via interactions between the particles. It seems as though, if any physical
theory is metaphysically perspicuous, classical mechanics is. But the theory is
not as clear-cut as it initially seems. Our familiarity misleads us.

The reason is not just that classical mechanics ultimately runs into the kind
of trouble that presaged quantum mechanics. Even taking it to be the true
fundamental theory of a world,2 classical mechanics does not offer as candid
a picture of things as we tend to think. One reason for this is that there are
different formulations, which are generally claimed to be equivalent by physics
books, but which are at least not obviously equivalent—neither in terms of the
mathematical structure they use, nor in terms of the physical world they describe.

What I want to do in this chapter is to outline the three leading formulations
of classical mechanics, and to raise some questions about them, the chief one
being: Are these genuinely equivalent formulations, as usually thought? If
so, in what sense are they equivalent? If not, in what way(s) do they differ?
Another way to put the focal question of this chapter is by means of a title of
Mark Wilson’s (2013): “What is ‘Classical Mechanics’, Anyway?” Indeed, since
the terms ‘classical mechanics’ and ‘Newtonian mechanics’ “are used virtually

1Also charge, although there is a question of whether electromagnetic features ought to be
considered part of the domain of classical mechanics; see for instance note 10.

2Of course, because of the previously-mentioned troubles, it is not clear that classical me-
chanics can be a true fundamental theory of a world, but set that aside here.
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synonymously” (Spivak, 2010, 7), one aim of this chapter is to suggest that it is
not right to do so. There are different versions of classical mechanics, which
might even amount to distinct theories. A related aim is to show that there are
interesting philosophical questions that arise in the context of classical mechanics.
Classical mechanics merits the attention of philosophers, who often disregard it
as either too perspicuous or too outdated to warrant much discussion.3

Although this chapter is limited to classical mechanics, a host of general
questions in the philosophy of physics and science are touched upon, such as:
What is the right notion of theoretical equivalence: when are two scienti�c
theories mere notational variants? How do we interpret a scienti�c theory: how
do we �gure out the nature of the world according to a theory? When faced
with different theories or formulations, how do we choose which one to adopt?
Indeed, must we choose?

2. Three formulations

I will outline the three main formulations of classical mechanics—Newtonian,
Lagrangian, and Hamiltonian mechanics—in relatively standard ways, before
turning to some questions about them.4 My focus will be on the dynamical laws
and the quantities that appear in them. This is where much of the action lies in
comparing and contrasting the different formulations.

2.1. Newtonian mechanics

Newtonian mechanics might be the only formulation one comes across, the
others typically not introduced until more advanced college courses. In the New-
tonian mechanics of point-particles—point-sized physical objects with intrinsic
features like mass5—two sets of coordinates specify a system’s fundamental state
at a time: the positions and velocities (or momenta) of all the particles. Assuming
the particles are free to move around in three-dimensional physical space, these
coordinates will each have three components, one along each spatial dimension.

For a system consisting of n particles, the total state is speci�ed by means
of 6n coordinates: three coordinates for the position and three coordinates for

3A recent book-length exception: Sklar (2013).
4There are other varieties I don’t discuss, such as formulations in terms of Poisson brackets,

Hamilton-Jacobi theory, or four-dimensional spacetime geometry.
5This is the fundamental ontology assumed here. Wilson (2013) discusses the classical me-

chanics of rigid bodies and continua and complications involved in trying to encompass all of
these within a single theory. See Hall (2007, 5.2); Esfeld et al. (2018); Allori (forthcoming) on
the non-standard idea that particles don’t have fundamental intrinsic properties.
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the velocity of each particle in the system. It turns out to be extremely useful to
represent all the possible states of a system in a mathematical space called the
statespace, each point of which represents a different possible fundamental state
of the system. Since we need 6n coordinates to specify the state of a system, the
statespace will have 6n dimensions.

Different curves through the statespace represent different possible histories
of the system, different sequences of fundamental states over time. (The curves
are parameterized by time.6) These histories will be given by a theory’s dynamical
laws, in this case, Newton’s second law:7

ΣFi = miai = mi ẍi . (1)

ΣFi indicates the sum of the forces—which are vector quantities, written in
bold—on a given particle labeled by i (i ranges from 1 to n, for n particles in
the system); mi is the particle’s mass; ai , or ẍi , is the particle’s acceleration, the
second derivative of its position with respect to time, also vector quantities. (A
dot over a quantity indicates a derivative with respect to time of that quantity.)
In other words: Σ j 6=iFi j = miai , where Σ j 6=iFi j is the sum of the forces on the
given particle due to all the other particles (both in the system and external to it).

