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1. Introduction and Overview (Area Mapped and Mapping Methods)

Concepts are an important part of physics [1, § 2][2][3, § 1.2][4, § 1][5, p. 82][6,7].
This article, therefore, concentrates on the conceptual aspects of the violation of
Bell inequalities. To do so, it builds on the analysis in Understanding quantum
mechanics: a review and synthesis in precise language [3] (the 2019 review) and, like
that review, uses only non-mathematical language. The use of such language “can
enhance understanding of the mathematics of quantum mechanics, for at least
some users” [3, § 1.3]. The use of non-mathematical language raises the question:
which non-mathematical language? This article is (a) written in English, and (b)
based on literature written in, or translated into, English. This article therefore
reflects only limited “epistemic diversity” [8].

Subject to that language constraint, this article aims to refer to enough of the
relevant literature to be representative of the current state of the subject. This
article is, to the relevant literature, what a map is to the territory it represents.
[3, § 1.4]

Underlying philosophical prejudices, sometimes unconscious, will very often
affect how the violation of Bell inequalities is discussed. Given the potential need
to modify pre-quantum mechanical concepts in this context, it is important to
consider what these prejudices might be, and to make assumptions explicit [3,
§ 1.1][9, p. 117][10, p. 204]. Some of the content of this article relates to wider
discussions on the themes of reality, spacetime, probability and determinism.
Underlying assumptions in these areas, and the intended meanings of related
ambiguous terms, are as in the 2019 review. The first part of that review outlined
these assumptions with reference to the relevant literature [3, § 1.5–§ 1.9].

Some words used in discussing the inequalities can take a variety of meanings.
Imprecise non-mathematical language can make assessing the implications of the
violation of Bell’s inequalities harder than it needs to be [3, § 1.1]. An equivalent
concern has long been acknowledged in wider physics [5, pp. 74–75], and has more
recently been highlighted in wider quantum mechanics [6, § 26.2]. The final part
of the 2019 review is a glossary of intended meanings for many elements of the
non-mathematical language used in that review [3, § 8]. The intended meanings
for such language are as in the 2019 review, subject to the three additions and one
amendment set out in Part 5 below. These meanings may differ from the meanings
intended by other authors, when they use the same words [3, § 1.4].

Part 2 outlines (a) relevant characteristics of quantum mechanics, such as
statistical balance and entanglement, and (b) the thinking that led to the derivation
of the original Bell inequality. Part 3 surveys the range of claimed implications,
including those which attract less attention, and specifically considers realism
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and locality. The main conclusion, in Part 4, is that violation of Bell inequalities
appears to have some implications for the nature of physical reality, but that none
of these are definite. Many claims that there are definite implications reflect one or
more of (a) imprecise non-mathematical language, (b) assumptions inappropriate
in quantum mechanics, (c) inadequate treatment of measurement statistics and (d)
underlying philosophical assumptions.

2. The Bell Inequalities in Context (Small Scale Map of a Large Area)

2.1. Quantum Mechanics: Statistics and Probabilities

Quantum mechanics prescribes (specifies in advance) some aspects
of expected future events relating to physical systems, in a range of
possible situations [11][12, § 4.5]. Prescriptions (advance specifications)
are made, collectively, as probability distributions [3, § 2.1].

As a result, “verifying the prescriptions of quantum mechanics is almost always
statistical [13, § 4.2.3, § 6.4][14, ch. 9][15–18][19, pp. 206, 210][20, p. 99]” [3,
§ 2.1][21, p. 224]. The concept of statistical ensemble underlies the concept of
quantum mechanical state, a core element of the quantum mechanical formalism
[3, § 3.2][21, p. 224]. Also central to quantum mechanics is the fact that the
prescriptions inherent in any quantum mechanical state will cover a range of
different, often mutually exclusive, physical contexts [3, § 3.2][22, p. 224][23][24,
p. 2]. Even quantum mechanical analyses that, in theory, seem to depend neither
on inequalities nor statistics, remain inherently statistical in that they are quantum
mechanical [25].