The above is a vector equation. There is one such equation for each particle
in each component direction—three equations per particle in three-dimensional
space. These equations can be grouped together into one master equation, which
says how the point representing the state of the entire system moves through
the statespace over time. Given the initial state of a system and the total forces
acting on it, integrating (twice) yields a unique solution, or history: the laws
are deterministic.8 A solution picks out a trajectory in the statespace, which
represents the paths of all the particles through ordinary physical space.9

Equation 1 is the fundamental dynamical equation of the theory. Newton’s
second law, mathematically represented by this equation, predicts the motion of
every particle, in any situation. What forces there are will depend on the types of
particles involved, and to calculate the forces, we will need additional rules, like
the law of gravitation. But this one dynamical law predicts any system’s behavior,
once given those forces.

6Alternatively, time can be included as an additional dimension of the statespace.
7Another familiar version of the law, ordinarily seen as equivalent to the above, is given in

terms of momentum: ΣF= ṗ. See Hicks and Schaffer (2017) on whether these are equivalent.
8Whether the theory really is deterministic is an interesting question. Apparent counterex-

amples are in Earman (1986) and Norton (2008); further discussion is in Malament (2008) and
Wilson (2009).

9Standard statespace constructions effectively assume the existence of physical space. See
Belot (1999, 2000) on reconstructions that aim to do away with this assumption.
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Two other laws of Newtonian mechanics as standardly presented are impor-
tant to the theory as a whole, but will play a less central role here. Newton’s �rst
law says that an object continues with uniform velocity unless acted on by a net
external force. This law helps de�ne what it is for an object to not accelerate, or
to travel inertially (with the second law saying what happens when an object is
subject to a net force that yields an acceleration). Newton’s third law speci�es the
nature of forces. It is often stated in “action-reaction” form: to every action there
is an equal and opposite reaction; when one object exerts a force on a second
object, the second simultaneously exerts a force equal in magnitude and opposite
in direction on the �rst. This law tells us that forces come in pairs, as the result
of interactions between two objects. It “describes the forces to some extent”
(Feynman et al., 2006, 9.1), with the particular force laws further indicating that
forces do not depend on anything other than the types of particles involved and
their spatial separations, and that they are central forces, directed along the line
between the particles. (Conservative forces, derivable from a potential.)10

2.2. Lagrangian mechanics

In Lagrangian mechanics, two sets of what are called generalized coordinates char-
acterize systems’ fundamental states at a time: the generalized positions, qi , and
their �rst time derivatives, the generalized velocities, q̇i (i from 1 to n, for n
particles in the system). As in Newtonian mechanics, we need 6n coordinates to
completely specify the state of a system of n particles: three generalized position
coordinates and three generalized velocity coordinates per particle. But unlike
in Newtonian mechanics, these do not have to be ordinary position and velocity
coordinates. (They are called generalized positions and velocities by analogy
to ordinary positions and velocities.) Generalized coordinates can be any set of
independent parameters that completely specify a system’s state.11 Generalized

10There are questions surrounding the further restrictions that forces be central and con-
servative. It is usually thought that nonconservative forces, like frictional ones depending on
velocity, arise from fundamental conservative ones. As Feynman notably put it, “there are no
nonconservative forces!” (2006, 14.4). Newton himself did not restrict forces in this way; Feyn-
man suggests it is an additional empirical posit. (Compare Baez: “It is a simplifying assumption
that has withstood the test of time and experiment” (2005, 6).) The restrictions are assumed in
standard proofs of energy conservation and other theorems. (This is one place the question of
electromagnetic features (note 1) comes into play. Consider the magnetic force on a moving
charge, which does not satisfy these restrictions.) Concerns over the above have led the odd
physicist to doubt the equivalence of the different formulations of classical mechanics: Lanczos
(1970, 77 n1); Gallavotti (1983, ch. 3). See also Hertz (1899) and Wilson (2009, 2013, forth-
coming) on these and other reasons to doubt their equivalence.