Appropriate analysis of probability, therefore, is central to quantum mechanics
in general [3, § 2.1][26–30], and is crucial, in particular, to assessing the implications
of violation of Bell inequalities [31,32][33, § 5][34, p. 5][35, p. 1603]. For example,
Bell inequalities reflect, or even reproduce, the Boole inequality in probability
theory. Over 100 years before Bell’s work, Boole had identified that violation of
this (Boole) inequality implies that, for a system of three random variables, a joint
probability distribution does not exist [26, § 4.1][36, § 2][37, § 4][38, p. 167][39,
§ 2][40, § 1, § 4].

Likewise, the non-mathematical language used to deal with probability requires
care [3, § 1.7, § 1.8][41,42]. Again, this is particularly true in assessing the
implications of violation of Bell inequalities [43].
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2.2. Statistical Balance in Quantum Mechanics

The 2019 review highlights the concept of statistical balance [3, § 2.2]: “for
some combinations of measurement types, the observed statistics indicate that
the collective response of (what are taken to be) identically prepared systems to
differing measurement types is not at all straightforward”. Statistical balance refers
to this balanced collective response, to differing measurement types [44, Part 3],
which features even in the analysis of systems which are single (no subsystems)
and simple (no structure) [3, § 2.2][45, § 2][46, § 8][47, § 4][48, pp. 10–11].

This article will also use statistical balance as a convenient term for this core
feature of quantum mechanics: the fact that, “for any given measurement type, in a
series of measurement events, the outcomes (collectively) give statistics consistent
with the prescribed probability” [3, § 2.2]. The choice of this term derives from
the fact that there is a sense of balance in the statistics. For example, there
is a balance between the outcomes of individual runs when the overall result
of the measurement is in line with a prescribed probability which is neither 0
nor 1. This is true even when it is demonstrable that no definite value for the
measured property can be attributed to individual members of the originally
prepared ensemble [3, § 2.2][49, § 1.1.2]. The balance is among measurement event
outcomes which happen sequentially in time. This article will refer to this instance
of statistical balance as two-measurement-type statistical-balance-in-time.

The word balance has some connotations which might make it seem
inappropriate in this context. For example balance might suggest a feature with
a known underlying explanation, or even a feature in which two things are
equally balanced. Neither connotation is intended by the choice of this term.
Indeed statistical balance characterizes a series of measurement event outcomes,
with none of them being explicable by reference to pre-measurement underlying
properties. The fact that the overall result of the measurement is predictable is
very hard to explain without significant modification of pre-quantum mechanical
concepts.

The 2019 review mentioned four suggested approaches to explaining statistical
balance within an ensemble. The last of these involved recognising the concept of
potentia as a feature of independent reality, and continues to be developed [50–54].

2.3. Entanglement: Statistically Balanced Subsystem Outcomes

When systems are considered together in quantum mechanics, any separate
states for the systems are replaced by a new one for the composite system [46, § 15].
The term entangled state can be used to refer to a mixed composite system state
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[55, p. 2][56, p. 5], but this article will follow the 2019 review in limiting the use of
the term entangled state to pure states, such as superpositions of composite system
pure states [3, § 3.6, § 8][57, p. 149]. Such pure entangled states are, however,
recognised to be an idealisation [3, § 3.6][58].

“Like all quantum mechanical states, entangled states feature a statistical
balance in collective outcomes, among ensembles for differing measurements on
the ensemble to which they relate” [3, § 3.6]. What distinguishes entangled
states from non-entangled states is statistical balance among collective outcomes,
for differing measurement types, on far-apart subsystems [3, § 3.6][59]. This
article will refer to the latter instance of statistical balance as two-measurement-type
statistical-balance-in-space-and-time. Entanglement can arise irrespective of the
relationship between the two measurement types [60].