11There are some mild constraints on generalized coordinates (José and Saletan, 1998, 2.1.2).
Wilson (2009) points out that the idea of generalized coordinates, as well as the requirements
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positions can have units of energy, or length squared, or an angle, or can even be
dimensionless. We can use any kind of coordinates that are suited to a system,
the choice typically guided by the number of degrees of freedom of the system12

and the topology of the spatial region in which the particles are free to move
around. For a pendulum, for example, we might use the angle θ the suspending
string makes with respect to the vertical as the generalized position, with θ̇ the
generalized velocity (as we will see in section 3).

The Lagrangian statespace is a 6n-dimensional space with the structure of
a tangent bundle. This space comprises a 3n-dimensional space in which we
represent the generalized positions (called the con�guration space), plus the 3n-
dimensional tangent space at each point (to represent the generalized velocities,
which are tangent to the generalized positions). Each point in the statespace
picks out a generalized position and generalized velocity for each particle in the
system. Standard labels are Q for the con�guration space (the “base space” of
the tangent bundle), TqQ for the tangent spaces (the “�bers,” one for each q
in Q), and T Q for the entire statespace, sometimes referred to as the velocity
phase space. Notice the con�guration space is what represents the physical space
the particles move around in. Given the freedom in generalized coordinates,
this representation needn’t occur in an obvious way, yet the structure of physical
space will still be coded up in the structure of Q.

The dynamical laws, called the Euler-Lagrange, or simply Lagrange, equa-
tions, say how the point representing a system’s state moves through the states-
pace over time, given a scalar function called the Lagrangian, L. At each point
in the statespace, this function assigns a number, typically equal to the sys-
tem’s kinetic energy, T , minus its potential energy, V .13 Although this gives
the Lagrangian as de�ned on T Q, we can think of this function as coding up
information about particles’ ordinary spatial features, those that are relevant to
their energies, so that it is ultimately about goings-on in three-dimensional space.
The motion of an n-particle system in three-dimensional space is then given by
3n second-order equations, one for each particle in each direction—one for each
degree of freedom (three per particle in three-dimensional space):

d
d t

�

∂ L
∂ q̇i

�

− ∂ L
∂ qi

= 0. (2)

on them, are not as straightforward as usually assumed.
12The number of degrees of freedom is the number of independent parameters “necessary

and suf�cient for a unique characterization” of the system (Lanczos, 1970, 10).
13Standard examples in which it does not have this form come from outside the point-particle

mechanics assumed here. See José and Saletan (1998, 2.2.4) and Goldstein et al. (2004, 7.9) for
examples from electromagnetism and special relativity.
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Given L, these equations uniquely determine the motion for an initial state
characterized by the generalized position and generalized velocity of each particle
in the system. A solution, found by integrating, gives a function or trajectory
on Q, which represents the motions of all the particles through physical space.
(Solutions are curves through T Q, which are projected onto Q.)

To get a feel for the Lagrangian statespace, picture the statespace for a particle
moving on a one-dimensional circle: �gure 1. (Keep in mind that this is “just

Figure 1: Two-dimensional tangent bundle (image from Wikipedia)

about the only easily visualized nontrivial T Q” (José and Saletan, 1998, 94); with
more degrees of freedom, things quickly become dif�cult to picture.) This is a
two-dimensional space, each point being picked out by two coordinates (q , q̇).
The circle represents the different possible values of the generalized position
coordinate, the lines the different possible values of the generalized velocity.
Curves through this space represent different possible histories of the system,
different sequences of generalized positions and velocities over time. The �gure
could represent the statespace of a point-mass pendulum, for instance, with the
circle representing the values of θ and the lines the values of θ̇.

Brie�y note three interesting, interrelated differences between the Lagrangian
and Newtonian formulations.14 First, in Lagrangian mechanics, a scalar energy
function is what determines a system’s motion, whereas in Newtonian mechanics,
the motion is given by the forces, which are vector quantities. Second, Lagrangian
mechanics takes a more “holistic” approach to describing systems’ motions, in
terms of the energy of the system as a whole. By contrast, the Newtonian formu-
lation “is intrinsically a particle-by-particle description” (Sussman and Wisdom,
2014, 3), given in terms of the forces on each individual particle due to every
other particle. Third, Lagrangian mechanics is a more coordinate-independent
formulation of the dynamics, in that we can substitute any kind of coordinates
for q and q̇ in equation 2. The central equation of Newtonian mechanics, on
the other hand, contains an implicit preference for Cartesian coordinates, those

14See Lanczos (1970) for discussion of these and other differences. See Butter�eld (2004) for
extended discussion of Lagrangian mechanics in particular.
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in which it has the form of equation 1. We can of course use other kinds of
coordinates, but the form of the equation will differ (contrast equation 1 with
the form in polar coordinates, e.g.: Taylor (2005, eq. 1.48)). This is not the case
in Lagrangian mechanics: “Lagrange’s equations, unlike Newton’s, take the same
form in any coordinate system” (Taylor, 2005, 237). (The form of an equation is
the form as a function of its variables, a standard notion in physics.15)

2.3. Hamiltonian mechanics

Hamiltonian mechanics shares a special kinship with Lagrangian mechanics,
more so than with Newtonian mechanics. Here, too, a scalar energy function
determines the motion, and the central equations are formulated in terms of
generalized coordinates. There are also some notable differences. Hamiltonian
mechanics uses a different energy function and a different kind of generalized
coordinate, with the result that the dynamical equations and statespace also differ.

The Hamiltonian coordinates are called canonical coordinates. These are the
generalized positions, qi , and the generalized momenta, pi . (Again, i ranges from
1 to n for n particles, three of each coordinate per particle in three-dimensional
space.) The Hamiltonian statespace is the cotangent bundle of con�guration
space, T ∗Q: the con�guration space, Q, together with the cotangent space, T ∗

(dual to the tangent space), at each point in Q (to represent the generalized
momenta, which are covectors, or one-forms). This is a 6n-dimensional space,
each point of which picks out a generalized position and generalized momentum
for each particle in the system. It is often called the momentum phase space, or
simply the phase space.16

The scalar function that describes a system’s motion is called the Hamiltonian,
H , (typically17) equal to the total energy of the system—the sum of the potential
and kinetic energies, instead of the difference between them, as in Lagrangian
mechanics. The dynamical laws are a set of 2n �rst-order equations, two for
each particle in each direction; two sets of equations for each degree of freedom:

q̇i =
∂ H
∂ pi

, ṗi =−
∂ H
∂ qi

. (3)

These equations, called the Hamiltonian or canonical equations, uniquely deter-
mine a system’s motion given an initial state speci�ed by the canonical positions
and momenta of all the particles in the system.

15See Brading and Castellani (2007, 1343).
16A Hamiltonian statespace can in fact have a more general structure than this: North (2009).
17See Goldstein et al. (2004); Taylor (2005, 7.8) for conditions under which this holds.
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The Hamiltonian and Lagrangian formulations are both more coordinate-
independent than the Newtonian formulation. Each of them is given in terms of
generalized coordinates, with the result that the dynamical equations retain their
form regardless of which coordinates we use. The reason is that the Lagrangian
and Hamiltonian functions, which determine the motion, are scalar functions.
In Newtonian mechanics, by contrast, vector quantities—forces—determine the
motion. Although vectors are coordinate-independent objects, their components
change with the coordinate system. (Vectors can be de�ned by means of how
their components transform under coordinate changes.) And as Feynman puts
it, “The general statement of Newton’s Second Law for each particle. . . is true
speci�cally for the components of force and momentum [or acceleration] in any
given direction,” since “any vector equation involves the statement that each of
the components is equal” (Feynman et al., 2006, 10.3, 11.6; original italics). Scalars
are even more coordinate-independent than that, being completely unaffected
by coordinate changes, not even “altering component-wise.” (The form of a
scalar function such as L or H may change with the coordinate system, but not
the scalar value, nor the form of the equation in which L or H appear.)

3. Example: plane pendulum

Brie�y work through a simple example to get a feel for the different �avor of
each formulation. Consider a vertical plane pendulum, which moves through
two spatial dimensions, as shown in �gure 2. (Assume the usual idealizations:
frictionless, rigid suspending string; point-mass bob; negligible air resistance;
uniform gravitational �eld.) Use each formulation to �nd the equation of motion
for the pendulum, the equation that describes the position of the bob as a function
of time. We will see that each formulation yields the same equation of motion,
but by means of different routes.

Figure 2: Plane pendulum (MIT OCW)

To use Newton’s law, equation 1, �rst choose a rectangular coordinate sys-
8



tem. Let y be in the radial direction, with x in the direction tangential to the
path of the bob. Resolve the forces on the bob into their components in this
coordinate system. There are two forces on the bob: the tension directed along
the string, and the downward-directed gravitational force. The component of
the gravitational force in the direction of the acceleration along the path—the
tangential force—is m g sinθ, where θ is the angle the string makes with respect
to the vertical, as shown in the �gure.