2.4. Background to the Original Bell Inequality

The Einstein-Podolsky-Rosen thought experiment [61] has been subject to
extensive analysis [62][3, § 5.2]. When an observer, O2, carries out a measurement
on system 2, of a pair of systems, it appears that O2 can change the state
representing system 1. Schrödinger informally described this as O2 steering, or
piloting, system 1 [63]. More recent and precise analysis highlights that the pair of
systems must be treated as a composite system represented by an entangled state
[3, § 5.2][64, § 3.2][65,66][67, § 3.4][68, § 5].

Despite frequent reference to correlations and causation in this context [69],
such an approach is inappropriate [3, § 5.3][70, p. 3]. The Einstein-Podolsky-Rosen
pair is reflecting features which pervade quantum mechanics [45,47], features
which are also seen in non-composite systems [3, § 5.3][13, § 6.4][46, § 10, § 11][71,
§ V.F][72].

Building on the Einstein-Podolsky-Rosen analysis, Bell explored some possible
implications of the quantum mechanical analysis of a composite system entangled
state [73], in which “the result of measuring any chosen spin component for one
subsystem, can be predicted by first measuring the same component for the other”
[3, § 5.4]. Bell first hypothesised that, when the subsystems are far apart, the
choice of which component of spin is to be measured on one subsystem does not
influence the result of a measurement on the other. Bell then took this to imply
that the result of the second measurement was predetermined, which suggests
that it might be possible to specify the system more completely than is done by
the quantum mechanical state. For one such possible specification, Bell derived a
resulting inequality, and showed that it is violated by the predictions of quantum
mechanics [73].
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Since Bell’s original paper, Bell’s name has been associated with many other
inequalities relating to composite systems [74, Appendix], and more continue to be
developed [31]. Most of this article is potentially applicable to any of these many
inequalities. On that basis, the phrase Bell inequalities in this article will mean any
of the inequalities classified in the 2014 review Bell nonlocality [74, Appendix].

3. Conceptual Implications of Violation of Bell Inequalities
(Larger Scale Map of a Smaller Area)

3.1. Bell Inequalities: Statistical Balance

Bell inequalities involve quantum mechanical analysis of widely-extended
composite systems. In assessing the implications of violation of Bell inequalities,
it is important to remember known features quantum mechanical analysis of
systems which are non-composite (no subsystems) and simple (no extended
structure). In particular, as noted in Sect. 2.2 above, the prescribed
statistics of measurement event outcomes for non-composite simple systems
reflect two-measurement-type statistical-balance-in-time: the overall result of a
measurement is often in line with a prescribed probability which is neither
0 nor 1, despite the fact that no definite value of the relevant property can
be attributed to individual members of the originally prepared ensemble. If
this is true for a collection of measurement event outcomes which happen
sequentially in time for two-measurement-types, it should not be surprising
to discover a similar statistical balance among measurement event outcomes
which happen sequentially in space and time for two measurement-types
(two-measurement-type statistical-balance-in-space-and-time).

At least some of the conceptual confusion which often features in discussion
of Bell inequalities results from a failure to apply the caution which should be
motivated by the statistical balance which pervades quantum mechanics. In
particular “[t]here seems to be a widespread, implicit acceptance that explaining
this balance is not part of quantum mechanics” [3, § 2.2][45,47]. In marked contrast,
there seems to be a widespread, explicit acceptance that explaining violation of Bell
inequalities is part of quantum mechanics.

The inconsistency of this approach to explanation has recently been highlighted
in a startling way. An approach, similar to that taken to quantum mechanical
analysis of composite systems and Bell inequalities, can be taken to analysing
two differing measurement types being applied consecutively to a non-composite
system. If this is done, then it is possible to infer characteristics of a type typically
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associated with quantum mechanical analysis of composite systems [75] (although
the conventional analysis of the particular set-up considered in that analysis is
“notoriously counter-intuitive” and potentially in need of revision [76]). In a
similar way, the conclusions drawn by Einstein-Podolsky-Rosen by considering
two measurement types for a composite system could equally well have been
drawn by considering a single measurement type for a composite system [77,
§ 3.3].