There are two component equations of Newton’s law, one for each direction
of our coordinate coordinate system: Fx = max and Fy = may . Plugging in
the relevant force components yields Fx =−m g sinθ= max (the negative sign
because the gravitational force points downward) and Fy = T −m g cosθ= may ,
with T the tension in the string. Note that ay = 0; as a result, we effectively
ignore this second equation when solving for the equation of motion. (T has no
component in the direction of nonzero acceleration: it is merely a “constraint
force.”)

The arclength, which measures the distance traveled by the bob along the
curved path, is given by s = lθ. The second derivative of this quantity, s̈ = l θ̈, is
the acceleration along the path. Plug into the x-component equation of Newton’s
law, and we get the following equation of motion for the pendulum:

− g sinθ= l θ̈. (4)

We get the same equation of motion, in a different way, using Lagrangian
mechanics. We could use rectangular coordinates as we did above; but things are
simpler if we instead use generalized coordinate θ, with θ̇ the generalized velocity.
We can plug these coordinates directly into equation 2 to get the solution. We
can effectively treat θ and θ̇ as ordinary position and velocity coordinates, and,
perhaps surprisingly, this yields the right answer.

First calculate the Lagrangian, L= T −V . The kinetic energy T = 1
2 mv2 =

1
2 m(l θ̇)2. (The arclength is s = lθ, the velocity its �rst time derivative.) The
potential energy V =−m g l cosθ, setting the zero at the height of the pivot point
where θ= π

2 . (Gravitational potential energy= m g y, with y the vertical distance
from a chosen zero.) Thus, L= 1

2 m(l θ̇)2+m g l cosθ. Calculate the following
derivatives (in effect treating θ and θ̇ as independent variables, even though
one is really de�ned as the time derivative of the other): ∂ L

∂ q =
∂ L
∂ θ =−m g l sinθ

and ∂ L
∂ q̇ =

∂ L
∂ θ̇
= ml 2θ̇, so that d

d t

�

∂ L
∂ θ̇

�

= ml 2θ̈. Finally, plug into equation 2:

ml 2θ̈− (−m g l sinθ) = 0, i.e. l θ̈+ g sinθ= 0, which, rearranged, is equation 4.
In Hamiltonian mechanics, we �rst �nd the Hamiltonian, H = T +V . Given

L above, we can see that H = 1
2 m(l θ̇)2−m g l cosθ, but we need to rewrite this in
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terms of canonical coordinates. To �nd the generalized momentum, pθ, which is
“conjugate” to the position variable θ, use this equation: p = ∂ L

∂ q̇ , often taken to be

the de�nition of the generalized momentum.18 Using the equation pθ =
∂ L
∂ θ̇

, we

�nd that pθ = ml 2θ̇, so that θ̇= pθ
ml 2 , which we can use to eliminate θ̇ from the

expression for H . Thus, H = 1
2 m(l pθ

ml 2 )2−m g l cosθ = p2
θ

2ml 2 −m g l cosθ. Now
we can �nd the equation of motion for the pendulum using the Hamiltonian
equation ṗ =− ∂ H

∂ q ; that is, ṗθ =−
∂ H
∂ θ =−m g l sinθ. Differentiate pθ = ml 2θ̇ to

get ṗθ = ml 2θ̈, and plug into the equation for ṗθ to get ml 2θ̈=−m g l sinθ; i.e.
l θ̈=−g sinθ, which again yields equation 4.

4. Equivalent formulations?

We �nd the same equation of motion for the pendulum regardless of which
formulation we use. This turns out to be true in general. It is often simpler to
use Lagrangian or Hamiltonian mechanics rather than Newtonian mechanics,
since we do not have to calculate the various component forces on each particle.
Nonetheless, it is generally agreed that each formulation suf�ces for describing
the motion of any classical mechanical system.19 The difference seems to be
merely a matter of calculational convenience.