Thus, violation of Bell inequalities reflects, at least in part, the
two-measurement-type statistical-balance-in-time that would be evident in a
single non-composite system [78, p. 643][79]. It has been suggested that this
is the sole or main implication and, therefore, that discussion of nonlocality is
misguided [80–82], but some aspects of this view are currently being challenged
[83].

In the absence of a theory to explain the pervasive statistical balance, it would be
surprising if the particular balance reflected in violation of Bell inequalities could
be explained. On that basis, the violation of Bell inequalities seems a particularly
inappropriate place to start to draw conclusions on questions such as realism or
locality. Conversely, the plausibility of a possible explanation for the pervasive
statistical balance, such as a conservation principle operating on average for an
ensemble, can be tested by reference to the Bell inequalities [84].

3.2. Bell Inequalities: Locality and Realism

Some analyse Bell inequalities in terms of locality [85, § 8.6][86–88], causality
[85, § 8.7][89,90] and local causality [91–95]. It is challenging to achieve appropriate
definitions of these terms [56, pp. 7–8][70, p. 3][96–98]. For example there may be
value in distinguishing between: the apparent nonlocality suggested by violation
of Bell inequalities; and the steering effect arising in the Einstein-Podolsky-Rosen
context [56,99–107]. Conceptual analysis of these terms and definitions is also
ongoing. For example, there can be a benefit in clarifying the concept of
separability [56, p. 7][108], distinguishing separability from locality [67, § 3.3][87,
ch. 8], or identifying to what extent non-separability arises in classical analysis
[109, § 3][110, p. 14].

Some suggest that violation of Bell inequalities rules out local realism [111, pp.
487–488], and so forces a choice between two alternatives: realism or locality, but
views differ of the meaning of these terms [37,40,87,91,112–118], and there is no
clear consensus in this area [119–122]. Careful conceptual analysis of the term
realism is needed in the context of quantum mechanics, as is clarity on which of
the many meanings of the word is meant in any discussion of Bell inequalities [24,
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pp. 5–6][123][124, § 3][125, § 5.2].
A striking example of lack of consensus on the implications of the inequalities

is the ongoing debate on (a) what Bell took the Einstein-Podolsky-Rosen analysis
to have demonstrated, and (b) whether Bell intended his original analysis to
complement the Einstein-Podolsky-Rosen analysis, or to stand on its own. If the
Einstein-Podolsky-Rosen analysis is seen to demonstrate that locality necessarily
implies predetermined results, and if Bell’s original analysis is seen to demonstrate
that predetermined results are necessarily inconsistent with quantum mechanics,
then locality is necessarily inconsistent with quantum mechanics [88, § 4.5.2][125,
§ 5.2][126, § 3.9][127, § 13.2]. Although this argument is logically correct, both
of the premises are open to challenge. This debate is prolonged by three other
factors: (i) the less than clear presentation of the original Einstein-Podolsky-Rosen
analysis [127, § 13.2][128, § 6.3]; (ii) the fact that Bell’s original analysis makes only
very brief reference to the Einstein-Podolsky-Rosen analysis [125, § 5.7]; and (iii)
disagreement over the extent to which Bell’s subsequent writings reflected new
results and thinking, or revised expressions of the original result and thinking
[128–130].

Several projects are exploring prequantum theories, which might underlie
quantum mechanics. Some of these projects aim to reconcile at least one
understanding of locality and realism to quantum mechanical predictions,
including Bell inequality violations [24, pp. 3–4][40][131, § 3.6][132–135][136, § 1].
Other projects are exploring possible prequantum theories which allow for the
possibility of some form of nonlocality [64, pp. 51, 54][137]. Bell analyses constrain
both groups of prequantum theories [138], but do not necessarily rule them out [3,
§ 7][139, § 2][140–142][143, pp. 136–137]. Recent attempts to rule out such theories
are also unsuccessful [144], perhaps necessarily so [145, § 5][146,147][148, § 8].