Indeed, physics books typically state, and go on to prove, an equivalence
among the three formulations, by showing that their dynamical equations are
all inter-derivable.20 A typical route is to begin with Newton’s laws, derive
the Lagrangian and Hamiltonian equations from them, and then show that
the derivation can go the other way. Thus José and Saletan, at the beginning
of their chapter on Lagrangian mechanics, following the one on Newtonian
mechanics, write, “In this chapter we show how the equations of motion can
be rewritten....We should emphasize that the physical content of Lagrange’s
equations is the same as that of Newton’s” (1998, 48). They then show that
Hamilton’s equations, in turn, can be derived from Lagrange’s, and vice versa,
concluding that they all “contain the same information” (1998, 207). Another
book concludes that, “From the point of view of the physicist this division [into

18The above is an instance of a Legendre transformation, which can be used to change back
and forth between Hamiltonian and Lagrangian coordinates, energy functions, and statespaces:
see Lanczos (1970, ch. 6); Arnold (1989, 3.14); José and Saletan (1998, ch. 5).

19Or so I assume here, setting aside reasons for hesitation on this point (note 10).
20Examples: Arnold (1989); Marion and Thornton (1995); Hand and Finch (1998); José and

Saletan (1998); Talman (2000); Goldstein et al. (2004); Baez (2005); Taylor (2005); see also
Feynman (1965, ch. 2).
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the three formulations] is rather arti�cial.. . .The segregation is based entirely
on the mathematical methods used” (Talman, 2000, 163). It certainly seems like
these are simply “alternative statements of the laws” (Marion and Thornton,
1995, 213), with “nothing new.. .added to the physics involved” (Goldstein et al.,
2004, 334) as we pass from one formulation to another. That is the standard
view: the three formulations are completely equivalent, mere notational variants;
they say all the same things, just in different ways.

I want to urge caution in adopting the standard view. The alleged equivalence
is not as straightforward as the above statements would have us believe. The
reason is that there are some differences among the formulations, and it is not
obvious that they are as super�cial as usually thought. Draw a rough distinction
between two kinds of differences: mathematical and metaphysical. I won’t go
into these in detail, but will point to places where there is a case to be made that
the differences go deeper than ordinarily claimed.

4.1. Mathematical differences

It is important to keep in mind that two things can be similar or equivalent
in some ways while differing in other ways. Two objects can share a shape yet
have different colors or patterns. Two spaces can share a distance structure yet
differ in whether they have a privileged location. In mathematics more generally,
two mathematical objects are considered equivalent when there is the relevant
structure-preserving mapping between them, in which case they are said to be
equivalent with respect to that structure. Two such objects can still differ with
respect to other kinds of structure.

All of which is to say that, even if the three formulations of classical mechanics
are equivalent in all the ways that physics books suggest, the formulations could
still be inequivalent in other ways. The question is whether they are equivalent,
full stop. The answer depends on whether what differences there are matter in
any way.

There is one patent mathematical difference among them: the formulations
use different symbols, in equations that do not “look” the same. The standard
view is that this difference does not matter. Consider the change from Cartesian
to polar coordinates to describe a Euclidean plane, or from one set of Cartesian
coordinates to another that is rotated or translated with respect to the �rst. Some
things will be different when we switch to the other coordinate system—the
points will get different numerical labels, for example—but we know that nothing
has really changed. The plane remains the same; we have simply used a different,
equally legitimate way of describing it. The standard view is that the differences
among the three formulations of classical mechanics are just like the differences
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among the coordinate-based descriptions of the plane: just a change in the
coordinates or variables being used to describe the very same physics.

However, there are some reasons to question this idea. Take Newtonian
mechanics, on the one hand, and Lagrangian and Hamiltonian mechanics, on
the other. The latter are comparatively coordinate-independent formulations
of classical mechanics. This suggests that they more directly get at the nature
of classical mechanical reality, apart from our descriptions of it—just as the
metric tensor on the Euclidean plane, rather than any coordinate-dependent
distance formula, more directly captures the intrinsic structure of the plane. (The
familiar form of the distance formula stemming from the pythagorean theorem,
d =

p

∆x2+∆y2, for instance, assumes Cartesian coordinates and won’t work
in other types of coordinates, even though the distance between any two points is
the same regardless of the coordinate system.) This, in turn, suggests that we have
reason to prefer these formulations. Physics prizes coordinate-independence, and
with good reason.21 Since there is freedom in which coordinate system to use, any
choice we do make will be arbitrary—a conventional choice made from among
equally good descriptions. (Recall the different coordinate systems for the plane.)
We can be misled into thinking that coordinate-dependent features, which rest
on an arbitrary choice in description, re�ect genuine features of reality.22 A
formulation that is independent of coordinates is then preferable, other things
being equal, when it comes to �guring out what physics says about the world. So
that even if the equations of the three formulations are inter-derivable in some
sense, there is also a sense in which the formulations are not mathematically on a
par, a sense in which they are not completely equivalent. Some of them may more
directly represent physical reality than others.23