Many views of realism arising in discussion of Bell inequalities seem
inconsistent with what are otherwise accepted as core features of quantum theory
[3, § 5.6][13, § 9.1.3][16, § 1][72,149–151][152, § 2.2][153, p. 7][154, pp. 153–154,
158–159]. Similar inconsistency (between the combinations of assumptions used
in the theorems and relevant features of quantum theory) continues to be a
feature of at least some theorems seeking to draw conclusions about the nature
of mind-independent reality [155–157].

Among those who challenge the assumptions underlying Bell inequalities,
some deny that the inequalities indicate anything significant about either locality
or realism [13, § 9.3.2][16,32,45,47,158–160].

3.3. Bell Inequalities: Measurement
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Dealing with measurement in quantum mechanics is not straightforward and
requires significant revision to pre-quantum mechanical concepts.

The result of a measurement is not ascribed to the systems, nor to their
preparation, nor to the measurement, but to the totality. The totality
is a closed phenomenon, and the prescribed probability distributions
refer to this totality [161][162, § 6]. Measured values do not necessarily
exist beforehand [13, § 4.6.1] ... If a property has not been measured,
the formalism does not attribute any value [163, § 3]. Only one context
justifies a claim that any member ... of the ensemble was originally
such that a well-defined value could be attributed to the property being
explored in the measurement. That context is when all single runs give
the same outcome [164]. [3, § 4.1][6, § 26.4][21, p. 223]

Violation of Bell inequalities will also reflect, at least in part, these non
straightforward aspects of measurement [140], aspects that would be evident even
when dealing with a single non-composite system [158][165, § VI]. It has been
suggested that the essential implication of violation relates to the measurement
process, rather than the composite system itself [166]. At very least, the apparatus
parameters, for different apparatus settings, need to be correctly taken into account
[167]. Doing so (a) involves acknowledging the known contextuality of quantum
mechanics (the fact that its prescribed probabilities are specific to a particular
experimental context), and (b) may prevent Bell inequalities from being derived
[13, § 9.1.3][16,134,168–173]

Other analysis also suggests that violation of Bell inequalities fundamentally
relates to contextuality [174,175]. This analysis highlights the apparent assumption
that there is a single probability space describing the all the statistical data relevant
to Bell inequalities [32][33, § 5][36][85, § 8.5][174, § 6][175–179]. Regardless of
whether the single probability space is assumed or derived [159,180], it is unlikely
to be appropriate [3, § 1.8][35, p. 1603][82, pp. 10–11][181, § 1.6][182, p. 97][183,
§ 7], and so at least part of the reason for the violation of Bell inequalities might
be that data from different probability spaces have been inappropriately combined
[165, § 2][184–187]. In response to this concern:

• an alternative approach, involving joint simultaneous measurement, has
recently been proposed [167,188]; and

• an alternative inequality, not requiring a single probability space, has been
derived [87, pp. 83–85][189].

The nature and forms of contextuality are also subject to ongoing analysis [190–
195].
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3.4. Bell Inequalities: Free Will

Some focus on the assumption that changing an apparatus setting
does not affect the distribution of any variables that determine
the measurement event outcomes (measurement independence or
free will). Supporters of this free will assumption argue that
correlations between the systems and the settings chosen would
have to be amazingly strong for it to be violated [115,196]. This
so-called conspiracy is, however, difficult to rule out [64, § 5.7.3][160,
§ 5][197][198][199, Appendix][200, § 4]. It is also consistent with the
view that free will is only practical and epistemic [3, § 1.9]. Arguments
for the free will assumption may themselves involve circular reasoning
[201, § 5.1]. [3, § 5.5]

The idea that there is any clear link, between quantum mechanics and questions
of determinism or free will, has been strongly challenged [3, § 1.9][202,203].
Despite the obvious need to carefully and adequately define what is meant by free
will [204], frequent failure to do so contributes to confused thinking in this area
[205].

Despite ongoing challenges to (what is referred to as) superdeterminism [206–
208], the reasonableness of rejecting the free will assumption continues to be
acknowledged [209, § V][210], explored [211,212], and defended [213–218][219,
§ 5].

3.5. Bell Inequalities: Other Issues

For some, Einstein-Podolsky-Rosen pairs and Bell inequalities suggest time
symmetry [3, § 6.4][220–222], perhaps in combination with reverse causality [223,
§ 5.2][224–228], an adynamical spacetime [229], or a three dimensional timeless
space [230].

Others suggest that Bell inequalities involve assumptions about
distinguishability [231], ergodicity [232,233], time-independent variables [234] or
temporal locality [223, § 7]. Challenging these assumptions can generate differing
assessments of the implications of violation of the inequalities. Whether or not any
assumptions necessarily imply counterfactual reasoning is not a straightforward
question [235,236] and, either way, alternative approaches avoiding conterfactuals
may be possible [237]. The potential need for many-valued logic [238,239] is also
not straightforward.

Some suggest that violation of Bell inequalities reflects the need for an
alternative approach to the concept of a composite system with two subsystems:
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either more holistic [24, p. 7][240, § 7][241, § 6][242], or giving more emphasis to
the statistical ensemble than its members [21, § 9.3.5]. This highlights the pervasive
need in quantum mechanics to accept that pre-quantum mechanical concepts may
no longer apply [24, p. 5][243, § 4.2].

There are significant challenges in appropriately analysing actual
sequential-in-time measurements in quantum mechanics [35][244, § V][245].
These challenges are particularly relevant to relating theoretical analysis of Bell
inequalities to practical experiments [82, pp. 10–11][246, § 1, § 6][247, § 5][248,
§ 3], and partly reflect more general challenges of fully analysing a realistic
measurement apparatus and realistically modelling laboratory experiments
[28,164]. In experiments aiming to demonstrate violation of Bell inequalities,
problems can also arise relating to statistical analyses and data, either of which
may be incomplete or incorrect [3, § 5.6][249–251].

It is not possible in practice to fully overcome the multiple challenges. Thus,
there is ongoing and significant dissent [252] from the widespread view that
a series of experiments in the last decade [18,253–255] has dealt with all the
significant challenges simultaneously and adequately. Whether or not future Bell
experiments succeed to a greater extent in overcoming the challenges, there will
remain multiple potential implications of any results, depending what view is
taken on the theoretical aspects of the relevant inequalities [16,131,233,252,256–
258].

4. Conclusions (Features Emerging from the Map)

In order to appropriately assess the implications of violation of Bell inequalities,
it helps to set them in the wider context of quantum mechanics.

• Appropriate analysis of probability is central to quantum mechanics, and
crucial to assessing the implications of violation of Bell inequalities. Bell
inequalities reflect the Boole inequality for joint probability distributions.
(Sect. 2.1 above)

• Generally in quantum mechanics, statistical balance characterizes a
series of measurement event outcomes, none of which are explicable
by reference to pre-measurement properties. It is not yet clear what
this implies about any physical reality underlying two-measurement-type
statistical-balance-in-time within an ensemble of simple systems (Sect. 2.2
above).

• It seems hard, therefore, to find any definite implications
about any physical reality underlying two-measurement-type
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statistical-balance-in-space-and-time in an ensemble of composite systems
(Sect. 2.3 above).