We can go further. For the way in which the formulations differ in their
reliance on coordinates suggests particular physical differences among them.
Newtonian mechanics contains an implicit preference for Cartesian coordinates,
the kind of coordinates in which its core equation takes the standard form. A
preference for Cartesian coordinates, in turn, is indicative of a Euclidean metric
structure. This suggests that the spatial structure of a Newtonian world is

21Lanczos notes of the Lagrangian equations that they “stand out as the �rst example of that
‘principle of invariance’ [a kind of coordinate-independence] which was one of the leading ideas
of 19th century mathematics, and which has become of dominant importance in contemporary
physics” (1970, 117).

22Einstein once said that the main reason it took him so long to develop general relativity is
that “it is not so easy to free oneself from the idea that co-oordinates must have an immediate
metrical meaning” (Schilpp, 1970, 67).

23All that said, the role of coordinates in physics is more subtle and complicated than the
above discussion might suggest: see North (forthcoming).
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Euclidean. (Newton himself, of course, assumed such a structure.) Lagrangian
mechanics, which allows for a wider range of coordinates in describing classical
systems, does not constrain the spatial structure in the same way. This suggests
that the physical space of a Lagrangian world has a “looser” metric structure.
(I explore this difference, which will be re�ected in the theories’ statespace
structures, in North (forthcoming, ch. 4).) Hamiltonian mechanics allows
for even greater freedom of coordinates than that. (In particular, it allows for
coordinate changes that mix up the p’s and q ’s, whereas in Lagrangian mechanics,
since q̇ is de�ned as the time derivative of q , there is no allowable transformation
in which these coordinates “get intermingled” (Taylor, 2005, 538).24) As a result,
the Hamiltonian formulation does not require a metric structure, but only a
lesser type of structure akin to a volume measure. (I explore this difference in
North (2009).)

I’d go so far as to suggest that there is a hierarchy, in order of increasing math-
ematical structure, from Hamiltonian to Lagrangian to Newtonian mechanics—a
mathematical inequivalence among the three. (In the above-mentioned writings,
I argue that less such structure is in general a reason to prefer a theory.) If we
take a theory’s mathematical structure seriously in telling us about the nature
of the physical world, then this mathematical difference should re�ect a simi-
lar hierarchy in the physical structure of the world(s) each theory describes—a
physical inequivalence among them. In other words, these may not be wholly
equivalent formulations, neither mathematically nor physically, contrary to the
standard view.25

4.2. Metaphysical differences

Since the dynamical equations and basic quantities of the three formulations are
inter-derivable in ways that physics books claim, you might want to conclude
that the different formulations are simply “mutually supporting, compatible
perspectives on the phenomena of mechanical motions” (Wilson, 2007, 179).
That, once again, is the standard view.26 But there are other differences among

24There is a mathematical transformation between them (note 18), but even it “leads one to
suspect that there actually is a nontrivial difference between L and q̇ on the one hand and H
and p on the other” (José and Saletan, 1998, 217).

25Opposition to this conclusion, for different reasons, can be found in Swanson and Halvorson
(2012); Curiel (2014); Barrett (2015). Barrett (2019) points out how our judgments about the
relationship between the theories will depend on what we take to be their core structures, with
different views on their structures leading to different such judgments.

26Following Coffey (2014), the standard view may more accurately be put as that Newtonian
mechanics accurately represents classical mechanical reality, with Lagrangian and Hamiltonian
mechanics being mere reformulations of it.
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the formulations, what I call here “metaphysical” ones, that could lead to a
different conclusion. (Don’t let the term mislead you: these differences arguably
matter to physics.) Although no theory wears its metaphysics on its sleeves, on
a natural way of interpreting the formulations, they differ from one another in
potentially signi�cant ways. All assume a fundamental ontology of point-mass
particles with relative positions. Beyond that, each one offers a fairly different
picture of the world, given the different quantities that appear in their respective
dynamical equations. (What follows are some initial suggestions; the metaphysics
of the three formulations has not been much explored in the literature.)