• The Einstein-Podolsky-Rosen thought experiment highlights that, in
quantum mechanics, some pairs of systems must be treated as a single
composite system. Bell suggested that some possible non-quantum
mechanical treatments of such pairs would satisfy an inequality, but showed
that the same inequality is violated by the predictions of quantum mechanics
(Sect. 2.4 above).

• Confusion can arise in discussion of Bell inequalities from failing to apply the
caution which should be motivated by the statistical balance which pervades
quantum mechanics (Sect. 3.1 above).

There are several possible ways to assess the implications of violation of Bell
inequalities. These can lead to differing conclusions.

• Violation of Bell inequalities constrains prequantum theories, but does not
rule out the possibility that such a theory might reconcile some form of
locality and realism to quantum mechanical predictions (Sect. 3.2 above).

• Violation of Bell inequalities might, at least partly, reflect (a) the known
contextuality of quantum mechanics (the fact that its prescribed probabilities
are specific to a particular experimental context) and (b) that data from
different probability spaces have been inappropriately combined (Sect. 3.3
above).

• Bell inequalities assume that changing an apparatus setting does not affect
the distribution of any variables that determine the measurement event
outcomes (measurement independence or free will). The reasonableness of
rejecting this free will assumption continues to be defended. (Sect. 3.4 above)

• Other suggestions are based on alternative approaches to time,
distinguishability, ergodicity, logic, counterfactuals and ensembles. Again,
many of these would reconcile at least one understanding of locality
and realism to quantum mechanical predictions. It is also possible that
experiments in the last decade may not have dealt with the significant
challenges adequately. (Sect. 3.5 above)

In summary, violation of Bell inequalities appears to have some implications for
the nature of physical reality, but none of these are definite. Many claims that there
are definite implications reflect one or more of:
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• lack of precision in non-mathematical language (Sects. 1, 3.2 and 3.4 above);

• assumptions inappropriate in quantum mechanics (Sects. 3.2 and 3.3 above);

• inadequate treatment of measurement statistics (Sects. 3.1 and 3.3 above);
and

• underlying philosophical assumptions (Sects. 1, 3.2 and 3.5 above).

5. Amendments to the 2019 Review Glossary

The 2019 review included a glossary of intended meanings for many elements
of the non-mathematical language used [3, § 8].The intended meanings for such
language in this article are the same as in the 2019 review, subject to the three
additions and one amendment set out below.

The 2019 review did not include Bell inequalities in its glossary. The intended
meaning for this article is:

Bell inequalities any of the inequalities classified in the 2014 review
Bell nonlocality [74, Appendix].

The 2019 review glossary had no entry for probability space, despite the frequent
use of this term in that review. The intended meaning of probability space for this
article is:

probability space a set of mutually exclusive possible events,
in a specified (actual or notional) experimental context, to which
probabilities can be assigned such that it is certain that one (and only
one) of the events in the set will occur [259, § 3][260, § 2.1]

(The qualification “actual or notional” allows for the fact that quantum mechanics
applies to unobserved events [3, § 3.1][261, p. xiii]. The meaning of event is as given
in the 2019 glossary.) It follows that the intended meaning of probability distribution
for this article is:

probability distribution the probabilities assigned to possible events,
in a specific probability space

The 2019 review meaning for statistical ensemble was potentially ambiguous: “a set
of systems which can be treated as identical, such as those prepared in an identical
way”. The failure to further define the phrase “treated as identical” may have been
unhelpful. The revised meaning of statistical ensemble for this article is:

statistical ensemble an actual or virtual set of systems which have
been (actually or notionally) prepared in an identical way [164]
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(The qualification “actual or virtual” reflects the fact that, in some cases, the
ensemble might have only one physical member and many mental copies [3,
§ 3.2][262, p. 308]. The qualification “actually or notionally” reflects the fact that
quantum mechanics applies to spontaneous events [3, § 3.1][263–265], passively
recorded, and to unobserved events [3, § 3.1][261, p. xiii]. The meanings of system
and prepared are as in the 2019 glossary.)
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