First compare Newtonian mechanics, on the one hand, with Lagrangian and
Hamiltonian mechanics, on the other. Newtonian mechanics “describes the
world in terms of forces and accelerations (as related by the second law)” (Taylor,
2005, 521), where “force is something primitive and irreducible” (Lanczos, 1970,
27). Lagrangian and Hamiltonian mechanics describe systems in terms of energy,
with force being “a secondary quantity” derivable from the energy (Lanczos,
1970, 27). According to Newtonian mechanics, the world is fundamentally made
up of particles that move around in response to the various forces between
them. According to Lagrangian and Hamiltonian mechanics, particles move
around and interact as a result of their energies. Although energy and force
functions are inter-derivable in ways that physics books will show (albeit under
certain contestable assumptions: note 10), these are nonetheless prima facie
different pictures of the world, built up out of different fundamental quantities,
with correspondingly different explanations of the phenomena. Compare: the
Schrödinger and Heisenberg formulations of quantum mechanics are generally
considered inter-derivable, yet you might not want to regard them as wholly
metaphysically equivalent even so; many philosophers take only the former to
directly or perspicuously represent what is going on physically, for instance.
(You might think that Lagrangian and Hamiltonian mechanics can be seen as
fundamentally forced-based, given in terms of “generalized forces.” However,
generalized forces are so-called by analogy to ordinary forces. It isn’t clear that
they count as regular forces of the Newtonian kind.)

There are potential metaphysical differences between the two energy-based
approaches as well. In Lagrangian mechanics, generalized velocities are de�ned
as the �rst time derivatives of the generalized positions. This suggests that
positions are the only truly fundamental dynamical features of the particles, the
velocities being de�ned in terms of them. In Hamiltonian mechanics, on the
other hand, the canonical positions and momenta are both independent variables,
neither being de�ned in terms of the other: both seem to be fundamental. (This,
in turn, may amount to an “impetus” view in the medieval tradition, with further
metaphysical repercussions: Arntzenius (2000, sec. 4). This assumes that the
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second law of Hamiltonian mechanics is not a de�nition of the generalized
momentum, as often claimed, but a further fundamental dynamical law.) Another
difference is that the Hamiltonian is typically equal to the total energy of a system,
whereas the Lagrangian is the difference between the kinetic and potential energy.
Perhaps this, too, amounts to a genuine difference.27

In fact, there is a range of potential views on what’s fundamental to each
of the formulations, and it is not clear which is correct. It is an open ques-
tion whether, on any of them, ordinary three-dimensional space is fundamental,
or whether what we usually think of as the merely abstract, high-dimensional
statespace (or the con�guration space) is. Relatedly, it is open whether particle
features like positions and momenta are fundamentally de�ned on the low- or
high-dimensional space. (Compare the debate in quantum mechanics over the
fundamentality of the high-dimensional space of the wavefunction versus or-
dinary three-dimensional space.) Within energy-based approaches, it is open
whether the energy function, L or H , is fundamental, or whether instead the
potential and kinetic energies are; or indeed whether any energy quantity is
fundamental, rather than the particle positions and velocities in terms of which
the energy is standardly de�ned; or whether all of these might be fundamental.
Analogous questions arise for Newtonian mechanics: are total forces or compo-
nent forces fundamental?28 For that matter, can Newtonian mechanics be seen as
a fundamentally energy-based theory, given the inter-derivability of the different
quantities?29 Finally: are any of these genuinely distinct possibilities, or are they
all equivalent—just different, equally legitimate ways of describing the same
physical reality, analogous to the different coordinate-based descriptions of the
plane? Although physics books generally assume the latter, certain metaphysical
views will say that only one description gets at the real or fundamental properties
(Lewis, 1983; Sider, 2011).

In all, it seems very much an open question whether the three formulations
of classical mechanics are genuinely equivalent, mere notational variants of a
single theory, as usually thought. There is a case to be made that the differ-
ences are signi�cant enough to render them more like distinct theories, with
different accounts of what the physical world is like. All of this warrants further
investigation.30

27Baez (2005, ch. 1) tries to distinguish these physically.
28Cartwright (1983, ch. 3) argues against the reality of component forces.
29Wilson (2007) defends the existence of Newtonian forces against various objections.
30Some further investigation is in North (forthcoming), especially chs. 4 and 7.
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